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An Abstract of a Dissertation Submitted to Nova Southeastern University  

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 
 

Enhancing the Accuracy of Synthetic File System Benchmarks 
 

by 
Salam Farhat 

May 2017 
 
File system benchmarking plays an essential part in assessing the file system’s performance. It is 
especially difficult to measure and study the file system’s performance as it deals with several 
layers of hardware and software. Furthermore, different systems have different workload 
characteristics so while a file system may be optimized based on one given workload it might not 
perform optimally based on other types of workloads.  Thus, it is imperative that the file system 
under study be examined with a workload equivalent to its production workload to ensure that it 
is optimized according to its usage.  
 
The most widely used benchmarking method is synthetic benchmarking due to its ease of use 
and flexibility. The flexibility of synthetic benchmarks allows system designers to produce a 
variety of different workloads that will provide insight on how the file system will perform under 
slightly different conditions. The downside of synthetic workloads is that they produce generic 
workloads that do not have the same characteristics as production workloads. For instance, 
synthetic benchmarks do not take into consideration the effects of the cache that can greatly 
impact the performance of the underlying file system. In addition, they do not model the 
variation in a given workload. This can lead to file systems not optimally designed for their 
usage.  
 
This work enhanced synthetic workload generation methods by taking into consideration how the 
file system operations are satisfied by the lower level function calls. In addition, this work 
modeled the variations of the workload’s footprint when present. The first step in the 
methodology was to run a given workload and trace it by a tool called tracefs. The collected 
traces contained data on the file system operations and the lower level function calls that 
satisfied these operations.  
 
Then the trace was divided into chunks sufficiently small enough to consider the workload 
characteristics of that chunk to be uniform. Then the configuration file that modeled each chunk 
was generated and supplied to a synthetic workload generator tool that was created by this work 
called FileRunner. The workload definition for each chunk allowed FileRunner to generate a 
synthetic workload that produced the same workload footprint as the corresponding segment in 
the original workload. In other words, the synthetic workload would exercise the lower level 
function calls in the same way as the original workload. Furthermore, FileRunner generated a 
synthetic workload for each specified segment in the order that they appeared in the trace that 
would result in a in a final workload mimicking the variation present in the original workload.  

The results indicated that the methodology can create a workload with a throughput within 10% 
difference and with operation latencies, with the exception of the create latencies, to be within 



 
 

the allowable 10% difference and in some cases within the 15% maximum allowable difference. 
The work was able to accurately model the I/O footprint. In some cases the difference was 
negligible and in the worst case it was at 2.49% difference. 
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Chapter 1 

Introduction 

 

Background 

Operating system benchmark suites consist of tools that aide in file system performance 

measurement and analysis (Agrawal, Dusseau, & Dusseau, 2008, Traeger, Zadok, Joukov, & 

Wright, 2008). Integral to benchmark suites are workloads that exercise the target systems in 

repeatable scenarios that are indicative of common application execution.  One workload 

generation methodology involves the study of operating system access patterns by a set of 

applications that exhibit functions common to production software.  The patterns are then 

incorporated into a tool that reproduces a typical application’s function into representative 

synthetic workloads in the context of benchmark suites (Agrawal, Dusseau, & Dusseau, 2008).  

Thus the generated workload reproduces primary and secondary storage access with the goal of 

providing equivalent execution sequences through application programming interface (API) or 

systems calls indicative of an application's interaction with the operating system (Roselli, Lorch, 

& Anderson, 2000). 

Current synthetic benchmarks do not generate representative workloads due to the 

assumption that mimicking an application’s API calls is sufficient to reproduce the application’s 

workload (Traeger, Zadok, Joukov, & Wright, 2008). This oversimplified assumption fails to 

account for the different execution paths that consist of lower level operating system function 

calls (Agrawal, Dusseau, & Dusseau, 2008, Joukov, Wong, & Zadok, 2005). An API call can 

have more than one execution path with a significant difference in performance. As a result two 

workloads with the same API calls but different execution paths will have a different 
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performance footprint that is dependent on the function calls. An example of an API call that has 

multiple execution paths is the read API call. The read API call can have an execution path that 

consists of function calls that reads the file from primary storage, or an execution path that 

consists of function calls that reads the file from disk whose performance depends on whether 

the file is fragmented or not. 

Another factor that synthetic workloads ignore is the variation within the workload. 

Workloads are not uniform and exhibit different workload characteristics as the workload 

progresses. For example, the workload’s read/write ratio, average file size per request, or 

frequency of requests change over time. Synthetic workloads do not model this variation in their 

workload generation process.  

The work in Agrawal, Dusseau, and Dusseau (2008) advanced file system benchmarking 

by taking into account the execution paths for the API calls. The application traces recorded the 

execution paths for each API call and the synthetic workload generation process generated API 

calls with the goal of having their execution paths match the execution paths of the original 

workload. The result of their work was a tool called codeMRI. Although the work presented the 

results of a few workloads that were run using the Postmark benchmark their results were not 

compared with other techniques to indicate whether there was any improvements gained from 

codeMRI. In addition, the work stated that additional refinement was needed for codeMRI to 

improve the accuracy of the synthetic workloads generated by it. 

Another benchmarking technique consists of collecting traces of live workloads and 

replaying those traces on the same system (Joukov, Wong, & Zadok, 2005). Given the same 

system with the exact same state the traces would exercise the hardware in an equivalent manner. 

Trace replaying does not provide a mechanism to adjust the workload characteristics to observe 
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how changes in the workflow can affect the overall performance (Zhang, Sivasubramaniam, 

Franke, & Gautam, 2004). 

The inflexibility and limited availability of traces make synthetic workloads a preferable 

choice, but synthetic workloads suffer from being unrepresentative of real workloads (Zhang, 

Sivasubramaniam, Franke, & Gautam, 2004). The source of the inaccuracy problem is in the 

approach that existing synthetic workload generators take that neglects how the API calls are 

satisfied by the function calls (Traeger et al., 2008, Agrawal, Dusseau, & Dusseau, 2008). 

The work developed by Agrawal, Dusseau, and Dusseau (2008) created a tool called 

codeMRI to address the issue of synthetic workload inaccuracy. In their work the traces of a live 

workload was recorded that included information about the API calls and the execution paths. 

The synthetic workload was then synthesized in a manner that tried to mimic the traces at the 

API level and the function level. Although codeMRI presented a technique for enhancing the 

accuracy of synthetic workloads it did not do it in a repeatable manner. The description of the 

methodology is not sufficient to regenerate the work and one component of codeMRI, namely 

the workload synthesis process, still requires some additional work and refinement as dictated by 

the authors. This implies that further work is required to enhance the accuracy of synthetic 

workloads.  

This work advanced synthetic benchmarking research by improving the accuracy of 

synthetic workloads by taking into account the execution paths of the API calls and by modeling 

workload variation if it exists in a workload. The execution paths are recorded from the virtual 

file system (VFS) level that capture file system calls that are satisfied by primary storage and 

secondary storage. More specifically this work captured traces at the virtual file system level and 
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generated a synthetic workload that more accurately matches the execution profile of the original 

workload.  

This work was accomplished by extending the methodology presented by Tarasov, 

Kumar, Hildebrand, Povnzner, Kuenniehng, and Zadok (2012) that creates synthetic disk 

workloads. The approach in Tarasov et al. (2012) generates the configuration files for common 

file benchmarks such as FileBench that are based on the disk traces to produce equivalent 

synthetic workloads that match the trace’s footprint on disk. These disk-based approaches do not 

consider the portion of the workload that is satisfied from primary storage since it is very 

difficult to relate the disk operations back to the API calls (Shan, Antypas, & Shalf, 2008). As a 

result this approach may produce equivalent workloads on disk, but it does not reproduce the 

application’s workload since it does not consider the file system operations that were satisfied 

from primary storage. Hence, disk workloads cannot be used for file system benchmarking. 

However, this work adapted a similar methodology that used VFS level calls instead of disk level 

traces.  

In the following section the three different approaches presented in this section for file 

system benchmarking are presented in further details emphasizing the shortfalls of each method. 

This is followed by a discussion on the goal of this work that proposes to extend application 

benchmark research by providing a methodology for improving synthetic workloads by making 

them more representative of live workloads.  

The next section, relevance and significance, details the extent of the problem and 

provides some insight on what the goal would accomplish and its impact on the current state of 

synthetic workloads. This is followed by a brief review of the literature where the latest 

techniques of synthetic disk workloads are discussed outlining the shortfalls of each method to 
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generate accurate workloads. In addition, some experimental results that illustrate the reason why 

current file system benchmarks do not create representative workloads are presented, and finally 

a description of a synthetic disk workload technique that will form the basis of the approach is 

also presented. The barriers and issues for research in this area are discussed in the subsequent 

section. The main obstacle includes properly capturing the traces and preprocessing them as 

input to the synthetic workload generator.  

The approach is described in the following section that will contain the main steps that 

are needed to capture the trace, analyze and preprocess the trace, and generate the required 

configuration files for a tool created by this work that would generate the equivalent synthetic 

workload called FileRunner. In the next section the different milestones for this work are 

outlined and a description of how to test each milestone is presented. This is followed by the 

final section of this work that lists the resources that are going to be used. 

Problem Statement 

The workload generation approach used by current benchmarks is not sufficient at 

generating equivalent execution patterns across multiple operating systems because API calls are 

not always satisfied with the same operating system kernel function calls (Agrawal, Dusseau, & 

Dusseau, 2008). In this section a couple of experiments are presented that will demonstrate how 

the function calls can skew the workload’s performance. Then a discussion about a tool called 

codeMRI that takes into account the different execution paths when constructing synthetic 

workloads is presented. The discussion of codeMRI is focused on how it attempted to 

incorporate the execution paths and how it still requires some improvement. Finally, another 

approach for file system benchmarking that is comprised of capturing and replaying traces is 
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presented. The discussion of trace replaying will focus on its advantages and shortfalls when it 

comes to file system benchmarking.  

A read API call can be satisfied from the file system buffer cache, from disk as a 

sequential read, or if the file is fragmented would be read from different locations on disk. The 

work in Jacobs (2009) provided measurements that validate the significant difference in the 

performance between disk and memory and whether the reads are sequential or random. The 

experimental setup consisted of a Windows server 2003 machine with 64GB RAM and a set of 8 

disks setup in RAID5. The data read were chunks of 4 byte values that were accessed 

sequentially and randomly from both disk and memory. The results showed that sequential 

memory access was fastest at 358.2 million values per second while the second fastest was 

sequential access from disk at 53.2 million values per second followed by random memory 

access at 36.7 million values per second and finally the significantly slower random disk access 

at 316 values per second. 

The vast difference in performance between primary and secondary storage is one of the 

main reasons current synthetic workloads do not accurately represent live workloads. The work 

of Traeger, Zadok, Joukov, and Wright (2008) provides evidence of the inconsistencies of the 

execution between real and synthetic workloads. In their experiment the Postmark benchmark 

was executed with the default configuration that assumes the system has a small memory 

footprint, thus the benchmark generated small sized files between 500 and 10,000 bytes and the 

benchmark took less than one tenth of a second to complete. Beyond the initial access, I/O 

operations were satisfied from the cache and thus did not require additional reads from disk. This 

illustrates the lack of low-level I/O functions that were represented in the description of the 

benchmark test suite thus skewing the results towards the reduced cost of memory access. 
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The experiment demonstrates how the workload’s performance can be skewed by the 

execution paths. For synthetic workloads to be representative of live workloads they need to 

have the same performance footprint as live workloads. This means that they need to match the 

live workload’s API calls and function calls. The only benchmark that considers the lower level 

function calls is the codeMRI benchmark that is presented in Agrawal, Dusseau, and Dusseau 

(2008). The authors of codeMRI presented the work at a high level lacking any sufficient details 

that makes it possible to recreate or use any portion of the codeMRI approach. While the work 

claims that codeMRI generated sufficiently accurate workloads it also states that the workload 

synthesis process requires additional work without expressing what portions of the process 

requires the additional work. This makes codeMRI infeasible for use as it is presented, but the 

goal and high level description of the methodology are of value.  

Another downside for codeMRI is that methodology relies on source code analysis for 

the application that is being benchmarked that in some cases may not be available such as 

systems that use commercial of the shelf products. In addition, even though the paper presents 

experimental results that highlight the need to consider the execution paths to generate accurate 

workloads the entire work is not presented in a repeatable manner making the codeMRI difficult 

to use or enhance. 

One other issue that codeMRI and other synthetic workloads do not address is the 

variation within the workload. The workload’s characteristic vary across time especially when 

the workload is observed over an extended period of time. Synthetic workloads such as 

FileBench generate a uniform workload over time. The workload’s characteristics are specified 

via the configuration file that is parsed in the beginning of the workload. Then FileBench 

generates requests that are based on the configuration resulting in a uniform workload. The work 
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in Tarasov et al. (2012) addressed a similar issue when generating representative disk workloads. 

However, this has not been addressed in the context of file system synthetic workloads.  

A different approach for benchmarking includes capturing traces and replaying them, 

possibly on a different system, with the goal of reproducing the exact workload on the file 

system (Joukov, Wong, & Zadok, 2005). Traces can be captured at different levels of a given 

system that include the driver level, network level, virtual file system level, and system call level 

with each level being suitable for a specific type of benchmark studies. For instance, the driver 

level traces capture disk activity and are suitable for examining disk layout strategies and disk 

performance. Driver level traces do not capture requests serviced from primary storage so these 

traces cannot represent the complete application workload and thus it cannot reproduce it 

(Joukov, Wong, & Zadok, 2005).  

Similarly, network level traces capture all requests that are made via the network but do 

not capture any local requests that makes it impossible to deconstruct the application’s local 

workload in its entirety (Joukov, Wong, & Zadok, 2005). System call level traces capture all the 

requests that are made by the application but do not trace how these calls are satisfied by the 

lower level function calls (Joukov, Wong, & Zadok, 2005). Since it is not possible to distinguish 

what system calls were satisfied from primary storage or those from secondary storage it would 

not be possible to construct an accurate workload that is representative of the original workload 

in terms of how it exercises the OS and hardware.  

The virtual file system (VFS) traces (Joukov, Wong, & Zadok, 2005) capture all local file 

system operations generated by an application including information on the operations that were 

serviced from primary storage or secondary storage. This is similar to the codeMRI methodology 
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discussed earlier where the function calls are essential for reproducing the workload accurately 

(Agrawal, Dusseau, & Dusseau, 2008).  

Tracefs is a tool that captures VFS level operations and is used by Replayfs (Joukov, 

Wong, & Zadok, 2005) to replay those traces on any system (Aranya, Wright, & Zadok, 2004). 

Replayfs imports the traces captured by tracefs, and then it preprocesses those traces into the 

operations that will be executed on the file system. This process converts the raw traces into the 

format that includes the following elements: VFS operation such as read and write, the process 

ID, the return value of the VFS operation, and the parameters of the VFS operation. Once the 

preprocessing is complete Replayfs goes through the list of operations in a sequential order and 

runs those operations on the file system.  

The problem with replay methods is that their workload generation is restricted by the 

limitations in the captured traces they are replaying. First, traces are not always available for 

several reasons such as that the data itself might be proprietary or cannot be exposed for security 

reasons or system builders may simply not have access to it especially if the system is new and 

no live data exists. When traces are available they represent a snapshot of the system at the time 

of the trace capture and they may not reflect the workload across other time intervals where the 

workload characteristics are significantly different. For example, traces may be captured at a 

time where the system was experiencing normal traffic load as opposed to capturing traffic 

during peak time (Zhang, Sivasubramaniam, Franke, & Gautam, 2004). This will allow system 

designers to fine tune the performance of the system based on the normal traffic load, but would 

not be able to fine-tune the system based on peak traffic.  

Another big disadvantage is that during trace replay commands are replayed sequentially 

and can only be replayed sequentially (Zhang, Sivasubramaniam, Franke, & Gautam, 2004). This 
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restriction makes trace replaying inflexible when it comes to studying an application’s 

performance for projected workloads, because it is not possible to adjust certain parameters such 

as file sizes and then observe the change in performance. The flexibility in adjusting workflow 

parameters will allow system designers to discern the application’s performance upon expected 

or projected changes in possible future workloads. This type of study is not possible with trace 

replay, but is possible with synthetic workloads (Zhang, Sivasubramaniam, Franke, & Gautam, 

2004). 

Unfortunately, synthetic workloads suffer from one issue that is they do not generate 

representative workloads. As discussed earlier this is due to the fact that they do not take into 

account how the API calls are satisfied via the function calls (Agrawal, Dusseau, & Dusseau, 

2008). As was presented earlier, codeMRI is one exception that created representative synthetic 

workloads by taking into account the lower level OS calls, but this method relies on the source 

code to generated accurate workloads that is not always available. More importantly, no 

sufficient details have been provided to improve the work or even apply the work for actual use. 

In conclusion, the latest synthetic file system benchmarking research including codeMRI 

provides a need for highly accurate synthetic workloads and that further research is required to 

increase their accuracy. 

Dissertation Goal 

This work advanced file system benchmarking by providing a tool to generate synthetic 

workloads that are more accurate compared to synthetic workloads generated by traditional 

benchmark approaches. The enhanced accuracy was achieved by mimicking the original 

workload’s cache behavior and by modeling the variation that existed in the original workload. 
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Mimicking the cache behavior was first accomplished by tracking the system calls that 

are satisfied from primary storage and those that are satisfied from secondary storage (Agrawal, 

Dusseau, & Dusseau, 2008, Zhang, Sivasubramaniam, Franke, & Gautam, 2004). This 

information was collected by a tool called tracefs that captures the VFS calls as well as the 

address space operations that dictates whether the VFS calls where processed from disk or cache. 

Next, the workload data such as VFS calls and their parameters were extracted from the trace 

files and used to configure FileRunner, a tool created by this work, to generate the synthetic 

workload. To model the workload variation the chunking method proposed in Tarasov et al. 

(2012) was used. This primarily splits the workload into subintervals small enough to consider 

the workload in each interval as uniform. A synthetic workload was then generated for each 

chunk and run in succession. 

The work was evaluated using some workloads that were used to be traced so that 

equivalent synthetic workloads were generated. Synthetic workloads were then created from the 

traces and the throughput, latency, and I/O size, were observed for both the original workloads 

and the synthetic workloads. The work in Tarasov et al. (2012) states that their synthetic disk 

workloads had an average margin of error less than 10% with some parameters not exceeding the 

maximum allowable 15%.This was assumed sufficient enough to declare that the synthetic disk 

workloads were representative of the workload being emulated. This work followed the same 

assumptions. 

Relevance and Significance 

Benchmarks generate representative synthetic workloads that allow system designers to 

analyze and optimize the file system based on its usage (Joshi, Eeckhout, Bell, & John, 2008). 

Since performance is greatly dependent on usage the accuracy of the synthetic workloads 
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becomes crucial so that the system is designed for optimal performance (Zhang, 

Sivasubramaniam, Franke, & Gautam, 2004).  

Inaccurate workloads results in a system that is optimized based on that workload and 

may not produce optimal performance when the system is in production. In addition, adjusting 

workload parameters such as file size or the read-write ratio is a desirable feature available only 

with synthetic workloads that can provide an insight of how the system might behave as 

workload characteristics vary and can predict the workload performance (Zhang, 

Sivasubramaniam, Franke, & Gautam, 2004). 

As discussed in the problem section the latest work in synthetic file system benchmarking 

research either produces inaccurate workloads or in the case of the work in (Agrawal, Dusseau, 

& Dusseau, 2008) the codeMRI methodology still requires some additional work in the workload 

synthesis process. This indicates that the state of the art of file system benchmarking can still 

benefit from synthetic workloads that are more representative of actual workloads.  

The work proposed in this paper  advanced synthetic benchmarks by creating more 

accurate synthetic workloads that was achieved by incorporating function calls in the workload 

generation process without the need for the source code as is the case in codeMRI and present it 

in a repeatable and reproducible manner. The methodology of this work borrowed some of the 

techniques presented in the synthetic disk workload work in Tarasov et al. (2012).  

Barriers and Issues 

Traditionally synthetic workload generators considered that to create an accurate 

synthetic workload it needed to match the live workload’s API calls (Agrawal, Dusseau, & 

Dusseau, 2008). This helped simplify or hide the complexity of file systems, the complexity of 

disk, and the numerous factors that contribute to the overall performance (Traeger, Zadok, 
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Joukov, & Wright, 2008, Tarasov, Bhanage, Zadok, & Seltzer, 2011). This basically eliminated 

the need to track how a given API call is satisfied by the different execution paths. While this 

assumption simplified the workload generation process the work in Traeger, Zadok, Joukov, and 

Wright (2008) and Tarasov, Bhanage, Zadok, and Seltzer (2011) discussed earlier demonstrated 

that this simplified approach does not produce accurate results.  

The work in Agrawal, Dusseau, and Dusseau (2008) tackled this issue and produced a 

synthetic benchmark that takes into account the function calls. This enhanced the accuracy of 

synthetic workloads. However, codeMRI still requires additional work as stated by the authors 

and in addition it requires the source code of the system that may not be available. This 

demonstrates the difficulty of creating realistic synthetic workloads that is a goal this work hopes 

to undertake.  

Assumptions, Limitations, and Delimitations 

Assumptions 

The main approach for synthetic file system benchmarking focuses only on generating 

file system calls on the underlying system. It does not take into consideration other portions of 

the system such as CPU and primary storage resources that can be consumed by the applications 

that would be generating those file system calls. Although applications and other processes can 

affect the performance of the file system by consuming shared resources such as the CPU and 

primary storage, file system benchmark studies tend to ignore these processes and focuses only 

on generating and executing file system commands.  

Limitations 

One limitation in this study would be the verification of the results across actual live 

workloads. Due to the unavailability of live workloads to trace this work will use other synthetic 
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benchmarks to create a variety of workloads. One synthetic benchmark such as Postmark is 

designed to provide synthetic workloads that are similar to email servers. Other workloads can 

be generated by FileBench that can be configured to create workloads with different workload 

characteristics. In addition, a custom C application was built to provide an additional workload.  

Delimitations 

The work focused on specific environment namely the Linux kernel and used a single 

node to trace and run the synthetic workloads. The work was not performed on a network file 

system or a system with multiple nodes such as a storage area network or any other form of a 

distributed file system. In addition, the system used a hard disk drive and not a solid state drive.  

Summary 

This work presents a methodology for enhancing the accuracy of synthetic file system 

benchmarking. It will first present in the literature review section the current state of the art in 

synthetic file system benchmarks and discuss the issues with the current methodologies in the 

next section. The literature review will also highlight the importance of having accurate 

workloads when testing the file system performance. Then, the literature review will present 

other benchmarking methodologies and discuss their advantages and disadvantages over 

synthetic benchmarks, and finally it will conclude with a discussion of a synthetic disk workload 

generator that this work will base its approach on.  

The methodology is described in the subsequent section and will contain the main steps 

that are needed to capture the trace, analyze and preprocess the trace, and generate the required 

configuration files for a tool called FileRunner that will generate the equivalent synthetic 

workload. Then a description on how the workloads are setup and run is delineated. Finally, this 

section ends with a discussion on how the results are evaluated.  
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Chapter 2 

Brief Review of the Literature 

 

Introduction 

In this chapter a review of the literature pertaining to the problem and goals are 

presented. The chapter starts by summarizing the survey performed by Traeger, Zadok, Joukov, 

and Wright (2008) that describes the current state of benchmarking and the general problems that 

arise in file system benchmarking that includes the inaccuracy, inconsistency, and unrepeatable 

nature of the methodologies used in benchmarking.  

Then the chapter delves into the literature specific to the problem this paper addressed 

that is the inaccuracy of synthetic file system benchmarking. The approach section of this 

document addresses the unrepeatability issue by describing in details the methodology that can 

be easily repeated. The inconsistency problem is addressed by applying the methodology across 

diverse workloads that further validates the approach.  

This portion of the literature review consists of describing the approach that most 

benchmarking systems use such as Postmark and FileBench and how these approaches can lead 

to inaccurate workloads because they do not consider how the file system calls are being 

satisfied by the lower level function calls. Specifically, it consists of whether the requests are 

being served from primary or secondary storage. This section then continues to describe the 

work by Tarasov, Bhanage, Zadok, and Seltzer (2011) illustrates the need to match workloads by 

function calls as well. 

One approach that addressed the lower level function call is called codeMRI that 

generates synthetic workloads that matches the live workload’s API calls and function calls for 



16 
 

increased accuracy, but suffers from being irreproducible and still requires some refinement. 

This work is presented next and concludes the literature review pertaining to the inaccuracy of 

synthetic benchmarks.  

In the next subsection a discussion on another form of benchmarking called trace replay 

technique that generates workloads by replaying previously collected traces is presented. This 

method can present an accurate workload on the system based on the provided trace, but is 

incapable of adjusting the generated workload to provide further insight on the workload’s 

bottlenecks and behavior under possible varying conditions. This inflexibility and unavailability 

of traces is the reason why synthetic benchmarks are preferred over trace replay. 

In the following section a description of tracefs is presented. Tracefs is a tool that is used 

in the methodology of this work to collect file system traces. In the final subsection a discussion 

on another benchmarking technique called synthetic disk workloads (Tarasov, Kumar, 

Hildebrand, Povnzner, Kuenniehng, Zadok, 2012) is presented focusing on its methodology 

since it is extended in this work in the synthetic workload generation process. 

General Problems in File System Benchmarking 

In Traeger, Zadok, Joukov, and Wright (2008) the authors performed a nine year study 

that surveyed 415 file systems and file system benchmarks from 106 recent papers. Their study 

focused on assessing the benchmarking technique presented in each paper, the validity or 

completeness of the results, and the level of details present in the work when describing 

approach or the environment of which the benchmarks were done. To illustrate the extent of how 

misleading some benchmarks can be the authors devised an experiment that showed how 

application benchmarks can be ineffective in benchmarking file system. The chosen application 

benchmark was the compiler benchmark.  
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The experiment’s approach consisted of modifying the performance of file system 

operations and then test whether the benchmark is capable of detecting any difference in 

performance. The modified operations were the read and write calls. Their performance was 

slowed down by inserting a loop in each method that performed nothing except delay the 

operations’ execution time. In the first round of experiments the read operation was effectively 

delayed by a factor of 32. The OpenSSH program versions 3.5, 3.7, and 3.9 were compiled on 

two systems: the slowed file system and the original Ext2 file system. The results showed less 

than 1.5% slowdown in the modified file system which does not indicate any significant 

performance difference between the two systems. Similar results were obtained when other file 

system operations were slowed down. Since the benchmark results practically showed no 

substantial difference in the performance between these two systems one can deduce that the 

chosen benchmark is not a suitable benchmark for studying file system performance. 

Experiments that Illustrate the Effect of Execution Paths on Performance 

As discussed earlier synthetic workloads suffer from inaccuracies since they ignore 

function calls. This was illustrated in the experiment presented by Tarasov, Bhanage, Zadok, and 

Seltzer (2011). In that experiment the authors ran several workloads generated by the FileBench 

benchmark on the Ext2 file system where each workload read one file from disk repeatedly. The 

system RAM was 512MB and for the initial workload the file size was set to 64MB. The authors 

repeated the experiment varying only one parameter that is the file size. The file size was 

increased by 64MB for each run until the file size reached 1024MB. Each run lasted about 20 

minutes, but only the last minute was reported to ensure proper system aging. There were a total 

number of 16 runs.  
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The results indicated that for all runs with file size 384MB or smaller the number of read 

operations was around 9,700 operations per second. For the remaining runs where the file size 

was 448MB or higher the performance was significantly less and averaged about 1,000 

operations per second. The reason for the big drop in performance is attributed to disk I/O. For 

the runs where the file was small enough to fit in memory the first read was served from disk, but 

the subsequent reads were performed from memory. For the runs with file size 448MB or higher 

the files did not fit entirely in memory so for every read disk I/O was needed.  

The authors performed additional experiments to identify at which point the significant 

drop in performance was experienced. The result was experienced in a smaller range of 6MB 

where file size was around 400MB. So in this case a variation of 1.5% of file size (6MB) has led 

to a drop in performance of about 90%. This experiment illustrates how the same API call can 

have a significant difference in performance even for a simple workload that produced the same 

number of API calls of the same file. The difference in performance is due to the different 

execution paths that satisfy the API calls.  

In another study by Anderson et al. (2004) the authors show that the timing accuracy of 

the file system calls is also crucial in producing accurate workloads that can cause the response 

time to vary from +350% to -15%. They illustrate that mimicking file system requests such as 

maintaining the read/write ratio, request offset, and the order of the requests is insufficient for 

generating equivalent workloads. In their study it is shown that timing affects response time, 

queue length, and mean latency.  

The CodeMRI Methodology 

The codeMRI benchmark created in Agrawal, Dusseau, and Dusseau (2008) took into 

consideration requests that are satisfied from primary storage and secondary storage in order it 
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provide more accurate workloads. So the resulting workload had a similar performance footprint 

as the original workload. The first step in this process involves tracing a live workload and 

recording the API calls and their corresponding function calls. The trace represents the execution 

profile of the live workload and the goal is to generate a synthetic workload with the same 

execution profile. 

After the trace is completed the workload is divided into micro-workloads where each 

micro-workload contains the execution profile of one API call. For instance, for the read API call 

the micro-workload or the execution path that resulted from the read API calls are extracted from 

the overall trace. Then for each micro-workload a predictor set is generated that describes the 

execution profile (micro-profile) of the micro-workload in a concise manner. The purpose of the 

predictor set is to eliminate the need to maintain the entire micro-profile by using a subset of it in 

a manner that maintains the characteristics of the micro-profile. From the predictor set synthetic 

micro-workloads can then be generated with an execution profile that matches the extracted live 

micro-workloads. The final step consists of combining the synthetic workloads to form the final 

synthetic workload that is supposed to be equivalent to the original workload. 

The paper does not discuss any details on how the predictor set is generated except that 

three metrics play a role in the generation process. The three metrics are slope, uniqueness, and 

stability. Slope is defined as the change in the number of function calls as one workload 

parameter is changed. For example if the workload parameter is file size the number of function 

calls is recorded as the file size is varied. The uniqueness metric signifies how closely the 

predictor set represents the real workload. It is measured from 0 to 1 and a uniqueness of 1 

signifies that a predictor set is the only workload that is being executed during the runtime of the 

workload. This means that the micro-workload is fully representative of the real workload while 
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a uniqueness of 0 means it’s not related to the workload at all. Stability is defined as the 

variability in the slope as some workload parameter is changed or as the rate of change of the 

slope as a workload parameter is changed.  

The authors claim that it is fairly easy to find a predictor set for a micro-workload with a 

uniqueness close to 1. However, for a workload consisting of several micro-workloads it is more 

difficult to find a predictor set with a value close to 1 since some function calls would be 

overlapped from several micro-workloads. In other words, it may not be clear which function 

call belongs to which micro-workload. In addition, the authors fail to describe how the workload 

parameters are varied to calculate these metrics 

To overcome the overlap of function calls a linear programming algorithm is used to 

select predictor sets that maximize the uniqueness of each micro-workload. Linear programming 

is usually used in similar situations to determine the maximum or lowest outcome that can be 

calculated over a linear objective function. In this case, it assigns function calls to API calls in a 

way that would produce the greatest overall uniqueness value. Unfortunately, the work in 

(Agrawal, Arpaci-Dusseau, & Arpaci-Dusseau, 2008) does not provide sufficient information on 

how linear programming was used to derive the predictor sets.  

From the predictor sets synthetic micro-workloads are generated, again no information is 

presented on how the synthetic micro-workloads are generated from these predictor sets nor does 

it present the methodology that synthesizes the synthetic micro-workloads into the final synthetic 

workload. However, they do mention that timing and ordering are built into the workload 

generation process.  

Based on experiments performed by the authors the methodology presented in this paper 

produces accurate micro-workloads from the predictor set, and are able to construct the micro-
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workloads into equivalent macro-workloads. However, the authors do discuss that the micro-

workload synthesis process still requires some refinement for complex workloads. In addition, 

the source code of the application is required for the analysis stage. Overall, the work does not 

provide sufficient detail to generate any portion of their methodology such as the process for 

creating micro-profiles or the process to generate micro-workloads from the predictor set. Even 

though the work presented in (Agrawal, Arpaci-Dusseau, & Arpaci-Dusseau, 2008) does not 

present their methodology in a reusable manner it does highlight the need for synthetic 

workloads to consider execution paths in their generation process.  

Trace Replay Techniques 

In addition to synthetic workloads there are other benchmarking approaches. One 

approach consists of capturing the application’s traces and then replaying them (Joukov, Wong, 

& Zadok, 2005). In trace replay techniques that replay traces are captured at the VFS level are 

suitable for file system benchmarks since they capture all file system requests. Replayfs is a trace 

replay system that captures traces and replays them at the VFS level. Traces are captured using a 

stackable file system called tracefs. Each VFS operation in the trace is preprocessed by the trace 

compiler component so that they are playable by the trace replayer component. Each operation 

has a process ID, a timestamp, the parameters of the operation, and the return value. The trace 

replayer prefetches the processed commands sequentially, places those commands in a buffer, 

and then replays them onto the VFS.  

The system uses a resource allocation table that contains references to the objects that are 

in primary storage. This allows the system to access those objects that are in memory. For 

example, if a file is being read from memory the location of the file needs to be known in order 



22 
 

to be able to read it again. Tracefs stores that information and it populates into the resource 

allocation table during runtime.  

To increase accuracy replayfs creates the same number of threads to replay requests in a 

similar manner and at the same time as they occurred in the live trace. This will reproduce 

resource contention in the replay that includes disk seek, locks, and semaphores. Threads are 

reused to conserve resources and a pre-spin technique is employed to ensure timing accuracy. In 

a pre-spin the timers are set 1ms before the event will occur so that the request is replayed at the 

exact moment eliminating any delays in timer delays. For further CPU and memory resource 

savings the data is not copied into user space from the VFS level.  

In conclusion, despite the fact that tracing techniques might provide accurate workloads 

their inflexibility as described in the problem section and the unavailability of traces in some 

cases assert that another benchmarking approach is needed to fulfill the gaps and shortfalls of 

trace replay techniques. Synthetic workloads provide the flexibility that is needed to perform 

performance analysis on varied workloads (Joshi, Eeckhout, Bell, & John, 2008). Synthetic 

workloads are also preferred because they are less complex and have a lower setup cost 

(Anderson et al., 2004).  

Synthetic Disk Workloads 

The work in Taraseov et al. (2012) presented a synthetic disk workload that the 

methodology of this work is going to be based upon. In this approach disk traces are used to 

create a statistical model that represents the characteristics of the workflow that is used to create 

the configuration files for file benchmarks such as FileBench, IOzone, or Iometer. The details of 

this methodology and the statistical model are presented next. 
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The first part of the approach extracts statistical information from the disk traces for each 

file system dimension such as the number of reads and writes in a trace, file colocation, or file 

sizes. From the statistical data a function is created for each dimension called the feature function 

that computes the values that the dimension will have in the synthetic workload. So the feature 

function for the file size dimension will return the file size of the next API call. This function is 

called again to retrieve the file size of the following API call.  

This is repeated for every dimension resulting in a multidimensional array or matrix that 

contains the data points for each of those dimensions. In figure 1 below the three dimensions 

considered are: inter-arrival distance, I/O size, and operation (read or write). So as can be seen 

the trace contained 52 requests of size [0 – 4KB] and inter-arrival distance less than 1KB, and 14 

of those were writes and 38 were reads. Those data points are represented in a matrix that is used 

to generate the disk operations with the corresponding values.  

 
Figure 1. The n-dimensional matrix statistical model. 

The authors present that the workflow characteristics change over time and that workload 

generators are not capable of modeling this change. For instance, a workload may exhibit a 

different read/write ratio across time or the I/O size may vary as the workload progresses. To 

address this issue the authors devised the workload chunking technique. Workload chunking is 
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the process of dividing the workload into smaller chunks across time where the workload 

characteristics are assumed to be stable within that chunk. The reason behind the chunking is to 

be able to model the variations of the workflow.  

 
Figure 2. Overall system design for synthesizing disk workloads from traces. 

FileBench is then configured to run workloads for each chunk. These synthetic workloads 

are the run in succession resulting in a final synthetic workload that matches the original 

workload. The chunk size was determined experimentally and is discussed in further details in 

chapter 3. 

Some chunks for a given workload may exhibit the same workload characteristics. So the 

same chunk data can be used for two or more intervals. This can reduce the amount of overall 

data needed. After all the statistical matrices are computed they are compared with every other 

statistical matrix. If 2 matrices are found to be similar the values in the two matrices are averaged 

and the 2 chunks then refer to this averaged matrix. This process is shown in figure 2. 

Tracefs  

Tracefs is a stackable file system for the Linux operating system that hooks into the 

virtual file system (VFS) and implements all the file system operations. By intercepting the file 

system operations tracefs is capable of logging the VFS calls and their parameters along with the 

timestamp and process information. To understand how tracefs works a short description of the 

Linux File System (LFS) is presented that is followed by a description of tracefs.  
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Linux File System 

The (LFS) separates the implementation of the file system and the kernel via an API 

called the VFS API (Konishi, Amagai, & Sato, 2006). A file system can be mounted to any 

location in the file system hierarchy even while the kernel is running. Once the file system is 

mounted then any file system call made to that path is forwarded to the file system mounted at 

that location.  

The LFS has four main objects that are superblock, inodes, files, dentries (directories 

entries), and superblock. Each file on disk in Linux is represented by an inode data structure that 

stores all the information about the file. When a file is loaded in memory by a process the 

process information including the state of the file is found in the file data structure. This is an in-

memory only data structure. Dentry objects are used to link inodes with their parent directory. 

The dentry cache is used to quickly find an inode given a path. Finally, the superblock object 

contains the information about the mounted file system.  

struct file_operations { 

loff_t (*llseek) (struct file *, loff_t, int); 

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 

ssize_t (*write) (struct file *, const char _user *, size_t, loff_t *); 

}  

Figure 3. Portion of the File operations struct. 

Each data structure has a corresponding “operations” structure that contains a list of 

pointer functions. It is those operations that comprise the VFS API. For example, the file data 

structure has a corresponding file_operations data structure that defines the operations that can 

be performed on the file object. A portion of the file_operations struct is presented in figure 3 

below. The llseek, read, and write operations are three of the available operations for the file 

object. The mounted file system does not need to implement all operations for all file system 

objects if it does not need to support those operations. However, some operations such as the 
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mount and unmount operations for the superblock object are required since the file system 

cannot be mounted without these operations.  

How Tracefs Works 

Tracefs is a stackable pass-through file system (Aranya, Wright, & Zadok, 2004). It is 

part of the file system translator (FiST) project (FiST: Stackable File System Language, 2014). A 

stackable file system such as tracefs uses two locations in the file system. Usually one is called 

upper and the other lower. Sometimes the lower location is referred to as hidden. Tracefs mounts 

itself to a configurable predefined location in the file system (the upper location), and 

implements the VFS API operations. So every file system call to the upper location is received 

by the VFS that in turn routes the call to tracefs, since it is the file system that is mounted at that 

location.  

Once a system call is received by tracefs it logs that call and its parameters, and then it 

makes the same exact call on the lower location. This lower path is part of another file system 

that is usually the default file system or the file system under study. Then tracefs captures the 

return value for the call it made to the lower path and it forwards that return value to the original 

caller. So in essence tracefs receives a system call, logs it, then forwards it to the “actual” file 

system, receives the reply from the file system, and finally forwards it to the caller. Figure 4 

shows the structure of tracefs relative to the kernel and user space and figure 5 shows a snippet 

of code for the write VFS call named tracefs_write. Additional comments have been added to the 

code to describe what each portion of the code is performing.  

For example, if tracefs is mounted to /root/upper and there is a program that made a 

system call to create the file at this path: /root/upper/newfile.txt. The system call goes to the VFS 

that determines that tracefs is the mounted file system at that path and calls the VFS create 
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function implemented by tracefs. Tracefs then logs that call and then issues a VFS create file call 

to the lower path: /mnt/lower/newfile.txt. The virtual file system determines that the default file 

system is mounted at that path and calls the create function for the default file system that creates 

the file at the lower path. Tracefs then receives the return value from the default file system, and 

then logs it and returns it to the original caller.  

 

Figure 4. Tracefs structure. 

ssize_t 

tracefs_write(upper_file) 

{ 

//log this call and the file parameters 

trace_write_pre(…); 

        //Get the lower file to perform the write operation on 

        VFS_write(lower_file);     

//log the return result for this call 

trace_write_post(…); 

      return; 

} 

Figure 5.General structure of a VFS method. 

Similarly, if a command is issued to read that same file: /root/upper/newfile.txt, the VFS 

will determine that tracefs is the mounted file system so it will invoke tracefs’s read VFS call. 
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Tracefs will log that call, issue the same command to the lower location, wait for the return 

value, log the return value, and then finally forward the return value to the original caller.  

The files in the upper location do not physically exist on dsik. They refer to the files in 

the lower location. Tracefs does not actually implement the drivers needed to access disk such as 

the case with common file system like ext3 and ext4. Instead it captures the calls made to the 

upper file system and forwards them to an existing file system by issuing the equivalent call on 

the lower path.  

Summary 

The literature discussed in this section presented that it is not sufficient to only consider 

the system calls when generating synthetic workloads. This is because current synthetic 

benchmarks do not consider the effects of cache on performance (Traeger, Zadok, Joukov, & 

Wright, 2008, Tarasov, Bhanage, Zadok, & Seltzer, 2011). One approach that addresses the 

cache issue is called codeMRI. However, codeMRI has some pitfalls such as requiring the source 

of the application being benchmarked. In addition, the authors state that the work still requires 

some additional improvements. 

Trace replay techniques can offer accurate replay of workloads but require traces in order 

to generate the workload and are highly inflexible since it is not possible to modify one or more 

workload parameters. This inflexibility does not permit the study of the workload’s performance 

under slightly varying conditions. 

In the next chapter a synthetic workload methodology is presented that consists of tracing 

an original workload using a tool called tracefs, parsing the trace using a tool created by this 

work that generates the configuration file for another tool created by this work called FileRunner 

that generates the equivalent synthetic workload. The variables in the configuration files can then 
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be easily adjusted to generate similar synthetic workloads, but with one or more varying 

workload parameter.  
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Chapter 3 

Methodology 

 

Overview 

The work described in this chapter follows a similar approach to the one outlined in 

Tarasov et al. (2012). The work in Tarasov et al. (2012) generated synthetic disk workloads from 

disk traces. As part of their process the authors created the chunking mechanism to model 

workload variation and was used in this work for the same purpose. The high level approach for 

this work is also similar to the high level approach in Tarasov et al. (2012) and consists of the 

steps shown in figure 6.  

 

Figure 6. Overall system design. 

The work presented in this chapter differs from the work in Tarasov et al. (2012) because 

it captures the traces at the VFS level instead of disk level. This means that there is a difference 

in the data being captured. Specifically, the VFS operations and their parameters were captured 
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instead of the disk level operations and their parameters. This work also captured the operations 

that were satisfied from the cache and not just from disk. Another difference in this work is how 

the trace points were used to generate the configuration files for the workload generation tool 

created by this work called FileRunner.  

The details of each step of the proposed approach are presented in the next subsections 

along with details about the individual tools that are used in this approach. The first two 

subsections discuss the purpose of using workload chunking across time and I/O size and the 

approach for choosing the proper chunk sizes. At this point in the methodology the chunk sizes 

are determined and used in the remainder of the process.  

The next subsection discusses the next step of the approach that describes the tools that 

are going to be used to generate the workloads that are considered the original workloads. These 

are the workloads that are being traced and the ones that this methodology is trying to regenerate 

synthetically.   

The following two subsections discuss the changes that are needed for tracefs to become 

compatible with the kernel version 3.2 and the changes needed for tracefs to capture the cache 

information. The latest version of tracefs was built for an older kernel version and is not 

compatible with current kernel versions. This section also includes a brief description of the VFS 

API and data structures that facilitates the understanding of how tracefs works and the changes 

that are needed to port tracefs to the Linux kernel version 3.2.  

Once tracefs is setup to work on kernel version 3.2 it is loaded into the kernel and then an 

original workload is run. Tracefs will generate a binary log file that is then converted into its 

textual format by a tool that comes with tracefs. This work has created a tool that parses the 

textual format of the trace into a data structure array called operations shown in appendix A. 
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Each entry in the operations array corresponds to one VFS call in the trace and contains all the 

information about that call.  

Once the traces have been parsed into the operations array, as the process outline above 

shows, the next step is to process the data in the array into the statistical matrix that will be used 

to generate the configuration files. This requires setting up feature extraction functions that will 

convert the data in the operations array into indices of the statistical matrix. As an example, a 

process ID of value 323 will correspond to index 1 in the process dimension of the statistical 

matrix. Further details on the construction of the feature extraction functions are provided in the 

next subsection.  

The next section describes the process of generating the configuration files for the 

synthetic load generation tool called FileRunner from the statistical matrix followed by a section 

that describes how FileRunner works. FileRunner is then run to produce the synthetic workload. 

At this point both traces for the original and synthetic workloads are available and the next step 

consists of the verification process that was used to validate this work and is described in detail. 

This includes the list of metrics used to compare the original workload and the synthetic 

workload generated by this work, and how these metrics are implemented in the workload 

generation process. In the following section a description of the resources being used and the 

environment where the work was generated and validated is described.  

Workload Chunking 

The work in Tarasov et al. (2012) realized that some workloads are not uniform and 

exhibit some variation across time. Workload variation is any change in the workload’s behavior 

that is indicated by a varying parameter of the workload. For example, the read/write ratio of the 

workload may change over time or the file size of the VFS calls can vary as the workload 
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progresses. Workload variations exist especially if the traces were collected over a long period of 

time such as hours or days (Tarasov et al., 2012). The next subsection describes why chunking is 

needed to model the variation followed by a section that shows how to determine the chunk size.  

Why Workload Chunking Works 

To generate an accurate synthetic workload the variation of the original workload needs 

to be incorporated in the synthetic workload. One approach to modeling the variation is by 

dividing the workload into smaller intervals that are small enough that the workload in that 

interval can be considered uniform (Tarasov et al., 2012), and then creating equivalent workloads 

for each interval and running them in succession. However, if the chunk size is too small it 

would become similar to the trace replay technique and it loses the flexibility that comes with 

synthetic benchmarks and would require a larger configuration file and data set.  

 
Figure 7. Sample workload. 

Figure 7 shows an example of how this chunking technique can model the variation in a 

workload. The figure shows one workload that starts with creating 10 files, then the workload 

performs 10 write operations on those files, followed by ten read operations on those files, and 

finally the workload deletes those files. Without considering chunking the statistical matrix in 

this case would show that there are 10 operations for each of the four VFS calls. The benchmark 
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may be configured to perform 10 iterations of creating a file, writing to it, then reading it and 

finally deleting it as opposed to having all of the create operations executed, followed by the 

write operations, then the read operations, and finally followed by the delete operations.  

Dividing the workload into smaller intervals and then generating the synthetic workload 

based on these intervals would result in a more accurate workload. Figure 8 shows the same 

workload divided into 4 chunks. Each chunk contains the 10 operations for a given VFS call. The 

benchmark can now be configured to run 4 workloads in succession starting with the workload 

that creates 10 files, followed by the workload that will perform 10 writes, followed by the read 

workload, and lastly the workload that will delete the files. In this manner the result is a synthetic 

workload that matches the variation of the original workload.  

 

Figure 8. Workload chunking. 

Determining the Proper Chunk Size 

The approach used by Tarasov et al. (2012) to determine the optimal chunk size is to start 

by selecting a large chunk size. The chosen starting chunk size was 100 seconds that was 

considered large enough starting point. The trace is then divided into 100 seconds intervals. For 

each interval the statistical matrix is computed. Then for each statistical matrix the configuration 

file is generated. FileRunner is then setup to run the configuration files in sequential order to 
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generate the synthetic workload based on the original workload characteristics. The performance 

metrics of the new synthetic workload is compared to the performance metrics of the original 

workload as outlined in the next section. If the difference in the metrics is less than 10% then the 

two workloads are considered equivalent and the chunk size is considered appropriate. Otherwise 

the chunk size is reduced and the process is repeated until an equivalent synthetic workload is 

produced.  

I/O Size Chunking 

To create a synthetic workload with a similar footprint as the original workload the 

synthetic workload needs to issue I/O operations with similar I/O size as the original workload. 

Thus, I/O chunking is the process defined in this work that enables the specification of the size of 

I/O operations. It is similar to the process of workload chunking by time. It enables modeling the 

workload’s I/O size variation without the need to track the I/O size for every operation.  

Determining the I/O chunk size is experimental as is the case for time chunks. Just like 

the time chunk the I/O chunk size is initially set at an arbitrary large I/O size of 1MB. The 

configuration files are generated with this setting and the synthetic workload is run. The total I/O 

size of the original workload and the synthetic workload are compared and if the difference is 

less than 10% the chunk size is deemed appropriate. Otherwise the I/O chunk size is decreased 

and the process is repeated with this new chunk size. 

The chunk size in the parser is represented by an integer variable called iochunksize and 

specifies the size of the chunk in bytes. As the parser is going through the trace it extracts the 

value of the size parameter for a given operation and then divides that value by iochunksize. This 

new value would be the index in the statistical matrix for the I/O dimension. This index is used 
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by the FileRunner when it is generating the file system operation and needs to determine the I/O 

size for that operation. The size is determined by the formula shown in equation 1. 

ሺ݅݁ݖ݅ݏ݇݊ݑ݄ܿ݋ ∗ ሻݔ݁݀݊݋݅ ൅ 	݁ݖ݅ݏ݇݊ݑ݄ܿ݋݅ ∗ ሺ݅ݔ݁݀݊݋ ൅ 1ሻ
2

 

Equation 1. Formula for determining I/O size from I/O index. 

The following example illustrates how reducing the chunk size produces a more accurate 

I/O footprint. Even though the process starts with 1MB and gradually reduces the I/O chunk size 

until the desired accuracy is achieved this example chooses the values 1000 and 100 as the two 

I/O chunk sizes to illustrate how the reduction of the I/O chunk size affects the I/O footprint. So 

if the size of an operation in the original workload is 1800 bytes and the value of iochunksize in 

the parser is set as 1000 bytes then the parser would calculate the I/O index to 1800 / 1000 = 1. 

So when FileRunner needs to generate the I/O size from the I/O index it uses the formula 

presented in equation 1 and that would result in a value of (1000 * 1 + 1000 * (1+1)) / 2 = 1500 

bytes. Reducing the value of iochunksize in the parser to 100 would result in the index of 1800 / 

100 = 18. Then FileRunner using the formula in equation 1 would result in an operation with an 

I/O of (100 * 18 + 100 * (18+1)) / 2 = 1850 bytes.  

Setting up Benchmarks to Generate the Original Traces 

While FileRunner was used to recreate the workloads from the given traces, other 

methods are needed to generate original workloads to produce those traces. It is also preferred to 

produce a variety of original workloads with varied workload characteristics to ensure that the 

methodology proposed in this work can produce equivalent workloads to these generated traces.  

 One approach for generating an original workload is to replay traces that are collected 

from live servers (Anderson et al., 2004, Tarasov et al., 2012). This work used another approach 

that created original workloads using synthetic benchmarks. This approach is commonly used 
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among studying file system performance (Traeger, Zadok, Joukov, & Wright, 2008). The survey 

on file system benchmarking published by Traeger, Zadok, Joukov, and Wright (2008) states that 

29 of the surveyed papers used Postmark to generate the synthetic workloads. Postmark creates 

workloads that are similar to that of mail and ecommerce servers. Therefore, Postmark was used 

in this work to generate an original workload using its default configuration. The default 

configuration generates files ranging from 512 bytes to 10,240 bytes. The average I/O of each 

operation is 4,096 bytes. Postmark issues the workload on the directory that it is launched in. So 

in the terminal a command was issued to change the directory to the directory where the tracefs 

logs the file system calls and Postmark is launched. Once launched the number of transactions 

was set as 3,500,000 and then the run command was issued. This produced a workload that ran 

approximately 5 minutes with 1,748,488 create and delete operations, 5,111,815 write 

operations, and 3,890,374 read operations.  

In addition to using Postmark this work used FileBench that is also used in various works 

to study file system performance (Kaiser, Meister, Hartung, & Brinkmann, 2012, Ahmad, 2007). 

A FileBench run consists of a setup stage and a run stage. In the setup stage the initial files and 

file sets are created. This is followed by the run stage that creates the workload. For the purposes 

of this work FileBench was modified to run a script that issues a command to tracefs to start 

tracing file system operations. This occurred after the setup stage and before the run stage. This 

way the collected traces did not capture the file system operations of the setup stage.  

FileBench has various workload personalities that are provided with the FileBench 

installation. This work used three of these workload personalities to generate 3 original 

workloads. The three personalities include workloads that mimic a web proxy, a file server, and 

finally a web server. 
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The web proxy workload was setup to run for 300 seconds and to target the same 

directory that tracefs logs the file system calls. Appendix F shows the complete workload 

definition that defines 5 threads to execute the following operations in sequence: delete file, 

create new file, write to that new file, and then read it five consecutive times. 

The web server personality was setup to run for 300 seconds and to target the same 

directory that tracefs logs the file system calls. Appendix G shows the complete workload 

definition that starts by creating 1000 files with content and one empty file that is referred to as 

the log file. Then 5 threads are created to execute the workload. Each thread picks a file from the 

initial 1000 files and then performs a read on that file 10 times in a row. Finally, the thread 

would append a variable sized text into the log file. The write mean size is 16kb.  

The file server workload was setup to run for 300 seconds and to target the same 

directory that tracefs logs the file system calls. Appendix H shows the complete workload 

definition that starts by creating 1000 files and allocating content for 80 percent of those files. 

Then 5 threads are created to execute the workload. Each thread first creates a new file and adds 

it to the file set. Then it writes to that file. Next, each thread picks another file from the file set 

and appends more content to it. They then perform a read on that file. Finally, the thread would 

delete that file. 

The different Postmark and FileBench workloads will have different workload 

characteristics, but their workloads will be uniform as they are run. In other words, there will be 

no variation in the workload as it is executing. To validate the work against modeling workload 

variation a C application was created by this work to create an original workload with varying 

workload characteristics. Its workload consisted of creating a number of files, write to those 

files, then read those files, and finally delete those files. The application had global parameters 
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that made it possible to configure the number of files to create, the average file size, the average 

I/O, and the number of I/O operations. Although the C application produced a workload that may 

not correspond to a live workload it provided an original workload that varied across time and 

that was used in the validation process to validate workload variation modeling.  

The different methods described above generated a variety of original workloads that 

were used in the validation process. The overall evaluation section describes the context for the 

use of these workloads and their role in the validation of the methodology.  

Setting up Tracefs to Capture Traces 

Porting Tracefs 

The latest version of tracefs was released in 2007 for the Linux kernel version 2.6.17.13 

and is not compatible with the current kernel releases. One of the issues is that the VFS 

operations in current kernel versions have different signatures than the ones in the kernel version 

2.6.17.13. This caused compilation issues for tracefs. Figure 9 shows a signature example of a 

VFS operation for kernel version 2.6.17.13 and kernel version 3.2.0-68-generic. These changes 

caused compilation issues and needed to be addressed. Another issue with the latest version of 

tracefs was that it used deprecated functions. For example, the read VFS call in tracefs used the 

deprecated method generic_file_read.  

fsync(file_t *file, dentry_t *dentry, int datasync) 

fsync(file_t *file, loff_t start, loff_t end, int datasync)  

Figure 9. Difference between VFS method signatures between two kernel versions. 

To address the compilation issue due to changes in the VFS API another tool called 

wrapfs was used. Wrapfs is a stackable file system just like tracefs except it has no tracing 

functionality. Wrapfs is maintained as part of the kernel so it is updated as the kernel changes. 

Similar to tracefs, wrapfs intercepts the VFS API calls, forwards them to the lower file system, 

retrieves the response, and forwards the return result back to the original caller. 
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Figure 10 shows the fsync VFS call for both tracefs and wrapfs. It demonstrates the two 

issues discussed above. The first issue is the different method signatures and the second issue is 

the use of a deprecated function Fsyn_on_lower_file_old in tracefs while wrapfs uses the new 

function Fsyn_on_lower_file_new. In addition, the figure shows that the remaining difference 

between the two is the tracing code that only exists in tracefs and consists of two method calls 

Log_call_and_parameters and Log_return_value.  

wrapfs_fsync(file_t *file, dentry_t *dentry, int datasync) 

{ 

        Determine_lower_file(); 

        Fsyn_on_lower_file_new();   

} 

tracefs_fsync(file_t *file, loff_t start, loff_t end, int datasync) 

{ 

Log_call_and_parameters(…); 

        Determine_lower_file(); 

        Fsyn_on_lower_file_old();   

Log_return_value(…); 

      return; 

} 

Figure 10. Fsync method structure for wrapfs and tracefs. 

wrapfs_fsync(file_t *file, dentry_t *dentry, int datasync) 

{ 

Log_call_and_parameters(…); 

        Determine_lower_file(); 

        Fsyn_on_lower_file();   

Log_return_value(…); 

      return; 

} 

Figure 11. Final working version of fsync method with tracing functionality 

To produce a working version of any given tracefs VFS call the tracing code was inserted 

into the corresponding wrapfs VFS call. The result of this process on the fsync function is shown 

in figure 11. This method resolved the compilation issue due to the invalid method signatures. It 

also resolved the issue of using deprecated methods since these methods are updated in wrapfs. 

The result is a working version of tracefs in current kernels.  
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Capturing Cached Operations 

The work in Agrawal, Dusseau, and Dusseau (2008) and Tarasov, Bhanage, Zadok, and 

Seltzer (2011) stated that the different lower level function calls that satisfy a given system call 

have a different performance footprint. For instance, system calls that are satisfied by the cache 

perform faster than the system calls satisfied from disk. Chapter 2 discussed the experiment in 

Tarasov, Bhanage, Zadok, and Seltzer (2011) that illustrated the effect of cache on the workload. 

The result was a speedup in performance by a significant factor.  

In order to generate representative workloads this work generated synthetic workloads 

with the same footprint as the original workload. This entailed accounting for the cache. So it 

was important to be able to determine from the traces the VFS calls that are serviced from cache 

and the calls that are serviced from disk. This information is then used in the workload 

generation process that is discussed in subsequent sections.  

To capture the operations that are satisfied from the cache tracefs was setup to use the 

address space operations that are provided in the kernel. The address space operations map a 

physical file that is on disk to memory. Tracefs has an option that can be supplied when 

mounting it to specify whether to use memory mapped operations or not, but these operations are 

not compatible with the kernel version 3.2. Thus the address space operations in tracefs were re-

implemented to be compatible with the kernel version 3.2.  

Without using the address space operations when a read system call is issued the tracefs 

VFS read method issues a vfs_read call on the lower file. The underlying file system handles the 

call that fetches the file from cache or from disk. This information is not available for tracefs. 

When using memory mapped operations the read method in tracefs will replace the vfs_read call 

to the lower file system with the generic read function called do_sync_read that is provided by 
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the kernel. If the file is in the cache the do_sync_read method returns the data from the cache, 

otherwise it issues a call to the VFS address space operation readpage.  

The readpage method is part of tracefs and contains tracing code just like the other VFS 

operations in tracefs. This method determines the lower file and then issues a vfs_read call on it. 

It also maps the data read from disk that is returned from the vfs_read call on the lower file into a 

page in memory. The result is when a system call is issued on a file for the first time the vfs_read 

method calls the do_sync_read method that then issues a call to the readpage method to retrieve 

the file from disk. Both of these VFS calls contain tracing code so they will be present in the 

trace. The second time a read call is issued on the same file and the file is still in the cache the 

vfs_read method will call the do_sync_read method that will retrieve the call from cache and 

does not call the readpage method. So the lack of a readpage in the trace signifies a cache hit.  

Running and Tracing the Workload 

At this point the tracefs module was ready to be compiled and inserted as a module into 

the kernel to start capturing the traces. Tracefs takes two configuration parameters that 

correspond to the upper and lower directories. The upper directory is the directory that tracefs 

intercepts the calls, logs them, and then forwards the calls to the lower directory.  

After the tracefs module has been inserted into the kernel an original workload was then 

run. The original workload was configured to run on the upper directory so that all of its calls are 

traced. As the workload is run tracefs logs the calls into a file at a preconfigured location. Once 

the workload terminated a command was issued to tracefs to stop tracing and finalize the log file.  

Parsing the Log File and Extracting the Features from the Raw Data 

The data in the log files generated by tracefs are in binary format. For performance 

reasons tracefs does not convert the data being logged into their textual representation. For 
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example, an integer value of 123 does not have the same value as the text ‘123’. A tool that 

comes with tracefs, the log parser, parses the binary log file and produces the textual equivalent 

of the binary data. So the log parser converts the binary value 123 to the textual value ‘123’. 

Figure 12 shows the output of the log parser for a readpage VFS call along with the call’s return 

value. 

The first line of every file operation starts with the word BEGIN and contains the type of 

the file operation, OP_READPAGE or the readpage call in this case. The line also dictates 

whether this is part of the call (PRE_OP) or the return value (POST_OP). The last line for a 

given call starts with the word END. Every line in between contains some information about a 

parameter for the call.  

BEGIN: OP_READPAGE PRE_OP  

        UTime: 1393967326, 579074 

        INum: 536360  

      File name: /tmp/mmap.c 

        PID: 18213 

END: OP_READPAGE PRE_OP 

BEGIN: OP_READPAGE POST_OP   

        UTime: 1393967326, 579531 

        Return = 0 

END: OP_READPAGE POST_OP 

Figure 12. Trace output for read VFS call. 

In figure 12 the second line contains the information about the time of the call (UTime). 

Subsequent lines show that the operation is being performed on the file mmap.c, and the full path 

of the file is /tmp/mmap.c. Other relevant information includes the process ID that performed the 

call, and the data that is read from disk. 

The data in the trace file was used to populate the statistical matrix that was then used to 

generate the configuration files for FileRunner. The matrix is a six dimensional array of integers 

that are the time chunk dimension, process dimension, VFS call dimension, I/O size dimension, 

directory depth dimension, and the cached dimension. 
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The format of the data in the traces does not correspond directly to indices in the matrix. 

For instance, figure 12 shows that the time of the readpage operation occurred on “1393967326, 

579531”. This value has to be converted into an index along the time chunk dimension. This 

conversion is referred to as feature extraction. Similarly, the process ID for the readpage call 

would be converted to an index in the process dimension. For some dimensions all the data needs 

to be parsed and readily available in order to calculate the index. This is required for the cached 

dimension. For the other dimensions the index value can be calculated as the data is parsed. The 

feature functions are discussed next followed by a description of the tool that parses the trace file 

generated by tracefs. Finally this section ends with a discussion on the feature function for the 

cached dimension.  

Feature Functions 

The feature function for the time chunk dimension uses the number of chunks variable 

and the time of the first operation in an equation shown in equation 2. ‘t’ refers to the timestamp 

of the current operation and ‘t0’ refers to the timestamp of the first operation.   

t െ t0
#	of	chunks

 

Equation 2. Feature function equation for the time chunk dimension. 

IO	size
݁ݖ݅ݏ݇݊ݑ݄ܿ݋݅

 

Equation 3. Feature function equation for the I/O chunk dimension. 

The feature function for the I/O dimension is similar to the time dimension feature 

function. It divides the I/O size found in the trace by the preset I/O chunk value as shown in 

equation 3. The VFS call feature function uses VFS call name and searches a predetermined 

linked list for a matching string and then returns the corresponding number/index. Appendix B 

shows the operations and their corresponding index value. So for the readpage operation in 
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figure 12 the feature function returns the value 46. The feature function for directory depth 

counts the number of ‘/’ characters in the file path, subtracts 1, and then returns that number. So 

the string ‘/tmp/dir/file’ returns the value 2. 

The feature function for the process ID maintains a linked list of (process ID, index) pairs 

and an index counter variable. The index counter variable starts with the value 0. Whenever a 

process ID is encountered from the trace the feature function checks to see whether the process 

ID exists in the linked list. If it exists then the index value of the linked list entry is returned. 

Otherwise, a new entry is added to the linked list that consists of the process ID and the current 

index counter. The value of the new index is returned. Afterwards, the index counter is 

incremented by one. So the first process ID gets assigned the index 0 and the following process 

ID gets assigned the index 1 and so on.  

The feature function for the cached dimension requires all the data to be parsed. The next 

section describes the process of parsing the trace file followed by the description of the feature 

function for the cached dimension. 

Parsing the Log File 

This work created a tool that parses the file generated by the log parser and for each 

operation found in the trace an entry is added to the operations array. The details of the 

operation data structure is shown in appendix A. The tool reads the file line by line and when it 

encounters a line that starts with the word BEGIN it will create a temporary operation variable. 

That line will also contain the VFS call. Figure 12 shows a line starting with the word BEGIN 

and the operation is the readpage method.  

The tool then parses the following lines and for every line the tool will first determine the 

type of data that line contains by string matching the beginning of the line. Then it will extract 
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the value in that line into the corresponding entry in the temporary operation variable.  For 

example, the first line after the BEGIN shown in figure 12 contains the string UTime. So the tool 

will extract the value “1393967326, 579531” into the timestamps variable of the temporary 

operation variable.  

The tool will parse the following lines until it encounters a line with the word END. Once 

END is encountered it will add the temporary operation variable into the operations array. The 

parsing continues until the end of the trace file is reached. The result of the tool is an array 

containing operation, hereon called the operations array. Each entry in the operations array 

corresponds to an entry in the log file that is one VFS call.  

Determining the Cached Operations 

In the log parsing step above the cached value for the read operations is always set to one 

(i.e. cached). The proper value is determined after parsing is complete when all the operations 

are parsed. This is because a read call is satisfied from cache only if no readpage call for the 

same file exists. If a readpage call for the same file exists then the read operation was satisfied 

from disk and the cached value for the read operation needs to be set to 0. 

This process for determining the cached value maintains a linked list consisting of entries 

that are comprised of the index of the read in the operations array and the file’s inode number. 

The inode number uniquely identifies a file.  

So after the trace file has been parsed into the operations array a loop is performed on 

that array. For every iteration it will check to see if the operation is a read call or a readpage call. 

If it is a read call it will first check to see if the inode number exists in the linked list. If it does 

not it adds a new entry with the inode number and the current index of the read operation.  
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When the loop encounters a readpage call it will search the linked list for the last entry 

that contains the inode number. Once a matching entry is found it will retrieve the index number 

for that entry. The index number corresponds to the entry in the operations array for the read 

call. The algorithm will set the value of the cached variable for the read operation to 0. 

Calculating Additional Workload Data Characteristics 

In addition to collecting data on individual file system calls the parser collects data on the 

frequency of repeat write and read calls to the same file. Some workloads such as web server 

workloads perform read calls on the same set of files. They also perform the write calls on one 

log file. Having this information and providing it to FileRunner will allow FileRunner to execute 

a workload similar to the original workload by maintaining the same repeat frequency as the 

original workload. For original workloads that do not perform repetitive read or write operations 

on the same file they will have a write and read frequency of 1. 

void PostProcess(operation * ops) { 
    for (int index = 1; index < nops; index++) { 
        if (ops[index].op == 34) 
            totalwrite++; 
        else if (ops[index].op == 35)   totalread++; 
        else   continue; 
        int i = index - 1; 
        operation * op = &ops[index]; 
 
        while (i-- >= 0) { 
            if (ops[i].inum == op->inum && ops[i].op == op->op) 
                if (op->op == 34) writeexisting++; 
                if (op->op == 35) readexisting++;                 

 
              if (ops[i].inum == op->inum && (ops[i].op == 4))    

break; 
 
          } 
      } 
      write_frequency = (totalwrite) / (totalwrite - writeexisting); 
      read_frequency = (totalread) / (totalread - readexisting); 
    } 

Figure 13. Determining the write and read repeat frequencies. 
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After the parser has parsed all the file system operation information it loops through these 

operations to determine if any of the write operations have occurred on a file that a previous 

write operation has happened. The algorithm for this process is presented in figure 13.  

The algorithm consists of looping through all of the workload operations and checking if 

the operation is a write operation. If it is not it goes to the next operation. If it is then it enters 

another loop traversing the list of previous write operations and it checks to see if the operation 

is a write operation and if the inum number matches the inum number of the current operation. If 

it is then it marks the current write operation as a repeated write operation since it found a write 

operation on the same file. The algorithm keeps track of the total number of writes in the trace as 

well as the number of repeated writes. Then it determines the repeat write frequency of the 

workload by dividing the total number of write calls by the difference of the total number of 

write calls and the repeated write calls.  The algorithm follows the same procedure for 

determining the read frequency. Both the write and frequency values are stored in global 

variables that are later outputted into the configuration file for FileRunner.  

Populating the Statistical Model 

At this point the parsing is complete and the indices for each operation in the operations 

array are computed. A 6 dimensional integer array that is referred to as the statistical matrix is 

used to represent the workload characteristics. The array dimensions are the time chunk 

dimension, the process dimension, the operation dimension, the I/O dimension, the directory 

depth dimension, and the cached dimension. 

Some of the dimensions have a fixed size while others vary depending on the trace data 

or chunking size. The number of VFS calls is always fixed and has the size of 52 as there are 52 

VFS operations that are shown in appendix B. So the operation dimension has a size of 52. The 
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size of the cache dimension is 2 for the 2 possible values: cached, not cached. The size of the 

process dimension is the number of unique process IDs found in the trace. So this will vary based 

on the number of active processes found in the trace. The size of the time chunk dimension and 

the I/O size dimension are predetermined and are discussed in the workload chunking sections. 

The size of the directory depth dimension is the maximum directory depth size for a file or 

directory found in the trace. Using the known sizes for the statistical matrix the 6 dimensional 

array is created and initialized by setting the value in every cell to zero.  

After the matrix is initialized a loop is performed on the operations array. At this point 

the feature functions have been applied to the raw data and converted to indices along the 6 

dimensions. For example, if the file path was “/tmp/tmp2/file.txt” then the entry in the 

operations array would contain the value 2 indicating the subdirectory level of the file. If the 

operation was a read operation then based on Appendix B the value of the operation index would 

be 35. So for every operation found in the trace the value of the cell in the matrix that 

corresponds to the indices of the operation is incremented by 1.  

An example of the process of converting the raw data into indices and incrementing the 

statistical matrix is shown in figure 14. The figure assumes only three workload characteristics 

that are being tracked as opposed to the six that this work is tracking. The three characteristics 

are the operations (read/write), I/O size, and directory depth. The read operation is given the 

index of 0 and the write operation is given the index of 1. The figure shows the raw trace of one 

read operation on the file “/m/m.c” with an I/O size of 4096. The operation index is 0 since it is a 

read operation, and if the iochunksize is set as 2048 then the I/O index would be 4096 / 2048 = 2. 

The directory depth index is 1 since it is being performed on the first subdirectory. Once the 

indices are computed the statistical matrix is initialized with all cells having a value of 0. Then 
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for each trace point (only one is shown in this case) the value in the cell that corresponds to the 

indices (0, 2, 1) is incremented by one.  

 
 

Figure 14. The parsing process. 

Generating the Configuration File 

Configuration File Structure 

After parsing the trace file and generating the statistical matrix the parser generates the 

configuration file for FileRunner. The statistical matrix includes all the information about all of 

the file system operations present in the original workload and that information is written to the 

configuration file. A description of the structure of the configuration file is presented next 

followed by a section that describes the process of generating the configuration file from the 

statistical matrix.  

The configuration file consists of two sections: header and body. The header spans the 

first 4 lines of the configuration file and contains global workload values that includes the read 

and write frequencies, I/O chunk size, and the max directory depth value. These values are 

calculated during the parsing process and are stored in the parser’s global variables that is 

described in previous sections. A sample header for a configuration file is shown in figure 15 

that shows that the I/O chunk size is 512 bytes, a max directory depth of 2, a repeat write 

frequency of 2.2, and a repeat read frequency of 1.1. 
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IOChunkSize = 512 
DirDepthIndex = 1 
RepeatWrite = 2.2 
RepeatRead = 1.1 

 

Figure 15. Sample header for a configuration file. 

The body of the configuration file is comprised of one or more time chunks with each 

time chunk containing the operations that FileRunner will perform in that chunk. Each chunk 

definition starts with a line indicating the time chunk index. The format of this line is “TIndex = 

n” where n is a number indicating the time chunk index. This is followed by zero or more lines 

where each line defines an operation, its characteristics, and the number of iterations to perform 

that operation. The operation definition line consists of 6 comma separated values that 

correspond to a dimension in the statistical matrix. The first value indicates the process ID index, 

the second value corresponds to the operation index, followed by the directory depth value, then 

the I/O index, then whether the operation is cached or not, and finally by the number of iterations 

to execute the operation. Figure 16 shows a sample configuration time chunk.  

TIndex = 0 
0,19,0,0,0,10 

Figure 16. Sample time chunk. 

The first line “TIndex = 0” indicates the start of a time chunk definition. The TIndex 

value is 0 indicating that it is the first time chunk in the configuration file. The time chunk 

contains one operation definition that consist of 6 comma separated values and is 

“0,19,0,0,0,10”. The first value in that line indicates the process ID index that is 0. The second 

value is the operation index and it is 19. The value 19 indicates that it is a create file operation 

based on Appendix B. The third value indicates the directory depth. A value of 0 indicates that it 

is to be performed on the parent directory. The fourth value is the I/O index and this value will 

be 0 for all create operations. The cached index is also 0 and is not used in the case of the create 
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operation. The last value represents the number of times to perform the create operation and that 

value is 10.  

Generating the Configuration File 

The configuration generation process consists of two parts. The first part generates the 

header and simply outputs the values of the global variables that are iochunksize and the write 

and read frequency variables. Also the header outputs the size of the directory depth dimension. 

The second part consists of looping through the elements of the statistical matrix that is a 6 

dimensional array, and adding a line for each cell value that is greater than or equal to 1. The line 

would consist of the loop indexes and the value of the cell. Figure 17 shows the pseudo code of 

the algorithm. 

Void GenerateConfigFile () { 
  

    //Generate the header 
    Write  ("IOChunkSize = ",  iochunksize);  
    Write  ("DirDepthIndex = ", mdim.dirdepth); 
    Write  ("RepeatWrite = ",  writefrequency); 
    Write  ("RepeatRead = ",   readfrequency);   
    //Generate Body 
    Loop through time dimension(tindex) 
      Write "TIndex = ", tindex); 
      Loop through processes dimension (pindex) 
        Loop through I/O dimension (ioindex) 
          Loop through operations dimension (opindex) 
            Loop through dir depth dimension (ddindex) 
              Loop through cached dimension(cindex) 

   value = get_matrix_cell_value()               
         if (value != 0)  
Write (pindex, opindex, ddindex, ioindex, cindex, value) 

Figure 17. Configuration file generation process. 

FileRunner 

FileRunner is the load generation tool created by this work that takes as input a 

configuration file that contains all the data that characterizes an original workload and produces 

an equivalent synthetic workload based on that input data. A FileRunner run consists of three 
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stages that consists of parsing the configuration file, data structure initialization and file system 

setup, and finally the run stage that creates the synthetic file system workload. In the next section 

a description of the parsing stage is presented. This is followed by a section that describes the 

data structures that are required to manage the files created by FileRunner along with how these 

data structures are updated. Next, a description of the setup stage that creates the initial state of 

the file system. Finally, a description of the run stage is presented.  

Parsing Stage 

The first step in this stage is to parse the first four lines in the configuration file that 

constitutes the header and saves the I/O chunk size, directory depth, and the read and write repeat 

frequencies into the following global variables: iochunksize, maxdirdepth, repeatread, and 

repeatwrite. The parser then goes through the list of file operation definitions and saves each line 

into the operations array where each element is of type struct called operation shown in figure 

18.  

typedef struct { 
    long tindex; 
    long pindex; 
    long opindex; 
    long cindex; 
    long ioindex; 
    long ddindex; 
    long iters; 
} opinfo; 
 

Figure 18. Operation struct. 

As FileRunner is parsing the configuration file it notes the different values for the I/O 

size index and saves these unique values into an I/O array. For example, the workload described 

in figure 19 has the following unique I/O values: 0, 100, 300, and 400. An array of integers 

called the iosizesarray containing these values is created and the total number of unique values is 

also saved in a separate global variable called uniqueIOcount that has a value of 4. 
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IOChunkSize = 2048 
DirDepthIndex = 3 
RepeatWrite = 1 
RepeatRead = 1  
TIndex = 0 
0,19,0,0,0,10 
0,34,0,300,0,10 
0,35,0,400,0,10 
0,22,0,0,10 
TIndex = 1 
0,19,0,0,0,10 
0,34,0,300,0,10 
0,35,0,400,0,7 
0,22,0,0,10 
TIndex = 2 
0,19,0,0,0,10 
0,34,0,100,0,6 
0,22,0,0,10 

Figure 19. Sample workload to illustrate the IO array. 

File Indexers 

When a file is created by FileRunner it can be written to or deleted at a later stage in the 

workload. Furthermore, when FileRunner encounters a delete operation it needs to be able to 

choose a file that is on disk and delete it, or if a file is deleted from disk it needs to know that it 

can no longer perform any file system operation such as reading from it or writing to it. 

Additionally, when a file undergoes a write operation it can be later used to be read from. So 

FileRunner needs to keep track of the size of the files to be able to issue read calls to files with 

appropriate size so that it does not issue a read operation with a size larger than the size of the 

file. FileRunner needs to also track the files’ location relative to the main directory so it can issue 

file system operations on files with the desired directory level. Finally, if the read or write 

frequencies in the header are greater than one then FileRunner needs to be able to issue repeat 

reads and writes on files to ensure it generates a workload with the same read and write 

frequencies.  

So throughout the setup stage and during the workload generation stage FileRunner needs 

to keep track of the files that are created, or available to be written to or deleted, and the files that 
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are available for reading along with the size of each file. To do that FileRunner uses one data 

structure for storing references to all files called the file set and 3 other data structures called file 

indexers that contains references to the files in the file set. The first file indexer contains the 

references to the files that can be written to called write indexer, the second one contains 

references to the files that can be read called read indexer, and the last one contains references to 

the files that can be deleted called delete indexer.  

The file set is a one dimensional array of the file struct shown in figure 20. The data 

structure consists of two variables. The first is a number called fd that refers to the index of the 

file in the file set. The fd value of the first file created by FileRunner is zero and each subsequent 

file created would have an fd value equal to the fd value of the previously created file plus one. 

So the second file created would have an fd value of 1 and the third an fd value of 2. This is 

accomplished using a file counter that counts the number of files already present in the file set. It 

is incremented every time a new file is created and that value is assigned to the fd variable. The 

second variable is a character array that stores the full path of the file.  

typedef struct { 
      long fd; 

char fullpath[100]; 
   } file; 

Figure 20. File struct. 

The write and delete indexers have the same structure and are composed of two parts. 

The first part is the main array where each element of the array is an array of integers. In other 

words, it is an array of integer arrays. The size of the main array is the value of the maxdirdepth 

variable found in the header of the configuration file. Based on figure 19 the size of the main 

array is 3. Initially, each of the three subarrays are of zero size. The second part of the write and 

delete indexers is called the position array and is an array of integers. The size of the position 

arrays is the value of maxdirdepth. Whenever a file is needed for a write or delete operation the 



56 
 

position arrays are used to reference the indexers and retrieve the fd value for a file in the file set. 

The usage of the position arrays to access the fd values in the write and delete indexers is 

detailed later in this section. 

The read indexer is also composed of two parts. The first part is a two dimensional array 

of integer arrays. The size of the first dimension is the value of the maxdirdepth variable found in 

the header of the configuration file. Based on figure 19 the size is 3. The size of the second 

dimension corresponds to the value of uniqueIOcount that is determined in the parsing stage. 

Based on figure 19 the value of uniqueIOcount is 4 since there are 4 unique I/O indexes found in 

the workload that are: 0, 100, 300, and 400. Each cell in this 2 dimensional array contains an 

array of integers. Initially, those arrays contain no elements. The second part of the read indexers 

is a 2 dimensional integer array called the position array. The size of the first dimension is the 

value of the maxdirdepth variable. The size of the second dimension corresponds to the value of 

uniqueIOcount. The usage of the position array to access the fd values in the read indexer is 

detailed later in this section. 

IOChunkSize = 2048 
DirDepthIndex = 3 
RepeatWrite = 1 
RepeatRead = 1  
TIndex = 0 
0,19,0,0,0,2 
0,19,1,0,0,2 
0,19,2,0,0,2 
TIndex = 1 
0,19,0,0,0,1 
TIndex = 2 
0,34,0,300,0,1 
0,34,0,400,0,1 
0,34,1,300,0,1 
0,34,0,400,0,1 

Figure 21. Sample create workload.  

Figure 21 contains a sample workload and is used to illustrate how FileRunner utilizes 

the file indexers to track files. A detailed description of the process of how these file indexers are 

updated is described in the next section. There are three default rules for updating the indexers. 
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The first rule states that every time a file is created a new entry is added to the file set and then to 

the write indexer. The second rule states that every time a file is written it is added to the read 

indexer. Finally, the third rule states that whenever a file is read it is added to the delete indexer.  

The first time chunk in figure 21 issues 2 create operations on the main directory, 2 create 

operations at subdirectory level 1, and 2 create operations on subdirectory level 2. The second 

time chunk issues 1 create operation on the main directory. The resulting file set and write 

indexer data structures are shown in figure 21. Basically, for each create operation a new entry 

will be added to the file set. There are a total of 7 create operations that are reflected in the file 

set as shown in the figure. Since the first two create operations having fd values of 0 and 1 are 

created on the main directory, or directory level of 0, these values are added to the first array, or 

the array at index 0, of the write indexer. The second 2 create operations are performed on the 

subdirectory of the main directory, or subdirectory level of 1, these two new files with fd values 

of 2 and 3 are added to the second array of the write indexer, or the array at index of 1. Next, 

when the third operation definition is executed two additional files will be added to the write 

indexer’s third array or index of 2. These two files have fd values of 4 and 5. Then, the second 

time chunk performs one create operation at the main directory so a new file with an fd value of 

6 is created and added to the first array of the write indexer as shown in figure 22. 

 
Figure 22. File set and write indexer. 
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As indicated earlier the parsing stage will create an array that stores the unique values of 

the I/O values called the iosizesarray and uniqueIOcount will contain the size of that array. 

Based on figure 21 the iosizesarray contains three values that are 0, 300, and 400 and the value 

of uniqueIOcount will be 3. Also, based on the workload in figure 21 the first dimension of the 

read indexer will be maxdirdepth or 3 and the value of the second dimension will be the value of 

uniqueIOcount or 3. 

The third time chunk shows four write operations definitions. The first write definition 

issues a write on directory level 0 with an I/O size of 300 times the iochunksize. Whenever a 

write operation needs to access a file it checks the write indexer to get an index of the file in the 

file set. In this case the write needs to be performed on the main directory so it accesses the fd 

value from the first array of the write indexer. Since this is the first write operation on that 

directory it will grab the first fd value in the first array. Based on figure 22 that fd value is 0. 

Once the write operation is completed it will add that fd value to the read indexer. Since the 

write size has an index of 300 the write operation will determine the index of the value of 300 in 

the iosizesarray. Based on figure 21 that value is 1. So the fd value of 0 is added to the 2 

dimensional array of the read indexer at the index [0,1]. This is reflected in figure 23.  

 
Figure 23. Read indexer. 

The second operation definition specifies a write on the main directory and of I/O size 

400 times the iochunksize. Since this is the second operation on that directory the write operation 
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will access the second fd value in the first array of the write indexer. The second fd value is 1. 

The index of 400 in the iosizesarray is 2. So the fd value of 1 is added to the read indexer at the 

following index: [0,2]. 

The third operation definition specifies a write on the subdirectory level 1 and of I/O size 

300 times the iochunksize. Since this is the first operation on that subdirectory the write 

operation will access the first file in the second array. This file would have the fd value of 2. The 

index of 300 in the iosizesarray is 1. So the fd value of 2 is added to the read indexer at the 

following index: [1, 1]. Similarly, the fourth operation will add the fd value of 6 to the read 

indexer at the array located at index [0, 2]. The read indexer after the write updates is shown in 

figure 23. 

The mechanism of tracking the files that were last accessed in the write indexer involves 

the second part of the write indexer data structure called the position array. As presented earlier 

this data structure is an array of integers and has a size of 3 since the value of maxdirdepth is 3. 

Initially, all the three values in this array are zero. So when the first write operation in the third 

time chunk of figure 21 needed a file that is located in the main directory it checked the value of 

the position array at index 0. That value was 0 since all values are initially set to 0. So it grabbed 

the fd value in the first array of the write indexer. That fd value in the write indexer is 0 as shown 

in figure 22. So the file set was accessed using the index 0 that referenced the physical file with 

the path “/0.txt”. Then after the write operation the position array at index 0 is increment by 1.  

The second operation needed a file on the main directory. So the value of the position 

array at index 0 is retrieved and that value is 1. So it grabbed the second fd value in the first array 

of the write indexer. That value is 1 as shown in figure 22. Then it incremented the position array 

at index 0 by 1. That value is now 2.  
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The third write operation required a file at the first subdirectory level, or subdirectory 

level 1. The position array was accessed using the second element, or index 1. That value is 0. 

The second array in the write indexer array was accessed at index 0. As shown in the figure that 

fd value is 2. So the file set was accessed at index 2 and the file at that index has the path 

“/m/2.txt”.  

When the fourth operation needed a file on the main directory it will check the value of 

the position array at index 0 and that value is 2. So it grabbed the third fd value in the first array 

of the write indexer. That fd value is 6 as shown in figure 22.  

Updating the File Indexers 

The default method of updating the file indexers is as follows. Once a file is created it is 

added to the write indexer signifying that a file is created and ready to be written to. Once a file 

is written to it is added to the read indexer signifying that it is ready to be read. Once it is read it 

is placed into the delete indexer until it is finally deleted. There are however exceptions to these 

default rules. To illustrate the default method and the exceptions for updating the file indexers a 

sample workload is presented in figure 24.  

IOChunkSize = 2048 
DirDepthIndex = 3 
RepeatWrite = 1 
RepeatRead = 1  
TIndex = 0 
0,19,0,0,0,10 
0,34,0,1,0,10 
0,35,0,1,0,10 
0,22,0,0,10 
TIndex = 1 
0,19,0,0,0,10 
0,34,0,1,0,10 
0,35,0,1,0,7 
0,22,0,0,10 
TIndex = 2 
0,19,0,0,0,10 
0,34,0,1,0,6 
0,22,0,0,10 

Figure 24. Sample workload to illustrate the file indexers updates. 
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In the first time chunk 10 files will be created as specified in the first line and these 10 

files will be added to the write indexer. The second line specifies 10 write operations that 

FileRunner will execute on those same 10 files and then adds them to the read indexer. The third 

line performs the 10 reads and adds these files to the delete indexer that will finally be deleted in 

the last line of the first time chunk. This illustrates the default option for updating the file 

indexers. 

The second time chunk creates 10 files and adds them to the write indexer. The second 

line will write 10 files, but only 7 of those files will be placed into the read indexer the remaining 

3 will be placed in the delete indexer. This is because the write operation performs a check to see 

if the number of read operations is less than the number of delete operations. If this is the case 

then it places the needed number of files in the read indexer and the remaining ones in the delete 

indexer. In this example the write operations will place 7 files into the read indexer and 3 files 

into delete indexer. Later in the run stage the read operations will place the 7 files it reads into 

the delete indexer making the total number of files available for deletion 10.  

The create operation performs also performs a check to see if the number of delete 

operations are greater than the number of write operations. If they are then it places the needed 

number of operations in the write indexer and the remaining ones in the delete indexer. The third 

time chunk shows 6 write operations and 10 delete operations. In this case, the create operation 

will place 6 files into the write indexer and the remaining 4 into the delete indexer. Once the 

write operation completes there will be 10 available files for the 10 delete operations.  

There are also 2 other exceptions that override the default assignment of the file indexers 

and it is when the read and write frequencies are greater than one. To illustrate how the file 

indexers are updated when the frequencies are greater than 1 the sample workload in figure 25 is 
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used. In that workload the read and write frequencies are both set to 2. The value 2 for the write 

frequency indicates the half the write operations need to be performed on a file where a write 

operation has already been performed. In the figure the second line of time chunk 1 indicates that 

there are 10 write operations. What would happen here in the case of write frequency of 2 is that 

10/2 = 5 of those files are placed in the read indexer, the other 5 would be placed back in the 

write indexer so that they would be written to again. Similarly, the read operations would place 5 

files in the delete indexer, and the other 5 back into the read indexer so they can also be read 

again.  

IOChunkSize = 2048 
DirDepthIndex = 3 
RepeatWrite = 2 
RepeatRead = 2 
TIndex = 0 
0,19,0,0,0,10 
0,34,0,1,0,10 
0,35,0,1,0,10 
0,22,0,0,10 
TIndex = 1 
0,19,0,0,0,10 
0,34,0,1,0,10 
0,35,0,1,0,7 
0,22,0,0,10 
TIndex = 2 
0,19,0,0,0,10 
0,34,0,1,0,6 
0,22,0,0,10 

Figure 25. Sample workload with repeat frequencies more than 1. 

Overview of Creating the Initial State of the File System 

The sample input configuration for FileRunner presented in figure 26 shows that in the 

first time chunk 10 files are created. In the second time chunk 15 files are written to. The write 

frequency of value 1 indicates that each file is written to exactly once. This means that the file 

system contained at least 5 files before the run started because the workload so far has only 

created 10 files but has written to 15 different unique files. So in order to recreate the workload 
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synthetically the setup portion of FileRunner needs to create those 5 files before starting the 

workload.  

IOChunkSize = 2048 
DirDepthIndex = 3 
RepeatWrite = 1 
RepeatRead = 1  
TIndex = 0 
0,19,0,0,0,10 
TIndex = 1 
0,34,0,1,0,15 
TIndex = 2 
0,35,0,1,0,15 
0,35,0,2,0,15 
TIndex = 3 
0,22,0,0,15 
0,22,1,0,30 

Figure 26. Sample configuration file. 

The third time chunk contains two operation definitions. The first indicates that there are 

15 reads with I/O index of 1 and the second indicates that there are 15 reads of I/O index of 2. To 

be able to perform these read operations the files with the appropriate size need to be available 

on disk. So there needs to be 15 files with an I/O size of 1*2048 =2048 bytes, and another fifteen 

files with the size of 2*2048 = 4096 bytes. The second time chunk, have specified to perform 15 

writes with an I/O index of 1. This means that there are 15 files of size 2048 bytes available on 

disk. So the first read operation definition will be able to issue 15 reads using those files. 

However, the workload so far has not written 15 files with an I/O size of 4096 bytes. This means 

that these files were already available before the workload has started. So the setup process 

would have to create those 15 files with the appropriate size before the workload starts. 

The fourth time chunk contains 2 operation definitions. The first specifies 15 delete 

operations are performed on files at directory depth of 0, or the main directory. The second 15 

delete operations are performed on a directory depth of 1, or in a subdirectory of the main 

directory. For FileRunner to be able to issue the delete operations these file have to be available 

on disk. In the previous time chunk there are operation definitions that created fifteen files in the 
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main directory. So the first delete operation definition can issue the delete operations on those 

files, but since no files have been created by the workload in the subdirectory the setup portion of 

the FileRunner needs to create those 15 files in the appropriate location before starting the 

workload.  

So the setup stage determines the files that are needed by the run stage that are not 

created by the workload itself and then it creates those files.  For delete and write operations the 

file needs to be on disk and in the appropriate directory level. For the read operations the files 

need to be on disk, in the appropriate directory level, and with a size equal to or greater than the 

size of the read request.  

Process of Creating the Initial State of the File System 

The process of determining the files that need to be created before the run stage starts 

uses 3 data structures. The first tracks the files that need to be created and added to the write 

indexer and is an array of integers having the size of maxdirdepth. The value in each element of 

the array specifies the number of files to create at the corresponding directory level. Figure 27 

shows an example of this array having three elements. The first element indicates that three 

empty files need to be created at the root directory and a value of four in the second element 

indicates that four empty files need to be created in a subdirectory of the root directory. The third 

value 0 signifies that no files need to be created in the subdirectory level 2. This variable is 

called to-create-to-write. 

 

Figure 27. The to-create-to-write array. 
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The second variable tracks the files that need to be created and added to the read indexer 

and is a two dimensional array. The first dimension is the directory level index and the second 

dimension is the I/O index. The value in each cell of the two dimensional array specifies the 

number of files that need to be created at the corresponding directory level and with the 

corresponding size. This variable is called to-create-to-read. 

The third variable tracks the files that need to be created and added to the delete indexer 

and is a one dimensional array. It has the same structure as the to-create-to-write. The dimension 

corresponds to the directory level index and each element contains the number of files that need 

to be created at that directory level and added to the delete indexer. This variable is called to-

create-to-delete. 

Another set of temporary variables is needed as the algorithm parses the operation 

definitions and uses these values to update the to-create variables. They are 4 variables 

corresponding to the create, write, read, and delete operations. They contain the number of 

operations for the current time chunk and are referred to as the current-ops variables.  

The first variable is called current-creates and is a one dimensional array where the 

dimension is the directory level index and the values in each element of the array specifies the 

number of create operations at the directory level. The second variable is called current-writes 

and is a two dimensional array where the first dimension is the directory level index and the 

second dimension is the I/O index. The value in each cell of the two dimensional array specifies 

the number of write operations. The third variable is called current-reads and is a two 

dimensional array where the first dimension is the directory level index and the second 

dimension is the I/O index. The value in each cell of the two dimensional array specifies the 

number of read operations. The last variable is called current-deletes and is a one dimensional 
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array where the dimension is the directory level index and the values in each element of the array 

specifies the number of delete operations at the directory level. A high level description of the 

algorithm is presented next followed by an example that illustrates the process. Then the 

implementation details of the algorithm are presented.  

The process starts by going through the list of operations in each time chunk and storing 

the number of operations in the current-ops variables. Then the algorithm loops through the 

directory levels and checks to see if the number of create operations on each directory level is 

less than the number of delete operations on that directory level. If it is then it needs to create 

files to satisfy the delete requests. The setup stage performs the same checks for the write 

operations.  

The algorithm then goes through two nested loops. The first loop goes through the 

directory level indexes and the second loop goes through the I/O indexes and it checks to see if 

there are read operations on files that do not have a corresponding write operations. In other 

words it checks to see if the number of write operations at the directory level with a given size is 

less than the number of read operations at the same directory with the same size. If it is then it 

needs to create files on that directory level with that size to satisfy the read operations. 

This algorithm is illustrated using the sample workload provided in figure 28. The setup 

algorithm goes through the operations one time chunk at a time starting with the first time chunk. 

In the example in figure 28 there are 2 operation definitions in the first time chunk. The first 

creates 10 files and the second deletes 5 files. Both are on directory level 0. So the first portion 

of the algorithm updates the two current variables: current-creates and current-deletes. These 

two current variables are 1 dimensional arrays containing three elements because the directory 

depth value is 3. Upon going through the operations of the first time chunk the current-creates 
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variable’s first element gets set to 10 since there are 10 create operations on the directory level 

index of 0. Similarly, the first element of the current-deletes array gets updated to the value of 5.  

DirectoryDepth = 3 
TIndex = 0 
0,19,0,0,0,10 
0,22,0,0,5 
TIndex = 1 
0,22,0,0,4 
TIndex = 1 
0,22,0,0,5 

Figure 28. Sample workload to illustrate the file setup process. 

for (j = 0; j < dirdepth; j++) { 
//deletes 

       if (currentdeletes[j] > currentcreates[j]) { 
        currentdeletes[j] -= currentcreates[j]; 

currentcreates[j] = 0; 
  to-create-to-delete[j] += currentdeletes[j]; 
 
       } else { 

      currentcreates[j] -= currentdeletes[j]; 
        currentdeletes[j] = 0; 
       } 

 
     } 

Figure 29. Algorithm segment for the to-create-to-delete. 

FileRunner then goes into a loop that iterates through the directory level index. A 

segment of the algorithm showing this loop is presented in figure 29. In the first iteration where 

the index j is zero the current-deletes value is 5 while the current-creates has a value 10. The 

conditional is false so the current-creates at index 0 becomes 10 – 5 = 5, and the first element of 

current-deletes becomes 0. The algorithm continues to loop, but no values changes since the 

remaining values for the remaining arrays are zero. 

The algorithm goes into the second time chunk operation definitions and in that time 

chunk there is only one operation definition that is a delete operation on directory level 0 with 4 

iterations. The algorithm updates the first element of the current-deletes to 4. Then the algorithm 

goes to the second stage where the conditional evaluates to false again and the current-deletes 

first elements is set to 0 after the current-creates is updated and that becomes 5 – 4 = 1.  



68 
 

The algorithm now goes to the third iteration and updates the value of the current-deletes 

to 5 and it goes to the second stage. The conditional at that point evaluates to true which sets the 

value of the current-deletes at 5 - 1 = 4 and the current-creates to 0. Then it updates the to-

create-to-delete variable at index 0 to 4. Finally, it sets the value of the current deletes at index 0 

to 0.  

In summary, the workload specifies in the first time chunk that 10 files are created and 

then 5 of those files are deleted. This leaves 5 files available in the file system. The second time 

chunk deletes 4 of those files leaving one file. The third time chunk needs to delete 5 files, but 

there is only 1 file left. So the setup needs to create 4 files in order for the third time chunk be 

able to perform 5 delete operations.  

//writes 
docreate[j][k]->numwrite =  

docreate[j][k]->numwrite / cdata->writerepeat - 1; 
                    numwrites[j][k] += docreate[j][k]->numwrite; 
                    if (docreate[j][k]->numwrite > numcreates[j]) { 
                        docreate[j][k]->numwrite -= numcreates[j]; 
                        numcreates[j] = 0; 
                        docreate[j][k]->tocreateempty +=  

docreate[j][k]->numwrite - numcreates[j]; 
} else { 

              numcreates[j] -= docreate[j][k]->numwrite;     
} 

Figure 30. Algorithm segment for the to-create-to-write. 

The algorithm performs the exact same steps to update the to-create-to-write data 

structure. The only difference here is that the number of writes is divided by the write frequency. 

This is because when the write frequency is greater than 1 the run stage will put back into the 

write indexer some files to be written to again. For example, if the value of the write frequency is 

2 and there are 5 create operations and 10 write operations, then there is no need to add any 

values to the to-create-to-write data structure because during the run stage FileRunner will add 

10 / 2 = 5 files to the write indexer and there are already 5 files added due to the 5 create 

operations. This segment of the algorithm is shown in figure 30.  
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The algorithm does a similar check to update the to-create-to-read data structure. 

Basically, the algorithm, checks to see if for a given read operation there is one write operation 

matching the directory level index and the I/O index. If not it would add to the number of files 

required to the to-create-to-read data structure. The number of read operations is also divided by 

the read frequency. The segment of the algorithm that performs this check is shown in figure 31.  

docreate[j][k]->numread = docreate[j][k]->numread / cdata->readrepeat; 
if (docreate[j][k]->numread > numwrites[j][k]) { 

docreate[j][k]->numread -= numwrites[j][k]; 
numwrites[j][k] = 0; 
docreate[j][k]->tocreatewithcontent += docreate[j][k]->numread; 

} else { 
numwrites[j][k] -= docreate[j][k]->numread; 

} 

Figure 31. Algorithm segment for the to-create-to-read. 

After FileRunner has looped through all of the operation definitions for all time chunks it 

enters the last stage of the setup process. In this stage the FileRunner loops through all of the to-

create variables and creates the files on disk and updates the file indexers accordingly. This 

concludes the setup stage and FileRunner enters the run stage that is described in detail in the 

next section. 

FileRunner Run 

After the setup process is completed FileRunner issues a command to tracefs to start the 

tracing. To maintain workload variation FileRunner executes the operations for each time chunk 

in sequential order and for each time chunk FileRunner will first execute the create operations, 

then the write operations, followed by the read operations, and finally running the delete 

operations. This is done by looping through the operations array and executing all the create 

operations for the first time chunk. Then it resets the loop index and goes through the operations 

array and executes all the write operations for the first time chunk. Then it resets the loop index 

and goes through the operations array and executes all the read operations for the first time 
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chunk, and it does the same thing to execute the delete operations. Once all the delete operations 

for the first time chunk are executed the time chunk index is incremented. Then the process is 

repeated to execute the operations for the second time chunk in the same manner. The segment 

of this algorithm is presented in figure 32. Tindex is the time chunk index and curropindex is the 

current operation index.   

for (i = 0; i < nops; i++) { 
        if (tindex != ops[i]->tindex && curropindex == 22) { 
            currtindex = i; 
            curropindex = 19; 
            tindex = ops[i]->tindex; 
        } else if (tindex != ops[i]->tindex && curropindex == 19) { 
            curropindex = 34; 
            i = currtindex; 
        } else if (tindex != ops[i]->tindex && curropindex == 34) { 
            curropindex = 35; 
            i = currtindex; 
        } else if (tindex != ops[i]->tindex && curropindex == 35) { 
            curropindex = 22; 
            i = currtindex; 
        } 
} 

Figure 32. FileRunner algorithm for ordering the execution of operations. 

Each operation in the operations array has the required information to enable FileRunner 

to execute the appropriate file system operation. For instance, if the operation is a create 

operation it will call the create method passing it the directory level index and the number of 

iterations. The create operation first determines the base path based on the directory level index it 

is passed and the globally defined base path. If the directory level index value is 2 then the create 

method concatenates the base directory with two strings “000/”. If the base directory is “root” 

then the path becomes “/root/000/000/”.  

The create operation then goes into a loop and in each iteration it will create the full path. 

It does this by incrementing the file counter and then concatenating it to the base path and then 

finally adding the string “.txt” to the end of the path. So if the current file index is 11 the final 

path would be “/root/000/000/11.txt”. The create method will then create the file on disk, and 
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add the file either to the write indexer or the delete indexer based on the criteria discussed in the 

previous section.  

The write method takes 3 parameters that are the number of iterations, the directory level 

index, and I/O size as values. First, the write method creates a string of the size that is specified 

in the I/O size parameter. Then it goes into a loop and in each iteration it picks an index from the 

write indexer based on the provided directory level index, uses that index to get the file in the file 

set. Using the path defined in the file it writes to that file that string it created earlier. Finally, it 

adds the file index into either the read indexer, write indexer, or delete indexer based on the 

criteria specified in previous sections. 

The read operation takes in 3 parameters that are the number of iterations, the directory 

level, and I/O size as values. It goes into a loop and picks a file index from the read indexer 

based on the directory level index and the I/O size index. Then it uses the index to get the file in 

the file set. Using the path defined in the file it performs a read to that file. Lastly, it adds the 

index to the delete indexer. 

Finally, the delete operation takes in two parameters. The first is the directory level and 

the second is the number of iterations. It enters into a loop and in each iteration it grabs an index 

of a file from the delete indexer and then uses that index to get the file from the file set. It then 

uses the path defined in the file to issue a delete operation.  

Evaluating the Results 

So far the methodology has presented how to trace an original workload and use the 

collected traces to generate configuration files for FileRunner in order to generate a synthetic 

workload that is equivalent to the original workload. In this section a description of the process 

that was used to validate this work is presented starting with a description of how the results are 
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presented. This is followed by a description of how the measurements were captured and how the 

performance metrics were calculated. Finally, the overall evaluation process is described.  

Presenting the Results 

This approach was validated using the same metrics that were used by Tarasov et al. 

(2012). These metrics are throughput, latency, and I/O. In addition, this work validated that the 

cache contribution for the two workloads are similar. In their work the authors calculated the root 

means square (RMS) distance and the maximum distance for all the parameters and are presented 

as shown in figure 33. This work used the same method to validate all observed parameters. The 

authors also used graphs to show how closely the synthetic workload matched the original 

workload. One of the graphs in their work is shown in figure 34.  

 
Figure 33. Maximum emulation error and RMS distance for observed parameters. 
 

 
Figure 34. Read and writes per second for the original and synthetic workloads. 

Calculating the Workload’s Performance Parameters 

The throughput and latency data were extracted from the traces since the operations and 

their timestamps are logged in the traces. Throughput is calculated by dividing the number of 
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operations by the total time. The difference between the first and last timestamp for the operation 

in the trace determines the duration of the entire workload. The number of operations divided by 

the duration provides the overall throughput for the workload. The number of operations can be 

determined by summing all the cells in the statistical matrix. The latency for an individual 

operation can be calculated by subtracting the timestamp of the original call from return value. 

The two workloads are also validated in how they both make use of the cache. The cache usage 

information is already available in the statistical matrix. Specifically, this is found in the cached 

dimension of the statistical matrix. 

Overall Evaluation Process 

The work was validated on a single custom built machine. Specifically the machine had 

an Intel Core i5-4590 CPU, 8GB of ram, and a 1 TB hard drive. The operating system used was 

Linux with kernel version 3.2. The traces were run and collected on the same machine. The 

synthetic workloads were also run and traced on the same machine. The validation process starts 

by describing how the original workload is run and traced followed by how the synthetic 

workload is run and traced.  

The remainder of the validation process is split into two parts. The first part consisted of 

three experiments that used the C application created by this work. Each experiment validated a 

specific aspect of the methodology. The first experiment validated modeling workload variation. 

The second experiment verified that the work can produce a synthetic workload with an I/O 

footprint that matches the I/O footprint of the original workload. The third experiment validated 

that the work can produce a synthetic workload with the same cache behavior as the one 

produced by the original workload. The three experiments only validated one aspect of the work 

the remaining aspects where not validated.  
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The second stage consisted of running larger workloads that tested the methodology as a 

whole in addition to testing the scalability of the work. This included extracting performance 

metrics of the original workload such as operation latencies and throughput and comparing it to 

the performance metrics of the synthetic workload. 

As presented previously the work was validated by a variety of workloads to ensure that 

this work is capable of producing equivalent workloads for a diverse set of workloads. The list of 

workloads that this work used to validate the work is discussed in a previous section and includes 

one workload produced by Postmark, three workloads produced by FileBench, and a workload 

produced by a custom application. 

Postmark was run using the default values and generated workloads similar to email 

servers. The three FileBench workloads that were used were sample workloads included in the 

FileBench installation and they include a workload that emulates a web proxy server, a workload 

that emulates a file server, and a workload that emulates a web server. Finally, a custom 

application was implemented that created a workload that varied over time and was used to 

verify that the methodology can model workload variation. The other workloads were not 

validated against workload variation since they do not exhibit any variation as they are run.  

The evaluation process for validating the synthetic workload for one original workload is 

presented in figure 35. The initial steps consist of running the original workload, capturing the 

traces, and then generating the configuration files are discussed earlier as part of the 

methodology. The next step was to run the synthetic workload and trace it.  

The synthetic workload was traced for two reasons. The first is that the trace work 

consumes some system resources slightly affecting the original workload. So in order to run the 

synthetic workload in a similar environment the trace software need to be running as well. The 
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second reason is that the traces contain information about the operations and their timestamps 

and were used to calculate the throughout and latency that are needed in the validation process. 

In addition, the trace contained information on cache usage that was also used in validating the 

work. 

 

 
Figure 35. The evaluation process. 

The next step in the evaluation process consisted of calculating and presenting the 

performance parameters for the two workloads as discussed in the previous subsections. This is 

followed by comparing the two results and determining whether the two workloads are 

considered equivalent. This work considered two workloads to be equivalent if the difference 

between the observed metrics is less than 10% with a maximum allowable difference of 15%. 

This is the same approach used in (Tarasov et al., 2012).  This work also validated workload 

variation. This was done by plotting the file access data for the original and synthetic workloads 

as shown in figure 34.  

Resources Used 

The work was limited to a single custom built machine. Specifically the machine had an 

Intel Core i5-4590 CPU, 8GB of ram, and a 1 TB hard drive. The traces were run and collected 

on the same machine. The synthetic workloads were run and traced on the same machine. 

Between every run the system was restored to the same state as the original trace was run. This 

eliminated any file system aging effect on the performance. In addition, the only operating 



76 
 

system considered is the Linux OS. The work can be easily extended to other operating systems 

such as Windows using file system call listeners.  

Summary 

This chapter presented the methodology of this work that outlined the process of 

generating equivalent synthetic workloads from original workloads. The original workloads used 

in this work consisted of workloads generated by FileBench, Postmark, and a custom application. 

The original workloads were traced by a tool called tracefs and the log file generated by tracefs 

was passed to a parser that extracted the workload characteristics into the statistical model. This 

work configured tracefs to log the address space operations that provided information about 

cached operations. This information was then used when generating the configuration files that 

in turn configured FileRunner to issue file system calls that were satisfied from cache or disk.  

The statistical model consisted of sub-matrices where each sub-matrix represented the 

workload characteristic for a specific time interval or time chunk.  Then for each time chunk the 

configuration files for FileRunner were created. FileRunner then ran the configuration files to 

produce the equivalent synthetic workload. The synthetic workload generated by FileRunner was 

traced and validated against the traces from the live workload.  
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Chapter 4 

Results 

 

Overview 

The previous chapter presented the methodology for generating equivalent synthetic 

workloads. This chapter presents the validation approach and the data obtained from running 

various workloads aimed at verifying the methodology described in chapter 3. The validation 

process was divided into two stages. The first stage consisted of running various workloads 

aimed at validating specific aspects of the methodology that include modeling workload 

variation, matching I/O chunk size, and cache behavior. This basically validated that each 

component of the methodology is functioning and produced the desired results. The second stage 

consisted of running larger workloads that tested the methodology as a whole in addition to 

testing the scalability of the work. This included extracting performance metrics of the original 

workload such as latency and throughput and comparing it to the performance metrics of the 

generated synthetic workload. 

The next section describes the process for running an original workload and creating its 

synthetic equivalent. This process was used throughout the validation process to validate various 

aspects of the methodology. This section used a C application that consisted of one outer loop 

that contained 4 inner loops. The first inner loop would create files, the second inner loop would 

write to those files, the third inner loop would read those files, and finally the fourth inner loop 

would delete those files.  

The code of the C application is presented in appendix C. There are two parameters that 

control the number of iterations of the main outer loop and the number of operations to perform 
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in each inner loop and they are numberOfChunks and numberOfOps respectively. The 

numberOfOps controls the number of operations performed in each chunk. The numberOfChunks 

controls the total number of loops.  

 The following section uses the process of running an original workload and creating its 

synthetic equivalent that is introduced in the previous section to present the validation process 

pertaining to modeling workload variation. It illustrates how the workload of the C application 

varied. Then it presents the validation process that included tracing the original workload and 

dividing the trace into chunks to produce a synthetic workload that varies the same way as the 

original workload.  

In the next section the validation process for verifying that the synthetic workload 

produced the same I/O footprint as the original workload is presented. It first details the changes 

made to the C program that produced a workload with a varied I/O size footprint. Then it 

describes the process of determining the I/O chunk size and how it was verified.  

The following section presents the findings in regards to modeling cache behavior by first 

describing the changes made to the C program and then validating that tracefs and the custom 

parser can identify whether the operations are satisfied from cache or from disk. Then it 

describes the process of generating the synthetic workload with the same cache behavior as the 

original workload. 

In the experiments just mentioned only one specific aspect of the methodology was 

validated. So the experiment that validated the cache behavior was not validated against any 

other aspect. The following section discusses the results of the synthetic workload’s performance 

relative to the original workload based on all of the metrics mentioned above. In addition, larger 

workloads were used to validate the scalability of the work. The workloads used include the 
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custom C application, Postmark, and three personalities from FileBench. The C application is the 

only application that produced a varied original workload. The remaining 4 exhibit a uniform 

workload over time. So only the C application was validated against workload chunking.  

Running a workload and Obtaining Results 

Tracefs comes with two scripts. The first script performs two actions that includes 

loading the tracefs module into the kernel and starting the tracing. The second script stops the 

trace, unloads the tracefs module from the kernel, and then runs the tool to parse the binary trace 

and converts it into textual format. The second script was modified with an action being added 

that runs the custom parser that was created by this work. The custom parser parses the log 

created by tracefs and generates the configuration file for FileRunner. This configuration file was 

used by FileRunner to create a workload that is referred to as the synthetic workload. The custom 

parser also performs other tasks that include calculating throughput, latency, and counting the 

number of operations performed by the workload including identifying whether the read 

operations were performed from cache or disk.  

The first step in creating the synthetic workload was to setup a workload that was traced 

with tracefs. This is referred to as the original workload. In this case the original workload was 

created by a custom C application presented in Appendix C. The numberOfChunks parameter of 

the C application was set to 10 and the numberOfOps parameter was set at 5,000. This means 

that for each chunk there were 5,000 create operations, followed by 5,000 write operations, then 

5000 read operations, and finally 5,000 delete operations. This occurred 10 (numberOfChunks) 

times. This made the total number of each type of operation at 5,000 multiplied by 10 or 50,000. 

Now that the original workload was setup the next step was to run the first tracefs script 

that loaded the module into the kernel and started the tracing. Then the C application was run and 
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once it was completed the second tracefs script was run. This stopped the tracing and removed 

the module from the kernel, then ran the tracefs parser, and finally the custom parser was run. At 

this stage the configuration file was generated and the data of the original workload was also 

recorded. The data included the workload’s latency, throughput, the total number of operations 

including cached operations, and the total I/O footprint of the original workload.  

Next, the first tracefs script was run again to start capturing traces. FileRunner was run 

using the configuration file generated earlier. The workload generated by FileRunner is referred 

to as the synthetic workload. Once FileRunner completed its run the second tracefs script that 

stops the tracing was run. The workload characteristics for the synthetic workload was recorded 

and compared to the original workload. Figure 36 shows the number of operations for both runs 

and that the synthetic workload generated the same operation count as the original workload. 

     Create  Write  Read  Delete 

Original Workload    50000 50000 50000 50000 

Synthetic Workload    50000 50000 50000 50000 

Figure 36. Comparing workload’s operation footprint. 

Results of Modeling Workload Variation 

Current synthetic benchmarks do not model workload variation. Workload chunking as 

described in the methodology was used to enable the modeling of workload variation. The 

evaluation process section presented that a proper chunk size is required to accurately model it. It 

then described a custom C application that was used to validate that the generated synthetic 

workload varies in the same way as the original workload.  

The first step in the verification process was to run the C program described in appendix 

C and obtain a trace of that run. This was followed by the chunk size determination process that 

determines the proper time chunk size and is presented in the next section.  The section after that 
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describes the process of generating the synthetic workload from the configuration file that is 

created using the determined chunk size. 

The parameters of the C application were set as 10 for the numberOfChunks and 5,000 

for the number of numberOfOps. So the workload pattern of the C application consisted of 5,000 

create calls, followed by 5,000 write calls, followed by 10,000 read calls, and finally followed by 

5,000 delete calls. This was repeated 10 times since the value of numberOfChunks was set as 10. 

A theoretical graph of one chunk of the workload is presented in figure 37. Although the time is 

not shown on the graph, since the graph is theoretical, the graph shows that the create and delete 

operations take less time to complete than the read and write operations. This is to be expected as 

the read and write operation usually have a higher I/O footprint than the create and delete 

operations. The complete workload would have ten of these chunks in succession.  

 

 
Figure 37. Expected flow of the C workload. 

Data for the Determining Proper Number of Chunks 

The chunking process divides the workload into smaller chunks. To determine the proper 

chunk size the custom parser is run with workloadChunks parameter varied from smaller to 

larger until the access pattern of the C program was properly captured. The first time the custom 

parser was run the value of the workloadChunks parameter was set as 10. As can be seen in 

figure 38 the data at this chunk size does not correctly capture the C application access pattern. 

The custom parser was run repeatedly with workloadChunks set as 10, 20, 50, 100, 200, and 500 

and the results are presented in figures 38 through 43. The data in the figures illustrate that as the 
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chunk size was reduced the access pattern of the C application became more apparent. Figures 38 

and 39 show a lot of overlap between operations calls for each time chunks. This does not 

correctly capture the access pattern of the custom C application described earlier.  

Figures 40 and 41 correspond to the workload divided into 50 and 100 chunks 

respectively. The workload’s access pattern in these two figures starts to show. However, the 

figures still show a significant overlap between the different types of operations. Figures 42 and 

43 capture the access pattern of the original workload therefore illustrating that using the 

chunking procedure of increasing the number of chunks will capture the workload variation.  

 
Figure 38. Original workload divided into 10 chunks. 

 
Figure 39. Original workload divided into 20 chunks. 

 
Figure 40. Original workload divided into 50 chunks. 

 

 
Figure 41 Original workload divided into 100 chunks. 

 
Figure 42. Original workload divided into 200 chunks. 



83 
 

 
Figure 43. Original workload divided into 500 chunks. 

Data for the FileRunner Run 

The values of the numberOfChunks variable that were used in figures 42 and 45 were 200 

and 500. Since both values for the number of numberOfChunks captured the access pattern for 

the original workload either value can be chosen to generate the configuration file for 

FileRunner. In the case for the value of 200 the workload will have fewer time chunks so it 

would be easier to modify and extend.  

FileRunner was then was run and traced by tracefs. The parser then parsed the trace files 

generated by FileRunner and the workload’s footprint is shown in figure 44. From figure 44 it 

can be seen that the footprint of the FileRunner workload very closely matches the footprint of 

the original workload shown in figure 42. Similar data was obtained using various versions of the 

C program including varying the inner loop values and the workload parameter. Furthermore, 

FileRunner generated the same number of calls as the original workload while maintaining the 

original workload’s variation. 

 
Figure 44. FileRunner run at 200 chunks. 

Correctly Generating Proper I/O Size  

To properly validate that the work produced a synthetic workload with a similar I/O size 

footprint as the original workload this work needed to be validated against a workload that 
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produced operations with varying I/O size. This illustrates that the work can handle a range of 

varied I/O size operations and that the synthetic workload created by this work produced an 

equivalent I/O footprint as the original workload. 

The C program was modified to produce an original workload with varying I/O size for 

the read and write operations. The change in the program that can be seen in appendix D 

consisted of creating several literal strings of the following sizes in bytes: 200,000, 100,000, 

50,000, 10,000, and 1000. 

The inner loop of the read and write operations were changed to select in a circular 

fashion one of the literal strings to read and write to disk. So in the first iteration the string of 

size 200,000 was selected. Then in the second iteration the string of size 100,000 was selected. 

This is followed by selecting the strings of size 50,000, 10,000, and 1,000. The next iteration 

looped back and selected the string of size 200,000.  

Finally, two variables were added and were used to count the total amount of data written 

and read by the C program. The parser was changed to include the same two variables that 

counted the total number of bytes read and the total number of bytes written that are present in 

the trace file. The original workload was run and traced and the values of the total read and write 

I/O variables in the C program matched the values of the total read and write I/O variables 

extracted from the trace. It can be concluded that custom parser can correctly extract from the 

trace the I/O size footprint of the original workload.  

Next, several I/O chunk sizes were used and FileRunner was run for each chunk size. The 

size of the I/O chunks in bytes were: 100, 500, 1,000, 5,000, and 10,000. Table 1 shows the total 

size of I/O operations for the original workload and the totals for the synthetic workloads at the 

various chunk sizes. For this specific workload the chunk size of 100 produced a 0.06% 
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difference in the total I/O size, and size chunk of 10,000 bytes produced a difference of 6.2% in 

the I/O size for the overall workload.  

Table 1. Total I/O Size Based on Chunk Size. 

   I/O Chunk size(bytes)  Read I/O (bytes)  Write I/O (bytes) 

Original Workload     3610000000  3610000000 

Synthetic Workload  100  3612450000  3610651255 

Synthetic Workload  500  3620670005  3622450000 

Synthetic Workload  1000  3633190006  3634950000 

Synthetic Workload  5000  3723300015  3724950000 

Synthetic Workload  10000  3848400010  3849950000 

 
Correctly Capturing and Modeling Cache Behavior 

At this point in the verification process the synthetic workload matches both the access 

pattern of the original workload and the I/O size of the file operations. To verify the workload 

mimics the original workload in cache behavior the first step would be to correctly capture the 

behavior to model it. The C program was modified slightly and served as a controlled experiment 

that was used to verify that the parser correctly identifies the operations that are served from the 

cache and the ones that are served from disk. The change in the program, shown in appendix D, 

consisted of adding an additional read operation that performed a read of a file that has just been 

read. This meant that the second read on the same file would cause the read to be satisfied form 

cache and not from disk. The frequency of the second read was controlled by the conditional 

statement using the modulus function that controlled the number of the second reads. So if the 

value of the integer in the conditional was 5 then an additional 20 percent of the reads were made 

and all of them were satisfied from the cache. Using the same parameter values for the C 

program (numberOfChunks, 10) and (numberOfOps, 3000) the number of cached calls should be 

20 percent of 30,000 or 6000.The parser correctly identified the number of cached calls. The 
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integer was changed to various values and the parser was also able to determine the correct 

number of cached calls. 

Now that the correct number of cached calls were identified by the parser the second 

thing that was verified was that FileRunner can produce the same cache behavior. The number of 

cached calls in the synthetic workload produced by FileRunner was 5999 that is almost identical 

to the number of cached calls in the original workload. The difference was off by one since the 

first call had to be from a file that is from disk. The subsequent calls were made were after the 

file was cached.   

Validating Overall Performance 

This section presents the results of running longer workloads and validating the synthetic 

workloads’ overall performance with the corresponding original workloads. Performance metrics 

that were used were latency, throughout, I/O size, and number of cached operations. There were 

five workloads that were used and they included Postmark, three workloads from FileBench, and 

a custom C program. The details of the workloads and the results are presented next.   

Validating the Work with the C Application  

The C application version that was used in this test is the one found in Appendix E. It 

was the original version without the additional modifications that were used to validate the 

cached reads or the I/O footprint. The numberOfChunks parameter of the C application was set to 

10 and the numberOfOps parameter was set at 60,000. The size of each read and write I/O 

operation was set at 4,000,000 bytes. The number of operations produced by the C application 

along with the one produced synthetically by FileRunner are shown in figure 49. The parser was 

run three times with the numberOfChunks set at 10, 50, and 200. Figures 45 through 47 show the 

plot of operations per unit chunk for the original workload. The configuration file where the 
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numberOfChunks was set to 200 was used to run FileRunner. Figure 48 shows the result of 

running FileRunner. Figure 49 shows the operation count of the two workloads and that the 

original workload and the synthetic workload had identical operation count for all operation 

types.  

The I/O footprint of the two workloads was almost identical with less than 1% difference 

(figure 50). The throughput of the synthetic workload was 4.78% less than that of the original 

workload. The latencies showed that the difference was within 15% except for the create latency 

that was at 35%. The data is presented in figure 51.   

 
Figure 45. C Application with numberOfChunks at 10. 

 
Figure 46. C Application with numberOfChunks at 100. 

 
Figure 47. C Application with numberOfChunks at 200. 

 

 
Figure 48. FileRunner with numberOfChunks at 200. 

 

     Create  Write  Read  Delete  Read Cached 

Original Workload    600000 600000 600000 600000  0

Synthetic Workload    600000 600000 600000 600000  0

Difference    0 0 0 0  0
Figure 49. C application and FileRunner operation counts. 
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   I/O Read  I/O Write 

Original Workload  43320000000 43320000000

Synthetic Workload  43277450085 43349400000

% Difference  0.098222334 ‐0.06786704
Figure 50. C application and FileRunner I/O footprints. 

   Throughput  Avg Create  Avg Write  Avg Read  Avg Delete 

Original Workload  278  19 271.17 47.61  10.4

Synthetic Workload  265  12.3 279.16 40.81  9.45

% Difference  4.676258993  35.26315789 ‐2.946491131 14.28271372  9.134615385
Figure 51. C application and FileRunner throughput and average latencies. 

Validating the Work with Postmark  

The number of transactions that was specified for the Postmark run was 3,500,000. This 

produced 1,748,488 create and delete operations, 5,111,815 write operations, and 3,890,374 read 

operations with 1,943,957 of those satisfied from the cache. The number of operations produced 

by FileRunner is shown in figure 52.  

The total runtime for Postmark was approximately 285 seconds. The throughput of the 

FileRunner run was 272 seconds or a difference of 4.67% compared to the Postmark run. The 

throughput and the average latencies of both runs are shown in figure 53 along with the 

percentage difference between the two.  Finally, the I/O footprints of both runs are shown in 

figure 54. The synthetic workload produced 1.25% more I/O while producing 1.02% less in write 

I/O. 

   Create  Write  Read  Delete  Read Cached 

Original Workload  1748488 5111815 3890374 1748488 1943957

Synthetic Workload  1748488 4868386 3745490 1748488 1943956

Difference  0 4.762085482 3.724166 0 1
Figure 52. Postmark and FileRunner operation counts. 

   Throughput  Avg Create  Avg Write  Avg Read  Avg Delete 

Original Workload  285  13.35 9.65 6.58  10.89

Synthetic Workload  272  18.19 11.76 6.59  11.41

% Difference  4.561403509  ‐36.25468165 ‐21.86528497 ‐0.15197568  ‐4.775022957
Figure 53. Postmark and FileRunner throughput and average latencies. 
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   I/O Read  I/O Write 

Original Workload  11949996752 11946641543

Synthetic Workload  11798023490 12068678152

% Difference  1.271743124 ‐1.02151394
Figure 54. Postmark and FileRunner I/O footprints. 

Validating the work with Web Proxy Personality of FileBench  

The web proxy workload is one of the workload personalities that comes with the 

FileBench installation. Appendix F shows the complete workload definition that defines 5 

threads to execute the following operations in sequence: delete file, create new file, write to that 

new file, and then read it five consecutive times. This work ran and traced the workload for 300 

seconds. Then it generated the synthetic workload using FileRunner. Figure 55 shows the 

number of operations performed in each workload as well as the number of the read operations 

that were serviced from cache. It can be seen that the number of operations in each workload 

were identical to each other. The number of cached operations was only off by 1. 

The workloads I/O footprint in bytes is shown in figure 56. The difference in the I/O read 

was about 2.5% and was less than 0.005% for the I/O write footprint that is within the 10 percent 

error range. Finally, the workload throughput and average latencies for each operation are shown 

in figure 57. 

   Create  Write  Read  Delete  Read Cached 

Original Workload  1168547 1168477 11685103 1168547  10516551

Synthetic Workload  1168547 1168477 11685103 1168547  10516550

Difference  0 0 0 0  1
Figure 55. Web proxy and FileRunner operation counts. 

 

   I/O Read  I/O Write 

Original Workload  47835380033 9567685252

Synthetic Workload  46640999325 9567231651

% Difference  2.496856317 0.00474097
Figure 56. Web proxy and FileRunner I/O footprints. 
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   Throughput  Avg Create  Avg Write  Avg Read  Avg Delete 

Original Workload  300 12 19 6  9

Synthetic Workload  286 17 20 5  10

% Difference  4.666666667 41.66667 5.26316 16.66667  11.11111
Figure 57. Web proxy and FileRunner throughput and average latencies. 

 
Validating the work with Web Server Personality of FileBench  

The web server workload is one of the workload personalities that comes with the 

FileBench installation. Appendix G shows the complete workload definition that starts by 

creating 1000 files with content and one empty file that is referred to as the log file. Then 5 

threads are created to execute the workload. Each thread picks a file from the initial 1000 files 

and then performs a read on that file 10 times in a row. Finally, the thread would append a 

variable sized text into the log file. The text mean size was 16kb.  

This work ran and traced the web server workload for 300 seconds. Then it generated the 

synthetic workload using FileRunner. Figure 58 shows the number of operations performed in 

each workload as well as the number of the read operations that were serviced from cache. It can 

be seen that the number of operations in each workload were identical to each other. The number 

of cached operations was only off by 1. 

   Create  Write  Read  Delete  Read Cached 

Original Workload  0 606213 12124996 0 12123995

Synthetic Workload  0 606213 12124994 0 12123994

Difference     0 2    1

Figure 58. Web server and FileRunner operation counts. 

The workloads I/O footprint in bytes is shown in figure 59. The difference in the I/O read 

was about 2.5% and was less than 0.005% for the I/O write footprint which is within the 10 

percent error range. Finally, the workload throughput and average latencies for each operation 

are shown in figure 60. 
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     I/O Read  I/O Write 

Original Workload  93828623638 4966680615 

Synthetic Workload  92283520427 4966345979 

% Difference  1.646729059 0.006737619 

Figure 59. Web server and FileRunner I/O footprints. 
 

   Throughput  Avg Create  Avg Write  Avg Read  Avg Delete 

Original Workload  300 0 229.53 109.89  0

Synthetic Workload  338 0 242.27 120.18  0

% Difference  ‐12.6666667 NA  ‐5.550472705  0.914378432  NA 

Figure 60. Web server and FileRunner throughput and average latencies. 

Validating the work with File Server Personality of FileBench  

The file server workload is one of the workload personalities that comes with the 

FileBench installation. Appendix H shows the complete workload definition that starts by 

creating 1000 files and allocating content for 80 percent of those files. Then 5 threads are created 

to execute the workload. Each thread first creates a new file and adds it to the file set. Then it 

writes to that file. Next, each thread picks another file from the file set and appends more content 

to it. Then a read is performed on that file. Finally, the thread would delete that file.  

This work ran and traced the file server workload for 300 seconds. Then it generated the 

synthetic workload using FileRunner. Figure 61 shows the number of operations performed in 

each workload as well as the number of the read operations that were serviced from cache. It can 

be seen that the number of operations in the synthetic workload produced by FileRunner matches 

the number of operations in the original workload. The number of cached operations is only off 

by 1. 

   Create  Write  Read  Delete  Read Cached 

Original Workload  591518 1182992 1183034 591517 1179051

Synthetic Workload  591518 1182992 1183034 591517 1179050

Difference  0 0 0 0 1

Figure 61. File server and FileRunner operation counts. 
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The workloads I/O footprint in bytes is shown in figure 62. The difference in the I/O read 

was about 0.5% and about 1.5% for the I/O write footprint that is within the 10 percent error 

range. Finally, the workload throughput and average latencies for each operation are shown in 

figure 63. 

   I/O Read  I/O Write 

Original Workload  78474384557 82379409473

Synthetic Workload  78051549289 83588975345

% Difference  0.538819476 ‐1.46828665 
Figure 62. File server and FileRunner I/O footprints. 

 

   Throughput  Avg Create  Avg Write  Avg Read  Avg Delete 

Original Workload  299  19.84 271.17 21.31  21.44

Synthetic Workload  304  20.4 279.16 17.63  17.8

% Difference  ‐1.6722408  ‐2.822580645 ‐2.946491131 17.26888785  16.97761194
Figure 63. File server and FileRunner throughput and average latencies. 

Summary of Results 

This chapter presented two sets of experiments that were run to validate this work. The 

first set validated individual components of the methodology that included modeling workload 

variation, modeling cache behavior, and mimicking I/O footprint. It used a custom C application 

to do so. The results of each experiment verified the proper functioning of each individual 

component.  

The second stage consisted of running larger workloads, each up to 5 minutes, and 

compared the performance characteristics of the original workload with that of the workload 

generated by the methodology. The results indicated that the methodology can create a workload 

with a throughput within 10% difference and with operation latencies, with the exception of the 

create latencies, to be within 10% difference and in some cases within the 15% maximum 

allowable difference. The work was able to accurately model the I/O footprint in some cases the 

difference was negligible and in the worst case it was at 2.49% difference.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusion  

This work advanced file system benchmarking by providing more accurate synthetic 

workloads that will enable the fine tuning of file systems more accurately. Specifically, the 

achieved goals of the work can be re-stated as follows: 

- Model workload variation if it exists in the original workload 

- Incorporate cache behavior to achieve higher accuracy 

- Verify the synthetic workload is similar to the original workload by comparing the 

following metrics 

o Workload throughput  

o Operation Latencies 

o I/O size footprint 

Chapter 3 described the approach of this work that consisted of running and tracing an 

original workload, and then generate an equivalent workload based on the trace using a tool 

created by this work called FileRunner. The validation approach presented in chapter 4 consisted 

of two stages. The first stage validated specific aspects of the workload that included modeling 

variation, cache behavior, and modeling I/O footprint. The second stage validated all aspects of 

the workload using 5 different original workloads that spanned minutes. 

The first aspect that was validated in the first stage is workload variation. A custom C 

application was used for this validation process. Based on the results presented in figures 38 

through 47 and in another experiment where the results are presented in figures 45 through 48 it 
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can be seen that the work is capable of modeling workload variation given that the original 

workload was segmented into a sufficient number of chunks. The validation process presented 

that in order to determine the proper number of chunks to segment the original workload is to 

start with a small number of chunks and then increase that number until the access pattern of the 

application becomes apparent. Figure 38 shows the workload being split into 10 chunks and 

when the number of chunks was changed to 20 the graph in figure 39 showed a different access 

pattern. In figure 40 the workload was divided into 50 chunks and that also shows a different 

access pattern than the previous two figures. At 100 chunks the workload access pattern starts to 

show more clearly, but with a significant overlap between the operations. At 200 chunks the 

overlap between the operations decreased significantly. At 500 chunks, shown in figure 42, the 

workload did not differ significantly from the one divided into 200 chunks as shown in figure 42. 

Once the proper number of chunks was determined the work was then able to emulate the 

same access pattern using FileRunner in an accurate manner as shown in figure 42. This process 

was repeated using the same C application but with a workload that spanned 5 minutes as shown 

in figure 47. Again this work was able to regenerate the same access pattern as shown in figure 

49. 

Another aspect that was validated in the first stage was the modeling of cache behavior. 

The synthetic workload generated almost the same number of cached calls as the original 

workload for all runs present in chapter 4. The difference as can be seen in figures 53, and 56 

was only 1 operation. The same result was achieved in the second stage using the 5 workloads. 

So the methodology can be assumed to produce the correct number of read calls that are serviced 

from the cache.  
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The last aspect that was verified in the first stage was the I/O footprint produced by the 

synthetic workload. It was shown the methodology was correct in assuming that it can start with 

a large I/O size for the read and write operations and if the total footprint of the synthetic 

workload differed significantly compared to the original workload then the I/O size can be made 

smaller and the synthetic workload rerun until the I/O footprint difference was acceptable. The 

I/O chunking technique was applied to 5 minute workloads in stage 2 and showed that it can 

consistently generate workloads with an I/O footprint less than 5% as shown in figures 50, 54, 

54, 59, and 60. 

The second stage validated all aspects of the work and that the work is scalable beyond 

the smaller workloads that were used in the first stage. Five workloads were used in this stage 

and each ran for 5 minutes. The five workloads were Postmark, a custom C application, and 3 

workload personalities that come with FileBench. The workload characteristics of the original 

workloads were compared with the workload characteristics of the synthetic workloads and 

based on the results presented in chapter 4 they are closely matched. The throughput, I/O 

footprint, and the create, read, write, and delete latencies are all within 10% difference with some 

characteristics under the 15% maximum allowable difference.  

For three workloads, Postmark, the custom C application, and the web proxy workload 

from FileBench, the create latency was higher than the 15% allowable maximum difference and 

that is because the setup stage of FileRunner needs to create some files that are used in the 

workload. Having a larger file count in a directory slows down the file system operations on that 

directory.  

With the exception of the create latency in 3 of the five workloads having a difference of 

more than 15% it can be seen that this work can accurately generate a synthetic workload based 
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on an original workload. The synthetic workload will have the same variation as the original 

workload with the same cache and I/O footprints.  

Implications 

The process of optimizing file systems relies heavily on being able to optimize the file 

system against its expected usage. Thus, file system benchmarking plays an essential role in file 

system optimization by providing workloads that are as close as possible to the expected live 

workloads. As the problem statement presented along with qualifying research in the literature 

review section current benchmarks do not model cache behavior or workload variation. The 

methodology in this work has provided a tool called FileRunner that accomplishes these two 

tasks based on a trace. However, the tool can be easily configured to create a workload even if a 

trace is not present. In other words, this work presented a file benchmark that can rely on input 

from a trace or explicitly defined manually by the user. Furthermore, the work can be extended 

to generate the configuration files for other existing benchmarks such as FileBench without the 

need to use FileRunner.  

Additionally, another novel feature produced by this work is the ability for FileRunner to 

produce different workloads by multiple processes at different points in time. For example, some 

servers might have an ongoing workload at all times while some other backup process performs 

certain tasks at specific times of day. FileRunner can generate a similar workload using one 

configuration file without the need to run two instances of FileRunner at different times to 

produce the same workload.  

In short, this work advanced the current state of the art in file system benchmarking by 

being able to generate more accurate workloads, allow the modeling of workload variation, and 

incorporate cache behavior in workload design.  
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Recommendations 

As discussed earlier this work can be used to create the configuration files for other 

benchmarks such as FileBench. Furthermore, this work can be extended to include tracing the 

CPU usage of the original workload and replicating it in the synthetic workload (Tarasov et al., 

2012). In addition, this can be tested for scale and if needed be extended to work for longer 

periods of time (Traeger, Zadok, Joukov, & Wright, 2008). Additionally, this work was not 

tested against a variety of file systems. The current work only used the ext3 file system. 

Additional work can be done for testing it on different file systems other than ext3 file system 

(Shegal, Tarasov, & Zadok, 2010).  

Summary 

Operating system benchmark suites consist of tools that aide in file system performance 

measurement and analysis (Agrawal, Dusseau, & Dusseau, 2008, Traeger, Zadok, Joukov, & 

Wright, 2008). Integral to benchmark suites are workloads that exercise the target systems in 

repeatable scenarios that are indicative of common application execution.  One workload 

generation methodology involves the study of operating system access patterns by a set of 

applications that exhibit functions common to production software.  The patterns are then 

incorporated into a tool that reproduces a typical application’s function into representative 

synthetic workloads in the context of benchmark suites (Agrawal, Dusseau, & Dusseau, 2008).  

Thus the generated workload reproduces primary and secondary storage access with the goal of 

providing equivalent execution sequences through application programming interface (API) or 

systems calls indicative of an application's interaction with the operating system (Roselli, Lorch, 

& Anderson, 2000). 
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Current synthetic benchmarks do not generate representative workloads due to the 

assumption that mimicking an application’s API calls is sufficient to reproduce the application’s 

workload (Traeger, Zadok, Joukov, & Wright, 2008). This oversimplified assumption fails to 

account for the different execution paths that consist of lower level operating system function 

calls (Agrawal, Dusseau, & Dusseau, 2008, Joukov, Wong, & Zadok, 2005). An API call can 

have more than one execution path with a significant difference in performance. As a result two 

workloads with the same API calls but different execution paths will have a different 

performance footprint that is dependent on the function calls. An example of an API call that has 

multiple execution paths is the read API call. The read API call can have an execution path that 

consists of function calls that reads the file from primary storage, or an execution path that 

consists of function calls that reads the file from disk whose performance depends on whether 

the file is fragmented or not. 

Another factor that synthetic benchmarks ignore is the variation within the workload. 

Some workloads are not uniform and exhibit different workload characteristics as the workload 

progresses. For example, the workload’s as read/write ratio, average file size per request, or 

frequency of requests change over time. Synthetic benchmarks do not model this variation in 

their workload generation process.  

This work proposed a methodology that advanced synthetic benchmarking research by 

addressing the two issues mentioned above that consisted of improving the accuracy of synthetic 

workloads by taking into account the execution paths of the API calls and by modeling workload 

variation if it exists in a workload. 

The overall methodology is shown in figure 64. The first step consists of running a 

workload and then tracing it using a tool called tracefs. While FileRunner was used to recreate 
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the workloads from the given traces, other benchmarks were used to generate original workloads. 

Postmark, a custom C application, and three workload personalities from FileBench were used as 

the original workloads. Once the trace of an original workload is collected it is then divided into 

smaller intervals that are small enough that the workload in that interval can be considered 

uniform (Tarasov et al., 2012). This chunking technique allows the modeling of variation as 

FileRunner would create an equivalent synthetic workload for each chunk.   

 

Figure 64. Overall system design. 

A FileRunner run consists of three stages that consists of parsing the configuration file, 

data structure initialization and file system setup, and finally creating the file system workload. 

The parsing stage first parses the header and saves the I/O chunk size, directory depth, and the 

read and write repeat frequencies into the appropriate data structures. Then it goes through the 

list of file operation definitions and saves each line into a separate array element where each 

element is of type struct called operation. 

In the second stage FileRunner performs the setup operations that include initializing the 

data structures that are needed for the run itself and for creating the initial state of the file system. 

This creates the files that are needed in the workload. For example, if the workload consists of 

deleting 5 files then the setup stage needs to create these 5 files. 
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Once the setup is completed FileRunner enters the third and final stage and that starts the 

run. At this point there is an array of operations available from when FileRunner parsed the file 

and possibly some files in the file set that were created in the setup stage. FileRunner then goes 

through each time chunk and it first executes all the create operations, if any, for that time chunk. 

Then it executes all the write operations, if any, for that time chunk, followed by the read 

operations, if any, in that time chunk, and finally the delete operations, if any, for that time 

chunk. Then it advances to the next time chunk and follows the same order of operation 

execution until there are no operations to execute.  

The workload created by FileRunner is also traced and the workload characteristics are 

compared with the workload characteristics of the original workloads. This is done for 5 

workloads discussed earlier. The results indicated that the methodology can create a workload 

with a throughput within 10% difference and with operation latencies, with the exception of the 

create latencies, to be within the allowable 10% difference and in some cases within the 15% 

maximum allowable difference. The work was able to accurately model the I/O footprint in some 

cases the difference was negligible and in the worst case it was at 2.49% difference.  

In conclusion, this work advanced the current state of the art in file system benchmarking 

by being able to generate more accurate workloads, allow the modeling of workload variation, 

and incorporate cache behavior in workload design.  
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Appendix A 
 

Operations data structure 
 

typedef struct  { 
 
    unsigned long long timestamp; 
    int op; 
    char * ops; 
    char * fn; 
     
    unsigned long long fptr; 
    unsigned long long fflags; 
    char * fname; 
     
    unsigned long long flags; 
     
    unsigned long long inum; 
     
    int ret; 
    pid_t pid; 
     
    unsigned long long iptr; 
    unsigned long long dptr; 
     
    int offset; 
    int cached; 
} operation; 
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Appendix B 
 

Operations index 
 
#define OP_BASE         0 
/* super block ops */ 
#define OP_READ_INODE             (OP_BASE + 1)                 // 1 
#define OP_WRITE_INODE            (OP_READ_INODE + 1)          // 2 
#define OP_PUT_INODE               (OP_WRITE_INODE + 1)         // 3 
#define OP_DELETE_INODE           (OP_PUT_INODE + 1)           // 4 
#define OP_PUT_SUPER              (OP_DELETE_INODE + 1)        // 5 
#define OP_STATFS                  (OP_PUT_SUPER + 1)           // 6 
#define OP_REMOUNT_FS             (OP_STATFS + 1)              // 7 
#define OP_CLEAR_INODE            (OP_REMOUNT_FS + 1)          // 8 
#define OP_UMOUNT_BEGIN           (OP_CLEAR_INODE + 1)         // 9 
#define OP_WRITE_SUPER            (OP_UMOUNT_BEGIN + 1)        // 10 
/* dentry ops */ 
#define OP_D_REVALIDATE           (OP_WRITE_SUPER + 1)         // 11 
#define OP_D_HASH                  (OP_D_REVALIDATE + 1)        // 12 
#define OP_D_COMPARE              (OP_D_HASH + 1)              // 13 
#define OP_D_DELETE                (OP_D_COMPARE + 1)           // 14 
#define OP_D_RELEASE               (OP_D_DELETE + 1)            // 15 
#define OP_D_IPUT                  (OP_D_RELEASE + 1)           // 16 
#define OP_DGET                    (OP_D_IPUT + 1)              // 17 
#define OP_DPUT                    (OP_DGET + 1)                 // 18 
/* inode ops */ 
#define OP_CREATE                  (OP_DPUT + 1)                 // 19 
#define OP_LOOKUP                  (OP_CREATE + 1)              // 20 
#define OP_LINK                    (OP_LOOKUP + 1)              // 21 
#define OP_UNLINK                  (OP_LINK + 1)                 // 22 
#define OP_SYMLINK                 (OP_UNLINK + 1)              // 23 
#define OP_MKDIR                   (OP_SYMLINK + 1)             // 24 
#define OP_RMDIR                   (OP_MKDIR + 1)               // 25 
#define OP_MKNOD                   (OP_RMDIR + 1)               // 26 
#define OP_RENAME                  (OP_MKNOD + 1)               // 27 
#define OP_READLINK                (OP_RENAME + 1)              // 28 
#define OP_FOLLOW_LINK            (OP_READLINK + 1)            // 29 
#define OP_INODE_REVALIDATE      (OP_FOLLOW_LINK + 1)         // 30 
#define OP_SETATTR                 (OP_INODE_REVALIDATE + 1)    // 31 
#define OP_PERMISSION             (OP_SETATTR + 1)             // 32 
/* file ops */ 
#define OP_LLSEEK                  (OP_PERMISSION + 1)          // 33 
#define OP_READ                    (OP_LLSEEK + 1)              // 34 
#define OP_WRITE                   (OP_READ + 1)                 // 35 
#define OP_READDIR                 (OP_WRITE + 1)               // 36 
#define OP_POLL                    (OP_READDIR + 1)             // 37 
#define OP_FLUSH                   (OP_POLL + 1)                 // 38 
#define OP_MMAP                    (OP_FLUSH + 1)               // 39 
#define OP_LOCK                    (OP_MMAP + 1)                // 40 
#define OP_FSYNC                   (OP_LOCK + 1)                 // 41 
#define OP_FASYNC                  (OP_FSYNC + 1)               // 42 
#define OP_IOCTL                   (OP_FASYNC + 1)              // 43 
#define OP_OPEN                    (OP_IOCTL + 1)                // 44 
#define OP_RELEASE                 (OP_OPEN + 1)                 // 45 
/* mmap ops */ 
#define OP_READPAGE                (OP_RELEASE + 1)             // 46 
#define OP_READPAGES              (OP_READPAGE + 1)            // 47 
#define OP_WRITEPAGE              (OP_READPAGES + 1)           // 48 
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#define OP_WRITEPAGES             (OP_WRITEPAGE + 1)           // 49 
#define OP_PREPARE_WRITE          (OP_WRITEPAGES + 1)          // 50 
#define OP_COMMIT_WRITE           (OP_PREPARE_WRITE + 1)       // 51 
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Appendix C 
 

C Program to Model Variation 
 
int main(int argc, char** argv) { 
 
 int numberOfOps = 10000;  
 int numberOfChunks = 10;  
 int i = 0, j = 0; 
 
 for (i = 0; i < chunk; i++) { 
 
        //creates 
        for (j = 0; j < loop; j++) { 
  sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
  int fd = open64(filepath, createflag, 0666); 
  close(fd); 
            } 
        } 
 
        //writes 
        for (j = 0; j < loop; j++) { 
            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            int fd = open64(filepath, openflag, 0666); 
            write(fd, content, contentsize); 
            close(fd); 
        } 
 
 //reads 
        for (j = 0; j < loop; j++) { 
  sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
  fopen(filepath, "ab+")))   
  fread(buff, contentsize, 1, (FILE*) fp); 
  fclose(fp); 
 } 
 
        //delete 
        for (j = 0; j < loop; j++) { 
            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            remove(filepath); 
        } 
} 
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Appendix D 
 

C Program with Varied I/O size 
 
int main(int argc, char** argv) { 
 
 int numberOfOps = 10000;  
 int numberOfChunks = 10;  
 int i = 0, j = 0; 
 
 for (i = 0; i < chunk; i++) { 
 
        //creates 
        for (j = 0; j < loop; j++) { 
  sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
  int fd = open64(filepath, createflag, 0666); 
  close(fd); 
            } 
        } 
 
        //writes 
        for (j = 0; j < loop; j++) { 
            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            int fd = open64(filepath, openflag, 0666); 

if (j % 5 == 0) 
                contentsize = 200000; 
 else if (j % 5 == 1) 
                contentsize = 100000; 
 else if (j % 5 == 2) 
                contentsize = 50000; 
 else if (j % 5 == 3) 
                contentsize = 10000; 
 else if (j % 5 == 4) 
                contentsize = 1000; 

            write(fd, content, contentsize); 
            close(fd); 
        } 
 
 //reads 
        for (j = 0; j < loop; j++) { 
 sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
 fopen(filepath, "ab+")))   

if (j % 5 == 0) 
                contentsize = 200000; 
else if (j % 5 == 1) 
                contentsize = 100000; 
else if (j % 5 == 2) 
                contentsize = 50000; 
else if (j % 5 == 3) 
                contentsize = 10000; 
else if (j % 5 == 4) 
                contentsize = 1000; 

 fread(buff, contentsize, 1, (FILE*) fp); 
 fclose(fp); 
 } 
 
        //delete 
        for (j = 0; j < loop; j++) { 
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            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            remove(filepath); 
        } 
} 
 
 

void initialize_content(long n) { 
    int i = 0, j = 0, size = 0; 
 
    for (i = 0; i < n; i++) { 
 
 
        if (i == 0) 
            size = 200000; 
        else if (i == 1) 
            size = 100000; 
        else if (i == 2) 
            size = 50000; 
        else if (i == 3) 
            size = 10000; 
        else if (i == 4) 
            size = 1000; 
 
        newcontent[i] = malloc(size); 
 
        memset(newcontent[i], 0, size); 
        for (j = 0; j < size - 1; j++) { 
            newcontent[i][j] = 'a'; 
        } 
        newcontent[i][j] = 'a'; 
 
    } 
} 
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Appendix E 
 

C Program with Cache Modeling Logic 
 
int main(int argc, char** argv) { 
 
 int numberOfOps = 10000;  
 int numberOfChunks = 10;  
 int i = 0, j = 0; 
 
 for (i = 0; i < chunk; i++) { 
 
        //creates 
        for (j = 0; j < loop; j++) { 
  sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
  int fd = open64(filepath, createflag, 0666); 
  close(fd); 
            } 
        } 
 
        //writes 
        for (j = 0; j < loop; j++) { 
            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            int fd = open64(filepath, openflag, 0666); 
            write(fd, content, contentsize); 
            close(fd); 
        } 
 
 //reads 
        for (j = 0; j < loop; j++) { 
  sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
  fopen(filepath, "ab+")))   
  fread(buff, contentsize, 1, (FILE*) fp); 
  fclose(fp); 
 

if (j % 5 == 0) { 
                lseek64(filepath, 0, SEEK_SET); 
                fd = open64(filepath, openflag, 0666); 
                read(fd, content, contentsize); 
                close(fd); 
            } 
        } 

 } 
 
        //delete 
        for (j = 0; j < loop; j++) { 
            sprintf(filepath, "%s/%d-%d.txt", dir, i, j); 
            remove(filepath); 
        } 
} 
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Appendix F 
 

Web Proxy workload by FileBench 
 

# 
# CDDL HEADER START 
# 
# The contents of this file are subject to the terms of the 
# Common Development and Distribution License (the "License"). 
# You may not use this file except in compliance with the License. 
# 
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 
# or http://www.opensolaris.org/os/licensing. 
# See the License for the specific language governing permissions 
# and limitations under the License. 
# 
# When distributing Covered Code, include this CDDL HEADER in each 
# file and include the License file at usr/src/OPENSOLARIS.LICENSE. 
# If applicable, add the following below this CDDL HEADER, with the 
# fields enclosed by brackets "[]" replaced with your own identifying 
# information: Portions Copyright [yyyy] [name of copyright owner] 
# 
# CDDL HEADER END 
# 
# 
# Copyright 2008 Sun Microsystems, Inc.  All rights reserved. 
# Use is subject to license terms. 
# 
 
set $dir=/tmp 
set $nfiles=10000 
set $meandirwidth=1000000 
set $meanfilesize=16k 
set $nthreads=5 
set $meaniosize=16k 
set $iosize=1m 
 
define fileset 
name=bigfileset,path=$dir,size=$meanfilesize,entries=$nfiles,dirwidth=$meandirwidth,prealloc=8
0 
 
define process name=proxycache,instances=1 
{ 
  thread name=proxycache,memsize=10m,instances=$nthreads 
  { 
    flowop deletefile name=deletefile1,filesetname=bigfileset 
    flowop createfile name=createfile1,filesetname=bigfileset,fd=1 
    flowop appendfilerand name=appendfilerand1,iosize=$meaniosize,fd=1 
    flowop closefile name=closefile1,fd=1 
    flowop openfile name=openfile2,filesetname=bigfileset,fd=1 
    flowop readwholefile name=readfile2,fd=1,iosize=$iosize 
    flowop closefile name=closefile2,fd=1 
    flowop openfile name=openfile3,filesetname=bigfileset,fd=1 
    flowop readwholefile name=readfile3,fd=1,iosize=$iosize 
    flowop closefile name=closefile3,fd=1 
    flowop openfile name=openfile4,filesetname=bigfileset,fd=1 
    flowop readwholefile name=readfile4,fd=1,iosize=$iosize 
    flowop closefile name=closefile4,fd=1 
    flowop openfile name=openfile5,filesetname=bigfileset,fd=1 
    flowop readwholefile name=readfile5,fd=1,iosize=$iosize 
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    flowop closefile name=closefile5,fd=1 
    flowop openfile name=openfile6,filesetname=bigfileset,fd=1 
    flowop readwholefile name=readfile6,fd=1,iosize=$iosize 
    flowop closefile name=closefile6,fd=1 
    flowop opslimit name=limit 
  } 
} 
 
echo  "Web proxy‐server Version 3.0 personality successfully loaded" 
usage "Usage: set \$dir=<dir>" 
usage "       set \$meanfilesize=<size>    defaults to $meanfilesize" 
usage "       set \$nfiles=<value>     defaults to $nfiles" 
usage "       set \$nthreads=<value>   defaults to $nthreads" 
usage "       set \$meaniosize=<value> defaults to $meaniosize" 
usage "       set \$iosize=<size>  defaults to $iosize" 
usage "       set \$meandirwidth=<size> defaults to $meandirwidth" 
usage "       run runtime (e.g. run 60)" 
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Appendix G 
 

Web Server workload by FileBench 
 
 
  # CDDL HEADER START 

  # 

  # The contents of this file are subject to the terms of the 

  # Common Development and Distribution License (the "License"). 

  # You may not use this file except in compliance with the License. 

  # 

  # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 

  # or http://www.opensolaris.org/os/licensing. 

  # See the License for the specific language governing permissions 

  # and limitations under the License. 

  # 

  # When distributing Covered Code, include this CDDL HEADER in each 

  # file and include the License file at usr/src/OPENSOLARIS.LICENSE. 

  # If applicable, add the following below this CDDL HEADER, with the 

  # fields enclosed by brackets "[]" replaced with your own identifying 

  # information: Portions Copyright [yyyy] [name of copyright owner] 

  # 

  # CDDL HEADER END 

  # 

  # 

  # Copyright 2007 Sun Microsystems, Inc.  All rights reserved. 

  # Use is subject to license terms. 

  # 

   

 

 set $dir=/tmp 

  set $nfiles=1000 

  set $meandirwidth=20 

  set $filesize=cvar(type=cvar‐gamma,parameters=mean:16384;gamma:1.5) 

  set $nthreads=5 

  set $iosize=1m 

  set $meanappendsize=16k 

   

 

 define fileset 

name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,dirwidth=$meandirwidth,preallo

c=100,readonly 

  define fileset 
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name=logfiles,path=$dir,size=$filesize,entries=1,dirwidth=$meandirwidth,prealloc 

 define process name=filereader,instances=1 

  { 

    thread name=filereaderthread,memsize=10m,instances=$nthreads 

    { 

      flowop openfile name=openfile1,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile1,fd=1,iosize=$iosize 

      flowop closefile name=closefile1,fd=1 

      flowop openfile name=openfile2,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile2,fd=1,iosize=$iosize 

      flowop closefile name=closefile2,fd=1 

      flowop openfile name=openfile3,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile3,fd=1,iosize=$iosize 

      flowop closefile name=closefile3,fd=1 

      flowop openfile name=openfile4,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile4,fd=1,iosize=$iosize 

      flowop closefile name=closefile4,fd=1 

      flowop openfile name=openfile5,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile5,fd=1,iosize=$iosize 

      flowop closefile name=closefile5,fd=1 

      flowop openfile name=openfile6,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile6,fd=1,iosize=$iosize 

      flowop closefile name=closefile6,fd=1 

      flowop openfile name=openfile7,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile7,fd=1,iosize=$iosize 

      flowop closefile name=closefile7,fd=1 

      flowop openfile name=openfile8,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile8,fd=1,iosize=$iosize 

      flowop closefile name=closefile8,fd=1 

      flowop openfile name=openfile9,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile9,fd=1,iosize=$iosize 

      flowop closefile name=closefile9,fd=1 

      flowop openfile name=openfile10,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile10,fd=1,iosize=$iosize 

      flowop closefile name=closefile10,fd=1 

      flowop appendfilerand 

name=appendlog,filesetname=logfiles,iosize=$meanappendsize,fd=2 

    } 

  } 

 echo  "Web‐server Version 3.1 personality successfully loaded" 

 run 60 
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Appendix H 
 

File Server workload by FileBench 
 
  # CDDL HEADER START 

  # 

  # The contents of this file are subject to the terms of the 

  # Common Development and Distribution License (the "License"). 

  # You may not use this file except in compliance with the License. 

  # 

  # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 

  # or http://www.opensolaris.org/os/licensing. 

  # See the License for the specific language governing permissions 

  # and limitations under the License. 

  # 

  # When distributing Covered Code, include this CDDL HEADER in each 

  # file and include the License file at usr/src/OPENSOLARIS.LICENSE. 

  # If applicable, add the following below this CDDL HEADER, with the 

  # fields enclosed by brackets "[]" replaced with your own identifying 

  # information: Portions Copyright [yyyy] [name of copyright owner] 

  # 

  # CDDL HEADER END 

  # 

  # 

  # Copyright 2008 Sun Microsystems, Inc.  All rights reserved. 

  # Use is subject to license terms. 

  # 

   

 

 set $dir=/tmp 

  set $nfiles=10000 

  set $meandirwidth=20 

  set $meanfilesize=128k 

  set $nthreads=5 

  set $meaniosize=1m 

  set $meanappendsize=16k 

  set $runtime=5 

   

 

 define fileset 

name=bigfileset,path=$dir,size=$meanfilesize,entries=$nfiles,dirwidth=$meandirwidth,pre

alloc=80 
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 define process name=filereader,instances=1 

  { 

    thread name=filereaderthread,memsize=10m,instances=$nthreads 

    { 

      flowop createfile name=createfile1,filesetname=bigfileset,fd=1 

      flowop writewholefile name=wrtfile1,srcfd=1,fd=1,iosize=$meaniosize 

      flowop closefile name=closefile1,fd=1 

      flowop openfile name=openfile1,filesetname=bigfileset,fd=1 

      flowop appendfilerand name=appendfilerand1,iosize=$meanappendsize,fd=1 

      flowop closefile name=closefile2,fd=1 

      flowop openfile name=openfile2,filesetname=bigfileset,fd=1 

      flowop readwholefile name=readfile1,fd=1,iosize=$meaniosize 

      flowop closefile name=closefile3,fd=1 

      flowop deletefile name=deletefile1,filesetname=bigfileset 

      flowop statfile name=statfile1,filesetname=bigfileset 

    } 

  } 

   

 

 set $nfiles=1000 

   

 

 echo "  File‐server Version 3.0 personality" 

  echo "    \$dir=$dir" 

  echo "    \$nfiles=$nfiles" 

  echo "    \$meandirwidth=$meandirwidth" 

  echo "    \$meanfilesize=$meanfilesize" 

  echo "    \$nthreads=$nthreads" 

  echo "    \$meaniosize=$meaniosize" 

  echo "    \$meanappendsize=$meanappendsize" 

  echo "    \$runtime=$runtime" 

   

 

 run 300 
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