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Abstract

The theory of lacunary series starts with Weierstrass’ famous example (1872) of a
continuous, nondifferentiable function and now we have a wide and nearly complete
theory of lacunary subsequences of classical orthogonal systems, as well as asymptotic
results of thin subsequences of general function systems. However, many applications
of lacunary series in harmonic analysis, orthogonal function theory, Banach space
theory, etc. require uniform limit theorems for such series, i.e. theorems holding
simultaneously for a class of lacunary series, and such results are much harder to prove
than dealing with individual series. The purpose of this paper is to give a survey of
uniformity theory of lacunary series and discuss new results in the field. In particular,
we study the permutation-invariance of lacunary series and their connection with
Diophantine equations, uniform limit theorems in Banach space theory, resonance
phenomena for lacunary series and lacunary series with random gaps.

1 Introduction

Let (nk) be a sequence of positive integers satisfying the Hadamard gap condition

nk+1/nk ≥ q > 1 (k = 1, 2, . . .). (1.1)

Salem and Zygmund [47] proved that (cos 2πnkx) obeys the central limit theorem

lim
N→∞

λ{x ∈ (0, 1) : (N/2)−1/2
N∑
k=1

cos 2πnkx ≤ t} = (2π)−1/2

∫ t

−∞
e−u2/2du (1.2)

where λ denotes the Lebesgue measure. Under the same gap condition Erdős and
Gál [27] proved that (cos 2πnkx) obeys the law of the iterated logarithm

lim sup
N→∞

(N log logN)−1/2
N∑
k=1

cos 2πnkx = 1 a.e. (1.3)
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These results show that under the gap condition (1.1) the functions cos 2πnkx behave
like independent random variables. Morgenthaler [43] and Weiss [52] showed that
the analogue of (1.2) and (1.3) holds for any uniformly bounded orthonormal system
except that one needs a much stronger gap condition for (nk), the Gaussian limit
distribution in (1.2) becomes mixed Gaussian and the limsup in (1.3) becomes a
nonconstant function of x. As shown by Gaposhkin [32], at the cost of introducing
an extra centering factor, even the orthogonality can be dropped here. Specifically,
he proved (see also Chatterji [23], [24]) that if a sequence (Xn) of r.v.’s satisfies
supnEX

2
n <∞, then one can find a subsequence (Xnk

) and r.v.’s X and Y ≥ 0 such
that

1√
N

∑
k≤N

(Xnk
−X)

d−→ N(0, Y ) (1.4)

and

lim sup
N→∞

1√
2N log logN

∑
k≤N

(Xnk
−X) = Y 1/2 a.s., (1.5)

where
d−→ denotes convergence in distribution and N(0, Y ) denotes the distribution

of the r.v. Y 1/2ζ where ζ is a standard normal r.v. independent of Y . Komlós
[40] proved that under supnE|Xn| < ∞ there exists a subsequence (Xnk

) and an
integrable r.v. X such that

lim
N→∞

1

N

N∑
k=1

Xnk
= X a.s. (1.6)

and Chatterji [22] showed that under supnE|Xn|p <∞, 0 < p < 2 the conclusion of
the previous theorem can be changed to

lim
N→∞

1

N1/p

N∑
k=1

(Xnk
−X) = 0 a.s. (1.7)

for some X with E|X|p <∞. Relations (1.4), (1.5), (1.6), (1.7) are the analogues of
the central limit theorem, law of the iterated logarithm, strong law of large numbers
and Marczinkiewicz’s strong law, respectively, in a slightly modified form. Note
the randomization in all these examples: the role of the mean and variance of the
subsequence (Xnk

) is played by random variables X, Y . On the basis of these and
several other examples, Chatterji [25] formulated the following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all se-
quences of i.i.d. random variables belonging to an integrability class L defined by
the finiteness of a norm ∥ · ∥L. Then if (Xn) is an arbitrary (dependent) sequence
of random variables satisfying supn ∥Xn∥L < +∞ then there exists a subsequence
(Xnk

) satisfying T in a randomized form.

In a profound paper, Aldous [7] proved the validity of this principle for all dis-
tributional and almost sure limit theorems for i.i.d. random variables, subject to
mild technical conditions. For a precise formulation, we refer to [7]. This result
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closes a long series of investigations and, together with a wide asymptotic theory
of ”concrete” (e.g. Hadamard lacunary) subsequences of classical function systems
such as the trigonometric and Walsh system, orthogonal polynomials, dilated series∑
ckf(kx) (for a survey see Gaposhkin [32]), gives a quite satisfactory picture of the

asymptotic behavior of lacunary series. Despite this fact, some important question
in the field remain open. By a classical result of Menshov [42], every orthornormal
system (φn) contains a subsequence (φnk

) which is a convergence system, i.e. under∑∞
k=1 c

2
k < ∞ the series

∑∞
k=1 ckφnk

converges almost everywhere. Since every se-
quence of independent random variables with mean 0 and variance 1 has this property,
for every fixed (ck) with

∑∞
k=1 c

2
k <∞, Aldous’ theorem guarantees the existence of

a subsequence (φnk
) such that

∑∞
k=1 ckφnk

converges a.e., but the subsequence (nk)
depends on the coefficients ck and the existence of a subsequence having the above
convergence property simultaneously for all (ck) does not follow. A related famous
problem of the theory of orthogonal sequences (see Uljanov [51], p. 48)) was if every
orthonormal sequence (φn) has a subsequence which is a convergence system after
any rearrangement of its terms. For a specific permutation of its terms, this follows
again from Menshov’s theorem, but whether there exists a subsequence (φnk

) having
this property simultaneously after all rearrangements remained open until settled by
Komlós [41]. By a classical result of Kadec and Pe lczyński [37], every normalized
weakly null sequence in Lp, p > 2 contains a subsequence spanning a subspace iso-
morphic to ℓ2 or ℓp and another profound result of Aldous [8] states that every closed
infinite dimensional subspace H of L1 contains a subspace isomorphic to ℓp for some
1 ≤ p ≤ 2. Equivalently, these results concern the behavior of norms ∥

∑n
k=1 ckfnk

∥
for lacunary sequences (fnk

) in Lp, p > 2 or in H with the additional requirement
that the estimates must be uniform for all (c1, . . . , ck) ∈ Rk, k = 1, 2, . . .. Since an
i.i.d. sequence is a symmetric structure, from the subsequence principle one would
expect that limit theorems for lacunary series are permutation-invariant but, as we
will see, this is not the case and establishing permutation-invariance of series

∑
ckfnk

requires considerable efforts. Note that permutation-invariance of lacunary series is
also a uniformity problem, requiring the study of series

∑
ckfσ(k) simultaneously for

all permutations σ of N. Finally, studying trigonometric series

∞∑
k=1

(ak cosnkx+ bk sinnkx)

with random frequencies nk (such series provide an important tool, e.g., for con-
structing counterexamples in analysis) also requires studying a class of trigonometric
series simultaneously, namely for all realizations (nk(ω)), ω ∈ Ω in the underlying
probability space (Ω,F , P ). The purpose of the present paper is to give a general
study of such uniformity problems and formulate recent results in the field.
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2 Limit random measure and a structure the-

orem

Using the terminology of [15], we call a sequence (Xn) of random variables determin-
ing if it has a limit distribution relative to any set A in the probability space with
P (A) > 0, i.e. for any A ⊂ Ω with P (A) > 0 there exists a distribution function FA

such that
lim
n→∞

P (Xn ≤ t | A) = FA(t)

for all continuity points t of FA. By an extension of the Helly-Bray theorem (see
[15]), every tight sequence of r.v.’s contains a determining subsequence. As is shown
in [7], [15], for any determining sequence (Xn) there exists a random measure µ (i.e.
a measurable map from the underlying probability space (Ω,F ,P) to the class M of
probability measures on R equipped with the Lévy metric) such that for any A with
P (A) > 0 and any continuity point t of FA we have

FA(t) = EA(µ(−∞, t]) (2.1)

where EA denotes conditional expectation given A. We call µ the limit random mea-
sure of (Xn). Let (Yn) be a sequence of random variables, defined on the same proba-
bility space, conditionally i.i.d. with respect to their tail σ-field F∞ with conditional
distribution µ. (For the construction of such an (Yn) one may need to enlarge the
probability space.) Clearly, (Yn) is exchangeable (i.e. for any permutation σ : N → N
of the positive integers, the sequence (Yσ(n)) has the same distribution as (Yn)) and
satisfies limit theorems of i.i.d. random variables in a mixed form. For example, if
EY 2

1 <∞ and Y = E(Y1 | F∞), Z = Var (Y1 | F∞), then

N−1/2
N∑
k=1

(Yk − Y )
d−→ N(0, Z)

and

lim sup
N→∞

(2N log logN)−1/2
N∑
k=1

(Yk − Y ) = Z1/2 a.s.

If E|Y1| <∞ and Y = E(Y1 | F∞), then

lim
N→∞

N−1
N∑
k=1

Yk = Y a.s.

We call (Yn) the limit exchangeable sequence of (Xn). Aldous’ subsequence theorem,
mentioned in the Introduction, states that if (Xn) is a tight sequence of random
variables with limit random measure µ, then sufficiently thin subsequences of (Xn)
satisfy all limit theorems valid for (Yn). To make this precise, one has to formalize
the concept ”limit theorem”, which is rather technical, for the details we refer to
Aldous [7].

The simplest exchangeable sequences are finite mixtures of i.i.d. sequences, i.e.
sequences (Xn) for which there exists a finite partition Ω = ∪r

j=1Bj of the underlying
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probability space such that, restricted to any (Bj), (Xn) is an i.i.d. sequence. The
following theorem, proved by Berkes and Péter [13], shows that given a tight sequence
(Xn) of random variables, sufficiently thin subsequences (Xnk

) can be approximated
arbitrary closely by finite mixtures of i.i.d. sequences. This theorem yields an imme-
diate, simple way to prove the subsequence principle and it will be the main tool for
the proof of our results discussed in later chapters.

Theorem 2.1 Let (Xn) be a determining sequence of r.v.’s and (εn) a positive nu-
merical sequence. Then there exists a subsequence (Xmk

) and a sequence (Yk) of
discrete r.v.’s such that

P
(
|Xmk

− Yk| ≥ εk
)
≤ εk k = 1, 2 . . . (2.2)

and for each k > 1 the atoms of the finite σ-field σ{Y1, . . . , Yk−1} can be divided into
two classes Γ1 and Γ2 such that

(i)
∑
B∈Γ1

P (B) ≤ εk

(ii) For any B ∈ Γ2 there exist PB-independent r.v.’s {Z(B)
j , j = k, k+ 1, . . . } defined

on B with common distribution function FB such that

PB

(
|Yj − Z

(B)
j | ≥ εk

)
≤ εk j = k, k + 1, . . . (2.3)

Here FB denotes the limit distribution of (Xn) relative to B and PB denotes condi-
tional probability given B.

3 Permutation-invariance

Studying rearrangements of function series
∑∞

k=1 fk is a much investigated problem
of analysis. By the Riemann rearrangement theorem, a conditionally convergent nu-
merical series

∑∞
k=1 ck can be rearranged to converge to any prescribed real number

and to +∞ and −∞. The corresponding problem for function series, called Banach’s
problem, is much harder and is still unsolved. (See Nikishin [45], Theorem 22 for
the strongest existing result.) Another famous conjecture of analysis is that any
orthonormal system (φn) can be rearranged to become a convergence system. (See
Garsia [35] for a partial result.) Unconditional a.e. convergence (i.e. almost every-
where convergence after every rearrangement) of function series is also an important
topic in functional analysis. Lacunary series play a special role in this field. An ex-
changeable sequence (Yn) is a completely symmetric structure in the sense that the
distribution of any functional of (Yn) is the same as that of (Yσ(n)) where σ : N → N
is a permutation of the positive integers. Consequently, limit theorems valid for (Yn)
remain valid also for the permuted sequence (Yσ(n)). Hence on the basis of Aldous’
theorem it is natural to expect that limit theorems valid for thin subsequences (Xnk

)
of general tight sequences (Xn) remain valid after any permutation of their terms.
This is indeed the case, as proved by Berkes and Tichy [16], but it is far from obvious:
the proof of Aldous’ theorem is not permutation-invariant and a further thinning of
the subsequence constructed in [7] is required to get a subsequence satisfying i.i.d.
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limit theorems after permutations. As far as limit theorems for lacunary trigono-
metric and related sums under the Hadamard gap condition are concerned, their
proofs depend on number-theoretic properties of (nk) which are, except a few cases,
not permutation-invariant and the CLT and LIL for such series can indeed fail after
permutations. The purpose of the present chapter is to provide a complete solution
of the permutation-invariance of such results. For the proofs we refer to Aistleitner,
Berkes and Tichy [2], [3], [5], [6].

Theorem 3.1 Let (nk) be a sequence of positive integers satisfying (1.1) and let
σ : N → N be a permutation of the set of positive integers. Then we have

N−1/2
N∑
k=1

cos 2πnσ(k)x
d−→ N(0, 1/2) (3.1)

and

lim sup
N→∞

(N log logN)−1/2
N∑
k=1

cos 2πnσ(k)x = 1 a.e. (3.2)

where
d−→ denotes convergence in distribution over the probability space (0, 1) equipped

with the Borel σ-algebra and the Lebesgue measure.

Note that for the unpermuted CLT and LIL we need much weaker gap conditions
than (1.1). In fact, Erdős [26] and Takahashi [48], [49] showed that if a sequence (nk)
of integers satisfies

nk+1/nk ≥ 1 + k−α, 0 ≤ α < 1/2 (3.3)

then we have the CLT (1.2) and LIL (1.3). Note, however, that (3.3) does not imply
permutation-invariance and in fact in Aistleitner, Berkes and Tichy [3] showed that
permutation-invariance fails under any gap condition weaker than (1.1).

We pass now to the permutation-invariance of the more general sums
∑n

k=1 f(nkx),
where f is a measurable function satisfying

f(x+ 1) = f(x),

∫ 1

0
f(x) dx = 0,

∫ 2

0
f2(x) dx <∞ (3.4)

and (nk) is a sequence of integers satisfying the Hadamard gap condition (1.1). The
central limit theorem for f(nkx) has a long history. Kac [38] proved that if f is
Lipschitz continuous then f(nkx) satisfies the CLT for nk = 2k and not much later
Erdős and Fortet (see [39], p. 655) showed that this is not any more valid if nk = 2k−1.
Gaposhkin [33] proved that f(nkx) obeys the CLT if nk+1/nk → α where αr is
irrational for r = 1, 2 . . . and the same holds if all the fractions nk+1/nk are integers.
To formulate our results on permutation-invariance, we introduce a series of number-
theoretic conditions playing an important role in the circle of problems studied. We
say that a sequence (nk) of positive integers satisfies

Condition D2, if for any fixed nonzero integers a, b, c the number of solutions of the
Diophantine equation

ank + bnl = c (3.5)
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is bounded by a constant K(a, b), independent of c.

Condition D
(s)
2 (strong D2), if for any fixed integers a ̸= 0, b ̸= 0, c the number

of solutions of the Diophantine equation (3.5) is bounded by a constant K(a, b),
independent of c, where for c = 0 we require also k ̸= l.

Condition D
(w)
2 (weak D2), if for any fixed nonzero integers a, b, c the number of

solutions of the Diophantine equation

ank + bnl = c, 1 ≤ k, l ≤ N (3.6)

is o(N), uniformly in c.

Condition D
(0)
2 , if for any fixed nonzero integers a, b the number of solutions of the

Diophantine equation
ank + bnl = 0, 1 ≤ k, l ≤ N (3.7)

is o(N).

Condition D2 was introduced by Gaposhkin [33], who proved that under minor
smoothness assumptions on f , it implies the CLT for f(nkx). Aistleitner and Berkes

[1] proved that the CLT holds for f(nkx) also under D
(w)
2 and this condition is

necessary. Below we give a precise description of the CLT and LIL behavior of
permuted sums

∑N
k=1 f(nσ(k)x) and in particular, we obtain characterizations of

permutation-invariance.
Our first result shows that if we assume the slightly stronger gap condition

nk+1/nk → ∞ (3.8)

then the behavior of f(nkx) is permutation-invariant regardless the number-theoretic
structure of (nk). In what follows, let ∥·∥ and ∥·∥p denote the L2(0, 1), resp. Lp(0, 1)
norm.

Theorem 3.2 Let (nk) be a sequence of positive integers satisfying the gap condition
(3.8). Then for any permutation σ : N → N of the integers and for any measurable
function f : R → R satisfying

f(x+ 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1] f < +∞ (3.9)

we have

1√
N

N∑
k=1

f(nσ(k)x)
d−→ N (0, ∥f∥2) (3.10)

and

lim sup
N→∞

1√
2N log logN

N∑
k=1

f(nσ(k)x) = ∥f∥ a.e. (3.11)
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Assuming only the Hadamard gap condition (1.1), the situation becomes more
complex and the number-theoretic structure of (nk) comes into play. Our next result
gives a necessary and sufficient condition for permuted partial sums

∑N
k=1 f(nσ(k)x)

to have only Gaussian limit distributions and gives precise criteria this to happen for
a specific permutation σ.

Theorem 3.3 Let (nk) be a sequence of positive integers satisfying the Hadamard
gap condition (1.1) and condition D2. Let f satisfy (3.9) and let σ be a permutation
of N. Then N−1/2

∑N
k=1 f(nσ(k)x) has a limit distribution iff

γ = lim
N→∞

N−1

∫ 1

0

(
n∑

k=1

f(nσ(k)x)

)2

dx (3.12)

exists, and then

N−1/2
N∑
k=1

f(nσ(k)x)
d−→ N(0, γ). (3.13)

Theorem 3.3 is best possible in the following sense:

Theorem 3.4 If condition D2 fails, there exists a permutation σ such that the
normed partial sums in (3.13) have a nongaussian limit distribution.

In other words, under the Hadamard gap condition and condition D2, the limit
distribution of N−1/2

∑N
k=1 f(nσ(k)x) can only be Gaussian, but the variance of the

limit distribution depends on the constant γ in (3.12) which, as simple examples
show, is not permutation-invariant. For example, if nk = 2k and σ is the identity
permutation, then (3.12) holds with

γ = γf =

∫ 1

0
f2(x)dx+ 2

∞∑
k=1

∫ 1

0
f(x)f(2kx)dx (3.14)

(see Kac [38]). Using an idea of Fukuyama [29], one can construct permutations σ
of N such that

lim
N→∞

1

N

∫ 1

0

(
N∑
k=1

f(nσ(k)x)

)2

dx = γσ,f (3.15)

with γσ,f ̸= γf . Actually, the set of possible values γσ,f belonging to all permutations
σ contains the interval If = [γf , ∥f∥2] and it is equal to this interval provided the
Fourier coefficients of f are nonnegative.

Under the slightly stronger condition D
(s)
2 we get

Theorem 3.5 Let (nk) be a sequence of positive integers satisfying the Hadamard

gap condition (1.1) and condition D
(s)
2 . Let f satisfy (3.9) and let σ be a permutation

of N. Then the central limit theorem (3.13) holds with γ = ∥f∥2.

We now pass to the problem of the LIL.
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Theorem 3.6 Let (nk) be a sequence of positive integers satisfying the Hadamard
gap condition (1.1) and condition D2. Let f be a measurable function satisfying
(3.9), let σ be a permutation of N and assume that

γ = lim
N→∞

N−1

∫ 1

0

(
N∑
k=1

f(nσ(k)x)

)2

dx (3.16)

for some γ ≥ 0. Then we have

lim sup
N→∞

∑N
k=1 f(nσ(k)x)

√
2N log logN

= γ1/2 a.e. (3.17)

Theorem 3.7 Let (nk) be a lacunary sequence of positive integers satisfying con-

dition D
(s)
2 , and let f be a function satisfying (3.9). Then for any permutation

σ : N → N we have

lim sup
N→∞

∑N
k=1 f(nσ(k)x)

√
2N log logN

= ∥f∥ a.e.

Remark. If f is a trigonometric polynomial of degree d, then in conditions D2 resp.

D
(s)
2 it suffices to have the bound for the number of solutions of (3.5) for coefficients

a, b satisfying |a| ≤ d, |b| ≤ d. Applying this with d = 1 and using the the fact that
for a Hadamard lacunary sequence (nk) and c ∈ Z the number of solutions (k, l),
k ̸= l of

nk ± nl = c

is bounded by a constant which is independent of c (see Zygmund [53, p. 203]), we
get Theorem 3.1.

All the results formulated so far assume the Hadamard gap condition (1.1) or the
stronger condition (3.8). If we drop (1.1), i.e. we allow subexponential sequences
(nk), we need much stronger Diophantine conditions even for the unpermuted CLT
and LIL for f(nkx). Specifically, we need uniform bounds for the number of solutions
of Diophantine equations of the type

a1nk1 + . . .+ apnkp = b. (3.18)

Call a solution of (3.18) nondegenerate if no subsum of the left hand side equals 0.
Let us say that a sequence (nk) of positive integers satisfies

Condition Ap, if there exists a constant Cp ≥ 1 such that for any integer b ̸= 0
and any nonzero integers a1, . . . , ap the number of nondegenerate solutions of the
Diophantine equation (3.18) is at most Cp.

The following results are the analogues of the previous results without growth
conditions on (nk).

Theorem 3.8 Let (nk) be an increasing sequence of positive integers satisfying con-
dition Ap for all p ≥ 2. Let f satisfy (3.9), let σ be a permutation of N and assume
that the limit (3.12) exists. Then the permuted CLT (3.13) is valid.
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Theorem 3.9 Let (nk) be an increasing sequence of positive integers satisfying con-
dition Ap for all p ≥ 2 with Cp ≤ exp(Cpα) for some α > 0. Assume also that f
satisfies (3.9). Then for any permutation σ of N we have

lim sup
N→∞

1√
2N log logN

N∑
k=1

f(nσ(k)x) = γ1/2 a.e. (3.19)

Note that for the validity of the LIL we require a specific bound for the constants
Cp in condition Ap. For subexponentially growing (nk), verifying property Ap is
a difficult number-theoretic problem. Classical examples of such sequences are the
Hardy-Littlewood-Pólya sequences, i.e. increasing sequences (nk) consisting of all
positive integers of the form qα1

1 · · · qατ
τ (α1, . . . ατ ≥ 0), where q1, . . . , qτ is a fixed set

of coprime integers. Clearly, such sequences grow subexponentially; Tijdeman [50]
proved that

nk+1 − nk ≥ nk
(log nk)α

(3.20)

for some α > 0, i.e. the growth of (nk) is almost exponential. Hardy-Littlewood-
Pólya sequences have remarkable probabilistic and ergodic properties. Nair [44]
proved that if f is 1-periodic and integrable in (0, 1), then

lim
N→∞

1

N

N∑
k=1

f(nkx) =

∫ 1

0
f(t)dt a.e.

Fukuyama and Petit [30] also showed that the central limit theorem

N−1/2
N∑
k=1

f(nkx)
d−→ N(0, γ∗f )

holds with

γ∗f =
∑

k,l:(nk,nl)=1

∫ 1

0
f(nkx)f(nlx)dx. (3.21)

The Diophantine properties of (nk) have been studied in great detail in recent years.
Amoroso and Viada [9] showed recently that Hardy-Littlewood-Pólya sequences sat-
isfy condition Ap for any p ≥ 2 with Cp = exp(p6). This is a deep result, involving a
substantial sharpening of the subspace theorem of Evertse, Schlickewei and Schmidt
(see [28]). Again, the limit γ in (3.12) depends on the permutation σ; one can show
that if the Fourier coefficients of f are nonnegative, the class of numbers γ contains
the interval [∥f∥2, γ∗f ], with γ∗f in (3.21).

Since verifying condition Ap for a concrete subexponential sequence (nk) is diffi-
cult, it is worth looking for Diophantine conditions which are strong enough to imply
the permutation-invariant CLT and LIL, but which hold for a sufficiently large class
of subexponential sequences. In the sequel we will give a such a Diophantine con-
dition Aω. Actually, one can show that this Aω is satisfied, in a certain statistical
sense, for “almost all” sequences (nk) and thus the permutation-invariant CLT and
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LIL are the “typical” behavior of sequences f(nkx). Given a nondecreasing sequence
ω = (ω1, ω2, . . .) of positive integers tending to +∞, let us say that an increasing
sequence (nk) of positive integers satisfies

Condition Aω, if the Diophantine equation

a1nk1 + . . .+ apnkp = 0, k1 < . . . < kp, p = ωN , |a1|, . . . , |ap| ≤ NωN

has no solutions with kp > N .

This condition is more technical than Ap and for each N ≥ 1 it requires a bound
for the number of solutions of the p-term Diophantine equation a1nk1+. . .+apnkp = 0,
where p = ωN and the coefficients are bounded by NωN , where we usually choose
(ωN ) to grow slowly.

Theorem 3.10 Let ω=(ω1, ω2, . . .) be a nondecreasing sequence of positive integers
tending to +∞ and (nk) a sequence of positive integers satisfying condition Aω. Then
for any f satisfying (3.9) and any permutation σ of N, relations (3.10) and (3.11)
are valid.

Fix ωN → ∞. One can show that, in a certain statistical sense, “almost all”
sequences nk ≤ kωk satisfy condition Aω. To make this precise, we need to define
a probability measure over the set of such sequences, or, equivalently, a natural
random procedure to generate such sequences. Clearly, the simplest procedure is to
choose nk independently and uniformly from the integers in the interval Ik = [1, kωk ]
(k = 1, 2, . . .). Denote the so obtained measure by µ.

Theorem 3.11 With probability one with respect to µ, the sequence (nk) satisfies
(3.10), (3.11).

Clearly, for slowly increasing (ωk) the so obtained sequence grows almost polyno-
mially (as a comparison, Hardy-Littlewood-Pólya sequences grow almost exponen-
tially by (3.20)). We do not know if there exist polynomially growing sequences (nk)
satisfying any of (3.10), (3.11). As a simple combinatorial argument shows, sequences
(nk) satisfying Ap for all p ≥ 2 cannot grow polynomially.

4 Lacunary sequences outside L2

For lacunary series
∑
ckφnk

in L2, a number of interesting uniform limit theorems
have been obtained by ad hoc methods, such as e.g., the selection theorem of Menshov
[42] or its permutation-invariant version by Komlós [40], already mentioned in the
Introduction. A further example is the result of Gaposhkin [32] stating that for every
uniformly bounded sequence (Xn) of random variables there exists a subsequence
(Xnk

) and random variables X and Y ≥ 0 such that if (ak) is a sequence of real
numbers satisfying

aN = o(AN ) with AN =

(
N∑
k=1

a2k

)1/2

, (4.1)

11



then

A−1
N

N∑
k=1

ak(Xnk
−X)

d−→ N(0, Y ) (4.2)

and if
aN = o(AN/(log logAN )1/2) (4.3)

then

lim sup
N→∞

(2A2
N log logAN )−1/2

N∑
k=1

ak(Xnk
−X) = Y 1/2 a.s. (4.4)

Note that the conditions (4.1) and (4.3) are the classical (and optimal) conditions for
a weighted sum

∑N
k=1 akXk of bounded independent random variables with mean 0

to satisfy the central limit theorem and law of the iterated logarithm. In contrast,
no uniform results seem to be known for sequences (Xn) which are not in L2 and the
purpose of this section is to formulate such results.

Our first result is the analogue of the uniform CLT (4.1)–(4.2) in the case when
the limit distribution is, instead of the Gaussian law, a symmetric stable distribution
Gα,c with parameter 0 < α < 2, having characteristic function (Fourier transform)
exp(−c|t|α). By a classical result in probability theory, if 0 < α < 2, (Xn) is a
sequence of i.i.d. symmetric random variables with characteristic function φ satisfying

φ(t) = 1 − c|t|α + o(|t|α) as t→ 0 (4.5)

and (ak) is a numerical sequence with

max
1≤k≤N

|ak| = o(AN ), AN =

(
N∑
k=1

|ak|α
)1/α

, (4.6)

then

A
−1/α
N

N∑
k=1

akXk
d−→ Gα,c.

Using Theorem 2.1, Berkes and Tichy [17] proved the corresponding uniform limit
theorem for lacunary series.

Theorem 4.1 Let 0 < α < 2, c > 0 and let (Xn) be a determining sequence of r.v.’s
with limit random measure µ. Assume that the characteristic function φ of µ satifies
(4.5) with probability 1. Then there exists a subsequence (Xnk

) such that for any real
sequence (ak) satisfying (4.6) we have

A−1
N

N∑
k=1

akXnk

d−→ Gα,c.

Using the same method, one can prove analogous uniform limit theorems for
partial maxima, sample extrema and other nonlinear functionals of lacunary series
without assuming finite second moments, but instead of elaborating on this, we in-
vestigate lacunary subsequences f(nkx) of the dilated system f(nx), already studied
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in the previous section, and formulate very general uniform results for their lacunary
subsequences f(nkx) without assuming the square integrability of (or, for that mat-
ter, any integrability condition for) the periodic function f . Our starting point is
Gaposhkin’s observation [34] that sufficiently thin subsequences of f(nx) are almost
independent in a very strong sense.

Theorem 4.2 Let f : R → R be a measurable function with period 1. Then there
exists an increasing sequence (nk) of positive integers and measurable functions gk(x),
k = 1, 2, . . . on (0, 1) such that the gk are stochastically independent and

f(nkx) = gk(x) + ψk(x) + ηk(x) (4.7)

where
∞∑
k=1

∥ψk∥M <∞ and

∞∑
k=1

µ{x : ηk(x) ̸= 0} <∞. (4.8)

Here ∥ · ∥M denotes the norm in the space M(0, 1) of measurable functions on (0, 1)
defined by ∥ψ∥M = inf{ϵ > 0 : µ(x : |ψ(x)| ≥ ϵ) ≤ ϵ}. If f ∈ Lp(0, 1) (p ≥ 1) or f ∈
C(0, 1), then the conclusion remains valid with the gk belonging to the corresponding
spaces and ∥ · ∥M replaced by ∥ · ∥p or ∥ · ∥C , respectively.

As an immediate consequence, we get

∞∑
k=1

|f(nkx) − gk(x)| <∞ a.e. (4.9)

in all cases covered by the theorem. Clearly (4.9) extends any limit theorem T from
(gk) to (f(nkx)) which has the property

(Xk) satisfies T and

∞∑
k=1

|Xk −X ′
k| <∞ a.s. =⇒ (X ′

k) satisfies T. (4.10)

Moreover, relation (4.9) remains valid after any permutation of the indices and
thus limit theorems for f(nkx) provided by Gaposhkin’s theorem are automatically
permutation-invariant. We observe further that by (4.9) we have f(nkx)−gk(x) → 0
a.s. and thus given any sequence Ψ(k) → ∞ one can select a subsequence (mk) such
that

∞∑
k=1

Ψ(k)|f(nmk
x) − gmk

(x)| <∞ a.e.

Thus, if (ak) is a weight sequence such that |ak| ≤ Ψ(k), then∣∣∣∣∣
N∑
k=1

akf(nmk
x) −

N∑
k=1

akgmk
(x)

∣∣∣∣∣ = O(1) a.e.

a relation leading to uniform limit theorems of weighted sums of f(nmk
x) by using

the corresponding limit theorem for weighted sums of independent random variables.
The only shortcoming of Gaposhkin’s result that it gives no information on the growth
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speed of (nk): the construction of (nk), although theoretically explicit, is very com-
plicated and yields an extremely rapidly growing (nk). Since all classical lacunarity
results for ”concrete” function systems involve concrete lacunarity conditions (such
as the Hadamard gap condition), it would be desirable to give the dependence of the
growth of (nk) in Gaposhkin’s theorem on the function f explicitly. In the sequel,
we formulate such explicit results; for the proofs see Aistleitner, Berkes and Tichy
[4].

Theorem 4.3 Let (nk) be an increasing sequence of positive integers. Then there
exists a sequence (gk) of measurable functions on (0, 1), independent and uniformly
distributed over (0, 1) in the sense of probability theory, such that

λ{x ∈ (0, 1) : |⟨nkx⟩ − gk(x)| ≥ 2nk/nk+1} ≤ 2nk/nk+1 k = 1, 2, . . . . (4.11)

where ⟨·⟩ denotes fractional part.

Note that Theorem 4.3 concerns the specific sequence ⟨nkx⟩, but depending on
the properties of the function f , it leads automatically to a corresponding approxi-
mation theorem for general sequences (f(nkx)). For example, if f is continuous with
continuity modulus ω(f, δ), then (4.11) implies

∞∑
k=1

|f(nkx) − g∗k(x)| <∞ a.e. (4.12)

with g∗k(x) = f(gk(x)), provided

∞∑
k=1

nk/nk+1 <∞,

∞∑
k=1

ω(f, nk/nk+1) <∞.

A much more general consequence of Theorem 4.3 is the following

Corollary 4.1 Let f : R → R be a measurable function with period 1 and (nk) an
increasing sequence of positive integers. Let Tk be positive numbers such that

λ{f ∈ (0, 1) : |f | ≥ Tk} ≤ k−2 (k = 1, 2, . . .) (4.13)

and assume that

∞∑
k=1

[
(nk/nk+1)

1/4Tk + ω2(fTk
, (nk/nk+1)

1/4)
]
<∞. (4.14)

Then there exists a sequence (g∗k) of measurable functions on (0, 1), independent and
having the same distribution over (0, 1) as f , such that (4.12) holds.

Here

ω2(f, δ) = sup
0≤h≤δ

(∫ 1

0
|f(x+ h) − f(x)|2dx

)1/2
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is the L2 modulus of continuity of f and fT denotes the truncated function f ·I{|f | ≤
T}.

Given any periodic measurable function f , one can choose Tk so that (4.13) holds,
and then (4.14) becomes a ”concrete” gap condition. Clearly, the ’larger’ the function
f is, the faster nk tends to ∞. In particular for functions f not belonging to any Lp,
p > 0, (nk) is growing very fast. We illustrate the procedure on two classical limit
theorems mentioned above.

Corollary 4.2 Let f : R → R be a measurable function with period 1 such that the
distribution function

F (x) = µ{t ∈ (0, 1) : f(t) ≤ x} (4.15)

satisfies
1 − F (x) ∼ px−αL(x), F (−x) ∼ qx−αL(x) as x→ ∞ (4.16)

for some constants p, q ≥ 0, p + q = 1, 0 < α < 2 and a slowly varying function L.
Let (nk) be an increasing sequence of positive integers satisfying (4.14). Then letting
Sn =

∑n
k=1 f(nkx), we have

(Sn − an)/bn
d−→ Gα (4.17)

for some numerical sequences (an), (bn) and an α-stable distribution Gα.

Corollary 4.3 Let f : R → R be a measurable function with period 1 such that
the distribution function F of f in (4.15) satisfies F (x) < 1 for all x and 1 − F is
regularly varying at +∞ in the Karamata sense with a negative exponent −α. Let
(nk) be an increasing sequence of positive integers satisfying (4.14). Then letting
Mn = max1≤k≤n f(nkx), we have

(Mn − an)/bn
d−→ Hα (4.18)

where Hα(x) = exp(−x−α)I(0,∞)(x).

Note that (4.16) is the classical necessary and sufficient condition for the par-
tial sums Sn of an i.i.d. sequence with distribution function F to satisfy the limit
theorem (4.17) with suitable norming and centering sequences (an), (bn). Corol-
lary 4.2 shows that if the distribution function F of the periodic function f satisfies
(4.16), then the partial sums of f(nkx) for any (nk) satisfying (4.14) obey the sta-
ble limit theorem (4.17). Similarly, the assumption on F in Corollary 4.3 is the
well known necessary and sufficient condition for the centered and normed max-
ima of an i.i.d. sequence with distribution F to converge weakly to the distribution
H(x) = exp(−x−α)I(0,∞)(x), the so called Fréchet distribution. As we know (see
e.g. [31]), the limit distribution in (4.18) for any i.i.d. sequence can be only one of
the Fréchet, Gumbel and Weibull distributions with respective distribution functions
exp(−x−α)I(0,∞)(x), exp(−(−x)α)(1 − I(0,∞)(x)) and exp(−e−x). The analogue of
Corollary 4.3 holds for the other two limiting classes, too.
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5 Applications to Banach space theory

It is an old (and only partially solved) problem of Banach space theory is to charac-
terize Banach spaces containing an isomorphic copy of classical spaces like Lp(0, 1),
C(0, 1), etc. A modern approach to this problem via lacunary series is due to Kadec
and Pe lczyński [37]. Call two sequences (xn) and (yn) in a Banach space (B, ∥ · ∥)
equivalent if there exists a constant K > 0 such that

K−1
∥∥ n∑

i=1

aixi
∥∥ ≤

∥∥ n∑
i=1

aiyi
∥∥ ≤ K

∥∥ n∑
i=1

aixi
∥∥

for every n ≥ 1 and every (a1, . . . , an) ∈ Rn. Clearly, in this case the subspaces of
B spanned by (xn) and (yn) are isomorphic. In particular, if (xn) is a sequence in
Lp(0, 1), p ≥ 1 such that for some constant K > 0

K−1

(
N∑
k=1

a2k

)1/2

≤ ∥
N∑
k=1

akxk∥p ≤ K

(
N∑
k=1

a2k

)1/2

(5.1)

or

K−1

(
N∑
k=1

|ak|p
)1/p

≤ ∥
N∑
k=1

akxk∥p ≤ K

(
N∑
k=1

|ak|p
)1/p

(5.2)

then the subspace spanned by (xn) is isomorphic to ℓ2 and ℓp, respecively. Kadec
and Pelczynski [37] proved that for any normalized weakly null sequence (xn) in
Lp(0, 1), p > 2 there exists a subsequence (xnk

) which is equivalent to the unit vector
basis of ℓ2 or ℓp. Thus every infinite dimensional closed subspace H of Lp(0, 1),
p > 2 contains a subspace isomorphic to ℓ2 or ℓp. In the case when (xn) is uniformly
integrable in Lp(0, 1) then the first alternative holds, while if the functions (xn) have
disjoint support, the second alternative holds trivially with ε = 0. The general case
follows via a subsequence splitting argument as in [37].

In the case of a sequence (xn) ∈ Lp, 1 ≤ p < 2 the problem is considerably harder.
Sufficient conditions for the existence of a subsequence equivalent to the unit vector
basis of ℓ2 were given by Berkes [11] and Guerre [36]. The purpose of the present
paper is to give a complete solution of the problem. Namely, Berkes and Tichy [18]
proved the following

Theorem 5.1 Let 1 ≤ p < 2 and let (Xn) be a determining sequence of random
variables such that ∥Xn∥p = 1 (n = 1, 2, . . .), {|Xn|p, n ≥ 1} is uniformly integrable
and Xn → 0 weakly in Lp 1 Let µ be the limit random measure of (Xn). Then there
exists a subsequence (Xnk

) equivalent to the unit vector basis of ℓ2 if and only if∫ ∞

−∞
x2dµ(x) ∈ Lp/2. (5.3)

1This is meant as limn→∞ E(XnY ) = 0 for all Y ∈ Lq where 1/p + 1/q = 1. To avoid confusion with
weak convergence of probability distributions, the latter will be called convergence in distribution.
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Note that (5.1), (5.2) are required for all (a1, . . . , an) ∈ Rn and all n ≥ 1 with
the same constant K, i.e. they are uniform statements. Using an observation of
Aldous [7], such a uniformity can be obtained from an equicontinuity statement. Let
(Xn) be a determining sequence in Lp(0, 1) with limit random measure µ and limit
exchangeable sequence (Yn). Our purpose is to construct, given ε > 0, a sequence
n1 < n2 < · · · of integers such that

(1 − ε)ψ(a1, . . . , ak) ≤
∥∥ k∑

i=1

aiXni

∥∥
p
≤ (1 + ε)ψ(a1, . . . , ak)

for every k ≥ 1 and (a1, . . . , ak) ∈ Rk where

ψ(a1, . . . , an) =
∥∥ n∑

i=1

aiYi
∥∥
p
.

To construct n1 we set

Q(a, n, ℓ) = |a1Xn + a2Y2 + · · · + aℓYℓ|p

R(a, ℓ) = |a1Y1 + a2Y2 + · · · + aℓYℓ|p

for every n ≥ 1, ℓ ≥ 2 and a = (a1, . . . , aℓ) ∈ Rℓ. We claim that

E

{
Q(a, n, ℓ)

ψ(a)p

}
−→ E

{
R(a, ℓ)

ψ(a)p

}
as n→ ∞ uniformly in a, ℓ (5.4)

(The right side of (5.4) equals 1.) To do this we note that by the properties of the limit
exchangeable sequence, relation (5.4) holds for every fixed vector a = (a1, . . . , aℓ) and
by a well known result of Ranga Rao [46], for uniformity we have to verify a certain
equicontinuity property of the functions Q(a, n, ℓ)/ψ(a)p in (5.4). If n1 < n2 < . . . <
nk−1 are already constructed, an analogous equicontinuity argument implies that for
ℓ > k

ψ(a)−1∥a1Xn1 + · · · + ak−1Xnk−1
+ akXn + ak+1Yk+1 + · · · + aℓYℓ∥p

−→ ψ(a)−1∥a1Xn1 + · · · + ak−1Xnk−1
+ akYk + · · · + aℓYℓ∥p as n→ ∞

uniformly in a and ℓ, a relation that can be used to choose nk. Carrying out this
argument, we get the following general theorem, proved in Berkes [11]. Let M be
the set of all probability measures on R1 and let π be the Prohorov metric on M
defined by

π(ν, λ) = inf
{
ε > 0 : ν(A) ≤ λ(Aε) + ε and

λ(A) ≤ ν(Aε) + ε for all Borel sets A ⊂ R1
}
.

Here Aε denotes the open ε-neighbourhood of A.
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Theorem 5.2 Let p ≥ 1 and let (Xn) be a sequence of r.v.’s so that {|Xn|p, n ≥ 1}
is uniformly integrable. Let µ and (Yn) denote the limit random measure and limit
exchangeable sequence of (Xn), respectively. Let S be a Borel subset of (M, π) such
that µ is concentrated on S with probability 1. Assume that there exists a separable
metric d on S, Borel-equivalent to the Prohorov metric π such that Ed(µ, 0)p < +∞
(0 denotes the zero distribution) and∣∣∣∣∣∣∣∣

∥t+
n∑

k=1

akξ
(ν)
k ∥p − ∥t+

n∑
k=1

akξ
(λ)
k ∥p

∥
n∑

k=1

akYk∥p

∣∣∣∣∣∣∣∣ ≤ d(ν, λ) (5.5)

for every n ≥ 1, ν, λ ∈ S, real numbers t, a1, . . . , an and i.i.d. sequences (ξ
(ν)
n ), (ξ

(λ)
n )

with respective distributions ν and λ. Then for every ε > 0 there exists an increasing
sequence (nk) of positive integers such that

(1 − ε)ψ(a1, . . . , ak) ≤
∥∥ k∑

i=1

aiXni

∥∥
p
≤ (1 + ε)ψ(a1, . . . , ak) (5.6)

for every k ≥ 1 and (a1, . . . , ak) ∈ Rk.

Condition (5.5) is the crucial equicontinuity assumption assuring uniformity in
(5.6). The proof of Theorem 5.1 uses Theorem 5.2, Theorem 2.1 and concentration
arguments.

Theorem 5.2 remains valid if we replace the linear functional ∥
∑n

k=1 akxk∥ by a
general functional fn(a1x1, . . . , anxn); the only difference is that the equicontinuty
condition (5.5) should be replaced by the corresponding assumption for the functional
fn:

Theorem 5.3 Let (Xn) be a tight sequence of r.v.’s and fk : Rk → R (k = 1, 2, . . .)
be measurable functions. Let µ and (Yn) denote the limit random measure and limit
exhangeable sequence of (Xn), respecively. Put

ψ∗(a1, . . . , ak) = Efk(a1Y1, . . . , akYk).

Let S be a Borel subset of (M, π) such that P (µ ∈ S) = 1. Assume that the following
conditions are satisfied:
(a) |ψ∗(a1, . . . , ak)| ≥ |ψ∗(a1, 0, . . . , 0)|,
(b) There exists a separable metric d on S, Borel-equivalent to the Prohorov metric
π such that

|Efk+1(t, a1ξ
(ν)
1 , . . . , akξ

(ν)
k ) − Efk+1(t

′, a1ξ
(λ)
1 , . . . , akξ

(λ)
k )|

≤ |t− t′| + ψ∗(a1, . . . , ak) d(ν, λ) (5.7)

for every k ≥ 1, ν, λ ∈ S, real numbers t, a1, . . . , ak and i.i.d. sequences (ξ
(ν)
n ), (ξ

(λ)
n )

with respective distributions ν and λ.

Then for every ε > 0 there exists a subsequence (Xnk
) such that

(1 − ε)ψ∗(a1, . . . , ak) ≤ Efk(a1Xn1 , . . . , akXnk
) ≤ (1 + ε)ψ∗(a1, . . . , ak)

for any k ≥ 1 and any (a1, . . . , ak) ∈ Rk.
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Theorem 5.3 states the uniform asymptotic behavior of Efk(a1Xn1 , . . . , akfnk
)

for lacunary sequences (nk) and general functionals fk. The equicontinuity condition
(5.7) can be readily verified for various functionals fk corresponding to actual limit
theorems, leading to a widely applicable uniform version of the subsequence principle.
For a detailed discussion and for the proof of the theorem we refer to Berkes and
Tichy [20].

6 Resonance theorems

Call a sequence (fn) of measurable functions on (0, 1) a convergence system in mea-
sure if for any real sequence (cn) with

∑∞
n=1 c

2
n <∞ the series

∑∞
n=1 cnfn converges

in measure. The following interesting result was proved by Nikishin [45]:

Theorem. A function system (fn) over (0, 1) is a convergence system in measure
if and only if for any ε > 0 there exists a measurable set Aε ⊂ (0, 1) with measure
exceeding 1 − ε and a constant Kε > 0 such that for all N ≥ 1, (a1, . . . , aN ) ∈ RN

we have ∫
Aε

(
N∑
k=1

akfk

)2

dx ≤ Kε

N∑
k=1

a2k. (6.1)

The sufficiency of (6.1) is obvious from Cauchy’s criterion, the crucial statement
is the converse: if a sequence (fn) is a convergence system in measure then, except
a subset of (0, 1) with arbitrary small measure, (fn) behaves like an orthonormal
sequence. For reasons explained in [45], p. 128 such a theorem, and its analogue
for function series

∑∞
n=1 cnfn with (cn) ∈ ℓp, 1 ≤ p ≤ ∞ are called resonance

theorems. The purpose of the present section is to give analogues of Nikishin’s
resonance theorem for the central limit theorem. Our first result is

Theorem 6.1 Let (Xn) be a sequence of random variables over a probability space
(Ω,F , P ) such that for any bounded real sequence (an) satisfying

A2
N :=

N∑
k=1

a2k → ∞ (6.2)

we have

1

AN

N∑
k=1

akXk
d−→ N(0, 1). (6.3)

Then for any ε > 0 there exists a set A ⊂ Ω with P (A) ≥ 1 − ε such that

sup
n

∫
A
X2

ndP <∞. (6.4)

Note that we do not assume here the independence (or anything about the joint
distribution) of the Xn. Because of that, the converse of the theorem is obviously
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false. As we will see, however, a necessary and sufficient ”almost L2 type” character-
ization of the weighted CLT can be given in the lacunary case. Call a sequence (Xn)
of r.v.’s nontrivial if it has no subsequence converging with positive probability.

Theorem 6.2 Let (Xn) be a nontrivial sequence of r.v.’s. Then the following state-
ments are equivalent:

(A) There exists a subsequence (Xnk
) and r.v.’s X,Y with Y > 0 such that for all

further subsequences (Xmk
) of (Xnk

) we have∑N
k=1(Xmk

−X)

Y
√
N

d−→ N(0, 1) (6.5)

relatively to any set A ⊂ Ω with P (A) > 0.

(B) For every ε > 0 there is a subsequence (Xnk
) and a set A ⊂ Ω with P (A) ≥ 1− ε

such that

sup
k

∫
A

X2
nk
dP < +∞. (6.6)

If (Xn) is determining with limit random measure µ, a further equivalent statement
is:

(C) We have
+∞∫

−∞

x2dµ(x) < +∞ a.s. (6.7)

For the proof we refer to Berkes and Tichy [19].

7 Series with random gaps

In this chapter we investigate the behavior of trigonometric sums SN =
∑N

k=1 sinnkx,
where (nk) is an increasing random sequence of integers. There are many different
types of such random sequences and we investigate the simplest case when n1, n2, . . .
are independent random variables having discrete uniform distribution on disjoint
blocks I1, I2, . . . of integers. The case when ∪∞

k=1Ik = N and |Ik| is constant, or tend
to +∞ was settled by Berkes [10] and Bobkov and Götze [21] and in the present
chapter we investigate the case of general Ik, exhibiting a number of interesting new

phenomena. We show that SN has a decomposition S
(1)
N + S

(2)
N , where S

(1)
N satisfies,

with probability 1, a self-normalized central limit theorem and under mild regularity

conditions on the sizes |Ik| of the blocks Ik, S
(1)
N /

√
N has a pure or mixed Gaussian

limit distribution. Moreover, S
(2)
N is a nonrandom trigonometric sum, asymptotically

independent of S
(1)
N , whose asymptotic distribution depends sensitively of the gaps

∆k between the blocks Ik and which can be nongaussian.
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Theorem 7.1 Let I1, I2, . . . be disjoint intervals of positive integers with cardinalities
|Ik| ≥ 2 and let n1, n2, . . . be independent random variables defined on a probability
space (Ω,A,P) such that nk is uniformly distributed on Ik. Let

λk(x) = E(sinnkx), γ2N (x) =

N∑
k=1

(sinnkx− λk(x))2. (7.1)

Then P-almost surely

1

γN (x)

N∑
k=1

(sinnkx− λk(x))
d−→ N(0, 1) (7.2)

with respect to the probability space ((0, 2π),B, λ), where B is the Borel σ-algebra and
λ is normalized Lebesgue measure on (0, 2π). If the asymptotic densities µd of the
sets {k ∈ N : |Ik| = d}, d = 1, 2, . . . exist, then for every x ∈ R we have

lim
N→∞

γ2N (x)

N
= g(x) P− a.s. (7.3)

where

g(x) =
1

2
−

∞∑
d=1

sin2(dx/2)

d2 sin2(x/2)
µd (7.4)

and

1√
N

N∑
k=1

(sinnkx− λk(x))
d−→ N(0, g). (7.5)

Note that the self-normalized CLT (7.2) holds for sinnkx − λk(x) without any
regularity condition on the sequence |Ik|; in particular, the existence of the asymp-
totic densities µd is not required for (7.5). Without the existence of µd, however,
the sequence γN (x)2/N in (7.3) can converge to different functions g along different
subsequences and thus the limit distribution of N−1/2

∑N
k=1(sinnkx − λk(x)) may

not exist.
If there is no gap between the blocks Ik, i.e. ∪∞

k=1Ik = N and |Ik| ↑ ∞, then Abel

rearrangement shows that
∑N

k=1 λk(x) = O(1), and thus in (7.2) the centering factor
λk(x) can be omitted. For a motivation of (7.2) and the centering factors λk(x), let
us note that for any fixed x ∈ R the law of the iterated logarithm for independent
bounded r.v.’s implies

lim sup
N→∞

∑N
k=1(sinnkx− λk(x))

(2γ∗2N (x) log log γ∗2N (x))1/2
= 1 P− a.s., (7.6)

where

γ∗2N (x) =
N∑
k=1

E(sinnkx− λk(x))2 ∼ γ2N (x) (7.7)
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and the last relation follows from the strong law of large numbers. Clearly, (7.6) and
(7.7) yield for any fixed x ∈ R

lim sup
N→∞

∑N
k=1(sinnkx− λk(x))

(2γ2N (x) log log γ2N (x))1/2
= g(x) P− a.s. (7.8)

By Fubini’s theorem, with P-probability 1, (7.8) holds for almost all x ∈ (0, 2π)
providing the LIL corresponding to (7.2). Of course, Fubini’s theorem cannot be
applied for distributional limit theorems like the CLT (and in case of the CLT, the
factor g(x) in the denominator cannot be brought to the right hand side) and the
proof of (7.5) requires an elaborate argument.

We pass now to the study of non-centered partial sums SN =
∑N

k=1 sinnkx. In
contrast to SN − ESN , the behavior of SN depends on the size of the gaps ∆k: for
∆k = 0 the limit distribution of SN/

√
N is mixed Gaussian with P-probability 1

by a result of Bobkov and Götze [21] and for exponentially growing ∆k the Salem-

Zygmund CLT implies that SN/
√
N

d−→ N(0, 1/2). Our next result shows that in
regular cases (SN −ESN )/

√
N and ESN/

√
N are asymptotically independent, reduc-

ing the behavior of SN/
√
N to that of the nonrandom trigonometric sum ESN/

√
N .

Theorem 7.2 Let I1, I2, . . . be disjoint intervals of positive integers such that the
sets {k ∈ N : |Ik| = d}, d = 1, 2, . . . have asymptotic densities µd. Let n1, n2, . . . be
independent random variables defined on a probability space (Ω,A,P) such that nk is
uniformly distributed on Ik. Let λk(x) and g(x) be defined by (7.1) and (7.4). Then
P-almost surely

1√
Ng(x)

N∑
k=1

(sinnkx− λk(x))
d−→ N(0, 1/2) (7.9)

and

1√
N

N∑
k=1

(sinnkx− λk(x))
d−→ F (7.10)

with respect to the probability space ((0, 2π),B, λ), where F is the mixed Gaussian
distribution with characteristic function

ϕ(λ) =

∫ 2π

0
exp

(
−λ

2

2
g(x)

)
dx. (7.11)

If in addition we have

1√
N

N∑
k=1

λk(x)
d−→ G (7.12)

with respect to to any interval E ⊂ (0, 2π) with positive measure, then P-almost surely(
1√
N

N∑
k=1

(sinnkx− λk(x)),
1√
N

N∑
k=1

λk(x)

)
d−→ (F,G) (7.13)

where the components of the limit vector are independent.
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Theorem 7.2 shows that S
(1)
N = SN − ESN and S

(2)
N = ESN are asymptotically

independent and thus we can study their contributions separately. Note that S
(2)
N ,

the averaged version of SN , is a nonrandom trigonometric sum. In the case when
|Ik| = d for all k, we have

λk(x) = E(sinnkx) = d−1
∑
j∈Ik

sin jx =
sin(dx/2)

d sin(x/2)
sin(Ak + d/2 + 1/2)x (7.14)

where Ak is the smallest integer of Ik and thus

S
(2)
N =

sin(dx/2)

d sin(x/2)

N∑
k=1

sin(Ak + d/2 + 1/2)x.

As one can show, if the gaps ∆k = Ak+1 − Ak − d between the intervals remain
constant or if the Ak are integers and ∆k ↑ ∞, ∆k = O(kγ) with γ < 1/4 (small
gaps), then (7.2) holds with λk = 0, i.e. without a centering factor. At the other
end of the spectrum, i.e. for rapidly increasing Ak, the centering factors themselves
contribute to the limit distribution, i.e.

1√
N

N∑
k=1

λk(x) (7.15)

has a nondegenerate limit distribution. More precisely, if Ak satisfies the Erdős gap
condition

Ak+1/Ak ≥ 1 + ck/
√
k, ck → ∞ (7.16)

then (7.15) has the limit distribution with characteristic function

ϕ(λ) =
1

2π

∫ 2π

0
exp

(
−λ

2

4
· sin2(dx/2)

d2 sin2(x/2)

)
dx (7.17)

and thus by the asymptotic independence of the components of (7.13) it follows that

N−1/2
N∑
k=1

sinnkx (7.18)

has a pure Gaussian limit distribution N(0, 1/2). Since in this case (nk) also satisfies
the analogue of (7.16), the asymptotic normality of (7.18) follows from Erdős’ central
limit theorem [26] even for nonrandom (nk), i.e. in this case Theorem 7.2 reduces to
a result in classical lacunarity theory. It is interesting to note that in this case the
pure Gaussian limit distribution of SN/

√
N is obtained as the convolution of two

mixed Gaussian distributions. In the intermediate case between slowly and rapidly
increasing (nk), the centering factors λk(x) in (7.1) may or may not contribute to the
limit distribution F and F may be nongaussian. In view of (7.14), from the results of
Berkes [12] it follows that there exist sequences (Ak) satisfying (7.16) with ck → ∞
replaced by ck = c > 0 such that (7.15) has a nongaussian limit distribution and
for any positive sequence ck → 0 there exist sequences (Ak) satisfying (7.16) such
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that (7.15) tends to 0 in probability. This shows that nongaussian limits of (7.15)
can occur arbitrary close to the gap condition (7.16), i.e. (7.16) is critical in the
theory. Theorem 7.2 also shows that the limit distribution of (7.18), if exists, is the
convolution of a mixed normal distribution and the limit distribution of a normed
trigonometric sum with nonrandom frequencies Ak + (d + 1)/2. The asymptotic
behavior of such nonrandom sums is an arithmetic rather than a probabilistic problem
and we do not discuss it here.

For the proof of the results in this chapter we refer to Berkes and Raseta [14].
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Littlewood-Pólya sequences. Trans Amer. Math. Soc. 363 (2011) 6219–6244.

[3] C. Aistleitner, I. Berkes and R. Tichy. On permutations of lacunary series.
RIMS Kokyuroku Bessatsu B34 (2012), 1–25.

[4] C. Aistleitner, I. Berkes and R. Tichy. On the system f(nx) and proba-
bilistic number theory. Anal. Probab. Methods Number Theory, E. Manstavicius
et al., Vilnius 2012, 1–18.

[5] C. Aistleitner, I. Berkes and R. Tichy. On the law of the iterated loga-
rithm for permuted lacunary sequences. Proceedings of the Steklov Institute of
Mathematics 276 (2012), 3–20.

[6] C. Aistleitner, I. Berkes and R. Tichy. On the asymptotic behavior of
weakly lacunary sequences. Proc. Amer. Math. Soc. 139 (2011) 2505–2517.

[7] D. J. Aldous. Limit theorems for subsequences of arbitrarily-dependent se-
quences of random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 40
(1977), 59–82.

[8] D. J. Aldous. Subspaces of L1 via random measures. Trans. Amer. Math. Soc.
267 (1981), 445–463.

[9] F. Amoroso and E. Viada, Small points on subvarieties of a torus. Duke Math.
J. 150(3), 407–442 (2009).

[10] I. Berkes. A central limit theorem for trigonometric series with small gaps,
Zeitschrift für Wahrscheinlichkeitstheorie verw. Gebiete 47 (1979), 157–161.

[11] I. Berkes. On almost symmetric sequences in Lp. Acta Math. Hung. 54 (1989)
269–278.

[12] I. Berkes. Nongaussian limit distributions of lacunary trigonometric series.
Canad. J. Math. 43 (1991) 948–959.
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orthogonales, Bull. Soc. Math. France 64 (1936), 147–170.

[43] W. Morgenthaler. A central limit theorem for uniformly bounded orthonor-
mal systems. Trans. Amer. Math. Soc. 79, (1955), 281–311.

[44] R. Nair. On strong uniform distribution. Acta Arith. 56 (1990), 183–193.

[45] E. M. Nikishin. Resonance theorems and superlinear operators. Russian Math.
Surveys 25/6 (1970), 125–187.

[46] R. Ranga Rao. Relations between weak and uniform convergence of measures
with applications, Ann. Math. Statist, 33 (1962), 659–680.

[47] R. Salem and A. Zygmund. On lacunary trigonometric series, Proc. Nat. Acad.
Sci. USA 33 (1947), 333–338.

[48] S. Takahasi. On lacunary trigonometric series, Proc, Japan Acad. 41 (1965),
503–506.

[49] S. Takahashi. On the law of the iterated logarithm for lacunary trigonometric
series. Tohoku Math. J. 24 (1972), 319–329.

[50] R. Tijdemann. On integers with many small prime factors, Compositio Math.
26 (1973), 319-330.

[51] P. Uljanov. Solved and unsolved problems in the theory of trigonometric and
orthogonal series. (Russian). Uspehi Mat. Nauk 19/1 (1964), 1–69.

[52] M. Weiss. On the law of the iterated logarithm for uniformly bounded or-
thonormal systems. Trans. Amer. Math. Soc. 92 (1959) 531–553.

[53] A. Zygmund, Trigonometric series. Vol. I, II. Third edition. Cambridge Uni-
versity Press. 2002.

26


