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Abstract.  We present a user study assessing spatial transfer in a 3D navigation 

task, with two different motor activities: a minimal (joystick) and an extensive 

motor activity (walking Interface), with rotations of the viewpoint either con-

trolled by the user, or automatically managed by the system. The task consisted 

in learning a virtual path of a 3D model of a real city, with either one of these 

four conditions: Joystick / Treadmill Vs Manual Rotation / Automatic Rotation. 

We assessed spatial knowledge with six spatial restitution tasks. To assess the 

interfaces used, we analyzed also the interaction data acquired during the learn-

ing path. Our results show that the direct control of rotations has different ef-

fects, depending on the motor activity required by the input modality. The qual-

ity of spatial representation increases with the Treadmill when rotations are en-

abled. With the Joystick, controlling the rotations affect spatial representations. 

We discuss our findings in terms of cognitive, sensorimotor processes and hu-

man computer interaction issues. 

Keywords: Interfaces, Navigation, Virtual Reality, Spatial Cognition, Joystick, 

Treadmill, Rotation, Body-based Information, Vestibular Information, Human 

Machine Interaction, Human Factors, User Study, Motor Activity.  
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1 Introduction 

Today, Virtual Reality (VR) enables the simulation of dynamic, three-dimensional, 

multimodal environments. Moreover, this technology allows immerging users in dif-

ferent simulations close to real situations, where users can interact with the virtual 

environment (VE) and have a motor and a cognitive activity. VR also permits the 

access to various data (e.g. completion time and precision), hard to reach in a real 

environment. Thanks to these advantages, VR is well suited to create therapeutic ap-

plications for patients with spatial disabilities diseases. An important question to ex-

plore for such application is to evaluate how spatial information is impacted when 

transferred from virtual to real environments. Several studies already found great 

results with disabled people about the question of spatial transfer [25][26][27]. In this 

work, the authors agree that various factors can enhance this spatial transfer. One 

question not yet resolved concerns the exploration mode used to navigate in a VE 

[22]. Indeed, sometimes authors have shown great spatial acquisition with an active 

exploration mode (i.e., user had a sensorimotor interaction with the VE) compared to 

a passive mode exploration [23] (i.e., user had no interaction with the VE) 

[21][1][2][8], but others did not [22][23][24]. Moreover, these studies were generally 

based on a joystick or a mouse/keyboard interface. Nevertheless, different authors 

demonstrated, that a walking activity allows to optimize the acquisition of spatial 

knowledge [12][13], but only two concerns the spatial transfer [3][19]. Thus, we first 

purpose to assess the impact of two motor activities on spatial transfer with two Input 

Devices: a walking interface (using a Treadmill) and a Joystick. Moreover, the impact 

of rotation movements during a navigational activity, on spatial transfer, is not yet 

clear. In a second step, we therefore investigated the role of Rotation (Automatic-i.e., 

controlled by the computer- Vs Controlled- i.e., managed by the user) with the two 

Input Devices presented above. So, on a spatial transfer task, we used i) a Treadmill 

with Controlled Rotation ii) a Treadmill with Automatic Rotation iii) a Joystick with 

Automatic Rotation iv) a Joystick with Controlled Rotation. We used six tasks to as-

sess spatial knowledge. To our knowledge, this study is the first one describing im-

pact of translational and directional movements according to different motor activities 

in a VE, on spatial transfer. 

1.1  Spatial Cognition (cognitive and sensorimotor processes). 

Spatial cognition refers to cognitive and motor processes requiring to acquire, to 

store and to restitute spatial knowledge. Processes involved in spatial cognition are 

necessary for many daily life situations, such as shopping in supermarkets (e.g., find-

ing a product in a section) and driving, and are often affected by neurological diseases 

(e.g., Alzheimer), brain trauma, etc. For Montello [28], spatial cognition is divided in 

two components: 1) the motor component, composed of all sensorimotor information 

acquired during a displacement, with visual, kinesthesic and vestibular information, 

informing on the position and the orientation of the head/body in an environment; 2) 

the cognitive component corresponding to the processes used to acquire, store and 

restitute spatial knowledge. One of the most known spatial acquisition model is the 



Landmark-Route-Survey model of Siegel and White [9]. For this model, spatial 

knowledge acquisition of new environments consists of three stages. Firstly, spatial 

cognition is based on the acquisition of several landmarks in the environment. Sec-

ondly, the participant links the landmarks and learns the routes between them. At this 

level, s/he is able to build a mental representation of a route from a departure point to 

an arrival point using the various landmarks. These first two levels correspond to 

egocentric-type representations (i.e., the body serves as a reference). Finally, the par-

ticipant develops survey knowledge. S/he builds a topographical representation of the 

environment, including all the associated spatial information (i.e., landmarks and 

routes), making it possible to infer a representation of the entire environment, making 

it possible to contemplate shortcuts. At this final level of knowledge, the representa-

tion is similar to a "plane view" and is also known as "survey-type" knowledge: the 

mental representation of the environment is complete and allocentric (i.e., an external 

point serves as a reference). These three acquisition stages need not follow a strict 

order but may be obtained in a parallel process [29]. Concerning the sensorimotor 

component, body-based information required during a navigational activity can be 

divided in three types of information [14]: 1) the optic flow, consisting of all visual 

input used to detect forms, textures, semantic landmarks, movements of objects, etc. 

always in relation with body position, 2) the vestibular system provides translational 

(acceleration/deceleration of the head and body) as well as rotational information 

(rotation of the head and body), and  3) the kinesthetic information, which informs 

about the perception of our members according to our body. In real environments, 

different authors admitted that vestibular information  is important to the creation of 

egocentric representations (perception of distances, angles or route knowledge) or to 

store a direction linked to an egocentric point of view [11] [12], while allocentric 

representations would be more sensible to visual information. 

1.2 Spatial Cognition, Interfaces and Rotational movements in VR.  

Literature concerning walking activity in VR is not very consistent. However, most 

of the studies agree that the extent of body-based information provided by a treadmill 

locomotion interface (compared to a joystick) was considered largely favorable for 

spatial learning in a VE [11][13][14], due to the improvement in egocentric [11] and 

allocentric spatial representation [14], as well as navigational measurements [19]. 

Recently, Ruddle et al. [14] assessed the role of both translational and rotational ves-

tibular information on survey knowledge, using different locomotion interfaces (trans-

lational displacements with walking or treadmill Vs. no translational displacements 

with joystick), sometimes with the possibility of really turning the head (i.e., rotation-

al vestibular condition or not) during rotational movement. Performances revealed an 

improvement of survey knowledge with a walking activity, but little effect about rota-

tional vestibular information was observed. For Waller et al.[11], the low level of 

body-based information provided by the design of the locomotion interfaces of the 

desktop VEs (i.e., keyboards, mouse or joysticks) do not allow the increase of spatial 

knowledge acquisition. For some authors [16], the manipulation of translational and 

rotational movements with a joystick demands a strong motor and cognitive attention-



al levels, which could interfere on spatial learning acquisition. Even if authors pro-

mote a walking interface to optimize spatial knowledge, it seems it is still possible to 

navigate in a VE with a joystick [1][2], without vestibular information[3]. However, 

in all the studies presented we did not find research, whatever the interfaces used (and 

body-based information provided), where the possibility to perform rotation of the 

user’s viewpoint was disabled and managed automatically by the system. 

1.3 Spatial Cognition and Spatial Transfer from virtual to real environments. 

One important challenge of VR is to detect the factors promoting knowledge ac-

quisition in VR to improve daily life activities in the real life. Different authors al-

ready showed great spatial transfers with “normal”[1][2][3] or patients with disabili-

ties people [27]. Numerous factors like visual fidelity [2], retention delay [1], game 

experience [16] increase this transfer. However, concerning the motor activity of the 

interfaces used, most parts of studies used a passive exploration mode, or a joy-

stick/mouse/keyboard interface (active exploration mode) to navigate in the VE. And 

the results point out sometimes great performances for the active exploration mode, 

[21][1][2][8], and others did not [22][23][24]. Moreover, these interfaces don’t pro-

vide vestibular information, known to improve spatial acquisition.  We found only 

two studies which used a walking interface to study spatial transfer. The first [19] 

revealed a better spatial transfer with a walking interface compared to a joystick, con-

cluding on the importance of vestibular information. The second study [3] assessed 

the impact of the motor activity in a spatial transfer task. They compared a Brain 

Computer Interface (allowing to navigate in a VE with no motor activity), a treadmill 

interface (enabling vestibular information), and a learning path in the real environ-

ment. The results revealed similar performances, whatever the learning conditions, 

indicating that the cognitive processes are more essential than a motor activity. Re-

sults revealed also that a walking activity (and vestibular information) enables spatial 

knowledge transfer similar to the real life. 

2 Method 

VR was assessed as a spatial learning medium using a spatial learning paradigm that 

involved acquiring a path in its virtual replica [1][2][3]. In our experiment, the acqui-

sition path in the VE was assessed according to four conditions: (1) Treadmill with 

Controlled (head) Rotation (optic flow, rotational and translational vestibular infor-

mation); (2) Treadmill with Automatic Rotation (optic flow, translational vestibular 

information and no rotational vestibular information); (3) Joystick with Controlled 

(hand) Rotation (optic flow); (4) Joystick with Automatic Rotation (optic flow). Fol-

lowing VR-based path acquisition, the participants completed six tasks to assessing 

their spatial knowledge and spatial transfer. 



2.1 Setup 

The environment. 

The real environment was a 9km2 area. The VE was a 3D scale model of the real 

environment, with realistic and visual stimuli. The scale of the real environment was 

faithfully reproduced (measurements of houses, streets, etc.) and photos of several 

building facades were applied to geometric surfaces in the VE. Significant local and 

global landmarks (e.g., signposts, signs, and urban furniture) and urban sounds were 

included in the VE (see Figure 1). VE was laboratory-developed using Virtools Dev 

3.5™. Irrespective of the interfaces conditions, the itinerary was presented to partici-

pants on the basis of an egocentric frame of reference, at head height. It was charac-

terized by an irregular closed loop, 780 m in length, with thirteen crossroads and 

eleven directional changes.   

 

 
  

Fig. 1. Screenshots our real (left) and our virtual environment (right). 

Material.   

The material used in the darkened laboratory room was a DELL Precision M6300 

laptop computer (RAM: 3GHz; processor: Intel Core 2 Duo T9500 2,60 Ghz) with an 

Nvidia Quadro FX 1600M graphics card (256Mo), a 2 x 1.88 meter screen, a projec-

tor (Optoma/ThemeScene from Texas Instrument) with rear projection. The partici-

pants were placed two meters from the display screen. 

2.2 Interface modeling.  

The Treadmill Input Device.  

The two Treadmill conditions (with Automatic and Controlled Rotation) included an 

HP COSCOM programmable (speed, declination and acceleration) treadmill with 

serial Cable Ownership coupled to a Software Development Kit and an MS-EZ1 so-

nar telemeter. This interface enabled participants to modify the VE’s visual display in 

real time to match his/her walking speed, with a maximum of 6 km/h. Acceleration 

and deceleration were applied by means of a Sonar MS-EZ1 telemeter that monitored 

the participant’s displacements on the treadmill. The treadmill surface was divided 

into three parts: one for accelerating (the front of the treadmill), one for walking nor-

mally (the middle of the treadmill), and one for decelerating (the back of the tread-



mill). No acceleration or deceleration information was sent to the treadmill when the 

participant was in the walk zone. In contrast, when the participant walked into the 

acceleration or deceleration zone, the sonar detected length changes in the partici-

pant’s position, and instructed the computer to accelerate or decelerate until the par-

ticipant returned to the walk zone. Finally, the participant remaining in the decelera-

tion zone for a prolonged period induced a stop in the environment. In the two 

Treadmill conditions, participants were able to walk, accelerate, decelerate, and stop 

in the VE, thus receiving physical input including optic flow, as well as kinesthetic 

and translational vestibular information. 

For the condition Treadmill with Controlled Rotation, the participant walked on the 

treadmill and was informed that his/her point of view in the VE would be controlled 

by head rotation (providing rotational vestibular information). Head rotation move-

ments were captured in real time by motion capture (12 OPTITRACK video-cameras, 

Motion point™). When a participant turned his/her head, the system updated the visu-

al optic flow at a rate correlated with the head movement rotation angle (the greater 

the rotation angle, the faster the modification in rotational optic flow). Thus, this con-

dition enabled translational and rotational vestibular information. 

The Treadmill condition with Automatic Rotation was the same as the condition 

Controlled Rotation: the participant controlled its translational displacement but, on a 

pre-determined path; directions changes were automatically managed by the system at 

each intersection. The interface did not allow any rotational movement control, ena-

bling only translational vestibular information. 

The Joystick Input Device.  

In both Joystick conditions (with Controlled or Automatic Rotation), displacement 

was controlled by a Saitek ™ X52 Flight System. Forward speed, ranging from 0 to 6 

km/h, was proportional to the pressure on the device, which was also used to control 

translational movement. Consequently, the Joystick conditions differed from the 

Treadmill conditions in providing optic flow, but no vestibular information.  

The Joystick with Controlled Rotation condition added horizontal joystick move-

ments, coupled to changes in rotational optic flow to simulate turning in the VE to 

mimic direction changes during walking. Turning speed was proportional to the mag-

nitude of horizontal joystick movement, similar to natural head movement.  

For the Joystick with Automatic Rotation, participants were informed that rotation-

al movement was not available; turning at intersections would be automatic.  

2.3 Procedure 

 Each participant completed a three-phase procedure: (1) spatial ability tests 

and orientation questionnaire, to assess the participant’s characteristics (see below); 

(2) learning phase: training interface and the route-learning task under one of the four 

conditions; (3) restitution phase, consisting of six spatial knowledge-based tasks.  

 



Spatial ability tests, orientation questionnaire. 

The GZ5 test [4] was used to measure spatial translation ability of participants; the 

Mental Rotation Test (MRT) [5] to measure spatial visualization and mental rotation 

abilities; and the Corsi's block-tapping test [6], was used to assess the visual-spatial 

memory span. Three self-administrated questionnaires including seven questions each 

(for which responses were given on a 7-point scale) were filled in by the participant. 

One questionnaire assessed general navigational abilities and spatial orientation in 

everyday life, a second evaluated the ability to take shortcuts, and the third was dedi-

cated to the ability to use maps.  

Learning phase.  

Interface Training.  

Before VR exposition, each participant participated to a training phase in a differ-

ent environment, to get used to interacting with one of the four interfaces that he/she 

will use. The training phase was finished when the participant was able to use the 

interface in another VE.  

 

Learning path in the VE.  

For the two conditions with Controlled Rotation, participants walked at their own 

speed and managed their directions in the VE. The directions at each intersection 

were indicated verbally by an experimenter situated behind the participant. For the 

two conditions with Automatic Rotation, participants mastered their speed with the 

Joystick or the Treadmill, but were not able to perform rotations; they were automati-

cally managed at each intersection by the computer. Moreover, a path learning soft-

ware was developed to analyze the participant’s position, time, speed, collisions and 

interactions during the learning path. In addition, after VR exposure, the participants 

completed a simplified simulator sickness questionnaire (SSQ) [7] to measure the 

negative side effects of being immersed in graphically-rendered virtual worlds, and a 

questionnaire about the ergonomic of the interface used and the participant’s habits.  

 

Restitution phase.  

Six tasks were performed by each participant, with a counterbalanced order.  

Egocentric photograph classification task: twelve real photographs of intersec-

tions, in a random order, were presented to the participants. Participants were required 

to arrange the photographs in a chronological order along the path they had learned. 

The time limit for this task was ten minutes. The results were scored as follows: one 

point for a photo in the correct position, 0.5 point for each photo in a correct se-

quence, but not correctly placed along the path (e.g., positioning photos 4-5-6 in the 

right order but not placing them correctly in the overall sequence earned 1.5points). 

This paper-pencil task assessed the participants' ability to recall landmarks and route 

knowledge within an egocentric framework ([1][2][3]). 

Egocentric distance estimation task: Each participant was asked to give a verbal 

estimate of the VR walked distance (in meters) and the figure was noted by the exper-

imenter. This task quantified the participants’ knowledge of the distances walked 



between the starting and ending points, which is known to be accurate when partici-

pants have acquired well-developed route knowledge [8]. 

Egocentric directional estimation task: This task was computer-based and consist-

ed of presenting a series of twelve real photographs of intersections, taken from an 

egocentric viewpoint, in random order. Each photograph was displayed at the top of 

the screen, above an 8-point compass. The participant had to select the compass direc-

tion in which they were facing on the learned path when the photograph was taken. 

We assessed the percentage of errors and the angular error was averaged. Directional 

estimates are expected to be accurate when participants have acquired well-developed 

route knowledge [9]. 

Allocentric sketch-mapping task: Participants were required to draw a freehand 

sketch of the visualized route. The time limit for this task was ten minutes. One point 

was scored for each correct change of direction. This paper-pencil task is known to 

measure survey knowledge [1][2][3]. 

Allocentric point starting estimation task: This computer-based task consisted of 

presenting a series of twelve real photographs of intersections, taken from a walker’s 

point of view, in random order. Each photograph was displayed at the top of the 

screen, above a 8-point compass and the participant was instructed to select the com-

pass direction of the starting point of the learned path. We assessed the percentage 

errors and the mean angular errors. These direction estimates are expected to be accu-

rate when participants have memorized a well-developed, map-like representation of 

the environment [10]. This task measures survey knowledge. 

Real wayfinding task: This task consisted of reproducing the learned path in the re-

al environment; this task measures the spatial transfer of participants. During this 

restitution task, position and time data were acquired using a Magellan™ GPS 

CrossOver, and a video was recorded using an AIPTEK™ DV8900 camera mounted 

on a bicycle helmet worn by the participant. Direction errors were calculated and 

expressed in percentages. When a participant made a mistake, s/he was stopped and 

invited to turn in the right direction. This wayfinding task is based on the use of 

landmarks, as well as route and survey knowledge [1][2][3], and may be considered 

as a naturalistic assessment of navigational abilities based. In addition, the path learn-

ing software enabled to analyze the participant’s position and time data in the real 

environment. 

Participants.  

72 volunteer students participated in this experiment (36 men and 36 women). Stu-

dents were randomly divided in one of the four learning conditions: 18 students were 

assigned to the Treadmill with Controlled Rotation condition, 18 to the Treadmill with 

Automatic Rotation condition, 18 in the condition Joystick with Controlled Rotation, 

and 18 in the Joystick with Automatic Rotation condition. All the participants had 

normal or corrected-to- normal vision and were native French speakers, right-handed, 

and had at least an A-Level or equivalent degree. Their ages were ranged from 18 to 

30 years. We controlled video game experience of participants: each learning condi-

tion were composed of half gamers (who played a minimum of three hours by week 

during more than one year), and the other half of non video game players (who never 



played regularly to video games, and who were not old video gamers). The four com-

posed learning conditions were balanced for gender and the video-gamer distribution 

(χ2 procedure p>.05). In addition, there was no significant difference in spatial abili-

ties among the four groups, as assessed with the GZ-5 test, the Mental Rotation Test 

(MRT) and the Corsi's block-tapping test (respectively, p>0.180 p>0.640; p>0.200). 

No differences were found for the orientation questionnaire (p>0.800), neither for 

shortcuts questionnaire (p>0.600), or the map questionnaire (p>0.800).  

3 Results.  

We used a two-way ANOVA analysis [2 (Input Devices: Treadmill Vs Joystick) x 

2 (Rotation: Controlled Vs Automatic)], with between-subject measures for each fac-

tor. Bravais-Pearson test was used to assess correlations.  

3.1 Learning phase. 
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Fig. 2. Learning data according to the Input Devices (Joystick Vs Treadmill) and the Rotation 

(Automatic Vs Controlled). 

For the Speed during learning phase, a significant effect of the Input Devices was 

found [F(1,68)=114.53; p<0.0001; η²=0.63],with higher speed during the learning 

phase with the Joystick compared to the Treadmill. In addition, the factor “Rotation” 

had no significant effect (p>0.900), but the two-way interaction ("Input Devices x 

Rotation") was significant [F(1,68)=13.36; p<0.001; η²=0.16]. With the Treadmill, 

speed learning was faster for with Controlled Rotation compared to the condition with 

Automatic Rotation. With the Joystick, the results are inversed; speed restitution was 

faster in Automatic Rotation condition compared to the Controlled Rotation condition. 

Concerning the total translational movements (i.e, the number of accelera-

tions/decelerations demands) during the learning path, the ANOVA analyses revealed 

a significant difference concerning the Rotation factor [F(1,68)=5.8; p<0.02; 

η²=0.08]. The total number of translational movements was highest in Controlled 

Rotation condition. An interaction “Input Devices x Rotation” was found 

[F(1,68)=12.84; p<0.0001; η²=0.16]. With the Joystick, there were more translational 

movements with Controlled Rotation compared to the condition with Automatic Rota-



tion. With the Treadmill, the results were inversed: we found more translational 

movements with the Automatic Rotation compared to the Controlled Rotation. 

Concerning the number of rotations performed by the participant, they were 

summed only for the two conditions with Controlled Rotation. We used an unpaired 

two-tailed Student's t-test (dof = 34). We found a significant difference (t(9.27); 

p<0.0001; η²=0.72): more rotations were performed with the Joystick.  

For the questionnaire about the ergonomics of the interface used, a question con-

cerns the difficulties to perform rotations. Statistical analyses revealed a Rotation 

effect [F(1,68)=7.60; p<0.01; η²=0.10]. Participants felt logically more difficulties to 

control their rotations in the condition With Automatic Rotation. An interaction “Input 

Devices x Rotation” was likewise found [F(1,68)=4.60; p<0.05; η²=0.06], revealing 

that it is only in the Treadmill with Automatic Rotation condition participants revealed 

rotational difficulties. In the Joystick conditions, the results were similar, whatever the 

possibility or not to perform rotations. 

3.2 Spatial restitution tasks. 

For the Egocentric Photograph classification task, the ANOVA revealed no signifi-

cant effect (Input Devices, p>0.600; Rotation, p>0.700; and “Input Devices x Rota-

tion”, p>0.400). Performances were close in all four VR learning conditions. 

Concerning the Egocentric Distance Estimation Task, the ANOVA revealed a sig-

nificant effect for each factor [Input Devices effect, F(1,68)=4,81; p<0.05; η²=0.07; 

Rotation effect, F(1,68)=12,27; p<0.001; η²=0.15], with the Joystick conditions over-

estimating distances compared to the Treadmill conditions, and the groups with Con-

trolled Rotation overestimating distances compared to Automatic Rotation. The two-

way interaction effect was significant [F(1,68)=4,44; p<0.05; η²=0.06]. The distances 

were only overestimated in the Joystick with Controlled Rotation condition compared 

to the other VR conditions. 

For the Egocentric Directional estimation task, the ANOVA for mean angular er-

ror revealed that the two effects taken separately were not significant (Input Devices 

effect, p>0.800; Rotation effect, p>0.800), but the two-way interaction was significant 

[F(1,68)= 3.99; p<0.05; η²=0.06]. With the Joystick, egocentric estimations were 

more accurate with Automatic Rotation compared to the Controlled Rotation condi-

tion, while for the Treadmill, performances were better in Controlled Rotation com-

pared to the Automatic Rotation condition. It is to note that the results of the Joystick 

with Controlled Rotation and the Treadmill with Automatic Rotation conditions are 

very close. The results for the Joystick with Automatic Rotation and for the Treadmill 

with Controlled Rotation are also very close. 

For the Allocentric Sketch mapping task, the ANOVA did not reveal any signifi-

cant effects for the Input Devices or Rotation factors (p>0.800; p>0.300; two-way 

interaction, p>0.100). The performances did not reveal any differences among the 

four VR learning conditions. 

Concerning the Allocentric starting point estimation task, the only significant Input 

Devices effect [F(1,68)=4,38; p<0.05; η²=0.06] revealed by ANOVA was that the 



Joystick condition resulted in poorer performances than the Treadmill condition. No 

other effects were significant (Rotation, p> 0.200; two-way interaction, p>0.800). 

For the Wayfinding task (transfer task), two data (speed restitution and percentage 

of direction errors) were collected. For the speed restitution, the ANOVA results re-

vealed a significant effect for Rotation [F(1,68)=4,22; p<0.05; η²=0.06], i.e., the 

group with Controlled Rotation performed better than the one with Automatic Rota-

tion. No other difference was found (Input Devices effect, p>0.800; two way-

interaction, p>0.900). For the direction error measurements, the ANOVA results re-

vealed a significant two-way interaction [F(1,68)=4.00; p<0.05; η²=0.06]. Analysis 

revealed that for the Treadmill condition, performances were better with Controlled 

Rotation compared to the condition with Automatic Rotation. With the Joystick, the 

performances were more accurate with Automatic Rotation than with the Controlled 

Rotation condition. The best performances were performed with the Treadmill with 

and the Controlled Rotation. Other effects were not significant (Input Devices, 

p>0.800; Rotation, p>0.300). 

 

    

 

Fig. 3.Significant results for our spatial restitution tasks (Input Devices Vs. Rotation). 

3.3 Correlations.  

We present only the principal correlations between data learning (translational 

movements, performed rotations), paper pencils tasks, the three orientations question-

naires, and the six spatial restitution tasks. No correlations were found about spatial 

pencil papers tasks and spatial restitution tasks. Concerning the orientation question-



naires, we found a negative correlation between the questionnaire assessing the abili-

ties to use maps and the starting point estimation task (p=0.02, r=-0.37). No correla-

tions were found concerning the other spatial restitution tasks. For the data acquired 

during the VE learning path, a positive correlation was found between the time to 

finish the learning path and the sketch mapping task (p=0.04, r=0.34). No correlations 

were found between rotations, translational movements and spatial restitution tasks.  

4 Discussion 

To recall, the goal of this study is to understand the impact on spatial transfer, of two 

Input Devices with two different levels of motor activities (the manipulation of a Joy-

stick Vs a Treadmill) and the possibility or not to control rotations. In manipulating 

these two factors, we are forced to manipulate body-based information. More precise-

ly, whatever the type of Rotation (i.e., Automatic Vs Controlled), the Joystick enables 

visual information, but no vestibular information (no head displacement). The only 

difference was, in the condition Joystick with Controlled Rotation, participant was 

able to master their translational displacements and their directions to explore freely 

the VE, while in the Joystick with Automatic Rotation condition, participant followed 

a predetermined path, and was able to control only their speed displacement; the rota-

tions being controlled by computer at each intersection. The Treadmill with Con-

trolled Rotation condition enabled to perform rotations (rotational head movements) 

during the learning path, providing translational and rotational vestibular information. 

In the Treadmill with Automatic Rotation condition, head rotations were blocked and 

translational vestibular information were activated. As provided in Joystick with Au-

tomatic Rotation, participant was able to control his/her displacement speed, and di-

rections changes at each intersection were managed by the computer. We present our 

results according to the egocentric, allocentric and transfer tasks used.  

4.1 Egocentric Tasks 

For the Photograph classification task, whatever the Rotation or the Input Devices 

factors used, no statistical differences were found for this task. To recall, this task 

consisted in ordering chronologically twelve photos of the real environment, with an 

egocentric point of view. So, the motor activity and the possibility or not to perform 

rotations of our four interfaces seems to have little impact on this task. These results 

are in accordance with literature. For example, Wallet et al.[2] found, on the same 

type of task, that visual fidelity of a VE was more important than the interface used. 

We may wonder that different body-based information and attentional levels provided 

by our four interfaces had a little impact on tasks that do not require the recall of an 

action. It could mean also that the visual fidelity of our VE was perceived in the same 

way by the participants, whatever the interfaces used. If some differences appear they 

cannot be explained by this factor. 

Concerning the Egocentric Distance Estimation Task (which consisted in evaluat-

ing the total distance travelled during the learning path phase), the results showed a 



significant difference for Input Devices, in favor of the Treadmill (vestibular infor-

mation present) compared to the Joystick (i.e., no vestibular information because no 

head movements). These results are in accordance with different authors [11][12] who 

demonstrated that vestibular information is important to correctly estimate distances. 

An effect Rotation was also found, showing a distance overestimation for the condi-

tions with Controlled Rotation compared to the conditions with Automatic Rotation. 

Statistical analyses revealed an interaction “Input Devices x Rotation”. The distance 

estimates were very close for the Treadmill with Controlled or Automatic Rotation 

conditions, and the Joystick with Automatic Rotation. An overestimation for the Joy-

stick with Controlled Rotation condition was found, explaining the Rotation effect 

described above. Finally, the Rotation (and rotational vestibular information), had no 

impact for the Treadmill. These results are coherent with [14] where the importance 

of the translational vestibular information on distance estimation is confirmed, and 

where no effect of rotational vestibular information was found. In contrast, in the two 

Joystick conditions (only visual information provided), we can see an overestimation 

only with the Controlled Rotation condition. For several authors, visual information 

would be sufficient to estimate distance [15], explaining maybe the results with Au-

tomatic Rotation. These results are new and difficult to explain. This may be due to 

the fact that two directions and the visuomotor coordination requested could interfere 

on visual and cognitive processes. Maybe the visuomotor coordination of the joystick 

was higher for gamers(compared to no gamers). It would be interesting to add a con-

dition comparing video game experience to improve our conclusions. It is important 

to note that in a walking activity, the rotation seems not to be important for distance 

estimation. But, with a Joystick, the Controlled Rotation affects the distance estima-

tion.  

For the Egocentric Directional Estimation task (which consisted for participant to 

indicate the direction he took, according to real photographs of intersections), results 

showed an interaction “Input Devices x Rotation”. With the Joystick, the condition 

with Automatic Rotation gave the best performances, while with the Treadmill, con-

trary to the previous task, the best performances were with the Controlled Rotation 

condition (and rotational vestibular information). Finally, according to the motor ac-

tivity of the interface used, the Rotation factor had a different impact. Our results 

corroborate the results found by other authors [12] [13] showing that 1) vestibular 

information improves egocentric representations 2) rotational vestibular information, 

rotational head movements allow increasing egocentric and perception-action repre-

sentations.  However, for the Joystick, the Controlled Rotation decreases once again 

egocentric perceptions. Moreover, statistical analyses showed that in the Joystick 

conditions, translational movements strongly increased with the Controlled Rotation 

(compared to the Automatic Rotation condition). For the two Treadmill conditions, 

the number of translational movements was quite similar whatever the type of Rota-

tion used. When we compared the number of rotations (Joystick and Treadmill with 

Controlled Rotation conditions), statistical analyses revealed almost five times more 

interactions for the Joystick than for the Treadmill. These results concerning the num-

ber of interactions seem to support our assumptions about the visuomotor difficulties 

to control two directions with the joystick. Moreover, to the question of the difficul-



ties to perform rotations, statistical analyses showed a significant effect of Rotation, 

where the group with Automatic Rotation had more difficulties to improve rotations 

compared to the Controlled Rotation group. These results seem to be logical because 

in the Automatic Rotation condition, participants were not able to control their rota-

tions. An interaction “Input Devices x Rotation” also appeared. Surprisingly, this 

result showed that the rotation difficulties felt by participants concerned only the con-

dition Treadmill with Automatic Rotation. In other words, when the interaction is 

natural, as a walking activity, the rotation seems to be necessary for a 3D navigational 

task. On the other hands, with the Joystick, the results to this question were very 

close, with Automatic or Controlled Rotation. Thus, participants did not felt the need 

to improve their rotations with the two-Joystick conditions. With a Joystick, it seems 

that the Controlled Rotation is not always necessary, confirming the great participants 

performances in the Joystick with Automatic Rotation condition. These results can be 

interpreted in different ways: 1) a walking activity is more natural than a joystick, 

explaining the similar number of interactions With Automatic or Controlled Rotation. 

But the Controlled Rotation and rotational vestibular information improves the ego-

centric representations 2) it seems to indicate that the two directions manipulated with 

the joystick is difficult. Maybe the attentional levels of participants are divided be-

tween the control of the joystick and the visual perception of the VE. Participants 

could have visuomotor coordination hand difficulties [16]. Moreover, unlike with the 

Treadmill, participants did not interact in the same manner with the Joystick and the 

Automatic or the Controlled Rotation. 3) Maybe the Controlled Rotation of the Joy-

stick took in account to many rotational movements of the hand. Adding a condition 

where the Controlled Rotation of the Joystick took into consideration fewer rotations 

should give new information about our results. It is to note that no correlations were 

found between translational movements/rotations and our six spatial restitution tasks.  

To summarize:  

 The distance perception is optimized in a walking activity (whatever the Rota-

tion factor). A joystick with Automatic Rotation permits also to assess correctly 

distances (only with visual information). 

 The use of a Joystick and a Controlled Rotation decreases egocentric representa-

tions. With a joystick, only the control of translational movements seems to be 

sufficient to acquire egocentric spatial knowledge, similarly to a walking inter-

action close to the real life (i.e., Treadmill with Controlled Rotation).  

 In a walking activity, the rotation, rotational head movements optimize the crea-

tion of egocentric representations. The absence of rotational vestibular infor-

mation with a Treadmill affects negatively spatial egocentric representations. 

4.2 Allocentric tasks. 

Concerning the allocentric sketch mapping task, no significant differences were 

found. We can still observe a positive correlation between this task and the time to 

learn the path. The higher the completion time, the better the performances. These 



results support the L-R-S model of Siegel and White [9], who admitted survey repre-

sentations to be improved with a long and repeated exploration of the VE. 

For the Allocentric Starting-point estimation task, the results indicated better per-

formances with the Treadmill compared to the Joystick, whatever the Rotation Factor. 

A walking activity, natural and transparent could optimize allocentric representations. 

Due to the significant effects absence of the Rotation factor with the Treadmill, we 

can suppose that for increasing allocentric representations, translational vestibular 

information is more important than rotational vestibular information. These results are 

consistent with the findings of [14][17], regarding the importance of walking activity 

in the development of allocentric representations. However, these results could be 

different with a joystick condition with gamers participants, accustomed to use a joy-

stick. Once again, it seems to be interesting to add this condition as a factor. Moreo-

ver, a positive correlation between the questionnaire assessing the abilities to use 

maps and this allocentric task can be observed. It means the allocentric representa-

tions would be strongly linked with allocentric participants experience and cognitive 

processes used to manipulate allocentric representations [3].  

Due to the different results on the allocentric tasks, it is difficult to summarize this 

part. In one case (the sketch-mapping task), we did not find motor activity effect. It is 

already admitted the allocentric representations are related to different cognitive pro-

cesses and to the manipulation and the repetition of spatial representations [9]. On the 

other hand (allocentric starting-point estimation task), we found a great impact of the 

walking activity on allocentric representations, meaning a walking activity improved 

the creation of allocentric representations [14]. A hypothesis concerns the allocentric 

tasks used. Indeed, different authors argue that drawing could be an ability to sketch 

correctly a route [18]. Maybe these two allocentric tasks did not assess the same cog-

nitive processes or spatial representations. The debate about the impact of motor ac-

tivity on allocentric representations still exists. However, due to the absence of Rota-

tion effect, we can state that the rotational component seems to be negligible for tasks 

mainly driven by allocentric spatial representations [20]. 

4.3 Spatial transfer (The wayfinding task). 

To recall, this task consisted in reproducing in the real environment, the learned 

path.  We collected two data: the mean speed to finish the task and the directions er-

rors percentage. For the mean speed, the statistical analyses showed a Rotation effect; 

the mean speed was higher for the conditions with Controlled Rotation, compared to 

the condition with Automatic Rotation, whatever the Input Devices used. It can be 

supposed that the free learning exploration of the VE at each intersection (whatever 

the Input Devices used) is close to a real learning, optimizing the speed transfer in the 

real environment. For the percentage of direction errors, we observed an interaction 

“Input Devices x Rotation”. With the Treadmill, performances are the best with Con-

trolled Rotation, while with the Joystick, best performances have been observed with 

Automatic Rotation. The Treadmill with Controlled Rotation condition allows the 

participants to optimize performances in term of speed and errors percentage. Grant 

and Magee [19], in a spatial transfer task, already found these results, in comparing a 



walking interface and a joystick, but both with Controlled Rotation. Nevertheless, the 

Rotation factor was not controlled in their study, the superiority of walking interface 

over joystick may have been induced by freedom of rotation rather than the physical 

engagement provided by the walking interface, as demonstrated in our study. We can 

also suppose that the Treadmill with Controlled Rotation is very close to a real walk-

ing activity, and optimize the spatial transfer performances. However, once again, the 

Controlled Rotation negatively impacts spatial performances with the Joystick. These 

results are very similar to the Egocentric Estimation Task, and the Rotation factor 

generates different impact according to the Input Devices and the motor activity pro-

vided: in a walking situation, a Controlled Rotation (with rotational vestibular infor-

mation) increases performances, while with a Joystick, a Controlled Rotation affect 

negatively spatial acquisition. As for the Egocentric Estimation Task, we suppose 

performances in the Joystick with Controlled Rotation could be due to the difficulties 

to manage two directions with the hand, generating visuomotor problems [16]. Con-

sidering a similar joystick condition with game experience could give more infor-

mation about spatial transfer. 

To summarize: 

 Translational and rotational vestibular information provided by Controlled Ro-

tation with the Treadmill optimize spatial transfer [19]. Only translational ves-

tibular information decreases spatial transfer performances. 

 With the Joystick, the Automatic Rotation enabled the best performances. 

5 Conclusion 

According to our experiments, the motor activity during an interaction and the 

manual control of rotations had different impacts on spatial transfer. Translational and 

rotational vestibular information provided by the Treadmill with Controlled Rotation 

optimizes spatial egocentric and transfer performances, as well as the Joystick with 

Automatic Rotation. The question concerning the allocentric representations is most 

contrasted. In one case a walking activity enhances performances (starting-point esti-

mation task), while in another, no differences were found (sketch mapping task). Fur-

ther investigation is required to clarify this point. 

The novelty of this research concerns the bad performances, whatever the tasks 

performed, with the Joystick and the Controlled Rotation, though often used in video-

games or on spatial cognition research. The Joystick Input Device may offer an ad-

vantage for spatial learning under specific conditions (translational control), close to 

the Treadmill with Controlled Rotation, but not others (translational and rotational 

controls). All our results showed better performances in the Joystick with Automatic 

Rotation condition (close to the Controlled Rotation Treadmill) compared to the Au-

tomatic Rotation Joystick condition. One hypothesis if that vertical and horizontal 

hand movements do not provide adequate metaphors of translational and rotational 

displacements to implement a dialogue between the cognitive and sensorimotor sys-

tems that contribute to spatial learning. A condition where participants can only man-



age the direction of their displacement would give some information about the visuo-

motor coordination of two directions with the hand. This challenges the debate on the 

possible advantage of active navigation with a joystick (compared to simple observa-

tion), where some studies detected a benefit for spatial learning performances 

[21][1][2][8]) but others did not ([22][23][24]). Moreover, joystick interfaces are 

more widely used than treadmills, since they are less expensive, easier to implement 

from a technological standpoint. This device is also often adapted to the user’s needs, 

notably for people with mobility issues. This the case with the elderly, patients with 

Parkinson's or Alzheimer's diseases, or sensorimotor injuries ([25][26][27]). Thus, 

clarifying the impact of joystick use represents a research challenge and is essential to 

resolve fundamental issues for clinical neuropsychological applications. 
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