brought to you by Toon University of Yokohama Academic Repository

「桐蔭論叢」第36号2017年6月

〈工学研究科研究論文〉

コンクリート構造物のための 非接触音響探査法に関する研究

—
鉄筋腐食によるコンクリートひび割れの検出
—

Study on Non-contact Acoustic Inspection Method for Concrete Structures: Detection of cracks due to reinforced corrosion

杉本 和子・杉本 恒美

桐蔭横浜大学 大学院工学研究科

(2017年3月18日 受理)

I. はじめに

安全・安心な社会の構築のために、インフ ラの維持管理は重要であるが、点検者がハン マーでコンクリート表面を叩き、その音色で 欠陥部を検知する叩き点検が主流である。 我々の研究室では、主にトンネル内面の打音 検査の代替法として非接触音響探査法^{1,2)}を 研究してきた。強力な音響振動を発生する長 距離音響発生装置(LRAD)で対象構造物に 振動を与え、振動を与えた部分を高感度のレ ーザドップラ振動計 (SLDV) により計測す る手法である。非接触・非破壊で、橋梁・ト ンネル・ダム、その他構造物のコンクリート の空洞や剥離などの内部欠陥を、遠隔から定 量的に検査できると期待される。今までコン クリート供試体の内部欠陥として発砲スチロ ールを埋設した空洞欠陥供試体を用いてきた。 今回、従来メンテナンスフリーと考えられて いた鉄筋コンクリート構造物の劣化に着目し、 その腐食度を定量的に評価する非破壊検査手

法がまだ提案されていないので、鉄筋腐食に よるひび割れを遠隔から検出する非接触音響 探査法を検討した。

Ⅱ. 実験方法

 鉄筋腐食コクリート試験体 図1のように、鉄筋腐食試験体(1000 × 450 × 200mm³)は、表面から50mmの深さ

SUGIMOTO Kazuko and SUGIMOTO Tsuneyoshi : Graduate School of Engineering, Toin University of Yokohama. 1614 Kurogane-cho, Aoba-ku, Yokohama, 225-8503, Japan

に鉄筋 D-16 を埋め込んで作製された。

試験体を食塩水に浸した状態で鉄筋に電圧 をかけて通電させ、(a) < (b) < (c) < (d) と通 電時間を長くして鉄筋の腐食度合いを変化さ せて製作した。鉄筋の腐食度は(a) < (b) < (c) < (d) の順に大きくなっている。

2. 実験セットアップ

実験セットアップを図2に示す。音源と してはLRAD (LRAD Corp., LRAD-300X) を使用し、コンクリート表面での最大音圧が 100dB 程度になるように音圧を調整した。送 信音波としては 500-7100Hz のトーンバース ト 波 (変調 周 波 数 200Hz、interval time 50ms)を用いた²⁾。コンクリート表面の振 動 速 度 は SLDV (Polytec Corp., PSV400-H4)により、水平および垂直方向 約 5cm ピッチで 160 点 (16 × 10) 計測した。 LRAD から測定面までの距離は約 3.2m であ った。

3. 数值解析

計測された振動速度の時間波形に対して、 時間 – 周波数ゲート処理を行い、周囲からの 反射や残響の影響を軽減した。SLDV ヘッド の 共 振 周 波 数 を 除 く た め に 1200Hz ~ 8192Hz の範囲で積分を行って、各測定点に おける振動エネルギーを算出した。全計測点 のうち、健全部の最小振動エネルギーを基準

図3 振動エネルギー比 vs スペクトルエントロピー

値とみなして、振動エネルギー比を計算した。 さらに、各測定点におけるスペクトルエント ロピーを算出し、計測不良点の検出を行った³。 その結果を図3に示す。測定データから計 算された各測定点での振動エネルギー比とス ペクトルエントロピーを散布図で示している。 2つの音響学的特徴量を用いることによって、 健全部・欠陥部・計測不良点がうまく分離さ れている。健全部は図の左上に、欠陥部は下 側に、計測不良点は右上に点在している。

Ⅲ. 実験結果

図4は、測定時にレーザドップラ振動計 のCCDカメラで撮影された鉄筋腐食コンク リート試験体の画像である。図の右上のコン クリート表面に亀裂(赤線部)が所々見られ る。

図5に鉄筋コンクリートの腐食状態を映 像化した例を示す。計測不良点を取り除いた 後³⁾、振動エネルギー比の分布状態を表示し たものである。縦方向の黄色点線は、埋め込 まれた鉄筋の各位置を示す。

鉄筋(d)では、上部に振動エネルギー比の 高い部分が存在しており、鉄筋腐食ひび割れ の目視による亀裂位置(図4)とほぼ同じ位 置にあった。また、鉄筋(c)では、鉄筋(c)の 位置を示す黄色縦線から少し左にずれた縦方 向に、鉄筋(d)より振動エネルギーがかなり

図4 鉄筋腐食コンクリート試験体の CCD カメラ画像

図5 鉄筋腐食コンクリート試験体のかぶり部 分の剥離状態の映像化

低いが、周囲より若干高くなっている縦方向 に伸びる領域を見つけることができる。

これらの結果を検証するために、実際に鉄 筋腐食コンクリート試験体を切断して、鉄筋 腐食ひび割れの状況を確認した。切断位置は、 図4に黄色の検証用切断線で示した。図6 に試験体を切断した鉄筋(c)、(d)の結果を示 す。紙面が切断面で、赤色の線に沿って鉄筋 腐食ひび割れが見られ、紙面に垂直な面が試 験体の表面で、青色の線がコンクリート表面 の亀裂を示している。鉄筋(c)、(d)ともに鉄 筋からコンクリート表面に向け、それぞれひ び割れが確認された。ひび割れ幅は、それぞ れ0.1mm、0.2mm 程度で、鉄筋(d)のひび割 れ幅が大きく、鉄筋腐食が大きいことがわか る。また鉄筋(d)の上部には表面剥離を生じ ていた。

図6 鉄筋腐食コンクリート試験体の断面写真

Ⅳ. 結論

非接触音響探査法を用いた、鉄筋腐食コン クリートの内部欠陥の検出実験を行い、鉄筋 腐食に伴う、かぶりコンクリートの剥離部分 を検知することができた。コンクリート表面 に沿う方向のひび割れ(0.2mm 程度)を検 知し、内部欠陥の状態を振動エネルギー比に よって映像化することができた。鉄筋(c)の コンクリート表面に垂直な方向のひび割れ (0.1mm 程度)については、鉄筋(d)の欠陥 部に比べて、振動エネルギー比が小さいが、 健全部に比べて若干の差が見られた。また、 欠陥部のひび割れの劣化状態を経時変化で確 認することができた。

謝辞

コンクリート供試体の製作および提供して いただいた IHI 検査計測の河野豊氏に感謝い たします。

【参考文献】

 R.Akamatsu, T.Sugimoto, N.Utagawa and K.Katakura : Jpn. J. Appl. Phys. 52 (2013) 07HC12.

- K.Katakura, R.Akamatsu, T.Sugimoto and N.Utagawa : *Jpn. J. Appl. Phys.* 53 (2014) 07KC15.
- K.Sugimoto, R.Akamatsu, T.Sugimoto, N. Utagawa, C.Kuroda and K.Katakura : *Jpn. J. Appl. Phys.* 54, 07HC15 (2015).