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Abstract

The all-floating Boundary Element Tearing and Interconnecting method inco-
operates the Dirichlet boundary conditions by additional constraints in the dual
formulation of the standard Tearing and Interconnecting methods. This simplifies
the implementation, as all subdomains are considered as floating subdomains. The
method shows an improved asymptotic complexity compared to the standard BETI
approach. The all-floating BETI method is presented for linear elasticity in this
paper.

1 Introduction

Domain decomposition methods offer a comfortable treatment of coupled boundary value
problems and provide efficient tools for the numerical simulation in particular by paralleliza-
tion. The local subproblems can be solved by the most suitable discretization methods,
e.g. finite and boundary element methods.

The Boundary Element Tearing and Interconnecting (BETI) method was introduced
in [16] as the counterpart of the boundary element method to the well–known Finite El-
ement Tearing and Interconnecting (FETI) methods [6, 7], which are widely used in en-
gineering applications. For a detailed description of several kinds of FETI methods and
a wide collection of references see the monograph [30]. The coupling of FETI and BETI
methods is discussed in [17]. The main ideas of these methods are the tearing of the primal
global degrees of freedom into local ones and the subsequent interconnecting of the local
degrees of freedom across the interfaces by means of constraints and Lagrange multipliers as
dual variables to enforce the continuity of the local variables across the interfaces. Subdo-
mains without sufficient Dirichlet boundary conditions are called floating subdomains and
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can be treated separately by using a pseudo inverse. The extra degrees of freedom related
to the local rigid body motions have to be eliminated by the use of an appropriate orthog-
onal projection, see e.g. [2, 11]. In the case of linear elastostatics, this may become rather
complicated since the number of involved rigid body motions may differ from subdomain
to subdomain. The so–called FETI–DP methods [5] introduce primal variables by global
nodes to overcome these difficulties. The selection of these global nodes is important for
the performance of the method and seems to be rather involved for linear elastostatics [13].

In [14, 20], we suggested the “all–floating” BETI method. Related numerical results
were presented in [21]. In the meantime, the all-floating formulation was also applied for
the coupling of FETI and BETI methods [15, 25]. This new version of the BETI method
incooperates the Dirichlet boundary conditions by additional constraints in the dual formu-
lation. This unifies the treatment of the subdomains, since all subdomains are considered
as floating subdomains. Therefore, the implementation is simplified. Independently, the
same idea has been introduced in [3] for FETI methods, called Total-FETI. Additionally,
the all-floating version utilizes an improved condition number of the preconditioned local
Steklov–Poincaré operators [19, 29] and shows a better asymptotic complexity.

In this paper, we present the all-floating BETI method for linear elasticity. The iterative
inexact solution scheme, which we suggested in [14] for standard BETI methods, needs not
more than O(1 + log(H/h)) iterations in the case of the all-floating formulation compared
to O((1 + log(H/h))2) iterations for the standard BETI method. H denotes the diameter
of a subdomain and h is the local meshsize. Therefore the all-floating formulation is
asymptotically faster than the standard BETI formulation.

The paper is organized as follows: The primal Dirichlet domain decomposition method
is described in Sect. 2 as a starting point of the later derivation of the BETI methods.
In Sect. 3, we give a short introduction in the boundary element realization of the local
Dirichlet to Neumann maps and present a suitable preconditioning strategy and the related
spectral equivalence inequalities. The all-floating BETI method is described for linear
elasticity in Sect. 4 in details. There, we state our main result on the computational
complexity of the proposed method. Finally, two mixed boundary value problems of linear
elastostatics are given as numerical examples in Sect. 5 indicating the improved complexity
of the all-floating formulation.

2 Dirichlet Domain Decomposition Method

The mixed boundary value problem of linear elastostatics

−div σ(u, x) = 0 for x ∈ Ω ⊂ R3,

γ0u(x) = gD(x) for x ∈ ΓD, (2.1)

γ1u(x) = gN(x) for x ∈ ΓN ,

is considered as model problem where Γ = ∂Ω = ΓD ∪ ΓN . For the sake of simplicity, we
assume that ΓD and ΓN are identical for all three components. But all results apply, e.g.,
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for the case of different decompositions for each component or for boundary conditions
in normal and tangential directions, too. u(x) denotes the vectorial displacements. The
relation of the stress tensor σ(u) and the linearized strain tensor e(u) = 1

2
(∇u⊤ + ∇u) is

given by Hooke’s law

σ(u) =
Eν

(1 + ν)(1 − 2ν)
tr e(u)I +

E

(1 + ν)
e(u).

E > 0 denotes the elasticity module and ν ∈ (0, 1/2) is the Poisson ratio. The trace
operators are defined by

γ0u(x) := lim
Ω∋ex→x∈Γ

u(x̃) for almost all x ∈ Γ

and

γ1u(x) = λ divu(x)n(x) + 2µ
∂

∂nx
u(x) + µn(x) × curlu(x) for almost all x ∈ Γ,

where n is the exterior unit normal direction. Let the bounded Lipschitz domain Ω be
decomposed into p non-overlapping subdomains Ωi, i.e,

Ω =

p⋃

i=1

Ωi where Ωi ∩ Ωj = ∅ for i 6= j.

Γi := ∂Ωi denotes the Lipschitz boundary of a subdomain. For neighboring subdomains
the local coupling interface is given by Γij := Γi ∩ Γj for all i < j. The skeleton of the
domain decomposition is defined by

ΓS :=

p⋃

i=1

Γi = Γ ∪
⋃

i<j

Γij.

The material parameters Ei > 0 and νi ∈ (0, 1/2) are assumed to be constant in each
subdomain Ωi. Thus, the global boundary value problem (2.1) can be rewritten by local
boundary value problems

−divσ(ui, x) = 0 for x ∈ Ωi,

γi
0ui(x) = gD(x) for x ∈ Γi ∩ ΓD, (2.2)

γi
1ui(x) = gN(x) for x ∈ Γi ∩ ΓN

and the transmission conditions

γi
0ui(x) = γj

0uj(x) and γi
1ui(x) + γj

1uj(x) = 0 for x ∈ Γij.

γi
0 and γi

1 denote the trace operators of the subdomain Ωi. Note that γi
1 is defined with

respect to the exterior normal direction of Ωi. A basic tool is the local Dirichlet to Neumann
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map including the so-called Steklov–Poincaré operator Si which is defined by the traction
Sif i(x) = γi

1vi(x) of the solution of the local Dirichlet boundary value problem

−div σ(vi, x) = 0 for x ∈ Ωi,

γi
0vi(x) = f i(x) for x ∈ Γi.

Next, local transmission problems can be formulated for i = 1, . . . , p: Find ui ∈ H1/2(Γi)
such that

γi
0ui(x) = gD(x) for x ∈ Γi ∩ ΓD,
γi

1ui(x) = gN(x) for x ∈ Γi ∩ ΓN ,

γi
0ui(x) = γj

0uj(x) for x ∈ Γij ,

γi
1ui(x) + γj

1uj(x) = 0 for x ∈ Γij

γi
1ui(x) = (Siui)(x) for x ∈ Γi.

Here, a Dirichlet domain decomposition method is considered first. The Neumann
traces are replaced by the local Dirichlet to Neumann maps, γi

1ui = Siui, and a global

function u ∈
[
H1/2(ΓS)

]3
is introduced to satisfy the continuity of the local functions ui

at the interfaces. In other words, the local functions ui are the restrictions ui = u|Γi
of the

global function u to the subdomain boundaries Γi. H
1/2(ΓS) is the trace space of H1(Ω) on

the skeleton ΓS. The Dirichlet boundary conditions on ΓD are considered as constraints of
the function u, whereas the Neumann transmission conditions and the Neumann boundary
conditions are formulated in a variational sense by

∫

Γij

[
(Siu|Γi

)(x) + (Sju|Γj
)(x)

]
· vij(x)dsx = 0 for all vij ∈

[
H1/2(Γij)

]3
, i < j

and
∫

Γi∩ΓN

[
(Siu|Γi

)(x) − gN(x)
]
· vN(x)dsx = 0 for all vN ∈

[
H1/2(ΓN)

]3
, i = 1, . . . , p.

The sum over all coupling interfaces Γij and the Neumann boundary ΓN gives the varia-

tional formulation: Find u ∈
[
H1/2(ΓS)

]3
with u = gD on ΓD and

p∑

i=1

∫

Γi

(Siu|Γi
)(x) · v̂|Γi

(x)dsx =

∫

ΓN

gN (x) · v̂|ΓN
(x)dsx for all v̂ ∈

[
H

1/2
0 (ΓS,ΓD)

]3

.

The test space
[
H

1/2
0 (ΓS,ΓD)

]3

is defined by

[
H

1/2
0 (ΓS,ΓD)

]3

:=
{
v ∈

[
H1/2(ΓS)

]3
: v(x) = 0 for all x ∈ ΓD

}
.

If the function u ∈
[
H1/2(ΓS)

]3
is split by u = û+ ĝD, where ĝD ∈ [H1(Ω)]

3
is a suitable

and bounded extension of the given boundary data gD on ΓS, the variational formulation

4



reads as: Find û ∈
[
H

1/2
0 (ΓS,ΓD)

]3

, such that

p∑

i=1

∫

Γi

(Siû|Γi
)(x) · v̂|Γi

(x)dsx =

∫

ΓN

gN(x) · v̂|ΓN
(x)dsx −

p∑

i=1

∫

Γi

(SiĝD|Γi
)(x) · v̂|Γi

(x)dsx

(2.3)

holds for all v̂ ∈
[
H

1/2
0 (ΓS,ΓD)

]3

.

The bilinear form defined by the left hand side is bounded and
[
H

1/2
0 (ΓS,ΓD)

]3

–elliptic,

see e.g. [9, 27]. Thus, the Lemma of Lax–Milgram states the unique solvability of the
variational problem (2.3).

A discretization using piecewise linear and continuous basis functions ϕk ∈ S1
h(ΓS) on

the skeleton gives the system of linear equations

Shû =

p∑

i=1

A⊤
i Si,hAiû =

p∑

i=1

A⊤
i f i

+

p∑

i=1

A⊤
i fN,i

, (2.4)

where we use a blockwise notation separating the components of the physical quantities,
in particular,

û =



û1

û2

û3


 , Si,h =



S11

i,h S12
i,h S13

i,h

S21
i,h S22

i,h S23
i,h

S31
i,h S32

i,h S33
i,h


 ϕn

ℓ :=



δ1n

δ2n

δ3n


ϕℓ

using the Kronecker symbol δij. The blocks Smn
i,h of the matrix Si,h of the local Steklov–

Poincairé operators are given by

Smn
i,h [k, ℓ] = 〈Siϕ

n
ℓ ,ϕ

m
k 〉Γi

.

The connectivity matrices Ai ∈ R3cMi×3cM map the global nodes to the local ones and the
global vector v to the local ones vi = Aiv componentwise. M̂i = MC,i +MN,i is the number

of all non-Dirichlet nodes, i.e., coupling and Neumann nodes, on Γi, and M̂ is their number
on the whole skeleton ΓS. The coefficients of the block vector fm

N,i
of the vectors f

N,i
are

given by

fm
N,i[k] =





∫

ΓN∩Γi

gN(x) ·ϕm
k|ΓN

(x)dsx if supp ϕk ∩ (ΓN ∩ Γi) 6= ∅

0 else,

and those of the vectors fi by

fm
i [k] = −

∫

Γi

(SiĝD|Γi
)(x) ·ϕM

k|Γi
(x)dsx.

Note that the system (2.4) of linear equations is uniquely solvable, and if we assume
u ∈ [H2(ΓS)]

3
, we will get an optimal order of convergence of 1.5 for lowest order elements

with respect to the meshsize h, see, e.g., [16, 27].
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3 Boundary Element Approximation and Precondi-

tioning of the Local Operators

In this section, we will describe the boundary element approximation of the local Steklov–
Poincaré operators first. For details on boundary integral equations and boundary element
methods see, e.g., [10, 18] and [26, 28]. Further, we will discuss the invertibility of the
Steklov–Poincaré operators and present an appropriate preconditioner using the concept
of operators of opposite order [29].

3.1 Boundary Element Realization of the Local Steklov–Poincaré

Operator

The solution of boundary value problems like (2.2) can be given by the representation
formula

ui(x) =

∫

Γ

γi
0,yU

∗(x, y)γi
1ui(y)dsy −

∫

Γ

(
γi

1,yU
∗(x, y)

)⊤
γi

0ui(y)dsy

for x ∈ Ωi. The fundamental solution of linear elasticity is given by Kelvin’s tensor

U∗
kℓ(x, y) =

1

8π

1

E

1 + ν

1 − ν

[
(3 − 4ν)

δkℓ

|x− y|
+

(xk − yk)(xℓ − yℓ)

|x− y|3

]
for k, ℓ = 1, . . . , 3.

Thus the knowledge of the complete Cauchy data γi
0ui and γi

1ui on the subdomain bound-
ary Γi is sufficient to compute the solution. In domain decomposition the knowledge of
the Cauchy data is even sufficient for solving the coupled problem. The unknown Cauchy
data can be determined from the first boundary integral equation

γi
0ui = (

1

2
I −Ki)γ

i
0ui + Viγ

i
1ui (3.5)

and the second hypersingular boundary integral equation

γi
1ui = Diγ

i
0ui + (

1

2
I +K ′

i)γ
i
1ui. (3.6)

Vi denotes the single layer potential

(Viti)(x) =

∫

Γi

U∗(x, y)ti(y)dsy for x ∈ Γi,

Ki the double layer potential

(Kiui)(x) =

∫

Γi\{x}

T ∗(x, y)uidsy for x ∈ Γi,

where T ∗(x, y) = (γi
1,yU

∗(x, y))⊤, K ′
i the adjoint double layer potential

(K ′
iti)(x) =

∫

Γi\{x}

γi
1,xU

∗(x, y)ti(y)dsy for x ∈ Γi,
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and Di the hypersingular operator

(Diui)(x) = −γi
1,x

∫

Γi

T ∗(x, y)ui(y)dsy for x ∈ Γi.

Due to the ellipticity and invertibility of the single layer potential Vi, the boundary
integral equation (3.5) can be written as

γi
1ui = V −1

i (
1

2
I +Ki)γ

i
0ui (3.7)

This already defines a Dirichlet to Neumann map but its boundary element discretization
realizes a non-symmetric approximation of the self-adjoint operator Si. But plugging (3.7)
into the hypersingular boundary integral equation (3.6) results in a second representation
of the Dirichlet to Neumann map

γi
1ui = Siγ

i
0ui =

(
Di + (

1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)

)
γi

0ui,

which will lead to a symmetric Galerkin boundary element approximation. Here, we use a
regular quasi-uniform boundary element mesh with meshsize h for the discretization. The
displacement γi

0ui is approximated componentwise by the space S1
h(Γi) = span {ϕk}

Mi
k=1

of piecewise linear and globally continuous basis functions ϕk and the traction γi
1ui is

approximated componentwise by the space S0
h(Γi) = span {ψℓ}

Ni

ℓ=1 of piecewise constant
basis functions ψℓ. Mi and Ni denote the number of nodes and the number of triangles of
the mesh of Ωi, respectively.

As the inverse operator V −1
i of the single layer potential is not available in general, we

define an approximation S̃i of the Steklov–Poincaré operator Si by

S̃iui = Diui + (
1

2
I +K ′

i)ti,h,

where ti,h ∈ [S0
h(Γi)]

3
is defined by an approximation of the inverse single layer potential

by

〈V ti,h, τ i,h〉Γi
= 〈(

1

2
I +K)ui, τ i,h〉Γi

for all τ i,h ∈
[
S0

h(Γi)
]3
,

with the duality pairing

〈w,v〉Γi
=

∫

Γi

w(x) · v(x)dsx.

Note that there holds an error estimate for this approximation

‖(Si − S̃i)ui‖[H−1/2(Γi)]
3 ≤ c inf

τi,h∈[S0

h(Γi)]
3

‖Siui − τ i,h‖[H−1/2(Γi)]
3 , (3.8)

see, e.g., [27]. This estimate is sufficient to recover the asymptotically optimal error es-
timates for the solution of the local boundary value problems and the coupled problem.
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Finally, we are able to define a boundary element approximation S̃i,h of the discrete Steklov–
Poincaré operator Si,h used in (2.4) by

S̃i,h = Di,h + (
1

2
M⊤

i,h +K⊤
i,h)V

−1
i,h (

1

2
Mi,h +Ki,h),

where the blocks of the involved matrices are given by

V mn
i,h [ℓ, k] = 〈Viψ

n
k ,ψ

m
ℓ 〉Γi

, Kmn
i,h [ℓ, i] = 〈Kiϕ

n
i ,ψ

m
ℓ 〉Γi

,

Mmn
i,h [j, k] = 〈ϕn

i ,ψ
m
ℓ 〉Γi

, Dmn
i,h [j, i] = 〈Diϕ

n
i ,ϕ

m
j 〉Γi

for k, ℓ = 1, . . . , Ni and i, j = 1, . . . ,Mi.

3.2 Inversion and Preconditioning of the Local Steklov–Poincaré

Operator

For the formulation of the BETI method, we will need the inverse of the local Steklov–
Poincaré operator Si. The application γi

0ui = S−1
i g of the inverse of Si corresponds to the

solution of the Neumann boundary value problem

−divσ(ui, x) = 0 for x ∈ Ωi ⊂ R3,

γi
1ui(x) = g(x) for x ∈ Γi.

The solution of such a Neumann boundary value problem is only unique up to the rigid
body motions

v1,i =




1
0
0


 ,v2,i =




0
1
0


 ,v3,i =




0
0
1


 ,v4,i =



−x2

x1

0


 ,v5,i =




0
−x3

x2


 ,v6,i =




x3

0
−x1


 ,

which are the solutions of the homogeneous Neumann boundary value problem. From
Betti’s second formula we get the solvability conditions

∫

Γi

γi
0vk,i(x) · g(x)dsx = 0 for k = 1, . . . , 6. (3.9)

The rigid body motions form the kernel of the hypersingular operator Di and the kernel of

(1/2I +Ki), too. Eliminating the rigid body motions from the Sobolev space
[
H1/2(Γi)

]3

admits a unique solution of the Neumann boundary value problem, see, e.g., [23, 28].

Since we have to define an orthogonality relation in
[
H1/2(Γi)

]3
, we use the scalar prod-

uct induced by the componentwise application of the inverse of the single layer potential VL,i

of the Laplacian to define an orthogonal complement of the kernel of the Steklov–Poincaré
operator Si. This admits the definition of a stabilized Steklov–Poincaré operator Ŝi [20] by

〈Ŝiui,vi〉Γi
:= 〈Diui,vi〉Γi

+
6∑

k=1

αk,i〈ui, w̃k,i〉Γi
〈vi, w̃k,i〉Γi

(3.10)

+〈(
1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)ui,vi〉Γi

.
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The functions w̃k,i form an orthogonal basis of the set of functions spanned by ṽk,i =

V̂ −1
i vk,i, k = 1, . . . , 6 where V̂ mn

i = δnmVL,i These functions can be computed by the
method of Gram–Schmidt with four applications of V −1

L,i . On the discrete level, the required
computational costs are much smaller than solving a boundary value problem of linear

elasticity. The stabilized Steklov–Poincaré operator Ŝi is
[
H1/2(Γi)

]3
–elliptic [20]. Thus,

Ŝi is invertible and defines a pseudoinverse which we will need for the formulation of the
BETI methods.

We use the technique of operators of opposite order [29] to define a preconditioner for

the iterative inversion of Ŝi. We present spectral equivalence inequalities for Ŝi and V̂ −1
i .

The specific construction of the modified Steklov–Poincaré operator Ŝi is essential for this
estimate. For optimal inequality constants, we choose the parameters

αk,i =
1

4

Ei

1 − 2νi

1 − νi

1 + νi

1

〈ṽk,i, w̃k,i〉Γi

. (3.11)

Theorem 1 ([20]). For the single layer potential VL,i of the Laplacian and for the modified

Steklov–Poincaré operator Ŝi there hold the spectral equivalence inequalities

cVL
1 c̃D1 〈V̂

−1
i ui,ui〉Γi

≤ 〈Ŝui,ui〉Γi
≤ (1/4 + cK)

Ei

1 − 2νi

1 − νi

1 + νi
〈V̂ −1

i ui,ui〉Γi
(3.12)

for all ui ∈
[
H1/2(Γi)

]3
with the ellipticity constant cVL

1 of the single layer potential VL,i of
the Laplacian and the ellipticity constant c̃D1 of the modified hypersingular operator in the

orthogonal space of its kernel with respect to the scalar product induced by V̂ −1
i . Further,

cK =
1

2
+

√
1

2
− cV1 c

D
1 < 1

is the contraction constant of the double layer potential Ki,

‖(
1

2
I +Ki)ui‖V −1

i
≤ cK‖ui‖V −1

i
for all ui ∈

[
H1/2(Γi)

]3
.

Note that the constants of the estimates are independent of the discretization, but
depend on the shape of the domain Ωi.

As preconditioner of the discrete approximation Ŝi,h of the stabilized Steklov–Poincaré

operator Ŝi,

Ŝi,h = S̃i,h +

6∑

k=1

αk,iak,ia
⊤
k,i where an

k,i[j] = 〈ϕn
j , w̃k〉Γi

, (3.13)

we can use the approximation
C̃D,i := M̃i,hV̂

−1
i,h M̃i,h (3.14)

with the entries of the matrix blocks

V̂ mn
i,h [j, ℓ] = δnm〈VL,iϕℓ, ϕj〉Γi

and M̃mn
i,h [j, ℓ] = δnm〈ϕℓ, ϕj〉Γi

9



for j, ℓ = 1, . . . ,Mi, which is spectrally equivalent to Si,h [28, 29]. As we apply the inverse

of C̃D in the iterative solver, we need the application of V̂i,h and the inexpensive inversion

of the mass matrix M̃i,h only.

Remark 1. In the case that Si is defined on an open subset Γi,0 of Γi, the estimates
worsen by a polylogarithmic factor [19]. Thus, the iteration numbers grow logarithmically
compared to the case of the closed boundary Γi, where the iteration numbers for solving
the preconditioned system are bounded, since the estimates (3.12) are independent of the
meshsize h.

4 The All-Floating BETI Formulation

We consider the system (2.4) of linear equations for the primal Dirichlet domain decom-
position method and the corresponding minimization problem

û = argmin
bw∈R3cM

p∑

i=1

[
1

2
(S̃i,hAiŵ, Aiŵ) − (f

i
, Aiŵ) − (f

N,i
, Aiŵ)

]
,

respectively. The main ideas of the Tearing and Interconnecting method [6, 7] are the
tearing of the global degrees of freedom û in local degrees of freedom ûi = Aiû and the
interconnecting of the local degrees of freedom ûi at the coupling interfaces Γij by con-
straints. The resulting Schur complement system of the standard BETI method [16] reads
as

q∑

i=1

BiŜ
−1
i,hB

⊤
i λ+

p∑

i=q+1

BiS̃
−1
i,hB

⊤
i λ+Gγ = −

q∑

i=1

BiŜ
−1
i,h (f

i
+ f

N,i
) −

p∑

i=q+1

BiS̃
−1
i,h (f

i
+ f

N,i
)

(4.15)
where G = (B1v1,1, . . . , B1vdimR1,1, . . . , BqvdimRq,q) ∈ R3ML×q dimR, see, e.g. [16, 20]. We
will present a detailed derivation for the all-floating version later. Here, one has to distin-
guish whether the local subproblem is uniquely solvable due to sufficient Dirichlet boundary
conditions or not. We assume that the first q local subproblems are not uniquely solvable
(i = 1, . . . , q) and a pseudoinverse Ŝ−1

i , which can be defined as presented in Sect. 3.2,
has to be used. These subdomains are called floating subdomains. The Steklov–Poincaré
operators of the remaining subdomains (i = q + 1, . . . , p) are invertible. ML is the total
number of constraints per component and dimRi denotes the number of active rigid body
motions of subdomain Ωi.

A projection method [2, 11] is used to solve the BETI Schur complement system (4.15),

see also Sect. 4.1. For the stabilized Steklov–Poincaré operator Ŝi,h, the active rigid body
motions of the subdomain Ωi have to be determined. While this can be decided easily in the
case of the Laplacian, this task is not trivial in the case of linear elastostatics, depending
on given boundary and transmission conditions. An approach avoiding these difficulties is
the dual primal formulation of the Tearing and Interconnection methods, called FETI–DP
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[4, 5, 13]. This method reintroduces a set of global nodes and the corresponding primal
variables to make the local Steklov–Poincaré operators invertible, while the continuity is
guaranteed for the remaining coupling nodes by the constraints. The choice of the primal
variables is important for the robustness and the efficiency of the method and seems to be
rather involved in the case of linear elastostatics [13].

Here, we will present the all-floating formulation of the BETI method which unifies the
treatment of the subdomains as all are considered as floating. This simplifies the implemen-
tation and a change of the boundary conditions, as for example in contact problems, does
not effect the method. The condition number of the local Steklov–Poincaré operator pre-
conditioned by the operator of opposite order increases logarithmically for a non-floating
subdomain while it is bounded for a floating subdomain, see Sect. 3.2. The all-floating
formulation benefits from this fact with an improved asymptotic complexity.

The all-floating formulation of the BETI method is derived starting from the sys-
tem (2.4) of linear equations

S̃hû =

p∑

i=1

A⊤
i S̃i,hAiû =

p∑

i=1

A⊤
i f i

+

p∑

i=1

A⊤
i fN,i

and the corresponding minimization problem

û = argmin
bw∈R3cM

p∑

i=1

[
1

2
(S̃i,hAiŵ, Aiŵ) − (f

i
, Aiŵ) − (f

N,i
, Aiŵ)

]
,

respectively. Note that the vectors ŵ have no entries related to nodes of the Dirichlet
boundary ΓD, as the corresponding functions ŵh vanish on this part of the boundary. As
in the standard BETI method, local vectors ŵi = Aiŵ are introduced and constraints are
set up to guarantee the continuity across the interfaces. Thus, local minimization problems

ûi = argmin
bwi∈R3cMi

1

2
(S̃i,hŵi, ŵi) − (f

i
, ŵi) − (f

N,i
, ŵi) (4.16)

have to be solved. These are interconnected by the constraints
p∑

i=1

Biûi = 0.

n− 1 non-redundant constraints are assigned to a global coupling node adjacent to n sub-
domains. The total number of constraints is denoted by 3ML. The constraints are applied
to up to three components at the nodes in linear elastostatics. The components of the
local vectors ûi are connected to the subdomain Ωj with the largest coefficient Ej/(1+νj),
see [11]. For each subdomain Ωk with k 6= j which includes the coupling node, a constraint
is stated with a global index r. The corresponding entries of the blocks Bmn

i of the matrices
Bi are

Bmn
i [r, s] = δnm





1 for i = j and s = ℓj ,

−1 for i = k and s = ℓk,

0 else,

(4.17)
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where ℓj is the local index of the coupling node in the subdomain Ωj corresponding to the
related block of the connectivity matrices Aj . For a redundant version of the constraints,
see e.g. [11, 30].

Until here, the all-floating approach is identical to the standard Tearing and Intercon-
necting methods. Next, the local vectors ŵi and the related functions are extended to the
whole boundary Γi of the subdomains. The symmetry of the Steklov–Poincaré operators
is used for the splitting

(f
i
, ŵi) = −(S̃i,hĝi

, ŵi) = −
1

2
(S̃i,hĝi

, ŵi) −
1

2
(ĝ

i
, S̃i,hŵi).

where ĝ
i
is the vector corresponding to the linear interpolation of the extension ĝD on Γi.

The local vector ŵi and the interpolation ĝ
i
of the Dirichlet datum are reunited to extend

the related function to the whole boundary. The local minimization problems (4.16) are
transformed to

ûi = argmin
bwi∈R3cMi

{
1

2
(S̃i,hŵi, ŵi) +

1

2
(Si,hĝi

, ŵi) +
1

2
(ĝ

i
, Si,hŵi) − (f

N,i
, ŵi)

}

= argmin
bwi∈R3cMi

{
1

2
(S̃i,h(ŵi + ĝ

i
), ŵi + ĝ

i
) − (f

N,i
, ŵi + ĝ

i
) −

1

2
(Si,hĝi

, ĝ
i
) + (f

N,i
, ĝ

i
)

}
.

As the solutions of the minimization problems do not depend on the constants of the last
two terms, we consider the equivalent local minimization problems

ûi = argmin
bwi∈R3cMi

{
1

2
(S̃i,h(ŵi + ĝ

i
), ŵi + ĝ

i
) − (f

N,i
, ŵi + ĝ

i
)

}
.

Defining new local functions wi,h = ŵi,h + ĝi,h and their related vectors wi ∈ R3Mi, where
Mi is the number of all nodes of the subdomain Ωi, we get the minimization problems

ui = argmin
wi∈R3Mi

{
1

2
(S̃i,hwi, wi) − (f

N,i
, wi)

}
.

Extra constraints are used to satisfy the Dirichlet boundary conditions. Therefore, the
system of constraints is extended to

p∑

i=1

B̃iui = b

where B̃i ∈ R3(ML+
P

i MD,i)×3Mi . In the case of a suitable ordering of the nodes, the entries
of the matrix blocks are given by

B̃nm
i [j, k] = δnm





Bi[j, k] if j ≤ML

1 if j > ML and k is the local index of a Dirichlet node j

of the subdomain Ωi,

0 else.
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The entries of the right hand side b are given by

bm[j] =





0 if j ≤ML, i.e. row j is related to the coupling,

gm
D (xk) if j > ML and k is the local index of a Dirichlet node j

of the subdomain Ωi,

0 else.

Introducing Lagrangian multipliers λ ∈ R3fML results in the system of linear equations



S̃1,h −B̃⊤
1

. . .
...

S̃p,h −B̃⊤
p

B̃1 . . . B̃p 0







u1
...
up

λ


 =




f
N,1
...

f
N,p

b


 , (4.18)

where M̃L = ML +
∑p

i=1MD,i is the total number of Lagrangian multipliers of the all-
floating version per component.

The main difference of this formulation to the standard BETI formulation is that the
local functions and operators are now defined with respect to the whole boundary of the
subdomains and that the number of constraints is increased. Thus, the total number
of degrees of freedom and the memory requirements are increased. On the other hand,
the preconditioning of the local operators is now independent of the discretization and all
subdomains can be treated uniformly. The additional constraints of the Dirichlet boundary
conditions are local and are not part of the communication of the parallel solver.

4.1 Projection Method and Preconditioning

The local Steklov–Poincaré operators and their discrete realizations S̃i,h are not invertible
anymore since they are now defined on the whole boundary Γi. Therefore, the stabilized
pseudo inverse (3.13) is used. For any subdomain the local equations of (4.18)

S̃i,hui = f
N,i

+ B̃⊤
i λ (4.19)

are solvable if the compatibility conditions, see (3.9),

(f
N,i

+ B̃⊤
i λ, vk,i) = 0 for all k = 1, . . . , 6 (4.20)

are satisfied for the rigid body motions vk,i ∈ R3Mi. Due to Sect. 3.2, the modified problems

Ŝi,hui =

[
S̃i,h +

6∑

k=1

αk,iak,i a
⊤
k,i

]
ui = f

N,i
+ B̃⊤

i λ

are solved on the normalization condition

(ak,i, ui) = 0 for k = 1, . . . , 6.
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αk,i are the scaling parameters given in (3.11). Thus the solutions of the local prob-
lems (4.19) are given by

ui = Ŝ−1
i,h (f

N,i
+ B̃⊤

i λ) +

6∑

k=1

γk,ivk,i for i = 1, . . . , p. (4.21)

The constants γk,i ∈ R have to be determined from the global problem. Using the local
solutions in the system (4.18) of linear equations results in the all-floating BETI Schur
complement system

p∑

i=1

B̃iŜ
−1
i,h B̃

⊤
i λ+Gγ = b−

p∑

i=1

B̃iŜ
−1
i,h fN,i

, (4.22)

where G = (B̃1v1,1, . . . , B̃1v6,1, . . . , B̃pv6,p) ∈ R3fML×6p. This defines the system of linear
equations

Fλ+Gγ = d. (4.23)

The compatibility conditions (4.20) can be rewritten as

G⊤λ = −
(
(f

N,i
, vk,i)

)
k=1:6,i=1:q

=: e. (4.24)

In the Tearing and Interconnecting methods, a projection P = I − QG(G⊤QG)−1G⊤ of

the image Im (B̃) to the subspace Ker (G⊤) = (Im (G))⊥ is used with a suitable diagonal
scaling matrix Q [2, 11]. If all constraints of a global coupling node are built with respect
to the subdomain with the largest coefficient, the entries of the diagonal matrix are chosen
as, see [11, 12]

Qnm[ℓ, ℓ] = δnm





µi

(
1 + log

(
Hi

hi

))
h2

i

Hi
if the node xℓ is inside a subdomain face,

µi hi if the node xℓ is inside a subdomain edge

or is a subdomain vertex,

where
µi := min{Ei/(1 + νi), Ej/(1 + νj)}.

Here, i and j are the indices of the subdomains Ωi and Ωj which are related to the coupling
constraint.

Using the projection P⊤, the determination of the Lagrangian multipliers λ and the
determination of the constants γ of the system (4.23) can be separated, as P⊤Gγ = 0. The
solution λ of the system of linear equations

P⊤Fλ = P⊤d (4.25)

is computed by a projected parallelized conjugate gradient method, see, e.g., [14]. The
initial guess is chosen as

λ0 = QG(G⊤QG)−1e
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to satisfy the constraints (4.24). Then the constants γ of (4.23) can be computed by

γ = (G⊤QG)−1G⊤Q(d− Fλ). (4.26)

Finally, the local solutions ui of the representation (4.21) are computed.
As in the case of the standard BETI method, the condition number of the precondi-

tioned all-floating BETI formulation (4.25) will be bounded independently of jumps in the
coefficients, if the scaled hypersingular BETI preconditioner [16]

C−1
BETI = (BC−1

β B⊤)−1BC−1
β Di,hC

−1
β B⊤(BC−1

β B⊤)−1 (4.27)

is used. C−1
β is a diagonal matrix which entries are defined by, see e.g. [11]

(
C−1

β

)mn
[i, j] = δnm





∑n
ℓ=1 β

γ
ℓ

βγ
i

for j = i,

0 else,

for i, j = 1, . . . n and some parameter γ ∈ [1/2,∞). n denotes the number of subdomains
adjacent to a global coupling nodes and βℓ = Eℓ/(1 + νℓ) are the related coefficients.
The condition number of the all-floating method can be estimated like in the case of the
standard FETI and BETI method [16].

Theorem 2 ([20]). For the scaled hypersingular BETI preconditioner (4.27) and the pro-
jected all-floating BETI system (4.25), there holds the following estimate of the condition
number

κ(PC−1
BETI

P⊤F ) ≤ c

(
1 + log

H

h

)2

(4.28)

where the constant c is independent of h, H, the number p of subdomains and of the jumps
of the values Ei/(1 + νi). H denotes the maximum of the local diameters Hi := diamΩi of
the subdomains and h the maximum of the meshsizes hi of the subdomains Ωi.

Proof. See [25].

For improved computational times, we reintroduce the local stresses

ti := V −1
i,h (

1

2
Mi,h +Ki,h)ui,

such that the system (4.18) is transformed into a two-fold saddle point problem



V1,h −K̂1,h

. . .
. . .

Vp,h −K̂p,h

K̂⊤
1,h D̂1,h −B̃⊤

1
. . .

. . .
...

K̂⊤
p,h D̂p,h −B̃⊤

p

B̃1 . . . B̃p 0







t1
...
tp
u1
...
up

λ




=




0
...
0

f
N,1
...

f
N,p

b




. (4.29)
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Here, the abbreviation

K̂i,h =
1

2
Mi,h +Ki,h

is used. The two-fold saddle point problem (4.29) is solved by a preconditioned Bramble–
Pasciak CG method [1] for two-fold saddle point problems including the projection P ,
see [14] for details. The involved preconditioners are an algebraic multigrid preconditioner
[22] for the local single layer potentials Vi and the preconditioners (3.14) and (4.27) pre-
sented for the local Steklov–Poincaré operators Si and the all-floating Schur complement
system. All boundary integral operators are realized by the fast multipole method [8, 24].

Theorem 3. Let the numbers of iterations of the algebraic multigrid preconditioner of
the local single layer potentials Vi be bounded with respect to h. Then not more than
I(ε) = O((1+log(H/h))1 log ε−1) iterations and ops(ε) = O((H/h)2(1+log(H/h))3 log ε−1)
arithmetical operations are required in order to reduce the initial error of the two-fold saddle
point problem (4.29) by the factor ε ∈ (0, 1) in a parallel regime and the described manner.
The number of iterations is robust with respect to the jumps in the coefficients. Moreover,
not more than O((H/h)2(1 + log(H/h))2) storage units are needed per processor.

Proof. The assertion follows from the spectral equivalence inequalities (3.12) and (4.27)
and the complexity of O((H/h)2(1 + log(H/h))2) of the fast multipole realization [24] of
the boundary integral operators.

The standard BETI method requires I(ε) = O((1 + log(H/h))2 log ε−1) iterations and
ops(ε) = O((H/h)2(1 + log(H/h))4 log ε−1) arithmetical operations for the same setting.
The all-floating version utilizes the improved condition number of the preconditioned local
Steklov–Poincaré operators and shows a better asymptotic complexity.

5 Numerical Examples

The part of essential boundary conditions is in general relative small for problems in elas-
ticity. Therefore a mixed boundary value problem of linear elastostatics is considered for
a cube subdivided into eight subdomains with subdomain boundaries of 24 triangles each.
We use the elasticity module E = 200 and the Poisson ratio ν = 0.3 as material param-
eters. The upper and lower face of the cube define the Dirichlet part of the boundary.
Neumann boundary conditions are predescribed on the remaining part of the boundary.
The boundary data are given by the traces of a fundamental solution with a singularity
outside the domain. The numbers of degrees of freedom for each formulation are given in
Table 1. Each subdomain was refined up to five times. Finally, each subdomain bound-
ary consists of 24576 triangles. The first column is the refinement level L and the second
column describes the numbers for the primal system (2.4). Columns 6–8 give the numbers
of unknowns of the all-floating BETI Schur complement system (4.22), its saddle point
problem (4.18) and its two-fold saddle point problem (4.29), while columns 3–5 contain the
corresponding numbers of the systems of the standard BETI method.
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DDD B-Schur B-SPP B-2SPP A-Schur A-SPP A-2SPP
L (2.4) (4.15) (4.22) (4.18) (4.29)
0 111 105 321 897 225 561 1137
1 537 351 1239 3543 663 1863 4167
2 2397 1275 4947 14163 2259 6915 16131
3 10149 4851 19851 56715 8331 26811 63675
4 41781 18915 79611 227067 31995 105771 253227
5 169557 74691 318939 908763 125403 420363 1010187

Table 1: Numbers of degrees of freedom of the considered methods for 8 subcubes.

The system (2.4) of the primal Dirichlet domain decomposition method has more de-
grees of freedom than the Schur complement systems (4.15) and (4.22) of the BETI method
and of the all-floating formulation. The numbers of degrees of freedom are larger for the
all-floating formulation than for the standard BETI method due to the extra dual degrees
of freedom at the Dirichlet part of the boundary.

DDD (2.4) B-2SPP A-2SPP (4.29)
L t1 t2 It. t1 t2 It. t1 t2 It.
0 2 3 25( 12) 2 4 77 3 4 63
1 4 14 60( 15) 5 17 97 6 13 81
2 11 99 74( 16) 11 97 106 12 76 80
3 30 575 85( 16) 29 496 116 26 358 83
4 193 4128 92( 16) 193 3699 131 157 2673 93
5 1353 37146 101( 17) 1360 27531 150 1045 18935 102

Table 2: Comparison of the method for a mixed boundary value problem

In Table 2, the computational times and the numbers of iterations are compared for
the primal Dirichlet domain decomposition method (2.4), the two-fold system of the BETI
method and the two-fold system (4.29) of the all-floating formulation. All computations
were executed on the cluster “mozart” of the Department of Simulation of Large Systems
and the Chair of Numerics for Supercomputers at the University of Stuttgart. The Linux
cluster consists of 64 nodes with 4 GB of RAM and 2 Intel Xeon processors with 3.066 GHz
each. Each subdomain is assigned to a processor core. t1 and t2 are the computational
times for setting up the system of linear equations and for solving this system, respectively.
It denotes the number of iterations executed by a conjugate gradient method for a rela-
tive accuracy of ε = 10−8. The approximation errors ‖u − uh‖L2(Γ) of the Dirichlet data
match each other very accurately. The all-floating formulation is the fastest of the three
methods for this problem with mixed boundary conditions. In comparison to the standard
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BETI method, the number of iterations and the computational times show the improved
asymptotic complexity of the all-floating formulation. The reduced number of iterations
is not only due to the improved preconditioning of the Steklov–Poincaré operators. Even
the numbers of iterations of the Schur complement system (4.22) are smaller than in the
case of the standard BETI method (4.15). For the fourth refinement level, the number
of iterations is 33 instead of 38. For the finest refinement level, the all-floating method is
about twice as fast as the primal Dirichlet domain decomposition method (2.4). In the case
of a pure Dirichlet boundary value problem, the other methods might be faster for small
problem sizes due to the small number of degrees of freedom. But the improved asymp-
totic complexity of the all-floating formulation pays off for large problem sizes anyway. In
general, the numbers of iterations and the computational times of the all-floating BETI
method seem to be almost independent of the distribution of the boundary conditions in
contrast to the other two methods.

Next, a mixed boundary value problem of linear elastostatics with jumping coefficients is
considered. The domain decomposition in Fig. 1 represents a piece of steel (E = 210, ν =
0.285) by two subdomains surrounded by concrete (E = 30, ν = 0.17). A total of 18
subdomains has been used. Each subdomain is discretized by a unit cube as before. The
bottom side is fixed while a deformation is imposed on the top surface. The remaining
part of the boundary has vanishing Neumann boundary conditions.

Figure 1: Domain decomposition of a piece of steel in concrete.

In the global refinement, each cube is refined up to 24576 boundary elements. A
uniform extension of the surface mesh to the domain would consists of more than 14
million tetrahedrons for linear elastostatics. The numbers of degrees of freedom are listed
in Table 3.
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DDD B-Schur B-SPP B-2SPP A-Schur A-SPP A-2SPP
L (2.4) (4.15) (4.22) (4.18) (4.29)
0 219 267 753 2049 537 1293 2589
1 1071 927 2925 8109 1629 4329 9513
2 4827 3435 11697 32433 5649 16125 36861
3 20547 13203 46953 129897 21033 62613 145557
4 84819 51747 188313 520089 81177 247173 578949
5 344691 204867 754425 2081529 318969 982629 2309733

Table 3: Numbers of degrees of freedom for several methods for example of Fig. 1.

The computational times and the numbers of iterations are compared in Table 4 for the
primal Dirichlet domain decomposition method (2.4), the BETI method and the all-floating
two-fold formulation (4.29).

Schur–CG (2.4) BETI–SPP2 Allfl.–SPP2 (4.29)
L t1 t2 It. t1 t2 It. t1 t2 It.
0 5 7 53( 10) 5 7 78 4 8 65
1 7 25 110( 14) 7 19 100 7 19 82
2 13 181 130( 14) 15 112 114 15 115 85
3 30 986 148( 14) 30 562 129 27 476 95
4 191 6902 154( 14) 189 4352 153 159 3119 105
5 1332 59264 166( 16) 1334 31645 172 1060 23008 120

Table 4: Comparison of the methods for jumping coefficients

The BETI preconditioning technique performs well for jumping coefficients while the
primal method (2.4) shows a rather large number of iterations. The numbers of iterations
and the computational times are again smaller for the all-floating formulation than for the
standard BETI method. The standard BETI method is about twice as fast as the primal
method for the finest refinement level. The all-floating formulation is almost three times
faster than the primal method. The improved asymptotic complexity of the BETI method
and in particular of the all-floating formulation is indicated.

6 Conclusions

We presented the all-floating formulation of the BETI method for linear elasticity. The all-
floating formulation simplifies the implementation of the methods, in particular in linear
elasticity, and provides an improved asymptotic complexity compared to the standard
version. The numerical examples are in agreement with the theoretical results.
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