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Abstract. Property mapping is a fundamental component of ontology match-
ing, and yet there is little support that goes beyond the identification of single
property matches. Real data often requires some degree of composition, trivially
exemplified by the mapping of “first name” and “last name” to “full name” on
one end, to complex matchings, such as parsing and pairing symbol/digit strings
to SSN numbers, at the other end of the spectrum. In this paper, we propose
a two-phase instance-based technique for complex datatype property matching.
Phase 1 computes the Estimate Mutual Information matrix of the property val-
ues to (1) find simple, 1:1 matches, and (2) compute a list of possible complex
matches. Phase 2 applies Genetic Programming to the much reduced search space
of candidate matches to find complex matches. We conclude with experimental
results that illustrate how the technique works. Furthermore, we show that the
proposed technique greatly improves results over those obtained if the Estimate
Mutual Information matrix or the Genetic Programming techniques were to be
used independently.

Keywords: Ontology Matching, Genetic Programming, Mutual Information, Schema
Matching

1 Introduction

Ontology matching is a fundamental problem in many applications areas [10]. Using
OWL concepts, by datatype property matching we mean the special case of matching
datatype properties from two classes.

Concisely, an instance of a datatype property p is a triple of the form (s, p, l), where
s is a resource identifier and l is a literal. A datatype property matching from a source
class S to a target class T is a partial relation µ between sets of datatype properties from
S and T , respectively. We say that a match (A,B) ∈ µ is m:n iff A and B contain m and
n properties, respectively. A match (A,B) ∈ µ should be accompanied by one or more
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datatype property mappings that indicate how to construct instances of the properties
in B from instances of the properties in A. A match (A,B) ∈ µ is simple iff it is 1:1 and
the mapping is a identity function; otherwise, it is complex.

In this paper, we introduce a two-phase, instance-based datatype property matching
technique that is able to find complex n:1 datatype property matches and to construct
the corresponding property mappings. The technique extends the ontology matching
process described in [19] to include complex matches between sets of datatype proper-
ties and is classified as instance-based since it depends on sets of instances.

Briefly, given two sets, s and t, that contain instances of the datatype properties of
the source class S and the target class T , respectively, the first phase of the technique
constructs the Estimated Mutual Information matrix (EMI) [18, 19] of the datatype
property instances in s and t, which intuitively measures the amount of related informa-
tion from the observed property instances. The scope of this phase is to identify simple
datatype property matches. For example, it may detect that the “e-mail” datatype prop-
erty of one class matches the “electronic address” datatype property of another class.
Additionally, the first phase suggests, for the second phase, sets of candidate datatype
properties that can be matched only under more complex relationships, thereby reduc-
ing the search space.

The second phase uses a genetic programming approach (GP) to find complex n:1
datatype property matches. For example, it discovers that the “first name” and “last
name” datatype properties of the source class match the “full name” datatype property
of the target class, and returns a property mapping function that concatenates the values
of “first name” and “last name” (of the same class instance) to generate the “full name”
value. The reason for adopting genetic programming is two-fold: it reduces the cost
of traversing the search space; and it can be used to automatically generate complex
mappings between datatype property sets.

The difficulty of the problem of finding complex matches between sets of datatype
properties should not be underestimated since the search space is typically quite large.
Therefore, our contribution towards a more accurate and efficient solution lies in
proposing a two-phase technique, which deals with the problem of finding complex
matches by: (a) using the Estimated Mutual Information matrix (in Phase 1) as a pre-
processing stage, limiting the candidate sets of properties for complex matches; (b)
adopting a genetic programming strategy to automatically generate complex property
mappings. We also give empirical evidence that the combination of both approaches,
EMI and GP, yields better results than using either technique in separate.

2 Background

2.1 Vocabulary matching and concept mapping

We decompose the problem of OWL ontology matching into the problem of vocabulary
matching and that of concept mapping. In this section, we briefly review these concepts
and extend them to account for complex property matching. In what follows, let S and
T be two OWL ontologies, and VS and VT be their vocabularies, respectively. Let CS
and CT be the sets of classes and PS and PT be the sets of properties in VS and VT,
respectively.



An instance of a class c is a triple of the form (s, rdf :type, c), an instance of an
object property p is a triple of the form (s, p, o) and an instance of a datatype property
d is a triple of the form (s, d, l), where s and o are resource identifiers and l is a literal.

A vocabulary matching between S and T is a finite set µ ⊆ VS × VT. Given
(v1, v2) ∈ µ, we say that (v1, v2) is a match in µ and that µ matches v1 with v2; a
property (or class) matching is a matching defined only for properties (or classes).

A concept mapping from S to T is a set of transformation rules that map instances
of the concepts of S into instances of the concepts of T.

In this paper, we extend vocabulary matchings to also include pairs of the form
(A,B) where A and B are sets of datatype properties in PS and PT, respectively. We
say that (A,B) is an m:n match iff A and B contain m and n properties, respectively.
In this case, a match (A,B) must be accompanied by datatype property mappings, de-
noted µ[A,Bi], which are transformation rules that map instances of the properties in A
into instances of the property Bi, for i = 1, . . . , n, where B={B1, . . . , Bn}. Using “//”
to denote string concatenation, the following transformation rule (s, fullName, v)←
(s, firstName, n), (s, lastName, f), v = n//f indicates that the value of the “full-
Name” property is obtained by concatenating the values of properties “firstName” and
“lastName”. We will use the following abbreviated form for mapping rules with the
above syntax:

µ[{firstName, lastName}, fullName] =
“fullName← firstName//lastName′′

As an abuse of notation, when A is a singleton {A1}, we simply write µ[A1, Bi],
rather than µ[{A1}, Bi]. Finally, a match (A,B) is simple iff it is 1:1, that is, of the form
({A1}, B1), and the mapping µ[A1, B1] is the identity transformation rule, defined as
“(s,B1, l)← (s,A1, l)”; otherwise, the match is complex.

2.2 An instance-based process for vocabulary matching

In this section, we very briefly summarize the instance-based process to create vocabu-
lary matchings introduced in [19]. The outline of the process is as follows:

S1. Generate a preliminary property matching using similarity functions.
S2. Generate a class matching using the property matching obtained in S1.
S3. Generate an instance matching using the output from S1.
S4. Refine the property matching using the class matching generated in S2 and the

instance matching from S3.

The final vocabulary matching is the result of the union of the class matching ob-
tained in S2 and the refined property matching obtained in S4.

The intuition used in all steps of the process is that “two schema elements match
iff they have many values in common and few values not in common”, i.e. iff they are
similar above a given similarity threshold.

We obtain the following output from each individual step. S1 generates prelimi-
nary 1:1 property matchings based on the intuition that two properties match iff their



instances share similar sets of values. In the case of string properties, their values are
replaced by the tokens extracted from their values. S1 provides evidences on class and
instance matchings, explored in the next two steps.

S2 generates class matchings based on the intuition that two classes match iff their
sets of properties are similar. This step uses the property matchings generated in S1.

S3 generates instance matchings based on the intuition that two instances match
iff the values of their properties are similar. However, equivalent instances from differ-
ent classes may be described by very different sets of properties. Therefore, extracting
values from all of their properties may lead to the wrong conclusion that the instances
are not equivalent. Therefore, Leme et al. [19] propose to extract values only from the
matching properties of the instances.

3 Two-phase property matching technique

In this section, we introduce a technique to partly implement and extend the ontology
matching process of Section 2.2 to compute complex n:1 datatype property matches
(note that the technique does not cover n:m matches). The technique comprises two
phases: Phase 1 uses Estimated Mutual Information matrices, defined in Section 3.1,
to compute 1:1 simple matches, while Phase 2 uses genetic programming to compute
complex n:1 matches, based on the information returned by Phase 1.

3.1 Phase 1: computing simple datatype property matches with estimated
mutual information

Let p=(p1,. . . ,pu) and q=(q1,. . . ,qv) be two lists of sets. The co-occurrence matrix of
p and q is defined as the matrix [mij ] such that mij = |pi ∩ qj|, for i ∈ [1, u] and
j ∈ [1, v]. The Estimated Mutual Information matrix (EMI) of p and q is defined as the
matrix [EMIpq] such that:

EMIpq =
mpq

M
· log

M · mpq
v∑

j=1

mpj ·
u∑

i=1

miq

 (1)

where M =
u∑

i=1

v∑
j=1

mij .

We now adapt these concepts to define Phase 1 of the datatype property matching
process. Let S and T be two classes with sets of datatype properties A={A1, . . . , Au}
and B={B1, . . . , Bv}, respectively. Let s and t be sets of instances of the properties in
A and B, respectively (s and t therefore are sets of RDF triples).

Rather than simply using the cardinality of set intersections to define the co-
occurrence matrix [mij ], Phase 1 computes [mij ] using set comparison functions that
take two sets and return a non-negative integer. Such functions play the role of flexibi-
lization points of Phase 1, as illustrated in Section 4.1.

The set comparison functions depend on the types of the values of the datatype
properties as well as on whether the functions take advantage of instance matches. For



example, given a pair of datatype properties, Ai and Bj , mij may be defined as the
number of pairs of triples (a,Ai, b) in s and (c,Bj , d) in t such that instances a and c
match (or are identical) and the literals b and d are equal (or are considered equal, under
a literal comparison function defined for the specific datatype of b and d).

For instance, Leme et al. [19] adopt the cosine similarity function to compare
strings. Thus, mij is computed as the number of (string) values of triples for prop-
erty Ai in s whose cosine distance to values of instances for property Bj in t is above a
given threshold (α = 0.8 in [19]).

To compute simple matches (1:1), the cosine similarity function proved to be appro-
priate, especially if the strings to be compared have approximately the same number of
tokens. However, the cosine similarity function turned out not to be appropriate when
using the co-occurrence matrix to suggest complex matches to Phase 2 of the technique.
We therefore adopted the Jaccard similarity coefficient to compute the co-occurrence
matrix, defined as

Jaccard(b, d) =
|b ∩ d|
|b ∪ d|

(2)

which counts the number of tokens that strings b and d have in common.
Thus, given two properties Ai and Bj , mij is computed as the sum of

Jaccard(Ai, Bj), for all pairs of strings d and b such that there are triples of the form
(a,Ai, b) in s and (c,Bj , d) in t.

Phase 1 proceeds by computing the EMI matrix based on the co-occurrence ma-
trix, as in Eq. 1. Next, it computes a 1:1 matching, µEMI , between the properties in
A={A1, . . . , Au} and those in B={B1, . . . , Bv} such that, for any pair of properties Ap

and Bq , (Ap, Bq) ∈ µEMI iff EMIpq > 0 and EMIpj ≤ 0, for all j ∈ [1, v], with
j 6= q, and EMIiq ≤ 0, for all i ∈ [1, u], with i 6= p. Furthermore, Phase 1 assumes
that the property mappings, µEMI [Ar, Bs], are always the identity function.

Finally, Phase 1 also outputs a list of datatype properties to be considered for com-
plex matching in Phase 2. For the kth column of the EMI matrix, it outputs the pair
(Ak,Bk) as a candidate n:1 complex match, where Bk is the property of T that corre-
sponds to the kth column and Ak is the set of properties Ai of S such that EMIik > 0.
Indeed, ifEMIik ≤ 0, thenAi andBk have no information in common. However, note
that this heuristics does not indicate what is a candidate property mapping µ[Ak,Bk].
This problem is faced in Phase 2.

3.2 Phase 2: computing complex property matches with genetic programming

The second phase of the technique uses genetic programming to create mappings be-
tween the properties that have some degree of correlation, as identified in the first phase.
Briefly, the process goes as follows.

Recall that genetic programming refers to an automated method to create and evolve
programs to solve a problem [16]. A program, also called an individual or a solution, is
represented by a tree, whose nodes are labeled with functions (concatenate, split, sum,
etc) or with values (strings, numbers, etc). New individuals are generated by applying
genetic operations to the current population of individuals. Note that genetic program-
ming does not enumerate all possible individuals, but it selects individuals that should



be bred by an evolutionary process. The fitness function assigns a fitness value to each
individual, which represents how close an individual is to the solution and determines
the chance of the individual to remain in the genetic process.

The process requires two configuration steps, carried out just once. First, certain
parameters of the process must be properly calibrated to prevent overfitting problems, to
avoid unnecessary runtime overhead, and to help finding good solutions (see Section 4).
Once the parameters are calibrated, the second configuration step is to determine the
stop criterion. We opted to stop after a predetermined maximum number of generations
and return the best-so-far individual to limit the cost of searching for individuals.

We now show how to use genetic programming to compute complex datatype
property matches. Let S and T be two classes with sets of datatype properties
A={A1, . . . , Au} and B={B1, . . . , Bv}, respectively. Let s and t be lists of sets of in-
stances of the properties in A and B, respectively.

The genetic programming phase receives as input the candidate matches that Phase
1 outputs and the sets s and t. For each input candidate match, it outputs a property
mapping µ[Ak,Bk], if one exists; otherwise it discards the candidate match.

Let (Ak,Bk) be a candidate match output by the first phase, where Ak is a set of
properties in A and Bk is a property in B. The genetic programming phase first generates
a random initial population of candidate property mappings. In each iteration step, it
creates new candidate property mappings using genetic operations. It keeps the best-so-
far individual, and returns it when the stop criterion is reached.

The process depends on the following specifications (see [24] for a concrete exam-
ple), which should be regarded as flexibilization points.

A candidate property mapping µ[Ak,Bk] (the individual in this case) is represented
as a tree whose leaves are labeled with the properties in Ak and whose internal nodes
are labeled with primitive mapping functions.

The maximum population size, σpopulation, is a parameter of the process. The initial
population consists of σpopulation randomly generated trees. Each tree has a maximum
height, defined by the parameter σheight, each leaf is labeled with a property from Ak

and each internal node is labeled with a primitive mapping function.
The reproduction operation simply preserves a percentage of the property mappings

from one generation to the next, defined by the parameter σreproduction.
The crossover operation exchanges subtrees of two candidate property

mappings to create new candidate mappings. For example, suppose that
Ak={firstName,middleName, lastName} and Bk=fullName and consider
the following two candidate property mappings (which use the concatenation
operation, “//”, and are represented using the notation adopted in Section 2.1):

µ1[Ak, Bk] = “fullName← (lastName//(firstName // middleName))

µ2[Ak, Bk] = “fullName← ((middleName // firstName)//lastName)

The crossover operation might generate the following two new candidate property
mappings (by swapping the sub-expressions in boldface):

µ3[Ak, Bk] = “fullName← (lastName//(middleName // firstName))

µ4[Ak, Bk] = “fullName← ((firstName // middleName)//lastName)



The mutation operation randomly alters a node (labeled with a property or with a
primitive mapping function) of a candidate property mapping. For example, the node
labeled with “middleName” of µ4[Ak, Bk] can be mutated to “firstName”, resulting in
a new candidate property mapping (which is acceptable, but not quite reasonable, since
it repeats firstName):

µ5[Ak, Bk] = “fullName← ((firstName//firstName)//lastName)

Finally, recall that s and t are lists of sets of instances of the properties in A and B,
respectively. The fitness value of µ[Ak,Bk] is computed by applying µ[Ak,Bk] to the
instances of the properties in Ak occurring in s, creating a new set of instances for Bk,
which is then compared with the set of instances ofBk occurring in t. As in Section 3.1,
the exact nature of the fitness function depends on the types of the values of the datatype
properties as well as on whether the function takes advantage of instance matches or
not (which is possible when implementing S4). For instance, we used the Levenshtein
similarity function for string values and KL-divergence measure [2] for numeric values.

The Levenshtein similarity function is normalized to fall into the interval [0, 1],
where 1 indicates that a string is exactly equal to the other and 0 that the two strings
have nothing in common, while the KL-divergence measure is used to compute the
similarity between two value distributions.

Recall that we are given two samples, p and q, of instances of properties of classes
P and Q, respectively. Construct the set X of strings that occur as literals of instances
of Bk obtained by applying µ[Ak,Bk] to p, and the set Y of strings that occur as literals
of instances of Bk in q. The fitness score for a candidate property mapping is:

Fitnessstring(µ[Ak, Bk]) =
1

n

∑
x∈X
y∈Y

Levenshtein(x, y) (3)

where n is the number of pairs in X × Y .
In the case of numeric values, construct the set X of numeric values that occur as

literals of instances ofBk, obtained by applying µ[Ak,Bk] to p, and the set Y of numeric
values that occur as literals of instances of Bk in q. The fitness score for a candidate
property mapping is:

Fitnessnumeric(F,G) =
1

n

∑
x∈X
y∈Y

ln

(
F (x)

G(y)

)
F (x) (4)

where n is the number of pairs in X × Y , F (x) represents the target distribution of
instances in X and G(y) is the the set of materialized mapping µ in Y from the source
distribution of instances.

4 An example implementation

With the help of an example, we illustrate how to implement the two-phase technique.
We assume that the implementation is in the context of S1 of the process described in



Table 1. Example schemas.

# P # Q
A1 FirstName

B1
FullName
(FirstName // LastName)A2 LastName

A3 E-Mail B2 E-Mail
A4 Address

B3

FullAddress
(Address // Number //
Complement // Neighborhood)

A5 Number
A6 Complement
A7 Neighborhood

Section 2.2, that is, we will not use instance matches. We start with Phase 1, described
in Section 3.1.

The example is based on personal information classes, modeled by class P , with
7 properties and class Q with 3 properties. Table 1 shows the properties from the two
classes P and Q, and also indicates which properties or sets of properties match. For
example, {A1, A2} matches B1.

4.1 Phase 1: computing simple property matches with estimated mutual
information

Recall from Section 3.1 that an implementation of Phase 1 requires defining set compar-
ison functions used to compute the co-occurrence matrix [mij ]. We discuss this point
in what follows, with the help of the running example.

We assume that all property values are string literals and that we are given two
samples, p and q, of instances of properties of classes P and Q, respectively (each with
500 instances). As mentioned in Section 3, Leme et al. [19] use the cosine similarity
function to compute the co-occurrence matrix, which is able to indicate only simple
1:1 matches. By contrast, we used the Jaccard similarity coefficient that measures the
similarity between sets, which is able to find simple 1:1 matches and suggest complex
matches.

Figure 1 (a) shows the co-occurrence matrix computed using the cosine similarity
measure. Note that m43 = 164k, which is high because the values of A4 and B3 come
from a controlled vocabulary with a small number of terms (not indicated in Table 1).
By contrast, m32 = 500, which is low because A3 and B2 are keys (also not indicated
in Table 1).

Figure 1 (b) shows the co-occurrence matrix computed using the Jaccard similarity
(see Eq. 2), which measures the similarity and diversity between sets. Thus, the co-
occurrence indices are more sparse between the attributes that have values in common.

To clarify, consider A7 (Neighborhood) and B3 (FullAddress) and suppose that
“Cambridge” is an observed value of A7 and “* Oxford Street Cambridge MA, United
States” of B3. The cosine similarity of these two strings is 0.37, which is lower than the
threshold set by [19] (again, α = 0.8). Hence, these two strings are considered not to be
similar. However, also observe that “Cambridge” is fully contained in “* Oxford Street
Cambridge MA, United States”, which might indicate that A7, perhaps concatenated
with the values of other datatype properties, might match B3. Continuing with this



argument, lowering the threshold also proved not to be efficient to account for these
situations, since this increases noise in the matching process.

Thus, given two properties Ai and Bj , mij is computed as the sum of
Jaccard(x, y), for all pairs of strings x and y such that there are triples of the form
(a,Ai, x) in p and (b, Bj , y) in q (see Figure 1). Once the co-occurrence matrix [mij ]
is obtained, we compute the EMI matrix [EMIij ], as described in Section 3.1 (see
Figure 2).

The result of Phase 1 therefore is the matching µEMI between the sets of properties
{A1, . . . , Au} and {B1, . . . , Bv}, computed as in Section 3.1 (which we recall is 1 : 1),
assuming that, for each (Ai, Bj) ∈ µEMI , the property mappings µ[Ai, Bj ] is always
the identity function (see Figure 2).



B1 B2 B3

A1 4 1 0
A2 0 0 0
A3 0 500 0
A4 0 0 164k
A5 0 0 0
A6 0 0 0
A7 0 0 0


(a)



B1 B2 B3

A1 4, 8k 0 1, 6k
A2 12, 3k 0 5, 1k
A3 0 500 0
A4 5, 5k 0 55k
A5 0 0 726
A6 797 0 8, 5k
A7 750 0 9, 5


(b)

Fig. 1. Co-occurrence matrices using (a) cosine similarity and (b) Jaccard similarity coefficient.



B1 B2 B3

A1 0,0550 0, 0 0,0040
A2 0,0138 0, 0 0,0020
A3 0, 0 0,0020 0, 0

A4 0, 0 0, 0 0,0677
A5 0, 0 0, 0 0,0090
A6 0,0024 0, 0 0,0094
A7 0,0002 0, 0 0,0114


Fig. 2. EMI matrix: dark gray cells represent simple matches and light gray cells represent possi-
ble complex matches for the property in the column.

4.2 Phase 2: computing complex property matches with genetic programming

The second phase of the technique was implemented using a genetic programming
toolkit [21], (the discussion on calibration is omitted for brevity, see [24] for more
details).



The first phase of the technique outputs, for instance, a candidate match between
propertiesA1,A2,A4,A5,A6 andA7 (FirstName, LastName, Address, Number, Com-
plement and Neighborhood, respectively) and property B3 (FullAddress), see Figure 2.
Note that quite frequently streets are named after famous people, which justifies why
EMI outputs A1 and A2 as candidates properties. Following the example, having 6
properties as input, the genetic process begins the search for the solution.

As the property values are strings, the fitness function selected to find the best in-
dividual is the Leveshtein (see Eq. 3). Thus, after randomly generate an initial set of
individuals, the fitness function assigns to each individual a score. For each new gener-
ation, a new set of individuals is created from those individuals chosen according to a
probability based on their fitness value. After a predetermined number of generations,
the process stops with an expression that represents a property mapping that maps the
concatenation of the properties A4, A5, A6 and A7, that is, the expression:

((Address//Number)//(Complement//Neighborhood))

into property B3 (that is, FullAddress).

5 Evaluation and Results

The first result in this paper is the comparison of the two approaches, Estimated Mutual
Information and Genetic Programming, when separately evaluated.

For this evaluation, we used three datasets1 from three different domains. Table 2
lists and describes the datasets used and their schema information. The “Personal Infor-
mation” dataset lists information about people, the “Real Estate” dataset lists informa-
tion about houses for sale, while the “Inventory” dataset describes product inventories.

Column “EMI” of Table 3 indicates that, using only the Estimated Mutual Infor-
mation approach, we obtained a precision of 1.0 for all datasets, which indicates that
none of the matches were mistakenly found; the rate of recall was low, between 0.21
and 0.38, indicating a high rate of missed property matches; and the F-Measure varied
from 0.34 to 0.54, hinting that this approach is insufficient to find simple and complex
matches. Indeed, out of the 12 simple matches expected for the “Personal Information”
dataset, this approach correctly obtained 6 matches only. Likewise, the EMI found 3 out
of 4 and 4 out of 6, for the datasets “Inventory” and “Real Estate”, respectively.

However, according to the discussion at the end of Section 3.1, as well as by observ-
ing the column “EMI” marked with “*” in Table 2, there are several candidate complex
matches that were suggested to the GP phase in each approach. Note that amongst those
are the exact remaining matches not found by the EMI technique. This is an indication
that, although not sufficient in itself, the EMI approach is an effective pre-processing
stage to the GP approach, by reducing the complexity of the search space while provid-
ing a high quality list of candidate complex matches.

Column GP of Table 3 indicates that, using genetic programming alone, the F-
Measure obtained was higher, and that all simple mappings were found. However, preci-

1 With exception of the “Personal Information” dataset due to privacy reasons, other datasets are
available at http://pages.cs.wisc.edu/ anhai/wisc-si-archive/domains/.



sion was 0.8 for the “Personal Information” dataset and 0.96 for the “Inventory” dataset,
which indicates that some matches were mistakenly suggested.

Table 3 shows that our two-phase technique resulted in a considerable improvement
over the independent use of the EMI and GP approaches when used independently. This
improvement is related to the fact that the first phase, using the EMI matrix, correctly
found all simple matches and suggested correct complex matches to the second phase.

The fact that the EMI matrix suggests correlated properties helps reduce the solution
space considered by the genetic programming algorithm, thus improving its overall per-
formance. In our tests, the run time of the combined approach showed an improvement
of approximately 36% when compared with the run time of the genetic programming
approach alone.

Furthermore, we also compared our method against state of the art methods. As
a baseline we used the iMap system [5], which similar to our approach addresses the
problem of 1:1 and n:1 (complex) matchings. From previously reported results in terms
of accuracy, iMap obtains 0.84 and 0.55 for 1:1 and 1:n mappings respectively, while
we obtain 1 and 0.955 for the “Inventory” dataset. For the “Real Estate” dataset, iMap
achieves 0.58 and 0.32, whereas we achieve 1 and 0.72, respectively. We also com-
pared our method against LSD [7], which is able to find only simple 1:1 matchings and
achieves an accuracy of 0.67.

Table 2. Mapping results for three datasets in different domains.

Datasets Type EMI GP EMI+GP #Match

Personal
Information

String
1:1 6 12 12 12
1:n 11* 1 4 5

Numeric
1:1 0 0 0 0
1:n 0 0 0 0

Inventory
String

1:1 3 4 4 4
1:n 18* 2 4 4

Numeric
1:1 6 25 25 25
1:n 18* 1 3 4

Real Estate
String

1:1 4 4 6 6
1:n 7* 2 5 5

Numeric
1:1 1 1 1 1
1:n 7* 0 0 3

(∗) Complex matches suggested by EMI.

Table 3. P/R/F1 results for three datasets in different domains.

EMI GP EMI+GP
Dataset P R F1 P R F1 P R F1

Personal Information 1 0.38 0.54 0.8 0.75 0.77 1 0.94 0.96
Inventory 1 0.24 0.39 0.96 0.87 0.91 0.97 0.97 0.97

Real Estate 1 0.33 0.5 1 0.47 0.64 1 0.8 0.89



6 Related work

Ontology alignment frameworks implement a set of similarity measures to find the
correct mappings. For instance, Duan et al. [9] utilize user feedback to determine the
importance of each similarity measure in the final mapping result. Similarly, Ritze et
al. [27] introduce ECOMatch that uses alignment examples to define parameters to set
the correct mapping strategy. Dhamankar et al. [6] describe iMap that predefines mod-
ules of functions to semi-automatically find simple and complex matches by leveraging
external knowledge. Likewise, Albagli et al. [1] search for mappings using Markov
Networks, which combines different sources of evidence (e.g. human experts, exist-
ing mappings, etc). Finally, Spohr et al. [30] use a translation mechanism to discover
mappings in cross-lingual ontologies.

A drawback in most approaches is scalability. Duan et al. [8] address the scalability
problem using a local sensitivity hashing to match instances inside a cluster. Jiménez-
Ruiz and Grau [15] propose an “on the fly” iterative method called LogMap that, based
on a set of anchors (exact mappings), creates, extends and verifies mappings using a
logical reasoner. Complementary, Wang et al. [31] suggest a method for reducing the
number of anchors needed to match ontologies. Recent advances, such as RiMOM [20],
offer an automated environment to select an appropriate matching strategy through risk
minimization of Bayesian decision, while ASMOV ([14]) uses semantic validation to
verify mappings. Falcon [13] applies a divide-and-conquer approach to ontology match-
ing. Several other systems, such as DSSim [22], S-Match [11], Anchor-Flood [12],
Agreement-Maker [3], ATOM [26] and SAMBO [17] tackle the alignment for ontolo-
gies and schemas relying on lexical, structural and semantical similarity measures. In
a recent survey, [29] analyze in more details well-established frameworks and outline
future directions and challenges in this field. Additional surveys are provided by [28,
25].

Contrasting with the approaches just outlined, we provide an automatic technique
that finds simple and complex mappings between RDF datatype properties without prior
knowledge that can evolve to adapt to schema and ontology changes, previously de-
scribed in [23]. Similar to our approach, Carvalho et al.[4] propose a genetic program-
ming approach for deduplication problem. However, as the results show, our two-phase
approach achieves better results than those using only the genetic programming ap-
proach. Moreover, we extend his work to match simple and complex numeric datatype
properties.

7 Conclusion

In this paper, we described an instance-based, property matching technique that follows
a two-phase strategy. The first phase constructs the Estimated Mutual Information ma-
trix of the property values to identify simple property matches and to suggest complex
matches, while the second phase uses a genetic programming approach to detect com-
plex property matches and to generate their property mappings. This combined strategy
proved promising to beat combinatorial explosion. In fact, our experiments prove that
the technique is a promising approach to construct complex property matches, a prob-
lem rarely addressed in the literature.
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