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Boundary element methods for

Dirichlet boundary control problems

Günther Of, Thanh Phan Xuan, Olaf Steinbach

Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

{of,thanh.phanxuan,o.steinbach}@tugraz.at

Abstract

In this paper we discuss the application of boundary element methods for the
solution of Dirichlet boundary control problems subject to the Poisson equation with
box constraints on the control. The primal and adjoint boundary value problems are
rewritten as systems of boundary integral equations involving the standard boundary
integral operators of the Laplace equation and of the Bi–Laplace equation. While
the first approach is based on the use of the standard boundary integral equation
based on the Bi–Laplace fundamental solution, the additional use of the normal
derivative of the related representation formula results in a symmetric formulation,
which is also symmetric in the discrete case. We prove the unique solvability of both
boundary integral approaches and discuss related boundary element discretisations.
In particular, we prove stability and related error estimates which are confirmed by
a numerical example.

1 Introduction

Optimal control problems of elliptic or parabolic partial differential equations with a Dirich-
let boundary control play an important role, for example, in the context of computational
fluid mechanics, see, e.g., [9, 11, 12], and the references given therein. A difficulty in the
handling of Dirichlet control problems is the choice of the control space, where the Sobolev
trace space H1/2(Γ) appears as a natural choice [1]. To obtain smoother optimal solutions
one may even consider H2(Γ) as control space, where the Sobolev norm for sufficient reg-
ular boundaries can be realised by using the Laplace–Beltrami operator [16]. The most
popular choice is to consider L2(Γ) as control space. Although this choice allows the use
of a piecewise constant control function, the associated partial differential equation has to
be considered within an ultra–weak variational formulation, see, for example, [20], and [2]
for an appropriate finite element approximation using standard piecewise linear basis func-
tions. The use of the ultra–weak variational formulation of the primal Dirichlet boundary
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value problem in the context of an optimal control problem requires the adjoint variable
p to be sufficiently regular, i.e., p ∈ H2(Ω) ∩ H1

0 (Ω). Since the adjoint variable p itself is
the unique solution of the adjoint partial differential equation with homogeneous Dirich-
let boundary conditions, either a smooth boundary Γ, or a polygonal or polyhedral but
convex domain Ω has to be assumed. For related finite element approximations, see, e.g.,
[5, 6, 11, 19, 22], or [29] in the case of a finite dimensional Dirichlet control. To include a
Dirichlet boundary condition u = z ∈ L2(Γ) in a standard variational formulation, alter-
natively one may consider a penalty approximation of the Dirichlet boundary condition by
using a Robin boundary condition, see, e.g., [1, 13, 14, 15]. Again, sufficient smoothness
of the boundary Γ has to be assumed.

In [25], a finite element approach was considered, where the energy norm was realized by
using some hypersingular boundary integral operator which links the Dirichlet control with
the normal derivative of the adjoint variable. The related optimality condition results then
in a higher regularity of the control and requires less assumptions on the smoothness of the
adjoint variable, in fact, one may even consider general Lipschitz domains Ω. Moreover,
for polygonal or polyhedral bounded domains Ω one also obtains higher order convergence
results for the approximate finite element solution.

Since the unknown function in Dirichlet boundary control problems is to be found on
the boundary Γ = ∂Ω of the computational domain Ω ⊂ R

n, n = 2, 3, the use of boundary
integral equations seems to be a natural choice. But to our knowledge, there are only a
few results known on the use of boundary integral equations to solve optimal boundary
control problems, see, e.g., [7, 30] for problems with point observations. In this paper, we
consider the Poisson equation as a model problem, however, this approach can be applied
to any elliptic partial differential equation, if a fundamental solution is known. In this
case, solutions of partial differential equations can be described by the means of surface
and volume potentials. To find the complete Cauchy data, boundary integral equations
have to be solved. For an overview on boundary integral equations, see, e.g., [17, 23] and
the references given therein. The numerical solution of boundary integral equations results
in boundary element methods, see, e.g., [26, 27].

The model problem is described in Section 2, where we also discuss the adjoint prob-
lem which characterises the solution of the reduced minimisation problem. In Section 3,
we present the representation formulae to describe the solutions of both the primal and
adjoint Dirichlet boundary value problems. To find the unknown normal derivatives of the
state variable and of the adjoint variable, weakly singular boundary integral equations are
formulated. Since the state enters the adjoint boundary value problem as a volume density,
an additional volume integral has to be considered. By applying integration by parts, this
Newton potential can be reformulated by using boundary potentials of the Bi–Laplace op-
erator. Hence we recall some properties of boundary integral operators for the Bi–Laplace
operator in Section 4. In Section 5, we analyse a first boundary integral formulation to
solve the Dirichlet boundary control problem, and we discuss stability and error estimates
of the related Galerkin boundary element method. Since this boundary element approx-
imation leads to a non–symmetric matrix representation of a self–adjoint operator, we
introduce and analyse a symmetric boundary element approach, which includes a second,
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the so–called hypersingular boundary integral equation in Section 6. Again we discuss the
related stability and error analysis. Finally, we present a numerical example in Section 7.

2 Dirichlet control problems

Let Ω ⊂ R
n, n = 2, 3, be a bounded domain with boundary Γ = ∂Ω. As a model problem,

we consider the Dirichlet boundary control problem to minimise the cost functional

J(u, z) =
1

2

∫

Ω

[u(x) − u(x)]2dx+
1

2
̺ 〈Dz, z〉Γ (2.1)

subject to the constraint

−∆u(x) = f(x) for x ∈ Ω, u(x) = z(x) for x ∈ Γ, (2.2)

and where the control z satisfies the box constraints

z ∈ U :=
{
w ∈ H1/2(Γ) : ga(x) ≤ w(x) ≤ gb(x) for x ∈ Γ

}
. (2.3)

We assume f, u ∈ L2(Ω), ̺ ∈ R+, and ga, gb ∈ H1/2(Γ). Moreover, we use the hypersin-
gular boundary integral operator D : H1/2(Γ) → H−1/2(Γ) to describe the cost, or some
regularisation term, via a semi–norm in H1/2(Γ). In particular, for z ∈ H1/2(Γ) we have

(Dz)(x) = −
∂

∂nx

∫

Γ

∂

∂ny

U∗(x, y)z(y)dsy for x ∈ Γ,

where

U∗(x, y) =





−
1

2π
log |x− y| for n = 2,

1

4π

1

|x− y|
for n = 3

(2.4)

is the fundamental solution of the Laplace operator.
Let uf ∈ H1

0 (Ω) be the weak solution of the homogeneous Dirichlet boundary value
problem

−∆uf (x) = f(x) for x ∈ Ω, uf(x) = 0 for x ∈ Γ.

The solution of the Dirichlet boundary value problem (2.2) is then given by u = uz + uf ,
where uz ∈ H1(Ω) is the unique solution of the Dirichlet boundary value problem

−∆uz(x) = 0 for x ∈ Ω, uz(x) = z(x) for x ∈ Γ. (2.5)

Note that the solution of the Dirichlet boundary value problem (2.5) defines a linear map
uz = Sz with S : H1/2(Γ) → H1(Ω) ⊂ L2(Ω). Then, by using u = Sz + uf , we consider
the problem to find the minimiser z ∈ U ⊂ H1/2(Γ) of the reduced cost functional

J̃(z) =
1

2

∫

Ω

[(Sz)(x) + uf(x) − u(x)]2dx+
1

2
̺ 〈Dz, z〉Γ. (2.6)
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To characterise the minimiser z ∈ U of the reduced cost functional (2.6) we introduce the
self–adjoint, bounded and H1/2(Γ)–elliptic operator

T̺ := ̺D + S∗S : H1/2(Γ) → H−1/2(Γ) (2.7)

satisfying, see, e.g., [25],

〈T̺z, z〉Γ ≥ c
T̺

1 ‖z‖2
H1/2(Γ), ‖T̺z‖H−1/2(Γ) ≤ c

T̺

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ),

where S∗ : L2(Ω) → H−1/2(Γ) is the adjoint operator of S : H1/2(Γ) → L2(Ω), i.e.,

〈S∗ψ, ϕ〉Γ = 〈ψ,Sϕ〉Ω =

∫

Ω

ψ(x)(Sϕ)(x)dx for all ϕ ∈ H1/2(Γ), ψ ∈ L2(Ω).

Moreover, we define
g := S∗(u− uf) ∈ H−1/2(Γ). (2.8)

Hence we can rewrite the reduced cost functional (2.6) as

J̃(z) =
1

2
〈T̺z, z〉Γ − 〈g, z〉Γ +

1

2
‖uf − u‖2

L2(Ω).

Since U ⊂ H1/2(Γ) is convex and closed, and since T̺ is self–adjoint and H1/2(Γ)–elliptic,

the minimisation of the reduced cost functional J̃(z) is equivalent to solving a variational
inequality to find z ∈ U such that

〈T̺z, w − z〉Γ ≥ 〈g, w− z〉Γ for all w ∈ U . (2.9)

Since (2.9) is an elliptic variational inequality of the first kind, we can use standard ar-
guments as given, for example in [3, 10, 20, 21], to establish unique solvability of the
variational inequality (2.9).

By using the primal variable u = Sz + uf , and by introducing the adjoint variable
τ = S∗(u− u) ∈ H−1/2(Γ), we can rewrite the variational inequality (2.9) as

〈̺Dz + τ, w − z〉Γ ≥ 0 for all w ∈ U . (2.10)

Note that for given z ∈ H1/2(Γ) and f ∈ L2(Ω) the application of u = Sz+uf corresponds
to the solution of the Dirichlet boundary value problem (2.2). The application of the
adjoint operator τ = S∗(u− u) is characterised by the Neumann datum

τ = −
∂

∂n
p in the sense of H−1/2(Γ), (2.11)

where p ∈ H1
0(Ω) is the unique solution of the adjoint Dirichlet boundary value problem

−∆p(x) = u(x) − u(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ. (2.12)

Since the unknown control z ∈ U ⊂ H1/2(Γ) is considered on the boundary Γ = ∂Ω,
the use of boundary integral equations to solve both the primal boundary value problem
(2.2) and the adjoint boundary value problem (2.12) seems to be a natural choice. In
what follows we will describe and analyse two different boundary element methods to solve
the variational inequality (2.9) numerically. This will be based on the use of appropriate
boundary integral operator representations of T̺ and g as introduced in (2.7) and (2.8),
respectively.
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3 Laplace boundary integral equations

3.1 Primal boundary value problem

The solution of the Dirichlet boundary value problem (2.2),

−∆u(x) = f(x) for x ∈ Ω, u(x) = z(x) for x ∈ Γ,

is given by the representation formula for x̃ ∈ Ω,

u(x̃) =

∫

Γ

U∗(x̃, y)t(y)dsy −

∫

Γ

∂

∂ny
U∗(x̃, y)z(y)dsy +

∫

Ω

U∗(x̃, y)f(y)dy, (3.1)

where t =
∂

∂n
u ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V t)(x) = (
1

2
I +K)z(x) − (N0f)(x) for x ∈ Γ. (3.2)

Note that

(V t)(x) =

∫

Γ

U∗(x, y)t(y)dsy for x ∈ Γ

is the Laplace single layer integral operator V : H−1/2(Γ) → H1/2(Γ), and

(Kz)(x) =

∫

Γ

∂

∂ny
U∗(x, y)z(y)dsy for x ∈ Γ

is the Laplace double layer integral operator K : H1/2(Γ) → H1/2(Γ). Moreover,

(N0f)(x) =

∫

Ω

U∗(x, y)f(y)dy for x ∈ Γ

is the related Newton potential. The single layer integral operator V is H−1/2(Γ)–elliptic;
for n = 2 we assume the scaling condition diam Ω < 1 to ensure this. For the solution of
the boundary integral equation (3.2) we therefore obtain

t = V −1(
1

2
I +K)z − V −1N0f . (3.3)

3.2 Adjoint boundary value problem

The solution of the adjoint Dirichlet boundary value problem (2.12),

−∆p(x) = u(x) − u(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ,

is given correspondingly by the representation formula for x̃ ∈ Ω,

p(x̃) =

∫

Γ

U∗(x̃, y)q(y)dsy +

∫

Ω

U∗(x̃, y)[u(y)− u(y)]dy, (3.4)

where q =
∂

∂n
p ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V q)(x) = (N0u)(x) − (N0u)(x) for x ∈ Γ. (3.5)
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Remark 3.1 While the boundary integral equation (3.2) can be used to determine the

unknown Neumann datum t ∈ H−1/2(Γ) of the primal Dirichlet boundary value problem

(2.2), the unknown Neumann datum q ∈ H−1/2(Γ) of the adjoint Dirichlet boundary value

problem (2.12) is given as the solution of the boundary integral equation (3.5). Then, by

using τ = −q, the control z ∈ H1/2(Γ) is determined by the variational inequality (2.10).
However, since the solution u of the primal Dirichlet boundary value problem (2.2) enters

the volume potential N0u in the boundary integral equation (3.5), it seems to be necessary

to include the representation formula (3.1). In this case we would have to solve a coupled

system of boundary and domain integral equations, which still would require some domain

mesh. Instead, we will now describe a system of only boundary integral equations to solve

the adjoint boundary value problem (2.12).

To end up with a system of boundary integral equations only, instead of (3.4), we will
introduce a modified representation formula for the adjoint state p as follows. First we
note that

V ∗(x, y) =





−
1

8π
|x− y|2

(
log |x− y| − 1

)
for n = 2,

1

8π
|x− y| for n = 3

(3.6)

is a solution of the Poisson equation

∆yV
∗(x, y) = U∗(x, y) for x 6= y, (3.7)

i.e., V ∗(x, y) is the fundamental solution of the Bi–Laplacian. Hence we can rewrite the
volume integral for u in (3.4), by using Green’s second formula, as follows:

∫

Ω

U∗(x̃, y)u(y)dy =

∫

Ω

[∆yV
∗(x̃, y)]u(y)dy

=

∫

Γ

∂

∂ny
V ∗(x̃, y)u(y)dsy −

∫

Γ

V ∗(x̃, y)
∂

∂ny
u(y)dsy +

∫

Ω

V ∗(x̃, y)[∆u(y)]dy

=

∫

Γ

∂

∂ny
V ∗(x̃, y)z(y)dsy −

∫

Γ

V ∗(x̃, y)t(y)dsy −

∫

Ω

V ∗(x̃, y)f(y)dy .

Therefore, we now obtain from (3.4) the modified representation formula for x̃ ∈ Ω,

p(x̃) =

∫

Γ

U∗(x̃, y)q(y)dsy +

∫

Γ

∂

∂ny
V ∗(x̃, y)z(y)dsy −

∫

Γ

V ∗(x̃, y)t(y)dsy

−

∫

Ω

U∗(x̃, y)u(y)dy −

∫

Ω

V ∗(x̃, y)f(y)dy, (3.8)

where the volume potentials involve given data only.
The representation formula (3.8) results, when taking the limit Ω ∋ x̃→ x ∈ Γ, in the

boundary integral equation for x ∈ Γ,

0 = p(x) =

∫

Γ

U∗(x, y)q(y)dsy +

∫

Γ

∂

∂ny
V ∗(x, y)z(y)dsy −

∫

Γ

V ∗(x, y)t(y)dsy

−

∫

Ω

U∗(x, y)u(y)dy −

∫

Ω

V ∗(x, y)f(y)dy,
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which can be written as

(V q)(x) = (V1t)(x) − (K1z)(x) + (N0u)(x) + (M0f)(x) for x ∈ Γ. (3.9)

Note that

(V1t)(x) =

∫

Γ

V ∗(x, y)t(y)dsy for x ∈ Γ

is the Bi–Laplace single layer integral operator V1 : H−3/2(Γ) → H3/2(Γ), see, for example,
[17, Theorem 5.7.3]. Moreover,

(K1z)(x) =

∫

Γ

∂

∂ny
V ∗(x, y)z(y)dsy for x ∈ Γ

is the Bi–Laplace double layer potential K1 : H−1/2(Γ) → H3/2(Γ). In addition, we have
introduced a second Newton potential, which is related to the fundamental solution of the
Bi–Laplace operator,

(M0f)(x) =

∫

Ω

V ∗(x, y)f(y)dy for x ∈ Γ.

With (3.3), we conclude from (3.9) the boundary integral equation

V q = V1V
−1(

1

2
I +K)z −K1z +N0u+M0f − V1V

−1N0f,

and therefore

q = V −1V1V
−1(

1

2
I +K)z − V −1K1z + V −1N0u+ V −1M0f − V −1V1V

−1N0f . (3.10)

By replacing τ = −q in (2.10) we therefore obtain a boundary integral representation of
the operator T̺ as defined in (2.7),

T̺ := ̺D + V −1K1 − V −1V1V
−1(

1

2
I +K), (3.11)

and a related representation for g as defined in (2.8),

g := V −1N0u+ V −1M0f − V −1V1V
−1N0f. (3.12)

To investigate the unique solvability of the variational inequality (2.9) based on the bound-
ary integral representations (3.11) and (3.12), we first will recall some mapping properties
of boundary integral operators which are related to the Bi–Laplace partial differential
equation, see also [17, 18].
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4 Bi–Laplace boundary integral equations and

properties of T̺

In this section, we consider a representation formula and related boundary integral equa-
tions for the Bi–Laplace equation

∆2u(x) = 0 for x ∈ Ω, (4.1)

which can be written as a system,

∆u∆(x) = 0, ∆u(x) = u∆(x) for x ∈ Ω. (4.2)

As for the Laplace equation we can first write the boundary integral equations

u∆(x) = (V t∆)(x) +
1

2
u∆(x) − (Ku∆)(x) for x ∈ Γ (4.3)

and

t∆(x) =
1

2
t∆(x) + (K ′t∆)(x) + (Du∆)(x) for x ∈ Γ, (4.4)

where

(K ′t∆)(x) =

∫

Γ

∂

∂nx

U∗(x, y)t∆(y)dsy for x ∈ Γ

is the adjoint Laplace double layer integral operator K ′ : H−1/2(Γ) → H−1/2(Γ). Note that

u∆ = ∆u and t∆ =
∂

∂n
u∆ = n · ∇u∆ = n · ∇∆u

are the associated Cauchy data on Γ.
To obtain a representation formula for the solution u of the Bi–Laplace equation (4.1),

we first consider the related Green’s first formula∫

Ω

∆u(y)∆v(y)dy =

∫

Γ

∂

∂ny
u(y)∆v(y)dsy −

∫

Γ

∂

∂ny
∆v(y)u(y)dsy +

∫

Ω

[∆2v(y)]u(y)dy,

(4.5)
and in the sequel Green’s second formula,

∫

Γ

∂

∂ny
u(y)∆v(y)dsy −

∫

Γ

∂

∂ny
∆v(y)u(y)dsy +

∫

Ω

[∆2v(y)]u(y)dy

=

∫

Γ

∂

∂ny
v(y)∆u(y)dsy −

∫

Γ

∂

∂ny
∆u(y)v(y)dsy +

∫

Ω

[∆2u(y)]v(y)dy .

When choosing v(y) = V ∗(x̃, y) for x̃ ∈ Ω, i.e., the fundamental solution (3.6) of the Bi–
Laplace operator, the solution of the Bi–Laplace partial differential equation (4.1) is given
by the representation formula for x̃ ∈ Ω by

u(x̃) =

∫

Γ

∂

∂ny
u(y)∆yV

∗(x̃, y)dsy −

∫

Γ

∂

∂ny
∆yV

∗(x̃, y)u(y)dsy

−

∫

Γ

∂

∂ny
V ∗(x̃, y)∆u(y)dsy +

∫

Γ

∂

∂ny
∆u(y)V ∗(x̃, y)dsy .
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By using (3.7), this can be written as

u(x̃) =

∫

Γ

U∗(x̃, y)t(y)dsy −

∫

Γ

∂

∂ny

U∗(x̃, y)u(y)dsy (4.6)

−

∫

Γ

∂

∂ny

V ∗(x̃, y)u∆(y)dsy +

∫

Γ

V ∗(x̃, y)t∆(y)dsy .

Hence we obtain the boundary integral equation

u(x) = (V t)(x) +
1

2
u(x) − (Ku)(x) − (K1u∆)(x) + (V1t∆)(x) for x ∈ Γ. (4.7)

Moreover, when taking the normal derivative of the representation formula (4.6), this gives
another boundary integral equation for x ∈ Γ,

t(x) =
1

2
t(x) + (K ′t)(x) + (Du)(x) + (D1u∆)(x) + (K ′

1t∆)(x), (4.8)

where

(K ′

1t∆)(x) =

∫

Γ

∂

∂nx
V ∗(x, y)t∆(y)dsy for x ∈ Γ

is the adjoint Bi–Laplace double layer integral operator K ′
1 : H−3/2(Γ) → H1/2(Γ), and

(D1u∆)(x) = −
∂

∂nx

∫

Γ

∂

∂ny
V ∗(x, y)u∆(y)dsy for x ∈ Γ

with D1 : H−1/2(Γ) → H1/2(Γ).
The boundary integral equations (4.3), (4.4), (4.7), and (4.8) can now be written as a

system, including the so–called Calderon projection C,




u

t

u∆

t∆


 =




1
2
I −K V −K1 V1

D 1
2
I +K ′ D1 K ′

1
1
2
I −K V

D 1
2
I +K ′







u

t

u∆

t∆


 . (4.9)

Lemma 4.1 The Calderon projection C as defined in (4.9) is a projection, i.e., C2 = C.

Proof. The proof follows as in the case of the Laplace equation [23, 27], for the Bi–Laplace
equation see also [18].

From the projection property as stated in Lemma 4.1 we obtain some well–known relations
of all boundary integral operators which were introduced for both the Laplace and the Bi–
Laplace equation.
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Lemma 4.2 For the boundary integral operators as introduced above there hold the rela-

tions

KV = V K ′, DK = K ′D, V D =
1

4
I −K2, DV =

1

4
I −K ′2 (4.10)

and

K1V − V K ′

1 = V1K
′ −KV1, (4.11)

K ′

1D −DK1 = D1K −K ′D1, (4.12)

V D1 + V1D +KK1 +K1K = 0, (4.13)

DV1 +D1V +K ′K ′

1 +K ′

1K
′ = 0. (4.14)

Proof. The relations of (4.10) for the Laplace operator are well–known, see, e.g., [27],
for the Bi–Laplace operator see also [18].

To prove the ellipticity of the boundary integral operator T̺ as defined in (3.11), we use
the following result:

Lemma 4.3 For any t ∈ H−1/2(Γ) there holds the equality

‖Ṽ t‖2
L2(Ω) = 〈K1V t, t〉Γ − 〈V1(

1

2
I +K ′)t, t〉Γ (4.15)

where

(Ṽ t)(x) =

∫

Γ

U∗(x, y)t(y)dsy for x ∈ Ω .

Proof. For x ∈ Ω and t ∈ H−1/2(Γ) we define the Bi–Laplace single layer potential

ut(x) = (Ṽ1t)(x) =

∫

Γ

V ∗(x, y)t(y)dsy,

which is a solution of the Bi–Laplace differential equation (4.1). Then, the related Cauchy
data are given by

ut(x) = (V1t)(x),
∂

∂nx
ut(x) = (K ′

1t)(x) for x ∈ Γ.

On the other hand, for x ∈ Ω

wt(x) = ∆xut(x) = ∆x

∫

Γ

V ∗(x, y)t(y)dsy =

∫

Γ

U∗(x, y)t(y)dsy = (Ṽ t)(x)

is a solution of the Laplace equation. Hence, the related Cauchy data are given by

wt(x) = (V t)(x),
∂

∂nx
wt(x) =

1

2
t(x) + (K ′t)(x) for x ∈ Γ.
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Now, for u = v = ut, Green’s first formula (4.5) reads
∫

Ω

[∆ut(x)]
2dx =

∫

Γ

∂

∂nx

ut(x)∆ut(x)dsx −

∫

Γ

∂

∂nx

∆ut(x)ut(x)dsx,

and therefore we conclude
∫

Ω

[wt(x)]
2dx =

∫

Γ

∂

∂nx
ut(x)wt(x)dsx −

∫

Γ

∂

∂nx
wt(x)ut(x)dsx

=

∫

Γ

(K ′

1t)(x)(V t)(x)dsx −

∫

Γ

[
1

2
t(x) + (K ′t)(x)](V1t)(x)dsx

= 〈K ′

1t, V t〉Γ − 〈
1

2
t+K ′t, V1t〉Γ

= 〈t,K1V t〉Γ − 〈V1(
1

2
I +K ′)t, t〉Γ.

The assertion now follows with wt = Ṽ t.

Now we are able to state the mapping properties of the boundary integral operator T̺ as
defined in (3.11), see also the properties of T̺ as introduced in (2.7).

Theorem 4.4 The composed boundary integral operator

T̺ := ̺D + V −1K1 − V −1V1V
−1(

1

2
I +K) : H1/2(Γ) → H−1/2(Γ)

is self–adjoint, bounded and H1/2(Γ)–elliptic, i.e.,

〈T̺z, z〉Γ ≥ c
T̺

1 ‖z‖2
H1/2(Γ) for all z ∈ H1/2(Γ).

Proof. The mapping properties of T̺ : H1/2(Γ) → H−1/2(Γ) follow from the boundedness
of all used boundary integral operators [23, 26, 27]. In addition, we use the compact
embedding of H3/2(Γ) in H1/2(Γ).

Next we will show the self–adjointness of T̺. For z, w ∈ H1/2(Γ) we have

〈T̺z, w〉Γ = 〈̺Dz, w〉Γ + 〈V −1K1z, w〉Γ −
1

2
〈V −1V1V

−1z, w〉Γ − 〈V −1V1V
−1Kz,w〉Γ

= 〈z, ̺Dw〉Γ + 〈z,K ′

1V
−1w〉Γ −

1

2
〈z, V −1V1V

−1w〉Γ − 〈z,K ′V −1V1V
−1w〉Γ

= 〈z, ̺Dw〉Γ −
1

2
〈z, V −1V1V

−1w〉Γ + 〈z, [K ′

1V
−1 −K ′V −1V1V

−1]w〉Γ.

Now, we conclude, by using the relations (4.10) and (4.11),

K ′

1V
−1 −K ′V −1V1V

−1 = K ′

1V
−1 − V −1KV1V

−1 = V −1[V K ′

1 −KV1]V
−1

= V −1[K1V − V1K
′]V −1 = V −1K1 − V −1V1K

′V −1

= V −1K1 − V −1V1V
−1K .

11



Hence we have

〈T̺z, w〉Γ = 〈z, ̺Dw〉Γ −
1

2
〈z, V −1V1V

−1w〉Γ + 〈z, [V −1K1 − V −1V1V
−1K]w〉Γ

= 〈z, [̺D + V −1K1 − V −1V1V
−1(

1

2
I +K)]w〉Γ = 〈z, T̺w〉Γ,

i.e., T̺ is self–adjoint.
Moreover, for z ∈ H1/2(Γ) we have, by using (4.10), t = V −1z, and by Lemma 4.3,

〈T̺z, z〉Γ = ̺〈Dz, z〉Γ + 〈V −1K1z, z〉Γ − 〈V −1V1V
−1(

1

2
I +K)z, z〉Γ

= ̺〈Dz, z〉Γ + 〈K1V V
−1z, V −1z〉Γ − 〈V1(

1

2
I +K ′)V −1z, V −1z〉Γ

= ̺〈Dz, z〉Γ + 〈K1V t, t〉Γ − 〈V1(
1

2
I +K ′)t, t〉Γ

= ̺〈Dz, z〉Γ + ‖Ṽ t‖2
L2(Ω) .

Since the last expression defines an equivalent norm in H1/2(Γ), the H1/2(Γ)–ellipticity of
T̺ follows.

5 A non–symmetric boundary element method

Let
S1

H(Γ) = span{ϕi}
M
i=1 ⊂ H1/2(Γ) (5.1)

be a boundary element space of, e.g., piecewise linear and continuous basis functions ϕi,
which are defined with respect to a globally quasi–uniform and shape regular boundary
mesh ΓH of mesh size H . Define the discrete convex set

UH :=
{
wH ∈ S1

H(Γ) : ga(xi) ≤ wH(xi) ≤ gb(xi) for all nodes xi ∈ Γ
}
.

Then the Galerkin discretisation of the variational inequality (2.9) is to find zH ∈ UH such
that

〈T̺zH , wH − zH〉Γ ≥ 〈g, wH − zH〉Γ for all wH ∈ UH . (5.2)

Theorem 5.1 Let z ∈ U and zH ∈ UH be the unique solutions of the variational inequal-

ities (2.9) and (5.2), respectively. If we assume z, ga, gb ∈ Hs(Γ) for some s ∈ [1
2
, 2], then

there hold the error estimates

‖z − zH‖H1/2(Γ) ≤ cHs− 1
2 ‖z‖Hs(Γ) (5.3)

and

‖z − zH‖L2(Γ) ≤ cHs ‖z‖Hs(Γ) . (5.4)
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Proof. The error estimate (5.3) in the energy norm follows from the general abstract
theory as presented, e.g., in [4, 8], see also [10]. The error estimate (5.4) follows from the
Aubin–Nitsche trick for variational inequalities, see [24] for the case UH ⊂ U , and [28] for
the more general case UH 6⊂ U .

Although the error estimates (5.3) and (5.4) seem to be optimal, the operator T̺ as con-
sidered in the variational inequality (5.2) does not allow a practical implementation, since
this would require the discretisation of the operator T̺ as defined in (3.11), which is not
possible in general. Hence, instead of (5.2) we need to consider a perturbed variational
inequality to find z̃H ∈ UH such that

〈T̺̃z̃H , wH − z̃H〉Γ ≥ 〈g̃, wH − z̃H〉Γ for all wH ∈ UH , (5.5)

where T̺̃ and g̃ are appropriate approximations of T̺ and g, respectively. The following
theorem, see, e.g., [25], presents an abstract consistency result, which will later be used
to analyse the boundary element approximation of both the primal and adjoint boundary
value problems.

Theorem 5.2 Let T̺̃ : H1/2(Γ) → H−1/2(Γ) be a bounded and S1
H(Γ)–elliptic approxima-

tion of T̺ satisfying

〈T̺̃zH , zH〉Γ ≥ c
eT̺

1 ‖zH‖
2
H1/2(Γ) for all zH ∈ S1

H(Γ)

and

‖T̺̃z‖H−1/2(Γ) ≤ c
eT̺

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Let g̃ ∈ H−1/2(Γ) be some approximation of g. For the unique solution z̃H ∈ UH of the

perturbed variational inequality (5.5) there holds the error estimate

‖z − z̃H‖H1/2(Γ) ≤ c1 ‖z − zH‖H1/2(Γ) + c2

[
‖(T̺ − T̺̃)z‖H−1/2(Γ) + ‖g − g̃‖H−1/2(Γ)

]
, (5.6)

where zH ∈ UH is the unique solution of the discrete variational inequality (5.2).

5.1 Boundary element approximation of T̺

For an arbitrary but fixed z ∈ H1/2(Γ), the application of T̺z reads

T̺z = ̺Dz + V −1K1z − V −1V1V
−1(

1

2
I +K)z = ̺Dz − qz,

where qz ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V qz)(x) = (V1tz)(x) − (K1z)(x) for x ∈ Γ,

and tz ∈ H−1/2(Γ) solves

(V tz)(x) = (
1

2
I +K)z(x) for x ∈ Γ.
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For a Galerkin approximation of the above boundary integral equations, let

S0
h(Γ) = span{ψk}

N
k=1 ⊂ H−1/2(Γ)

be another boundary element space of, e.g., piecewise constant basis functions ψk, which
are defined with respect to a second globally quasi–uniform and shape regular boundary
element mesh of mesh size h. Now, q̃z,h ∈ S0

h(Γ) is the unique solution of the Galerkin
formulation

〈V q̃z,h, τh〉Γ = 〈V1tz,h −K1z, τh〉Γ for all τh ∈ S0
h(Γ),

and tz,h ∈ S0
h(Γ) solves

〈V tz,h, τh〉Γ = 〈(
1

2
I +K)z, τh〉Γ for all τh ∈ S0

h(Γ).

Hence we can define an approximation T̺̃ of the operator T̺ by

T̺̃z := ̺Dz − q̃z,h . (5.7)

Lemma 5.3 The approximate operator T̺̃ : H1/2(Γ) → H−1/2(Γ) as defined in (5.7) is

bounded, i.e.,

‖T̺̃z‖H−1/2(Γ) ≤ c
eT̺

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Proof. The assertion is a direct consequence of the mapping properties of all boundary
integral operators involved, we skip the details.

Lemma 5.4 Let T̺ : H1/2(Γ) → H−1/2(Γ) be given by (3.11), and let T̺̃ be defined as in

(5.7). Then there holds the error estimate

‖T̺z − T̺̃z‖H−1/2(Γ) ≤ c1 inf
τh∈S0

h(Γ)
‖qz − τh‖H−1/2(Γ) + c2 ‖tz − tz,h‖H−3/2(Γ). (5.8)

Proof. For an arbitrary chosen but fixed z ∈ H1/2(Γ) we have, by definition,

T̺z = ̺Dz − qz, qz = V −1[V1tz −K1z], tz = V −1(
1

2
I +K)z.

By using (5.7), we also have

T̺̃z = ̺Dz − q̃z,h,

and therefore,
T̺z − T̺̃z = q̃z,h − qz .

Let us further define qz,h ∈ S0
h(Γ) as the unique solution of the variational problem

〈V qz,h, τh〉Γ = 〈V1tz −K1z, τh〉Γ for all τh ∈ S0
h(Γ). (5.9)
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Then, the perturbed Galerkin orthogonality

〈V (qz,h − q̃z,h), τh〉Γ = 〈V1(tz − tz,h), τh〉Γ for all τh ∈ S0
h(Γ)

follows. From this we further conclude

‖qz,h − q̃z,h‖H−1/2(Γ) ≤ c ‖tz − tz,h‖H−3/2(Γ).

The assertion now follows from the triangle inequality, and by applying Cea’s lemma.

By using the approximation property of the trial space S0
h(Γ) and the Aubin–Nitsche trick,

we conclude an error estimate from (5.8) when assuming some regularity of qz and tz,
respectively.

Corollary 5.5 Assume qz, tz ∈ Hs
pw(Γ) for some s ∈ [0, 1]. Then there holds the error

estimate

‖T̺z − T̺̃z‖H−1/2(Γ) ≤ c1 h
s+ 1

2 ‖qz‖Hs
pw(Γ) + c2 h

s+ 3
2 ‖tz‖Hs

pw(Γ). (5.10)

5.2 Boundary element approximation of g

As in (5.7), we may also define a boundary element approximation of the right hand side g
as defined in (3.12),

g = V −1N0u+ V −1M0f − V −1V1V
−1N0f.

In particular, g ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V g, τ〉Γ = 〈N0u+M0f, τ〉Γ − 〈V1tf , τ〉Γ for all τ ∈ H−1/2(Γ),

where tf = V −1N0f ∈ H−1/2(Γ) solves the variational problem

〈V tf , τ〉Γ = 〈N0f, τ〉Γ for all τ ∈ H−1/2(Γ).

Hence we can define a boundary element approximation g̃h ∈ S0
h(Γ) as the unique solution

of the Galerkin variational problem

〈V g̃h, τh〉Γ = 〈N0u+M0f, τh〉Γ − 〈V1tf,h, τh〉Γ for all τh ∈ S0
h(Γ), (5.11)

where tf,h ∈ S0
h(Γ) is the unique solution of the Galerkin problem

〈V tf,h, τh〉Γ = 〈N0f, τh〉Γ for all τh ∈ S0
h(Γ). (5.12)

Lemma 5.6 Let g be the right hand side as defined in (3.12), and let g̃h be the boundary

element approximation as defined in (5.11). Then there holds the error estimate

‖g − g̃h‖H−1/2(Γ) ≤ c1 inf
τh∈S0

h(Γ)
‖g − τh‖H−1/2(Γ) + c2 ‖tf − tf,h‖H−3/2(Γ). (5.13)
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Proof. The assertion follows as in the proof of Lemma 5.4, we skip the details.

By using the approximation property of the trial space S0
h(Γ) and the Aubin–Nitsche trick,

we conclude an error estimate from (5.13) when assuming some regularity of g and tf ,
respectively.

Corollary 5.7 Assume g, tf ∈ Hs
pw(Γ) for some s ∈ [0, 1]. Then there holds the error

estimate

‖g − g̃h‖H−1/2(Γ) ≤ c1 h
s+ 1

2 ‖g‖Hs
pw(Γ) + c2 h

s+ 3
2 ‖tf‖Hs

pw(Γ). (5.14)

5.3 Approximate variational inequality

We consider the variational inequality (2.10) with τ = −q to find z ∈ U such that

〈̺Dz − q, w − z〉Γ ≥ 0 for all w ∈ U , (5.15)

where q ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V q)(x) = (V1t)(x) − (K1z)(x) + (N0u)(x) + (M0f)(x) for x ∈ Γ, (5.16)

and t ∈ H−1/2(Γ) is the unique solution of

(V t)(x) = (
1

2
I +K)z(x) − (N0f)(x) for x ∈ Γ. (5.17)

The Galerkin boundary element approximation of the variational inequality (5.15), and
therefore the boundary element discretisation of the perturbed variational inequality (5.5),
is to find z̃H ∈ UH such that

〈̺Dz̃H − qh, wH − z̃H〉Γ ≥ 0 for all wH ∈ UH , (5.18)

where qh ∈ S0
h(Γ) is the unique solution of the Galerkin formulation

〈V qh, τh〉Γ = 〈V1th −K1z̃H +N0u+M0f, τh〉Γ for all τh ∈ S0
h(Γ), (5.19)

and th ∈ S0
h(Γ) solves

〈V th, τh〉Γ = 〈(
1

2
I +K)z̃H −N0f, τh〉Γ for all τh ∈ S0

h(Γ). (5.20)

The Galerkin formulation (5.19) is equivalent to the linear system

Vhq = V1,ht−K1,hz̃ + f
1
, (5.21)

and (5.20) is equivalent to

Vht = (
1

2
Mh +Kh)z̃ − f

2
, (5.22)
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where
Vh[ℓ, k] = 〈V ψk, ψℓ〉Γ, Kh[ℓ, i] = 〈Kϕi, ψℓ〉Γ,
V1,h[ℓ, k] = 〈V1ψk, ψℓ〉Γ, K1,h[ℓ, i] = 〈K1ϕi, ψℓ〉Γ,

Mh[ℓ, i] = 〈ϕi, ψℓ〉Γ,

and
f1,ℓ = 〈N0u+M0f, ψℓ〉Γ, f2,ℓ = 〈N0f, ψℓ〉Γ

for k, ℓ = 1, . . . , N and i = 1, . . . ,M . Recall that we use piecewise linear basis functions
ϕi, and piecewise constant basis functions ψk. Moreover, let DH be the Galerkin matrix
of the hypersingular boundary integral operator D, i.e.

DH [j, i] = 〈Dϕi, ϕj〉Γ for i, j = 1, . . . ,M.

The matrix representation of the variational inequality (5.18) is then given by the discrete
variational inequality

(̺DH z̃ −M⊤

h q, w − z̃) ≥ 0 for all w ∈ R
M ↔ wH ∈ UH ,

or
(T̺̃,H z̃ − g̃, w − z̃) ≥ 0 for all w ∈ R

M ↔ wH ∈ UH , (5.23)

where

T̺̃,H = ̺DH +M⊤

h V
−1
h K1,h −M⊤

h V
−1
h V1,hV

−1
h (

1

2
Mh +Kh) (5.24)

defines a non–symmetric Galerkin boundary element approximation of the self–adjoint
boundary integral operator T̺ as defined in (3.11). Moreover,

g̃ = M⊤

h V
−1
h

[
f

1
− V1,hV

−1
h f

2

]

is the boundary element approximation of g as defined in (3.12).

Theorem 5.8 The approximate Schur complement T̺̃,H as defined in (5.24) is positive

definite, i.e.,

(T̺̃,Hz, z) ≥
1

2
c
T̺

1 ‖zH‖
2
H1/2(Γ) for all z ∈ R

M ↔ zH ∈ S1
H(Γ),

if h ≤ c0H is sufficiently small.

Proof. For an arbitrary chosen but fixed z ∈ R
M let zH ∈ S1

H(Γ) be the associated
boundary element function. Then we have

(T̺̃,Hz, z) = 〈T̺̃zH , zH〉Γ = 〈T̺zH , zH〉Γ − 〈(T̺ − T̺̃)zH , zH〉Γ

≥ c
T̺

1 ‖zH‖2
H1/2(Γ) − ‖(T̺ − T̺̃)zH‖H−1/2(Γ)‖zH‖H1/2(Γ).
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Since zH ∈ S1
H(Γ) is a continuous function, we have zH ∈ H1(Γ). Hence we find

tzH
= V −1(

1

2
I +K)zH ∈ L2(Γ), qzH

= V −1[V1tzH
−K1zH ] ∈ L2(Γ).

Therefore we can apply the error estimate (5.10) for s = 0 to obtain

‖T̺zH − T̺̃zH‖H−1/2(Γ) ≤ c1 h
1/2 ‖qzH

‖L2(Γ) + c2 h
3/2 ‖tzH

‖L2(Γ) ≤ c3 h
1/2 ‖zH‖H1(Γ).

Now, by applying the inverse inequality for S1
H(Γ),

‖zH‖H1(Γ) ≤ cI H
−1/2 ‖zH‖H1/2(Γ),

we obtain

‖T̺zH − T̺̃zH‖H−1/2(Γ) ≤ c3cI

(
h

H

)1/2

‖zH‖H1/2(Γ).

Hence we finally obtain

(T̺̃,Hz, z) ≥

[
c
T̺

1 − c3cI

(
h

H

)1/2
]
‖zH‖

2
H1/2(Γ) ≥

1

2
c
T̺

1 ‖zH‖2
H1/2(Γ),

if

c3cI

(
h

H

)1/2

≤
1

2
c
T̺

1

is satisfied.

Now we are in a position to apply Theorem 5.2 to ensure unique solvability of the perturbed
Galerkin variational inequality (5.5), and to derive related error estimates.

Corollary 5.9 When combining the error estimate (5.6) with the approximation property

of the ansatz space S1
H(Γ), and with the error estimates (5.10) and (5.14), we finally obtain

the error estimate

‖z − z̃H‖H1/2(Γ) ≤ c1H
s+1/2 |z|H1+s(Γ) + c2 h

s+1/2 ‖qz‖Hs
pw

(Γ) + c3 h
s+3/2 ‖tz‖Hs

pw
(Γ)

+c4 h
s+1/2 ‖g‖Hs

pw
(Γ) + c5 h

s+3/2 ‖tf‖Hs
pw

(Γ)

when assuming z ∈ H1+s(Γ), and qz, tz, g, tf ∈ Hs
pw(Γ) for some s ∈ [0, 1]. For h ≤ c0H

we therefore obtain the error estimate

‖z − z̃H‖H1/2(Γ) ≤ c(z, u, f)Hs+ 1
2 . (5.25)

Moreover, we are also able to derive an error estimate in L2(Γ), i.e.,

‖z − z̃H‖L2(Γ) ≤ c(z, u, f)Hs+1 , (5.26)

when applying the Aubin–Nitsche trick.
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In the particular case of a non–constrained minimisation problem, instead of the discrete
variational inequality (5.23) we have to solve the linear system

T̺̃,H z̃ = g̃,

which is equivalent to the system




−V1,h Vh K1,h

Vh −(1
2
Mh +Kh)

−M⊤
h ̺DH







t

q

z̃


 =




f
1

−f
2

0


 . (5.27)

Remark 5.1 The error estimates (5.25) and (5.26) provide optimal convergence rates

when approximating the control z by using piecewise linear basis functions. However, we

have to assume h ≤ c0H to ensure the unique solvability of the perturbed Galerkin varia-

tional inequality (5.5), where the constant c0 is in general unknown. Moreover, the matrix

T̺̃,H as given in (5.24) defines a non–symmetric approximation of the self–adjoint operator

T̺. Hence we are interested in deriving a symmetric boundary element method which is

stable without any additional constraints in the choice of the boundary element trial spaces.

6 A symmetric boundary element method

The boundary integral formulation of the primal boundary value problem (2.2) is given
by (3.2), while the adjoint boundary value problem (2.12) corresponds to the modified
boundary integral equation (3.9). In what follows, we will use a second boundary integral
equation of the adjoint boundary value problem to obtain an alternative representation
for q and therefore of the adjoint operator S∗. In particular, when computing the normal
derivative of the representation formula, (3.8), this gives

q(x) = (
1

2
I +K ′)q(x) − (D1z)(x) − (K ′

1t)(x) − (N1u)(x) − (M1f)(x) for x ∈ Γ, (6.1)

where

(N1u)(x) = lim
Ω∋ex→x∈Γ

nx · ∇ex

∫

Ω

U∗(x̃, y)u(y)dy for x ∈ Γ

and

(M1f)(x) = lim
Ω∋ex→x∈Γ

nx · ∇ex

∫

Ω

V ∗(x̃, y)f(y)dy for x ∈ Γ.

Hence, from (2.11) we obtain

τ = S∗(u− u) = −q = −(
1

2
I +K ′)q +D1z +K ′

1t+N1u+M1f,
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and, by using (3.3) and (3.10), we conclude the alternative representations

T̺ = ̺D+D1− (
1

2
I+K ′)V −1V1V

−1(
1

2
I+K)+K ′

1V
−1(

1

2
I+K)+(

1

2
I+K ′)V −1K1 (6.2)

and

g = K ′

1V
−1N0f −N1u−M1f + (

1

2
I +K ′)V −1

[
N0u+M0f − V1V

−1N0f
]
. (6.3)

Theorem 6.1 The boundary integral operator T̺ : H1/2(Γ) → H−1/2(Γ) as defined in (6.2)
is self–adjoint, bounded, and H1/2(Γ)–elliptic.

Proof. While the self–adjointness of T̺ in the symmetric representation (6.2) is obvious,
the boundedness and ellipticity estimates follow as in the proof of Theorem 4.4. In par-
ticular, the operators T̺ in the symmetric representation (6.2) and in the non–symmetric
representation (3.11) coincide. Indeed, by using (4.10) and (4.11) we obtain

T̺ = ̺D +D1 − (
1

2
I +K ′)V −1V1V

−1(
1

2
I +K) +K ′

1V
−1(

1

2
I +K) + (

1

2
I +K ′)V −1K1

= ̺D +D1 +

[
K ′

1 − (
1

2
I +K ′)V −1V1

]
V −1(

1

2
I +K) + (

1

2
I +K ′)V −1K1

= ̺D +D1 + V −1

[
V K ′

1 −KV1 −
1

2
V1

]
V −1(

1

2
I +K) + (

1

2
I +K ′)V −1K1

= ̺D +D1 + V −1

[
K1V − V1K

′ −
1

2
V1

]
V −1(

1

2
I +K) + (

1

2
I +K ′)V −1K1

= ̺D +D1 + V −1K1(
1

2
I +K) − V −1V1(

1

2
I +K ′)V −1(

1

2
I +K) + (

1

2
I +K ′)V −1K1.

Due to the representation of the Laplace Steklov–Poincaré operator, see, e.g., [27],

S = V −1(
1

2
I +K) = D + (

1

2
I +K ′)V −1(

1

2
I +K),

we further conclude

(
1

2
I +K ′)V −1(

1

2
I +K) = V −1(

1

2
I +K) −D.

Therefore, by using (4.10) and (4.13) we have

T̺ = ̺D +D1 + V −1K1(
1

2
I +K) − V −1V1

[
V −1(

1

2
I +K) −D

]
+ V −1(

1

2
I +K)K1

= ̺D + V −1

[
V D1 + V1D +K1(

1

2
I +K) − V1V

−1(
1

2
I +K) + (

1

2
I +K)K1

]

= ̺D + V −1

[
−KK1 −K1K +K1(

1

2
I +K) − V1V

−1(
1

2
I +K) + (

1

2
I +K)K1

]

= ̺D + V −1

[
K1 − V1V

−1(
1

2
I +K)

]
,
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and we finally obtain the non–symmetric representation (3.11). Therefore, the ellipticity
of T̺ follows as in Theorem 4.4.

6.1 Symmetric boundary element approximation of T̺

For an arbitrary but fixed given z ∈ H1/2(Γ), the application of T̺z reads, by using the
symmetric representation (6.2),

T̺z = ̺Dz +D1z +K ′

1tz − (
1

2
I +K ′)qz,

where qz ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V qz)(x) = (V1tz)(x) − (K1z)(x) for x ∈ Γ,

and tz ∈ H−1/2(Γ) solves

(V tz)(x) = (
1

2
I +K)z(x) for x ∈ Γ.

As for the non–symmetric representation of T̺ we can define approximate Galerkin solu-
tions tz,h, q̃z,h ∈ S0

h(Γ), and therefore we can introduce the approximation

T̺̂z := ̺Dz +D1z +K ′

1tz,h − (
1

2
I +K ′)q̃z,h. (6.4)

Lemma 6.2 The approximate operator T̺̂ : H1/2(Γ) → H−1/2(Γ) as defined in (6.4) is

bounded, i.e.,

‖T̺̂z‖H−1/2(Γ) ≤ c
bT̺

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Moreover, there holds the error estimate

‖T̺z − T̺̂z‖H−1/2(Γ) ≤ c1 inf
τh∈S0

h(Γ)
‖qz − τh‖H−1/2(Γ) + c2 ‖tz − tz,h‖H−3/2(Γ). (6.5)

Proof. The proof follows as for the boundary element approximation of the non–
symmetric formulation, see Lemma 5.3 and Lemma 5.4.

By using the approximation property of the trial space S0
h(Γ) and the Aubin–Nitsche trick,

we then conclude an error estimate from (6.5) when assuming some regularity of qz and tz,
respectively.

Corollary 6.3 Assume qz, tz ∈ Hs
pw(Γ) for some s ∈ [0, 1]. Then there holds the error

estimate

‖T̺z − T̺̂z‖H−1/2(Γ) ≤ c1 h
s+ 1

2 ‖qz‖Hs
pw(Γ) + c2 h

s+ 3
2 ‖tz‖Hs

pw(Γ). (6.6)
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6.2 Boundary element approximation of g

As in the approximation (6.4), we can define a boundary element approximation of g as
defined in (6.3),

g = K ′

1tf −N1u−M1f + (
1

2
I +K ′)qf ,

where qf ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V qf )(x) = (N0u)(x) + (M0f)(x) − (V1tf)(x) for x ∈ Γ,

and tf ∈ H−1/2(Γ) solves

(V tf )(x) = (N0f)(x) for x ∈ Γ.

Hence we can define approximate Galerkin solutions q̂f,h, tf,h ∈ S0
h(Γ), and therefore, we

can introduce the approximation

ĝ := K ′

1tf,h −N1u−M1f + (
1

2
I +K ′)q̂f,h. (6.7)

As in (5.14) we conclude the error estimate

‖g − ĝ‖H−1/2(Γ) ≤ c1 h
s+ 1

2 ‖qf‖Hs
pw(Γ) + c2 h

s+ 3
2 ‖tf‖Hs

pw(Γ) (6.8)

when assuming qf , tf ∈ Hs
pw(Γ) for some s ∈ [0, 1].

6.3 Approximate variational inequality

The use of the symmetric approximations (6.4) and (6.7) results in the approximate vari-
ational inequality

(T̺̂,H ẑ − ĝ, w − ẑ) ≥ 0 for all w ∈ R
M ↔ wH ∈ UH , (6.9)

where

T̺̂,H = ̺DH +D1,H − (
1

2
M⊤

h +K⊤

h )V −1
h V1,hV

−1
h (

1

2
Mh +Kh) (6.10)

+K⊤

1,hV
−1
h (

1

2
Mh +Kh) + (

1

2
M⊤

h +K⊤

h )V −1
h K1,h

defines a symmetric Galerkin boundary element approximation of the self–adjoint operator
T̺, and

ĝ = K⊤

1,hV
−1
h f

2
− f

3
+ (

1

2
M⊤

h +K⊤

h )V −1
h

[
f

1
− V1,hV

−1
h f

2

]

is the related boundary element approximation of g as defined in (6.3). Note, that in
addition to those entries of the non–symmetric approximation, we use

D1,H [j, i] = 〈D1ϕi, ϕj〉Γ, f3,j = 〈N1u+M1f, ϕj〉Γ for i, j = 1, . . . ,M.
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Lemma 6.4 The symmetric matrix

T̂H := T̺̂,H − ̺DH −D1,H = K⊤

1,hV
−1
h (

1

2
Mh +Kh) + (

1

2
M⊤

h +K⊤

h )V −1
h K1,h

−(
1

2
M⊤

h +K⊤

h )V −1
h V1,hV

−1
h (

1

2
Mh +Kh)

is positive semi–definite, i.e.,

(T̂Hz, z) ≥ 0 for all z ∈ R
M .

Proof. We consider the generalized eigenvalue problem

T̂Hz = µ

[
S̃H + (

1

2
M⊤

h +K⊤

h )V −1
h (

1

2
Mh +Kh)

]
z, (6.11)

where the stabilised discrete Steklov–Poincaré operator

S̃H = DH + a a⊤ + (
1

2
M⊤

h +K⊤

h )V −1
h (

1

2
Mh +Kh)

is symmetric and positive definite. Note that the vector a is given by

ai =

∫

Γ

ϕi(x)dsx for i = 1, . . . ,M.

Since the eigenvalue problem (6.11) can be written as

(
(1

2
M⊤

h +K⊤
h )V −1

h I
) (

−V1,h K1,h

K⊤
1,h

) (
V −1

h (1
2
Mh +Kh)
I

)
z

= µ
(

(1
2
M⊤

h +K⊤
h )V −1

h I
)(

Vh

S̃H

) (
V −1

h (1
2
Mh +Kh)
I

)
z,

it is sufficient to consider the generalised eigenvalue problem
(

−V1,h K1,h

K⊤
1,h

) (
w
z

)
= µ

(
Vhw

S̃Hz

)
, (6.12)

where

w = V −1
h (

1

2
Mh +Kh)z .

From (6.12) we conclude

(K1,hz, w) − (V1,hw,w) = µ(Vhw,w),

(K⊤

1,hw, z) = µ(S̃Hz, z),

and by taking the difference we obtain

(V1,hw,w) = µ[(S̃Hz, z) − (Vhw,w)] = µ((DH + a a⊤)z, z).

Hence, µ ≥ 0 follows, which implies the assertion.

As a corollary of Lemma 6.4, we find the positive definiteness of the symmetric Schur
complement matrix T̺̂,H as defined in (6.10).
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Corollary 6.5 The approximate Schur complement T̺̂,H as defined in (6.10) is positive

definite, i.e.,

(T̺̂,Hz, z) ≥ ̺(DHz, z) + (D1,Hz, z) = 〈(̺D +D1)zH , zH〉Γ ≥ c ‖zH‖
2
H1/2(Γ)

for all z ∈ R
M ↔ zH ∈ S1

H(Γ), since ̺D +D1 implies an equivalent norm in H1/2(Γ).

Hence we can apply Theorem 5.2 to ensure unique solvability of the perturbed variational
inequality to find ẑ ∈ R

M ↔ ẑH ∈ UH such that

(T̺̂,H ẑ − ĝ, w − ẑ) ≥ 0 for all w ∈ R
M ↔ wH ∈ UH . (6.13)

Corollary 6.6 When combining the general error estimate (5.6) with the approximation

property of the ansatz space S1
H(Γ), and with the error estimates (6.6) and (6.8), we finally

obtain the error estimate

‖z − ẑH‖H1/2(Γ) ≤ c1H
s+1/2 |z|H1+s(Γ) + c2 h

s+1/2 ‖qz‖Hs
pw

(Γ) + c3 h
s+3/2 ‖tz‖Hs

pw
(Γ)

+c4 h
s+1/2 ‖g‖Hs

pw
(Γ) + c5 h

s+3/2 ‖tf‖Hs
pw

(Γ)

when assuming z ∈ H1+s(Γ), and qz, tz, g, tf ∈ Hs
pw(Γ) for some s ∈ [0, 1]. In particular

for h = H we therefore obtain the error estimate

‖z − ẑH‖H1/2(Γ) ≤ c(z, u, f)Hs+ 1
2 . (6.14)

Moreover, we are also able to derive an error estimate in L2(Γ), i.e.,

‖z − ẑH‖L2(Γ) ≤ c(z, u, f)Hs+1 , (6.15)

when applying the Aubin–Nitsche trick.

In the particular case of a non–constrained minimisation problem, instead of the discrete
variational inequality (6.13) we have to solve the linear system

T̺̂,H ẑ = ĝ,

which is equivalent to a system of linear equations,



−V1,h Vh K1,h

Vh −(1
2
Mh +Kh)

K⊤

1,h −(1
2
M⊤

h +K⊤

h ) ̺DH +D1,H







t

q

ẑ


 =




f
1

−f
2

−f
3


 . (6.16)

Remark 6.1 The symmetric boundary element approximation T̺̂,H is positive definite for

any choice of conformal boundary element spaces S1
H(Γ) ⊂ H1/2(Γ) and S0

h(Γ) ⊂ H−1/2(Γ).
In particular we may use the same boundary element mesh with mesh size h = H to define

the basis functions ϕi and ψk, respectively. From a theoretical point of view, this is not

possible when using the non–symmetric approximation T̺̃,H .
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7 Numerical results

As numerical example we consider as in [5, 22], see also [25], the Dirichlet boundary control
problem (2.1)–(2.3) for the domain Ω = (0, 1

2
)2 ⊂ R

2 where

u(x) = (x2
1 + x2

2)
−1/3, f(x) = 0, ̺ = 1, [ga, gb] = [−1, 2].

Note that the box constraints [ga, bb] = [−1, 2] as considered in this example are not active,
i.e., we have to solve the coupled linear system (5.27)) in the case of the non–symmetric
boundary element approach, and (6.16) for the symmetric approach.

For the boundary element discretisation, we introduce a uniform triangulation of the
boundary Γ = ∂Ω on several levels where the mesh size is hL = 2−(L+1). Since the
minimiser of (2.1) is not known in this case, we use the boundary element solution zh9

of the 9th refinement level as reference solution. The boundary element discretisation
is done by using the trial space S0

h(Γ) of piecewise constant basis functions, and S1
h(Γ) of

piecewise linear and continuous functions. In particular, we use the same boundary element
mesh to approximate the control z by a piecewise linear approximation, and piecewise
constant approximations for the fluxes t and q. Note that we have h = H in this case, and
therefore we can not ensure the S1

h(Γ)–ellipticity of the non–symmetric boundary element
approximation, see Theorem 5.8. However, the numerical example shows stability in this
case.

Non–symmetric BEM (5.27) Symmetric BEM (6.16) FEM [25]
L ‖z̃hL

− z̃h9
‖L2(Γ) eoc ‖ẑhL

− ẑh9
‖L2(Γ) eoc ‖zFEM

hL
− zFEM

h9
‖L2(Γ) eoc

2 2.19 –3 7.77 –3 1.34 –3
3 5.06 –4 2.11 1.95 –3 1.99 5.33 –4 1.33
4 1.92 –4 1.40 4.84 –4 2.01 2.08 –4 1.36
5 7.84 –5 1.29 1.28 –4 1.92 8.00 –5 1.38
6 3.13 –5 1.32 3.85 –5 1.73 3.14 –5 1.35
7 1.25 –5 1.33 1.34 –5 1.53 1.25 –5 1.33
8 4.58 –6 1.45 4.66 –6 1.52 4.55 –6 1.45

Table 1: Comparison of BEM/FEM errors of the Dirichlet control.

In Table 1, we present the errors for the control z in the L2(Γ) norm and the estimated
order of convergence (eoc). These results correspond to the error estimate (5.26) of the
non–symmetric boundary element approximation, and to the error estimate (6.15) of the
symmetric boundary element approximation. Note that we have z ∈ H7/6(Γ), and therefore
s = 1/6. Hence we can expect 7/6 as order of convergence. For comparison, we also give
the error of the related finite element solution, see [25]. From the numerical results we
conclude, that all three different approaches behave almost similar, as predicted by the
theory.
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8 Concluding remarks

In this paper, we have shown that we can use boundary element methods to solve Dirichlet
boundary control problems. The numerical results coincide with those of a comparable
finite element approach. The advantage of using boundary element methods lies in the
fact, that only a discretisation of the boundary is required. In the case of smooth data
we can prove, with respect to the used lowest order trial spaces, the best possible order
of convergence for the boundary element approximation of the control z, while for a finite
element approximation we are only able to prove some reduced order, see [25]. Moreover,
optimal control problems subject to partial differential equations in unbounded exterior
domains can be handled analoguesly.

While this paper is on the stability and error analysis of boundary element methods for
optimal control problems only, further research will be done for an efficient solution of the
resulting discrete systems. Hereby, special focus will be on appropriate solution methods
to solve the discrete variational inequalities. This also involves the construction of efficient
preconditioners, as well as the use of fast boundary element methods.
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