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An Abstract of a Dissertation Report Submitted in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

Pulsar Search Using Supervised Machine Learning
by

John M. Ford

Pulsars are rapidly rotating neutron stars which emit a strong beam of energy
through mechanisms that are not entirely clear to physicists. These very dense stars
are used by astrophysicists to study many basic physical phenomena, such as the
behavior of plasmas in extremely dense environments, behavior of pulsar-black hole
pairs, and tests of general relativity. Many of these tasks require a large ensemble
of pulsars to provide enough statistical information to answer the scientific questions
posed by physicists. In order to provide more pulsars to study, there are several large-
scale pulsar surveys underway, which are generating a huge backlog of unprocessed
data. Searching for pulsars is a very labor-intensive process, currently requiring
skilled people to examine and interpret plots of data output by analysis programs.
An automated system for screening the plots will speed up the search for pulsars by a
very large factor. Research to date on using machine learning and pattern recognition
has not yielded a completely satisfactory system, as systems with the desired near
100% recall have false positive rates that are higher than desired, causing more manual
labor in the classification of pulsars. This work proposed to research, identify, propose
and develop methods to overcome the barriers to building an improved classification
system with a false positive rate of less than 1% and a recall of near 100% that will be
useful for the current and next generation of large pulsar surveys. The results show
that it is possible to generate classifiers that perform as needed from the available
training data. While a false positive rate of 1% was not reached, recall of over 99%
was achieved with a false positive rate of less than 2%. Methods of mitigating the
imbalanced training and test data were explored and found to be highly e↵ective in
enhancing classification accuracy.
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Chapter 1

Introduction

Background

Pulsars are rapidly rotating neutron stars which emit a strong beam of energy

through mechanisms that are not entirely clear to physicists. These very dense neu-

tron stars are used by astrophysicists to study many phenomena. Fundamental tests

of general relativity can be made using them as tools (D. Lorimer and Kramer, 2005).

Currently, an experiment is being performed to try to detect gravitational waves by

the North American Nanohertz Observatory for Gravitational Waves (2012) by study-

ing the timing variations of an array of pulsars scattered around the celestial sphere.

These experiments in fundamental physics require a large set of pulsars for study,

providing the impetus for systematically searching the sky for new pulsars. Pulsars

discovered in ongoing pulsar surveys, as well as in the reprocessed data of several

archival surveys, are continually being added to the census of pulsars in the nearby

universe.

Problem Statement

Searching for pulsars is a very labor-intensive process, currently requiring skilled

people to examine and interpret plots of data output by analysis programs. An

automated system for screening the plots would speed up the search for pulsars by a

very large factor. Research to date on using machine learning and pattern recognition

has not yielded a satisfactory system. This work proposes to research, identify, and

propose methods to overcome the barriers to such a system.
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Figure 1.1: Pulsar data collection process

Analog to Digital
 Conversion

Streaming Fast 
Fourier Transform

Accumulate Write to Disk

Searching for Pulsars

Searching for pulsars is a compute-intensive and human-intensive task. The raw

data is collected from a large (40 to 100 meter diameter) radio telescope at a very high

sample rate with a specialized radio telescope receiver system and custom hardware

signal processor. The signal processor receives the signal from the telescope, digitizes

it, and performs a Fourier transform on the time series, changing it into a power

spectrum with many frequency channels. Each channel represents the instantaneous

signal power in a small frequency band 1 to 4 megahertz (MHz) wide. The instanta-

neous power spectrum is sent to a computer where it is stored for later processing.

Figure 1.1 shows a simplified schematic of the data collection process.

Once the time series of power spectral data is stored on disk, it can be processed

to search for pulsars. Not only is the pulsar signal very faint and buried in random

background noise, it is also often obscured with radio frequency interference (RFI).

When many samples of a faint signal buried in random noise are averaged together,

the signal-to-noise ratio is improved because the random noise cancels while the (non-

random) signal builds up with the addition of each time sample (Hassan & Anwar,

2010). However, RFI is not a random process and does not average out over time,

so the first step in the processing is to attempt to find and remove any RFI signals

from the data to avoid confusing the RFI with an astronomical signal.

In order to use the previously described averaging process to build up the signal-



3

to-noise ratio, in the case of pulsar search data processing, an added complication is

that the pulse period is unknown, and so the averaging process must be performed

at many di↵erent trial pulse periods (known as folding) to search the pulse period

parameter space and find the true pulsar period.

Another parameter space that must be searched is the Dispersion Measure (DM)

space. Dispersion is caused by the interstellar medium, and is di↵erent for every

pulsar, depending on its distance and the number of electrons in the interstellar

medium in the direction of the pulsar. Dispersion causes the lower frequencies of

the signal to arrive later than the higher frequencies. This smears out, or disperses,

the pulse. This smearing will completely obliterate the pulse if the signal is not de-

dispersed before folding. Figure 1.2 shows the e↵ects of dispersion on the time of

arrival of the pulse. Note that in the upper part of the figure, the signal in each

frequency channel across the band is spread nearly evenly in time. The lower panel

shows the results of de-dispersing the pulse and summing all of the frquency channels.

The pulse is clearly visible with high signal to noise ratio.

The degree of dispersion given by the dispersion measure parameter must also be

searched at the same time as the pulsar period, creating a combinatorial explosion

in the number of output data sets created from each input data set. The output

data sets are usually presented to the scientist graphically and these plots are called

diagnostic plots (described below). A simplified diagram of this signal processing

pipeline is described in Figure 1.3. Complete details of the signal processing pipeline

in typical use may be found in D. Lorimer and Kramer (2005) or in McLaughlin

(2011).

The final step in the classical analysis of pulsar search data is the manual ex-

amination of diagnostic plots like the one in Figure 1.4. The plots are examined
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Figure 1.2: Dispersion from the Interstellar Medium. From D. Lorimer and Kramer
(2005)

.

Figure 1.3: Pulsar signal processing pipeline
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Figure 1.4: Diagnostic plot for Pulsar J0820-1350

by astronomers or trained volunteers (often interested high school or undergraduate

students!) to determine if a pulsar signal is likely present in the data. Diagnostic

plots that appear to contain a pulsar signal are saved, and that region of the sky is

observed again to confirm whether a pulsar is present. For a particular pointing on

the sky, a few hundred or a thousand diagnostic plots might be created, resulting in

millions of plots being created from a large-scale survey.

Figures 1.4 – 1.6 show diagnostic plots derived from Green Bank Telescope 350

MHz data collected for the Pulsar Search Collaboratory (Heatherly, 2013) (Adapted

with permission). Figure 1.4 shows the plot for known pulsar J0820-1350. Data

shown in tabular form in the upper right corner of the plot give the summary of the
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statistics of the processed data. An important measure is the value of Reduced �2,

It is important to note that the Reduced �2 value builds over time as the data are

processed and compared to the model. This can be seen in the Reduced �2 vs Time

subplot (Labeled “C” in Figure 1.4).

There are four main features in the plots that astronomers use when deciding if a

candidate could be a pulsar:

• First, in the 2 Pulses of Best Profile subplot in the upper left-hand corner

of the figure, labeled “A”, the peaks should be significantly above the noise

floor. Compare the error bars in the lower left corner of the same subplot in

Figures 1.4 and 1.5.

• Second, in the Phase vs Time subplot, labeled “B”, vertical lines in phase with

the peaks should appear throughout the entire observation time, unless, as in

this case, the telescope beam is drifting across the sky, in which case the pulsar

should smoothly come into the beam and drift out later. This indicates that

the signal is continuous in time, as pulsar signals usually are. In this plot, the

pulsar drifted into the beam at the beginning of the pointing, and then was

constant throughout the rest of the pointing. The data file that follows this one

in time would show the pulsar strongly in the beginning of the scan, and show

it drifting out of the beam at the end of the scan.

• Third, in the Phase vs Frequency subplot, labeled “E”, the vertical lines should

also span most of the frequency space, indicating the signal is a broadband

signal, which is characteristic of a pulsar signal. Compare this with Figure 1.6,

a plot of a man-made interference signal, where the signal is present only at a

narrow band of frequencies.
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• Fourth, a bell-shaped curve in the DM vs Reduced �

2 subplot, labeled “D”,

shows that the signal’s reduced �2 value depends strongly on DM, peaking at

the trial DM, as it should. Compare this with the plot in Figures 1.5 and 1.6,

where there is no strong dependence of Reduced �2 with DM.

Figure 1.5 shows a plot generated from a signal that is normal background noise.

Note the lack of systematic signals that were present in Figure 1.4. The error bars on

the 2 Pulses of Best Profile subplot are nearly as large as the pulse peaks. The Phase

vs Time and Phase vs Frequency subplots are disorganized and appear random. The

DM vs reduced �2 subplot shows only a very weak dependency of �2 on DM.

Figure 1.6 shows a plot generated from a man-made interference signal. Some of

the charateristics seem to be the same as the pulsar signal in Figure 1.4. However,

other characteristics are clearly di↵erent. The Phase vs Frequency subplot shows a

strong signal at only a small band of frequencies, rather than across the band as

might be expected of a true pulsar signal. The DM vs Reduced �2 subplot shows no

strong peak in the curve.
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Figure 1.5: Diagnostic plot of background noise in the direction of 0814-1341

Research Goal

The first published attempt to use a machine learning approach to detect pulsars

in diagnostic data was published by Eatough et al. (2010). Their work used 14,400

pointings out of the Parkes Multibeam Pulsar Survey (PMPS), one of the largest

comprehensive searches undertaken to date (Manchester et al., 2001). The 14,400

beams were processed through their standard pulsar search pipeline, generating 2.5

million candidate plots containing possibly all types of pulsars: binary pulsars, slow

pulsars, and millisecond pulsars. Out of these 2.5 million plots, 501 pulsars were

found by manual means, yielding a very small 501

2,500,000 = 0.02% success ratio. Such a

small success ratio makes the job of manually viewing the plots tedious and extremely
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Figure 1.6: Diagnostic plot of radio frequency interference in the direction of 0723-
1342

error-prone.

An automated method of screening the candidates is needed to reduce the human

e↵ort needed to examine the candidate plots. Eatough et al. (2010) used an Artificial

Neural Network (ANN) as a binary classifier to screen the 2.5 million candidate plots.

The goal of the proposed research was to develop an improved method for pulsar

identification using supervised machine learning techniques. Private communications

with pulsar scientists (Demorest, 2013; Ransom, 2013) set the goals as

• The false positive rate should be less than 5%.

• Precision of the new algorithm should be greater than the 3.6% of the current
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state of the art.

• Recall greater than 99% (Less than 1% of the pulsars are missed)

These are very di�cult specifications to meet, but the relaxed false positive rate

specification from that achieved by Eatough et al. (2010) provided a ray of hope. In

fact, a paper (Morello et al., 2014) reports that they have acheived a 100 percent

recall and just 0.64 percent false positive rate on a large data set. See Chapter 2

for more on this paper. Additionally, a recent paper by Lyon, Stappers, Cooper,

Brooke, and Knowles (2016) provides more analysis and a mathematical background

for choosing features.

Prior Research and Significance

As noted in the background section, there are more and larger pulsar surveys

being planned for current and future telescopes. The Five Hundred Meter Spherical

Telescope being built in China will be able to find as many as 5,000 pulsars in a short

amount of time (Smits, Lorimer, et al., 2009). The Square Kilometer Array (SKA)

is expected to find more than 20,000 pulsars (about 10 times the number currently

known!) (Smits, Kramer, et al., 2009). As the ratio of candidates to confirmed pul-

sars is about 10,000:1, upwards of 200 million candidates will need to be examined

to complete the SKA survey. Clearly, it is impractical to examine all 200 million

candidates with human eyes.

Research in automated pulsar search is in its infancy. Research in machine learn-

ing for building classifiers is a mature area. One characteristic of the pulsar search

problem that makes this research interesting is the imbalanced training data avail-

able. The very small number of known pulsars and the large amount of data available

means that the training must be done with a very imbalanced data set, or else large
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amounts of data without pulsars must be discarded. Other machine learning tech-

niques have not been used in identifying pulsars thus far, and it is worthwhile to

consider some of these techniques. One such technique is the Support Vector Ma-

chine. The SVM can perform well in cases where there is an imbalance in the classes

available in the training data, since only training examples nearest the maximum-

margin hyperplane separating the two classes are required. Sei↵ert, Khoshgoftaar,

Van Hulse, and Napolitano (2007) discusses the issues involved with classifying very

rare events using the SVM.

Experience with many large-scale pulsar surveys (Eatough et al., 2010; D. R.

Lorimer, 2011) has shown the need for a more automated system for classifying

pulsar candidates. Eatough et al. (2010) proposed an ANN utilizing eight input

features derived from plots generated by the pulsar search software output. This

ANN, when trained, reduced the number of candidates that had to be viewed from

2.5 million to 13,000. Unfortunately, it detected only about 92% of the pulsars in the

test data set. Changing the scoring added to the number of false positives but did

not materially increase the success rate. An attempt to improve on these results was

recently published (Bates et al., 2012), but the e↵ort failed in spite of using 14 more

parameters in the ANN inputs. This lack of success with more features suggests that

the features chosen for the studies by Eatough et al. (2010) and Bates et al. (2012) may

have not been the best features to use for classification, leading to failure of the trained

network to generalize well. Studies of optimizing the feature sets used in classification

problems have been done (Van Hulse, Khoshgoftaar, Napolitano, & Wald, 2009), and

algorithms have been developed to automate the feature optimization. Weston et al.

(2000) outlines a procedure for choosing features to be used in support vector machine

classifiers. Since an ANN is a special case of a support vector machine (Vapnik, 1999),
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these techniques may be applied to the problem.

The work of both Eatough et al. (2010) and Bates et al. (2012) used simple statis-

tics derived from the pulsar candidate plots as inputs to the ANN. These statistics

may not include critical information that was lost when the plots were reduced to

simple statistics. In addition, millisecond pulsars, a class of pulsars especially prized

for their stable spin periods and emissions, are underrepresented in the training data

they used in training their ANN. Both of these problems need to be studied further

as part of this work.

Eatough comments that the CPU time to run the ANN is a very small fraction

of the time spent creating the candidate plot in the first place (2 minutes vs. 3

hours). From that perspective, it is feasible to cascade several classifiers together to

extract more pulsars from the stream and exclude more false positives. Again, for

this application it is important to minimize false negative results.

In addition to the ANN research described above, work has been done on improv-

ing the algorithms for scoring the candidate plots. Using these improved techniques,

Keith et al. (2009) found 28 more pulsars in a data set that had already been mined.

Their method included performing statistical analyses on the data making up the

diagnostic plots. They analyzed the subband, DM curve, and pulse profile plots, and

combined the output scores from these analyses to form a score to decide whether a

candidate was a strong candidate.

A very recent system called PEACE: Pulsar Evaluation Algorithm for Candidate

Extraction (Lee et al., 2013) demonstrated the utility of careful feature selection in

an algorithm similar to the one described above. This paper used six quality factors

in the scoring of the pulsar candidate. They achieved good results using these six

factors, with 100% of the known pulsars in the data set ranked in the top 3.7% of the
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candidates. These experiences will be used to help define the candidate feature sets

to be optimized.

An e↵ort was made by Lyon et al. (2016) to rigorously derive a feature set from the

data provided by (Morello et al., 2014). That feature set is used for the experiments

in this research.

Other Machine Learning Methods

If one subscribes to the No Free Lunch theorems (D. Wolpert & Macready, 1997),

then one should try to use the a priori knowledge of the problem to choose the

best possible algorithm match to the problem. Support vector machines will be

investigated to find out if they o↵er advantages over the ANN, and to provide a

structure for investigating the feature set to be used.

Naive Bayes classifiers were investigated as part of the background work for this

paper but do not seem to be applicable to this work due to the di�culty of establishing

prior probabilities due to the rarity of the pulsars in the data.

Machine Learning in the face of unbalanced training data

Work by Sei↵ert et al. (2007) on very imbalanced data sets shows that even with

the minority making up as little as 0.1% of the examples, e↵ective classifiers can

be built using techniques to mitigate the e↵ects of the unbalanced data set. Their

work used 11 di↵erent learning algorithms and built over 200,000 classifiers. Their

conclusions show that data sampling, a technique for selecting a subset of data for

learning purposes, can increase the performance of the classifiers.

Barriers and Issues

Automated pulsar searching is a di�cult problem due to the relative scarcity of

exemplars and the huge volumes of sometimes poor-quality data. Pulsar signals also
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exhibit a great deal of variability from pulsar to pulsar. Some produce very narrow

pulses, while others produce wide pulses. The pulsar signal, even in the best of cases,

is weak and buried in noise. Combined with terrestrial interference, the signals are

very di�cult to find even for human eyes. In addition, machine learning is a very new

topic in the pulsar search community. Only a few papers have been published on the

subject (Bates et al., 2012; Eatough et al., 2010; Morello et al., 2014). Although there

is other on-going research by astronomers, there are no computer science researchers

involved in these studies.

Finally, the data sets themselves are many tens to hundreds of terabytes in size.

Even with permission to use the data, it is unwieldy to copy it around the internet.

Fortunately, astronomers are willing to help by physically copying the data onto

media and shipping it to one another once it is public.

Unbalanced Training Data

One particularly di�cult problem involves the data available to train a machine

learning algorithm. For example, in Eatough et al. (2010), only 259 pulsars and

1625 non-pulsar signals were available for training. This was culled out of a total of

2,500,000 diagnostic plots. Particularly scarce in the training data are the millisecond

pulsars. These have some characteristics that di↵er from normal pulsars that caused

them to be missed in larger proportion than the normal pulsars in the ANN stud-

ies. Some ideas to counter this problem are to use some of the ideas of Hu, Liang,

Ma, and He (2009) and Sei↵ert, Khoshgoftaar, Van Hulse, and Napolitano (2009)

in synthesizing and augmenting the minority exemplars. This is an opportunity for

research as much as it is a barrier!
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New Area of Research

As the application of machine learning techniques is new to the field of pulsar

astronomy, there has not been much research published to guide the way forward.

There is enthusiasm in the pulsar astronomy community for these techniques, and a

great deal of data is publicly or semi-publicly available for experimentation, but there

are many data formats and di↵ering data quality across the di↵erent data sets.

Definition of Terms

Binary pulsar A pulsar in orbit around a companion star, or vice versa.

Dispersion The e↵ect on a broadband electromagnetic signal traveling through the

interstellar medium that imparts a frequency dependent delay to the signal.

Dispersion Measure A measurement of the delay experienced by the pulsar signal

as it transits the interstellar medium. It is a↵ected by the electron density

along the line of sight. The units of dispersion measure are parsecs per cubic

centimeter.

Folding Averaging a time series signal using a particular repetition period

Interstellar Medium The gases and ions between stars. Space is not quite a vac-

uum.

Millisecond Pulsar A pulsar with a period measured in milliseconds.

Pulsar A rapidly rotating neutron star that emits a powerful beam of energy as it

rotates

Pulse Period The period at which the pulsar signal repeats
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Power Spectrum A measurement of the signal power as a function of frequency

Radio Frequency Interference Unwanted signals generated by humans or natural

processes that interfere with reception of desired signals

Reduced �

2 The measure of how a signal di↵ers from an assumed model, which in

the case of radio astronomy data is white gaussian noise.

Slow pulsar A pulsar with a period approaching or exceeding 1 second.

Summary

Pulsars are rapidly rotating neutron stars which emit a strong beam of energy

through mechanisms that are not entirely clear to physicists. These very dense stars

are used by astrophysicists to study many basic physical phenomena, such as the

behavior of plasmas in extremely dense environments, behavior of pulsar-black hole

pairs, and other extreme physics. Many of these tasks require a large ensemble of

pulsars to provide enough information to complete the science.

In order to provide more pulsars to study, there are several large-scale pulsar sur-

veys underway, which are generating a huge backlog of unprocessed data. Searching

for pulsars is a very labor-intensive process, currently requiring skilled people to ex-

amine and interpret plots of data output by analysis programs. An automated system

for screening the plots would speed up the search for pulsars by a very large factor.

Eatough et al. (2010) recounts a private communication (Lee) describing an auto-

mated pulsar candidate ranking algorithm. A method of using scores that indicate

the degree of similarity between the candidate and a typical pulsar is described in

another paper (Keith et al., 2009). Neither of these last two methods used ANNs or

other machine learning techniques to inspect plots, rather the algorithms were used

as a filter to limit the number of candidate plots that needed to be viewed.
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The approach of using artificial neural networks is significant since it may allow an

automated detection and classification pipeline to be used to relieve the burgeoning

backlog of pulsar search data and to allow economical reprocessing of archived search

data. Reprocessing of data is desirable when advances in search algorithms raise the

possibility of additional pulsars being found in the archived data. Some of the most

sought-after and rare pulsars are those found in binary systems, where the pulsar is

orbiting another object, or where two pulsars are orbiting each other. These binary

pulsars require advanced search algorithms that take into account the acceleration

of the pulsars due to the presence of its orbiting companion. Before recent increases

in the available computing power available to researchers, these advanced algorithms

were not typically run on all data due to the extra computational complexity. Older

data sets may yield some of these exotic systems if the data are reprocessed with new

algorithms including automated detection and classification methods.

Research to date on using machine learning and pattern recognition has not

yielded a satisfactory system, with more than 7% of the pulsars in a test data set

missed by the first automated system to attempt this problem. Later systems have

claimed 100% recall, but this needs further research to confirm. This work proposes

to research, identify, and propose methods to overcome the barriers to building an

improved classification system with a false positive rate of less than 0.5% and a recall

of near 100%.
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Chapter 2

Review of the Literature

Machine Learning in Astronomy

Machine learning algorithms were not applied in pulsar searching prior to Eatough

et al. (2010). They have been used in other branches of astronomy in such applica-

tions as the classification of galaxies (Lahav, Naim, Sodré, & Storrie-Lombardi, 1996;

Zhang, Li, & Zhao, 2009), in estimation of redshifts of stars in the Sloan Digital Sky

Survey (Firth, Lahav, & Somerville, 2003), and in the classification of microlensing

events from large variability studies (Belokurov, Evans, & Du, 2003).

One of the new topics in astronomy is transient detection. Transient objects

appear in astronomical images from many causes. Some are asteroids, comets, and

other near-earth phenomena, while others are more exotic, such as Gamma-ray bursts

(GRB), supernovae, and variable stars. New telescopes are being built to image the

sky rapidly, so that transients can be detected quickly, giving other telescopes time

to follow up on them before they fad away. A prime example of this is the work by

Morgan et al. (2012) in applying machine learning to classify GRBs as coming from

sources with a particularly interesting redshift. The purpose is to maximize use of

the avaiable follow-up time to study these more interesting GRBs. This work uses

a Random Forest set of classifiers to do the work. Another work using the Random

Forest approach is from Brink et al. (2013) that is used to look for real transient events

from the Palomar Transient Factory, a telescope dedicated to looking for transient

events. This system correctly classifies 92% of real transients in the data, with a

1% false positive rate. For transient detection in the Pan-STARRS1 Medium Deep

Survey, a machine learning system has been applied to the problem, yielding a 90%



19

recall rate with a 1% false positive rate (Wright et al., 2015).

Machine Learning in Pulsar Search

Eatough et al. (2010) used an Artificial Neural Network (ANN) as a binary classi-

fier to screen the 2.5 million candidate plots. The e↵ort used a set of 8 input features

derived from candidate plots as the input vector to the ANN. In addition to these 8

features, an additional small trial was done with a set of 12 features with minimal

e↵ect on the success rates. The following are the features extracted from the data

forming the diagnostic plots and used in the feature vector (the last 4 features listed

were not used in the full experiment):

• Pulse profile signal-to-noise ratio (SNR)

• Pulse profile width

• �

2 of the fit to the theoretical dispersion measure (DM) - SNR curve

• Number of DM trials with SNR > 10

• �

2 of the fit to the optimized theoretical dispersion measure (DM) - SNR curve

• �

2 of the fit to the theoretical acceleration - SNR curve

• number of acceleration trials with SNR > 10

• �

2 of the fit to the optimized theoretical acceleration - SNR curve

• RMS scatter in subband maxima

• Linear correlation across subbands

• RMS scatter in subintegration maxima

• Linear correlation across subintegrations
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From the data, which contained 501 pulsars, training data consisting of 259 input

vectors from known pulsars and 1625 input vectors from non-pulsar signals were used

to train the ANN. An additional validation data set was reserved from the data set

with 28 pulsar signals and 899 non-pulsar signals. The remainder of the data, which

contained the rest of the pulsars, was used as a test sample. Unfortunately, some of

the test sample contained pulsars that were used in training, which makes some of

the statistics a bit optimistic.

This ANN was very e↵ective in reducing the number of plots to be examined by

eye from 2.5 million to 13,000, a reduction of a factor of almost 200. However, the

ANN recovered only about 92% of the known pulsars in the data set, which is not

acceptable to scientists (Ransom, 2013), who would demand a false negative rate of

at worst a few percent before entrusting the search to the machine.

Bates et al. (2012) also attempted to use this method to find pulsars, but were

not as successful as Eatough et al. (2010). They used 22 features in the input vector,

including all of the features used by Eatough et al. (2010). Their success rate was

no better with more features. This lack of success with more features suggests that

Eatough et al. (2010) and Bates et al. (2012) may have not chosen the features to

use for classification in an optimal way, leading to failure of the trained network to

generalize well.

Recently, a system called SPINN (Morello et al., 2014) was developed that can

detect 100 percent of the known pulsars in the High Time Resolution Universe sur-

vey (Keith, 2013). This system uses a custom neural network software implementa-

tion that allows finer control of the learning process than that used by Eatough et al.

(2010). To improve learning and generalization the system employed recommenda-

tions from earlier work on e�cient backpropagation algorithms by LeCun, Bottou,
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Orr, and Muller (1998). Specifically, the following recommendations were employed:

• Feature scaling to to ensure each feature has zero mean and unit standard

deviation over the traning set.

• The hyperbolic tangent function as an activation function

• Training of the system in batches containing di↵erent mixes of training data.

In addition to these techniques, the class imbalance was mitigated by oversampling

the minority class pulsars so that the ratio of pulsars to non-pulsars was 4:1. This

may potentially be a problem! It’s not clear that in the 5-fold cross validation that

they took care to not have the oversampled pulsar candidates in the test and training

sets...

The feature set used in this research was smaller than that used by Eatough et al.

(2010) and Bates et al. (2012), lending credence to the speculation that better feature

selection could have improved performance of the e↵orts. The specific features used

here are:

• Signal to Noise of the folded pulse profile

• Intrinsic equivalent duty cycle of the pulse profile

• Ratio between the period and dispersion measure

• Validity of the optimized dispersion measure

• Time domain persistence of the signal

• Root-mean-square distance between the folded profila and the sub-integrations

that make up the profile
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It should be noted that one of the criteria mentioned in the description of Fig-

ure 1.6 as being critical to human classification is not used in this feature set. The

authors state that using continuity of the Phase vs Frequency plots hurt the perfor-

mance. However, In other surveys with strong narrowband interference, this may be

a very good feature to use to identify RFI.

Studies on optimizing the feature sets used in classification problems have been

done (Van Hulse et al., 2009), and algorithms have been developed to automate the

feature optimization. Weston et al. (2000) outlines a procedure for choosing features

to be used in support vector machine classifiers. Since an ANN is a special case of

a support vector machine (Vapnik, 1999), these techniques may be applied to the

problem. Many of the papers cited in the section above on transient science machine

learning algorithms spend a great deal of time on feature selection.

Lyon et al. (2016) have released work on optimal feature selection for the pulsar

search problem. This work condenses the data in the pulsar data files into eight

features:

• Mean of the integrated profile P.

• Standard deviation of the integrated profile P.

• Excess kurtosis of the integrated profile P.

• Skewness of the integrated profile P.

• Mean of the DM-SNR curve D.

• Standard deviation of the DM-SNR curve D.

• Excess kurtosis of the DM-SNR curve D.
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• Skewness of the DM-SNR curve D.

The work of all of these authors(Lyon et al. (2016), Eatough et al. (2010) and

Bates et al. (2012)) used simple statistics derived from the pulsar candidate plots

as inputs to the ANN. These statistics may not include critical information that

was lost when the plots were reduced to simple statistics. In addition, millisecond

pulsars, a class of pulsars especially prized for their stable spin periods and emissions,

are underrepresented in the training data they used in training their ANN. Both of

these problems need to be studied further as part of this work.

Eatough comments that the CPU time to run the ANN is a very small fraction

of the time spent creating the candidate plot in the first place (2 minutes vs. 3

hours). From that perspective, it is feasible to cascade several classifiers together to

extract more pulsars from the stream and exclude more false positives. Again, for

this application it is important to minimize false negative results.

Zhu et al. (2014) have worked on the pulsar classification problem in a di↵erent

way, by training a system to directly read the pulsar diagnostic plots. This sys-

tem combines many techniques together to optimize the classification problem. The

subplots identified in Figure 1.4 are fed to classifiers that classify the subplot as con-

taining a pulsar or non-pulsar, and then in turn the output of these classifiers are fed

into a second classifier that determines, based on the scores from the first classifier,

if the sample is a pulsar or non-pulsar. This system has been tested on Green Bank

Telescope data, and has given good results, with 100% of the pulsars scoring in the

top 1% of the candidates. This yields about a 100 fold reduction in the number of

candidates to be examined.

In addition to the ANN research described above, work has been done on improv-

ing the algorithms for scoring the candidate plots. Using these improved techniques,
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Keith et al. (2009) found 28 more pulsars in a data set that had already been mined.

Their method included performing statistical analyses on the data making up the

diagnostic plots. They analyzed the subband, DM curve, and pulse profile plots, and

combined the output scores from these analyses to form a score to decide whether a

candidate was a strong candidate.

A recent system called PEACE: Pulsar Evaluation Algorithm for Candidate Ex-

traction (Lee et al., 2013) demonstrated the utility of careful feature selection in an

algorithm similar to the one described above. This paper used six quality factors

in the scoring of the pulsar candidate. They achieved good results using these six

factors, with 100% of the known pulsars in the data set ranked in the top 3.7% of the

candidates. The features used by PEACE are:

• Signal to noise ratio of the folded pulse profile

• Topocentric period

• Width of the pulse profile

• Persistence of signal in the time domain

• Persistence of signal in the frequency domain

• Ratio between puslse witdth and Dispersion Measure smearing time

Support Vector Machines

Support vector machines (SVMs) are finding greater applications in data mining

of large data sets, and in particular with pattern matching applications (Burges,

1998). Although support vector machines were developed starting in the 1970s (Han,

Kamber, & Pei, 2011), they began to be studied in earnest in the 1990s (Cortes &

Vapnik, 1995).
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Figure 2.1: Nonlinear transformation Adapted from Scholkopf et al. (1997)

Support vector machines are machine learning algorithms that can extend linear

modeling to nonlinear class boundaries. This is accomplished by transforming the

inputs to the machine using a nonlinear function mapping (Witten, Frank, & Hall,

2011). For instance, a circular region could be transformed using a polar to rectan-

gular mapping, thereby linearizing the problem, as shown in Figure 2.1 adapted from

Scholkopf et al. (1997).

The basic idea of the support vector machine is to create a maximum-margin

hyperplane between the classes, as shown in Figure 2.2. The maximum-margin hy-

perplane is that hyperplane that creates the greatest distance between the classes.

The class instances that are closest to the maximum-margin hyperplane are called

the support vectors (circled in Figure 2.2). The set of support vectors (tuples of data)

define the hyperplane. None of the tuples further from the hyperplane matter to the

SVM. This is important in the case of large data sets with a small number of minority

classes, as only those tuples along the maximum-margin hyperplane are needed to

define the classification.

Vapnik (1999) describes some of the useful theoretical properties of the SVM:

• The optimization problem used to construct the SVM has a unique solution
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Figure 2.2: Maximum Margin Hyperplane and Support Vectors Adapted from Burges (1998)

• The learning process for constructing an SVM is faster than for a neural network

• While learning the decision rules, the support vectors are determined

• Changing the decision function is possible by changing only the kernel function

used to define the feature space

The SVM is inherently a binary classifier. In the case of multiple possible classi-

fications, an SVM for each possible decision must be created. An ensemble of SVMs

and other classifiers may be profitably used to increase the classification accuracy of

a given data set (Witten et al., 2011).

Statistical learning theory

The definition of the learning problem solved using the SVM comes from the statis-

tical learning theory described by Vapnik (1999). The statisitical learning problem is

defined in terms of minimizing the loss from misclassified observed data. The problem

of pattern recognition (classification) is one of three problems described by Vapnik

(1999). In the interest of brevity, the other two problems, regression estimation and

density estimation, are not included in this treatment.
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The model learning problem consists of three parts:

• A data generator that returns vectors taken from a fixed distribution P (x)

• A “supervisor” that returns an output vector for each of the input vectors.

• A learning machine capable of implementing a set of functions f(x,↵),↵ 2 ⇤.

Choosing the best f(x,↵),↵ 2 ⇤ that maps the input to the output is the learning

problem. The training data is a set of l independent identically distributed observa-

tions taken from P (x, y) = P (x)P (y|x):

(x
1

, y

1

), . . . , (xl, yl) (2.1)

Given these definitions, the learning problem is defined as minimizing the loss due

to improper classification of the observations by the learned response of the machine.

The expected value of the risk is given by the following equation, known as the risk

functional:

R(↵) =

Z
L(y, f(x,↵))dP (x, y) (2.2)

The goal of the learning process is to find the function f(x,↵) that minimizes equa-

tion 2.2. Since the problem set addressed in this paper is one of pattern recognition

rather than regression or density estimation, the supervisor function simply outputs

either a 0 or a 1, based on its evaluation of the indicator functions f(x,↵),↵ 2 ⇤. If

the loss function is

L(y, f(x,↵)) =

8
><

>:

0 : y = f(x,↵)

1 : y 6= f(x,↵)

9
>=

>;
(2.3)

then evaluating the the risk functional given by equation 2.2 returns the probability of

classification error. The learning problem in the pattern recognition case consists of
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minimizing the probability of classification errors, based on minimizing equation 2.2

with the given training data as inputs.

Feature Selection in SVMs

Selecting which features of a data set to use in the classification process is an

important consideration. Selection of features is done to eliminate redundant or

irrelevant features from inclusion in the SVM. Careful selection of a subset of features

can improve the classification capability of the SVM while reducing computational

load. (Weston et al., 2000)

Importance of feature selection Feature selection in SVMs is important to im-

prove the performance of the SVM. The performance of the SVM can be considered

in two di↵erent ways. First, the speed of running the algorithm on training data

and input data is a↵ected by the number of features used in the SVM. Second, the

classification and generalization performance is negatively a↵ected by the inclusion

of irrelevant or redundant features.

Feature selection algorithms and methods The feature selection problem may

be formulated in two di↵erent ways:

• Given a set of features of a cardinality n, and fixed subset of features of cardi-

nality m, where m << n, find the m features that give the smallest expected

errors.

• Given a maximum allowable expected error, find the smallest m that gives this

expected error.

The expected error in either case is based on equation 2.3, with the input data

modified to exclude some of the features by multiplying the input data by a vector
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� consisting of 0 where the feature is excluded, and 1 where the feature is included.

Equation 2.4 shows the formulation of the problem. The task is to find � and ↵ that

minimize the modified loss functional.

⌧(⇢,↵) =

Z
V (y, f((x ⇤ �),↵))dP (x, y) (2.4)

subject to the conditions k�k = m, where P (x, y) is fixed, but unknown, x ⇤ � is an

element wise product of the input vector and the feature selection vector, V (...) is

the loss functional, and k�k
0

is the 0 norm of the vector �.

Two ways to attack this problem are known as the filter method and the wrapper

method. The filter method is implemented by preprocessing the data to remove

features before the SVM is trained, while the wrapper method provides the subset of

features by repeatedly training the SVM with di↵erent feature sets and estimating the

accuracy. This is a more computationally expensive procedure, but can give better

results, since the power of the SVM is used to help sort out the feature set. This is

still an active area of research, and much has been written on the subject of feature

selection. Three promising approaches are given next.

Feature Selection in SVMs: R

2

W

2 method Weston et al. (2000) introduce

a method that combines the filter method and the wrapper method in a way that

eliminates the computational complexity of the wrapper method while preserving the

superior results usually obtained. The R2

W

2 algorithm consists of defining the SVM

problem in terms of the dual formulation expressed as the Lagrangian of the problem

(as explained in chapter 7 of Hamel (2011)).

The paper defines the radius of the hypersphere, R containing the support vectors

in feature space, and the margin, M , and from Theorem 1 in Weston et al. (2000),
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the expectation of the error probability is given by

E{Perr}  1

l

E

⇢
R

2

M

2

�
=

1

l

E

�
R

2

W

2(↵0)
 

(2.5)

where the expectation is taken over a training set of size l.

Minimizing equation 2.5 requires a search over a space as large as the number of

features, which is a combinatorially di�cult problem when a large number of features

are included. To make this problem more tractable, Weston et al. (2000) suggest

substituting real-valued vector � 2 Rn for the the binary-valued vector � 2 {0, 1}n.

This allows the use of a gradient descent algorithm to find the optimum value using

the derivatives of the criterion, which are given below from Weston et al. (2000):

@R

2

W

2(�)

@�k
= R

2(�)
@W

2(↵0

, �)

@�k
+W

2(↵0

, �)
@R

2(�)

@�k
(2.6)

and
@R

2(�)

@�k
=
X

i

�

0

i

@K�(Xi, Xi)

@�k
�
X

i,j

�

0

i �
0

j

@K�(xi, xj)

@�k
(2.7)

and
@W

2(↵0

, �)

@�k
= �

X

i,j

↵

0

i↵
0

jyiyj
@K�(xi, xj)

@�k
(2.8)

In order to test the utility of this method, Weston et al. (2000) derived SVMs

using this method, and also using three standard filter algorithms:

• Pearson Correlation Coe�cients

• Fisher Criterion Score

• Kolmogorov-Smirnov test

The data for this test was two synthetically derived data sets consisting of a linear

problem and a nonlinear problem. The linear problem had six out of 202 dimensions
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Figure 2.3: Results for linear and nonlinear models Adapted from Weston et al. (2000)

that were relevant, and even these were partially redundant. In the nonlinear problem,

only two out of 52 dimensions were relevant.

The standard SVM algorithms performed poorly on this extremely redundant and

irrelevant data set, even with a large number of training points. The best standard

methods yielded an error rate of 13%, compared to 3% for this new method. Figure 2.3

shows the compilation of results for this experiment.

The algorithm was also tested on real-world data sets including a face recognition

application and a cancer-screening application. In the case of the face recognition

application, it outperformed the other methods of feature reduction, but the reduced

feature set classifier did not perform any better than the full-rank classifier. For the

cancer screening application, the algorithm did much better than the other feature

reduction methods, and outperformed the full-rank classifier. Using all 7129 genes,

the linear SVMmade 1 error out of 34 test examples. The reduced feature set classifier

of 20 genes built with the R

2

W

2 classifier made no errors, while 3 errors were made

by a classifier built using the Fisher score. Classifiers using only 5 genes were also

produced with the R2

W

2 method and the Fisher score method, and they made 1 and

5 errors, respectively.
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While the toy problems were an extreme case of irrelevant data, the experiments

showed that the introduction of irrelevant features into an SVM negatively a↵ects

the classification ability of the machine, and so features should be screened to be

sure that they are contributing to the information needed to properly classify the

instances.

Genetic Algorithms for Feature Selection As mentioned previously, there are

two di↵erent formulations of the feature selection problem. Either the number of

features can be specified and the generalization error estimated, or the allowable gen-

eralization error can be specified and the number of features needed can be estimated

from the allowable error.

In the filter approach to the feature selection problem, a preprocessing step is

used to separate the features to be used in the classification process from the features

that are not used. This can be misleading to the classification algorithm, since the

classification algorithm does not see all of the features, but only the subset that the

preprocessing step did not remove.

In this study of feature selection, instead of using the standard k-fold validation

routine, the genetic algorithm is used to estimate the error, based on including or

excluding features in the calculation. This approach saves much of the computation

that is required for a k-fold validation approach. This method can provide a lower

variance, but a higher bias than cross-validation (Frohlich, Chapelle, & Scholkopf,

2003) The CHC genetic algorithm (Whitley, 1994) was used in this work. The defining

feature of the CHC algorithm is the use of the population elitist strategy, where

the best individuals of each generation replace the worst individuals of the parent

generation. This allows faster mutations and hence a faster search strategy.

Several results were obtained from this study. The genetic algorithm shows a
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significant overfitting problem. The study also found that the leave-one-out error

bounds can be used as an alternative performance measure. It usually provides a

better generalization performance, but leads to more features being selected. Using

the same R

2

W

2 bound described earlier, along with the genetic algorithm, shows

a good generalization performance, comparable to the recursive feature elimination

(RFE) method. The genetic algorithm is less computationally intensive, taking only

about 1

3

the run time of the RFE algorithm for equivalent classification performance.

If the number of significant features is not known before beginning the analysis, the

genetic algorithm method provides a more e�cient method of determining the feature

set to be used in the problem.

Optimal Feature Selection: Simultaneous training and feature selection

Nguyen and De la Torre (2010) provide a view on the problem that is di↵erent from the

preceding treatments. This view is that there is value in working on both training and

feature selection in one process. This is because, as noted above, doing the procedure

in 2 steps can cause a loss of information. Other researchers have proposed this

approach before, but their methods led to non-convex optimization problems. The

approach of Nguyen and De la Torre (2010) propose a convex framework for jointly

learning optimal feature weights and SVM parameters. The method provides a set

of weights that are sparse, and therefore are useful for selecting features, with the

missing weights corresponding to features that are trimmed.

The error function is modified for jointly learning the kernel and SVM parameters.

Parameterizing the kernel and SVM parameters provides the mechanism to handle

this learning method. The input space to feature space mapping is provided by a

parameter vector, p, where  (xi) =  (xi, p). Di↵erent values of p provide di↵erent

feature spaces, and these feature spaces are not directly comparable. Instead, nor-
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malized margins, describing the margin of the respective feature spaces in a way that

can be compared between the two implementations are employed.

Class Imbalance

Work by Sei↵ert et al. (2007) on very imbalanced data sets shows that even with

the minority making up as little as 0.1% of the examples, e↵ective classifiers can be

built using techniques to mitigate the e↵ects of the unbalanced data set. Several

sampling techniques are explored that have been used in the past to try to mitigate

the e↵ects of the unbalanced class membership. The two most common techniques are

random minority oversampling, (ROS) and random majority undersampling (RUS).

In the former, the minority classes are duplicated randomly in the training data,

while in the latter, some majority samples are randomly excluded from the training

set.

Rather than randomly selecting majority members, techniques have been devel-

oped to more systematically choose majority members to exclude, such as one-sided

selection (Kubat and Matwin, 1997), where the majority samples to be discarded

are determined to be redundant, or noisy in some way. Wilson’s Editing (Wilson,

1972) uses a kNN classification technique to evaluate which majority members get

misclassified when classified against the remaining examples in the training set. The

work of Sei↵ert et al. (2007) discussed above used 11 di↵erent learning algorithms

and built over 200,000 classifiers. Their conclusions show that various methods of

data sampling, a technique for selecting a subset of data for learning purposes, can

increase the performance of the classifiers.

On the other side of the equation, another method of incrreasing the proportion

of minority members is to manufacture synthetic samples by perturbing some of

the features of the real members in a systematic way. This technique is known as
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Synthetic Minority Oversampling Technique (SMOTE) (Chawla, Bowyer, Hall, and

Kegelmeyer, 2002). The authors acknowledge that in classification problems, it is

common for the number of examples of the normal case (the “uninteresting” case)

to predominate by a large margin over the unusual or more interesting case, such as

in our case of the pulsar vs non-pulsar. The paper shows that the combination of

oversampling the minority class and undersampling the majority class can improve

classifier performance of several di↵erent classification algorithms.

The methods of generating synthetic minority class members may work for the

pulsar search problem since the physics that generate many of the signal properties

are known, and new members of the pulsar class may be created by perturbing or

modifying the existing class members within the physics from currently accepted

pulsar models.

Ensemble Classifiers

Ensemble classifiers (Witten et al., 2011) have properties which may be surprising

on first glance. Weak classifiers can be combined to produce strong classification

results, in some cases stronger than atraining a model to a high degree of specializa-

tion. This is due to the face that an ensemble of weak classifiers has more resilience

than the highly trained single model. It has been suggested (Witten et al., 2011)

that in many cases, experts are really quite ignorant! The process is similar to the

appointment of a diverse committee of humans to help make a decision. Many times

the committee members will bring a di↵erent perspective to the table and help the

overall competence of the committee, even if they are not an expert in the field being

discussed.

Three types of ensemble classifiers are common. Bagging is a technique where the

output of several models is used in a non-weighted voting scheme to determine the
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output of the group of models. Boosting (Schapire, 1990) is a similar technique, but

the outputs of the various base classifiers are weighted in some way related to the

strength of their classification of the sample. It is similar to the way a human will

give more weight to a person’s opinion who is more learned in a subject.

A third way of combining multiple models is stacking, introduced by D. H. Wolpert

(1992). Stacking is a way of combining models in a more intelligent way, using a

meta-learner to combine the results of other learners, instead of using a simple voting

mechanism, either weighted (boosting) or not weighted (bagging).

It is possible to combine several of the algorithms described in the previous sections

to accomplish the classification task. An example of combining techniques is given by

Sei↵ert et al. (2009). In this work, di↵erent types of resampling are combined with

boosting to create classifiers that outperform more complex classifiers.
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Chapter 3

Methodology

Methodology

The study concentrated on improving the classification performance of the work by

Eatough et al. (2010) and Morello et al. (2014) by adding support vector machines

and in experimenting with ensemble classifiers. Work in feature selection and in

mitigating the imbalanced training data available for this problem was also shown

to be very important. In particular, improving the false positive responses of the

systems was of great interest to the pulsar community. The data set developed by

Morello et al. (2014) as part of the SPINN work is from the Parkes Multibeam Pulsar

Survey and is a superset of the data used by Eatough et al. (2010). This same data

was used in the work by Lyon et al. (2016), to create their optimal feature set, and

all of the data has been made public in the form used for the research by Lyon et al.

(2016). This research continues use of this data set. The following general process

was used as a guide for this research:

• Study the characteristics of normal and millisecond pulsars

• Develop a validation approach

• Study the information available for each pointing in the data

• Reproduce the results of the study by Lyon et al. (2016)

• Develop Support Vector Machine classifiers operating on the HTRU-1 data

• Experiment with ensemble classifiers and cascade or stacked classifiers
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• Design, prototype, train, test, and evaluate a system that can handle the HTRU-

1 data set and improve upon the performance using the techniques described

above

The remainder of this chapter details the methodology used to accomplish the

above processes.

Study the characteristics of normal pulsars and millisecond pulsars

As a good hunter knows his quarry, learning the characteristics of di↵erent types

of pulsars helps decide which algorithms are appropriate. It was theorized that di↵er-

ent types of pulsars might require di↵erent algorithms for best classification results.

Results from previous research (Bates et al., 2012) show that millisecond pulsars have

some characteristics, such as pulse width, di↵erent from common (normal) pulsars.

Develop a validation approach

The data sets available for research in pulsar search are necessarily sparse in the

fraction of positive class examples. Given the imbalance in the data, it is di�cult to

develop a comprehensive validation and test data set. One way that this problem can

be mitigated is to use multi-fold cross validation. This allows the training data to be

used for testing during training by randomly selecting portions of the training data

to use for training models, and holding out the rest of the training data for testing

that particular model, The process is repeated using a di↵erent random selection of

training data to train with, and di↵erent test data. Once the suite of models trained

by the cross-validation technique were trained, they were tested with the pristine

data that was held out from the training process, which in this case was 25% of the

total HTRU-1 data set.

The requirements for pulsar classification were laid out in chapter 1. The most

important criteria is that the pulsars should not be missed when candidates are run
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through the classifier. But this must be balanced by the number of false positives

generated. Obviously, a system that simply classified all samples as pulsars would

meet the first criterion, but would be of no benefit. A secondary criterion is needed.

The primary measure of the e�cacy of the models generated in this reseach is

recall. The recall of the system is a measure of the number of positive samples that

are lost by the system. It is defined as:

recall =
TP

TP + FN

(3.1)

In the field of diagnostic tests, recall is also called sensitivity. This measure was

the primary selector for the training process. Other statistics were also calculated

and used in the evaluation process. The specificity, which measures the proportion

of negative examples correctly classified, is a marker for the false positive rate that

was the secondary criterion. A low value of specificity will mean an excess number

of false positives will be returned, diminishing the utility of the classifier. Specificity

is defined as:

S =
TN

TN + FP

(3.2)

The FPR is the secondary measure of the e↵ectiveness of the classifier. It is defined

as

FPR =
FP

FP + TN

(3.3)

The FPR can also be calculated from Specificity and Prevalence, where Prevalence

is defined as:

P =
(TP + FN)

TP + TN + FP + FN)
(3.4)

So FPR may be calculated as

FPR = (1� S) ⇤ (1� P ) (3.5)
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Since for the extremely imbalanced data studied in this research P << 1, FPR

may be approximated as FPR ⇡ (1� S).

Study the information available for each pointing in the HTRU-1 data set

The data used in this study was extracted from the SPINN data using the Pul-

sarFeatureLab (Lyon et al., 2016) software. The data extracted for each pointing

consists of 4 simple statistics derived from the folded pulse profile, and 4 statistics

from the DM-SNR curve. These statistics were extracted from the Pulsar Hunter

Candidate XML files distributed by the SPINN project, combined with the pulsar,

non-pulsar label, and written to a comma separated text file for further processing.

Statistics of the folded pulse profile

The arithmetic mean of the folded and integrated pulse profile was calculated over

the sampled pulse profile, and is given by equation 3.6

Profµ =
1

n

nX

i=1

pi. (3.6)

The standard deviation of the profile forms another statistic used in the predic-

tions. It was calculated from the samples of the pulse profile as shown in equation 3.7

Prof� =

sPn
i=1

(pi � Profµ)2

n� 1
(3.7)

The kurtosis is another measure of the central tendency of the distribution. It

essentially measures the number of samples in the tails of the distribution. The

kurtosis, k for a normal distribution is 3, and the excess kurtosis of a distribution is

defined as k � 3. The sample kurtosis was calculated by equation 3.8.

Profk =
1

n

Pn
i=1

(pi � Profµ)4�
1

n

Pn
i=1

(pi � Profµ)2
�
2

� 3 (3.8)
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The skewness of the pulse profile measures the symmetry of the profile about

some mean or mode of the data. For this work, the sample skewness of the profile

was calculated by equation 3.9.

Profs =
1

n

Pn
i=1

(pi � Profµ)3
q

1

n�1

Pn
i=1

(pi � Profµ)2
3

(3.9)

Statistics based on the DM-SNR curve, D

The same four statistics were calculated from the DM-SNR curve. The equations

for these statistics are given here:

DMµ =
1

n

nX

i=1

di. (3.10)

DM� =

sPn
i=1

(di �DMµ)2

n� 1
(3.11)

DMk =
1

n

Pn
i=1

(di �DMµ)4�
1

n

Pn
i=1

(di �DMµ)2
�
2

� 3 (3.12)

DMs =
1

n

Pn
i=1

(di �DMµ)3
q

1

n�1

Pn
i=1

(di �DMµ)2
3

(3.13)

To form these statistics, the PulsarFeatureLab Python script was run against the

known non-pulsar data, and the output dumped to a CSV text file. A label was

then appended to each line of the file (in this case, a 0, for “non-pulsar”.) Once the

nonpulsar data was processed, the script was run against the known pulsar data, and

output to another file. Again, the label ( a 1, for “pulsar”) was added to the end

of the line of the CSV file, denoting that these examples are pulsars. The 2 files

were then merged together to form the data set with labeled examples of pulsars and

non-pulsars.



42

Reproduce the results of the study by Lyon et al. (2016)

The SPINN study provided the data used by Lyon et al. (2016) in developing the

features important to the classifier. The first step in this new work was to reproduce

the classification results of that study.

The first step in accomplishing this task was to select a computational plat-

form. Several options were considerd, including Python, R, and C++ based sys-

tems. Python and R have the advantage of being script languages, which are ideal

for exploratory development and testing. Most of the machine learning algorithms

are available for either platform. Most of these are implemented as native code linked

into the script engine, and are therefore fairly fast and e�cient. In the end, the R

platform was chosen in part due to the very good support for managing the training

and evaluation of the models that was provided by the Classification and Regres-

sion Training (caret) package (from Jed Wing et al., 2016). This package provides a

common consistent interface to a large number of (more than 230) machine learning

models. In addition to the caret package, the R system provides simple tools that

allow the training to proceed in parallel if the machine has multiple cores. The doPar-

allel package (Revolution Analytics & Weston, 2015) was used to allow the training

to use all four of the cores available on the machines used to run the models. The R

system is cross-platform, and Linux and Mac OS versions (Version 3.3.2) were used

in the research with equal utility. A complete listing of the packages used for the

research is included in Appendix A.

In order to assure a common operating environment for all of the work on di↵erent

models using the same data set, a script was written to read in the data from disk

and processes it for use by the machine learning algorithms. The script also preloads

some universally used utility libraries.
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The script consists of the following steps “CommonNoPreproc.R” A to prepare

the data and environments uniformly for experiments:

• The common libraries needed for the experiments were loaded: doParallel for

parallel processing, and the caret library for managing the training and testing

of the models.

• The data file used in the experiments was defined in this script allowing repeated

experiments to easily be run on the same data set. A new data set can be

simply defined and used for another series of experiments without changing

other parameters or code by editing this file.

• Feature names were defined corresponding to the columns in the data set.

featureNames <- c("Prof-mu", "Prof-sigma","Prof-kurtosis",

"Prof-skew", "DM-mu", "DM-sigma",

"DM-kurtosis","DM-skew","Class")

• The seed for the random number generator used for assembling subsamples of

data was defined here, so that each run of an experiment can be reproduced

by setting the random seed to this globally defined constant before using the

random number generator.

• Data was read in and divided into the data proper, and the label. This allowed

the labels to be manipulated and put into a form that the learning algorithms

will handle. The numeric label value was changed into a factor of 2 levels,

“pulsar”, and “nonpulsar”. After these manipulations, the label was put back

into the data structure, readying the data for experiments.

• The data was divided into a training set, and a test set. The training set consists

of 75% of the data, and is formed from the full data set by sampling from the
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classes in the same proportion as the original data set. That is, 75% of the

non-pulsar data and 75% of the pulsars are selected for the training set. 25%

of each class is then reserved for the testing set.

• The parallel processing system was set up to use all available cores on the

machine. This allows most algorithms to be trained in parallel, saving clock

time.

• The random number generator is seeded with the previously defined value.

Running this script set up the environment, reads the data into a data frame

that was also used for the rest of the experiments. The experiments by Lyon et al.

(2016) on this data set used a neural network to classify the data. Several neural

network algorithms were studied for this research, including the RSNNS package

implementing the Stuttgart Neural Network Simulator (Bergmeir & Beńıtez, 2012),

and the “nnet” R package (Venables & Ripley, 2002). After some experimenting,

the “nnet” package was selected for use with the “caret” package to generate the

models trained and evaluated in this research. The preliminary experiments were all

accomplished using the command shell of the ’R’ system. As the scripts for running

the full experiment were being written, pieces of the script were pasted into the shell

and executed, validating the code as it was written. Once all of the preliminary

experiments were completed and the final configurations and processing steps were

completed, the finished script, consisting of the steps described below, was used to

execute the experiment and collect data and plots. The script is given in Appendix A.

The neural network was trained using the caret package’s “train” function. To use

this function, the user sets up the conditions for training, and then runs the “train”

method to construct a family of models that are evaluated according the the metric
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the user wants to use to evaluate the models. The metric used in this study was

“Sensitivity”, since we are most interested in a low false-negative characteristic for

the predictions, and it is equivalent to recall, our primary measurement. A grid of

training parameters is defined internally to the train function using the caret package’s

“expand.grid()” function. This function allows the user to specify the parameters that

can be varied by the model training software and guides the training of the model,

but in this case the system was allowed to generate its own grid, and the input

to the training was the number of parameter values for the system to try for each

parameter. The variable “tuneLength” is set to 6 in the script, directing the system

to try 6 di↵erent values for each parameter. The function expands this specification

into a grid containing (in this case) 36 cells, each of which holds a unique combination

of the parameters. This causes the system to train 36 di↵erent neural networks for

each iteration.

The “trainControl” command sets up the conditions for training. The following

trainControl parameter settings were used for training the neural network.

baseTrainCtrl <- trainControl(method = "repeatedcv", number = numFolds,

repeats = numRepeats,

preProcOptions=myPreProcOptions,

classProbs = TRUE, seeds = seeds,

verboseIter = TRUE,

summaryFunction = twoClassSummary)

The method argument controls how the training will proceed. Repeated cross-

validation was specified for the reasons described above. By default, the cross-

validation consists of 10-fold cross validation. Arguments are available to change

the number of folds if desired, however 10-fold cross validation was used. The cross-

validation is repeated five times, providing 50 models in all that are trained. The

preProcOptions argument tells the system to preprocess the training and test data
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to center the data around zero, and scale it to one standard deviation. The sum-

maryFunction is a built-in function that calculates the ROC, the Sensitivity, and

the Specificity of the model. These metrics are used by the algorthm to select the

best model out of all the models generated in the repeated cross-validation scheme.

Once the trainControl object was created, it was passed to the train function, which

returns the optimized model, which in this case is the model based on the original

unmodified training data:

orig <- caret::train(Class ~ ., data = dataset$original,

method = myMethod,

preProcess = c("scale","center"),

verbose= verbosity,

metric = myMetric,

tuneLength = myTuneLength,

trControl = ctrl)

In order to explore the e↵ects of changing the sampling strategy, additional train-

ing data sets were created by using functions provided by the caret package (up and

down sampling), the “ROSE” package (Lunardon, Menardi, & Torelli, 2014) and the

“DMwR” package (Torgo, 2010). The same input test data set was retained and

used for all tests of all models and sampling strategies. The downsampled data was

created using:

set.seed(mySeed)

dsPulsarTrain<- downSample(x = pulsarTrain[, -ncol(pulsarTrain)],

y = pulsarTrain$Class)

The random number generator seed was reset before each random sampling, so that

repeatable results can be constructed. The downsample function removes majority

class members to create a balanced training data set. In this case, it created a data

set with 897 pulsars and 897 non-pulsars.

Upsampled data was created using:
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set.seed(mySeed)

usPulsarTrain <- upSample(x = pulsarTrain[, -ncol(pulsarTrain)],

y = pulsarTrain$Class)

returning a training set with the pulsars upsampled to the level of the non-pulsars,

or 67497 pulsars and non-pulsars.

Random Over Sampling Examples (ROSE) data was created by the ROSE func-

tion, giving approximately 34000 samples of each class:

set.seed(mySeed)

rosePulsarTrain <- ROSE(Class ~ ., data = pulsarTrain)$data

Finally, the SMOTE data was created using the SMOTE function to create synthetic

minority samples, based on the nearest neighbors to the minority class members.

set.seed(mySeed)

smotePulsarTrain <- SMOTE(Class ~ ., data = pulsarTrain)

In this case, SMOTE returned 2691 pulsars and 3588 non-pulsars.

With each of these four new distinct training data sets in hand, the models were

trained as described above, holding all other variables constant.

The five models, including the original model built with non-resampled data,

were applied to the test data, and evaluated on their sensitivity using the following

function:

test_sensitivity<- function(model,data) {

ct = confusionMatrix(predict(model,data),data$Class,

positive = ’pulsar’)

}

This function calls the predict() function on each model with the test data and uses

the results to generate a confusion matrix. It was applied to all of the models and the

test data using the “lapply” function, and the results of the confusionMatrix() call

inside the function are returned and saved for later analysis. Results for this process

are given in chapter 4 in the neural network section.
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Develop support vector machine classifiers working on HTRU-1 data

Support vector machines are suited to the task of classifying pulsar data, since

they work well with limited and unbalanced training data. There are several im-

plementations of SVMs available in the caret package, including a wrapper for the

popular high-performance libSVM package included in the e1071 (Meyer, Dimitri-

adou, Hornik, Weingessel, & Leisch, 2015) package, which is what was used in this

work. Additional SVM packages, such as that in the “WEKA” package (Witten et al.,

2011), and the “kernlab” (Karatzoglou, Smola, Hornik, & Zeileis, 2004) package are

also included in the caret suite and were used in initial preliminary experiments. The

final script used to train and evaluate the models is given in appendix A, which is the

same script and procedure used to train the neural network as described in section 3

above. The grid of training control variables was modified by the train function to

be compatible with the SVM model by defining a grid consisting of cost and weight

parameters, each with 6 distinct values. The trained models were evaluated with

the same test data as used for the neural network experiments. The results of this

experiment are presented in chapter 4 in the SVM section.

C5.0 classifier

A C5.0 classifier was also trained and tested along with the neural network and

SVM classifiers. This classifier uses an improved version of the well-known C4.5 algo-

rithm (Quinlan, 1986; Witten et al., 2011). This algorithm is a top-down decision tree

learner which uses information gain to build the tree. The “C50” R package (Kuhn,

Weston, Coulter, & code for C5.0 by R. Quinlan, 2015) provides the C5.0 algorithm

and a caret training interface. The training of the C5.0 algorithm was done with the

same parameters as for the neural network and SVM. Results of this experiment are

presented in chapter 4 in the C5.0 classifier section.
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Bootstrap Aggregation Ensemble classifiers

Training several classifiers with di↵erent randomly selected sub-sampled sets of the

training data can yield classifiers that, together, perform better than a single classifier.

It is interesting to note that an ensemble classifier almost never performs worse than

any of its constituent classifiers (Witten et al., 2011). In this research, an ensemble

classifier was generated using the bootstrap aggregation technique, using a decision

tree model as the base. This is accomplished using the “treebag” caret method

which is an implementation of bagged decision trees based on the “ipred” (Peters

& Hothorn, 2015) library. In the preliminary experiments undertaken during this

work, an aggregation of 50 trees was specified in the training function, giving a large

number of trees working in the ensemble. More trees, up to a point of diminishing

returns, reduce the variance of the model outputs. After analysis of the preliminary

results, the final runs of the training script used an aggregation of only 25 trees, which

provided equivalent performance at a 50% reduction in computing.

Other Ensembles and Stacked classifiers

In addition to the bootstrap aggregation decision tree classifier, ensembles con-

sisting first of a simple arithmetic combination of the base models, and also a more

complex ensemble of the four models (neural net, SVM, C5.0, and bagged decision

trees) was built that combines the output of each of the models by stacking a model

on top of the base models. Development of a stacked classifier involves first training

and evaluating base classifiers using di↵erent models, and combining the resulting

models with another model that takes the outputs of the first tier of models and uses

them as additional input for learning the final decision function. Using the facilities

of caret again, results from the models generated in the previous experiments were

evaluated, and another model set was trained and then stacked with an additional
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model and integrated into a final predictor system.

Base Models

The base models to be stacked were defined by by creating a list of models to use

for the base of the stack. A neural net, a support vector machine with a linear kernel,

a set of bagged tree classifiers, and a C5.0 model comprised the set of models. The

models were trained using the five data sets, and evaluated using the same techniques

as previously reported.

Simple Ensemble Classifer

Recalling that the primary metric for this work is to be sensitivity, or recall, it

makes sense to think about a way to combine the base classifiers together to make a

classifier that maximizes the sensitivity. All of the base models did well when trained

on modified training data, and had both good sensitivity and low false positive rates.

This allowed implementation of a simple method of combining the results such that if

any of the base models predicted a sample was a pulsar, then that sample was assigned

the pulsar label( the logical “or” function.) Code was generated that provided this

function as shown below:

data <- ensembleTestData[[sampling]]

theSum = as.numeric(data$V10) + as.numeric(data$V11) +

as.numeric(data$V12) + as.numeric(data$V13)

numResults <- theSum < 8

The data variable is a matrix of the original test data with columns added to it cor-

responding to results from the base models. The vector numResults contains logical

(True or False) values corresponding to the output of the simple ensemble classi-

fier’s (theSum ¡ 8) comparison. The vector of results is fed to the confusionMatrix()

function and the results are given in chapter 4.
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Meta-learning Models

The meta-learner models or top models for the stack were defined as a neural net

model and a C5.0 model. The models were trained using the data from the original

training set, modified with the addition of columns of output values from the base

models. The following describes the procedure used to form the stacked classifier.

The training procedure was repeated for each of the top models defined in the list

of possible top models. A trainControl object was defined to manage the training of

the top models:

topCtrl <- trainControl(method = "repeatedcv", number = numFolds,

repeats = numRepeats,

preProcOptions=c("scale","center"),

classProbs = TRUE, seeds = seeds,

verboseIter = TRUE,

summaryFunction = twoClassSummary)

This trainControl object is passed to the caret::train() function when training the

top models. Next, the list of predictors in the data set is created. This list contains

all of the columns of the data set, except for the Class label field, which is defined by

’outcomeName’.

predictors <- names(training)[!names(training) %in% outcomeName]

Each of the base models were evaluated and the predictions they produced were

saved as new columns in the training and testing data:

testing[,(ncol(testing)+1)] <-

caret::predict.train(object=model, testing[,predictors])

training[,(ncol(training)+1)] <-

caret::predict.train(object=model, training[,predictors])

The new columns represent additional knowledge gained through the use of the base

models. This new information was then fed to the top model training procedure by
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extending the list of predictors to include the new columns, but again not the column

of outcome values:

predictors <- names(training)[!names(training) %in% outcomeName]

The final model for each top model option is then trained with the following:

modelFinal <- caret::train(training[,predictors],

training[,outcomeName],

method=ensembleModel,

preProcess = c("scale","center"),

metric=myMetric,

tuneLength = myTuneLength,

verbose=verbosity,

trControl= topCtrl)

As the final models are of the same form as the base models, the procedure developed

to evaluate the base models can be used to test and evaluate the stacked classifier

models. The results of the testing and evaluation are presented in chapter 4.

Develop a working on-line classifier system

The results from the work described in the previous sections is a set of models

that can be used to predict the class of any single data sample, as well as being

able to produce predictions in a batch mode as was done in these experiments. As

shown in Figure 1.3, in normal use the pulsar processing pipeline writes candidate

files to the file system on the computer when it finds a possible pulsar in the data.

Using the PulsarFeatureLab Python script (Lyon et al., 2016), a new candidate file

is processed to extract the features needed for the classifier. The features are written

to an output file, which is then read by the R system. The new candidate data is

preprocessed using the same algorithms as used in the training process, and then it

is run through the classification models generated previously. Applying the classi-

fication models takes less than a second, which is orders of magnitude faster than

the generation of candidates in the first place, so this process can be integrated into
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the processing pipeline as the candidates are generated without slowing down the

processing. Another method, which may be simpler in practice, would be to run the

classifier against the candidate files in batch mode once per day or once per hour,

depending on the speed of candidate generation.

Figure 3.1: Classifier System
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Figure 3.1 shows the block diagram of the proposed classifier. It connects to the

end of the processing chain in figure 1.3 by watching for new candidate files to appear

in the pipeline output directory. The on-line classifier would be written in R, with

the PulsarFeatureLab Python script being called from inside the R process using the

“system” call to invoke the Python script and wait for the output. The classifier

system can remain loaded and running on the computer between candidates, waiting

for new files to appear in its working directory. This would reduce the overhead of

starting and stopping the rather heavyweight R application for each new candidate

file that is produced.
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Chapter 4

Results

Introduction

This dissertation developed and evaluated improved supervised learning meth-

ods for pulsar detection based on available search data. Experimenting with many

machine learning algorithms and data processing techniques provided a great deal

of insight into the methods by which machine learning can be applied to various

problems. The number of possibilities for models, data handling and evaluation is

staggering. The results of this research is a study of the e�cacy of di↵erent machine

learning algorithms and data processing methods for the problem of imbalanced noisy

training data. Evaluations of several models including neural networks, support vec-

tor machines, bagged trees, a C5.0 model are included. A stacked ensemble using

these as base models with a simple combiner, a neural network and C5.0 decision tree

classifier as the meta-learners are presented. The remainder of this section outlines

the common data sets produced for training the models and the model parameters

used for training. Following that, results of training and evaluating each of the models

are presented.

Data Sets

The pulsar data used for this research was extracted from the Parkes Multibeam

Pulsar Survey archive and collated by Morello et al. (2014), and subsequently made

available on the Web. Lyon et al. (2016) describes the formation of a set of eight

features from the data using rigorous mathematical techniques to ensure that the

features are useful in the detection of pulsars. In Figure 4.2, one of the features
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Table 4.1: Pulsar data sets

Data Set Pulsar Nonpulsar

Original 897 67497
Downsampled 897 897
Upsampled 67497 67497
SMOTE sampled 2691 3588
ROSE sampled 34534 33860

was assigned a zero “importance” value, meaning that the model didn’t use it in its

training and classification process. Some of the models had a di↵erent view of the

importance of the features. The importance values change with di↵erent resampling

methods and models, indicating that the features are correlated in some way.

The data was preprocessed before the machine learning modeling e↵ort by replac-

ing the numerical values “1” and “0” denoting a pulsar or non-pulsar class, respec-

tively, with a factor variable labeled “pulsar” and nonpulsar”. This is necessary for

the modeling infrastructure to properly interpret the class labels. Since pulsars are

rare in the search data, and part of the purpose of this research was to look at the

e↵ect of imbalance on the training process, the data was then passed to sampling

functions to create four more data sets from the raw data, each of which contained a

more balanced set of data. Table 4.1 shows the distribution of pulsar and nonpulsar

classes in the five data sets.

The down-sampled version was created by discarding majority (non-pulsar) sam-

ples to balance with the pulsar samples. This created a data set of only 1794 samples

out of the original 68394, half pulsar and half nonpulsar. An up-sampled data set

was created by reusing the minority (pulsar) samples to create a data set with 67,497

pulsar and nonpulsar samples for a total of 134,994 samples. A data set using the

SMOTE technique (Chawla et al., 2002) was created using the default values for the
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percent under/over sampling, and the number of nearest neighbors to use for the

synthetic sample construction. The default value for the number of nearest neighbors

is five, and for the percentage of oversampling and undersampling is 200, meaning

that for each minority sample, two new samples are created from its nearest neigh-

bors. With these parameters. two majority samples are selected for each new sample,

yielding a data set with 6279 samples, of which 2691 samples were pulsars, and 3588

were non-pulsars. Finally, a data set using the ROSE algorithm (Lunardon et al.,

2014) was created using the ROSE function with its default probability parameter of

0.5, meaning that a nearly balanced data set is produced with 34534 non-pulsars and

33860 pulsar examples. The five data sets were used to train each of the base models,

which were tested with the data held out from the training process for testing the

final models.

Common model parameters

The models, both the base models and the stacked ensembles) were all trained

using a common trainControl object and training parameters. Table 4.2 gives the

parameters used in training the base models. The trainControl object was created

using the following code:

baseTrainCtrl <- trainControl(method = "repeatedcv", number = numFolds,

repeats = numRepeats,

preProcOptions=myPreProcOptions,

classProbs = TRUE, seeds = seeds,

verboseIter = FALSE,

summaryFunction = twoClassSummary)

The method argument controlled how the training was accomplished, namely

repeated cross validation. 10-fold cross validation was used. The cross-validation

is repeated five times, providing 50 models that are trained. The preProcOptions

argument tells the system to preprocess the training and test data to center the data
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Table 4.2: Model Training Parameters

trainControl()

Parameter Description Value

number Cross validation folds 10
repeats Cross validation repeats 5
preProcOptions Data preprocessing applied Center and Scale
classProbs Return the class probabilities True
seeds List of seeds for fold creation Random
verboseIter Verbose flag True
summaryFunction Evaluation function twoClassSummary

train()

Parameter Description Value

tuneLength Number of di↵erent parameter val-
ues for each parameter

6

metric Selection metric “Sens”

around zero, and scale it to one standard deviation. The summaryFunction is a

built-in function that calculates the area under the ROC curve, the Sensitivity, and

the Specificity of each model. These metrics were used by the algorthm to select the

best model out of all the models generated in the repeated cross-validation scheme.

Once the trainControl object was created, it was passed to the train function, which

returns the optimized model, which in this case is the model based on the original

unmodified training data.

Several test runs of training the models were undertaken to find the best options

for these parameters. It is imperative that many combinations of subsets of exam-

ples are chosen to minimize the variation in the output due merely to the random

distribution of samples. The optimal choice is to use the leave-one-out procedure of

taking all of the samples except one and modeling them, repeating for all samples.

This is, however, computationally intensive and infeasible except for small data sets.



58

A compromise can be made by dividing the data into groups (folds) to train models

using the di↵erent folds and validating the model produced by each fold with the

data in the other folds. The number of folds (denoted by k) and repeats are chosen

to minimize the variance in the final models. An empirical procedure was followed

in this research to choose the number of folds and repeats at values that appeared to

be past the point of diminishing returns. The experimental procedure followed to ar-

rive at these values was to allow the seeds for randomly selecting the cross-validation

folds and repeats to be random, and to examine the training results to determine the

stability of the training process. Using 10 folds and five repeats was chosen.

The preprocessing options given to the models ensured that each of the features

in the feature set was properly scaled and centered about zero, since the native values

of these features varied by two orders of magnitude, from a minimum of about -7 to

a maximum of 237.

The twoClassSummary function that is built in to caret was specified as it incor-

porates the sensistivity and specificity measurements which are essential to evaluate

the models for this application.

Each of the stacked ensemble models are trained and evaluated with the same

model parameters and the same data sets as the base models.

Organization and presentation of results

For each of the models studied, the results of training and evaluation of the

models is presented. The results are organized by model type, with all of the model

types trained and evaluated with a common data set. Statistics on the sensitivity,

specificity, accuracy, area under the ROC curve, and the false positive rate for each

model and data set are presented and summarized in tables. Data on the variable

importance for each of the trials is plotted. Finally, the performance data for the
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Table 4.3: Neural Network Models

Data Set Hidden Neurons Decay Rate

original 11 0.0178
downsample 1 0.0001
upsample 11 0.0
SMOTE 11 0.0178
ROSE 11 0.1

stacked ensembles of the base models is presented. Raw results and more plots are

provided in the appendices.

Neural Network Classifier Results

As described in chapter 3, the neural network was trained with five distinct train-

ing data sets, holding all other variables constant. Each of the models was tested

with 25% of the data, that is, the test data set that was held out at the beginning.

The models were evaluated based on their sensitivity to the training data set.

The network architecture consisted of eight input neurons, a single hidden layer

of neurons, and one output neuron. In the various trials, a hidden layer with 1, 3,

5, 7, 9, and 11 neurons was trained. Each of these neurons was fully connected to

the input and output layers. The weight decay tunable parameter, which controls

how fast the weights change while the training takes place, helps to avoid overfitting.

The number of hidden neurons and decay rate parameters for the final models chosen

through training iterations for the neural network are given in Table 4.3.

Figure 4.1 shows a box and whiskers plot of the results of training the five models.

The box and whiskers plot is a compact way of expressing the statistics of the training

process. The center of the box is the median value of the data set. The ends of the box

show the upper and lower quartile values (the median of the data above the median

and below the median), and the whiskers show the upper and lower extrema. The
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Figure 4.1: Box and Whiskers plot with all three metrics returned from training the
neural network models
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complete data set used to create the graph is given in the appendix for the related

model. An abbreviated version is shown in Table 4.4, which omits the 1st and 3rd

quartiles.

The box and whiskers plot graphically shows that the sensitivity, area under the

ROC curve, and specificity (and by extension false positive rate) are all improved by

resampling the data. Clearly, all of the resampling methods have improved sensitiv-

ity over the original model built with the highly imbalanced training data. Table 4.4

shows the statistics of the model generation results for all of the models across the

available metrics returned by the twoClassSummary function. Note that these statis-
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Table 4.4: Neural Network Model Training Summary Statistics

Data Set˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 0.996 0.004 0.982 0.999
original˜Sens 50 0.848 0.035 0.767 0.921
original˜Spec 50 0.999 0.001 0.995 1.000
down˜ROC 50 0.997 0.003 0.988 1.000
down˜Sens 50 0.983 0.015 0.944 1.000
down˜Spec 50 0.980 0.017 0.933 1.000
up˜ROC 50 0.999 0.0003 0.998 0.999
up˜Sens 50 0.997 0.002 0.991 1.000
up˜Spec 50 0.987 0.002 0.983 0.991
smote˜ROC 50 0.999 0.001 0.996 1.000
smote˜Sens 50 0.989 0.006 0.974 1.000
smote˜Spec 50 0.986 0.005 0.972 0.994
rose˜ROC 50 0.998 0.001 0.996 0.999
rose˜Sens 50 0.989 0.002 0.982 0.994
rose˜Spec 50 0.981 0.003 0.968 0.986

tics are generated by the training process, and are not the results of testing with

pristine data. The numbers given below in the text are the results of testing the

system with pristine data.

The best sensitivity on the test data achieved with final model fit with the original

unresampled data set was 83.28%. The false positive rate, which is important for

this application, was approximated from the specificity as FPR ⇡ (1 � Spec), or

1 � 0.99871 = 0.129%. The accuracy of this model is 99.65%. While the FPR is

excellent, the sensitivity doesn’t meet the requirements of the users. The accuracy

is also good, but the raw accuracy is not a good metric for an extremely unbalanced

training and test data set such as this. A summary of the statistics are displayed in

the box and whiskers plot, and the full statistics are given in appendix B.

Models built with modified data sets gave better results for the primary metric.

Using the downsampled data set for training, the system acheived a sensitivity of
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99.997%, and a FPR of 1.60%, both of which meet the requirements set by pulsar

scientists. The accuracy figure for this network is slightly worse than that using

the original training data, at 98.32%, due to the worse FPR. Using the upsampled

data set, the best sensitivity was 97.993%, slightly worse than the downsampled data

set, but still much better than the original unmodified data set results. The FPR

was 1.44%, and the accuracy was 98.55% The SMOTE-modified data set provided

a sensitivity of 98.328%, an FPR of 1.40%, and an accuracy of 98.60%. Using the

ROSE technique to modify the data set gave mediocre results but still improved on

the original data set. This technique gave a sensitivity of 89.30%, an FPR of 0.49%,

and an accuracy of 99.37%. Considering sensitivity as the primary criterion, the

downsampled data set gave the best performance in training the neural network for

the pulsar/non-pulsar classification problem.

While training the networks, in some cases di↵erent variables were chosen by the

network as the most important. Some of the variables ended up not having any

predictive value for some of the networks. Figure 4.2 is a variable importance plot.

This plot shows all of the features used in training the models, and the relative

importance that the model places on each. Greater importance is shown by a longer

line on the plot. In the ROSE data set, the “DM.kurtosis” feature had no importance

in the model. In other models, the “DM.skew” ends up with little importance. This

indicates that these two variables may be correlated across the samples, and one

or the other ends up not being needed for predicting the outcome when both are

presented to the model.
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Figure 4.2: Neural network model variable importance plots for four di↵erent sam-
pling methods
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Support Vector Machine Classifiers

A support vector machine with a linear kernel was trained in the same way that the

neural network was trained as described earlier in this chapter. The SVM consisted

of a linear kernel, and the training parameters were cost and weight. Cost refers to

the cost of a constraints violation during training. Higher values of cost will make the

algorithm work harder to avoid constraint violations. The class weight parameter can

be used to help mitigate against the e↵ects of di↵erent class sizes. The parameters
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Figure 4.3: Neural network model variable importance plots for the ROSE sampling
method
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Table 4.5: Support Vector Machine Models

Data Set Cost Weight

original 1 1
downsample 8 1
upsample 1 1
SMOTE 1 1
ROSE 0.25 1

for these training parameters that produced the final models are given in Table 4.5.

Figure 4.4 shows a box and whiskers plot of the results of training the five SVM

models with the training data. This plot shows that for the SVM the sensitivity,

area under the ROC curve, and specificity are all improved by resampling the data.

Table 4.6 shows the statistics of the model generation results.

Testing with the test data set, the sensitivity achieved with final model fit with

the original unresampled data set was 76.590%. The false positive rate was 0.12%.

The accuracy of this model is 99.57%. As in the case of the neural network models,
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Figure 4.4: Box and Whiskers plot with all three metrics returned from training the
SVM models
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modified data sets gave better results for the primary metric. Using the downsampled

data set for training, the system acheived a sensitivity of 98.328%, and a FPR of

1.57%. The accuracy figure for this machine is also slightly worse than that using

the original training data, at 98.43%, due to the worse FPR. Using the upsampled

data set, the best sensitivity was 98.662%, slightly better than the downsampled data

set. The FPR was 1.57%, and the accuracy was 98.43% The SMOTE-modified data

set provided a sensitivity of 97.993%, an FPR of 1.33%, and an accuracy of 98.66%.

Using the ROSE technique to modify the data set gave the least improvement in

sensitivity over the unmodified training data, yielding a sensitivity of 97.324%, an
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Table 4.6: Support Vector Machine Training Summary Statistics

data Set˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 0.989 0.006 0.973 0.999
original˜Sens 50 0.795 0.036 0.700 0.876
original˜Spec 50 0.999 0.0004 0.998 1.000
down˜ROC 50 0.998 0.003 0.988 1.000
down˜Sens 50 0.983 0.014 0.944 1.000
down˜Spec 50 0.978 0.020 0.922 1.000
up˜ROC 50 0.997 0.0004 0.996 0.998
up˜Sens 50 0.984 0.001 0.981 0.987
up˜Spec 50 0.984 0.002 0.981 0.988
smote˜ROC 50 0.998 0.001 0.995 1.000
smote˜Sens 50 0.985 0.007 0.970 1.000
smote˜Spec 50 0.985 0.005 0.972 0.994
rose˜ROC 50 0.991 0.001 0.989 0.993
rose˜Sens 50 0.977 0.003 0.969 0.981
rose˜Spec 50 0.949 0.003 0.943 0.957

FPR of 1.53%, and an accuracy of 98.45%. The downsampled data set yielded the

best performance for training the linear kernel SVM on this problem, if sensitivity

is the primary metric. A summary of the training results are shown in the box and

whiskers plot, and the full raw results are given in appendix C.

As in the case of the neural network models, some of the variables ended up

not having any predictive value for some of the models. Curiously, the profile mean

was an all-or-nothing case. For all but one of the models, it had the highest variable

importance. But for the other, it was at the very bottom of the importance list, as can

be seen in Figure 4.5, where the ROSE data set showed the “profile.mu” feature had

no importance in the model, while in the other models, this was of top importance.

C5.0 Classifier

A C5.0 classifier was trained in the same way that the neural network and SVM

were trained. The C5.0 classifier used three training parameters whose values for the



67

Figure 4.5: Support Vector Machine variable importance plots for four di↵erent sam-
pling methods
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final best model generated from each training data set are given in Table 4.7. The

“model” parameter describes the type of model used in the classifier, either rule sets

or decision trees. The “winnow” parameter controls whether to winnow out features,

performing dynamic feature selection. The “trials” parameter controls the number of

boosting iterations.

Figure 4.7 shows a Box and Whiskers plot of the results of training the five C5.0

models with the training data. This plot shows that the sensitivity, area under the
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Figure 4.6: Support Vector Machine variable importance plots for ROSE sampling
methods

rose sampling

Importance

Prof.mu

DM.mu

Prof.sigma

DM.sigma

DM.skew

DM.kurtosis

Prof.skew

Prof.kurtosis

0 20 40 60 80 100

●

●

●

●

●

●

●

Table 4.7: C5.0 Models

data model winnow trials

original tree false 30
down rules false 50
up tree true 1

SMOTE rules false 50
ROSE tree false 50

ROC curve, specificity (and by extension, false positive rate) are again all improved

by resampling the data. Table 4.8 shows the statistics of the model generation results

for all of the models across the metrics returned by the twoClassSummary function.

Note that the data from the upsampled data model indicate that this model will

perform the best on the test data, however the numbers from the testing do not

bear this out. The models using the upsampled data are likely overfitted, causing

poorer performance on the test data set. Note, however, that in spite of the poorer

performance relative to the training data, the performance is still quite a bit better
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Figure 4.7: Box and Whiskers plot of the three metrics returned from training the
models
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than the performance of models trained on the unmodified training data set.

The sensitivity achieved with final model fit with the original unresampled data

set was 79.930%. The false positive rate was 0.12%. The accuracy of this model is

99.62%. Again, modified data sets gave better results for the primary metric. Using

the downsampled data set for training, the system achieved a sensitivity of 97.659%,

and a FPR of 1.72%. The accuracy figure for this machine is also slightly worse than

that using the original training data, at 98.27%. Using the upsampled data set, the

best sensitivity was 89.298%, far worse than the downsampled data set. The FPR

was 0.41%, and the accuracy was 99.45%. The SMOTE-modified data set provided
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Table 4.8: C5.0 Model Training Summary Statistics

Data Set˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 0.993 0.011 0.922 0.999
original˜Sens 50 0.822 0.037 0.744 0.899
original˜Spec 50 0.999 0.001 0.992 1.000
down˜ROC 50 0.996 0.004 0.982 1.000
down˜Sens 50 0.975 0.018 0.922 1.000
down˜Spec 50 0.980 0.015 0.944 1.000
up˜ROC 50 0.999 0.0002 0.999 1.000
up˜Sens 50 1.000 0.000 1 1
up˜Spec 50 0.996 0.001 0.995 0.998
smote˜ROC 50 0.999 0.001 0.996 1.000
smote˜Sens 50 0.987 0.007 0.963 0.996
smote˜Spec 50 0.988 0.005 0.978 0.997
rose˜ROC 50 0.998 0.0004 0.997 0.999
rose˜Sens 50 0.989 0.002 0.984 0.993
rose˜Spec 50 0.983 0.002 0.978 0.987

a sensitivity of 96.656%, an FPR of 1.18%, and an accuracy of 98.79%. Using the

ROSE technique gave a sensitivity of 92.310%, an FPR of 0.51%, and an accuracy of

99.39%. These results show that training with the downsampled data set provided

a model with the best performance for sensitivity. The full statistics are given in

appendix D.

As in the previous cases, some of the variables ended up not having any predictive

value for some of the models. The model importance plot for the original data set

model showed 100% importance for all, so no plot was generated.

Ensemble Classifiers

Ensembles of bagged tree classifiers were also extensively studied. The e↵ects of

resampling on the classifiers produced has been explored, and the results are presented

in this section. Using the caret treebag interface to the R Recursive PARTitioning

(rpart) library (Therneau, Atkinson, & Ripley, 2015), a freely available version of the
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Figure 4.8: C5.0 Model Variable Importance plots for four di↵erent sampling methods
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Classification and Regression Trees (CART) algorithms of Breiman (Breiman, 1996).

Using the five training data sets, the bagged trees were trained and evaluated.

The models trained with the original data set provided sensitivity of 81.610% and

a FPR of 0.01%. Accuracy of this model was 99.63%. Training with downsampled

data provided a model with a sensitivity of 98.328%, a FPR of 1.87%, and an accu-

racy of 98.13. Models trained with upsampled data provided a mediocre sensitivity

of 85.953%, a FPR of 0.27%, and an accuracy of 99.55%. SMOTE-trained models

provided better results, with a sensitivity of 96.321%, a FPR of 1.29%, and an accu-
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Table 4.9: Recursive Partitioned Tree Model Training Summary Statistics

Data Set˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 0.981 0.007 0.960 0.994
original˜Sens 50 0.827 0.039 0.733 0.921
original˜Spec 50 0.999 0.0004 0.998 1.000
down˜ROC 50 0.992 0.008 0.964 1.000
down˜Sens 50 0.974 0.017 0.922 1.000
down˜Spec 50 0.975 0.018 0.911 1.000
up˜ROC 50 1.000 0.0001 0.999 1.000
up˜Sens 50 1.000 0.000 1 1
up˜Spec 50 0.998 0.0005 0.997 0.999
smote˜ROC 50 0.998 0.002 0.992 1.000
smote˜Sens 50 0.984 0.008 0.967 0.996
smote˜Spec 50 0.987 0.005 0.978 0.994
rose˜ROC 50 0.996 0.001 0.995 0.998
rose˜Sens 50 0.986 0.002 0.982 0.990
rose˜Spec 50 0.982 0.002 0.978 0.986

racy of 98.68%. ROSE-trained models fared better than the upsample-trained models

with a sensitivity of 93.980%, a FPR of 0.62%, and an accuracy of 99.31%. Figure 4.9

shows a box and whiskers plot of the results of testing the five models with the full set

of training data. This plot shows that the sensitivity, area under the ROC curve , and

specificity are all negatively a↵ected by downsampling the data in this case, although

all of the resampling methods improved the sensitivity over the original model built

with the highly imbalanced training data. Table 4.9 shows the training results for

these models. The complete statistics and training details are given in Appendix F.

As in the sections on the other models, the variable importance varied greatly.

Figure 4.10 shows the variable importance results from the training sessions with the

bagged tree algorithm.
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Figure 4.9: Box and Whiskers plot of the three metrics returned from training the
models
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Stacked Classifiers

In addition to the bagged trees, a stacked ensemble classifer was made using

the classifiers from the group above. A classifier was created that uses the output

from each of these models and combines it with another classifier that decides which

outcome to assign to each example. A neural network and a C5.0 classifier were used

for this work for the top models, along with an ad-hoc simple ensembling method.

The same training sets were used for these models, and the models were trained

in a similar fashion to the base models, but there was one additional step in the
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Figure 4.10: Bagged Tree Model Variable Importance plots for four di↵erent sampling
methods
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process that ties together the base model predictions and the stacked ensemble. Before

training the stacked classifiers, the prediction results of each of the base models was

added to the training data as additional features in the data set. Then the same

training algorithms were used as for training the base models. The models were

trained and evaluated using the same methods as previously used for the base models.

All of the stacked ensemble models performed extremely well in the cross-validation

and resampling evaluations as shown in Tables 4.11 and 4.13, but they didn’t perform

as well in testing against new data.
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Figure 4.11: Bagged Tree Model Variable Importance plots for the ROSE sampling
method
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Simple Ensemble

A simple ensemble was constructed by simply taking the results of the base models,

summing the predicted value for each example, and using a threshold to predict the

class. This produced remarkably good results for such a simple technique, suggesting

that there is not much more information left in the training data that can be extracted

during the training process for the more complex ensembled models. The sensitivity

of this simple ensemble using the downsampled data (the best case) was 99.310%,

with a false positive rate of 2.76%. The accuracy for this system was 97.27%.

Neural Network Top Model

The number of hidden neurons and decay rate parameters for the final top models

chosen through training iterations for the neural network are given in Table 4.10. The

results for this classifier followed very closely the results seen previously for classifiers

trained on a specific training data set, that is, better base models produced better
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Table 4.10: Neural Network Models

Data Set Hidden Neurons Decay Rate

original 5 0.1000
downsample 1 0.1000
upsample 1 0.1000
SMOTE 7 0.0006
ROSE 1 0.1000

stacked classifiers. All except the downsampled training sets produced classifiers that

were inferior to the base models that they were built from, suggesting the models are

being overfitted. Table 4.11 shows the results of training the neural network on the

training data including the base model predictions. The trained networks were nearly

perfect in both sensitivity and in specificity in all cases except when trained on the

original data. In practice, they didn’t perform as well. The sensitivity achieved with

the classifiers using base models built with downsampling (the best performers) was

97.659%, and the false positive rate was 1.51%. The accuracy value was 98.43%.

C5.0 Ensemble Classifier

Using the same techniques as described above for the neural network ensemble

classifier, a C5.0 meta-classifier was trained with the ensemble training data. The

most e↵ective classifier for each training data set was produced with the parameters

shown in Table 4.12. The best sensitivity was acheived with both up and downsam-

pling models. The sensitivity was 98.328%, with a false positive rate of 1.87%, and

an accuracy of 98.13%. Table 4.13 shows the training statistics, which show that the

classifier performs nearly perfectly in most trials on the training data, suggesting that

this classifier is also overfitting on the training data.
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Table 4.11: Neural Network Training Results, Base Models Built With Downsampling

Data Set ˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 1.000 0.001 0.997 1.000
original˜Sens 50 0.993 0.009 0.966 1.000
original˜Spec 50 1.000 0.0001 1.000 1.000
down˜ROC 50 1.000 0.000 1 1
down˜Sens 50 1.000 0.000 1 1
down˜Spec 50 1.000 0.000 1 1
up˜ROC 50 1.000 0.00002 1.000 1.000
up˜Sens 50 1.000 0.000 1 1
up˜Spec 50 1.000 0.0001 1.000 1.000
smote˜ROC 50 1.000 0.000 1 1
smote˜Sens 50 1.000 0.001 0.996 1.000
smote˜Spec 50 1.000 0.000 1 1
rose˜ROC 50 1.000 0.0001 0.999 1.000
rose˜Sens 50 1.000 0.0002 0.999 1.000
rose˜Spec 50 1.000 0.0002 0.999 1.000

Table 4.12: C5.0 Ensemble Models

data model winnow trials

original rules true 1
down rules true 1
up rules true 1

SMOTE rules false 1
ROSE rules true 1
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Table 4.13: C5.0 Classifier Training Statistics

Data Set˜Metric Iterations Mean St. Dev. Min Max

original˜ROC 50 0.996 0.005 0.983 1.000
original˜Sens 50 0.992 0.009 0.966 1.000
original˜Spec 50 1.000 0.0001 1.000 1.000
down˜ROC 50 0.999 0.002 0.994 1.000
down˜Sens 50 1.000 0.000 1 1
down˜Spec 50 0.999 0.003 0.989 1.000
up˜ROC 50 1.000 0.00003 1.000 1.000
up˜Sens 50 1.000 0.000 1 1
up˜Spec 50 1.000 0.0001 1.000 1.000
smote˜ROC 50 1.000 0.001 0.996 1.000
smote˜Sens 50 1.000 0.001 0.993 1.000
smote˜Spec 50 1.000 0.000 1 1
rose˜ROC 50 1.000 0.0002 0.999 1.000
rose˜Sens 50 1.000 0.0001 0.999 1.000
rose˜Spec 50 1.000 0.0003 0.999 1.000
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Chapter 5

Conclusions

Conclusions

The use of machine learning in the field of pulsar search is quite feasible, and

necessary for future generations of telescopes. The experiments undertaken as part of

this research have shown that very high sensitivity can be achieved while maintaining

good specificity. The combination of the two metrics is important, but sensitivity is

the primary optimized variable. This is because there are very few pulsars, and it is

not acceptable to let many of them slip away undetected.

The particular learning model was much less important than the processing of the

training data. E↵ective classifiers were built using a neural network, a support vector

machine, a C5.0 algorithm, and a bagged tree ensemble. Due to the highly imbalanced

nature of the pulsar data, it was found that changing the mix of samples in the training

set by over or undersampling the training data has a profound e↵ect on the training

results. Training with a standard unmodified training set produced mediocre results,

but when the training set was modified, the sensitivity improved greatly. Using the

ROSE or SMOTE technique, or even by simply under and oversampling the data to

produce more balanced data was key to getting acceptable performance from the all

of the models. Ensembling classifiers to produce better results was not e↵ective in

this case, because the base models used in the ensemble were highly correlated, so

together they did not add value to the ensemble. In addition, the ensembles did not

generalize well, doing very well on the training data, but not on the test data. A

simple ensemble assembled from the base models using simple arithmetic combination

(essentially a logical “or” function) worked very well, but gave more false positives



80

than might be desired, and it was still within the goal specified in the propsal for this

work.

The experience of using the R programming language for machine learning devel-

opment has been quite smooth and productive. The tools for visualizing the results

(such as the box and whiskers plots) are superb, and the nature of the scripting lan-

guage and the remarkably complete ecosystem around it brings immense power to

bear on the problems. As the system is cross-platform, and the problems are easily

parallelizable, it is easy to scale up as problem size increases. The final program used

to train,test, and evaluate the models reported on here took more than 750 CPU-

hours on a MacBook Pro with 16 GB of memory and a solid state disk, so the ability

to run the system on larger machines is imperative.

Implications

The implications of the results of this research are that even with a small num-

ber of training examples in a sea of negative examples, a system can be produced

that can discriminate between the cases. The algorithms studied (neural networks,

support vector machines, bagged trees, C5.0 tree algorithms) all were improved by

pre-processing the data to improve the balance of positive and negative examples in

various ways. Additionally, the feature selection performed by Lyon et al. (2016) must

be revisited, as the features seem to be correlated, and so may not be the optimal

feature set to use in this application. Starting o↵ with the 22 features of Bates et al.

(2012) and using feature extraction techniques to find the best ones may yield fruit.

Recommendations for Future Work

There are several activities that can be continued in this line of research. One of

these is to examine how the pulsar data sets di↵er from obseratory to observatory,

and pulsar machine to pulsar machine, and how to best generalize the models that
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are produced by one group so that they can be used by other groups. To this end, the

Pulsar Feature Lab Lyon et al., 2016 should be encouraged and nurtured. The Pulsar

Feature Lab is a software suite for generating di↵erent feature sets from a common

data source, thereby providing a reliable and repeatable source of data for experiments

and training. Adopting this suite as a common tool for pulsar classification data would

do much to make sure that all of the research is undertaken with similar tools and

data.

Another study that could be undertaken to help further the field is more research

in feature sets. Even though the eight features in the Lyon et al. (2016) feature set

were selected in a rigorous and deliberate fashion, some of them turned out to have no

predictive value in the models in this research. The 22 features used by Bates et al.

(2012) and the 8 features used by Lyon et al. (2016) can be combined into one data

set, and then automated feature extraction tools can be brought to bear to attempt

to sort out the important features from the unimportant features in practical model

generation.

A third topic for future exploration is to build a production pipeline that can look

at every DM trial and fold period output to look for low signal to noise ratio pulsars

that are filtered out now, since there are too many plots to look at by hand.

Extending this research by a foray into the fields of deep learning and image

processing may also pay dividends. The signals in the pulsar search area are complex

and nuanced, and problem seems like it would be a good fit to the emerging deep

learning technology. Image processing techniques such as Hough transforms, edge

enhancement, or other techniques to sharpen the features visible to human eyes in

the pulsar candidate plots such as figure 1.4 may make it easier for machines as well

as humans to pick out pulsars from noise. Finding pulsars in low SNR environments
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is also a challenge, and this challenge becomes more important as time goes on and

the “low-hanging fruit” of bright sources are discovered, leaving the weaker signals

to be pulled up out of the noise.

Summary

Pulsars are rapidly rotating neutron stars which emit a strong beam of energy

through mechanisms that are not entirely clear to physicists. These very dense neu-

tron stars are used by astrophysicists to study many phenomena. Fundamental tests

of general relativity can be made using them as tools (D. Lorimer and Kramer, 2005).

Currently, an experiment is being performed by the North American Nanohertz Ob-

servatory for Gravitational Waves (2012) to try to detect gravitational waves by

studying the timing variations of an array of pulsars scattered around the celestial

sphere. These experiments in fundamental physics require a large set of pulsars for

study, providing the impetus for systematically searching the sky for new pulsars.

Pulsars discovered in ongoing pulsar surveys, as well as in the reprocessed data of

several archival surveys, are continually being added to the census of pulsars in the

nearby universe.

There are more and larger pulsar surveys being planned for current and future

telescopes. The Five Hundred Meter Spherical Telescope being built in China will be

able to find as many as 5,000 pulsars in a short amount of time (Smits, Lorimer, et

al., 2009). The Square Kilometer Array (SKA) is expected to find more than 20,000

pulsars (about 10 times the number currently known!) (Smits, Kramer, et al., 2009).

As the ratio of candidates to confirmed pulsars is about 10,000:1, upwards of 200

million candidates will need to be examined to complete the SKA survey. Clearly, it

is impractical to examine all 200 million candidates with human eyes. Searching for

pulsars is a very labor-intensive process, currently requiring skilled people to examine
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and interpret plots of data output by analysis programs. An automated system for

screening the plots would speed up the search for pulsars by a very large factor.

Research in automated pulsar search is in its infancy. Research in machine learn-

ing for building classifiers is a mature area. One characteristic of the pulsar search

problem that makes this research interesting is the imbalanced training data avail-

able. The very small number of known pulsars and the large amount of data available

means that the training must be done with a very imbalanced data set, or else large

amounts of data without pulsars must be discarded. Other machine learning tech-

niques have not been used in identifying pulsars thus far, and it is worthwhile to

consider some of these techniques.

Research to date on using machine learning and pattern recognition has not

yielded a satisfactory system. The first published attempt to use a machine learn-

ing approach to detect pulsars in diagnostic data was published by Eatough et al.

(2010). Their work used 14,400 pointings out of the Parkes Multibeam Pulsar Survey

(PMPS), one of the largest comprehensive searches undertaken to date (Manchester

et al., 2001). The 14,400 beams were processed through their standard pulsar search

pipeline, generating 2.5 million candidate plots containing possibly all types of pul-

sars: binary pulsars, slow pulsars, and millisecond pulsars. Out of these 2.5 million

plots, 501 pulsars were found by manual means, yielding a very small 501

2,500,000 = 0.02%

success ratio. Such a small success ratio makes the job of manually viewing the plots

tedious and extremely error-prone. An automated method of screening the candi-

dates is needed to reduce the human e↵ort needed to examine the candidate plots.

Eatough et al. (2010) used an Artificial Neural Network (ANN) as a binary classifier

to screen the 2.5 million candidate plots, yielding some 13,000 candidates to manually

screen. Unfortunately, only around 92% of the pulsars were recovered.
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The goal of this research was to develop an improved method for pulsar identifi-

cation using supervised machine learning techniques. Private communications with

pulsar scientists (Demorest, 2013; Ransom, 2013) set the goals as

• The false positive rate should be less than 5%.

• Precision of the new algorithm should be greater than the 3.6% of the current

state of the art.

• Recall greater than 99% (Less than 1% of the pulsars are missed)

This work proposed to research, identify, and propose methods to overcome the bar-

riers to such a system. The results reported in the previous chapter show that it

is possible to generate classifiers that perform as needed from the available train-

ing data. While a false positive rate of 1% was not reached, recall of over 99% was

achieved with a false positive rate of less than 2%, meeting the requirements of pulsar

scientists as noted above.

Methods of mitigating the imbalanced training and test data were explored and

found to be highly e↵ective in enhancing classification accuracy. Experiments used

majority undersampling (downsampling), minority oversampling (upsampling), ROSE

sampling, and SMOTE sampling to modify the data sets used for training in an e↵ort

to improve the mediocre classification accuracy obtained using the original training

data. This research showed that all of the sampling methods improved the recall of

the models dramatically, allowing up to 99% recall of the test data pulsars.

Ensembles of classifiers were built and tested in an e↵ort to maximize the recall of

pulsars from the test data. Mixed results were obtained from stacked ensembles, with

a simple logical “or” of the classification results of the base models increasing the recall

without impacting the false positive rate dramatically. More sophisticated stacked
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ensembles su↵ered from overfitting, leaving room for more research into combining

the algorithms with limited training data. Bagged trees performed well, however.

Automated pulsar search appears to now be feasible, and is absolutely required

to deal with the volume of data expected from instruments under construction.
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Appendix A

R Packages and scripts

The packages and scripts used to train and evaluate the models are given in this

appendix. Just two scripts were finally produced after much development and testing

of alternatives.

Common Script with No Preprocessing

This script reads in the data from the data file, and formats it and creates labels

for the pulsar and non-pulsar cases. It loads in common libraries and sets up the

environment for further processing by the actual training and testing script. This

script made it easy to experiment with alternative models and steps from the R

command line by loading in and setting up the training and testing data.

##

##

## This script is what is needed to create the data set that can be

## passed to a classifier. The data is the HTRU-[1,2] data from from

## Lyon et al feature set

## It:

## Reads in the data file

## Normalizes the numerical values

## Relabels the target features to be non-numeric, as some code is

## confused by numerical labels on the features.

## Creates a set of training and test data, using 75% for training.

## Sets up a parallel execution environment to take advantage of

## multiple cores on the machine

##

##

## Load in the necessary libraries

##

library(doParallel)

library(caret)



87

normalize <- function(x) {

return( (x -min(x))/(max(x) - min(x)))

}

## Point to the CSV version of whatever data you want to analyse.

## This is for the Lyon, et al. feature set.

theData <-’~/path/to/the/data/file’

##

## Names for convenience of humans. Code doesn’t care...

##

featureNames <- c("Prof-mu", "Prof-sigma","Prof-kurtosis","Prof-skew",

"DM-mu", "DM-sigma","DM-kurtosis","DM-skew","Class")

## for reproduceability

mySeed <- 123

pd <- read.table(theData, header=FALSE,sep = ",", col.names = featureNames)

pdd <- pd[,-9]

pdl <- pd[,9] ## Chop off the class

pdn <-pdd

## Make the pulsar class the lowest numbered factor so it will default

## to the positive value. This is needed to train for "sensitivity".

pdl<-replace(pdl, pdl==0, 2)

pdn[9] <- factor(pdl)

## Stick the class column back on after converting to factor type.

names(pdn)[names(pdn) == ’V9’] <- ’Class’ ## label the class column

##

## Some of the libraries object to using "0" and "1" as the class

## names!

##

levels(pdn$Class) <- c(’pulsar’,’nonpulsar’)

## Now we start munging data!

inTrain <- createDataPartition(pdn$Class, p = 0.75,list = FALSE)

## Create a test and train data set
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pulsarTrain <- pdn[inTrain, ]

pulsarTest <- pdn[-inTrain, ]

## Parallelize!

cl <- makeCluster(4,outfile="")

registerDoParallel(cl)

##For reproduceability

set.seed(mySeed)

Script to train, test, and evaluate all of the models

.

The following script was the result of much experimentation and trials of small

sections of the script on small parts of the problems. The entire script takes over 750

CPU-hours to run on a MacBook Pro with a 2.5 GHz Intel Core I7 processor, 16 GB

of memory, and a solid-state disk. The script trains, selects, tests, generates plots

and text output for all of the models.

##

##

## This script reads in a data set, creates modified training data

## from it, trains a list of models on these data sets. It then

## collects the results of testing, and creates an ensemble of the

## best models from the set of base models. It tests the ensemble,

## capturing the data as before.

## This reads in the data and puts it in a form the learning models

## like

##

##

source(’CommonNoPreproc.R’)

##

## Load in the necessary libraries

##

library(kernlab)

library(gmodels)

library(ROSE)

library(DMwR)
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#

#Function to test the models using sensitivity as the metric

#

test_sensitivity<- function(model,data, file) {

ct = confusionMatrix(predict(model,data),data$Class,

positive = ’pulsar’)

capture.output( print(ct), file = file, append=TRUE)

return(ct)

}

test_roc <- function(model, data) {

library(pROC)

roc_obj <- roc(data$Class,

predict(model, data, type = "prob")[, "nonpulsar"],

levels = c("pulsar", "nonpulsar"))

ci(roc_obj)

}

print_model_text<- function(model,theFile) {

capture.output( print(model),

file=theFile,append = TRUE)

}

date.time.append <- function(str, sep = ’_’,

date.format ="%Y_%m_%d_%H_%M_%S") {

stopifnot(is.character(str))

return(paste(str, format(Sys.time(), date.format), sep = sep))

}

createDataSets <- function( data, seed )

{

## Downsampling the majority Class

set.seed(seed)

dsPulsarTrain<- downSample(x = data[, -ncol(data)],

y = data$Class)

table(dsPulsarTrain$Class)

## Upsampling the majority Class

set.seed(seed)

usPulsarTrain <- upSample(x = data[, -ncol(data)],

y = data$Class)
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table(usPulsarTrain$Class)

## Synthetic Minority Oversampling the data

set.seed(seed)

smotePulsarTrain <- SMOTE(Class ~ ., data = data)

table(smotePulsarTrain$Class)

## ROSE sampling the data

set.seed(seed)

rosePulsarTrain <- ROSE(Class ~ ., data = data)$data

table(rosePulsarTrain$Class)

##

## Create a list of training data

##

trainingData = list(original = data,

down = dsPulsarTrain,

up = usPulsarTrain,

smote = smotePulsarTrain,

rose = rosePulsarTrain)

return (trainingData)

}

##

## Fit the Models with different data sets, save them to a list

##

## This data structure holds ALL of the data for the processing run

testfunc <- function( m,d)

{

md <- vector("list",length(m))

md <- setNames(md,m)

for ( i in m )

{

md[[i]] <- d

}

return( md )

}

trainModels <- function(mdls,dataset,seed,
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ctrl,verbosity,myTuneLength,myMetric)

{

## The vector of results. Each vector element is a list of length

## ‘length(dataset)‘

models <- vector("list",length(mdls))

models <- setNames(models,mdls)

for( name in mdls)

{

myMethod = name

set.seed(seed)

orig <- caret::train(Class ~ ., data = dataset$original,

method = myMethod,

preProcess = c("scale","center"),

verbose= verbosity,

metric = myMetric,

tuneLength = myTuneLength,

trControl = ctrl)

print(orig)

set.seed(seed)

down <- caret::train(Class ~ ., data = dataset$down,

method = myMethod,

metric = myMetric,

preProcess = c("scale","center"),

verbose= verbosity,

tuneLength = myTuneLength,

trControl = ctrl)

print(down)

set.seed(seed)

up <- caret::train(Class ~ ., data = dataset$up,

method = myMethod,

metric = myMetric,

preProcess = c("scale","center"),

verbose= verbosity,

tuneLength = myTuneLength,

trControl = ctrl)

print(up)
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set.seed(seed)

smote <- caret::train(Class ~ ., data = dataset$smote,

method = myMethod,

preProcess = c("scale","center"),

verbose= verbosity,

tuneLength = myTuneLength,

metric = myMetric,

trControl = ctrl)

print(smote)

set.seed(seed)

rose <- caret::train(Class ~ ., data = dataset$rose,

method = myMethod,

preProcess = c("scale","center"),

verbose= verbosity,

tuneLength = myTuneLength,

metric = myMetric,

trControl = ctrl)

print(rose)

models[[name]] <- list(original = orig,

down = down,

up = up,

smote = smote,

rose = rose)

}

return(models)

}

trainEnsembleModels <- function(topMdls,mdls,trainingData,testData,

seeds,verbosity,tunel,metric)

{

## The vector of results. Each vector element is a list of

## length ‘length(dataset)‘

models <- vector("list",length(topMdls))

models <- setNames(models,topMdls)

seed = mySeed

for( name in topMdls)

{

myMethod = name
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set.seed(seed)

orig <- ensemble(name,mdls,’original’,dataSet,testData,

"Class", seeds,verbosity,tunel,metric)

print(orig)

set.seed(seed)

down <- ensemble(name,mdls,’down’,dataSet,testData,"Class",

seeds, verbosity,tunel,metric)

print(down)

set.seed(seed)

up <- ensemble(name,mdls,’up’,dataSet,testData,"Class",seeds,

verbosity ,tunel,metric)

print(up)

set.seed(seed)

smote <- ensemble(name,mdls,’smote’,dataSet,testData,"Class",

seeds, verbosity,tunel,metric)

print(smote)

set.seed(seed)

rose <- ensemble(name,mdls,’rose’,dataSet,testData,"Class",

seeds, verbosity,tunel,metric)

print(rose)

models[[name]] <- list(original = orig,

down = down,

up = up,

smote = smote,

rose = rose)

}

return(models)

}

## Pass in the list of models. This is a 2d list of lists, organized

## by method first, then dataset.

testAndOutput2 <- function( label, mdls, testdata )

{

results <- list()

graph <- list()
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## Create a common base name for the run

dirName <-date.time.append(label)

dir.create(dirName)

## for each method, we summarize the results

for ( name in names(mdls))

{

myFileBase <- paste(dirName,name,sep="/")

myTxtFile<-paste(myFileBase,".txt",sep="")

cat(sprintf("Summary Text Output for the %s model\n\n",name),

file = myTxtFile)

## name is one of the "’label’Models"

print(sprintf("Applying model %s",name))

results$preds[[name]] <- lapply(mdls[[name]],test_sensitivity,

data = testdata,file=myTxtFile)

results$preds[[name]] <- lapply(results$preds[[name]], as.vector)

results$preds[[name]] <- do.call("rbind", results$preds[[name]])

results$preds[[name]] <- as.data.frame(results$preds[[name]])

print("Resampling models")

results$models_resamples[[name]] <- resamples(mdls[[name]])

## Generate plots and output text ##

## Make some plots

print(paste("Making a dotplot for",name))

pdf(paste(myFileBase,"dotplot.pdf",sep="_"))

print(dotplot(results$models_resamples[[name]],main=name, scales = list(relation = ’free’)))

Sys.sleep(0.2)

dev.off()

print(paste("Making a bwplot for",name))

pdf(paste(myFileBase,"BWplot.pdf",sep="_"))

print(bwplot(results$models_resamples[[name]],main=name, scales = list(relation = ’free’),

strip=strip.custom(var.name=’metric’,strip.names= c(FALSE,TRUE),

factor.levels=c("Area under the ROC curve", "Sensitivity",

"Specificity"), par.strip.text=list(cex = 1.0))))

Sys.sleep(0.2)

dev.off()

print("Calculating model summary")

results$modelSummary[[name]] <-

summary(results$models_resamples[[name]])

print("Calculating model differences")

results$modelDiff[[name]] <-

diff(results$models_resamples[[name]])

print("Calculating model variable importance")
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results$modelVarImp[[name]] <- lapply(mdls[[name]],varImp)

print("Creating variable importance plot")

results$modelImportance <- results$modelVarImp[[name]]

pdf(paste(myFileBase, "varImpplot.pdf",sep="_"))

row = 1

column = 1

pg=TRUE;

for( miName in names(results$modelImportance))

{

if(name == ’C5.0’ && miName == ’original’)

{

next

}

graph[[miName]] = plot(results$modelImportance[[miName]],

main=paste(miName,"sampling"),

col="black",cex=1.25)

print(plot(graph[[miName]],split= c(row,column,2,2),newpage=pg))

pg =FALSE

row = row + 1

if( row > 2)

{

row = 1

column = column + 1

if(column >2)

{

column=1

pg=TRUE

}

}

}

Sys.sleep(0.2)

dev.off()

##

## Create the file and dump the output stats...

##

result = lapply(mdls[[name]],print_model_text,myTxtFile)

capture.output(print(summary(results$modelDiff[[name]])),

file=myTxtFile,append=TRUE)

capture.output(print(results$modelVarImp[[name]]),

file=myTxtFile,append = TRUE)

capture.output( print(results$modelSummary[[name]]),
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file=myTxtFile,append = TRUE)

} ## end of for loop

return(results)

} ## End of evaluate and print function

ensemble <- function(ensembleModel,mdls, sampleMethod, trainingData,

testing,outcomeName,seed,verbosity,myTuneLength,

myMetric)

{

numFolds = 10

numRepeats = 5

training <- trainingData[[sampleMethod]]

print(str(training))

topCtrl <- trainControl(method = "repeatedcv", number = numFolds,

repeats = numRepeats,

preProcOptions=c("scale","center"),

classProbs = TRUE, seeds = seed,

verboseIter = TRUE,

summaryFunction = twoClassSummary)

##

## this loop runs the given ensembler over

## One of the training data sets available.

## record the original predictor varlables.

predictors <- names(training)[!names(training) %in% outcomeName]

## for each of the models in the baseModels, evaluate the models

## on the data and save the results in the original data

## structures

for( mName in names(mdls))

{

print(paste("evaluating",mName))

model <- mdls[[mName]][[sampleMethod]]

testing[,(ncol(testing)+1)] <-

caret::predict.train(object=model, testing[,predictors])

training[,(ncol(training)+1)] <-

caret::predict.train(object=model, training[,predictors])
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}

## add the predictors for the top model that are the output of the

## base models

ePredictors <- names(training)[!names(training)

%in% outcomeName]

modelFinal <- caret::train(training[,ePredictors],

training[,outcomeName],

method=ensembleModel,

preProcess = c("scale","center"),

metric=myMetric,

tuneLength = myTuneLength,

verbose=verbosity,

trControl= topCtrl)

return(modelFinal);

}

getEnsembleTestData <- function(topMdls,mdls,testData)

{

orig <- addColumns(mdls,’original’, testData,"Class")

down <- addColumns(mdls,’down’,testData,"Class")

up <- addColumns(mdls,’up’,testData,"Class")

smote <- addColumns(mdls,’smote’,testData,"Class")

rose <- addColumns(mdls,’rose’,testData,"Class")

testData <- list(original = orig,

down = down,

up = up,

smote = smote,

rose = rose)

return(testData)

}

addColumns <- function(mdls,sampleMethod,testing,outcomeName)

{

predictors <- names(testing)[!names(testing) %in% outcomeName]

print(sampleMethod)

for( mName in names(mdls))

{

print(paste("evaluating",mName))

model <- mdls[[mName]][[sampleMethod]]

testing[,(ncol(testing)+1)] <-

caret::predict.train(object=model, testing[,predictors])
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}

return(testing)

}

testEnsemble2 <- function()

{

methods <-c(’original’,’down’,’up’,’smote’,’rose’)

ensembleResults <- vector("list",length(methods))

ensembleResults <- setNames(ensembleResults,methods)

for(method in methods)

{

ensembleResults[[method]] <-

testAndOutput2(paste(’EnsembleTest’,method,sep=’’),

ensembleModels,

ensembleTestData[[method]])

}

return(ensembleResults)

}

## Try a simple ensemble using calculations

simpleEnsemble <-function(label)

{

dirName <-date.time.append(label)

dir.create(dirName)

myFileBase <- paste(dirName,"simple",sep="/")

myTxtFile<-paste(myFileBase,".txt",sep="")

cat(sprintf("Summary Text Output for a simple model\n\n"),

file = myTxtFile)

for(sampling in c(’original’,’down’,’up’,’smote’,’rose’))

{

capture.output(print(paste("Ensembling with",sampling)),

file=myTxtFile,append=TRUE)

data <- ensembleTestData[[sampling]]

theSum = as.numeric(data$V10) + as.numeric(data$V11) +

as.numeric(data$V12) + as.numeric(data$V13)

numResults <- theSum < 8

dat <- numResults

dat <- replace(dat,dat==0,2)

dat <-factor(dat)

levels(dat) <- c(’pulsar’,’nonpulsar’)

capture.output(print(confusionMatrix(dat,pulsarTest$Class)),

file=myTxtFile,append = TRUE)

}
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}

print(paste("Starting to train at", Sys.time()))

## Here we start defining the particulars for the run

##

## Choose sensitivity, as that is a synonym for recall

##

myMetric = ’Sens’

##

## Define the base models here and set the list element names

## for easy access

##

baseModels = c(’nnet’, ’svmLinearWeights’,’treebag’,’C5.0’)

#baseModels = c(’nnet’, ’C5.0’)

##

## define the Top models here

##

topModels = c(’nnet’,’C5.0’)

##

## Tell caret::train to try N random values for each tuneable

## parameter in the model

##

myTuneLength = 6

##

## Tell caret::train to use 5 repeats of 10 fold cross validation

##

numRepeats = 5

numFolds = 10

##

## Center the data around 0, with a width of 1 std deviation

##

myPreProcOptions=c("scale","center")

#

##
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##For caret training in parallel, we need to

##create a list of seeds, and change the seed for each resampling,

## but keep the list consistent for the whole training process

##

seeds <- vector(mode = "list", length = 51)

## fill in the first vector of seeds

for(i in 1:50) seeds[[i]]<- sample.int(n=1000, 130)

## The last one is only one long

seeds[[51]]<-sample.int(n=1000, 1)

baseTrainCtrl <- trainControl(method = "repeatedcv", number = numFolds,

repeats = numRepeats,

preProcOptions=myPreProcOptions,

classProbs = TRUE, seeds = seeds,

verboseIter = TRUE,

summaryFunction = twoClassSummary)

##

## Set up the derived data sets (5 right now)

##

dataSet = createDataSets(pulsarTrain,mySeed)

##

## Fit the Models with different data sets, save them to a list

##

## This data structure holds ALL of the data for the processing run

## models is a 2 d data structure, basemodels rows, dataset columns

models = trainModels(baseModels,dataSet,mySeed, baseTrainCtrl,TRUE,

myTuneLength,myMetric)

##

## Models built. Now test and output data to files for later.

##

baseResults <- testAndOutput2("BaseModels", models,pulsarTest)

##

## Now build the stacked ensembles
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##

ensembleModels <- trainEnsembleModels(topModels,models,dataSet,pulsarTest,

seeds,TRUE, myTuneLength,myMetric)

##

## Test, plot, and output data to files

##

ensembleTestData <- getEnsembleTestData(topModels,models,pulsarTest)

ensembleResults <- testEnsemble2()

print(paste("Finished at", Sys.time()))

##

## Now we have our array of models trained with all of the different

## sample sets, and the summary stats and plots are made. Let’s

## save the models, optionally, as they are huge...

##

#saveFile = ’PulsarEnsembleBaseModels.rds’

#saveRDS(models,saveFile)

##

saveFileBase <- date.time.append(’savedModels/PulsarEnsembleModels’, sep=’_’)

saveFileBaseModels <- paste(saveFileBase,’BaseModels’,sep="_")

saveBaseModelsFile <- paste(saveFileBase,".rds",sep="")

saveRDS(models,saveBaseModelsFile)

saveFileEnsembleModels <- paste(saveFileBase,’EnsembleModels’,sep="_")

saveEnsembleModelsModelsFile <- paste(saveFileEnsembleModels,".rds",sep="")

saveRDS(ensembleModels,saveEnsembleModelsModelsFile)

saveFileEnsembleModels <- paste(saveFileBase,’EnsembleModels’,sep="_")

saveEnsembleModelsModelsFile <- paste(saveFileEnsembleModels,".rds",sep="")

saveRDS(ensembleModels,saveEnsembleModelsModelsFile)
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Script to train, test, and evaluate all of the models

. The platform and all the versions of the modules used in this research program

are given in this appendix.

R version 3.3.1 (2016-06-21)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.11.6 (El Capitan)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] grid parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] nnet_7.3-12 DMwR_0.4.1 ROSE_0.0-3 gmodels_2.16.2

[5] kernlab_0.9-25 caret_6.0-71 ggplot2_2.1.0 lattice_0.20-33

[9] doParallel_1.0.10 iterators_1.0.8 foreach_1.4.3

loaded via a namespace (and not attached):

[1] Rcpp_0.12.7 compiler_3.3.1 nloptr_1.0.4 plyr_1.8.4

[5] bitops_1.0-6 class_7.3-14 tools_3.3.1 xts_0.9-7

[9] rpart_4.1-10 lme4_1.1-12 nlme_3.1-128 gtable_0.2.0

[13] mgcv_1.8-16 Matrix_1.2-6 SparseM_1.72 stringr_1.1.0

[17] pROC_1.8 caTools_1.17.1 MatrixModels_0.4-1 gtools_3.5.0

[21] stats4_3.3.1 gdata_2.17.0 minqa_1.2.4 ROCR_1.0-7

[25] TTR_0.23-1 reshape2_1.4.2 car_2.1-3 magrittr_1.5

[29] gplots_3.0.1 scales_0.4.0 codetools_0.2-14 MASS_7.3-45

[33] splines_3.3.1 quantmod_0.4-7 abind_1.4-5 pbkrtest_0.4-6

[37] colorspace_1.2-7 quantreg_5.29 KernSmooth_2.23-15 stringi_1.1.2

[41] munsell_0.4.3 zoo_1.7-13
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Appendix B

Neural Network Plots, Raw Results and scripts

Plots

This section contains the larger versions of the plots included in chapter 4. An

additional dot-plot is also included.
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Figure B.1: Neural network model variable dot plot
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Figure B.2: Neural network model variable box and whiskers plot
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Figure B.3: Neural network model variable importance plot for four sampling methods
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Figure B.4: Neural network model variable importance plot for ROSE sampling
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Data

This section contains the raw ascii data output from the training and evaluation

process for the neural network model.

Summary Text Output for the nnet model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 249 29

nonpulsar 50 22470

Accuracy : 0.9965

95% CI : (0.9957, 0.9973)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.8613

Mcnemar’s Test P-Value : 0.02444

Sensitivity : 0.83278

Specificity : 0.99871

Pos Pred Value : 0.89568

Neg Pred Value : 0.99778

Prevalence : 0.01312

Detection Rate : 0.01092

Detection Prevalence : 0.01219

Balanced Accuracy : 0.91574

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 296 379

nonpulsar 3 22120

Accuracy : 0.9832

95% CI : (0.9815, 0.9849)

No Information Rate : 0.9869
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P-Value [Acc > NIR] : 1

Kappa : 0.6005

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.98997

Specificity : 0.98315

Pos Pred Value : 0.43852

Neg Pred Value : 0.99986

Prevalence : 0.01312

Detection Rate : 0.01298

Detection Prevalence : 0.02961

Balanced Accuracy : 0.98656

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 293 324

nonpulsar 6 22175

Accuracy : 0.9855

95% CI : (0.9839, 0.987)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.9651

Kappa : 0.6333

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97993

Specificity : 0.98560

Pos Pred Value : 0.47488

Neg Pred Value : 0.99973

Prevalence : 0.01312

Detection Rate : 0.01285

Detection Prevalence : 0.02706

Balanced Accuracy : 0.98277

’Positive’ Class : pulsar

Confusion Matrix and Statistics
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Reference

Prediction pulsar nonpulsar

pulsar 294 314

nonpulsar 5 22185

Accuracy : 0.986

95% CI : (0.9844, 0.9875)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.8829

Kappa : 0.642

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.98328

Specificity : 0.98604

Pos Pred Value : 0.48355

Neg Pred Value : 0.99977

Prevalence : 0.01312

Detection Rate : 0.01290

Detection Prevalence : 0.02667

Balanced Accuracy : 0.98466

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 267 112

nonpulsar 32 22387

Accuracy : 0.9937

95% CI : (0.9926, 0.9947)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.7845

Mcnemar’s Test P-Value : 4.6e-11

Sensitivity : 0.89298

Specificity : 0.99502

Pos Pred Value : 0.70449

Neg Pred Value : 0.99857

Prevalence : 0.01312
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Detection Rate : 0.01171

Detection Prevalence : 0.01662

Balanced Accuracy : 0.94400

’Positive’ Class : pulsar

Neural Network

68394 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9849507 0.7325144 0.9972621

1 0.0001000000 0.9887778 0.6772260 0.9976532

1 0.0005623413 0.9893283 0.7591436 0.9976236

1 0.0031622777 0.9944330 0.6483396 0.9984947

1 0.0177827941 0.9946464 0.6571735 0.9986518

1 0.1000000000 0.9944034 0.6452434 0.9986933

3 0.0000000000 0.9963658 0.8359051 0.9986162

3 0.0001000000 0.9964783 0.8385393 0.9984651

3 0.0005623413 0.9972422 0.8372584 0.9985036

3 0.0031622777 0.9967240 0.8052534 0.9987140

3 0.0177827941 0.9975215 0.8307091 0.9987288

3 0.1000000000 0.9976731 0.8372409 0.9987199

5 0.0000000000 0.9953990 0.8298752 0.9987525

5 0.0001000000 0.9972356 0.8336554 0.9988177

5 0.0005623413 0.9974458 0.8345518 0.9988088

5 0.0031622777 0.9962904 0.8194981 0.9988385

5 0.0177827941 0.9977834 0.8394432 0.9988444

5 0.1000000000 0.9978517 0.8329813 0.9988681

7 0.0000000000 0.9968150 0.8325618 0.9987496

7 0.0001000000 0.9959820 0.8425618 0.9987081

7 0.0005623413 0.9967516 0.8332035 0.9987614

7 0.0031622777 0.9975900 0.8381248 0.9987585

7 0.0177827941 0.9975961 0.8376579 0.9987970

7 0.1000000000 0.9977670 0.8354207 0.9989451

9 0.0000000000 0.9958720 0.8356155 0.9986518

9 0.0001000000 0.9951516 0.8403171 0.9987081



112

9 0.0005623413 0.9859218 0.8217203 0.9987377

9 0.0031622777 0.9970459 0.8376629 0.9987940

9 0.0177827941 0.9976048 0.8378777 0.9988296

9 0.1000000000 0.9976213 0.8396554 0.9989007

11 0.0000000000 0.9955295 0.8401373 0.9985333

11 0.0001000000 0.9960746 0.8400924 0.9985836

11 0.0005623413 0.9864551 0.8241199 0.9986251

11 0.0031622777 0.9864928 0.8211885 0.9987555

11 0.0177827941 0.9963005 0.8477004 0.9986340

11 0.1000000000 0.9977285 0.8423271 0.9988118

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 11 and decay = 0.01778279.

Neural Network

1794 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9953244 0.9785868 0.9795006

1 0.0001000000 0.9971373 0.9826267 0.9797228

1 0.0005623413 0.9976868 0.9824045 0.9797228

1 0.0031622777 0.9976842 0.9821823 0.9810587

1 0.0177827941 0.9976866 0.9812809 0.9819501

1 0.1000000000 0.9977552 0.9821848 0.9817278

3 0.0000000000 0.9935004 0.9750137 0.9737054

3 0.0001000000 0.9948891 0.9768240 0.9754856

3 0.0005623413 0.9956403 0.9768390 0.9757054

3 0.0031622777 0.9967554 0.9790612 0.9790537

3 0.0177827941 0.9975523 0.9783895 0.9792684

3 0.1000000000 0.9980225 0.9783895 0.9817203

5 0.0000000000 0.9878821 0.9719276 0.9761323

5 0.0001000000 0.9919250 0.9732584 0.9725793

5 0.0005623413 0.9946511 0.9743720 0.9748040

5 0.0031622777 0.9968259 0.9741598 0.9763695

5 0.0177827941 0.9973622 0.9770587 0.9772634

5 0.1000000000 0.9979873 0.9772784 0.9819451

7 0.0000000000 0.9848043 0.9710337 0.9670137
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7 0.0001000000 0.9906205 0.9723770 0.9681273

7 0.0005623413 0.9937524 0.9712459 0.9739076

7 0.0031622777 0.9955286 0.9737054 0.9732484

7 0.0177827941 0.9963513 0.9730462 0.9797104

7 0.1000000000 0.9981014 0.9783920 0.9821648

9 0.0000000000 0.9835047 0.9737104 0.9719276

9 0.0001000000 0.9893416 0.9701398 0.9687890

9 0.0005623413 0.9935607 0.9721548 0.9708015

9 0.0031622777 0.9956499 0.9748240 0.9719176

9 0.0177827941 0.9972196 0.9750337 0.9737079

9 0.1000000000 0.9980643 0.9781698 0.9808290

11 0.0000000000 0.9784493 0.9725893 0.9650112

11 0.0001000000 0.9904679 0.9703446 0.9725893

11 0.0005623413 0.9934579 0.9725918 0.9701448

11 0.0031622777 0.9952358 0.9728140 0.9690212

11 0.0177827941 0.9969409 0.9741448 0.9750462

11 0.1000000000 0.9980763 0.9779426 0.9814956

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 1 and decay = 1e-04.

Neural Network

134994 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494,

121496, 121495, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9973286 0.9838986 0.9822718

1 0.0001000000 0.9959512 0.9786123 0.9827281

1 0.0005623413 0.9963462 0.9767401 0.9830304

1 0.0031622777 0.9968458 0.9841090 0.9813059

1 0.0177827941 0.9975218 0.9844527 0.9823074

1 0.1000000000 0.9974284 0.9844527 0.9822096

3 0.0000000000 0.9973618 0.9858752 0.9824378

3 0.0001000000 0.9969780 0.9852439 0.9831163

3 0.0005623413 0.9974761 0.9852381 0.9824556

3 0.0031622777 0.9974950 0.9834688 0.9832082

3 0.0177827941 0.9976143 0.9857711 0.9825770
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3 0.1000000000 0.9973107 0.9829297 0.9829533

5 0.0000000000 0.9985113 0.9914545 0.9840082

5 0.0001000000 0.9985327 0.9925182 0.9837060

5 0.0005623413 0.9985773 0.9929152 0.9839282

5 0.0031622777 0.9984207 0.9907434 0.9842778

5 0.0177827941 0.9986000 0.9912441 0.9837445

5 0.1000000000 0.9985744 0.9906870 0.9835460

7 0.0000000000 0.9986799 0.9947198 0.9849860

7 0.0001000000 0.9987279 0.9943849 0.9850838

7 0.0005623413 0.9987026 0.9941686 0.9853534

7 0.0031622777 0.9986479 0.9937212 0.9851934

7 0.0177827941 0.9987277 0.9937716 0.9848230

7 0.1000000000 0.9987659 0.9931049 0.9848349

9 0.0000000000 0.9988033 0.9958872 0.9867549

9 0.0001000000 0.9987738 0.9961124 0.9866068

9 0.0005623413 0.9987480 0.9960176 0.9863135

9 0.0031622777 0.9987921 0.9956798 0.9863638

9 0.0177827941 0.9987828 0.9956799 0.9859757

9 0.1000000000 0.9988357 0.9955968 0.9859461

11 0.0000000000 0.9988539 0.9970784 0.9871935

11 0.0001000000 0.9987660 0.9968176 0.9871313

11 0.0005623413 0.9988218 0.9966991 0.9871461

11 0.0031622777 0.9988057 0.9970665 0.9869001

11 0.0177827941 0.9987803 0.9967050 0.9867105

11 0.1000000000 0.9988395 0.9962724 0.9862809

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 11 and decay = 0.

Neural Network

6279 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9980146 0.9842454 0.9862318

1 0.0001000000 0.9979519 0.9839480 0.9855631

1 0.0005623413 0.9977004 0.9819405 0.9863432

1 0.0031622777 0.9978955 0.9801561 0.9866778
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1 0.0177827941 0.9978620 0.9808996 0.9866775

1 0.1000000000 0.9982412 0.9822376 0.9868446

3 0.0000000000 0.9980971 0.9843186 0.9858420

3 0.0001000000 0.9975861 0.9829062 0.9850609

3 0.0005623413 0.9985908 0.9853603 0.9856737

3 0.0031622777 0.9980366 0.9821710 0.9869001

3 0.0177827941 0.9986738 0.9863258 0.9860639

3 0.1000000000 0.9987627 0.9845419 0.9853957

5 0.0000000000 0.9975236 0.9859548 0.9831632

5 0.0001000000 0.9967023 0.9797874 0.9853949

5 0.0005623413 0.9982421 0.9862514 0.9861765

5 0.0031622777 0.9985010 0.9849131 0.9869014

5 0.0177827941 0.9986325 0.9848393 0.9865654

5 0.1000000000 0.9989006 0.9849886 0.9873466

7 0.0000000000 0.9972894 0.9856566 0.9841691

7 0.0001000000 0.9979450 0.9863274 0.9838359

7 0.0005623413 0.9982315 0.9877367 0.9852288

7 0.0031622777 0.9981785 0.9869184 0.9858402

7 0.0177827941 0.9986145 0.9865472 0.9861764

7 0.1000000000 0.9988978 0.9858053 0.9875137

9 0.0000000000 0.9966438 0.9855082 0.9848371

9 0.0001000000 0.9974503 0.9871436 0.9838910

9 0.0005623413 0.9977871 0.9853589 0.9852276

9 0.0031622777 0.9982688 0.9887038 0.9862322

9 0.0177827941 0.9986754 0.9880347 0.9866221

9 0.1000000000 0.9989057 0.9851364 0.9871796

11 0.0000000000 0.9955767 0.9855803 0.9836114

11 0.0001000000 0.9973202 0.9860273 0.9843358

11 0.0005623413 0.9978515 0.9875892 0.9856737

11 0.0031622777 0.9981099 0.9876621 0.9856193

11 0.0177827941 0.9986639 0.9892240 0.9862875

11 0.1000000000 0.9988778 0.9870684 0.9868449

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 11 and decay = 0.01778279.

Neural Network

68394 samples

8 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...
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Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9904749 0.9748767 0.9495157

1 0.0001000000 0.9902034 0.9755024 0.9485529

1 0.0005623413 0.9904813 0.9747552 0.9511223

1 0.0031622777 0.9894712 0.9751143 0.9485233

1 0.0177827941 0.9907480 0.9747262 0.9511636

1 0.1000000000 0.9907447 0.9747262 0.9512050

3 0.0000000000 0.9955556 0.9840272 0.9669817

3 0.0001000000 0.9959192 0.9838535 0.9696043

3 0.0005623413 0.9951544 0.9834192 0.9664737

3 0.0031622777 0.9958688 0.9837551 0.9704548

3 0.0177827941 0.9962386 0.9842879 0.9711223

3 0.1000000000 0.9963469 0.9845427 0.9719728

5 0.0000000000 0.9971229 0.9857184 0.9751093

5 0.0001000000 0.9971332 0.9857763 0.9751979

5 0.0005623413 0.9971671 0.9856952 0.9757177

5 0.0031622777 0.9966583 0.9853882 0.9727525

5 0.0177827941 0.9972022 0.9860833 0.9754932

5 0.1000000000 0.9969997 0.9867376 0.9740756

7 0.0000000000 0.9975053 0.9867724 0.9777614

7 0.0001000000 0.9975968 0.9870041 0.9776669

7 0.0005623413 0.9976199 0.9869520 0.9775428

7 0.0031622777 0.9976210 0.9866450 0.9776669

7 0.0177827941 0.9977525 0.9875659 0.9780154

7 0.1000000000 0.9978220 0.9882087 0.9780331

9 0.0000000000 0.9980015 0.9878670 0.9799232

9 0.0001000000 0.9980357 0.9883419 0.9795629

9 0.0005623413 0.9980801 0.9884403 0.9802304

9 0.0031622777 0.9980819 0.9883882 0.9804962

9 0.0177827941 0.9980624 0.9884346 0.9800886

9 0.1000000000 0.9981362 0.9889327 0.9805316

11 0.0000000000 0.9981339 0.9883534 0.9804903

11 0.0001000000 0.9983520 0.9889326 0.9812168

11 0.0005623413 0.9981649 0.9885156 0.9808742

11 0.0031622777 0.9982720 0.9890369 0.9813290

11 0.0177827941 0.9982396 0.9889326 0.9811991

11 0.1000000000 0.9982471 0.9891295 0.9809037

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 11 and decay = 0.1.

Call:
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summary.diff.resamples(object = results$modelDiff[[name]])

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose

original -0.0008368 -0.0025534 -0.0023634 -0.0019466

down 1.0000000 -0.0017165 -0.0015266 -0.0011098

up 0.0001536 0.0054660 0.0001900 0.0006068

smote 0.0007936 0.0208424 1.0000000 0.0004168

rose 0.0053153 0.1651019 1.544e-08 0.0246424

Sens

original down up smote rose

original -1.349e-01 -1.494e-01 -1.415e-01 -1.414e-01

down < 2.2e-16 -1.445e-02 -6.597e-03 -6.503e-03

up < 2.2e-16 8.476e-08 7.854e-03 7.949e-03

smote < 2.2e-16 0.05108 1.135e-10 9.448e-05

rose < 2.2e-16 0.02710 < 2.2e-16 1.00000

Spec

original down up smote rose

original 0.018911 0.011440 0.012347 0.017730

down 2.489e-09 -0.007471 -0.006565 -0.001181

up < 2.2e-16 0.03355 0.000906 0.006290

smote < 2.2e-16 0.15026 1.00000 0.005384

rose < 2.2e-16 1.00000 6.095e-14 1.157e-07

$original

nnet variable importance

Overall

Prof.skew 100.00

Prof.kurtosis 90.79

Prof.mu 42.91

DM.kurtosis 19.92

DM.sigma 19.26

Prof.sigma 16.57

DM.mu 11.02

DM.skew 0.00

$down
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nnet variable importance

Overall

Prof.kurtosis 100.000

Prof.skew 39.273

Prof.mu 16.632

DM.skew 12.818

DM.sigma 8.411

DM.kurtosis 4.016

Prof.sigma 1.282

DM.mu 0.000

$up

nnet variable importance

Overall

Prof.kurtosis 100.00

Prof.skew 81.77

Prof.sigma 42.57

DM.mu 38.47

Prof.mu 30.46

DM.sigma 17.70

DM.kurtosis 15.25

DM.skew 0.00

$smote

nnet variable importance

Overall

Prof.kurtosis 100.00

DM.kurtosis 49.66

DM.mu 49.27

Prof.mu 48.60

Prof.skew 36.00

Prof.sigma 30.92

DM.sigma 10.05

DM.skew 0.00

$rose

nnet variable importance

Overall

Prof.skew 100.000

Prof.kurtosis 78.917
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DM.skew 35.220

Prof.mu 31.730

DM.sigma 11.414

Prof.sigma 9.408

DM.mu 1.930

DM.kurtosis 0.000

Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9817 0.9959 0.9975 0.9963 0.9985 0.9994 0

down 0.9875 0.9962 0.9983 0.9971 0.9995 1.0000 0

up 0.9977 0.9987 0.9989 0.9989 0.9990 0.9995 0

smote 0.9963 0.9982 0.9987 0.9987 0.9993 0.9998 0

rose 0.9965 0.9981 0.9984 0.9982 0.9986 0.9992 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.7667 0.8207 0.8556 0.8477 0.8667 0.9213 0

down 0.9444 0.9775 0.9888 0.9826 0.9889 1.0000 0

up 0.9910 0.9959 0.9976 0.9971 0.9985 1.0000 0

smote 0.9740 0.9851 0.9888 0.9892 0.9926 1.0000 0

rose 0.9823 0.9881 0.9896 0.9891 0.9904 0.9939 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9954 0.9984 0.9987 0.9986 0.9991 0.9999 0

down 0.9333 0.9667 0.9888 0.9797 0.9889 1.0000 0

up 0.9827 0.9860 0.9876 0.9872 0.9890 0.9905 0

smote 0.9721 0.9833 0.9861 0.9863 0.9889 0.9944 0

rose 0.9684 0.9796 0.9807 0.9809 0.9835 0.9864 0
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Appendix C

Support Vector Machine Results

Plots

This section contains the plots for the support vector machine training and eval-

uation process. An extra dotplot is included.
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Figure C.1: Support vector machine model variable dot plot
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Figure C.2: Support vector machine model variable box and whiskers plot
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Figure C.3: Support vector machine model variable importance plots for four sample
sets
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Figure C.4: Support vector machine model variable importance plots for ROSE sam-
ple sets
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Data

This section contains the text data from the training and evaluation process.

Summary Text Output for the svmLinearWeights model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 229 27

nonpulsar 70 22472

Accuracy : 0.9957

95% CI : (0.9948, 0.9965)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8231

Mcnemar’s Test P-Value : 2.004e-05

Sensitivity : 0.76589

Specificity : 0.99880

Pos Pred Value : 0.89453

Neg Pred Value : 0.99689

Prevalence : 0.01312

Detection Rate : 0.01004

Detection Prevalence : 0.01123

Balanced Accuracy : 0.88234

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 294 353

nonpulsar 5 22146

Accuracy : 0.9843

95% CI : (0.9826, 0.9859)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.9996
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Kappa : 0.6147

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.98328

Specificity : 0.98431

Pos Pred Value : 0.45440

Neg Pred Value : 0.99977

Prevalence : 0.01312

Detection Rate : 0.01290

Detection Prevalence : 0.02838

Balanced Accuracy : 0.98379

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 295 353

nonpulsar 4 22146

Accuracy : 0.9843

95% CI : (0.9826, 0.9859)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.9995

Kappa : 0.6161

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.98662

Specificity : 0.98431

Pos Pred Value : 0.45525

Neg Pred Value : 0.99982

Prevalence : 0.01312

Detection Rate : 0.01294

Detection Prevalence : 0.02842

Balanced Accuracy : 0.98547

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar
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pulsar 293 299

nonpulsar 6 22200

Accuracy : 0.9866

95% CI : (0.985, 0.9881)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.6504

Kappa : 0.6516

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97993

Specificity : 0.98671

Pos Pred Value : 0.49493

Neg Pred Value : 0.99973

Prevalence : 0.01312

Detection Rate : 0.01285

Detection Prevalence : 0.02597

Balanced Accuracy : 0.98332

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 291 345

nonpulsar 8 22154

Accuracy : 0.9845

95% CI : (0.9828, 0.9861)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.999

Kappa : 0.6156

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97324

Specificity : 0.98467

Pos Pred Value : 0.45755

Neg Pred Value : 0.99964

Prevalence : 0.01312

Detection Rate : 0.01276

Detection Prevalence : 0.02790



128

Balanced Accuracy : 0.97896

’Positive’ Class : pulsar

Linear Support Vector Machines with Class Weights

68394 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results across tuning parameters:

cost weight ROC Sens Spec

0.25 1 0.9897180 0.7908889 0.9991051

0.25 2 0.9856033 0.7440474 0.9994844

0.25 3 0.9840866 0.7175131 0.9995911

0.25 4 0.9829856 0.7021298 0.9996326

0.25 5 0.9823095 0.6867366 0.9996592

0.25 6 0.9825290 0.6675456 0.9996711

0.50 1 0.9891847 0.7937878 0.9991140

0.50 2 0.9853890 0.7467266 0.9994637

0.50 3 0.9839190 0.7172909 0.9995911

0.50 4 0.9826644 0.7045868 0.9996266

0.50 5 0.9822453 0.6883021 0.9996474

0.50 6 0.9825875 0.6700000 0.9996711

1.00 1 0.9889691 0.7951211 0.9991022

1.00 2 0.9852546 0.7478377 0.9994518

1.00 3 0.9837811 0.7172859 0.9995941

1.00 4 0.9825299 0.7048090 0.9996237

1.00 5 0.9821851 0.6898602 0.9996504

1.00 6 0.9825105 0.6706667 0.9996681

2.00 1 0.9888567 0.7948964 0.9990933

2.00 2 0.9851758 0.7491810 0.9994429

2.00 3 0.9837164 0.7170637 0.9995941

2.00 4 0.9824935 0.7050312 0.9996266

2.00 5 0.9821422 0.6898602 0.9996474

2.00 6 0.9825446 0.6715581 0.9996711

4.00 1 0.9888267 0.7951161 0.9990992

4.00 2 0.9851493 0.7498502 0.9994459

4.00 3 0.9836973 0.7175081 0.9995911

4.00 4 0.9824689 0.7054806 0.9996237
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4.00 5 0.9821228 0.6900824 0.9996474

4.00 6 0.9825624 0.6713358 0.9996681

8.00 1 0.9888036 0.7948964 0.9990903

8.00 2 0.9851255 0.7500724 0.9994489

8.00 3 0.9836881 0.7179526 0.9995911

8.00 4 0.9824321 0.7059251 0.9996207

8.00 5 0.9821203 0.6905293 0.9996474

8.00 6 0.9825977 0.6706692 0.9996652

Sens was used to select the optimal model using the largest value.

The final values used for the model were cost = 1 and weight = 1.

Linear Support Vector Machines with Class Weights

1794 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results across tuning parameters:

cost weight ROC Sens Spec

0.25 1 0.9968272 0.9775081 0.9761648

0.25 2 0.9970529 0.9527441 0.9906367

0.25 3 0.9968987 0.9382497 0.9930911

0.25 4 0.9969361 0.9288814 0.9930911

0.25 5 0.9970273 0.9230811 0.9946492

0.25 6 0.9972036 0.9188439 0.9957628

0.50 1 0.9971289 0.9792859 0.9739301

0.50 2 0.9972495 0.9554257 0.9897503

0.50 3 0.9971966 0.9418202 0.9930911

0.50 4 0.9972730 0.9340125 0.9946492

0.50 5 0.9974396 0.9275556 0.9946492

0.50 6 0.9976434 0.9250936 0.9964295

1.00 1 0.9974221 0.9799551 0.9737079

1.00 2 0.9974389 0.9592135 0.9890836

1.00 3 0.9974343 0.9447191 0.9939825

1.00 4 0.9977496 0.9360250 0.9946492

1.00 5 0.9978693 0.9311161 0.9957628

1.00 6 0.9978483 0.9288889 0.9959850

2.00 1 0.9975898 0.9808414 0.9743795

2.00 2 0.9975525 0.9614382 0.9908664

2.00 3 0.9975820 0.9465194 0.9937578
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2.00 4 0.9978399 0.9387116 0.9950936

2.00 5 0.9979366 0.9355830 0.9953159

2.00 6 0.9979187 0.9326866 0.9953159

4.00 1 0.9976483 0.9821823 0.9763820

4.00 2 0.9975185 0.9654557 0.9904145

4.00 3 0.9977063 0.9509713 0.9939800

4.00 4 0.9978242 0.9431710 0.9948714

4.00 5 0.9978563 0.9378152 0.9948714

4.00 6 0.9979062 0.9353608 0.9950936

8.00 1 0.9976947 0.9828539 0.9779426

8.00 2 0.9975748 0.9676854 0.9899625

8.00 3 0.9977240 0.9543121 0.9937553

8.00 4 0.9978135 0.9469613 0.9944245

8.00 5 0.9978035 0.9404919 0.9944270

8.00 6 0.9978336 0.9380400 0.9948714

Sens was used to select the optimal model using the largest value.

The final values used for the model were cost = 8 and weight = 1.

Linear Support Vector Machines with Class Weights

134994 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494, 121496,

121495, ...

Resampling results across tuning parameters:

cost weight ROC Sens Spec

0.25 1 0.9972061 0.9828466 0.9846838

0.25 2 0.9972163 0.9719247 0.9889684

0.25 3 0.9972834 0.9645317 0.9908944

0.25 4 0.9973258 0.9568158 0.9920648

0.25 5 0.9973204 0.9503770 0.9925774

0.25 6 0.9972798 0.9480302 0.9927552

0.50 1 0.9971926 0.9841119 0.9843193

0.50 2 0.9972007 0.9719484 0.9890069

0.50 3 0.9972727 0.9645317 0.9907788

0.50 4 0.9973201 0.9555654 0.9919819

0.50 5 0.9973211 0.9506200 0.9925360

0.50 6 0.9972796 0.9492570 0.9927374

1.00 1 0.9971744 0.9841475 0.9843134
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1.00 2 0.9971959 0.9720076 0.9890128

1.00 3 0.9972701 0.9646591 0.9907462

1.00 4 0.9973105 0.9562913 0.9918604

1.00 5 0.9973210 0.9509459 0.9925448

1.00 6 0.9972808 0.9495088 0.9927434

2.00 1 0.9971658 0.9841475 0.9843549

2.00 2 0.9972007 0.9719069 0.9890188

2.00 3 0.9972707 0.9648369 0.9906988

2.00 4 0.9973057 0.9565106 0.9918278

2.00 5 0.9973209 0.9511504 0.9925478

2.00 6 0.9972821 0.9496422 0.9927523

4.00 1 0.9971615 0.9841475 0.9843697

4.00 2 0.9972051 0.9718536 0.9890039

4.00 3 0.9972710 0.9650266 0.9906633

4.00 4 0.9973034 0.9565817 0.9918070

4.00 5 0.9973209 0.9511771 0.9925360

4.00 6 0.9972829 0.9497044 0.9927523

8.00 1 0.9971594 0.9841475 0.9843667

8.00 2 0.9972074 0.9718358 0.9890010

8.00 3 0.9972712 0.9652192 0.9906455

8.00 4 0.9973020 0.9566114 0.9918041

8.00 5 0.9973205 0.9512334 0.9925389

8.00 6 0.9972834 0.9497429 0.9927493

Sens was used to select the optimal model using the largest value.

The final values used for the model were cost = 1 and weight = 1.

Linear Support Vector Machines with Class Weights

6279 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...

Resampling results across tuning parameters:

cost weight ROC Sens Spec

0.25 1 0.9980287 0.9812719 0.9866219

0.25 2 0.9980143 0.9644742 0.9906349

0.25 3 0.9979293 0.9497574 0.9930876

0.25 4 0.9978364 0.9427743 0.9935891

0.25 5 0.9978707 0.9360859 0.9942025

0.25 6 0.9978719 0.9332623 0.9947041
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0.50 1 0.9981744 0.9845425 0.9860086

0.50 2 0.9982134 0.9672248 0.9908022

0.50 3 0.9981031 0.9595693 0.9929206

0.50 4 0.9980144 0.9473801 0.9938681

0.50 5 0.9979766 0.9418075 0.9942025

0.50 6 0.9979813 0.9369021 0.9948714

1.00 1 0.9982680 0.9846165 0.9854506

1.00 2 0.9982459 0.9698254 0.9910814

1.00 3 0.9981808 0.9633592 0.9931993

1.00 4 0.9981415 0.9536985 0.9938683

1.00 5 0.9980927 0.9458943 0.9942584

1.00 6 0.9980835 0.9421046 0.9945927

2.00 1 0.9983034 0.9840220 0.9860639

2.00 2 0.9982542 0.9704197 0.9915271

2.00 3 0.9982281 0.9650690 0.9931434

2.00 4 0.9982369 0.9580091 0.9937567

2.00 5 0.9981548 0.9479006 0.9939240

2.00 6 0.9981032 0.9437398 0.9943698

4.00 1 0.9982958 0.9832785 0.9868444

4.00 2 0.9982848 0.9711629 0.9914713

4.00 3 0.9982398 0.9655151 0.9929206

4.00 4 0.9982410 0.9600151 0.9935337

4.00 5 0.9981453 0.9492389 0.9938126

4.00 6 0.9980964 0.9448545 0.9943141

8.00 1 0.9982739 0.9833529 0.9867329

8.00 2 0.9982954 0.9712375 0.9914158

8.00 3 0.9982427 0.9655154 0.9928092

8.00 4 0.9982527 0.9609814 0.9933664

8.00 5 0.9981316 0.9500565 0.9938126

8.00 6 0.9981022 0.9449285 0.9940913

Sens was used to select the optimal model using the largest value.

The final values used for the model were cost = 1 and weight = 1.

Linear Support Vector Machines with Class Weights

68394 samples

8 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...

Resampling results across tuning parameters:
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cost weight ROC Sens Spec

0.25 1 0.9906624 0.9765505 0.9492499

0.25 2 0.9908383 0.9596106 0.9638748

0.25 3 0.9908743 0.9443677 0.9700709

0.25 4 0.9909043 0.9285398 0.9739870

0.25 5 0.9909108 0.9156307 0.9771648

0.25 6 0.9909092 0.9036657 0.9792794

0.50 1 0.9906587 0.9765100 0.9492853

0.50 2 0.9908375 0.9595295 0.9639161

0.50 3 0.9908739 0.9443214 0.9700945

0.50 4 0.9909043 0.9284818 0.9740224

0.50 5 0.9909110 0.9156423 0.9771943

0.50 6 0.9909093 0.9037062 0.9792794

1.00 1 0.9906564 0.9764463 0.9493207

1.00 2 0.9908372 0.9595237 0.9639516

1.00 3 0.9908738 0.9442982 0.9701063

1.00 4 0.9909044 0.9284876 0.9740461

1.00 5 0.9909109 0.9156712 0.9771943

1.00 6 0.9909092 0.9037294 0.9792853

2.00 1 0.9906558 0.9764289 0.9493030

2.00 2 0.9908371 0.9595064 0.9639634

2.00 3 0.9908739 0.9442924 0.9701181

2.00 4 0.9909044 0.9284818 0.9740343

2.00 5 0.9909112 0.9156423 0.9771884

2.00 6 0.9909093 0.9037178 0.9792735

4.00 1 0.9906552 0.9764347 0.9492853

4.00 2 0.9908372 0.9594774 0.9639693

4.00 3 0.9908738 0.9443040 0.9701122

4.00 4 0.9909045 0.9284818 0.9740461

4.00 5 0.9909110 0.9156423 0.9771884

4.00 6 0.9909092 0.9037236 0.9792794

8.00 1 0.9906552 0.9764289 0.9492971

8.00 2 0.9908369 0.9594890 0.9639693

8.00 3 0.9908740 0.9442924 0.9701122

8.00 4 0.9909042 0.9284760 0.9740461

8.00 5 0.9909108 0.9156481 0.9771825

8.00 6 0.9909094 0.9037352 0.9792794

Sens was used to select the optimal model using the largest value.

The final values used for the model were cost = 0.25 and weight = 1.

Call:

summary.diff.resamples(object = results$modelDiff[[name]])
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p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose

original -0.0087257 -0.0082053 -0.0092990 -0.0016934

down 7.230e-12 0.0005204 -0.0005733 0.0070323

up 5.960e-12 1.00 -0.0010936 0.0065119

smote 1.615e-13 1.00 3.610e-07 0.0076056

rose 0.51 < 2.2e-16 < 2.2e-16 < 2.2e-16

Sens

original down up smote rose

original -0.1877328 -0.1890264 -0.1894955 -0.1814294

down < 2.2e-16 -0.0012935 -0.0017626 0.0063034

up < 2.2e-16 1.00000 -0.0004691 0.0075969

smote < 2.2e-16 1.00000 1.00000 0.0080660

rose < 2.2e-16 0.01682 < 2.2e-16 2.171e-09

Spec

original down up smote rose

original 0.021160 0.014789 0.013652 0.049852

down 6.235e-09 -0.006371 -0.007508 0.028693

up < 2.2e-16 0.2523 -0.001137 0.035064

smote < 2.2e-16 0.1862 1.0000 0.036201

rose < 2.2e-16 6.178e-13 < 2.2e-16 < 2.2e-16

$original

ROC curve variable importance

Importance

Prof.mu 100.000

DM.mu 85.714

Prof.sigma 74.819

DM.sigma 31.867

DM.skew 27.353

DM.kurtosis 18.953

Prof.skew 4.232

Prof.kurtosis 0.000

$down

ROC curve variable importance
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Importance

Prof.mu 100.000

DM.mu 85.460

Prof.sigma 75.019

DM.sigma 32.777

DM.skew 27.321

DM.kurtosis 19.819

Prof.skew 4.238

Prof.kurtosis 0.000

$up

ROC curve variable importance

Importance

Prof.mu 100.000

DM.mu 85.496

Prof.sigma 74.717

DM.sigma 31.850

DM.skew 27.378

DM.kurtosis 19.181

Prof.skew 4.338

Prof.kurtosis 0.000

$smote

ROC curve variable importance

Importance

Prof.mu 100.000

DM.mu 86.057

Prof.sigma 75.168

DM.sigma 31.437

DM.skew 27.267

DM.kurtosis 18.309

Prof.skew 4.163

Prof.kurtosis 0.000

$rose

ROC curve variable importance

Importance

Prof.kurtosis 100.00

Prof.skew 93.38

DM.kurtosis 79.88

DM.skew 71.96
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DM.sigma 66.09

Prof.sigma 26.90

nDM.mu 16.12

Prof.mu 0.00

Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9729 0.9847 0.9903 0.9890 0.9929 0.9993 0

down 0.9879 0.9970 0.9985 0.9977 0.9996 1.0000 0

up 0.9963 0.9970 0.9972 0.9972 0.9974 0.9979 0

smote 0.9951 0.9976 0.9986 0.9983 0.9991 0.9996 0

rose 0.9890 0.9900 0.9908 0.9907 0.9913 0.9927 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.7000 0.7759 0.7889 0.7951 0.8217 0.8764 0

down 0.9444 0.9776 0.9888 0.9829 0.9889 1.0000 0

up 0.9813 0.9831 0.9841 0.9841 0.9852 0.9867 0

smote 0.9703 0.9814 0.9851 0.9846 0.9888 1.0000 0

rose 0.9687 0.9752 0.9768 0.9766 0.9783 0.9815 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9982 0.9988 0.9991 0.9991 0.9994 1.0000 0

down 0.9222 0.9694 0.9778 0.9779 0.9889 1.0000 0

up 0.9810 0.9830 0.9845 0.9843 0.9856 0.9880 0

smote 0.9721 0.9833 0.9861 0.9855 0.9889 0.9944 0

rose 0.9430 0.9474 0.9494 0.9492 0.9509 0.9569 0
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Appendix D

C5.0 Results

Plots

This section contains the plots for the C5.0 models’ training and evaluation pro-

cess. An extra dotplot is included.
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Figure D.1: C5.0 model dot plot
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Figure D.2: C5.0 model box and whiskers plot
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Figure D.3: C5.0 model variable importance plots for four sample sets
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Data

Summary Text Output for the C5.0 model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 239 27

nonpulsar 60 22472

Accuracy : 0.9962

95% CI : (0.9953, 0.9969)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8441

Mcnemar’s Test P-Value : 0.0006019

Sensitivity : 0.79933

Specificity : 0.99880

Pos Pred Value : 0.89850

Neg Pred Value : 0.99734

Prevalence : 0.01312

Detection Rate : 0.01048

Detection Prevalence : 0.01167

Balanced Accuracy : 0.89907

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 387

nonpulsar 7 22112

Accuracy : 0.9827

95% CI : (0.9809, 0.9844)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5897
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Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98280

Pos Pred Value : 0.43004

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02978

Balanced Accuracy : 0.97969

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 267 93

nonpulsar 32 22406

Accuracy : 0.9945

95% CI : (0.9935, 0.9954)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8076

Mcnemar’s Test P-Value : 8.025e-08

Sensitivity : 0.89298

Specificity : 0.99587

Pos Pred Value : 0.74167

Neg Pred Value : 0.99857

Prevalence : 0.01312

Detection Rate : 0.01171

Detection Prevalence : 0.01579

Balanced Accuracy : 0.94442

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 289 266
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nonpulsar 10 22233

Accuracy : 0.9879

95% CI : (0.9864, 0.9893)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.09392

Kappa : 0.6712

Mcnemar’s Test P-Value : < 2e-16

Sensitivity : 0.96656

Specificity : 0.98818

Pos Pred Value : 0.52072

Neg Pred Value : 0.99955

Prevalence : 0.01312

Detection Rate : 0.01268

Detection Prevalence : 0.02434

Balanced Accuracy : 0.97737

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 276 115

nonpulsar 23 22384

Accuracy : 0.9939

95% CI : (0.9929, 0.9949)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.797

Mcnemar’s Test P-Value : 9.451e-15

Sensitivity : 0.92308

Specificity : 0.99489

Pos Pred Value : 0.70588

Neg Pred Value : 0.99897

Prevalence : 0.01312

Detection Rate : 0.01211

Detection Prevalence : 0.01715

Balanced Accuracy : 0.95898
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’Positive’ Class : pulsar

C5.0

68394 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9149366 0.8001873 0.9988651

rules FALSE 10 0.9894412 0.7991361 0.9986281

rules FALSE 20 0.9913611 0.8087091 0.9988444

rules FALSE 30 0.9920961 0.8097978 0.9989481

rules FALSE 40 0.9927754 0.8100325 0.9989896

rules FALSE 50 0.9927938 0.8136005 0.9989985

rules TRUE 1 0.9076484 0.7931086 0.9989244

rules TRUE 10 0.9834187 0.7975106 0.9977747

rules TRUE 20 0.9852197 0.8066592 0.9980148

rules TRUE 30 0.9855601 0.8053208 0.9981007

rules TRUE 40 0.9859264 0.8095506 0.9981955

rules TRUE 50 0.9859242 0.8088914 0.9981985

tree FALSE 1 0.9342529 0.8066841 0.9987407

tree FALSE 10 0.9905206 0.8107241 0.9984207

tree FALSE 20 0.9916918 0.8167091 0.9986814

tree FALSE 30 0.9922092 0.8202821 0.9987940

tree FALSE 40 0.9925919 0.8209488 0.9988592

tree FALSE 50 0.9928094 0.8220699 0.9989037

tree TRUE 1 0.9256448 0.7973184 0.9988355

tree TRUE 10 0.9843043 0.7957528 0.9977392

tree TRUE 20 0.9865233 0.8077828 0.9979170

tree TRUE 30 0.9870331 0.8102397 0.9979851

tree TRUE 40 0.9871373 0.8109288 0.9980711

tree TRUE 50 0.9871577 0.8147116 0.9981392

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 50, model = tree

and winnow = FALSE.

C5.0
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1794 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9726353 0.9685818 0.9694407

rules FALSE 10 0.9949695 0.9741573 0.9777079

rules FALSE 20 0.9959791 0.9743745 0.9790512

rules FALSE 30 0.9962489 0.9730337 0.9801648

rules FALSE 40 0.9963708 0.9739226 0.9792734

rules FALSE 50 0.9962974 0.9737129 0.9781573

rules TRUE 1 0.9709091 0.9652160 0.9710187

rules TRUE 10 0.9939597 0.9717029 0.9745893

rules TRUE 20 0.9942475 0.9703695 0.9765943

rules TRUE 30 0.9944744 0.9717029 0.9750337

rules TRUE 40 0.9946312 0.9714831 0.9757029

rules TRUE 50 0.9948213 0.9719251 0.9750387

tree FALSE 1 0.9877305 0.9676904 0.9703271

tree FALSE 10 0.9945011 0.9705943 0.9801598

tree FALSE 20 0.9952930 0.9723770 0.9785943

tree FALSE 30 0.9958601 0.9723645 0.9794906

tree FALSE 40 0.9960401 0.9737129 0.9788265

tree FALSE 50 0.9961217 0.9750487 0.9797179

tree TRUE 1 0.9872562 0.9643246 0.9721298

tree TRUE 10 0.9941530 0.9712534 0.9734782

tree TRUE 20 0.9947184 0.9714782 0.9750362

tree TRUE 30 0.9950667 0.9712534 0.9750337

tree TRUE 40 0.9951060 0.9705818 0.9752559

tree TRUE 50 0.9952673 0.9696904 0.9752609

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 50, model = tree

and winnow = FALSE.

C5.0

134994 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’
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Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494, 121496,

121495, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9985671 0.999923 0.9955435

rules FALSE 10 0.9998175 1.000000 0.9981658

rules FALSE 20 0.9998631 1.000000 0.9982429

rules FALSE 30 0.9998840 1.000000 0.9982933

rules FALSE 40 0.9998898 1.000000 0.9983318

rules FALSE 50 0.9998890 1.000000 0.9983881

rules TRUE 1 0.9985671 0.999923 0.9955435

rules TRUE 10 0.9998175 1.000000 0.9981658

rules TRUE 20 0.9998631 1.000000 0.9982429

rules TRUE 30 0.9998840 1.000000 0.9982933

rules TRUE 40 0.9998898 1.000000 0.9983318

rules TRUE 50 0.9998890 1.000000 0.9983881

tree FALSE 1 0.9993072 1.000000 0.9964709

tree FALSE 10 0.9998449 1.000000 0.9972591

tree FALSE 20 0.9998810 1.000000 0.9977362

tree FALSE 30 0.9998903 1.000000 0.9977836

tree FALSE 40 0.9998959 1.000000 0.9978666

tree FALSE 50 0.9998965 1.000000 0.9978932

tree TRUE 1 0.9993072 1.000000 0.9964709

tree TRUE 10 0.9998449 1.000000 0.9972591

tree TRUE 20 0.9998810 1.000000 0.9977362

tree TRUE 30 0.9998903 1.000000 0.9977836

tree TRUE 40 0.9998959 1.000000 0.9978666

tree TRUE 50 0.9998965 1.000000 0.9978932

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = tree

and winnow = TRUE.

C5.0

6279 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)
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Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9873101 0.9827586 0.9848936

rules FALSE 10 0.9983097 0.9852113 0.9872367

rules FALSE 20 0.9987659 0.9866983 0.9876270

rules FALSE 30 0.9989323 0.9874407 0.9877384

rules FALSE 40 0.9989641 0.9872177 0.9876266

rules FALSE 50 0.9990047 0.9872926 0.9877378

rules TRUE 1 0.9866896 0.9822390 0.9852287

rules TRUE 10 0.9983671 0.9848401 0.9869011

rules TRUE 20 0.9987949 0.9864009 0.9872358

rules TRUE 30 0.9988849 0.9860278 0.9876259

rules TRUE 40 0.9989059 0.9860289 0.9876818

rules TRUE 50 0.9989101 0.9860284 0.9877374

tree FALSE 1 0.9937762 0.9814955 0.9828327

tree FALSE 10 0.9983693 0.9835757 0.9887966

tree FALSE 20 0.9988289 0.9862520 0.9884068

tree FALSE 30 0.9989611 0.9859543 0.9886295

tree FALSE 40 0.9990209 0.9861030 0.9882391

tree FALSE 50 0.9990067 0.9857310 0.9879045

tree TRUE 1 0.9937936 0.9807523 0.9830560

tree TRUE 10 0.9983382 0.9832788 0.9874031

tree TRUE 20 0.9987582 0.9846174 0.9877372

tree TRUE 30 0.9988208 0.9852862 0.9874586

tree TRUE 40 0.9989381 0.9852113 0.9875142

tree TRUE 50 0.9989419 0.9851373 0.9875698

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 30, model = rules

and winnow = FALSE.

C5.0

68394 samples

8 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec
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rules FALSE 1 0.9870904 0.9840852 0.9789604

rules FALSE 10 0.9975464 0.9846875 0.9860366

rules FALSE 20 0.9981284 0.9861991 0.9861193

rules FALSE 30 0.9982878 0.9866624 0.9863083

rules FALSE 40 0.9984233 0.9867261 0.9863201

rules FALSE 50 0.9984664 0.9866856 0.9863201

rules TRUE 1 0.9869682 0.9840273 0.9787773

rules TRUE 10 0.9974469 0.9848091 0.9858181

rules TRUE 20 0.9980553 0.9862107 0.9859657

rules TRUE 30 0.9982031 0.9865639 0.9861193

rules TRUE 40 0.9983442 0.9867087 0.9860543

rules TRUE 50 0.9983862 0.9866277 0.9861607

tree FALSE 1 0.9949878 0.9825968 0.9758653

tree FALSE 10 0.9974477 0.9877454 0.9819965

tree FALSE 20 0.9980185 0.9886778 0.9828529

tree FALSE 30 0.9981983 0.9887415 0.9831719

tree FALSE 40 0.9982767 0.9890079 0.9832310

tree FALSE 50 0.9983821 0.9891527 0.9831542

tree TRUE 1 0.9949895 0.9827010 0.9760189

tree TRUE 10 0.9973908 0.9876701 0.9819846

tree TRUE 20 0.9979748 0.9884462 0.9828529

tree TRUE 30 0.9981666 0.9886372 0.9831601

tree TRUE 40 0.9982371 0.9888573 0.9832900

tree TRUE 50 0.9983362 0.9889905 0.9831896

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 50, model = tree

and winnow = FALSE.

Call:

summary.diff.resamples(object = results$modelDiff[[name]])

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose

original -0.0033123 -0.0064979 -0.0061229 -0.0055727

down 0.5336316 -0.0031855 -0.0028106 -0.0022604

up 0.0012658 1.631e-05 0.0003749 0.0009251

smote 0.0024843 0.0002608 0.0703213 0.0005502

rose 0.0081408 0.0041212 < 2.2e-16 0.0046965
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Sens

original down up smote rose

original -0.152979 -0.177930 -0.165371 -0.167083

down < 2.2e-16 -0.024951 -0.012392 -0.014104

up < 2.2e-16 1.555e-12 0.012559 0.010847

smote < 2.2e-16 8.500e-05 1.194e-15 -0.001712

rose < 2.2e-16 6.535e-06 < 2.2e-16 1

Spec

original down up smote rose

original 0.019186 0.002433 0.011165 0.015749

down 1.694e-11 -0.016753 -0.008021 -0.003436

up 2.886e-15 1.886e-09 0.008733 0.013317

smote < 2.2e-16 0.01191 < 2.2e-16 0.004584

rose < 2.2e-16 1.00000 < 2.2e-16 1.883e-07

$original

C5.0 variable importance

Overall

Prof.skew NaN

Prof.sigma NaN

Prof.mu NaN

DM.skew NaN

DM.mu NaN

DM.kurtosis NaN

DM.sigma NaN

Prof.kurtosis NaN

$down

C5.0 variable importance

Overall

Prof.skew 100.00

DM.skew 100.00

DM.sigma 100.00

DM.mu 100.00

Prof.kurtosis 100.00

Prof.mu 100.00

Prof.sigma 99.25

DM.kurtosis 0.00

$up

C5.0 variable importance
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Overall

Prof.kurtosis 100.000

DM.sigma 59.813

Prof.sigma 55.595

DM.mu 55.511

Prof.skew 4.480

DM.kurtosis 4.291

DM.skew 3.103

Prof.mu 0.000

$smote

C5.0 variable importance

Overall

Prof.skew 100

Prof.sigma 100

DM.sigma 100

DM.kurtosis 100

Prof.mu 100

DM.skew 100

Prof.kurtosis 100

DM.mu 0

$rose

C5.0 variable importance

Overall

Prof.kurtosis 100.00

DM.sigma 100.00

Prof.skew 100.00

DM.skew 100.00

Prof.mu 100.00

Prof.sigma 99.26

DM.kurtosis 92.28

DM.mu 0.00

Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50
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ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9217 0.9914 0.9956 0.9928 0.9975 0.9992 0

down 0.9821 0.9951 0.9972 0.9961 0.9990 1.0000 0

up 0.9988 0.9991 0.9993 0.9993 0.9995 0.9997 0

smote 0.9963 0.9987 0.9993 0.9989 0.9995 0.9998 0

rose 0.9975 0.9982 0.9984 0.9984 0.9986 0.9993 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.7444 0.7983 0.8268 0.8221 0.8539 0.8989 0

down 0.9222 0.9667 0.9778 0.9750 0.9888 1.0000 0

up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0

smote 0.9628 0.9851 0.9888 0.9874 0.9926 0.9963 0

rose 0.9838 0.9882 0.9891 0.9892 0.9903 0.9930 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9921 0.9987 0.9991 0.9989 0.9994 0.9997 0

down 0.9438 0.9694 0.9778 0.9797 0.9889 1.0000 0

up 0.9948 0.9960 0.9964 0.9965 0.9970 0.9981 0

smote 0.9777 0.9860 0.9874 0.9877 0.9916 0.9972 0

rose 0.9784 0.9815 0.9838 0.9832 0.9846 0.9870 0
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Appendix E

Bagged Trees Results

Plots

This section contains the plots for the bagged tree training and evaluation process.

An extra dotplot is included.
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Figure E.1: Bagged tree model dot plot
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Figure E.2: Bagged tree model box and whiskers plot
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Figure E.3: Bagged tree model variable importance plots for four sample sets
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Figure E.4: Bagged tree model variable importance plots for ROSE sample sets
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Data

Summary Text Output for the treebag model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 244 30

nonpulsar 55 22469

Accuracy : 0.9963

95% CI : (0.9954, 0.997)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8498

Mcnemar’s Test P-Value : 0.009237

Sensitivity : 0.81605

Specificity : 0.99867

Pos Pred Value : 0.89051

Neg Pred Value : 0.99756

Prevalence : 0.01312

Detection Rate : 0.01070

Detection Prevalence : 0.01202

Balanced Accuracy : 0.90736

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 294 421

nonpulsar 5 22078

Accuracy : 0.9813

95% CI : (0.9795, 0.983)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.572

Mcnemar’s Test P-Value : <2e-16
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Sensitivity : 0.98328

Specificity : 0.98129

Pos Pred Value : 0.41119

Neg Pred Value : 0.99977

Prevalence : 0.01312

Detection Rate : 0.01290

Detection Prevalence : 0.03136

Balanced Accuracy : 0.98228

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 257 61

nonpulsar 42 22438

Accuracy : 0.9955

95% CI : (0.9945, 0.9963)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.8308

Mcnemar’s Test P-Value : 0.07613

Sensitivity : 0.85953

Specificity : 0.99729

Pos Pred Value : 0.80818

Neg Pred Value : 0.99813

Prevalence : 0.01312

Detection Rate : 0.01127

Detection Prevalence : 0.01395

Balanced Accuracy : 0.92841

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 288 291

nonpulsar 11 22208
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Accuracy : 0.9868

95% CI : (0.9852, 0.9882)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.5843

Kappa : 0.65

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.96321

Specificity : 0.98707

Pos Pred Value : 0.49741

Neg Pred Value : 0.99950

Prevalence : 0.01312

Detection Rate : 0.01263

Detection Prevalence : 0.02540

Balanced Accuracy : 0.97514

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 281 139

nonpulsar 18 22360

Accuracy : 0.9931

95% CI : (0.992, 0.9941)

No Information Rate : 0.9869

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7782

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.93980

Specificity : 0.99382

Pos Pred Value : 0.66905

Neg Pred Value : 0.99920

Prevalence : 0.01312

Detection Rate : 0.01233

Detection Prevalence : 0.01842

Balanced Accuracy : 0.96681
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’Positive’ Class : pulsar

Bagged CART

68394 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results:

ROC Sens Spec

0.9806127 0.8269738 0.9988414

Bagged CART

1794 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results:

ROC Sens Spec

0.9918295 0.9741523 0.9752634

Bagged CART

134994 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494, 121496,

121495, ...

Resampling results:
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ROC Sens Spec

0.99988 1 0.9978043

Bagged CART

6279 samples

8 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...

Resampling results:

ROC Sens Spec

0.9976991 0.9840226 0.9874577

Bagged CART

68394 samples

8 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...

Resampling results:

ROC Sens Spec

0.9964938 0.9856778 0.9816952

Call:

summary.diff.resamples(object = results$modelDiff[[name]])

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose



162

original -0.011217 -0.019267 -0.017086 -0.015881

down 7.298e-08 -0.008050 -0.005870 -0.004664

up < 2.2e-16 2.961e-08 0.002181 0.003386

smote < 2.2e-16 5.509e-05 1.228e-10 0.001205

rose < 2.2e-16 0.001410 < 2.2e-16 0.001142

Sens

original down up smote rose

original -0.147179 -0.173026 -0.157049 -0.158704

down < 2.2e-16 -0.025848 -0.009870 -0.011526

up < 2.2e-16 1.007e-13 0.015977 0.014322

smote < 2.2e-16 0.0006623 < 2.2e-16 -0.001655

rose < 2.2e-16 9.142e-05 < 2.2e-16 1.0000000

Spec

original down up smote rose

original 0.023578 0.001037 0.011384 0.017146

down 9.153e-12 -0.022541 -0.012194 -0.006432

up 2.874e-14 4.770e-11 0.010347 0.016109

smote < 2.2e-16 0.0003383 < 2.2e-16 0.005762

rose < 2.2e-16 0.1258708 < 2.2e-16 3.506e-09

$original

treebag variable importance

Overall

Prof.kurtosis 100.000

Prof.mu 85.129

Prof.skew 84.185

DM.mu 25.319

DM.kurtosis 14.218

Prof.sigma 5.197

DM.sigma 3.252

DM.skew 0.000

$down

treebag variable importance

Overall

Prof.kurtosis 100.000

Prof.mu 82.894

Prof.skew 79.360

DM.mu 44.076

DM.kurtosis 34.198
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DM.sigma 5.327

Prof.sigma 1.290

DM.skew 0.000

$up

treebag variable importance

Overall

Prof.kurtosis 100.000

Prof.mu 81.298

Prof.skew 77.119

DM.mu 41.663

DM.kurtosis 35.445

DM.sigma 4.948

Prof.sigma 2.756

DM.skew 0.000

$smote

treebag variable importance

Overall

Prof.kurtosis 100.000

Prof.mu 83.675

Prof.skew 80.434

DM.mu 43.691

DM.kurtosis 37.907

DM.sigma 5.579

Prof.sigma 3.067

DM.skew 0.000

$rose

treebag variable importance

Overall

Prof.kurtosis 100.000

Prof.skew 91.092

Prof.mu 85.854

DM.mu 38.151

DM.kurtosis 36.435

DM.sigma 8.725

DM.skew 7.568

Prof.sigma 0.000
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Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9596 0.9765 0.9820 0.9806 0.9873 0.9936 0

down 0.9638 0.9875 0.9924 0.9918 0.9982 1.0000 0

up 0.9995 0.9999 0.9999 0.9999 0.9999 1.0000 0

smote 0.9925 0.9970 0.9979 0.9977 0.9991 0.9998 0

rose 0.9952 0.9960 0.9965 0.9965 0.9970 0.9978 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.7333 0.8111 0.8333 0.8270 0.8551 0.9213 0

down 0.9222 0.9667 0.9778 0.9742 0.9888 1.0000 0

up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0

smote 0.9665 0.9777 0.9851 0.9840 0.9888 0.9963 0

rose 0.9823 0.9841 0.9855 0.9857 0.9870 0.9899 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9978 0.9985 0.9988 0.9988 0.9992 0.9999 0

down 0.9111 0.9667 0.9778 0.9753 0.9888 1.0000 0

up 0.9967 0.9975 0.9978 0.9978 0.9981 0.9988 0

smote 0.9777 0.9840 0.9888 0.9875 0.9916 0.9944 0

rose 0.9776 0.9803 0.9817 0.9817 0.9835 0.9855 0
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Appendix F

Stacked Classifiers

A set of stacked classifiers was produced to explore the e�cacy of stacking. This

appendix contains the detailed results, plots and text data from those experiments.

Neural Network Ensemble Plots

This section contains the plots for the neural network ensemble training and eval-

uation process.
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Figure F.1: Neural network ensemble model dot plot
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Figure F.2: Neural network ensemble model box and whiskers plot
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Figure F.3: Neural network ensemble model variable importance plots for original
sample sets, 1 of 2
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Figure F.4: Neural network ensemble model variable importance plots for original
sample sets, 2 of 2
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Figure F.5: Neural network ensemble model variable importance plots for downsam-
pled data, 1 of 2
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Figure F.6: Neural network ensemble model variable importance plots for downsam-
pled data, 2 of 2
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Figure F.7: Neural network ensemble model variable importance plots for upsampled
data, 1 of 2

original sampling

Importance

DM.skew
Prof.mu

V10
DM.kurtosis
Prof.skew
Prof.sigma
DM.sigma

DM.mu
Prof.kurtosis

V11
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

down sampling

Importance

V11
V10

Prof.skew
DM.mu

Prof.sigma
DM.kurtosis

Prof.mu
DM.skew
DM.sigma

Prof.kurtosis
V12
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

up sampling

Importance

Prof.sigma
V11

DM.mu
DM.sigma
DM.skew

DM.kurtosis
Prof.skew

V10
Prof.mu

Prof.kurtosis
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

smote sampling

Importance

Prof.sigma
DM.skew

DM.kurtosis
DM.sigma

V11
DM.mu

Prof.skew
V10

Prof.mu
V12

Prof.kurtosis
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●



173

Figure F.8: Neural network ensemble model variable importance plots for upsampled
data, 2 of 2
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Figure F.9: Neural network ensemble model variable importance plots for SMOTE
sampling, 1 of 2

original sampling

Importance

DM.skew
Prof.mu

V10
DM.kurtosis
Prof.skew
Prof.sigma
DM.sigma

DM.mu
Prof.kurtosis

V11
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

down sampling

Importance

V11
V10

Prof.skew
DM.mu

Prof.sigma
DM.kurtosis

Prof.mu
DM.skew
DM.sigma

Prof.kurtosis
V12
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

up sampling

Importance

Prof.sigma
V11

DM.mu
DM.sigma
DM.skew

DM.kurtosis
Prof.skew

V10
Prof.mu

Prof.kurtosis
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

smote sampling

Importance

Prof.sigma
DM.skew

DM.kurtosis
DM.sigma

V11
DM.mu

Prof.skew
V10

Prof.mu
V12

Prof.kurtosis
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●



175

Figure F.10: Neural network ensemble model variable importance plots for SMOTE
sampling, 2 of 2
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Figure F.11: Neural network ensemble model variable importance plots for ROSE
sampling, 1 of 2

original sampling

Importance

DM.skew
Prof.mu

V10
DM.kurtosis
Prof.skew
Prof.sigma
DM.sigma

DM.mu
Prof.kurtosis

V11
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

down sampling

Importance

V11
V10

Prof.skew
DM.mu

Prof.sigma
DM.kurtosis

Prof.mu
DM.skew
DM.sigma

Prof.kurtosis
V12
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

up sampling

Importance

Prof.sigma
V11

DM.mu
DM.sigma
DM.skew

DM.kurtosis
Prof.skew

V10
Prof.mu

Prof.kurtosis
V13
V12

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

smote sampling

Importance

Prof.sigma
DM.skew

DM.kurtosis
DM.sigma

V11
DM.mu

Prof.skew
V10

Prof.mu
V12

Prof.kurtosis
V13

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●



177

Figure F.12: Neural network ensemble model variable importance plots for ROSE
sampling, 2 of 2
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Neural Network Ensemble Data

Summary Text Output for the nnet model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 418

nonpulsar 7 22081

Accuracy : 0.9814

95% CI : (0.9795, 0.9831)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5709

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98142

Pos Pred Value : 0.41127

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.03114

Balanced Accuracy : 0.97901

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 340

nonpulsar 7 22159

Accuracy : 0.9848

95% CI : (0.9831, 0.9863)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.9971

Kappa : 0.6205

Mcnemar’s Test P-Value : <2e-16
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Sensitivity : 0.97659

Specificity : 0.98489

Pos Pred Value : 0.46203

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02772

Balanced Accuracy : 0.98074

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 305

nonpulsar 7 22194

Accuracy : 0.9863

95% CI : (0.9847, 0.9878)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 0.7851

Kappa : 0.6456

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98644

Pos Pred Value : 0.48911

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02619

Balanced Accuracy : 0.98152

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 393

nonpulsar 7 22106



180

Accuracy : 0.9825

95% CI : (0.9807, 0.9841)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5859

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98253

Pos Pred Value : 0.42628

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.03005

Balanced Accuracy : 0.97956

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 477

nonpulsar 7 22022

Accuracy : 0.9788

95% CI : (0.9768, 0.9806)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5381

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.97880

Pos Pred Value : 0.37971

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.03373

Balanced Accuracy : 0.97769
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’Positive’ Class : pulsar

Neural Network

68394 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9533508 0.8668489 0.9998726

1 0.0001000000 0.9784764 0.9277378 0.9997748

1 0.0005623413 0.9948240 0.9868639 0.9995526

1 0.0031622777 0.9979683 0.9928614 0.9998311

1 0.0177827941 0.9965567 0.9544245 0.9999585

1 0.1000000000 0.9971821 0.9733084 0.9999348

3 0.0000000000 0.9971839 0.9844045 0.9999348

3 0.0001000000 0.9983955 0.9910836 0.9999200

3 0.0005623413 0.9982849 0.9888489 0.9998430

3 0.0031622777 0.9979947 0.9792434 0.9998548

3 0.0177827941 0.9981400 0.9888539 0.9998252

3 0.1000000000 0.9991529 0.9897503 0.9999348

5 0.0000000000 0.9971579 0.9886142 0.9998607

5 0.0001000000 0.9969093 0.9872859 0.9999111

5 0.0005623413 0.9977404 0.9888489 0.9998459

5 0.0031622777 0.9973182 0.9897403 0.9999319

5 0.0177827941 0.9990308 0.9910737 0.9999378

5 0.1000000000 0.9996370 0.9933084 0.9999467

7 0.0000000000 0.9970079 0.9866217 0.9998133

7 0.0001000000 0.9969141 0.9874931 0.9998667

7 0.0005623413 0.9973496 0.9832759 0.9998607

7 0.0031622777 0.9980553 0.9881748 0.9998963

7 0.0177827941 0.9984868 0.9899576 0.9999437

7 0.1000000000 0.9995697 0.9921873 0.9999496

9 0.0000000000 0.9963549 0.9870712 0.9998252

9 0.0001000000 0.9970601 0.9845918 0.9997600

9 0.0005623413 0.9971670 0.9863870 0.9998844

9 0.0031622777 0.9983960 0.9890687 0.9998904

9 0.0177827941 0.9986397 0.9897478 0.9999467

9 0.1000000000 0.9996160 0.9924145 0.9999496
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11 0.0000000000 0.9961867 0.9863970 0.9998281

11 0.0001000000 0.9970453 0.9854906 0.9998193

11 0.0005623413 0.9972543 0.9879501 0.9998459

11 0.0031622777 0.9982085 0.9875081 0.9999052

11 0.0177827941 0.9988937 0.9892934 0.9999496

11 0.1000000000 0.9997008 0.9912959 0.9999556

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 5 and decay = 0.1.

Neural Network

1794 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9987679 0.9973333 0.9988814

1 0.0001000000 1.0000000 1.0000000 1.0000000

1 0.0005623413 1.0000000 1.0000000 1.0000000

1 0.0031622777 1.0000000 1.0000000 1.0000000

1 0.0177827941 1.0000000 1.0000000 1.0000000

1 0.1000000000 1.0000000 1.0000000 1.0000000

3 0.0000000000 0.9996617 1.0000000 0.9988814

3 0.0001000000 0.9993333 0.9988889 0.9997778

3 0.0005623413 1.0000000 1.0000000 0.9995556

3 0.0031622777 1.0000000 1.0000000 1.0000000

3 0.0177827941 1.0000000 1.0000000 1.0000000

3 0.1000000000 1.0000000 1.0000000 1.0000000

5 0.0000000000 0.9998642 0.9997753 0.9995556

5 0.0001000000 1.0000000 1.0000000 0.9997778

5 0.0005623413 1.0000000 1.0000000 1.0000000

5 0.0031622777 1.0000000 1.0000000 1.0000000

5 0.0177827941 1.0000000 1.0000000 1.0000000

5 0.1000000000 1.0000000 1.0000000 1.0000000

7 0.0000000000 1.0000000 0.9997778 0.9995556

7 0.0001000000 1.0000000 1.0000000 0.9997778

7 0.0005623413 1.0000000 0.9997778 1.0000000

7 0.0031622777 1.0000000 1.0000000 1.0000000

7 0.0177827941 1.0000000 1.0000000 1.0000000
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7 0.1000000000 1.0000000 1.0000000 1.0000000

9 0.0000000000 0.9999975 1.0000000 0.9995556

9 0.0001000000 1.0000000 1.0000000 1.0000000

9 0.0005623413 1.0000000 1.0000000 1.0000000

9 0.0031622777 1.0000000 1.0000000 1.0000000

9 0.0177827941 1.0000000 1.0000000 1.0000000

9 0.1000000000 1.0000000 1.0000000 1.0000000

11 0.0000000000 1.0000000 1.0000000 1.0000000

11 0.0001000000 1.0000000 1.0000000 0.9997778

11 0.0005623413 1.0000000 1.0000000 1.0000000

11 0.0031622777 1.0000000 1.0000000 1.0000000

11 0.0177827941 1.0000000 1.0000000 1.0000000

11 0.1000000000 1.0000000 1.0000000 1.0000000

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 1 and decay = 0.1.

Neural Network

134994 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494, 121496,

121495, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9990076 0.9961688 0.9992918

1 0.0001000000 0.9992293 0.9990074 0.9993363

1 0.0005623413 0.9998931 0.9989481 0.9998430

1 0.0031622777 0.9999789 1.0000000 0.9999674

1 0.0177827941 0.9999091 0.9992296 0.9997363

1 0.1000000000 0.9999936 1.0000000 0.9999585

3 0.0000000000 0.9996558 0.9991881 0.9999348

3 0.0001000000 0.9999844 1.0000000 0.9999644

3 0.0005623413 0.9981963 0.9964592 0.9999170

3 0.0031622777 0.9999916 1.0000000 0.9999467

3 0.0177827941 0.9999725 0.9999615 0.9999556

3 0.1000000000 0.9999889 0.9998015 0.9999170

5 0.0000000000 0.9999777 1.0000000 0.9999437

5 0.0001000000 0.9999873 1.0000000 0.9999467

5 0.0005623413 0.9999902 1.0000000 0.9999644
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5 0.0031622777 0.9999879 1.0000000 0.9999556

5 0.0177827941 0.9999918 1.0000000 0.9999526

5 0.1000000000 0.9999910 1.0000000 0.9999674

7 0.0000000000 0.9999851 1.0000000 0.9999615

7 0.0001000000 0.9999862 1.0000000 0.9999437

7 0.0005623413 0.9999829 1.0000000 0.9999378

7 0.0031622777 0.9999905 1.0000000 0.9999496

7 0.0177827941 0.9999905 1.0000000 0.9999556

7 0.1000000000 0.9999924 1.0000000 0.9999674

9 0.0000000000 0.9999851 1.0000000 0.9999615

9 0.0001000000 0.9999919 1.0000000 0.9999585

9 0.0005623413 0.9999903 0.9999733 0.9999467

9 0.0031622777 0.9999902 1.0000000 0.9999378

9 0.0177827941 0.9999893 1.0000000 0.9999556

9 0.1000000000 0.9999937 1.0000000 0.9999644

11 0.0000000000 0.9999837 1.0000000 0.9999496

11 0.0001000000 0.9999855 1.0000000 0.9999467

11 0.0005623413 0.9999913 1.0000000 0.9999615

11 0.0031622777 0.9999909 1.0000000 0.9999289

11 0.0177827941 0.9999883 1.0000000 0.9999496

11 0.1000000000 0.9999925 1.0000000 0.9999674

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 1 and decay = 0.1.

Neural Network

6279 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9977740 0.9953997 0.9999443

1 0.0001000000 1.0000000 0.9996288 1.0000000

1 0.0005623413 1.0000000 0.9994804 1.0000000

1 0.0031622777 1.0000000 0.9995547 1.0000000

1 0.0177827941 1.0000000 0.9995547 1.0000000

1 0.1000000000 1.0000000 0.9995547 1.0000000

3 0.0000000000 0.9999718 0.9998519 0.9998327

3 0.0001000000 0.9999360 0.9995547 0.9997772
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3 0.0005623413 0.9997314 0.9977695 0.9997772

3 0.0031622777 0.9999998 0.9996288 1.0000000

3 0.0177827941 1.0000000 0.9995547 1.0000000

3 0.1000000000 1.0000000 0.9995547 1.0000000

5 0.0000000000 1.0000000 0.9996291 0.9998884

5 0.0001000000 1.0000000 0.9997775 1.0000000

5 0.0005623413 0.9999998 0.9996288 0.9999443

5 0.0031622777 1.0000000 0.9996291 1.0000000

5 0.0177827941 1.0000000 0.9995547 1.0000000

5 0.1000000000 1.0000000 0.9995547 1.0000000

7 0.0000000000 1.0000000 0.9997772 0.9999443

7 0.0001000000 0.9999959 0.9997772 0.9998884

7 0.0005623413 1.0000000 0.9999259 1.0000000

7 0.0031622777 0.9999998 0.9996288 0.9999443

7 0.0177827941 1.0000000 0.9995547 1.0000000

7 0.1000000000 1.0000000 0.9995547 1.0000000

9 0.0000000000 0.9999994 0.9998516 0.9999443

9 0.0001000000 0.9999996 0.9996291 1.0000000

9 0.0005623413 0.9999994 0.9996291 0.9999443

9 0.0031622777 1.0000000 0.9996288 1.0000000

9 0.0177827941 1.0000000 0.9995547 1.0000000

9 0.1000000000 0.9998939 0.9990343 0.9998329

11 0.0000000000 0.9999996 0.9998519 0.9998886

11 0.0001000000 0.9999557 0.9984387 0.9997772

11 0.0005623413 1.0000000 0.9997772 1.0000000

11 0.0031622777 1.0000000 0.9997034 0.9999441

11 0.0177827941 1.0000000 0.9995547 1.0000000

11 0.1000000000 1.0000000 0.9995547 1.0000000

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 7 and decay = 0.0005623413.

Neural Network

68394 samples

12 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

1 0.0000000000 0.9998592 0.9998610 0.9997460
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1 0.0001000000 0.9988801 0.9990676 0.9973833

1 0.0005623413 0.9999174 0.9998436 0.9998228

1 0.0031622777 0.9999119 0.9998784 0.9998287

1 0.0177827941 0.9999105 0.9998900 0.9998228

1 0.1000000000 0.9999304 0.9999073 0.9998228

3 0.0000000000 0.9998821 0.9998552 0.9997992

3 0.0001000000 0.9998930 0.9998900 0.9998110

3 0.0005623413 0.9999166 0.9998378 0.9998287

3 0.0031622777 0.9999243 0.9999073 0.9998110

3 0.0177827941 0.9999284 0.9998958 0.9998110

3 0.1000000000 0.9999351 0.9998958 0.9998169

5 0.0000000000 0.9998598 0.9997857 0.9997933

5 0.0001000000 0.9998983 0.9997626 0.9997637

5 0.0005623413 0.9999084 0.9998089 0.9997815

5 0.0031622777 0.9999094 0.9998842 0.9997815

5 0.0177827941 0.9999296 0.9998668 0.9998169

5 0.1000000000 0.9999357 0.9998900 0.9998169

7 0.0000000000 0.9998203 0.9996757 0.9997401

7 0.0001000000 0.9998943 0.9997162 0.9997165

7 0.0005623413 0.9998993 0.9997394 0.9997106

7 0.0031622777 0.9999013 0.9998031 0.9997283

7 0.0177827941 0.9999313 0.9998784 0.9998228

7 0.1000000000 0.9999449 0.9998784 0.9998287

9 0.0000000000 0.9998213 0.9996467 0.9996456

9 0.0001000000 0.9998874 0.9996931 0.9997460

9 0.0005623413 0.9999074 0.9997568 0.9996751

9 0.0031622777 0.9999059 0.9998089 0.9997460

9 0.0177827941 0.9999233 0.9998900 0.9998169

9 0.1000000000 0.9999377 0.9999015 0.9998169

11 0.0000000000 0.9998261 0.9995599 0.9996751

11 0.0001000000 0.9998909 0.9996931 0.9996338

11 0.0005623413 0.9999028 0.9997683 0.9996929

11 0.0031622777 0.9999030 0.9998089 0.9997637

11 0.0177827941 0.9999400 0.9998900 0.9998169

11 0.1000000000 0.9999487 0.9998900 0.9998228

Sens was used to select the optimal model using the largest value.

The final values used for the model were size = 1 and decay = 0.1.

Call:

summary.diff.resamples(object = results$modelDiff[[name]])

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference
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Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose

original -3.630e-04 -3.566e-04 -3.630e-04 -2.933e-04

down 0.0029272 6.395e-06 0.000e+00 6.963e-05

up 0.0038669 0.2140743 -6.395e-06 6.323e-05

smote 0.0029272 NA 0.2140743 6.963e-05

rose 0.0272250 0.0009573 0.0046140 0.0009573

Sens

original down up smote rose

original -6.692e-03 -6.692e-03 -6.618e-03 -6.599e-03

down 1.707e-05 0.000e+00 7.407e-05 9.266e-05

up 1.707e-05 NA 7.407e-05 9.266e-05

smote 1.299e-05 1.000000 1.000000 1.859e-05

rose 2.210e-05 0.003035 0.003035 1.000000

Spec

original down up smote rose

original -5.334e-05 -1.185e-05 -5.334e-05 1.239e-04

down 0.0008393 4.148e-05 0.000e+00 1.772e-04

up 1.0000000 0.0019986 -4.148e-05 1.357e-04

smote 0.0008393 NA 0.0019986 1.772e-04

rose 0.0090729 3.923e-06 0.0010369 3.923e-06

$original

nnet variable importance

Overall

V12 100.000

V13 53.647

V11 38.276

Prof.kurtosis 28.714

DM.mu 24.468

DM.sigma 18.378

Prof.sigma 17.381

Prof.skew 10.524

DM.kurtosis 9.935

V10 8.948

Prof.mu 2.989

DM.skew 0.000

$down
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nnet variable importance

Overall

V13 100.000

V12 74.612

Prof.kurtosis 29.488

DM.sigma 19.267

DM.skew 14.278

Prof.mu 13.966

DM.kurtosis 5.811

Prof.sigma 4.518

DM.mu 3.308

Prof.skew 2.292

V10 1.798

V11 0.000

$up

nnet variable importance

Overall

V12 100.000

V13 64.940

Prof.kurtosis 10.459

Prof.mu 9.831

V10 8.528

Prof.skew 7.188

DM.kurtosis 5.734

DM.skew 5.727

DM.sigma 5.190

DM.mu 4.776

V11 3.250

Prof.sigma 0.000

$smote

nnet variable importance

Overall

V13 100.00

Prof.kurtosis 54.04

V12 41.43

Prof.mu 33.31

V10 29.78

Prof.skew 27.40

DM.mu 25.26
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V11 19.17

DM.sigma 18.81

DM.kurtosis 17.03

DM.skew 13.01

Prof.sigma 0.00

$rose

nnet variable importance

Overall

V13 100.0000

V12 69.4941

V11 24.0271

Prof.skew 10.5322

V10 9.0635

DM.kurtosis 7.5855

Prof.sigma 3.5201

Prof.kurtosis 1.6055

DM.sigma 1.1557

DM.mu 0.8963

Prof.mu 0.1537

DM.skew 0.0000

Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9971 0.9995 1 0.9996 1 1 0

down 1.0000 1.0000 1 1.0000 1 1 0

up 0.9999 1.0000 1 1.0000 1 1 0

smote 1.0000 1.0000 1 1.0000 1 1 0

rose 0.9995 0.9999 1 0.9999 1 1 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9663 0.9889 1 0.9933 1 1 0

down 1.0000 1.0000 1 1.0000 1 1 0

up 1.0000 1.0000 1 1.0000 1 1 0

smote 0.9963 1.0000 1 0.9999 1 1 0
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rose 0.9994 0.9998 1 0.9999 1 1 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9997 0.9999 1 0.9999 1 1 0

down 1.0000 1.0000 1 1.0000 1 1 0

up 0.9997 0.9999 1 1.0000 1 1 0

smote 1.0000 1.0000 1 1.0000 1 1 0

rose 0.9994 0.9997 1 0.9998 1 1 0

C5.0 Ensemble Plots

This section contains the plots for the C5.0 ensemble training and evaluation

process.
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Figure F.13: C5.0 ensemble model dot plot
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Figure F.14: C5.0 ensemble model box and whiskers plot
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Figure F.15: C5.0 ensemble model variable importance plots for original sample set

down sampling

Importance

DM.mu
DM.sigma

V10
V13

Prof.sigma
Prof.skew
Prof.mu
DM.skew

DM.kurtosis
V11

Prof.kurtosis
V12

0 20 40 60 80 100

●

up sampling

Importance

DM.skew
V10

DM.kurtosis
Prof.mu

V13
DM.mu

Prof.sigma
Prof.kurtosis
DM.sigma
Prof.skew

V11
V12

0 20 40 60 80 100

●

smote sampling

Importance

DM.sigma
V11

Prof.kurtosis
DM.kurtosis
Prof.skew
DM.skew

V12
Prof.mu

V10
Prof.sigma

DM.mu
V13

0 20 40 60 80 100

●

rose sampling

Importance

V11
V10

DM.mu
DM.sigma

DM.kurtosis
V12

Prof.sigma
DM.skew
Prof.mu

Prof.skew
Prof.kurtosis

V13

0 20 40 60 80 100

●



194

Figure F.16: C5.0 ensemble model variable importance plots for downsampled data
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Figure F.17: C5.0 ensemble model variable importance plots for upsampled data
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Figure F.18: C5.0 ensemble model variable importance plots for SMOTE sampling
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Figure F.19: C5.0 ensemble model variable importance plots for ROSE sampling
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C5.0 Ensemble Data

Summary Text Output for the C5.0 model

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 385

nonpulsar 7 22114

Accuracy : 0.9828

95% CI : (0.981, 0.9845)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5909

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98289

Pos Pred Value : 0.43131

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02970

Balanced Accuracy : 0.97974

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 294 421

nonpulsar 5 22078

Accuracy : 0.9813

95% CI : (0.9795, 0.983)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.572

Mcnemar’s Test P-Value : <2e-16
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Sensitivity : 0.98328

Specificity : 0.98129

Pos Pred Value : 0.41119

Neg Pred Value : 0.99977

Prevalence : 0.01312

Detection Rate : 0.01290

Detection Prevalence : 0.03136

Balanced Accuracy : 0.98228

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 294 421

nonpulsar 5 22078

Accuracy : 0.9813

95% CI : (0.9795, 0.983)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.572

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.98328

Specificity : 0.98129

Pos Pred Value : 0.41119

Neg Pred Value : 0.99977

Prevalence : 0.01312

Detection Rate : 0.01290

Detection Prevalence : 0.03136

Balanced Accuracy : 0.98228

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 387

nonpulsar 7 22112
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Accuracy : 0.9827

95% CI : (0.9809, 0.9844)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5897

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98280

Pos Pred Value : 0.43004

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02978

Balanced Accuracy : 0.97969

’Positive’ Class : pulsar

Confusion Matrix and Statistics

Reference

Prediction pulsar nonpulsar

pulsar 292 387

nonpulsar 7 22112

Accuracy : 0.9827

95% CI : (0.9809, 0.9844)

No Information Rate : 0.9869

P-Value [Acc > NIR] : 1

Kappa : 0.5897

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.97659

Specificity : 0.98280

Pos Pred Value : 0.43004

Neg Pred Value : 0.99968

Prevalence : 0.01312

Detection Rate : 0.01281

Detection Prevalence : 0.02978

Balanced Accuracy : 0.97969
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’Positive’ Class : pulsar

C5.0

68394 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61556, 61555, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9960614 0.9921973 0.9999259

rules FALSE 10 0.9989588 0.9750262 0.9999081

rules FALSE 20 0.9991855 0.9801448 0.9999081

rules FALSE 30 0.9992255 0.9826167 0.9999111

rules FALSE 40 0.9992660 0.9850537 0.9999111

rules FALSE 50 0.9992953 0.9875181 0.9999141

rules TRUE 1 0.9960615 0.9921973 0.9999259

rules TRUE 10 0.9960646 0.9921973 0.9999289

rules TRUE 20 0.9960646 0.9921973 0.9999289

rules TRUE 30 0.9960646 0.9921973 0.9999289

rules TRUE 40 0.9960646 0.9921973 0.9999289

rules TRUE 50 0.9960646 0.9921973 0.9999289

tree FALSE 1 0.9960612 0.9921973 0.9999259

tree FALSE 10 0.9988073 0.9817428 0.9998963

tree FALSE 20 0.9992187 0.9868564 0.9999170

tree FALSE 30 0.9992556 0.9872959 0.9999170

tree FALSE 40 0.9992888 0.9870762 0.9999141

tree FALSE 50 0.9993256 0.9886367 0.9999170

tree TRUE 1 0.9960615 0.9921973 0.9999259

tree TRUE 10 0.9960646 0.9921973 0.9999289

tree TRUE 20 0.9960646 0.9921973 0.9999289

tree TRUE 30 0.9960646 0.9921973 0.9999289

tree TRUE 40 0.9960646 0.9921973 0.9999289

tree TRUE 50 0.9960646 0.9921973 0.9999289

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = rules

and winnow = TRUE.

C5.0
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1794 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 1614, 1616, 1615, 1615, 1615, 1614, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9994444 1 0.9988889

rules FALSE 10 0.9994444 1 0.9988889

rules FALSE 20 0.9994444 1 0.9988889

rules FALSE 30 0.9994444 1 0.9988889

rules FALSE 40 0.9994444 1 0.9988889

rules FALSE 50 0.9994444 1 0.9988889

rules TRUE 1 0.9994444 1 0.9988889

rules TRUE 10 0.9994444 1 0.9988889

rules TRUE 20 0.9994444 1 0.9988889

rules TRUE 30 0.9994444 1 0.9988889

rules TRUE 40 0.9994444 1 0.9988889

rules TRUE 50 0.9994444 1 0.9988889

tree FALSE 1 0.9994444 1 0.9988889

tree FALSE 10 0.9994444 1 0.9988889

tree FALSE 20 0.9994444 1 0.9988889

tree FALSE 30 0.9994444 1 0.9988889

tree FALSE 40 0.9994444 1 0.9988889

tree FALSE 50 0.9994444 1 0.9988889

tree TRUE 1 0.9994444 1 0.9988889

tree TRUE 10 0.9994444 1 0.9988889

tree TRUE 20 0.9994444 1 0.9988889

tree TRUE 30 0.9994444 1 0.9988889

tree TRUE 40 0.9994444 1 0.9988889

tree TRUE 50 0.9994444 1 0.9988889

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = rules

and winnow = TRUE.

C5.0

134994 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’
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Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 121495, 121495, 121494, 121494, 121496,

121495, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9999852 1 0.9999704

rules FALSE 10 0.9999899 1 0.9998222

rules FALSE 20 0.9999895 1 0.9998222

rules FALSE 30 0.9999896 1 0.9998222

rules FALSE 40 0.9999895 1 0.9998222

rules FALSE 50 0.9999899 1 0.9998222

rules TRUE 1 0.9999852 1 0.9999704

rules TRUE 10 0.9999852 1 0.9999704

rules TRUE 20 0.9999852 1 0.9999704

rules TRUE 30 0.9999852 1 0.9999704

rules TRUE 40 0.9999852 1 0.9999704

rules TRUE 50 0.9999852 1 0.9999704

tree FALSE 1 0.9999852 1 0.9999704

tree FALSE 10 0.9999900 1 0.9998222

tree FALSE 20 0.9999895 1 0.9998222

tree FALSE 30 0.9999896 1 0.9998222

tree FALSE 40 0.9999895 1 0.9998222

tree FALSE 50 0.9999899 1 0.9998222

tree TRUE 1 0.9999852 1 0.9999704

tree TRUE 10 0.9999852 1 0.9999704

tree TRUE 20 0.9999852 1 0.9999704

tree TRUE 30 0.9999852 1 0.9999704

tree TRUE 40 0.9999852 1 0.9999704

tree TRUE 50 0.9999852 1 0.9999704

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = rules

and winnow = TRUE.

C5.0

6279 samples

12 predictor

2 classes: ’pulsar’, ’nonpulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 5651, 5652, 5651, 5651, 5652, 5651, ...
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Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9999259 0.9998519 1

rules FALSE 10 0.9999259 0.9998519 1

rules FALSE 20 0.9999259 0.9998519 1

rules FALSE 30 0.9999259 0.9998519 1

rules FALSE 40 0.9999259 0.9998519 1

rules FALSE 50 0.9999259 0.9998519 1

rules TRUE 1 0.9998516 0.9997032 1

rules TRUE 10 0.9998516 0.9997032 1

rules TRUE 20 0.9998516 0.9997032 1

rules TRUE 30 0.9998516 0.9997032 1

rules TRUE 40 0.9998516 0.9997032 1

rules TRUE 50 0.9998516 0.9997032 1

tree FALSE 1 0.9999259 0.9998519 1

tree FALSE 10 0.9999259 0.9998519 1

tree FALSE 20 0.9999259 0.9998519 1

tree FALSE 30 0.9999259 0.9998519 1

tree FALSE 40 0.9999259 0.9998519 1

tree FALSE 50 0.9999259 0.9998519 1

tree TRUE 1 0.9998516 0.9997032 1

tree TRUE 10 0.9998516 0.9997032 1

tree TRUE 20 0.9998516 0.9997032 1

tree TRUE 30 0.9998516 0.9997032 1

tree TRUE 40 0.9998516 0.9997032 1

tree TRUE 50 0.9998516 0.9997032 1

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = rules

and winnow = FALSE.

C5.0

68394 samples

12 predictor

2 classes: ’nonpulsar’, ’pulsar’

Pre-processing: scaled (8), centered (8), ignore (4)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 61555, 61555, 61554, 61554, 61555, 61555, ...

Resampling results across tuning parameters:

model winnow trials ROC Sens Spec

rules FALSE 1 0.9997791 0.9999421 0.9996161
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rules FALSE 10 0.9999175 0.9997162 0.9997224

rules FALSE 20 0.9999191 0.9997915 0.9997342

rules FALSE 30 0.9999288 0.9998205 0.9997401

rules FALSE 40 0.9999283 0.9998378 0.9997224

rules FALSE 50 0.9999338 0.9998552 0.9997283

rules TRUE 1 0.9997791 0.9999421 0.9996161

rules TRUE 10 0.9997791 0.9999421 0.9996161

rules TRUE 20 0.9997791 0.9999421 0.9996161

rules TRUE 30 0.9997791 0.9999421 0.9996161

rules TRUE 40 0.9997791 0.9999421 0.9996161

rules TRUE 50 0.9997791 0.9999421 0.9996161

tree FALSE 1 0.9997791 0.9999421 0.9996161

tree FALSE 10 0.9999173 0.9997162 0.9997224

tree FALSE 20 0.9999231 0.9998147 0.9997342

tree FALSE 30 0.9999275 0.9998320 0.9997342

tree FALSE 40 0.9999273 0.9998494 0.9997165

tree FALSE 50 0.9999311 0.9998494 0.9997224

tree TRUE 1 0.9997791 0.9999421 0.9996161

tree TRUE 10 0.9997791 0.9999421 0.9996161

tree TRUE 20 0.9997791 0.9999421 0.9996161

tree TRUE 30 0.9997791 0.9999421 0.9996161

tree TRUE 40 0.9997791 0.9999421 0.9996161

tree TRUE 50 0.9997791 0.9999421 0.9996161

Sens was used to select the optimal model using the largest value.

The final values used for the model were trials = 1, model = rules

and winnow = TRUE.

Call:

summary.diff.resamples(object = results$modelDiff[[name]])

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

original down up smote rose

original -3.383e-03 -3.924e-03 -3.864e-03 -3.718e-03

down 2.850e-05 -5.407e-04 -4.815e-04 -3.346e-04

up 1.749e-06 0.2716 5.926e-05 2.061e-04

smote 9.743e-07 0.6261 1.0000 1.469e-04

rose 5.669e-06 1.0000 6.305e-11 0.5807

Sens
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original down up smote rose

original -7.803e-03 -7.803e-03 -7.655e-03 -7.745e-03

down 1.694e-06 0.000e+00 1.481e-04 5.792e-05

up 1.694e-06 NA 1.481e-04 5.792e-05

smote 1.021e-06 1.00000 1.00000 -9.023e-05

rose 2.026e-06 0.05623 0.05623 1.00000

Spec

original down up smote rose

original 1.037e-03 -4.445e-05 -7.408e-05 3.099e-04

down 0.33070 -1.081e-03 -1.111e-03 -7.272e-04

up 0.01917 0.27157 -2.963e-05 3.543e-04

smote 1.538e-05 0.23778 0.01001 3.839e-04

rose 8.550e-08 1.00000 1.270e-09 1.333e-11

$original

C5.0 variable importance

Overall

V12 100.00

V13 98.73

V11 0.26

DM.sigma 0.00

DM.kurtosis 0.00

DM.skew 0.00

Prof.sigma 0.00

V10 0.00

Prof.mu 0.00

Prof.kurtosis 0.00

DM.mu 0.00

Prof.skew 0.00

$down

C5.0 variable importance

Overall

V12 100

Prof.skew 0

DM.sigma 0

Prof.mu 0

Prof.sigma 0

V10 0

V13 0

V11 0
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DM.kurtosis 0

DM.skew 0

DM.mu 0

Prof.kurtosis 0

$up

C5.0 variable importance

Overall

V12 100

V13 0

DM.sigma 0

DM.mu 0

Prof.skew 0

Prof.sigma 0

V11 0

V10 0

Prof.mu 0

DM.kurtosis 0

DM.skew 0

Prof.kurtosis 0

$smote

C5.0 variable importance

Overall

V13 100

Prof.kurtosis 0

DM.kurtosis 0

Prof.skew 0

V11 0

Prof.sigma 0

Prof.mu 0

DM.skew 0

V10 0

V12 0

DM.sigma 0

DM.mu 0

$rose

C5.0 variable importance

Overall

V13 100
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Prof.kurtosis 0

DM.skew 0

Prof.sigma 0

Prof.skew 0

V10 0

V12 0

V11 0

DM.sigma 0

DM.mu 0

Prof.mu 0

DM.kurtosis 0

Call:

summary.resamples(object = results$models_resamples[[name]])

Models: original, down, up, smote, rose

Number of resamples: 50

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9831 0.9944 0.9944 0.9961 1.0000 1 0

down 0.9944 1.0000 1.0000 0.9994 1.0000 1 0

up 0.9999 1.0000 1.0000 1.0000 1.0000 1 0

smote 0.9963 1.0000 1.0000 0.9999 1.0000 1 0

rose 0.9994 0.9997 0.9999 0.9998 0.9999 1 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9663 0.9889 0.9889 0.9922 1 1 0

down 1.0000 1.0000 1.0000 1.0000 1 1 0

up 1.0000 1.0000 1.0000 1.0000 1 1 0

smote 0.9926 1.0000 1.0000 0.9999 1 1 0

rose 0.9994 1.0000 1.0000 0.9999 1 1 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

original 0.9997 0.9999 1.0000 0.9999 1.0000 1 0

down 0.9889 1.0000 1.0000 0.9989 1.0000 1 0

up 0.9999 1.0000 1.0000 1.0000 1.0000 1 0

smote 1.0000 1.0000 1.0000 1.0000 1.0000 1 0

rose 0.9988 0.9994 0.9997 0.9996 0.9997 1 0
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Appendix G

Pulsar Characteristics

Pulsars are still very mysterious objects. The mechanism by which they emit their

powerful pulses of energy are still not yet fully understood. Enough pulsars have been

discovered and studied that there is su�cient data to characterize them into a few

di↵erent categories. Each category holds di↵erent challenges for the detection and

timing of the pulsars. The classic P/Ṗ diagram shown in Figure G.1 shows distinct

populations of pulsars. The normal pulsars inhabit the middle of the diagram, and the

millisecond pulsars inhabit the lower left corner of the diagram. The exotic pulsars

are found throughout the diagram.

Normal Pulsars

Normal pulsars are those that have a regular spin period, P , which is longer

than about 0.5 seconds, and which has a relativly high rate of change of period, or

Ṗ . The normal pulsars are thought to be born when a star reaches the end of its

main-sequence star lifetime and explodes in a supernova. The core that remains after

the event is a neutron star that forms the pulsar. The Ṗ results from the need to

supply the energy that is emitted by the pulsar. The required energy comes from the

loss of angular momentum from the pulsar spinning down. The normal pulsar will

eventually spin down and go to the pulsar graveyard in the lower right of the P/Ṗ

diagram , unless it is lucky enough to have a companion to spin it up until it evolves

into a millisecond pulsar.
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Figure G.1: The P/Ṗ diagram (From D. Lorimer and Kramer (2005)

.

Millisecond Pulsars

Millisecond pulsars, as the name implies, spin at a more rapid rate than do the

normal pulsars. Pulsars have been detected that have a period of as fast as about

1.3 milliseconds (Hessels et al., 2006). How they came about is still a matter for

debate, but most physicists believe that the millisecond pulsars are formed from

normal pulsars when a companion star gives up its mass and momentum to the

millisecond pulsar, spinning it up. Some 80% of all millisecond pulsars occur in
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a binary system with another star (D. Lorimer & Kramer, 2005), which tends to

support this view of the formation of the millisecond pulsar. The pulse duty cycle of

the millisecond pulsar tends to be higher than that of the normal pulsar. The spin

period is also more regular.

More Exotic Pulsars

More exotic pulsars include pulsars in binary or terniary orbits with other pulsars

or normal stars, or pulsars orbiting a black hole. Some pulsars do not exhibit a

regular periodic pulse emission, rather they emit sporadically, often emitting pulses

in a regular train, and then switching o↵ for some time. These pulsars are di�cult to

find, since the method of folding the data to increase the SNR will actually obliterate

the signal from these pulsars. Some pulsars are bright enough to detect with a single

pulse with large sensitive antennas. These pulsars are typically young highly energetic

pulsars, such as the Crab pulsar. These exotic systems are sought after simply because

they are exotic, and provide new tools for probing the physics of pulsars.
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