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Abstract

In this paper we analyse constrained optimal Dirichlet boundary control problems
subject to the linear heat equation. We propose to use boundary integral equations to
solve the coupled optimality system, and we present results on unique solvability and
related a priori error estimates for a symmetric Galerkin boundary element method.
A numerical example confirms the analytical results.

1 Introduction

Optimal control problems subject to elliptic or parabolic partial differential equations are
of great interest, both from a mathematical and an application point of view, see, e.g.,
[4, 7, 15]. In most cases, the numerical solution by using finite elements is based on the
variational formulation of the optimality system. In particular when considering boundary
control problems, boundary integral formulations and boundary element methods may
be an interesting alternative to finite element methods. In [10] we have introduced and
analysed a symmetric Galerkin boundary element method for the solution of Dirichlet
boundary control problems subject to the Poisson equation. When describing the solutions
of both the primal and adjoint value problems by using boundary integral equations, a
variational inequality in the Sobolev trace space H1/2(Γ) has to be solved, see also [14].
Since the state enters the adjoint problem as a volume density, an appropriate reformulation
of the related Newton potentials by using Bi–Laplace boundary integral operators has to
be introduced.
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In this paper we analyse the Dirichlet boundary optimal control problem governed
by the linear heat equation as a model problem. Several variational formulations for a
Dirichlet control in L2(Γ) are considered in [6], and a Galerkin finite element method for
the numerical solution of a parabolic Neumann control problem was proposed in [16], where
a backward discretization in time was used. Instead, here we propose and analyse the use
of boundary element methods to solve the related optimality system, see also [11].

Boundary integral formulations for the heat equation are well established, see, e.g.,
[2, 3, 9]. In fact, the state u and the adjoint state p can be represented by some layer heat
potentials. Since the final state u enters the adjoint heat equation, which is in fact reverse
in time, we need to modify the presentation of the related Newton potential by using
an auxiliary function which is related to the fundamental solution of the heat equation.
With this, similar formulations of boundary integral equations as in the case of stationary
boundary control problems [10] are obtained.

This paper is organised as follows. In Sect. 2 we describe the model problem where the
Dirichlet control is considered in the boundary energy space H

1

2
, 1
4 (Σ), where Σ := Γ×(0, T )

is the boundary of the space time cylinder, and where an equivalent norm is induced by
the hypersingular layer heat potential D, see, e.g., [3]. Moreover, we discuss the optimality
system, which consists of the primal problem, the adjoint problem, and the optimality
condition. In Sect. 3 we first recall the boundary integral equation approach in the case of
the heat equation which can be used to describe the primal state u, and the adjoint state
p. Since the final state u(T ) enters the adjoint equation as a final termination condition,
we introduce an auxiliary function to rewrite the related volume potential by using surface
potentials only. It turns out that we can state almost the same mapping properties of the
resulting boundary integral operators as in the elliptic case [10]. The symmetric Galerkin
boundary element approximation of the resulting variational inequality is formulated and
analysed in Sect. 4. Finally, in Sect. 5, a numerical example is given which confirms the
theorical results.

2 Parabolic Dirichlet boundary control problems

For a bounded Lipschitz domain Ω ⊂ R
d, d = 2, 3, with boundary Γ = ∂Ω and for a

fixed real number T > 0, we define the time interval I := (0, T ), the space time cylinder
Q := Ω × I, and its boundary Σ := Γ × I. We consider the model problem to find a
Dirichlet control z to minimize the distance of the final temperature u(·, T ) from a desired
temperature u, i.e. we consider the cost functional

J(u, z) =
1

2

∫

Ω

[u(x, T )− u(x)]2 dx+
α

2
〈Dz, z〉Σ (2.1)

to be minimized subject to the heat equation

∂tu(x, t)−∆u(x, t) = 0 for (x, t) ∈ Q,

u(x, t) = z(x, t) for (x, t) ∈ Σ,
u(x, 0) = u0(x) for x ∈ Ω,

(2.2)
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and subject to pointwise control constraints

z ∈ Uad :=
{
w ∈ H

1

2
, 1
4 (Σ) : z1(x, t) ≤ w(x, t) ≤ z2(x, t) for (x, t) ∈ Σ

}
. (2.3)

For the definition of the used Sobolev spaces, see, e.g., [1, 3]. We assume u, u0 ∈ L2(Ω),

α ∈ R+, z1, z2 ∈ H
1

2
, 1
4 (Σ), and D : H

1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ) is the hypersingular heat

boundary integral operator [3] which defines an equivalent norm in H
1

2
, 1
4 (Σ). In particular,

for z ∈ H
1

2
, 1
4 (Σ) we have

(Dz)(x, t) := −
∂

∂nx

∫ t

0

∫

Γ

∂

∂ny
E(x− y, t− τ)z(y, τ) dsy dτ for (x, t) ∈ Σ,

where

E(x, t) =





1

(4πt)d/2
e−|x|2/4t for t > 0,

0 for t ≤ 0
(2.4)

is the fundamental solution of the heat equation. Let v be a given function defined on
Ω× R+ (or Γ× R+), and let t0 ∈ R+ be arbitrary. Then we define the time reversal map
κt0 by

κt0v(x, t) := v(x, t0 − t). (2.5)

The hypersingular heat boundary integral operator D is H
1

2
, 1
4 (Σ)–elliptic and self–adjoint

with respect to a time–twisted duality, see [3], i.e.,

〈Dz, z〉Σ ≥ cD1 ‖z‖
2

H
1
2
, 1
4 (Σ)

, 〈Dz, κTw〉Σ = 〈Dw, κTz〉Σ for all z, w ∈ H
1

2
, 1
4 (Σ). (2.6)

As in [4, 7] we obtain the related optimality conditions as follows:

Theorem 2.1 Let (u, z) ∈ H1, 1
2 (Q)×H

1

2
, 1
4 (Σ) be an optimal solution of the optimal control

problem (2.1)–(2.3). Then there exists a unique p ∈ H1, 1
2 (Q) satisfying the adjoint heat

equation
−∂tp(x, t)−∆p(x, t) = 0 for (x, t) ∈ Q,

p(x, t) = 0 for (x, t) ∈ Σ,
p(x, T ) = u(x, T )− u(x) for x ∈ Ω,

(2.7)

and the optimality condition

〈αD̃z − ∂np, w − z〉Σ ≥ 0 for all w ∈ Uad, (2.8)

where

D̃ :=
1

2
(D + κTDκT ). (2.9)
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Proof. For a given z ∈ H
1

2
, 1
4 (Σ) there exists a unique solution uz ∈ H1, 1

2 (Q) of the primal
heat equation (2.2), see, e.g., [3]. Then the cost functional (2.1) can be rewritten in a
reduced form as

J̃(z) =
1

2
‖uz(T )− u‖2L2(Ω) +

α

2
〈Dz, z〉Σ.

Let h ∈ H
1

2
, 1
4 (Σ) be an arbitrary but given direction for which we have

J̃(z + h)− J̃(z)

=
1

2
‖uz+h(T )− u‖2L2(Ω) −

1

2
‖uz(T )− u‖2L2(Ω) +

α

2
〈D(z + h), z + h〉Σ −

α

2
〈Dz, z〉Σ

= 〈uz(T )− u, v(T )〉L2(Ω) +
1

2
‖v(T )‖2L2(Ω) +

α

2
〈Dz, h〉Σ +

α

2
〈Dh, z〉Σ +

α

2
〈Dh, h〉Σ,

and where v(x, t) := uz+h(x, t)− uz(x, t) is the unique solution of the heat equation

∂tv(x, t)−∆v(x, t) = 0 in Q, v(x, t) = h(x, t) on Σ, v(x, 0) = 0 on Ω.

By applying Green’s second formula for the pair (v, p),
∫ T

0

∫

Ω

[
p(x, t)

(
∂t −∆

)
v(x, t) + v(x, t)

(
∂t +∆

)
p(x, t)

]
dx dt

=

∫

Ω

[
v(x, T )p(x, T )− v(x, 0)p(x, 0)

]
dx

+

∫ T

0

∫

Γ

(
∂

∂nx

p(x, t)v(x, t)−
∂

∂nx

v(x, t)p(x, t)

)
dsx dt

we obtain ∫

Ω

[uz(x, T )− u(x)]v(x, T ) dx+

∫

Γ

∂

∂nx
p(x, t)h(x, t) dsx dt = 0.

Therefore, by using the self–adjointness (2.6) of the hypersingular heat boundary integral
operator D we conclude

J̃(z + h)− J̃(z)

=
α

2
〈Dz, h〉Σ +

α

2
〈κTDκT z, h〉Σ − 〈∂np, h〉Σ +

1

2
‖v(T )‖2L2(Ω) +

α

2
〈Dh, h〉Σ

= 〈αD̃z − ∂np, h〉Σ +O
(
‖h‖2

H
1
2
, 1
4 (Σ)

)
,

where we have used

‖v(T )‖L2(Ω) ≤ c ‖h‖
H

1
2
,1
4 (Σ)

, 〈Dh, h〉Σ ≤ cD2 ‖h‖2
H

1
2
, 1
4 (Σ)

.

This implies that the gradient of J̃(z) satisfies

〈∇J̃(z), h〉Σ = 〈αD̃z − ∂np, h〉Σ ,

from which the assertion follows, see also [4, 7].
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In the following we will use a boundary element approach to solve the optimality system,
i.e. the primal heat equation (2.2), the adjoint heat equation (2.7), and the optimality
condition (2.8).

3 Boundary integral equations

In this section we first recall the boundary integral equations for the heat equation (2.2).
Some mapping properties of the standard boundary integral layer heat operators can be
found in, e.g., [3]. For the adjoint heat equation (2.7), instead of using the volume potential
of the state u, we introduce some boundary potentials with a regular kernel.

3.1 The primal heat equation

Let us first consider the primal heat equation (2.2), where the solution is given by the
representation formula for (x̃, t) ∈ Q,

u(x̃, t) =

∫ t

0

∫

Γ

E(x̃− y, t− τ)
∂

∂ny

u(y, τ) dsy dτ

−

∫ t

0

∫

Γ

∂

∂ny
E(x̃− y, t− τ)z(y, τ) dsy dτ +

∫

Ω

E(x̃− y, t)u0(y) dy,

where E(x, t) is the fundamental solution of the heat equation as given in (2.4). By taking
the limit Ω ∋ x̃ → x ∈ Γ, we obtain the first kind boundary integral equation to find
ω(x, t) := ∂nu(x, t) such that

(V ω)(x, t) = (
1

2
I +K)z(x, t)− (M0u0)(x, t) for (x, t) ∈ Σ. (3.1)

Here,

(V ω)(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)ω(y, τ) dsy dτ for (x, t) ∈ Σ

is the single layer heat boundary integral operator V : H− 1

2
,− 1

4 (Σ) → H
1

2
, 1
4 (Σ), and

(Kz)(x, t) =

∫ t

0

∫

Γ

∂

∂ny
E(x− y, t− τ)z(y, τ) dsy dτ for (x, t) ∈ Σ

is the double layer heat boundary integral operator K : H
1

2
, 1
4 (Σ) → H

1

2
, 1
4 (Σ), see [3].

Moreover,

(M0u0)(x, t) =

∫

Ω

E(x− y, t)u0(y) dy for (x, t) ∈ Σ

is the related Newton potential. Since the single layer heat boundary integral operator V
is H− 1

2
,− 1

4 (Σ)-elliptic, i.e.,

〈V ω, ω〉Σ ≥ cV1 ‖ω‖
2

H−1
2
,− 1

4 (Σ)
for all ω ∈ H− 1

2
,− 1

4 (Σ),
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the boundary integral equation (3.1) is solvable, when a Dirichlet datum z is given, and
we obtain

ω = V −1(
1

2
I +K)z − V −1M0u0. (3.2)

3.2 The adjoint heat equation

Next we consider the adjoint heat equation (2.7). Since the time reversal of the adjoint
state variable, κTp, is a solution of the heat equation, i.e.,

∂t(κTp)(x, t)−∆(κTp)(x, t) = 0 for (x, t) ∈ Q,

κTp(x, t) = 0 for (x, t) ∈ Σ,
κT p(x, 0) = u(x, T )− u(x) for x ∈ Ω,

the representation formula for (x̃, t) ∈ Q gives

κTp(x̃, t) =

∫ t

0

∫

Γ

E(x̃− y, t− τ)
∂

∂ny

κTp(y, τ) dsy dτ +

∫

Ω

E(x̃− y, t)κTp(y, 0) dy, (3.3)

and therefore the first kind boundary integral equation

(V (κT q))(x, t) = (M0u)(x, t)− (M0u(·, T ))(x, t) for (x, t) ∈ Σ (3.4)

to determine the unknown Neumann datum q(x, t) = ∂np(x, t) for (x, t) ∈ Σ follows.
In (3.4), the unknown state u(·, T ) at the final time T appears in the Newton potential.

Hence, in what follows we will modify the representation formula (3.3). The crucial idea
is to use an auxiliary function

G(x, t, τ) =

(
t

T + t− τ

)d/2

e
T−τ

T+t−τ

|x|2

4t for x ∈ Ω; t, τ ∈ (0, T ), (3.5)

which satisfies

E(x, t)G(x, t, τ) = E(x, T + t− τ), lim
τ→T−

G(x̃− y, t, τ) = 1 for all t ∈ (0, T ).

For y ∈ Ω we then have

u(y, T ) = u(y, T )G(x̃− y, t, T )− u(y, 0)G(x̃− y, t, 0) + u0(y)G(x̃− y, t, 0)

=

∫ T

0

∂τ

[
u(y, τ)G(x̃− y, t, τ)

]
dτ + u0(y)G(x̃− y, t, 0)

=

∫ T

0

∂τG(x̃− y, t, τ)u(y, τ) dτ +

∫ T

0

G(x̃− y, t, τ)∂τu(y, τ) dτ + u0(y)G(x̃− y, t, 0).
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Hence we can write the Newton potential in the representation formula (3.3) as

(M0u(·, T ))(x̃, t) =

∫

Ω

E(x̃− y, t)u(y, T ) dy

=

∫ T

0

∫

Ω

E(x̃− y, t)∂τG(x̃− y, t, τ)u(y, τ) dy dτ

+

∫ T

0

∫

Ω

E(x̃− y, t)G(x̃− y, t, τ)∆yu(y, τ) dy dτ

+

∫

Ω

E(x̃− y, t)G(x̃− y, t, 0)u0(y) dy.

It is easy to check that

∆y[E(x̃− y, t)G(x̃− y, t, τ)] = ∆yE(x̃− y, T + t− τ) = −E(x̃− y, t)∂τG(x̃− y, t, τ),

and by definition, we have

E(x̃− y, t)G(x̃− y, t, τ) = E(x̃− y, T + t− τ).

Together with Green’s second formula we finally obtain

(M0u(·, T ))(x̃, t) =

∫ T

0

∫

Ω

E(x̃− y, T + t− τ)∆yu(y, τ) dy dτ

−

∫ T

0

∫

Ω

u(y, τ)∆yE(x̃− y, T + t− τ) dy dτ +

∫

Ω

E(x̃− y, T + t)u0(y) dy

=

∫ T

0

∫

Γ

E(x̃− y, T + t− τ)
∂

∂ny

u(y, τ) dsy dτ

−

∫

Γ

u(y, τ)
∂

∂ny

E(x̃− y, T + t− τ) dsy dτ +

∫

Ω

E(x̃− y, T + t)u0(y) dy,

and this gives a modified representation formula for the adjoint variable for (x̃, t) ∈ Q,

κTp(x̃, t) =

∫ t

0

∫

Γ

E(x̃− y, t− τ)
∂

∂ny

κTp(y, τ) dsy dτ −

∫

Ω

E(x̃− y, t)u(y) dy (3.6)

+

∫ T

0

∫

Γ

[
E(x̃− y, T + t− τ)

∂

∂ny

u(y, τ)− u(y, τ)
∂

∂ny

E(x̃− y, T + t− τ)

]
dsy dτ

+

∫

Ω

E(x̃− y, T + t)u0(y) dy.

By taking the limit Ω ∋ x̃→ x ∈ Γ we obtain a boundary integral equation for (x, t) ∈ Σ,

0 = (V (κT q))(x, t) + (V1ω)(x, t)− (K1z)(x, t)− (M̃0u)(x, t) + (M10u0)(x, t), (3.7)
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where

(V1ω)(x, t) =

∫ T

0

∫

Γ

E(x− y, T + t− τ)ω(y, τ) dsy dτ,

(K1z)(x, t) =

∫ T

0

∫

Γ

∂

∂ny

E(x− y, T + t− τ)z(y, τ) dsy dτ

are the bi–single and the bi–double layer heat boundary integral operators, respectively,
defined for (x, t) ∈ Σ. In addition to

(M̃0u)(x) =

∫

Ω

E(x− y, t)u(y) dy for (x, t) ∈ Σ

we introduce the volume potential

(M10u0)(x, t) =

∫

Ω

E(x− y, T + t)u0(y)dy for (x, t) ∈ Σ.

When inserting (3.2) into the boundary integral equation (3.7), this gives

V (κT q) = K1z − V1V
−1(

1

2
I +K)z + V1V

−1M0u0 + M̃0u−M10u0,

and hence we conclude

κT q = V −1K1z − V −1V1V
−1(

1

2
I +K)z + V −1V1V

−1M0u0 + V −1M0u− V −1M10u0. (3.8)

Now the optimality condition (2.8) can be rewritten as a variational inequality to find
z ∈ Uad, such that

〈Tαz − g, w − z〉Σ ≥ 0 for all w ∈ Uad, (3.9)

where

Tα := αD̃ − κTV
−1K1 + κTV

−1V1V
−1(

1

2
I +K) (3.10)

and
g := κTV

−1M0u+ κT
(
V −1V1V

−1M0 − V −1M10

)
u0. (3.11)

3.3 Mapping properties

To investigate the properties of the composed boundary integral operator Tα as defined in
(3.10), let us summarize some properties of the bi–layer heat boundary integral operators
V1 andK1 which are similar to the properties of the Bi–Laplace boundary integral operators
as considered in [10, 12].
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Lemma 3.1 For ω ∈ H− 1

2
,− 1

4 (Σ) we have

〈(
1

2
I +K ′)ω, κTV1ω〉Σ − 〈κTK

′
1ω, V ω〉Σ = ‖(Ṽ ω)(·, T )‖2L2(Ω) (3.12)

with the single layer heat potential

(Ṽ ω)(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)ω(y, τ) dsy dτ for (x, t) ∈ Q,

and with the adjoint double layer heat potentials

(K ′ω)(x, t) =

∫ t

0

∫

Γ

∂

∂nx
E(x− y, t− τ)ω(y, τ) dsy dτ for (x, t) ∈ Σ,

(K ′
1ω)(x, t) =

∫ T

0

∫

Γ

∂

∂nx

E(x− y, T + t− τ)ω(y, τ) dsy dτ for (x, t) ∈ Σ,

which satisfy

〈κTω,Kz〉Σ = 〈κT z,K
′ω〉Σ, 〈κTω,K1z〉Σ = 〈κT z,K

′
1ω〉Σ. (3.13)

Proof. Consider the following functions for (x, t) ∈ Q

u(x, t) = (Ṽ ω)(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)ω(y, τ) dsy dτ,

v(x, t) =

∫ T

0

∫

Γ

E(x− y, 2T − t− τ)ω(y, τ) dsy dτ

which are solutions of the heat equation and of the adjoint heat equation, respectively,

∂tu(x, t)−∆u(x, t) = 0, −∂tv(x, t)−∆v(x, t) = 0 for (x, t) ∈ Q.

Moreover, we have
u(x, T ) = v(x, T ), u(x, 0) = 0.

The application of the standard interior Dirichlet and Neumann trace operators γ0 and γ1
gives

γ0u(x, t) = (V ω)(x, t), γ1u(x, t) = (
1

2
I +K ′)ω(x, t),

γ0v(x, t) = κT (V1ω)(x, t), γ1v(x, t) = κT (K
′
1ω)(x, t).

Now the assertion follows from Green’s second formula, i.e.
∫ T

0

∫

Ω

[
v(x, t)

(
∂t −∆

)
u(x, t) + u(x, t)

(
∂t +∆

)
v(x, t)

]
dx dt

=

∫ T

0

∫

Γ

[
γ1v(x, t)γ0u(x, t)− γ1u(x, t)γ0v(x, t)

]
dsx dt

+

∫

Ω

[u(x, T )v(x, T )− u(x, 0)v(x, 0)] dx.

As in the case of the Bi–Laplace operator, see [10, 12], we can state the following properties.
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Lemma 3.2 For the layer and bi–layer heat boundary integral operators, there hold the
relations

KV = V K ′, DK = K ′D, V D =
1

4
I −K2, DV =

1

4
I −K ′2, (3.14)

V −1(
1

2
I +K) = D + (

1

2
I +K ′)V −1(

1

2
I +K), (3.15)

and

V K ′
1 + V1K

′ = K1V +KV1, (3.16)

DK1 −D1K = K ′
1D −K ′D1, (3.17)

V1D − V D1 +KK1 +K1K = 0, (3.18)

DV1 −D1V +K ′K ′
1 +K ′

1K
′ = 0. (3.19)

Note that D1 is the normal derivative of the bi–double layer heat potential, i.e.

(D1z)(x, t) =
∂

∂nx

∫ T

0

∫

Γ

∂

∂ny

E(x− y, T + t− τ)z(y, τ) dsy dτ, (x, t) ∈ Σ. (3.20)

Proof. The relations of (3.14) for the layer heat boundary integral operators are well
known, see [3]. The relation (3.15) is an alternative representation of the so–called Dirichlet
to Neumann operator, see [13] for similar properties of the Laplace boundary integral
operators. Indeed, by (3.14) we have

D + (
1

2
I +K ′)V −1(

1

2
I +K) = V −1(

1

4
I −K2) + (

1

2
I +K ′)V −1(

1

2
I +K)

= V −1(
1

2
I −K)(

1

2
I +K) + (

1

2
I +K ′)V −1(

1

2
I +K)

= (
1

2
V −1 −K ′V −1)(

1

2
I +K) + (

1

2
I +K ′)V −1(

1

2
I +K)

= V −1(
1

2
I +K).

To establish the relations (3.16)–(3.19), let ω ∈ H− 1

2
,− 1

4 (Σ), ϕ ∈ H
1

2
, 1
4 (Σ) be arbitrary. We

then define, for (x, t) ∈ Q,

u(x, t) =

∫ T

0

∫

Γ

E(x− y, T + t− τ)ω(y, τ) dsy dτ

+

∫ T

0

∫

Γ

∂

∂ny

E(x− y, T + t− τ)ϕ(y, τ) dsy dτ,

v(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)ω(y, τ) dsy dτ +

∫ t

0

∫

Γ

∂

∂ny
E(x− y, t− τ)ϕ(y, τ) dsy dτ,
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which are solutions of the heat equation. Their related boundary and initial conditions are
given by

γ0u = V1ω +K1ϕ, γ1u = K ′
1ω +D1ϕ, u(x, 0) = v(x, T ),

γ0v = V ω + (−
1

2
I +K)ϕ, γ1v = (

1

2
I +K ′)ω −Dϕ, v(x, 0) = 0.

Moreover, by using u(x, 0) = v(x, T ) we can also represent the function u(x, t) as

u(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)γ1u(y, τ) dsy dτ −

∫ t

0

∫

Γ

∂

∂ny

E(x− y, t− τ)γ0u(y, τ) dsy dτ

+

∫

Ω

E(x− y, t)v(y, T ) dy.

Again, we can modify the volume potential as before to obtain the representation formula

u(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)γ1u(y, τ) dsy dτ −

∫ t

0

∫

Γ

∂

∂ny

E(x− y, t− τ)γ0u(y, τ) dsy dτ

+

∫ T

0

∫

Γ

E(x− y, T + t− τ)γ1v(y, τ) dsy dτ −

∫ T

0

∫

Γ

∂

∂ny

E(x− y, T + t− τ)γ0v(y, τ) dsy dτ.

Hence, by taking the Dirichlet and Neumann traces we conclude

(
γ0u

γ1u

)
=

( 1
2
I −K V −K1 V1

D 1
2
I +K ′ −D1 K ′

1

)



γ0u

γ1u

γ0v

γ1v


 ,

and by inserting the traces of u and v we obtain

V1ω +K1ϕ = (
1

2
I −K)[V1ω +K1ϕ] + V [K ′

1ω +D1ϕ]

−K1[V ω + (−
1

2
I +K)ϕ] + V1[(

1

2
I +K ′)ω −Dϕ],

and

K ′
1ω +D1ϕ = D[V1ω +K1ϕ] + (

1

2
I +K ′)[K ′

1ω +D1ϕ]

−D1[V ω + (−
1

2
I +K)ϕ] +K ′

1[(
1

2
I +K ′)ω −Dϕ],

which hold for all ω ∈ H− 1

2
,− 1

4 (Σ), ϕ ∈ H
1

2
, 1
4 (Σ), and which imply

V1 = (
1

2
I −K)V1 + V K ′

1 −K1V + V1(
1

2
I +K ′),

K1 = (
1

2
I −K)K1 + V D1 +K1(

1

2
I −K)− V1D,

K ′
1 = DV1 + (

1

2
I +K ′)K ′

1 −D1V +K ′
1(
1

2
I +K ′),

D1 = DK1 + (
1

2
I +K ′)D1 +D1(

1

2
I −K)−K ′

1D.
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Now the assertion follows.

Note that the boundary integral operators V , D, V1, and D1 are self–adjoint with respect to
the time–twisted duality pairing, see (2.6) for D, and hence the operator D̃ is self–adjoint

with respect to the inner product 〈·, ·〉Σ, i.e., for all ω, θ ∈ H− 1

2
,− 1

4 (Σ), ϕ,w ∈ H
1

2
, 1
4 (Σ) we

have

〈V ω, κTθ〉Σ = 〈V θ, κTω〉Σ, 〈V1ω, κTθ〉Σ = 〈V1θ, κTω〉Σ, (3.21)

〈D1ϕ, κTw〉Σ = 〈D1w, κTϕ〉Σ, 〈D̃ϕ, w〉Σ = 〈D̃w, ϕ〉Σ. (3.22)

Lemma 3.3 The operator

A :=

(
V1 −K1

−K ′
1 D1

)
,

satisfies

〈A

(
ω

ϕ

)
, κT

(
ω

ϕ

)
〉Σ = 〈V1ω, κTω〉Σ − 〈K1ϕ, κTω〉Σ − 〈K ′

1ω, κTϕ〉Σ + 〈D1ϕ, κTϕ〉Σ ≥ 0

for all ω ∈ H− 1

2
,− 1

4 (Σ), ϕ ∈ H
1

2
, 1
4 (Σ).

Proof. For ω ∈ H− 1

2
,− 1

4 (Σ) and ϕ ∈ H
1

2
, 1
4 (Σ) we define, for (x, t) ∈ R

d\Γ× (0, T ),

u(x, t) =

∫ T

0

∫

Γ

E(x− y, T + t− τ)ω(y, τ) dsy dτ −

∫ T

0

∫

Γ

∂

∂ny

E(x− y, T + t− τ)ϕ(y, τ) dsy dτ,

v(x, t) =

∫ t

0

∫

Γ

E(x− y, t− τ)ω(y, τ) dsy dτ −

∫ t

0

∫

Γ

∂

∂ny
E(x− y, t− τ)ϕ(y, τ) dsy dτ,

which are solutions of the heat equation in both the interior and exterior domains. The
related boundary traces of u are given by

γ0u = V1ω −K1ϕ, γ1u = K ′
1ω −D1ϕ,

while v satisfies jump relations across Σ,

[γ0v] := γext0 v − γint0 v = −ϕ, [γ1v] := γext1 v − γint1 v = −ω.

Hence we can rewrite the bilinear form of the operator A as

〈A

(
ω

ϕ

)
, κT

(
ω

ϕ

)
〉Σ = 〈

(
γ0u

−γ1u

)
, κT

(
−[γ1v]
−[γ0v]

)
〉Σ

= 〈γ0u, κTγ
int
1 v〉Σ − 〈γ0u, κTγ

ext
1 v〉Σ + 〈γ1u, κTγ

ext
0 v〉Σ − 〈γ1u, κTγ

int
0 v〉Σ

= 〈γint0 u, κTγ
int
1 v〉Σ − 〈γint1 u, κTγ

int
0 v〉Σ + 〈γext1 u, κTγ

ext
0 v〉Σ − 〈γext0 u, κTγ

ext
1 v〉Σ.
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The application of Green’s second formula to the solutions u and v of the heat equation
both in the interior and exterior domains gives

〈γint0 u, κTγ
int
1 v〉Σ − 〈γint1 u, κTγ

int
0 v〉Σ =

∫

Ω

u(x, 0)v(x, T ) dx =

∫

Ω

[u(x, 0)]2 dx,

and

〈γext1 u, κTγ
ext
0 v〉Σ − 〈γext0 u, κTγ

ext
1 v〉Σ

=

∫

Ωc
R

[u(x, 0)]2 dx− 〈γ1v, κTγ0u〉∂BR×I + 〈γ1u, κTγ0v〉∂BR×I ,

where BR := {x ∈ R
d : |x| < R} is a sufficiently large ball containing Ω, and Ωc

R := BR \Ω,
Qc

R := Ωc
R × I. Thus we obtain

〈A

(
ω

ϕ

)
, κT

(
ω

ϕ

)
〉Σ =

∫

Ω∪Ωc
R

[u(x, 0)]2 dx−

∫

∂BR×I

κTu∂rv dsx dt+

∫

∂BR×I

κTv∂ru dsx dt.

We will show that the last two terms tend to zero as R → ∞. To do this, let us consider
the function v first. Let us choose 0 < R0 < R such that Ω ⊂ BR0

. By the representation
formula for the solution v of the heat equation, it follows that outside Qc

R0
, in particular

for |x| > R0, the function v coincides with

v0(x, t) :=

∫ t

0

∫

∂BR0

E(x−y, t−τ)ω0(y, τ) dsy dτ−

∫ t

0

∫

∂BR0

∂

∂ny
E(x−y, t−τ)ϕ0(y, τ) dsy dτ,

where the single and the double layer potentials are now defined for density functions on
ΣR0

:= ∂BR0
× I, i.e. ω0 := ∂rv|ΣR0

, ϕ0 := v|ΣR0
. The densities ω0, ϕ0, as well as the

boundary ΣR0
, are smooth. We can now easily estimate v, and ∂rv on the boundary ΣR

for R > R0, using the behaviour of the fundamental solution E(x, t). From the simple
estimates, for all µ ∈ R,

|E(x, t)| ≤ cµ t
−µ |x|2µ−d, |∇E(x, t)| ≤ cµ t

−µ|x|2µ−d−1

and ∣∣∣∣
∂2

∂xi∂xj
E(x, t)

∣∣∣∣ ≤ cµ t
−µ |x|2µ−d−2, i, j = 1, 2,

we obtain for finite T ,

κTv = O(R−d), ∂rv = O(R−d−1) as |x| = R→ ∞.

Similarly, for (x, t) ∈ ∂BR × I, the kernel E(x− y, T + t− τ), (y, τ) ∈ Σ, is smooth. Then
κTu and ∂ru are bounded as |x| = R → ∞. Hence

−

∫

∂BR×I

κTu∂rv dsx dt+

∫

∂BR×I

κTv∂ru dsx dt = O(R−1) → 0 as |x| = R → ∞.
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Hence we finally conclude

〈A

(
ω

ϕ

)
, κT

(
ω

ϕ

)
〉Σ =

∫

Rd

[u(x, 0)]2 dx ≥ 0.

Corollary 3.4 The boundary integral operators V1 and D1 are positive semi–definite with
respect to the time–twisted duality pairing 〈·, κT ·〉Σ, i.e. we have

〈V1ω, κTω〉Σ ≥ 0 for all ω ∈ H− 1

2
,− 1

4 (Σ), 〈D1ϕ, κTϕ〉Σ ≥ 0 for all ϕ ∈ H
1

2
, 1
4 (Σ).

To close this section, let us recall the mapping properties of the Newton potential M0, see
[9, Lemma 7.10].

Lemma 3.5 Let Ω ⊂ R
d, d = 2, 3 be bounded. Then, for any f ∈ L2(Ω) here holds

‖M̃0f‖H1, 1
2 (Q)

≤ C(Ω) ‖f‖L2(Ω).

Note that, since E(x, T + t) ∈ C∞(Rd × R+) for T > 0, the operator M10 is continuous on
the considered Sobolev spaces.

We are now in a position to prove the properties of the boundary integral operator Tα.

Theorem 3.6 The operator Tα : H
1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ) as defined in (3.10),

Tα = αD̃ − κTV
−1K1 + κTV

−1V1V
−1(

1

2
I +K)

is bounded, self–adjoint with respect to the inner product 〈·, ·〉Σ and H
1

2
, 1
4 (Σ)–elliptic, i.e.

there exists a constant cTα1 > 0 such that

〈Tαz, z〉Σ ≥ cTα1 ‖z‖2
H

1
2
, 1
4 (Σ)

for all z ∈ H
1

2
, 1
4 (Σ).

Proof. The proof is similar to the proof of Theorem 4.4 in [10], hence we skip the details.
Note that, for the mapping properties of the layer heat potentials, see [3]. In particular,
we have

V −1 : H
1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ), K : H
1

2
, 1
4 (Σ) → H

1

2
, 1
4 (Σ), D̃ : H

1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ).

Since the kernels of the bi–layer heat potentials are regular, we can also derive

V1 : H
− 1

2
,− 1

4 (Σ) → H
1

2
, 1
4 (Σ), K1 : H

1

2
, 1
4 (Σ) → H

1

2
, 1
4 (Σ).

Hence we conclude the unique solvability of the variational inequality (3.9).
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4 Symmetric boundary element approximations

In this section, we investigate a symmetric boundary integral formulation by using also
a second boundary integral equation for the solution of the adjoint heat boundary value
problem. We ensure unique solvability and we derive a priori error estimates for a Galerkin
boundary element approximation.

In particular, when computing the normal derivative of the representation formula (3.6)
of the adjoint variable p, this gives for all (x, t) ∈ Σ

κT q(x, t) = (
1

2
I +K ′)κT q(x, t) + (K ′

1ω)(x, t)− (D1z)(x, t)− (M1u)(x, t) + (M11u0)(x, t),

(4.1)
where, in addition, we introduce the Newton potentials for (x, t) ∈ Σ

(M1u)(x, t) =
∂

∂nx

∫

Ω

E(x− y, t)u(y) dy, (M11u0)(x, t) =
∂

∂nx

∫

Ω

E(x− y, T + t)u0(y) dy.

By substituting (3.2) and (3.8) into the right hand side of (4.1) we obtain the alternative
representation

κT q = (
1

2
I +K ′)V −1K1z − (

1

2
I +K ′)V −1V1V

−1(
1

2
I +K)z + (

1

2
I +K ′)V −1V1V

−1M0u0

+(
1

2
I +K ′)V −1M0u− (

1

2
I +K ′)V −1M10u0 +K ′

1V
−1(

1

2
I +K)z −K ′

1V
−1M0u0

−D1z −M1u+M11u0.

Hence we have to solve the variational inequality to find the control z ∈ Uad such that

〈Tαz − g, w − z〉Σ ≥ 0 for all w ∈ Uad, (4.2)

where

Tα = αD̃ + κTD1 − κTK
′
1V

−1(
1

2
I +K)− κT (

1

2
I +K ′)V −1K1 (4.3)

+κT (
1

2
I +K ′)V −1V1V

−1(
1

2
I +K)

is an alternative representation of Tα as defined in (3.10), and

κTg = (
1

2
I +K ′)V −1M0u−M1u+ (

1

2
I +K ′)V −1V1V

−1M0u0 (4.4)

−(
1

2
I +K ′)V −1M10u0 −K ′

1V
−1M0u0 +M11u0

is the related right hand side.

Theorem 4.1 The operator Tα as given in (4.3) coincides with the operator as defined in
(3.10). In particular, Tα is bounded, self–adjoint with respect to the inner product 〈·, ·〉Σ,

and H
1

2
, 1
4 (Σ)–elliptic, i.e., there holds, for some cTα1 > 0,

〈Tαz, z〉Σ ≥ cTα1 ‖z‖2
H

1
2
, 1
4 (Σ)

for all z ∈ H
1

2
, 1
4 (Σ).
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Proof. The self–adjointness of Tα is obvious from the symmetric representation (4.3) and
(3.13), (3.21), (3.22). In particular, the operators Tα in the symmetric representation (4.3)
and in the non–symmetric representation (3.10) coincide. Indeed, by using (3.14) and
(3.16) we have

Tα = αD̃ + κTD1 − κT

(
K ′

1 − (
1

2
I +K ′)V −1V1

)
V −1(

1

2
I +K)− κT (

1

2
I +K ′)V −1K1

= αD̃ + κTD1 − κTV
−1
(
V K ′

1 −KV1 −
1

2
V1

)
V −1(

1

2
I +K)− κT (

1

2
I +K ′)V −1K1

= αD̃ + κTD1 − κTV
−1
(
K1V − V1K

′ −
1

2
V1

)
V −1(

1

2
I +K)− κT (

1

2
I +K ′)V −1K1

= αD̃ + κTD1 − κTV
−1K1(

1

2
I +K) + κTV

−1V1(
1

2
I +K ′)V −1(

1

2
I +K)

−κT (
1

2
I +K ′)V −1K1.

By using (3.15), (3.14) and (3.18) we further conclude

Tα = αD̃ + κTD1 − κTV
−1K1(

1

2
I +K) + κTV

−1V1

(
V −1(

1

2
I +K)−D

)

−κT (
1

2
I +K ′)V −1K1

= αD̃ + κTV
−1
(
V D1 −K1(

1

2
I +K) + V1V

−1(
1

2
I +K)− V1D − (

1

2
I +K)K1

)

= αD̃ + κTV
−1
(
V1V

−1(
1

2
I +K)−K1

)

= αD̃ − κTV
−1K1 + κTV

−1V1V
−1(

1

2
I +K)

and we obtain the non–symmetric representation (3.10).
Moreover, the ellipticity estimate can be shown directly by using Lemma 3.3. Indeed,

for z ∈ H
1

2
, 1
4 (Σ) and ω = V −1(1

2
I +K)z ∈ H− 1

2
,− 1

4 (Σ) we have

〈Tαz, z〉Σ = α〈D̃z, z〉Σ + 〈κTD1z, z〉Σ − 〈κTK
′
1ω, z〉Σ

−〈κT (
1

2
I +K ′)V −1K1z, z〉Σ + 〈κT (

1

2
I +K ′)V −1V1ω, z〉Σ

= α〈D̃z, z〉Σ + 〈κTD1z, z〉Σ − 〈K ′
1ω, κTz〉Σ − 〈K1z, κTω〉Σ + 〈V1ω, κTω〉Σ

≥ α〈D̃z, z〉Σ ≥ αcD1 ‖z‖2
H

1
2
, 1
4 (Σ)

.

Hence the variational inequality (4.2) admits a unique solution. Moreover, in consequence
of the alternative representation (4.4) of the right hand side g as defined in (3.11), we
obtain the following corollary.
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Corollary 4.2 For any u0, u ∈ L2(Ω) there hold the identities

M1u = (−
1

2
I +K ′)V −1M0u, (4.5)

M11u0 = K ′
1V

−1M0u0 + (
1

2
I −K ′)V −1V1V

−1M0u0 − (
1

2
I −K ′)V −1M10u0. (4.6)

4.1 Galerkin boundary element approximations

In what follows, we study the numerical solution of the variational inequality (4.2) by a
Galerkin boundary element method. The ellipticity of the Schur complement boundary
integral operator Tα will imply the quasi–optimality of Galerkin approximations. Let us
first introduce some finite dimensional trial spaces.

For the approximating subspaces of H− 1

2
,− 1

4 (Σ) and H
1

2
, 1
4 (Σ) it is customary to use

tensor products of spaces of functions of the space variables and of spaces of functions of
the time variable. We introduce a standard class of tensor product spaces

Q
dx,dt
h (Σ) = Sdx

hx
(Γ)⊗ T dt

ht

which are based on polynomials of degree dt in time and polynomials of degree dx in space,
see [3, 9]. We choose an approximation for the Neumann data ω, q which is piecewise
constant both in space and in time. For continuous functions z1 and z2, we define the
discrete convex set

Uh :=
{
wh ∈ Q

1,0
h (Σ) : z1(xi, tj) ≤ wh(xi, tj) ≤ z2(xi, tj) for all nodes (xi, tj) ∈ Σ

}
,

where Q1,0
h (Σ) is a boundary element space of piecewise linear and continuous basis func-

tions in space and piecewise constant ones in time. Then the Galerkin discretization of the
variational inequality (4.2) is to find zh ∈ Uh such that

〈Tαzh, wh − zh〉Σ ≥ 〈g, wh − zh〉Σ for all wh ∈ Uh. (4.7)

Theorem 4.3 Let z ∈ Uad and zh ∈ Uh be the unique solutions of the variational inequal-
ities (4.2) and (4.7), respectively. Then there holds the error estimate

‖z − zh‖H
1
2
, 1
4 (Σ)

≤ c
(
h
s− 1

2
x + h

1

2
(s− 1

2
)

t

)
‖z‖

Hs, s
2 (Σ)

, (4.8)

when assuming z, z1, z2 ∈ Hs, s
2 (Σ) and Tαz − g ∈ Hs−1, s−1

2 (Σ) for some s ∈ [1
2
, 2].

Proof. The assertion follows from standard a priori error estimates for first kind variational
inequalities, see in particular the discussion in [14].

Since the composed boundary integral operator Tα and the right hand side g as defined in
(4.3), (4.4) do not allow a practical implementation in general, instead of (4.7) we consider
a perturbed variational inequality to find ẑh ∈ Uh such that

〈T̂αẑh, wh − ẑh〉Σ ≥ 〈ĝ, wh − ẑh〉Σ for all wh ∈ Uh. (4.9)
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Theorem 4.4 Let T̂α : H
1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ) be a bounded and Q1,0
h (Σ)–elliptic approx-

imation of Tα satisfying

〈T̂αzh, zh〉Σ ≥ cT̂α1 ‖zh‖
2

H
1
2
, 1
4 (Σ)

for all zh ∈ Q
1,0
h (Σ)

and
‖T̂αz‖H− 1

2
,−1

4 (Σ)
≤ cT̂α2 ‖z‖

H
1
2
, 1
4 (Σ)

for all z ∈ H
1

2
, 1
4 (Σ).

Let ĝ ∈ H− 1

2
,− 1

4 (Σ) be some approximation of g. For the unique solution ẑh ∈ Uh of the
perturbed variational inequality (4.9) there holds the error estimate

‖z−ẑh‖H
1
2
, 1
4 (Σ)

≤ c1‖z−zh‖H
1
2
, 1
4 (Σ)

+c2

(
‖(Tα−T̂α)z‖H− 1

2
,− 1

4 (Σ)
+‖g−ĝ‖

H−1
2
,− 1

4 (Σ)

)
, (4.10)

where zh ∈ Uh is the unique solution of the discrete variational inequality (4.7).

Proof. Since the operator T̂α is bounded and Q
1,0
h (Σ)–elliptic, the discrete variational

inequality (4.9) admits a unique solution. From this we further obtain

cT̂α1 ‖zh − ẑh‖
2

H
1
2
, 1
4 (Σ)

≤ 〈T̂α(zh − ẑh), zh − ẑh〉Σ

≤ 〈T̂αzh, zh − ẑh〉Σ + 〈ĝ, ẑh − zh〉Σ + 〈Tαzh, ẑh − zh〉Σ − 〈g, ẑh − zh〉Σ

= 〈T̂αzh, zh − ẑh〉Σ + 〈ĝ − g, ẑh − zh〉Σ + 〈Tαzh, ẑh − zh〉Σ

≤
(
‖(T̂α − Tα)zh‖H− 1

2
,− 1

4 (Σ)
+ ‖g − ĝ‖

H− 1
2
,− 1

4 (Σ)

)
‖zh − ẑh‖H

1
2
, 1
4 (Σ)

.

By using the triangle inequality and the boundedness of Tα and T̂α we have

‖(T̂α − Tα)zh‖H− 1
2
,− 1

4 (Σ)
≤ ‖(T̂α − Tα)z‖H− 1

2
,− 1

4 (Σ)
+ ‖(Tα − T̂α)(z − zh)‖H− 1

2
,− 1

4 (Σ)

≤ ‖(T̂α − Tα)z‖H− 1
2
,− 1

4 (Σ)
+ (cTα2 + cT̂α2 )‖z − zh‖H

1
2
, 1
4 (Σ)

.

The assertion now follows from the triangle inequality

‖z − ẑh‖H
1
2
, 1
4 (Σ)

≤ ‖z − zh‖H
1
2
, 1
4 (Σ)

+ ‖zh − ẑh‖H
1
2
, 1
4 (Σ)

.

It remains to define the appropriate approximations T̂α, ĝ which are based on the use of
boundary element methods. For z ∈ H

1

2
, 1
4 (Σ), the application of Tαz reads

Tαz = αD̃z + κTD1z − κTK
′
1ωz − κT (

1

2
I +K ′)qz,

where qz, ωz ∈ H− 1

2
,− 1

4 (Σ) are the unique solutions of the boundary integral equations

V ωz = (
1

2
I +K)z, V qz = K1z − V1ωz.
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Let Q0,0
h (Σ) be another boundary element space of piecewise constant basis functions both

in space and in time. Let qz,h ∈ Q
0,0
h (Σ) be the unique solution of the Galerkin variational

problem
〈V qz,h, θh〉Σ = 〈K1z − V1ωz,h, θh〉Σ for all θh ∈ Q

0,0
h (Σ),

where ωz,h ∈ Q
0,0
h (Σ) solves

〈V ωz,h, θh〉Σ = 〈(
1

2
I +K)z, θh〉Σ for all θh ∈ Q

0,0
h (Σ).

We are now in a position to define an approximation T̂α of the operator Tα by

T̂αz = αD̃z + κTD1z − κTK
′
1ωz,h − κT (

1

2
I +K ′)qz,h. (4.11)

Lemma 4.5 The approximate operator T̂α : H
1

2
, 1
4 (Σ) → H− 1

2
,− 1

4 (Σ) as defined in (4.11)
is bounded, i.e.,

‖T̂αz‖H− 1
2
,−1

4 (Σ)
≤ cT̂α2 ‖z‖

H
1
2
, 1
4 (Σ)

for all z ∈ H
1

2
, 1
4 (Σ),

and there holds the error estimate

‖(Tα − T̂α)z‖H− 1
2
,− 1

4 (Σ)
≤ c1 inf

θh∈Q
0,0

h
(Σ)

‖qz − θh‖H− 1
2
,− 1

4 (Σ)
+ c2‖ωz − ωz,h‖H− 1

2
,− 1

4 (Σ)
, (4.12)

where Tα was defined in (4.3).

Proof. The boundedness of the operator T̂α follows from the mapping properties of all
boundary integral operators involved. In particular, the Galerkin boundary element solu-
tions ωz,h, qz,h in (4.11) satisfy

‖ωz,h‖H− 1
2
,− 1

4 (Σ)
≤ c1‖z‖H

1
2
, 1
4 (Σ)

, ‖qz,h‖H− 1
2
,− 1

4 (Σ)
≤ c2‖z‖H

1
2
, 1
4 (Σ)

.

For the error estimate (4.12) let z ∈ H
1

2
, 1
4 (Σ) be arbitrary but fixed. By definition, we

have

Tαz = αD̃z + κTD1z − κTK
′
1ωz − κT (

1

2
I +K ′)qz,

where

V ωz = (
1

2
I +K)z, V qz = K1z − V1ωz.

By using (4.11), we then obtain

Tαz − T̂αz = κTK
′
1(ωz,h − ωz) + κT (

1

2
I +K ′)(qz,h − qz),

where qz,h ∈ Q
0,0
h (Σ) is the unique solution of the Galerkin variational problem

〈V qz,h, θh〉Σ = 〈K1z − V1ωz,h, θh〉Σ for all θh ∈ Q
0,0
h (Σ),
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and ωz,h ∈ Q
0,0
h (Σ) solves

〈V ωz,h, θh〉Σ = 〈(
1

2
I +K)z, θh〉Σ for all θh ∈ Q

0,0
h (Σ).

Moreover we define q̂z,h ∈ Q
0,0
h (Σ) as the unique solution of the Galerkin variational problem

〈V q̂z,h, θh〉Σ = 〈K1z − V1ωz, θh〉Σ for all θh ∈ Q
0,0
h (Σ).

Then the perturbed Galerkin orthogonality

〈V (qz,h − q̂z,h), θh〉Σ = 〈V1(ωz,h − ωz), θh〉Σ for all θh ∈ Q
0,0
h (Σ)

follows. This implies the inequality

‖qz,h − q̂z,h‖H− 1
2
,− 1

4 (Σ)
≤

1

cV1
‖V1(ωz,h − ωz)‖H

1
2
,1
4 (Σ)

≤
cV1

2

cV1
‖ωz,h − ωz‖H−1

2
,− 1

4 (Σ)
.

Therefore, by the boundedness of the operators K ′, K ′
1 : H

− 1

2
,− 1

4 (Σ) → H− 1

2
,− 1

4 (Σ) and by
the triangle inequality we conclude

‖(Tα − T̂α)z‖H− 1
2
,− 1

4 (Σ)
≤ c

K ′
1

2 ‖ωz,h − ωz‖H− 1
2
,− 1

4 (Σ)
+ cK

′

2 ‖qz,h − qz‖H−1
2
,− 1

4 (Σ)

≤ c
K ′

1

2 ‖ωz,h − ωz‖H− 1
2
,−1

4 (Σ)
+ cK

′

2 ‖qz,h − q̂z,h‖H− 1
2
,− 1

4 (Σ)
+ cK

′

2 ‖q̂z,h − qz‖H− 1
2
,−1

4 (Σ)
.

The assertion now follows by applying Cea’s lemma.

By using the approximation property of the trial space Q0,0
h (Σ), we conclude an error

estimate from (4.12) when assuming some regularity of qz and ωz, respectively.

Corollary 4.6 Assume qz, ωz ∈ Hs, s
2 (Σ) for some s ∈ [0, 1]. Then there holds the error

estimate

‖(Tα − T̂α)z‖H− 1
2
,− 1

4 (Σ)
≤ c

(
h

1

2
x + h

1

4

t

)(
hsx + h

s
2

t

)(
‖qz‖Hs, s

2 (Σ)
+ ‖ωz‖Hs, s

2 (Σ)

)
. (4.13)

Similarly, the right hand side in (4.4) can be rewritten as

g = κT (
1

2
I +K ′)qu,u0

+ κTK
′
1ωu0

− κTM1u+ κTM11u0,

where qu,u0
∈ H− 1

2
,− 1

4 (Σ) is the unique solution of the boundary integral equation

(V qu,u0
)(x, t) = (M0u)(x, t)− (M10u0)(x, t)− (V1ωu0

)(x, t) for (x, t) ∈ Σ,

and ωu0
∈ H− 1

2
,− 1

4 (Σ) solves

(V ωu0
)(x, t) = −(M0u0)(x, t) for (x, t) ∈ Σ.
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Hence we define approximate Galerkin solutions q̃h, ω̃h ∈ Q
0,0
h (Σ) of qu,u0

and ωu0
, and then

we can introduce the approximation

ĝ = κT (
1

2
I +K ′)q̃h + κTK

′
1ω̃h − κTM1u+ κTM11u0 (4.14)

and we obtain the error estimate

‖g − ĝ‖
H−1

2
,− 1

4 (Σ)
≤ c

(
h

1

2
x + h

1

4

t

)(
hsx + h

s
2

t

)(
‖qu,u0

‖
Hs, s

2 (Σ)
+ ‖ωu0

‖
Hs, s

2 (Σ)

)
, (4.15)

when assuming qu,u0
, ωu0

∈ Hs, s
2 (Σ) for some s ∈ [0, 1].

4.2 Approximate variational inequality

By using the approximations (4.11) and (4.14), the perturbed variational inequality (4.9)
reads to find ẑh ∈ Uh such that

〈αD̃ẑh + κTD1ẑh − κTK
′
1ωẑh,h − κT (

1

2
I +K ′)qẑh,h, wh − ẑh〉Σ

≥ 〈κT (
1

2
I +K ′)q̃h + κTK

′
1ω̃h − κTM1u+ κTM11u0, wh − ẑh〉Σ for all wh ∈ Uh

which can be written as

〈αD̃ẑh + κTD1ẑh − κTK
′
1ωh − κT (

1

2
I +K ′)qh, wh − ẑh〉Σ (4.16)

≥ 〈κTM11u0 − κTM1u, wh − ẑh〉Σ

for all wh ∈ Uh, where we introduce qh := qẑh,h + q̃h ∈ Q
0,0
h (Σ) which is the unique solution

of the Galerkin variational problem

〈V qh, θh〉Σ = 〈K1ẑh − V1ωh, θh〉Σ + 〈M0u−M10u0, θh〉Σ for all θh ∈ Q
0,0
h (Σ), (4.17)

and ωh := ωẑh,h + ω̃h ∈ Q
0,0
h (Σ) which solves

〈V ωh, θh〉Σ = 〈(
1

2
I +K)ẑh −M0u0, θh〉Σ for all θh ∈ Q

0,0
h (Σ), (4.18)

see the corresponding boundary integral equations (3.7), (3.1).
Let

ωh(x, t) =
N−1∑

k=0

N0−1∑

ℓ=0

ωℓkϕ
0
ℓ(x)ψ

0
k(t), qh(x, t) =

N−1∑

k=0

N0−1∑

ℓ=0

qℓkϕ
0
ℓ(x)ψ

0
k(t),

and

ẑh(x, t) =

N−1∑

k=0

N1−1∑

n=0

znkϕ
1
n(x)ψ

0
k(t), (x, t) ∈ Σ,
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where Ni denotes the dimension of Si
hx
(Γ), i = 0, 1 and N is the number of time steps.

Substituting these expansions into (4.17) with the test functions θh(x, t) = ϕ0
i (x)κTψ

0
j (t)

for i = 0, 1, . . . , N0 − 1; j = 0, 1, . . . , N − 1, we get

N−1∑

k=0

N0−1∑

ℓ=0

(
ωℓk〈V1[ϕ

0
ℓ(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ + qℓk〈V [ϕ0

ℓ(x)ψ
0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ

)

−
N−1∑

k=0

N1−1∑

n=0

znk〈K1[ϕ
1
n(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ = 〈M0u−M10u0, ϕ

0
i (x)κTψ

0
j (t)〉Σ

for all i = 0, 1, . . . , N0 − 1; j = 0, 1, . . . , N − 1.
Since the last equation is indexed by four integers, it requires some ordering or parti-

tioning of the unknowns. For 0 ≤ k ≤ N − 1 we define vectors ωk, qk ∈ R
N0 and zk ∈ R

N1

by

ωk[ℓ] = ωℓk, qk[ℓ] = qℓk, zk[n] = znk for ℓ = 0, 1, . . . , N0 − 1;n = 0, 1, . . . , N1 − 1.

Similarly, f1

j
denote vectors of length N0 whose components are given by

f 1
j [i] = 〈M0u−M10u0, ϕ

0
i (x)κTψ

0
j (t)〉Σ, for i = 0, 1, . . . , N0 − 1; j = 0, 1, . . . , N − 1.

Finally, we define matrices V 1
jk, Vjk ∈ R

N0×N0 and K1
jk ∈ R

N0×N1 for 0 ≤ k, j ≤ N − 1 by

V 1
jk[i][ℓ] = 〈V1[ϕ

0
ℓ(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ,

Vjk[i][ℓ] = 〈V [ϕ0
ℓ(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ,

K1
jk[i][n] = 〈K1[ϕ

1
n(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ,

for i, ℓ = 0, 1, . . . , N0 − 1; n = 0, 1, . . . , N1 − 1.
With these notations, the system (4.17) can be written in the form

N−1∑

k=0

(
V 1
jkωk + Vjkqk −K1

jkzk

)
= f1

j
, for j = 0, 1, . . . , N − 1. (4.19)

In the same way, the system (4.18) reads

N−1∑

k=0

Vjkωk −
N−1∑

k=0

(
1

2
Mjk +Kjk

)
zk = f 2

j
, for j = 0, 1, . . . , N − 1, (4.20)

where the matrices Mjk, Kjk ∈ R
N0×N1 are defined by

Mjk[i][n] = 〈ϕ1
n(x)ψ

0
k(t), ϕ

0
i (x)κTψ

0
j (t)〉Σ,

Kjk[i][n] = 〈K[ϕ1
n(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ
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and
f 2
j [i] = −〈M0u0, ϕ

0
i (x)κTψ

0
j (t)〉Σ.

Let us rewrite the linear systems (4.19) and (4.20) as follows. For the N2 matrices Ajk,
j, k = 0, 1, . . . , N − 1, which correspond to one of the layer heat potentials A, i.e.,

Ajk[i][ℓ] = 〈A[ϕ0
ℓ(x)ψ

0
k(t)], ϕ

0
i (x)κTψ

0
j (t)〉Σ,

we denote a block matrix Ah by

Ah :=




A00 A01 · · · A0,N−1

A10 A11 · · · A1,N−1
...

...
...

...
AN−1,0 AN−1,1 · · · AN−1,N−1


 .

We define a vector a which is constructed from the N vectors ak by

a :=
(
a⊤0 a⊤1 · · · a⊤N−1

)⊤
.

With these notations, the inner product of two vectors Aha and b can be expressed by the
time–twisted duality, i.e.,

(Aha, b) = 〈Aah, κT bh〉Σ,

where ah, bh are trial functions whose coefficients of the expansions in trial spaces corre-
spond to the vectors a, b. Here the operator A can be one of the layer heat potentials
V,K, V1, . . .. In case of the identity operator, we have a mass matrix Mh, as usual.

We now rewrite the linear systems (4.19) and (4.20) in the forms

V1,hω + Vhq −K1,hz = f 1 (4.21)

and

Vhω − (
1

2
Mh +Kh)z = f 2, (4.22)

respectively.

4.3 Discrete variational inequality

Analogously, we can also reformulate the perturbed variational inequality (4.16) to find
z ∈ R

N1N ↔ ẑh ∈ Uh such that

(αD̃hz +D1,hz −K⊤
1,hω − (

1

2
M⊤

h +K⊤
h )q, w − z) ≥ (f3, w − z) (4.23)

for all w ∈ R
N1N ↔ wh ∈ Uh, where ω, q ∈ R

N0N are the unique solutions of the linear

systems (4.22), (4.21), respectively. Here, in addition, we define the matrices D1
jk, D̃jk ∈
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R
N1×N1 and the vectors f3

j
∈ R

N1 by

D1
jk[m][n] = 〈D1[ϕ

1
n(x)ψ

0
k(t)], ϕ

1
m(x)κTψ

0
j (t)〉Σ,

D̃jk[m][n] =
1

2
〈D[ϕ1

n(x)ψ
0
k(t)], ϕ

1
m(x)ψ

0
j (t)〉Σ +

1

2
〈D[ϕ1

n(x)κTψ
0
k(t)], ϕ

1
m(x)κTψ

0
j (t)〉Σ,

f 3
j [m] = 〈M11u0 −M1u, ϕ

1
m(x)κTψ

0
j (t)〉Σ

for j, k = 0, 1, . . . , N − 1; m,n = 0, 1, . . . , N1 − 1. Note that

(D̃ha, b) = 〈D̃ah, bh〉Σ for all a, b ∈ R
N1N ↔ ah, bh ∈ Q

1,0
h (Σ).

The Galerkin matrix Vh of the single layer heat potential V is symmetric and positive
definite, hence it is invertible, and we can determine ω and q from (4.22) and (4.21). Then
the discrete variational inequality (4.23) is equivalent to

(Tα,hz, w − z) ≥ (g, w − z) for all w ∈ R
N1N ↔ wh ∈ Uh, (4.24)

where

Tα,h = αD̃h +D1,h − (
1

2
M⊤

h +K⊤
h )V

−1
h K1,h −K⊤

1,hV
−1
h (

1

2
Mh +Kh) (4.25)

+(
1

2
M⊤

h +K⊤
h )V

−1
h V1,hV

−1
h (

1

2
Mh +Kh)

defines a symmetric Galerkin boundary element approximation of the self–adjoint operator
Tα and

g = f 3 +K⊤
1,hV

−1
h f 2 + (

1

2
M⊤

h +K⊤
h )V

−1
h (f 1 − V1,hV

−1
h f 2) (4.26)

is the related boundary element approximation of the right hand side g as defined in (4.4).

Lemma 4.7 The symmetric matrix Tα,h as defined in (4.25) is positive definite, i.e.,

(Tα,hz, z) ≥ αcD1 ‖zh‖
2

H
1
2
, 1
4 (Σ)

for all z ∈ R
N1N ↔ zh ∈ Q

1,0
h (Σ).

Proof. While the symmetry of Tα,h is obvious, the positive definiteness follows by using
Lemma 3.3. Indeed, by using the symmetry of Vh and with ω = V −1

h (1
2
Mh+Kh)z, we have

(Tα,hz, z) = α(D̃hz, z) + (D1,hz, z)− 2(K1,hz, ω) + (V1,hω, ω),

= α〈D̃zh, zh〉Σ + 〈D1zh, κT zh〉Σ − 2〈K1zh, κTωh〉Σ + 〈V1ωh, κTωh〉Σ,

≥ α〈D̃zh, zh〉Σ ≥ αcD1 ‖zh‖
2

H
1
2
, 1
4 (Σ)

.

Hence we conclude the unique solvability of the variational inequality (4.24) and (4.9) as
well. Moreover, we can derive an error estimate for the approximate control solution ẑh by
applying Theorem 4.4 and with the error estimates (4.8), (4.13) and (4.15).
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Theorem 4.8 Let z and ẑh be the unique solutions of the variational inequalities (4.2) and
(4.9), respectively. Then there holds the error estimate

‖z − ẑh‖H
1
2
, 1
4 (Σ)

≤ c1

(
h
s+ 1

2
x + h

1

2
(s+ 1

2
)

t

)
‖z‖

Hs+1,
s+1
2 (Σ)

+ c2

(
h

1

2
x + h

1

4

t

)(
hsx + h

s
2

t

)
‖qz‖Hs, s

2 (Σ)

+c3

(
h

1

2
x + h

1

4

t

)(
hsx + h

s
2

t

)(
‖ωz‖Hs, s

2 (Σ)
+ ‖qu,u0

‖
Hs, s

2 (Σ)
+ ‖ωu0

‖
Hs, s

2 (Σ)

)

when assuming z ∈ Hs+1, s+1

2 (Σ) and qz, ωz, qu,u0
, ωu0

∈ Hs, s
2 (Σ) for some s ∈ [0, 1].

In particular, if there are constants c1, c2 > 0 such that

c1h
2
x ≤ ht ≤ c2h

2
x,

we obtain the estimate

‖z − ẑh‖H
1
2
, 1
4 (Σ)

≤ c(z, u, u0) h
s+ 1

2
x for z ∈ Hs+1, s+1

2 (Σ), s ∈ [0, 1]. (4.27)

In the case of a non–constrained minimization problem, instead of the discrete variational
inequality (4.24) we have to solve the linear system

Tα,hz = g,

which can be written as



V1,h Vh −K1,h

Vh −(1
2
Mh +Kh)

−K⊤
1,h −(1

2
M⊤

h +K⊤
h ) D1,h + αD̃h






ω

q

z


 =



f 1

f 2

f 3


 . (4.28)

5 Numerical results

As a numerical example we consider the Dirichlet boundary control problem (2.1)–(2.3)
for a circular domain Ω = B0.5(0) ⊂ R

2. For the boundary element discretization we use
a uniform boundary element mesh on several levels L, with N0 = N1 = 2L+2 nodes; and
a uniform decomposition of the interval (0, T ) by N time steps. We use the trial space
Q

1,0
h (Σ) of piecewise linear and continuous basis functions in the space variable x ∈ Γ, and

piecewise constant ones in the time variable t ∈ (0, T ) to approximate the Dirichlet control
z. For the fluxes ω, q, we use the trial space Q0,0

h (Σ) of piecewise constant basis functions
both in space and in time. We set T = 0.5 and

u(x) = (x21 + x22) log(x
2
1 + x22) + 4x1x2, u0(x) = 0, α = 0.1, z1 = −1, z2 = 0.11.

Since the minimizer of (2.1) is not known, we use the boundary element solutions zref, ωref

for N0 = N1 = 512 and N = 512 as reference solutions. In Table 1, we present the errors
for the control z and the estimated order of convergence (eoc). The errors of the flux ω
in the L2(Σ) norm are also given. Since the data are smooth in this case, we expect the

optimal order of convergence 1.5 for the control z in the energy space H
1

2
, 1
4 (Σ) which agrees

with the theoretical results, see (4.27). In addition, in Fig. 1 we present the final optimal
solution u(·, T ) with the given target function u.
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N0, N1 N ‖ẑh − zref‖L2(Σ) eoc ‖ẑh − zref‖
H

1

2
,

1

4 (Σ)
eoc ‖ωh − ωref‖L2(Σ) eoc

32 4 0.154249 - 1.050200 - 0.727606 -
64 16 0.054260 1.507 0.561425 0.903 0.321477 1.178
128 64 0.012887 2.074 0.212840 1.399 0.187099 0.781
256 256 0.003018 2.094 0.071736 1.569 0.064487 1.537

expected 2.0 1.5 1.0

Table 1: Errors and estimated order of convergence.

Figure 1: Final optimal solution (left) and target function (right).
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