
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2017

A Runtime Verification and Validation Framework
for Self-Adaptive Software
David B. Sayre
Nova Southeastern University, ds1258@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
David B. Sayre. 2017. A Runtime Verification and Validation Framework for Self-Adaptive Software. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (1000)
https://nsuworks.nova.edu/gscis_etd/1000.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Runtime Verification and Validation

Framework for Self-Adaptive Software

by

David B. Sayre

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

2017

An Abstract of a Dissertation Submitted to Nova Southeastern University in

Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Runtime Verification and Validation

Framework for Self-Adaptive Software

by

David B. Sayre

February 2017

The concepts that make self-adaptive software attractive also make it more

difficult for users to gain confidence that these systems will consistently meet

their goals under uncertain context. To improve user confidence in self-adaptive

behavior, machine-readable conceptual models have been developed to

instrument the adaption behavior of the target software system and primary

feedback loop. By comparing these machine-readable models to the self-adaptive

system, runtime verification and validation may be introduced as another method

to increase confidence in self-adaptive systems; however, the existing conceptual

models do not provide the semantics needed to institute this runtime verification

or validation.

This research confirms that the introduction of runtime verification and

validation for self-adaptive systems requires the expansion of existing conceptual

models with quality of service metrics, a hierarchy of goals, and states with

temporal transitions. Based on this expanded semantics, runtime verification and

validation was introduced as a second-level feedback loop to improve the

performance of the primary feedback loop and quantitatively measure the quality

of service achieved in a state-based, self-adaptive system.

A web-based purchasing application running in a cloud-based

environment was the focus of experimentation. In order to meet changing

customer purchasing demand, the self-adaptive system monitored external context

changes and increased or decreased available application servers. The runtime

verification and validation system operated as a second-level feedback loop to

monitor quality of service goals based on internal context, and corrected self-

adaptive behavior when goals are violated. Two competing quality of service

goals were introduced to maintain customer satisfaction while minimizing cost.

The research demonstrated that the addition of a second-level runtime verification

and validation feedback loop did quantitatively improve self-adaptive system

performance even with simple, static monitoring rules.

Acknowledgments

The time and effort required to accomplish this dissertation would not

have been possible without the support of my wife Demita Sayre. She made it

possible for me to focus on this effort and covered for the many family events I

missed. My children – Isaac, Hannah, Caleb and Rebekah – bore the brunt of my

absence, and I truly appreciate the understanding that they have extended to me.

Thank you family for the grace you have given me over the years to accomplish

this goal. I must also thank my mother June Sayre, father Hursel Sayre, and sister

Sharon Highfield who have been constant advocates for my continued education.

No dissertation effort is possible without the continuing guidance and

direction of a dissertation advisor. Thank you, Dr. Simco for the steady hand in

guiding my work, and encouraging me at times when roadblocks seemed too big.

Thank you also to Dr. Mukherjee and Dr. Mitropoulos for also supporting me as

members of this dissertation committee.

I must also thank my peers Dr. John Hudzina, Dr. Ron Krawitz, and Dr.

Ray Halper, who have been trailblazers, encouragers, and sounding boards

throughout the coursework and dissertation process. Lastly, I must acknowledge

my lifelong friend Dr. Charles Bryant who daily encouraged and held me

accountable to achieve this significant life goal.

 v

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Chapters

1. Introduction 1

 Background 1

 Problem Statement 15

 Dissertation Goal 20

 Relevance and Significance 21

 Barriers and Issues 25

 Assumptions, Limitations, and Delimitations 28

 Definition of Terms 29

 Summary 29

2. Review of the Literature 31

 Introduction 31

 Problem overview 33

 State Machines 35

 Temporal Logic 40

 Goal-based SAS ontologies 41

 SAS Requirements Languages 43

 Summary 45

3. Methodology 46

 Overview 46

 Representation Overview 48

 Experimental System 57

 WPO Target Application 61

 Feedback Loops 68

 Simulator 76

 Test Cases 77

 Phase One Test Cases 78

 Phase Two Test Cases 85

 Experimentation 96

 Phase One Experimentation 96

 Phase Two Experimentation 101

 Validation 104

 Resources 106

 Summary 107

 vi

4. Results 109

 Overview 109

 Baseline Data Analysis 112

 Basic Test Case Data Analysis 116

 Social Network Test Case Data Analysis 121

 Sale Day Test Case Data Analysis 132

 Temporal Logic Transformation Data Analysis 141

 Findings 143

5. Conclusions 149

 Implications 150

 Recommendations 153

 Summary 155

Basic Test Case Results 162

Social Network Test Case Results 166

Sale Day Test Case Results 173

References 180

 vii

List of Tables

Tables

1. WPO test case one 80

2. WPO phase one test cases 81

3. WPO test case two 82

4. WPO test case three 83

5. Periodic server load 88

6. Phase two test case descriptions 89

7. Basic test case definition 90

8. Sale day test case definition 92

9. Social network test case definition 93

10. Black Friday test case definition 95

11. Initial parameters for Li 97

12. WPO load criteria 98

13. Resource list 107

14. Baseline web load settings 115

15. Baseline settings for Regular and Preferred MaxPPO 115

16. Basic SAS-only test case statistics 117

17. Basic SAS RV&V test case statistics 119

18. Social network SAS-only test case statistics 124

19. Social network SAS RV&V test case statistics 130

20. Sale Day SAS-only test case statistics 136

21. Sale Day SAS RV&V test case statistics 140

 viii

List of Figures

Figures

1. Four adaption processes in self-adaptive software 2

2. Verification and validation tasks added to the SAS loop 6

3. QoS Ontology 8

4. Service level agreement monitoring RDF structure 10

5. SmartContext 17

6. Propositional temporal logic semantics and state diagram 18

7. Adaptive RML diagram 19

8. MAPE-K automata example 36

9. Simple state machine view 39

10. Help, hurt, make, or break requirements diagram 44

11. SmartContext 49

12. Service level agreement monitoring RDF structure 50

13. WPO feedback goal structure 53

14. Protégé ontology development screenshot 54

15. Possible SmartContext class hierarchy extension 55

16. Proposed state transition diagram 56

17. UML component diagram 59

18. Web page model 63

19. WPO application data model 67

20. SAS state transition rules 72

21. Maintain customer throughput monitoring condition 74

22. Minimize cost monitoring condition 74

23. Load and event timing JSON example 76

24. Max WPO server load equation using load increments 84

25. Load increment factor visualization 85

26. Hourly web traffic 87

27. Sale Day SAS RV&V test case statistics 113

28. Basic SAS output mean 114

29. Basic SAS-only test case runs 117

30. Basic test case SAS RV&V combined CPU utilization 120

31. Social Network test case SAS-only CPU performance for server three 122

32. Social Network test case SAS-only CPU performance for server four 123

33. Social Network test case SAS-only CPU performance combined 124

34. Social Network test case SAS-only server utilization 125

35. Social Network test case SAS RV&V CPU performance for server three 126

36. Social Network test case SAS RV&V CPU performance for server four 127

37. Social Network test case SAS RV&V CPU performance for server five 128

38. Social Network test case SAS RV&V CPU performance combined 129

39. Social network server uptime mean comparison 131

 ix

40. Sale Day test case SAS-only CPU performance for server three 133

41. Sale Day test case SAS-only CPU performance for server three 134

42. Sale Day test case SAS-only CPU performance combined 135

43. Sale Day test case SAS RV&V CPU performance for server three 137

44. Sale Day test case SAS RV&V CPU performance for server four 138

45. Sale Day test case SAS RV&V CPU performance for server five 139

46. Sale Day test case SAS RV&V CPU performance combined 140

47. Sale Day test case server uptime comparison 141

48. Derived temporal logic state machine 142

 1

Chapter 1

Introduction

Background

Self-adaptive software (SAS) employs a feedback loop where sensors monitor the

target application along with the surrounding environment. Decision components make

choices that maintain system goals, and effectors issue commands to modify the system

structure or application behavior. Sensors focus on detection of the target application’s

system state, called internal context, as well as the state of the overall computing

environment, called external context. The commands that effectors issue can be imposed at

any phase in the system lifecycle to maintain requirements, not only during normal system

operation (Cheng, Lemos, & Giese, 2009).

This research showed that the introduction of runtime verification and validation for

self-adaptive systems required the expansion of existing conceptual models with quality of

service metrics, a hierarchy of goals, and states with temporal transitions. Based on these

expanded semantics, runtime verification and validation was introduced as a second-level

feedback loop to improve the performance of the primary feedback loop to quantitatively

measure the quality of service achieved in a state-based, self-adaptive system.

One of the original representations of a generic adaption loop was the MAPE-K

(Monitoring, Analyzing, Planning, and Executing with Knowledge) structure shown in

Figure 1 (Salehie & Tahvildari, 2009). This general concept provided a structure on which

many of the self-adaptive feedback models were built. This work also implemented a

 2

feedback loop that provided both self-adaptive and runtime verification and validation

functionality using a hierarchical structure of quality of service goals. The Salehie and

Tahvildari (2009) feedback concept was foundational to this research.

Figure 1. Four adaption processes in self-adaptive software (Salehie & Tahvildari, 2009)

Software increasingly depends on layers of infrastructure that are labor intensive to set

up and maintain, regardless of whether the software implements a web site or controls an

airplane. While the SAS approach does add structural complexity to applications, it can

simplify problems throughout the software lifecycle. During installation, SAS can achieve a

successful software configuration with differing hardware capabilities (Salehie & Tahvildari,

2009). The MAPE-K structure may also be applied to minimize an application’s energy

consumption, while still maintaining normal operation (Calinescu & Kwiatkowska, 2009).

When components fail, SAS can re-host applications on the remaining data center

infrastructure (Arshad, Heimbigner, & Wolf, 2004). Software components can be added to a

running system and then later invoked upon context changes, thus reducing maintenance

downtime (Calinescu, Ghezzi, Kwiatkowska, & Mirandola, 2012). Industry has focused on

reducing the cost of operating today’s distributed, power hungry applications, and SAS

approaches have demonstrated research solutions to these problems.

 3

The concepts that made SAS attractive have also made it more difficult for users to gain

confidence that these systems consistently met their goals (Tamura et al., 2012). Users and

developers gain trust in software systems by first verifying that the software has achieved its

functional requirements, and then gather sufficient evidence to characterize and validate non-

functional behavior (Banks, Carson, Nelson, & Nicol, 2001). Despite the stated benefits of

SAS, its concepts have not been widely adopted in industry (Tamura et al., 2012). It remains

difficult to attain human trust in applications that are specifically designed to modify

themselves (Dahm, 2010; Tamura et al., 2012). The cost of mechanically testing complex,

conventional applications has become a growing component of the overall systems

engineering process (Feldt, Torkar, Ahmad, & Raza, 2010; Laurent, 2010). The ability to

properly test and verify SAS behavior is also costly, and has emerged as a substantial

research challenge (Calinescu et al., 2012); therefore, for SAS to gain wider acceptance, a

method of verifying and validating behavior was needed to provide trustworthy results for

users and developers.

The more established discipline of modeling and simulation (M&S) faces the similar

challenge of attaining human trust in the computer programs that simulate real systems

(Banks et al., 2001). Banks et al. (2001) described verification as comparing the computer

program against a conceptual model. This model may be a document, a process chart, a state

diagram, or a modeling language. The conceptual modeling approach represents all the

branching decisions that a simulation can employ. The level of validation needed to gain

trust in SAS requires V&V methods similar to those used in M&S, except that they must be

active participants not just data collectors (Tamura et al., 2012). SAS can invoke a near-

 4

infinite set of states, and these states can’t be fully represented in a model or quantitatively

verified (Calinescu et al., 2012; Lemos, Giese, Muller, & Shaw, 2011; Tamura et al., 2012).

Cheng et al. (2009) proposed that this explosion in possible state transitions is an integral part

of SAS and use the term uncertainty to define this characteristic. This concept of uncertainty

acknowledges that all the possible SAS branching decisions can’t be fully documented in a

conceptual model or traditional software requirements; however, the system must still

maintain its goals. SAS lacked a descriptive modeling capability that will allow users and

developers to verify system operation and validate non-functional behavior.

While the concept of uncertainty is embraced by SAS, the concept does not map well to

traditional V&V methods where each branching decision must be assessed (Cheng et al.,

2009). Thus, for SAS to be more widely adopted, a representation of the system was required

that was a V&V enabler. It has been possible to integrate V&V at runtime so that self-

adaptive systems can capture validation data when new branching decisions are observed

(Dahm, 2010; Tamura et al., 2012). Like M&S conceptual models, SAS validation required

that substantial evidence be gathered throughout the system and correlated with input data to

help users and developers gain confidence in system behavior. SAS V&V required a

conceptual representation that integrates system goals with overarching V&V direction

(Villegas, Muller, & Tamura, 2011). By integrating adaptive goals and validation logic into a

single model, overall system behavior could be maintained while necessary and sufficient

V&V evidence (Banks et al., 2001) is collected from a running system.

This work established that current SAS models (Calinescu et al., 2012; Villegas et al.,

2011) are not expressive enough to describe self-adaption with states and a hierarchy of

 5

V&V goals necessary to measurably improve the quality of SAS applications. This

dissertation extended the Villegas et al. (2011) self-adaptive model with a V&V layer and

quality of service (QoS) measures (Fu, Zou, Jiang, & Shang, 2007). This new model was

demonstrated by developing a simulation that is the combination of the Tamura et al. (2012)

benchmark example and concepts from the Arshad et al. (2004) example. This example

verified system goals by measuring the value of RV&V when integrated with the primary

adaptation loop.

The addition of V&V, as a necessary component of SAS, is the focus of work by

Tamura et al. (2012), and they proposed that Runtime V&V would benefit the feedback loop.

By expanding upon the MAPE-K architecture with Runtime V&V (RV&V) components

shown in Figure 2, a complementary framework was able to evaluate both the target system

and the feedback loop. A Runtime Validator and Verifier evaluated context changes

proposed by the Planner and determined if they would violate overall system consistency.

This evaluation of consistency was not based on the running system, but was based on the

structure of the underlying model at a future point in time (Tamura et al., 2012). Consistency

was viewed as a self-adaptive property where the adaptable system and environment was

maintained to the system’s conceptual model. It was not a measure of whether the system is

similar to itself over time (Tamura et al, 2012). SAS may change its structure to meet overall

 6

Figure 2. Verification and validation tasks added to the SAS loop (Tamura et al., 2012)

goals, but maintains consistency to its model. The Planner was a more specific form of the

MAPE-K Deciding component that elicits commands to migrate the system to its next stable

state. Planning is an Artificial Intelligence (AI) method that was implemented by Arshad et

al. (2004) as the Deciding component of the Salehie & Tahvildari (2009) adaption loop

(Russell & Norvig, 2010). The goals that the RV&V system maintains at the output of the

Planner were typically not the goals of the current system state, but those of the next most

likely state that the Planner had to achieve.

The V&V Monitor in Figure 2 was concerned with evaluation and enforcement of

current state behavior, and collection of validation data. Thus, the RV&V architecture

proposed by Tamura et al. (2012) was active and instituted a second layer of adaption when

RV&V goals were violated. The Adaption Monitor identifies and serializes changes in

context for use by the Analyzer; however, the V&V Monitor performs the higher-level

functions of capturing RV&V goal violations for the Requirements@Runtime Analyzer

 7

(Sawyer, Bencomo, & Whittle, 2010). The RV&V Analyzer determined if a state transition

must occur based on context updates. When a new state has been achieved, the RV&V

Monitor updates its own data structures.

Tamura et al. (2012) provided an example problem that can be used to benchmark

RV&V experiments. This example problem was a web purchase ordering service that is

managed by an adaption loop. This adaption loop adds and removes servers in a cloud

environment where the addition of servers implies additional cost per unit time (“Amazon

web services,” 2013). These decisions to add or subtract services are based on aspects such

as customer load, sale days, and customer affinity. This example maintained multiple goals,

such as the minimization of customer wait time. Customers are stratified into normal and

premium groups. Each group had a wait time goal, and the system modified itself to achieve

those goals despite different purchasing loads throughout the test cases.

Another goal of the benchmark example was to maximize throughput while minimizing

the cost of the cloud-based system. This goal was distinct from any single adaption decision,

but involves measurement and optimization of the purchasing service and primary adaption

loop. This overarching RV&V goal was very similar to previous work on QoS measures

described by the Fu et al. (2007) measurement hierarchy. Fu et al. (2007) defined an

ontology for QoS criteria that could be integrated into an RV&V model to establish standard

terms, and was shown in Figure 3 below. The categories of performance, availability,

economic value, and reliability all directly correlate to items that an RV&V platform should

validate. Fu et al. (2007) also proposed that the calculation of the lowest level terms in the

ontology provide a means for identifying an overall metric called consistency. This

 8

consistency measure is then used to establish a reputation for individual web services, but the

Fu et al. (2007) concept of consistency differs from the self-adaptive property. The concept

of reputation might also be integrated into an RV&V platform to aid in the tuning provided to

the feedback loop.

Figure 3. QoS Ontology (Fu et al., 2007)

Independent of the adaption system, the RV&V system was concerned with the

combined behavior of the target system and the adaptation loop. The time that it took to

transition from one stable state to another was referred to as settling time. The concept of

minimizing settling time was also another key RV&V property identified by Tamura et al.

(2012). The RV&V system was concerned with minimizing settling time of the overall

application after state transitions (Tamura et al., 2012). The RV&V system must act if

 9

adaption behavior exceeds acceptable settling time, and will then force the system into a

stable state. While settling time was discussed as a global parameter in Tamura et al. (2012),

individual states may have different individual settling time targets – or local settling times.

In the context of the Tamura et al. (2012) benchmark example, a longer settling time incurs

greater costs by the cloud service without providing additional benefit to customers. The

interaction between self-adaptation and RV&V correction was briefly explored in Tamura et

al. (2012), but in Calinescu et al. (2012) adaption and RV&V correction were combined.

Villegas et al. (2011) documented the parameters that the system should use for adaptation

decisions, but not the RV&V measures needed to verify quality measures after a state

transition. No recent literature provided a method to document the RV&V layer that

surrounds the feedback loop (Calinescu et al., 2012; Tamura et al., 2012; Villegas et al.,

2011).

Villegas et al. (2011) used a service-oriented architecture (SOA) example to

demonstrate a Resource Description Framework (RDF) taxonomy, called SmartContext, that

represents contextual entities, service-level agreements, and service-level objectives in a

machine-readable taxonomy. The Villegas et al. (2011) implementation was one of the first

concrete examples of a working measurement taxonomy in a self-adaptive application. The

Villegas et al. (2011) approach parallels the RV&V framework outlined by Tamura et al.

(2012), and utilizes the semantic structure displayed in Figure 4. This figure addresses a

single Service Level Agreement (SLA), but not the overall measurement processes necessary

to manage system state transitions, like those in the Tamura et al. (2012) example problem.

The SLA management approach assumed that an SLA is managed at the level of an

 10

Executable Code Unit versus at the system-level. An example of this weakness can be

described in terms of settling time. The time behavior metric (TB) in Figure 4 applies to a

specific Executable Code Unit, not the measurement of the system from one acceptable zone

of operation to another. While the Villegas et al. (2011) approach was novel and provided a

basis for expansion, it did not acknowledge that RV&V operates at a separate, higher level

than the verification of normal application component behavior.

Figure 4. Service level agreement monitoring RDF structure (Villegas et al., 2011)

Movement between acceptable states of system operation and the minimization of

settling time were described by Tamura et al. (2012) as behavior in support of Viability

Zones. When these zones were violated, a primary feature of the RV&V layer was to

intervene in the adaption process. Viability zones comprised the set of valid system states,

context attributes, and their corresponding values that define uncompromised system

performance (Tamura et al., 2012). RV&V actions included not only sampling the system

while it remains inside its viability zone, but acting if a viability zone is compromised

 11

(Tamura et al., 2012). Settling time could be measured by the RV&V layer after the

adaptation system has decided to make an inter-state transition; however, the viability zone

concept inferred that RV&V metrics be defined to trigger changes as a system nears the edge

of a viability zone. The QoS metrics identified in the Fu et al. (2007) taxonomy provided a

viable basic set of identifiers to meet the needs for an RV&V metric inventory.

Using the previous example of a SAS application that is nearing the edge of a viability

zone, the RV&V Monitor may need to take special action and increase its sampling rate as

the SAS system nears the edge of a viability zone. When the viability zone is breached, the

RV&V system must start collecting settling time data, and evaluate whether a local metric is

achieved. If the settling time metric was violated, the RV&V Validator may override

adaption and attempt to achieve a neighboring viability zone. No RV&V data representation

existed that defined viability zones, the metrics that trigger actions around the zone edges, or

the actions themselves. The Villegas et al. (2011) conceptual RDF method did not provide

the syntax or semantics to capture these inter-state transition features that are key aspects of

RV&V. Calinescu et al. (2012) and Tamura et al. (2012) both concluded that RV&V was a

necessary component of SAS, but neither defined the data types or parameters needed to

measure a self-adaptive system, nor document the higher-level decisions that an RV&V

system required.

While RV&V was new to SAS, it does exist in other control system domains, and is an

integral component of the system test process for unmanned space vehicles. Ground tests are

conducted with an active RV&V subsystem, and these runs log data for subsequent manual

evaluation (Artho, Barringer, & Goldberg, 2005; Goldberg, Havelund, & McGann, 2005).

 12

To achieve trust in autonomous systems, testing is performed in-depth prior to launch, using

a combination of traditional unit testing, model checking, and RV&V. Since autonomous

systems may also achieve operational states not specified during design time activities, they

also must validate operational system performance, referencing an explicit model (Artho et

al., 2005). Artho et al. (2005) and Goldberg et al. (2005) each developed languages that

allowed for the key parameters of an autonomous system to be described and measured.

Languages, such as Eagle and RuleR, allow testers to define how the system should generally

respond to new context (Barringer, Havelund, Rydeheard, & Groce, 2009).

The RuleR language provided a construct where the system performs roll back

operations to a consistent state if the next state can’t be achieved (Barringer et al., 2009).

This rollback concept is similar to the idea that that the RV&V system would intervene after

the local settling time parameter was violated to achieve a stable state, as previously

mentioned. State transitions were typically caused by changes in system performance or

failures of some type. Thus, the RV&V system may also have to enforce load shedding

behavior in order to maintain a stable state. By integrating the RuleR rollback concepts, a

SAS RV&V language may be able to achieve verifiable consistency by comparing the

system output to its model representation.

Another concept of the RuleR language was the inclusion of temporal logic to define

state transitions. This autonomous systems concept was necessary because RV&V systems

must support the evaluation of multiple, simultaneous state transitions and Propositional

Temporal Logic (PTL) was the tool used to isolate state transitions into threads of execution

(Artho et al., 2005; Barringer et al., 2009). PTL accounts for time by sequencing the events

 13

that must follow one another (Merz, 2001). Concepts such as next φ, φ until φ, always φ, and

eventually φ were combined with traditional Boolean operators allowing a time-sequenced

specification to be created without needing to provide specific time values, especially when

specific time values are unknown during design. A slight variation on PTL is linear temporal

logic (LTL) which states that all event states happen in a single timeline, but uses the same

concepts previously noted in PTL (Baier & Katoen, 2008). LTL transition systems (TS) can

be formally proven by first transforming the logic into an inverted non-deterministic Büchi

automation. If a path can be found through the negation of the TS, the LTL is disproved.

Model checkers show that control systems are well defined by using formal methods such as

these. These powerful methods are, however, difficult to apply to data intensive applications,

where states are not fully defined.

Temporal concepts were also implemented in Calinescu et al. (2012) to achieve a

second-level of self-adaptive behavior that was referred to as RV&V; however, the temporal

concepts were not presented as a language that separated adaption from RV&V. Calinescu et

al. (2012) integrated requirements achievement, behavioral modification, and verification

measurements into a single self-adaptive application. The limitation of the Calinescu et al.

(2012) work was that it did not provide a language structure to guide future self-adaptive

applications. The Villegas et al. (2011) SLA example was an elementary example of a

structure separate from the self-adaptive feedback loop and implementation. By separating

representation from implementation, a variety of solutions can evolve using a standard

representation. The corollary to this structured language approach is a database schema. By

 14

having a schema, new problems can utilize existing meta-knowledge versus starting with a

new data structure each time.

Like Calinescu et al. (2012), the Requirements@Runtime community required that a

self-adaptive system be able to read, modify, and react to its requirements at runtime

(Qureshi, Jureta, & Perini, 2011). Qureshi et al. (2011) acknowledged the need for a self-

adaptive language structure that was readable by all components in the feedback loop. The

Qureshi et al. (2011) approach began with an abstract self-adaptive structure, but more

recently they expanded upon the abstract language with a concrete ontology language, called

Adaptive RML, based on the Ontology Web Language (OWL) (Herman, 2014; Qureshi,

Jureta, & Perini, 2012). In both works, Qureshi et al. (2011, 2012) argued that a semantic

representation of domain context, goals, tasks, and relations required an ontology approach;

however, neither work from Qureshi et al. (2011, 2012) provided a semantic structure to

represent RV&V concepts. Without the expansion of a semantic structure to include RV&V

concepts, SAS components in the Tamura et al. (2012) structure of Figure 2 lacked the ability

to institute RV&V along with adaptation.

The basic RV&V concept of settling time can’t be represented by the Qureshi et al.

(2012) Adaptive RML language. Settling time was the simplest concept to apply directly to

the RV&V problem, and required that consistency be re-established between measured

performance and the model (Tamura et al., 2012). To provide a general-purpose language

solution for RV&V, the semantics must be expressive enough to capture the RV&V concepts

of state transition time and be capable of documenting new measurement criteria without

language expansion (Tamura et al., 2012). Early self-adaptive examples from Arshad et al.

 15

(2004), and more recent examples from Villegas et al. (2011) and Calinescu et al. (2012) all

utilized a language semantics to achieve adaptation, but not a common semantics for RV&V

that integrated with context and requirements development for SAS (Qureshi et al., 2011,

2012). The problems of self-adaptive goal representation and temporal state representation

were being addressed separately from RV&V measurement and actions. To achieve the

Tamura et al. (2012) RV&V structure, these two research areas must be combined into a

common language structure.

The remainder of this chapter states the problem and need for a self-adaptive RV&V

language. It then outlined the goal of this research, and the relevance of this work in

expanding SAS RV&V understanding. A barriers and issues section highlighted the gaps in

the current literature to which this work contributed, and the last section summarized this

chapter. A definition of terms as used in the context of SAS RV&V was also provided.

Problem statement

The semantic language proposed by Villegas et al. (2011) and referenced by Tamura et

al. (2012) as an introductory RV&V specification did not define the RV&V entities or

properties needed to collect QoS measures within a viability zone, institute state

management, or improve adaption decisions based on QoS goals. Each of these concepts was

needed to determine if the Tamura et al. (2012) RV&V model can reduce cloud server costs

when implemented in the benchmark example. The works of Qureshi et al. demonstrated the

need for a language approach for self-adaptive goal behavior that began with a requirements

model (Qureshi et al., 2011, 2012); however, RV&V concepts were absent from the Qureshi

et al. (2012) language. The temporal approach of Calinescu et al. (2012) provided the basis

 16

for state management, but it did not introduce these concepts into a language for general use.

The lack of public SAS standards and results means that SAS research has not been well

integrated (Weyns, Iftikhar, de la Iglesia, & Ahmad, 2012). Neither Villegas et al. (2011),

Calinescu et al. (2012), nor Qureshi et al. (2012) demonstrated the integration of self-

adaptive goals and RV&V concepts. Facets of the RV&V problem were further elaborated in

the context of achieving the Tamura et al. (2012) RV&V model and benchmark example.

In Figure 4, Villegas et al. (2011) provided a structure by which a single

ExecutableCodeUnit can be monitored for adherence to a MonitoringCondition. This is a

concrete example of a semantic structure for monitoring self-adaptive goals; however, this

structure did not provide the entities or linked properties by which a system state can be

monitored, integrating multiple MonitoringConditions. In Figure 5, below, the taxonomy

used to populate the application example of Figure 4 also showed that there is no place to

monitor application state, only the performance of a specific ExecutableCodeUnit. To

evaluate the benefits of RV&V SAS, the ability to monitor and maintain state were

implemented such that the evaluation of multiple MonitoringConditions contribute to a single

application state, and the structure must inform the RV&V subsystem of the steps to take

when a MonitoringCondition is violated. The taxonomic structure of Villegas et al. (2011) in

Figure 5 did not address state transitions by which the system moves from one viability zone

to another when a system state has been violated. Lastly, there was no structural component

by which the RV&V system knows how to rollback if a desired state can’t be achieved

within a desired settling time. State entities were required as top-level components in the

 17

taxonomy of Figure 5 to determine if the Villegas et al. (2011) semantic approach was able to

demonstrate that RV&V improves SAS quality.

Figure 5. SmartContext (Villegas et al., 2011)

The ability to represent states and state transitions was a fundamental component of the

Calinescu et al. (2012) quantitative verification approach, and was depicted in the leftmost

graphic of Figure 6. The state transition diagram was populated with probabilities that are

used in a Markov chain to determine the best, next-state transition. However, this approach

was codified in an equation-like language called Probabilistic Computation Tree Logic

(PCTL) that can’t be generically applied to other problems. A published, general purpose

solution for the RV&V problem would enhance the SAS literature by allowing future

research to be more integrated (Weyns et al., 2012).The state transition approach is really the

method by which adaptation takes place, not a higher-level RV&V. On the right side of the

figure is an example of the Calinescu et al. (2012) implementation of PCTL. The

 18

combination of state transitions and temporal logic were the tools that were missing in the

Villegas et al. (2011) semantic structure to evaluate RV&V metrics, such as settling time.

Figure 6. Propositional temporal logic semantics and state diagram (Calinescu et al., 2102)

Qureshi et al. (2012) built their self-adaptive ontology language by expanding upon a

previous requirements language – Techne - and the revised language, called Adaptive RML,

includes only four minor additions (Jureta, Borgida, Ernst, & Mylopoulos, 2010). One of

these additions was the concept of a quality constraint, and an example is shown in the top

right diamond of Figure 7, titled “Message sent in < 1 hour after the Payment”. The

completion of two subordinate goals was verified by the measurement of this overarching

quality constraint. The addition of quality constraints was similar to the measurement of

viability zones desired by Tamura et al. (2012), the implementation of MonitoringConditions

by Villegas at al. (2011), and the Fu et al. QoS ontology (2007); however, the self-adaptive

 19

system described by Adaptive RML was not given any direction regarding how to react when

the quality constraint is violated. Without defining the steps to take (1) when gathering

quality measurements, (2) when a quality constraint was violated, or (3) when the system was

back in a stable state, RV&V does not occur. As well, the concept of validation implied that

Figure 7. Adaptive RML diagram (Qureshi et al, 2012.)

the system was being calibrated to best meet its functional and non-functional goals (Banks

et al., 2001). This calibration functionality was also missing from the Qureshi et al. (2012)

modeling language, and additional entities and properties were required for RV&V to operate

at a higher, independent level from self-adaption.

 20

Each of the works referenced in this section provided building blocks by which an

RV&V capability may be described, but none actually implement the extensions needed to

achieve the RV&V goals set out by Tamura et al. (Calinescu et al., 2012; Qureshi et al.,

2012; Tamura et al., 2012; Villegas et al., 2011).To appropriately model an RV&V system,

monitoring conditions must exist between goals that identify non-functional quality

constraints. A set of remediation actions must then describe what actions to take when

quality is violated, and the modeling language must describe how the system achieves a

stable viability zone where unhindered self-adaptive behavior can proceed. The entities and

properties necessary to evaluate RV&V behavior in self-adaptive systems were not defined in

any of these referenced works (Calinescu et al., 2012; Fu et al., 2007; Qureshi et al., 2012;

Tamura et al., 2012; Villegas et al., 2011).

Dissertation Goal

The goal of this dissertation was to show that the addition of states, temporal logic and

goals to the Villegas et al. (2011) modeling language and the Tamura et al. (2012) feedback

loop would maintain customer QoS goals and reduce cloud server costs for the Tamura et al.

(2012) benchmark example. There were no SAS runtime modeling languages that informed

the feedback loop by the using QoS metrics, calibrated self-adaptive behavior, reacted when

a monitoring condition is violated, or evaluated settling time. Because an example of an

RV&V implementation using the Tamura et al. (2012) model was unavailable, RV&V had

not been demonstrated as a method for gaining trust in SAS. This research provided an

example implementation. By implementing the self-adaptive reference problem from Tamura

et al. (2012) with states decorated with temporal logic, a baseline set of data was gathered.

 21

Then, RV&V measurement and intervention was added to the same problem, and QoS

achievement was measured. By implementing additional entities and properties to the

Villegas et al. (2011) language, along with temporal logic concepts, self-adaptive RV&V

behavior was conveyed to a second-level feedback loop, independently of the basic feedback

loop. The resulting self-adaptive language and demonstration simulator implemented a

second-level of adaptive behavior where the RV&V loop intervenes in the actions of the self-

adaptive loop. Based on the addition of this RV&V capability, the Tamura et al. (2012)

RV&V simulation demonstrated lower operational costs when compared against a SAS-only

baseline.

Relevance and Significance

The Internet – along with mobile devices – have enabled corporations to become an

integrated part of their customer’s lives, but this desire to present a ubiquitous corporate

presence came at the price of increasing complexity (Kephart & Chess, 2003). The problem

of software complexity extends to every facet of the computing domain, from design to

sustainment. Kephart and Chess (2003) challenged the computing community to address the

problem of complexity by taking a holistic look at design, development, testing, deployment

and maintenance of software-based systems. Even the best designers and architects didn’t

anticipate the changes that an even short-lived, Internet application may experience (Cheng

et al., 2009; Kephart & Chess, 2003; Lemos, Giese, Muller, & Shaw, 2011b). Today’s

demanding distributed software applications require frequent human intervention to remain

in continuous operations, and there is a desire to reduce this costly, management overhead

(Salehie & Tahvildari, 2009). Managing software systems that must not fail only compounds

 22

the complexity problem, requiring redundant layers of application and middleware

infrastructure (Salehie & Tahvildari, 2009). The need to address software complexity was

the primary problem that spawned self-adaptive and autonomic research (Cheng et al., 2009;

Kephart & Chess, 2003).

Self-adaptive software offered the opportunity to lessen the impact of complexity by

allowing the feedback loop to accomplish labor-intensive tasks such as application

configuration, tuning, repair and upgrade (Salehie & Tahvildari, 2009). In the Internet

applications domain, commercial-grade, self-adaptive applications remain unavailable, and

the lack of trust in such technologies has been cited as a predominant reason (Dahm, 2010;

Lemos et al., 2011b; Tamura et al., 2012); RV&V offers a method by which self-adaptive

Internet applications can verify and validate their behavior; however, examples of the type of

RV&V solutions defined by the Tamura et al. (2012) framework were also lacking. For SAS

to be considered as a candidate solution for the problem of system complexity, a less human-

intensive approach to V&V must be found. A demonstration of RV&V concepts for SAS

provided an opportunity to achieve higher levels of trust and speed their introduction into the

Internet applications marketplace. The RV&V concept of consistency was just one facet by

which SAS was measured if it is to be part of the solution space for to reduce software

complexity.

 A complementary technology to SAS is Cloud Computing (“Amazon web services,”

2013; Creeger, 2009). Many of the self-configuring and self-healing concepts in SAS are

possible with adoption of any of the Cloud services. The focus of Cloud Computing is the

infrastructure of an application, and the ability for the infrastructure to meet the changing

 23

needs of Internet applications. SAS defined this surrounding infrastructure as the external

context, but SAS also delved into the internal context of the application. This focus on

internal context was not addressed by Cloud Computing, except for specific application

services, such as authentication, authorization, or storage. With the demonstration that the

self-adaptive feedback loop is trustworthy through RV&V, SAS and Cloud Computing are

clearly supporting technologies. Cloud Computing does not, however, address application

complexity nor provide a method to build trust in SAS.

 The work of Tamura et al. (2012) established a framework by which RV&V can be

added to the self-adaptive feedback loop, and the Villegas et al. (2011) SOA example

provided the basic building blocks for monitoring a web application with input from a

semantic definition language. Villegas et al. (2011) did not, however, provide for monitoring

of application states or state transitions. Calinescu et al. (2012) did maintain states as part of

their solution, and adopts a form of PTL to transition from one execution unit to another.

The language approach proposed by Tamura et al. (2012) and implemented by Villegas et al.

(2011) was missing in Calinescu et al. (2012). Qureshi et al. (2012) also proposed a semantic

language for SAS that was goal-based and provided monitoring extensions for quality

constraints. The Qureshi et al. (2012) approach did not provide syntax or semantics to define

what to do when a quality constraint is violated. All of these implementations provided

building blocks by which as SAS RV&V language can be constructed, but each fell short of a

complete implementation.

 This research provided a syntax and semantics for RV&V that was an expansion on

previous SAS modeling languages that only define runtime goals and context. By starting

 24

with the semantic context structure in Villegas et al. (2011) and adding measurement

components from Qureshi et al. (2012) and Fu et al. (2007), temporal logic between states

from Calinescu et al. (2012), and RV&V actions, the self-adaptive feedback loop was

calibrated by the RV&V loop. Implementation of a functioning RV&V loop, along with a

runtime definition of RV&V properties, provided the basis by which trust can be established

in SAS through improved consistency. The temporal logic concepts of next φ, φ until φ,

always φ, and eventually φ provided the basis for implementing state transitions with a

rollback capability. This implementation was novel in SAS literature and demonstrates a

multilayered RV&V approach. By implementing the RV&V as a second feedback loop, the

adaption settings of the primary loop were calibrated at runtime. These two components of

the proposed RV&V approach extend the SAS literature.

 The concept of periodic measurement of viability zones was discussed by Tamura et

al. (2012) as a desired component of future RV&V for SAS. The RV&V loop, defined by

Tamura et al. (2012), was to take an active role in returning a self-adaptive system to a stable

state when a viability zone was violated. In this mode of operation, the self-adaptive loop

was suspended or overridden by the second-layer RV&V loop, whose goal was to reestablish

consistency through actions and the measurement of settling time. If successfully

implemented, each of these concepts extends the literature and answer specific questions

posed by Tamura et al. (2012). This work was relevant because it integrated previous work

into a semantic RV&V language and provided a demonstration of improved goal-oriented

performance of the self-adaptive feedback loop. This work was significant because the

 25

implementation of self-adaptive RV&V has been proposed a method by which SAS methods

can become trustworthy.

Barriers and Issues

SAS has received ample research attention, with over 75 papers submitted on the topic

from 2000 to 2011 in 13 journals or conference proceedings (Weyns et al., 2012); however,

solutions for SAS RV&V were not demonstrated, and multiple authors have called for SAS

RV&V examples (Tamura et al., 2012; Weyns et al., 2012). Few, if any, examples existed

that allowed for the distinction between adaption and runtime verification and validation. The

call for SAS RV&V was really a request for a second-level of adaption based on higher-level

quality goals, but the majority of the SAS community continues to focus on improvements to

the primary feedback loop (Weyns et al., 2012). The ability to demonstrate a SAS RV&V

system that operates independently from the primary feedback loop was an existing

limitation in the literature.

Multiple formal methods have been applied to the primary feedback loop, including

automata, Markov models, and Petri nets (Weyns et al., 2012). None of this exploration has

been accomplished for the second-level, RV&V feedback loop. A second-level feedback

loop required the implementation of a different decision algorithm from the primary adaption

loop to make goal determination independently from state transition adaptation decisions.

The reason for this separation was that the RV&V loop sought to avoid intervention in the

primary loop but to tune the primary loop over time. An open issue in SAS research was the

determination of which class of algorithms should be used for the deciding component of the

RV&V loop.

 26

A demonstration of SAS RV&V required the development of a representation method

that was descriptive enough to define the requirements for the basic application, the adaption

subsystem, and RV&V quality goals. Current representation methods either focus on

monitoring a single executable for performance (Villegas et al., 2011), or integrating goals

into the primary logic of the application (Qureshi et al., 2012). Representation methods were

available that enable adaption, but none that allow for higher-level, quality goal enforcement.

SAS representation methods have emerged from two distinct research domains: runtime

requirements (Qureshi et al., 2012; Sawyer et al., 2010) and web application monitoring

(Tamura et al., 2012; Villegas et al., 2011). These two domains provided basic ideas on

which RV&V can be represented, but no demonstration of integrated RV&V has been

accomplished. Quality goal enforcement, like that described in Fu et al. (2007), was a

distinct concept from goal-based requirements management, and the two concepts have not

been integrated.

The recurring call for formal methods to demonstrate provable SAS (Salehie &

Tahvildari, 2009; Weyns et al., 2012) first required the use of a formal syntax for state

transitions, such as LTL. The use of a temporal logic as this formal syntax provided concrete

transition rules for the adaption system (Calinescu et al., 2012) and informed the RV&V loop

when to act; however, only Calinescu et al. (2012) attempted to integrate the temporal logic

into their SAS research. The Calinescu et al. (2012) example did not demonstrate the triggers

that a formal logic must provide to the RV&V subsystem, and this should be addressed in

any demonstration of a SAS RV&V capability.

 27

The lack of generally available reference or baseline examples for SAS and SAS

RV&V also limited expansion of the domain because research was not additive or supportive

(Weyns et al., 2012). A problem must be developed that was accessible by the research

community, and clearly presented the opportunity for RV&V management independent of

self-adaption. The lack of source code for baseline examples was also described by Weyns et

al. (2012) as a known problem in this domain. A baseline RV&V example presents the

opportunity to validate some general quality constraints, such as minimizing operational cost

or improving the mean time between failure (MTBF) and not only verify functional behavior

of monitored system (Fu et al., 2007; Tamura et al., 2012). The Tamura et al. (2012)

description of a self-adaptive system provided an example, but no implementation was

provided in their research or referenced publications.

For RV&V to provide a method by which self-adaptive systems can gain the trust of

their users, the previous barriers and issues must be addressed. A second level of

intervention must be demonstrated that provides oversight of both the monitored system and

the feedback loop. The representation of the system must integrate system requirements,

self-adaptive states, and actions with overarching RV&V goals in the form of standard

quality measures. A formal temporal logic should apply both to the self-adaptive system as

well as the RV&V system, and the research should demonstrate this mutual utilization of the

syntax. Lastly, the lack of baseline reference examples for SAS RV&V prevents research in

this domain from being well integrated (Weyns et al., 2012).

The proposed research was novel, not because it introduces entirely new thought, but

because it integrates a number of existing research ideas into a working SAS RV&V

 28

platform. This platform was used to measure a SAS baseline example to show that a second-

level RV&V feedback loop can allow SAS designers to better define and achieve

overarching quality goals. These ideas included the introduction of temporal logic for state

transition, integration of RV&V goals and temporal states into an SAS representation

language, and the inclusion of a QoS taxonomy into the semantics of the SAS RV&V

language. The integration of these ideas was novel and has not been demonstrated by

previous literature.

Assumptions, Limitations, and Delimitations

It was assumed that a simulation could be developed that represents the Tamura et al.

(2012) benchmark example in an Amazon Web Services (2013) server instance using timing

data derived from actual measurements. It was also assumed that the measurement of time

values and cost savings on small cloud-server instances could be extrapolated to make

substantive conclusions on larger scale applications. Lastly, it was assumed that the

demonstration of some temporal logic properties was sufficient to show that the entire set

were valuable for SAS RV&V. This research was delimited to specific test cases that

demonstrated transition points in the state machine of Tamura et al. (2012) example. Thus,

the experimentation did not attempt to run an entire year as was described in the Tamura et

al. (2012) paper, but only specific time periods where state transitions were expected.

 29

Definition of terms

Consistency – a self-adaptive property where the adaptable system and environment are

maintained to the system’s conceptual model

External context – the state of the overall computing environment external to the target

application.

Internal context – the target applications system state.

MAPE-K – An early self-adaptive framework that has the following components:

Monitoring, Analyzing, Planning, and Executing with a Knowledge base.

Settling time – the time that it takes to transition from one stable state to another.

SLA – a Service Level Agreement is a quantified expectation of performance between a

service and its customer that may encompass multiple individual measurements.

SLO – a Service Level Objective is an atomic of an SLA that can be measured by a single

monitoring condition.

Viability zone - the set of valid system states, context attributes, and their corresponding

values that define uncompromised system performance

Summary

Self-adaptive systems have garnering substantial interest from the research

community, but were not been widely adopted because there remains a lack of trust in

adaption decisions (Tamura et al., 2012). SAS RV&V and supporting standards have also

been requested in the literature (de la Iglesia & Weyns, 2013; Tamura et al., 2012; Weyns et

al., 2012), but examples of these standards for any baseline problem were not yet available.

This research proposed to expand on the taxonomy provided by Villegas et al. (2011) by

 30

incorporating application states with temporal logic transitions, prioritized QoS goals, and

additional entities necessary to document and then measure whether the introduction of a

second-level feedback loop can better achieve system goals. The Tamura et al. (2012)

benchmark example was employed with the primary self-adaptive feedback loop, but without

RV&V interaction. Then, the second RV&V feedback loop was enabled, and results

compared to determine if the addition of an RV&V capability measurably improves overall

system QoS.

 31

Chapter 2

Review of the Literature

Introduction

This section provided a synopsis of the literature for SAS RV&V expansion, and

described in greater detail the reasons why an integrated model approach was needed for

SAS RV&V (Weyns et al., 2012). The previous chapter provided ample evidence to justify

the need for SAS RV&V, and highlighted much of the literature for this work. This chapter

expanded upon specific concepts and reinforced them with appropriate literature support.

First, the Tamura et al. (2012) reference application example was explained and expanded as

the basis for this work. The use of state machines, or automata, was then explored as a

method to manage the complexity of a self-adaptive system that maintained multiple goals

(de la Iglesia & Weyns, 2013). State machines alone did not provide a sufficient RV&V

solution, but a method for linking system states using temporal logic was derived from the

literature to address this need (Baier & Katoen, 2008; Merz, 2001). This chapter also

explained the emergence of SAS requirements languages and their integration into the

feedback loop. Lastly, the Villegas et al. (2011) ontology structure was explored to discover

where a more expressive language is needed to represent a general-purpose RV&V solution.

Despite the attention given to SAS research since the Kephart and Chess (2003)

autonomic software challenge, the call for an integrated, runtime approach to V&V of self-

adaptive systems was a recent concept (Cheng et al., 2009; Lemos et al., 2011a; Salehie &

Tahvildari, 2009; Tamura et al., 2012). Few SAS RV&V examples existed, and their

 32

demonstration was difficult to discern from the basic SAS feedback structure (Calinescu et

al., 2012). The vast majority of current SAS research was disconnected, and few SAS

benchmarks or standards were available for expansion (Weyns et al., 2012). Because these

standards were lacking, each research solution stood alone and did not provide for stepwise

improvement. Weyns et al. (2012) specifically called for original research, versus reusing

previous research in the new context of SAS (Calinescu et al., 2012). The need for a

standards-based RV&V approach has been established, but a cumulative lineage of SAS

RV&V research was not established. The Tamura et al. (2012) case study and its supporting

application example provided the first documented benchmark on which this, and future,

research built. Even the more recent work of de la Iglesia and Weyns (2013) did not provide

RV&V of the runtime system. Rather, it provided formal verification of the processes within

the feedback loop.

The following topics were selected as the basis for the proposed work as their concepts

support SAS additions for a generic RV&V capability. The Tamura et al. (2012) SAS

RV&V case study provided expansive coverage of how general RV&V concepts should be

applied to SAS. This work also lays out many research challenges for the community in the

area of SAS RV&V. One of the research areas discussed in Tamura et al. (2012) is that of

state machines that defined where the system was operating in a stable condition or codified

unstable areas where RV&V interaction was required. Thus, the use of state machines as an

RV&V zone identification mechanism required further expansion. Recent work by de la

Iglesia and Weyns (2013) also focused on the use of state machines in a formally verified

feedback loop.

 33

Other areas of computer science, such as autonomous control systems, also utilized

state machines for RV&V; however, these systems almost always utilized some form of

temporal logic to connect the states (Baier & Katoen, 2008; Barringer et al., 2009). Thus,

temporal logic additions to state machines were also explored. The MAPE-K feedback loop

formed the basis for many of the SAS efforts to date (Calinescu et al., 2012; Cheng et al.,

2009; de la Iglesia & Weyns, 2013; Lemos et al., 2011a; Salehie & Tahvildari, 2009; Tamura

et al., 2012); however, no standards have emerged to define how knowledge is to be

introduced into the MAPE-K loop, or maintained during feedback loop operation. The desire

to introduce knowledge into a machine-readable feedback loop was a topic that was closely

linked to SAS requirements languages and goal-based ontologies. Each of these areas were

explored in this section.

Problem Overview

The Tamura et al. (2012) RV&V case study provided the general description for a self-

adaptive, cloud-based e-commerce purchasing platform. Their example provided a real-

world problem for which SAS RV&V solutions may be demonstrated. The Tamura et al.

(2012) example was generic in nature, and did not provide implementation detail; however, it

was the first cited example of an application where RV&V requirements were delineated for

a SAS application. The example did not provide any detail about the cloud-based component

of the system, nor an architecture on which the requirements were to be implemented. These

details were left for experimentation.

In the proposed WPO system, users browsed a list of products and placed orders. The

problem defined multiple customer types, and thus the system required customer account

 34

functionality as well. A user required an account to purchase a product, but was able to

browse the product list without an account. The four major use cases for this system were:

create a user account, browse a product list, login, and purchase a product. Adaption

occurred to maintain non-functional performance requirements in the form of the settings for

a metric entitled Processing Purchase Orders (PPO). Tamura et al. (2012) defined this

overarching metric as the number of transactions per unit time; however, it was most easily

measured in the example application as the inverse, or unit time per transaction. An average

over a period, such as 10 minutes, achieved the same PPO concept. Two classes of

customers existed in the WPO example: Regular customers and Preferred customers.

Preferred customers were to be serviced 10% faster than Regular customers, and thus an

additional PPO metric was created for Preferred customers (PPPO).

The system requirements also defined three configuration zones based on the two PPO

metrics. The first zone was an infrastructure configuration representing a Regular response

time for all customers. The second zone required that the system operate at Medium capacity

when special offers were placed on social networks or sale days were scheduled using a

system calendar. The last configuration established a cloud-based infrastructure capable of

dealing with the highest peak load defined by atypical shopping days, like Black Friday. The

RV&V system tuned the SAS metrics to optimize system performance over time.

 The non-functional requirements of the system were defined by the categories of QoS

Throughput adherence and Cost reduction (Fu et al., 2007). As server load increased, the

system had to determine when to activate new server instances in order to transition from one

configuration to another. The time between the decision to expand or subtract the number of

 35

server instances - and their availability - constituted the settling time of the system. A longer

settling time provided a direct correlation to increased cost in a cloud-server environment.

As the response time metric falls below the current zone set point, the system must also

decide when to idle servers until all customers have exited, shut the server down, and assume

a lesser zone configuration. The concept of settling time applied to the time that a change in

configuration decision was made until the new configuration was attained.

As Weyns et al. (2012) note, few benchmark examples of SAS RV&V systems existed,

and thus this Tamura et al. (2012) application example provided an important reference for

this and future SAS RV&V work. This example formed the basic structure by which

experimentation was performed. The remainder of this chapter described research areas that

contribute to or were used to expand this work. Each area was incorporated in some way into

the Tamura et al. (2012) example to provide an expansion of the SAS RV&V topic.

State machines

State machines were highlighted in the literature as a common tool used to document

self-adaptive behavior, but few state machine examples supported RV&V aspects of SAS

(Calinescu et al., 2012; de la Iglesia & Weyns, 2013; Tamura et al., 2012). In the context of

SAS, states were named, logical abstractions that documented a point in the system where

input criteria have been satisfied, but output transition criteria remain unsatisfied. Sipser

(2006) provided a reference for classic state machine behavior, and his definition was

adapted to the context of SAS. The formal definition of a state machine, or finite automata

from computational theory, was a 5-tuple (Q, , , q0, F), where Q was a finite set of states,

 was a finite set of input values called the alphabet, : Q ×   Q was the transition

 36

function, q0  Q was the start state, and F  Q was the set of accept or final states (Sipser,

2006). In the context SAS RV&V, there were no final or accept states, as the RV&V

platform was designed for non-stop operation. Lower level state machines, such as those

defined in de la Iglesia and Weyns (2013), may terminate and the state documentation

mechanism should support both types.

Figure 8 showed a state machine example of recent SAS work by de la Iglesia and

Weyns (2013) where they implemented each component of the MAPE-K primary feedback

Figure 8. MAPE-K automata example (de la Iglesia & Weyns, 2013)

loop with formally verified automata. These automata utilized the Uppaal state transition

syntax, but did not allow for the modification of the state monitoring conditions based on

real-world feedback as SAS RV&V requires (Behrmann, David, & Larsen, 2006). As can be

seen in Figure 8, the de la Iglesia and Weyns (2013) feedback loops were implemented with

a logic language surrounding software methods. This approach was similar to that of Villegas

et al. (2011) who evaluated the results of a single MonitoringCondition from an

ExecutableCodeUnit, shown in Figure 4. The Uppaal approach did recognize the need for

evaluating temporal constraints within the state machine, but forced these constraints to be

pre-defined before the execution of the self-adaptive system.

 37

This research also acknowledged that monitoring conditions were formed using logic

that surrounds the output of target application methods. As well, time was a critical factor

needed to evaluate self-adaptive decisions. The Uppaal approach required that scalar values

be assigned at design time (de la Iglesia & Weyns, 2013). In contrast, this research used the

more general LTL syntax, which allows the RV&V loop to assign concrete values at runtime

(Baier & Katoen, 2008). While Uppaal was a documented syntax, it was not widely used

outside of research projects, and Uppaal was really a research tool for model checking. This

research demonstrated that RV&V can affirm the actions of the transition function in the

context of QoS goals, and not only provide further evidence that state machines or automata

are valuable in the context of self-adaption. The RV&V system not only affirmed the actions

of the transition function, but also acted to modify the surrounding monitoring condition

when self-adaptive behavior had to be improved.

 The de la Iglesia and Weyns (2013) work focused on the ability to formally verify

SAS state transition decisions within each component of the MAPE-K loop using not just the

Uppaal monitoring syntax, but the entire suite of Uppaal tools (Baier & Katoen, 2008;

Behrmann et al., 2006). Uppaal provided a timed automata language that implemented hard

temporal constraints on state transitions and a separate constraint language for model

checking. Once a state machine was defined and constraints are applied, the system was

checked in the Uppaal application environment. The desire for formally verified SAS

transition systems was identified in Weyns et al. (2012) and satisfied in de la Iglesia and

Weyns (2013). These works showed both the need for V&V of SAS transitions as well as

the need for oversight of the self-adaptive loop actions. While the earlier work by Weyns et

 38

al. (2012) focused on the need for formal methods in RV&V, the recent work did not show

the true benefit of having a formal model checker as part of the solution. This research

focused less on formal verification of the logic in the primary feedback loop and more on the

integration of RV&V surrounding the target application and the primary feedback loop to

improve overall system goals using QoS measures.

Tamura et al. (2012) proposed a benchmark example as a simple, three state non-

terminating automata shown in Figure 9. This simple presentation was consistent with the

automata structure required by Baier & Katoen (2008) for model checking except that they

applied LTL logic. Figure 9 showed the Tamura et al. (2012) example with the addition of

LTL logic in the state transition arrows. These states defined a higher level of abstraction

than the de la Iglesia and Weyns (2013) approach from Figure 8, which modeled each

MAPE-K feedback loop component as a separate state machine. This higher level of

abstraction highlighted the differences between self-adaptation and RV&V. The de la Iglesia

and Weyns (2013) work defined each possible step of the system in the state machine syntax.

Tamura et al. (2012) defined only general parameters for each state, but they then included a

separate hierarchy of system goals, ordered as (1) non-stop operation, (2) customer

satisfaction, and (3) cost minimization.

 39

Figure 9. Simple state machine view

The state entitled “Normal”, in the Tamura et al. (2012) example, was described by

being able to accept a “Regular Load” of customers on the purchase order web application.

The actual value that identified a “Regular Load” was not specified, and may be optimized

by the RV&V system over time based on the capacity of available hardware. A SAS system

will naturally transition states over time, and this behavior may be increased by RV&V

intervention or decreased by RV&V tuning (Tamura et al., 2012). This research

demonstrated both RV&V intervention and tuning of the Tamura et al. (2012) SAS

benchmark.

The idea of an infinitely running system was also unique from the temporal logic

approach of Calinescu et al. (2012) shown in Figure 6. Calinescu et al. (2012) used a state

 40

machine to determine the next best state transition among multiple options using Markov’s

Random Walk algorithm. In contrast, the Tamura et al. (2012) RV&V benchmark example

did not use probabilities to determine the next successful state transition, but gathered

runtime data to evaluate whether the self-adaption loop is making the right choice to stay

within a Viability Zone. While the use of state machines for SAS seemed to be approaching

a standard, their employment in the context of RV&V required a more general treatment so

that multiple SAS implementations can fit within a single RV&V specification.

Temporal Logic

Temporal logic, and more specifically LTL, abstracted the definition of time-based

behavior in a state transition system by removing the exact definition of time; however, LTL

did implement a logical, temporal progression (Baier & Katoen, 2008; Barringer et al., 2009;

Goldberg et al., 2005; Heimdahl & Leveson, 1996). This differed from the Uppaal approach

employed by de la Iglesia and Weyns (2013) in that their transition logic required exacting

time measurements (Baier & Katoen, 2008; Behrmann et al., 2006). By using the

aforementioned LTL, an infinite transition system could be represented by the following

statement, [always φ until π] (where φ represents the Normal state, and π represents the

Medium state), using the Tamura et al. (2012) example. The time that it takes to achieve π

was not defined in the state transition. Instead, a hierarchical, goal-based system attempted to

minimize this transition time as it equates to lost computing cycles and thus increased cost in

a cloud-based environment. Extending this example, the Medium state may transition to the

High state, or go back to the Normal state; however, the time to achieve the Normal state

would be immediate, using the following logic, [always {π (until λ) | (next φ)}] (where φ

 41

represented the Normal state, π represented Medium state, and λ the High state). This

Medium to Normal state transition was proposed to be observed at the very next

measurement period. The exploration of temporal logic and a hierarchy of goals was a key

component of exploration in this research.

Using the previous LTL example, the statement [always {π (until λ) | (next φ)}] was

easily converted into a graph-based statement shown in Figure 9. The start state of an

automata implies the always statement, and a transition to the Normal state is accomplished

as soon as startup conditions are achieved. The Normal to Medium state transition was the

only available transition and was not represented by this LTL statement. From the Medium

state π, a branch occurred, and temporal logic allowed for a delineation of which branch is

taken. The φ branch back to the Normal state was measured at the next measurement cycle,

but the λ branch takes many measurement cycles to be achieved. Until the High state λ was

achieved, the RV&V system gathered statistics on this cumulative time so that future

decisions were better informed. By using the LTL approach, the flexibility that Tamura et al.

(2012) required of the RV&V loop was provided to the SAS loop. These concepts provided

the basis for the graph-based state machine that this research evaluated.

Goal-based SAS ontologies

Goal-based approaches that include state machines also emerged as a mechanism to

document self-adaptive behavior in a human-readable form (Qureshi et al., 2011, 2012). The

latest of these ontologies from Qureshi et al. (2012), shown in Figure 7, was not suitable for

an RV&V loop to directly ingest, perform monitoring functions, or institute actions when the

 42

self-adaptive feedback loop failed. The Qureshi et al. (2012) approach was, however, among

the first to link goals to states, but did not mention RV&V as a consumer of the ontology.

The Villegas et al. (2011) approach documented a monitoring system in human-

readable form that was also machine-readable using an RDF-based ontology. The ability to

provide a requirements documentation trail that the RV&V system can directly ingest and

update at runtime was discussed in Tamura et al. (2012). The Villegas et al. (2011)

SmartContext identified code units by a Uniform Resource Locator (URL), and this

mechanism was extended to include the monitoring points where the RV&V system

measures adaptive system performance. As well, the system exposed action points where the

RV&V system can inject commands into the feedback loop when a violation occurs. No

current literature documented these action points in human readable or URL form. The URL

format was used in this research to provide unique name for both the monitoring points and

the action points in the simulation.

Since a documentation system should include the capability to define the self-adaptive

state model as well was the RV&V specification, the boundary between adaption and RV&V

can be easily blurred (Calinescu et al., 2012). The self-adaption system should be able to

operate unimpeded by the RV&V platform, when operating within a viability zone (Tamura

et al., 2012), but the role and the decision process for an RV&V system required further

exploration. Previous self-adaption research used off-the-shelf AI-planning systems to make

adaption decisions (Arshad et al., 2004), or made state transition choices using Markov

decision processes (Calinescu et al., 2012). The RV&V system needed a different form of

decision approach from the one in the primary feedback loop, and one that imposed its will

 43

only when a fundamental goal is violated. With multiple actions available, the RV&V

decision process used a simpler decision algorithm than that of the primary decider. Multiple

options were available to the RV&V platform, such as Naïve Bayes, a simple Markov-chain,

or a learning algorithm based only on system goals and input probabilities from previous

measurements (Mitchell, 1997). While the focus of this research was not the selection of an

optimal decision algorithm, an simple rule-based, RV&V decision algorithm was selected.

SAS Requirements Languages

Requirements-driven design techniques were introduced prior to the focus on SAS in

the domain of autonomic computing, and these were easily applied to SAS RV&V

(Lamsweerde, 2000; Lapouchnian, Yu, Liaskos, & Mylopoulos, 2005; Sawyer et al., 2010;

Welsh, Sawyer, & Bencomo, 2011). Lapouchnian et al. (2005) defined a semantics for a

goal-oriented requirements model where the system takes action to achieve requirements

goals. This semantics created a hierarchy of connected goals with actions that help(+), hurt

(-), make(++) or break (--) the connected goal as shown in Figure 10. The work of

Lapouchnian et al. (2005) also described simple statistical techniques that might be used to

 44

Figure 10. Help, hurt, make, or break requirements diagram (Lapouchnian et al.,2005)

select more important goals from lesser ones when adaptation decisions must make tradeoffs.

An RV&V modeling language and system must also have the ability to represent multiple

goals, and rank them independently from states. Using the Tamura et al. (2012) example

problem, the goal hierarchy was defined as minimizing customer delay to preferred

customers as a primary goal, minimizing regular customers’ wait times as a secondary goal,

and minimizing operational costs as a tertiary goal. The ability to integrate an RV&V goal

hierarchy with a self-adaptive state model was a required component of a machine-readable

SAS RV&V modeling language (Calinescu et al., 2012; Qureshi et al., 2012; Tamura et al.,

2012). The determination of how to traverse the hierarchical ranking of system goals was an

area for exploration during this research.

While the Qureshi et al. (2012) model shown in Figure 7 did not utilize temporal logic,

it did propose an infinite state transition model. Qureshi et al. (2012) decorated individual

states with quality goals, but the entire system was not provided with a hierarchy of goals.

 45

Individual states had QoS goals, but the overall system also required a set of quality goals

that should hold independent of the current or future states. The QoS goal structure in Fu et

al. (2007) provided a reference point by which named instances of QoS attributes can be

injected into the ontology. The combination of the Qureshi et al. (2012) linkage of an

ontology with goals, the Villegas et al. (2011) RDF utilization of URLs to link metrics to

objectives, and the Fu et al. (2007) QoS hierarchy provided a complete structure to describe

RV&V monitoring.

Summary

The literature referenced in this section supported further research in the following

areas of SAS RV&V. The call for a standard, lightweight RV&V capability demonstration

was necessary to establish a baseline for this topic, and allows future community expansion

(Weyns et al., 2012). To achieve RV&V independent from self-adaption, a hierarchy of

goals must be complementary to the state transition logic of the self-adaptive system. This

goal hierarchy must have a decision sub-system that is also independent of the self-adaptive

feedback loop, but was not invasive during normal operation (Tamura et al., 2012). State

transition logic required a syntax that allowed the RV&V platform to improve the settings for

state management over time, and the temporal logic approach allowed for this tuning of time-

based parameters. The RV&V system demonstrated a syntax and semantics that is readable

by both humans and the adaption system using a combination of the Qureshi et al. (2012)

goal approach and the Villegas et al. (2011) RDF approach. The combination of these

research ideas determined if an RV&V system adds measurable value to the SAS feedback

loop.

 46

Chapter 3

Methodology

Overview

This research expanded upon the Villegas et al. (2011) SLA governance structure by

implementing RV&V goals and states in a self-adaptive application, and then measuring both

application throughput and cloud-based costs to determine if improved QoS performance

were achieved. The works of Weyns et al. (2012), Calinescu et al. (2012), and Tamura et al.

(2012) each called for the introduction of a self-adaptive RV&V capability, but specific

methods were not introduced. The Tamura et al. (2012) web-purchase order (WPO) target

application was implemented as the primary research platform in a cloud-based environment,

and this environment was used throughout the research.

In the first phase of experimentation, a single server in the WPO cloud-based platform

was loaded with client transactions to determine the number of web clients required to

saturate a single-server. As well, set points for normal and preferred customer response time

were determined. In the second phase of the research, a self-adaptive feedback loop was

introduced to monitor the target application using the expanded ontology structure of SAS

states and RV&V goals. The objective of this second phase was to determine if a second-

level, RV&V feedback loop improves QoS over the primary, self-adaptive loop. Time-based

test cases were run with self-adaptive-only feedback enabled, and then the same test cases

rerun with SAS RV&V enabled to determine if QoS metrics are maintained while overall

system costs were reduced.

 47

This work demonstrated multiple facets of SAS RV&V. First, the addition of an

RV&V feedback loop validated that the self-adaptive system was operating within its

boundaries. Secondly, the RV&V feedback loop used quality goal feedback to improve the

performance of the primary, self-adaptive feedback loop by reducing operating costs yet

maintaining system throughput. Third, the use of temporal logic in a state machine enabled

the feedback system to recognize opportunities to limit settling time. Lastly, the

establishment of a standard mechanism to communicate QoS goals to self-adaptive

applications allowed for the introduction of different RV&V approaches to be evaluated

quickly against a consistent problem space.

This chapter provided a detailed overview of the experimental system that must be

developed, a description of the ontology expansion, a detailed description of each test case,

the complete experimentation approach, the analysis methods employed, and required

resources. The first section of this chapter provided a description of the ontology expansion

made to the Villegas et al. (2011) structure. Next, a general overview of the entire

experimental system was provided, and then each component of the experimental system

design was described in further detail. The detailed design discussion of the experimental

system included the WPO target application, self-adaptive and RV&V feedback loops, and

web load simulator that all run in a cloud-based environment. A discussion of the first phase

test cases and approach used to collect baseline statistics was also provided. Finally, the full

set of test cases that were used in the second phase of the experimentation was described,

along with the approach for analyzing results. Resource requirements were then defined.

 48

Representation Overview

The Villegas et al. (2011) governance taxonomy, shown again as Figure 11, was the

basis on which the SAS application and the RV&V measurement approach was documented

in the experimental system. SmartContext – the name of the Villegas et al. (2011) taxonomy

– defined SLAs as statements of performance that were further defined as one or more SLOs

measuring values attained by a service interface. The SLO was defined by a triple (p, a, s),

where p was an n-ary predicate used to evaluate a quality property, a was an action to take if

p was violated, and s was a post-condition that defined service operation after a takes place

(Villegas et al., 2011). Taxonomy elements were linked together via object properties into an

RDF graph shown in Figure 12, and this graph provided a machine-readable method by

which a governance system can measure compliance. This governance framework was not

specifically developed for RV&V, but was suggested by Tamura et al. (2012) as an example

of a structure that could be expanded to provide SAS RV&V. No specific SAS elements

were defined in SmartContext, but much of the same contextual information was reused for

self-adaption.

 49

Figure 11. SmartContext (Villegas et al., 2011)

The RDF graph in Figure 12 provided a basic example on which to monitor a

governance objective. The target software application was referred to as ServiceA. It had a

governance guarantee in the form of a Performance SLA and a single Efficiency SLO. The

SLO contained a single MonitoringCondition rule using output from a MonitoringFunction

that combined the output of two ServiceA interfaces to form the TimeBehavior (TB) metric.

For the experimental system it was proposed that this same structure be utilized, but

expanded to provide a hierarchy of RV&V goals.

 50

Figure 12. Service level agreement monitoring RDF structure (Villegas et al., 2011)

 RDF graphs provided a mechanism to link content into machine readable form, but

were not true ontologies. A true ontology approach defined the domain and range of each

entity, and defined the schema by which object and data properties were attached to entities.

To accomplish this, the Villegas et al. (2011) taxonomy was re-entered using the Protégé

(2012) ontology editor, and each SmartContext entity was given domain and range

limitations that are enforced by Protégé. The structure of SmartContext with possible SAS

and RV&V expansions was stored in an ontology referred to as R1, and this ontology was

imported into the final experimental ontology R2. R1 can be thought of as the schema that

restricts the relationships in which entities and properties can participate. Each ontology was

developed in Protégé and saved in the OWL format. Contextual entities were stored in R2

and included the names of Servers One through Five, their IP addresses, service names, and

URI endpoints where their interfaces are exposed. Service names included the WPO,

 51

DatastoreService, Feedback, and SimpleQueueService. Specific interfaces of each service

will be detailed in the following sections.

 The first proposed expansion to SmartContext was the addition of a State and

temporal logic on which the self-adaptive behavior was documented. The StartState had a

sub-class relationship with a State so that it was easy selected from the ontology graph.

SmartContext had a definition for Definite Time, but temporal logic required Relative

time to be available for its entities. The Always, Eventually, Next, and Until entities were

implemented in the R1 schema as Relative entities. Each temporal logic element required an

object property that linked the relative time entity to a SAS MonitoringCondition and

adapted from that in Figure 12. For the experimental system States were uniquely identified

by the server names associated with each State. For example, the Normal state had an object

property attached called isDefinedBy that contained a link to the HardwareInfrastructure

entity shown in Figure 11.

 With the addition of state transitions and temporal context, the feedback system –

whether SAS or RV&V – programmatically identified the points in the system lifecycle

where settling time may be addressed. The Until state transition decorator provided a marker

that the feedback system used to minimize time associated with settling between states. In a

generic sense, Until transitions constitute a point in system behavior where the transition

trigger logic was modified by the RV&V system to minimize settling time behavior. The

Next transition also required an RV&V modification.

In the context of this experimentation, the RV&V set points were not modified by a

distinct settling time goal triggered by the Until decoration. The QoS goals established in

 52

this experimental system naturally tended to limit settling time, and thus an additional

settling time goal and associated rules did not provide statistically significant benefit. A

more detailed description of Until behavior as it relates to settling time is addressed in the

feedback loop section.

For the general case, the Next transition type did not specifically define a settling time

opportunity. Specific rules in the SAS and RV&V Planner were required to address Next

transitions, but these Next state decorations did not provide a settling time demonstration

opportunity in this experimentation as the spin up and spin down times for the WPO servers

were very short.

The second additions to the SmartContext structure were RV&V entities and QoS

metric types. Much like SLAs, RV&V Goals were defined by a sub-graph of

MonitoringConditions, MonitoringFunctions, and violation actions. A Goal, however, was

system-wide, and not tied to a single service as shown in Figure 12, and a Goal was linked

into a hierarchy where subordinate Goal actions were negated in order to maintain a higher-

level Goal. This concept of higher-level Goal satisfaction was the most significant

component of the changes from the SmartContext approach. A Goal was further defined by

a type of QoS metric, such as Performance, or Cost from Fu et al. (2007). These QoS goals

were also directional, and informed the system which direction to orient the system in order

to best achieve the goal. Example directions included Maximize or Minimize. These

directional titles were optimization suggestions, not the requirement for formal mathematical

techniques. An example of the proposed WPO feedback subsystem goals were shown in

Figure 13 below where the red entities exist in the ontology and the yellow entities are

 53

implied by the ontology structure. The combination of these new context entities within the

existing SmartContext allowed for RV&V monitoring.

Figure 13. WPO feedback goal structure

Each entity and property in SmartContext was manually entered with domain and range

values added using Protégé (2012), and an example domain and range entry screen was

shown in Figure 14. Figure 15 showed the proposed entity additions to the SmartContext

taxonomy in an ontology format extracted from Protégé (2012). First, Relative time concepts

were added at the same level as that of Definite time. Under the Relative time entity each of

the proposed temporal logic components were added. Next, the QoS metrics were added

under the Artificial context entity. Under the Artificial context entity, State and StartState

entities were added to allow for the creation of verifiable finite state machines. As well, the

Goal and HighestGoal entities were added to Artificial and provided for the hierarchical

 54

approach described earlier. Each of these proposals was demonstrated by experimentation,

but were modified slightly to meet experimentation goals. The final ontology approach was

not the focus of experimentation, but can be derived from the final state machine displayed in

the Results section.

Figure 14. Protégé ontology development screenshot

 By using the proposed expanded taxonomy shown in Figure 15, an ontology of SAS

and RV&V knowledge was developed. This data structure informed components of the SAS

and RV&V feedback loops how to monitor a specific target software system – in this case the

WPO research example. A sample of the ontology sub-graph that represents the state

transition system was shown in Figure 16. This figure demonstrated the integration of state

transitions and temporal logic to guide the system by defining the proper state to assume with

 55

changing contextual behavior. A synthetic state, called Start, was an instance of the ontology

class StartState so that the Feedback application easily located it as the entry point into the

state machine. The transition from Start to Normal utilized an Always decorator. Movement

from the Normal state to the Medium state passed through a Until entity. This type defined

that the system must continue to operate in the Normal state Until the Medium state was

achieved. Using the same RDF graph approach shown in Figure 12, the state transition

monitoring approach was developed using a MonitoringCondition and AdaptionRequestor to

move the system to the next system state. MonitoringCondition rules for SAS and RV&V

are shown in the next section. The PostCondition was that the temporal logic constraint has

been satisfied, and the system was in a subsequent state per the state machine.

Figure 15. Possible SmartContext class hierarchy extension

 56

 The experimental representation of SAS and RV&V contextual items provided a

generic mechanism by which SAS and RV&V transitions were documented and automated in

the feedback loops. By using an ontology versus just an RDF graph, structure was provided

to the documented system so that future inference capability can be applied in the Planner.

Structures such as States and Relative time, shown in Figure 16 below, were added to the

SmartContext taxonomy in order to permit the management of SAS transitions at the system

Figure 16. Proposed state transition diagram

level versus at the level of an individual software service or interface. Additional RV&V

structures such as the Goal structure were inserted into the MonitoringCondition hierarchy to

provide a mechanism to measure QoS metrics and react when a Goal violated. By making the

Goal a hierarchical component, subordinate Goal actions were suppressed when their

 57

implementation violates higher-level goals. The ontology described here was not read into

the Feedback subsystem by the Analyzer subcomponent, shown in Figure 17 as the

transformation from RDF to objects was not the focus of experimentation. The next section

introduced the experimental system that will utilize this representation.

Experimental System

The experimental system utilized the Amazon AWS (“Amazon web services,” 2013)

cloud environment and ran on Ubuntu Linux (“Ubuntu,” 2013) images as the server

infrastructure of the WPO application, feedback loops, and load simulator. A Unified

Modeling Language (UML) component diagram of the Tamura et al. (2012) benchmark

example and RV&V framework implementation was shown in Figure 17 (“Unified modeling

language,” 2013). Tamura et al. (2012) suggested a cloud-based approach for their WPO

reference problem, and AWS was the chosen platform on which the experimental system was

implemented.

In this section the major components of the Figure 17 architecture are discussed.

Subsequent sections break down the WPO, feedback loops, load simulator, and AWS

services, and described the individual applications. Working counterclockwise from the top

right of Figure 17, each major server component is now described. The WPO was a web

application that may be duplicated on multiple servers in order to scale with user load. Each

WPO application instance was hosted on a single server, and additional WPO servers were

added to the environment as external context changes trigger server configuration changes.

The web and application tiers of the WPO application were housed within a single server

environment, but the database tier was separate from the WPO application. Measuring WPO

 58

transaction times under increasing load was the focus of the feedback system, and thus the

scalability of the WPO application across multiple servers was a key component of the

design. The WPO servers also provided a definitive architectural construct with which to

demonstrate settling time behavior. When adding an additional server to the environment,

the time where the added server incurs cloud server costs, but was not providing benefit to

the WPO environment was an example of settling time. As well, the time when a server is

being deactivated also constituted settling time behavior. The input interface to the WPO

component – iWebPurchase – was a standard HTML interface. The first output interface was

a queuing service to serialize the QoS metric of transaction time and number of concurrent

connections per server (CC/Svr) on the WPO application. The second was a datastore

interface to synchronize user and product configuration information for the website, and to

store completed purchases. Figure 17 showed servers three through five as the WPO

application servers that was the focus of load-based test cases in both phases of

experimentation.

The next component of the platform was a load balancer to spread client connections to the

WPO across available servers, and the AWS Elastic Load Balancer (“Amazon elastic load

balancing,” 2013) shown between server two and three through five allowed multiple WPO

server instances to operate in parallel and service simultaneous web requests. The

combination of the WPO servers and the load balancer comprised a basic working web

application without SAS or RV&V feedback in the component architecture.

 59

Figure 17. UML component diagram

The web load simulator, shown as server two, was not prescribed by Tamura et al.

(2012), but was a required component to drive experimental load. This simulator created

multiple web clients to load the WPO application servers to the level defined by the test

cases. The SimulationManager read in serialized test cases and generated the appropriate

number of web clients per time period. It also managed the simulation events via the iSale

 60

interface for the entire environment by generating sale day of year, social network sale

events, and black Friday sale events as defined by the test cases. The simulation server was

sized so that a single server could generate enough simultaneous client transactions to

achieve the test case loads that were described later in this chapter.

The primary and secondary feedback loops – depicted in the bottom half of Figure 17 –

constituted the SAS and RV&V components of the application. These components represented

seven logical modules of the Feedback application that are linked together via an event listener

pattern to form the Tamura et al. (2012) SAS RV&V framework. Each module performed a

specific role in the feedback process that will be further described in the feedback loop section.

At a high-level, the Feedback component gathered internal context in the form of WPO

transaction times and concurrent connections per server from a database queuing service, and

external context from the iSale interface regarding the sale event previously described. The

feedback component issued commands through the ServerManager interface to add or subtract

WPO application servers. Like the simulation server, the feedback loop’s performance was

not to be considered a measured component of the research, and thus this server was sized so

that server load – whether CPU or I/O – was not a limitation during experimentation.

The last component in Figure 17 was a set of wrappers around supporting AWS

services that are used by the previously described components. The transaction performance

QoS metrics and concurrent connections metrics, previously discussed, were logged to the

iSimpleQueueService or iDatastore service interface. These two interfaces were

implemented by simply polling a database transaction table using a stored procedure based

on a timer in the Feedback application. The metrics from this table were the primary input to

 61

the feedback loops and are described in detail in the next section. AWS provides a queue

service on which to implement the iSimpleQueueService, but simple MySQL queries using

the stored procedure were utilized. AWS also provided multiple Structured Query Language

(SQL) data store services from which to choose. The MySQL RDS instance was the selected

datastore capability to implement the iDataStore interface. It held the static WPO

configuration information

 and purchases from the WPO. The last component and interface depicted at the

bottom of Figure 17 was the iServerManager. This application is a thin wrapper around the

AWS server Application Programmer Interface (API) for stopping, starting and load-

balancing AWS images. The iServerManager interface was implemented as scripts wrapped

around the AWL Command Line Interface (CLI). Calls to these scripts were made from the

Feedback application with appropriate input parameters. The AWS CLI services were also

not an evaluated portion of the experimentation, and it was assumed that these services can

scale to meet the simulated loads experienced by the WPO servers. The following sections

decomposed each component into its individual applications.

WPO Target Application

In this section the WPO target application architecture, requirements, and flow were

described. The WPO, shown in the top right of Figure 17, was a simple purchasing website

that was used as the target application for all SAS RV&V experimentation. The WPO was

implemented using the Apache Wicket (“Apache wicket,” 2014) web application framework

to ease the coding of the web application, and each WPO application ran in a single Apache

Tomcat container (“Apache tomcat,” 2013) per server. Wicket applications used only pure

 62

HTML pages as the web front end, and pure Java server-side components (Dashorst &

Hillenius, 2009). HTML components were replaced by embedding wicket identifiers in the

HTML. By using this pure HTML/Java architecture, automated web clients more easily

loaded the WPO application without the complexity of executing JavaScript on the client

side. Most automated HTTP web client APIs do not execute embedded JavaScript.

The WPO application followed the page flow shown in Figure 18. Six pages were

available to users. These were the HomePage, CustomerLogin, CreateAccount, ItemDetail,

Cart, and Purchase webpages, and their interactions were also shown in Figure 18. First, the

HomePage presented 15 items for purchase. Each item had a graphic image, name, price,

and a link to the ItemDetail page. Graphic images were stored on the web server and the

application associated images to the appropriate product using a filename URI stored in the

database.

 63

Figure 18. Web page model

The products displayed on the HomePage were populated from the SQL datastore. On the

HomePage, there was an additional link to the CustomerLogin page. Once a WebClient has

logged in, they were returned to the HomePage and may then Purchase products. Whenever

a WebClient accessed the HomePage, a start time was recorded to capture the start of the

session. This session time was referred to as the Processing Purchase Order (PPO) metric.

Each WPO session that results in a purchase logged this metric to the datastore, and values

averaged by minute drove Feedback loop operations. The PPO time records also included a

flag to delineate preferred PPO time from regular PPO customer transaction times. Preferred

customers had a different set-point for service time than regular customers, and this set-point

 64

was established at 90% of the regular PPO setting for this experimentation (Tamura et al.,

2012). This 90% set point was established in the RV&V description provided by Tamura et

al. (2012) as a setting that may be modified by the RV&V feedback system at runtime. For

the purposes of this experimentation set points were not modified, but this capability was

available to the architecture as a possible focal point for future work.

When a product link was selected on the HomePage, it took the user to the

ProductDetail page where the image, name, description, and price were re-displayed. This

page also displayed the product price, a link to add the product to the Cart, the quantity of

products in inventory, and a quantity to be purchased entry box. The initial quantity available

for each product was 20. No desired behavior or limitations drove the selection of this value

for product quantities. Product quantities, or the lack thereof, had no impact performance of

the experimental system. The ProductDetail page also provided a breadcrumb that allowed

the WebClient to navigate back to the HomePage if the product was not added to the cart.

When a product was added to the Cart, the WebClient was taken to the Cart page. The

Cart page contained a list of the selected products in the current transaction by name, price,

and quantity. If the WebClient was not logged in, products may still be added to the Cart,

but they could not be purchased. If a WebClient abandoned a Cart, it was then returned to

the HomePage. The PPO end time was not recorded for these failed purchase sessions as

PPO inherently implies a completed transaction. Other metrics could be devised to evaluate

failed purchase transactions in future work, but the Tamura et al. (2012) description did not

go into sufficient detail to address the impact of failed transactions due to inventory outages.

If a WebClient attempted to purchase a product whose available quantity is zero, that session

 65

failed, and the page will be redirected to the HomePage. As a side effect of this failure, the

item available quantity was reset to 20 as the normal way of simulating a restocking of a

product for the WPO application. No costs were associated with the restocking of product in

the simulation. A link to the CustomerLogin page was also be available from the Cart page.

If a WebClient navigated to the CustomerLogin page, they could login or create an account

from this page. Once logged in, the CustomerLogin page returned to the Cart page.

The CustomerLogin page was able to be accessed to from the HomePage or from the

Cart page. The CustomerLogin page required the WebClient to provide an email-based

username and password. These two text fields can’t be the same value and were required to

match an existing account in the SQL datastore. Upon a successful login, the WebClient was

returned to the page they were on prior to navigating to the CustomerLogin page, and the

name of the account holder displayed in the top right of the page banner replacing the Login

link. New users to the site navigated from the CustomerLogin page to the CreateAccount

page. This page contained text entry boxes for a first name, last name, email address, and

password. The last item that a new user entered was a check box to determine if they are a

PreferredUser. The users defined in the ExperimentalRepresentation identified whether they

were a Regular or Preferred User in order to utilize this check box. Once these items were

submitted, the user was redirected back to the CustomberLogin page to authenticate.

From the Cart page a WebClient that was logged in may purchase items, and view

that purchase on the PurchaseSummary page. The PurchaseSummary page displayed cart

information, a total price, the date that the items on which will be delivered. The WebClient

considered these steps a completed transaction five seconds after the PurchaseSummary page

 66

was displayed, and then returned the user to the HomePage. The WebClient ended the

transaction at this point, and the PPO timer recorded the total time of the web transaction.

Recent comparisons of customer shopping behaviors noted that the time between

clicks in a completed customer transaction was insignificant to overall behavior for shopping

experiences between five and 30 clicks (Gupta, Mittal, Singla, & Bagchi, 2014). Every WPO

transaction completed within this stated click range, and thus the use of the five second

delays throughout this research had no not impact results. Gupta et al. (2014) also noted that

a typical customer transaction was a constant at 6.8 minutes, independent of the calendar or

specific shopping events. The Gupta et al. (2014) work stated that treating a web shopping

transaction as a directed graph with a defined end state could be evaluated by a time-

homogenous model, and thus individual click-timings were not significant to shopping

behavior. Thus, the click timing in this WPO application was defaulted to a single value of

five (5) seconds throughout. No attempt was made with this selection to simulate or negate

CPU or I/O load factors caused by this click delay. The determination of whether CPU or

I/O load emerged as the dominant factor was unknown prior to experimentation, but

experimentation showed that the mixed 1-idle% provided the best metric of system load.

The WPO application populated items and authenticated users from a SQL datastore

consisting of a USER, PRODUCT, and ORDER tables. This simple schema shown in Figure

19 will allowed a user to place many orders, and an order consisted of one or many products.

An intermediate PRODUCT_ORDER table provided the linkage between this many-to-many

relationship. A separate PPO_METRIC table collected the duration of each transaction using

the transaction start and end times. This information was used by the feedback system to

 67

determine a mean PPO value for each evaluation time period, which was defaulted to one

minute. The one minute value was selected as a sampling period that would be greater than a

standard transaction so that transactions of at least one regular or preferred customer would

always occur within a sampling period. No more detailed reasoning was applied to this

sampling period.

Figure 19. WPO application data model

 68

Feedback Loops

This section described the Server One feedback subsystem shown in the Figure 17

component diagram. The entire feedback system was contained within a single Java

application, aptly called Feedback. This application consisted of a main module and seven

additional sub-modules that implemented the MonitorAggregator, SasMonitor,

RV&VMonitor, Analyzer, RV&VPlanner, SasPlanner, and Executor subsystems from the

proposed Tamura et al. (2012) RV&V feedback approach. This feedback system supported

both RV&V and self-adaptive behavior through the same external interfaces. During

experimentation, RV&V output was disabled in order to establish SAS baseline performance

data via settings in the resource bundle. A general description of the external, component-

level interfaces and subsystem performance were provided next and then details of each

thread’s characteristics were further expanded.

The Feedback application was manually started once Server One booted from its

virtual machine image. The Feedback system initialized itself using an object representation

of the ExperimentalRepresentation ontology. This representation contained all context

necessary to define both SAS and RV&V feedback behavior for WPO application scaling.

The Feedback application registered with the iServerManager interface at startup and then

waited for a message from the iSale interface to inform the Feedback application that the

simulation has started. Feedback subscribed to an input interface from the iDataStore to

gather external context in the form of the PPO and CC/Svr metrics, and these metrics were

gathered once a minute to align with the PPO sampling time as discussed in the previous

section. The Feedback application also gathered external context from the iSale interface to

 69

determine sale day and social network events. As noted above, this same iSale interface also

started and stopped the simulation via a simple Boolean variable getter. The last interface

was the input/output interface to iServerManager. This interface contained the registration

status functionality and a set of simple getters and setters that tell the ServerManager to log

the starting or stopping each of the WPO servers.

After registration of the Feedback application was complete, the first task to be

spawned was the Analyzer. This task’s role was to replicate the ExperimentalRepresentation

into an in-memory database for the feedback subsystem. It had no feedback logic, but kept

the ontology up-to-date and distributed data to the other appropriate tasks in the feedback

loop. The data in the static object model contained the SAS states, RV&V goals, and other

context information needed to conduct experimentation. Each fact in the object model was

tagged so that the appropriate task was notified of state changes during initialization. For the

purposes of this experimentation, the entire initialization sequence using the

ExperimentalRepresentation was short-circuited, and downstream tasks were pre-initialized

with the data they need to conduct simulation runs. This shortcut reduced the synchronization

coding, but did not impact experimentation. During simulation runs, the in-memory view of

the ExperimentalRepresentation was updated with new state information from the previously

discussed interfaces. The iPlannerInfo interface notified all other tasks that an updated data

item was available, and each data item was tagged with the appropriate name for which the

data was destined. The iChange interface aggregated changes in monitoring context from the

SasMonitor and RV&VMonitor via the iSasChange and iRV&VChange interfaces,

respectively. All interfaces internal to the Feedback application implemented a modified

 70

Observer pattern (Gamma, Helm, Johnson, & Vlissides, 1995) so that the Analyzer gained

and advertised the status of a changed data item, updated the model, and then announced it to

all subscribers via the iPlannerInfo interface.

 The next task to be activated was the SasMonitor. This task read from the

iPlannerInfo interface, described above, and initialized all SAS monitoring. For this

experimentation, the SasMonitor was only concerned with determining when a sale, a social

network event, or black Friday event occurs. These events were delivered to the SasMonitor

by the iGetContext interface from the MonitorAggregator. iGetContext messages were

tagged as SAS or RV&V changes. When any of these SAS events occurred, the SasMonitor

advertised the change via the iSasChange interface.

Like the SasMonitor, the RV&VMonitor only focused on the context items assigned

to RV&V via the iPlannerInfo interface. The RV&VMonitor started up right after the

SasMonitor and collecSted the two PPO metrics and CC/Svr metrics for each of the three

WPO servers. These metrics were delivered to RV&VMonitor via the iGetContext interface.

The RV&VMonitor then delivered these metrics to the Analyzer via the iRV&VChange

interface. No strong system logic was contained in the RV&VMonitor, except that it delivers

RV&V context changes to the Analyzer.

The MonitorAggregator was the input frontend for the Feedback application. All

internal and external context inputs were delivered to the MonitorAggregator. This task

polled for the metrics described above from the iDataStore service. Thus, this task managed

a timer for each interface, woke up at the appropriate time, and sampled the interface for

updated context. MonitorAggregator also polled the iSale interface to get changes in the sale

 71

configuration of the system, and like the downstream monitors configured itself using the

iPlannerInfo internal interface. The MonitorAggregator posted all context updates to the

iGetContext output interface with the appropriate routing information for either the

SasMonitor or RV&VMonitor. Again, the MonitorAggregator had little system logic, but

derived all behaviors from the configuration information provided by iPlannerInfo at startup.

The SasPlanner contained the simple SAS logic for the experimental example. The

SAS logic and its representation were discussed in further detail in the Data Representation

section that follows. The SasPlanner used the States from the ExperimentalRepresentation to

move from a single server to a three server configuration based on external context input.

The SasPlanner followed the rules defined in Figure 20 below. If a SaleDay status was

TRUE, the SAS response was to tell the Executor to start a second instance of the WPO

application on Server Four by moving to the MEDIUM_STATE using Rule1. When the

SaleDay status transitions from TRUE to FALSE, the SAS response delivered to the

Executor was to shutdown Server Four using Rule4.

This same approach was used when a SocialNetwork status equates to TRUE. If a

BlackFriday status was TRUE, the SasPlanner told the Executor to activate Server Four and

Server Five per Rule3, and then shut Server Five down when the status goes back to FALSE

using Rule6. When the system is operating in the HIGH_STATE and all events are false,

then it transitioned back to the NORMAL_STATE. On the subsequent metric sampling

Server Four was shutdown using Rule4 or Rule5. Each of these commands was delivered to

the Executor over the iCommand interface. The only input to the SasPlanner was from the

iPlannerInfo that informed both Planners of context changes to evaluate.

 72

Figure 20. SAS state transition rules

 SAS transitions were not based on load measurements as described above. They were

only based on external context changes, such as SaleDays, SocialNetwork events, or

BlackFriday sales. In this experimentation the SAS feedback subsystem reacted to sale

events, and the RV&V subsystem monitored customer throughput and cost to determine if

additional remedial actions should be taken.

The RV&VPlanner followed a similar startup approach to that of the SasPlanner to

startup and configure itself. The RV&VPlanner focused on comparing five metric values to

RULE1: if ((NORMAL_STATE) && (SaleDay == TRUE))

 then GOTO_MEDIUM_STATE

OR

RULE2: if ((NORMAL_STATE) && (SocialNetwork == TRUE))

 then GOTO_MEDIUM_STATE

OR

RULE3: if (((MEDIUM_STATE) || (NORMAL_STATE))

&& (BlackFriday == TRUE)))

then GOTO_HIGH_STATE

OR

RULE4: if ((MEDIUM_STATE) && (SaleDay == FALSE))

 then GOTO_NORMAL_STATE

OR

RULE5: if ((MEDIUM_STATE) && (SocialNetwork == FALSE))

then GOTO_NORMAL_STATE

OR

RULE6: if ((HIGH_STATE) && (BlackFriday == FALSE)

 then GOTO_MEDIUM_STATE

RULE6: if ((HIGH_STATE) && (BlackFriday == FALSE &&

SocialNetwork == FALSE && SaleDay == FALSE)

 then GOTO_NORMAL_STATE

:

 73

the set points provided from the ExperimentalRepresentation. Note that each of the set

points were determined in the Phase One experimentation. For this purposes of these

experiments, the Planners did not change the set points during execution, but only reacted to

goal violation. As noted previously, reduced settling time will not be addressed in this

experimentation; however, Until state transitions did provide a hook by which an

intermediate MinimizeSettlingTime rule between the MaximizePPO and MinimizeCost could

be applied to reduce the perceived settling time caused by second server spin up. This rule

also suppressed the MinimizeCost rule during state transitions. This rule was not

demonstrated in this research, but the architecture easily supports such a rule construct. It

should also be noted that the spin up and spin down time associated with the WPO

application did not provide a sufficient structure by which settling time improvements could

be clearly demonstrated.

The equations that verify whether a goal has been achieved were called

MonitoringConditions, using the Villegas et al (2011) terminology, and each rule correlated

to a ServiceLevelObjective (SLO). The RV&VPlanner first serviced the highest goal –

MaintainCustomerThroughput. This goal was verified by making sure the RegularPPO was

less than the RegularPPOSetpoint. Each of the customer throughput goals were shown in

Figure 21 below. The second verification rule was that the PreferredPPO was also less than

the PreferredPPOSetpoint. A violation of these goals forced a change to the SAS state model

by moving to the NEXT_STATE. When RV&V is active, the RV&VPlanner commands took

priority over the SasPlanner commands.

 74

Figure 21. Maintain customer throughput monitoring condition

Thus, the SAS commands to activate a server on a sale day may be suppressed if the PPO

metrics were not violated, saving server runtime costs. If a PPO metric was violated, then

the RV&VPlanner issued a command over the iRV&VCommand interface to spin up another

WPO server.

The second goal that the RV&VPlanner enforced was the MinimizeCost goal. This

secondary goal looked at the CC/Svr metrics for each server and executed the

MonitoringCondition logic of Figure 22. The actions of secondary goals may only be

executed if they did not violate the rules of a primary goal, and therefore the rules of Figure

21 always took precedence over Figure 22’s goals. This approach was the key outcome of

Figure 22. Minimize cost monitoring condition

the Hierarchical, goal-based governance approach over the standalone Villegas et al. (2011)

approach. The MinimizeCost goals shutdown a server as soon as the number of concurrent

RULE1: if (RegularPPO >= RegularPPOSetpoint)

then GOTO_NEXT_STATE

OR

RULE2: if (PreferredPPO >= PreferredPPOSetpoint)

then GOTO_NEXT_STATE

RULE3: if ((Svr4 == ACTIVE && Svr5 != ACTIVE) &&

(CC/Svr3 + CC/Svr4 < MaxCC/Svr)) then SHUTDOWN Svr4

OR

RULE4: if ((Svr4 == ACTIVE && Svr5 == ACTIVE) &&

(CC/Svr4 + CC/Svr5 < MaxCC/Svr)) then SHUTDOWN Svr5

 75

connections on two servers was less than the maximum number for a single server. With

RV&V enabled the MinimizeCost goal reduced the total server activation time over SAS-

only operation.

 The Executor was the last task in the Feedback subsystem. This task simply took

commands from the SasPlanner and RV&VPlanner via the iCommand interface, made sure

they were not conflicting, and used the iServerManager interface to activate or shutdown

WPO server instances. The iServerManager interface had a simple setter interface that

activated or shutdown a WPO server. Conflicts could occur when a SAS command conflicts

with an RV&V command. For this experiment, RV&V commands always took priority over

SAS commands. While the Executor also had an iPlannerInfo interface, this interface was

not needed for this experimentation.

Simulator

The SimulationManager was the last component in the experimental system shown in

Figure 17. This was a standalone application that performed three major tasks. First, it read

in the test case description file, and initialized itself. This file utilized the Javascript Object

Notation (JSON) file format to define a fractional load-rate value per-hour as a factor of the

maximum number of concurrent connections per server determined in the Phase one

experimentation. This load rate was used to determine the number of web client threads

that were utilized to appropriately load the WPO application. The second feature of the

JSON file was that it defined when sale events occurred. A sample of the object data for

both load and event timing was shown in Figure 23 below.

 76

The second major task of the SimulationManager was to create and maintain a pool of

threads that will act as HTTP clients to the WPO application. At startup, this pool was

initialized to three times the number of maximum concurrent connections per server that was

determined in the Phase one experimentation. Since Phase One experimentation was focused

on a single WPO server, it was assumed that three times the number of threads necessary for

Phase One test cases was sufficient to execute the test cases across the three WPO servers. A

web client thread waited until the main timing system activates a session. The timing system

then passed in a random number that the web client used to associate itself with one of 25

Figure 23. Load and event timing JSON example

possible users. No behaviors or limitations were implied by the selection of 25 users. The

only expectation on the selection of the number of 25 users was that user account creation

more highly loaded the system early in test cases, but this lower number of users caused

account creation to cease early in each test case. Users were not created prior to the

{

“load” : {

“0000” : “0.25”,

“0100” : “0.35”,

….

“1600” : “1.25”

},

“events” : {

“saleDay” : {

“start” : “0000”,

“end” : “2359”

},

“socialNetwork” : {

“start” : “3600”,

“end” : “3630”

}

}

}

 77

simulation, but were created as part of a WPO transaction, if they don’t exist. This approach

provided some variation in transaction timing and more realism for the simulation. Web

clients were also initialized with one of three possible approaches to the WPO application.

The first approach was be a login, a random selection of a number of items, and a purchase.

The second approach was browsing for items, attempting to purchase items, a forced

login, and then finally a purchase. The last approach was to browse items, but abandon the

session before a purchase. The last approach was executed much more often as the first two

to simulate browsing, but not buying, activity being the predominant session for a purchasing

site. Further discussion of this browsing behavior was addressed in the test cases section

below.

The last major function of the SimulationManager was to announce sale day, social

network, and black Friday events via the iSale interface. A setter function allowed the

application to set each of these events to a TRUE state, and the interface retained that state

until the end time arrived. The main thread of the SimulationManager managed the time, per

the test case definition file, and determined when a particular sale event was in force or

expired. The SimulationManager also logged all activities in a local log file in order to

provide a basis for debugging and subsequent analysis. The SimulationManager provided

the capability to simulate the entire experimental platform via a file-based, configurable

interface, which was used in both phases of experimentation.

 78

Test Cases

Two forms of test cases were defined in this section. In the first phase of

experimentation the proposed test cases were designed to establish settings so that a

programmable load can be generated in phase two. Phase one also established the maximum

PPO and CC/Svr set points needed to instrument the second phase of experimentation. Phase

one test cases were executed concurrently, and the experimentation section further defined

how they are employed to establish the measures needed for subsequent experimentation.

The second phase test cases were designed specifically to address the stimulus events

described in the Tamura et al (2012) application example. The following sections described

each test case in detail and the reasons why their characteristics were necessary for this

research.

Phase One Test Cases

The WPO application modeled a simple sales website with common features like a

shopping cart and purchase pages. Chung and Park (2009) evaluated over 3,000 weblog

entries for the Amazon.com site, and inferred that the ratio of browsers to buyers for a

shopping web site was 50 to 1. While the customer motivation to purchase items varied

depending on whether a user typed a URL directly or was referred to a site from another, this

browsing versus buying ratio held (Chung & Park, 2009).

In phase one only a single WPO application server was loaded with web clients from

the SimulationManager. Sessions traversed the load balancer, but no session management

was performed since there is only one application server. As well, no feedback loop behavior

was utilized in phase one. The goal of these test cases was to determine the parameters

 79

necessary to adjust WPO performance through the identification of the Load Increment

concept and its associated parameters. Each of the Load Increment parameters was described

below. Phase one also established the maximum PPO and CC/Svr metrics. While CC/Svr

included browse-only and purchase sessions, PPO metrics were only be gathered from

sessions that resulted in a purchase.

In order to realistically load the WPO application, the vast majority of client sessions

only browsed the site, but did not make purchases per the ratio from Chung and Park (2009).

This browse-only behavior was reflected as Test Case One in Table 1. In this test case the

automated web client accessed the HomePage shown in Figure 17 and selected an item. This

selection took the client to the ProductDetail page for that item. Each transition in this

browse-only test case implemented a five-second delay between link selections to emulate

human interactions, and not the speed of an automated tool. From the ProductDetail page, the

client returned to the HomePage and randomly selected another item in the list. This random

selection of an item had no impact on the research outcomes, but better emulated human

behaviors across a user base. Gupta et al. (2014) confirmed that for sales web sites where the

click-rate for a purchase is between five and 30 clicks, the time between clicks was

homogenous – or had no significance. The product selection, browse the ProdcutDetail page,

and return to the HomePage cycle continued for three iterations. After the five second delay

on the third ProductDetail page selection, the web client returned to the HomePage and the

session was deemed complete when the HomePage screen was delivered to the automated

web client.

 80

Table 1. WPO test case one

Step Description

1 Navigate to the WPO URL HomePage and delay five seconds

2 Select a product link and view the ProductDetail page for five

seconds

3 Return to Step 1 until three (3) views are complete

4 Select the HomePage after delaying for five seconds, and terminate

the session when the HomePage is displayed

The second and third test cases were not based on external web purchasing research,

but on the two methods by which the WPO site may be traversed to purchase a product. The

three test cases were summarized in Table 2 below. These test cases were randomly

interleaved into 49 instantiations of Test Case One, and the execution of 50 test cases was

described as a single Cycle. Random execution of test cases two and three with the browse

test cases introduced more realism and reduced load spikes during purchase events. Test

Case Two was executed on odd cycles, and Test Case Three on even cycles. Cycles

overlapped as threads from a previous cycle were still executing when a new cycle began.

This behavior was necessary so that a constant or increasing load was presented to the WPO

application.

 81

Table 2. WPO phase one test cases

Number Description Cycle Detail

1 Browse three items 49 executions per cycle

2 Login then purchase 1 execution per even cycle

3 Attempt to purchase, then login 1 execution per odd cycle

The Test Case Two method of execution was summarized in Table 3 below. A web

client retrieved the HomePage and then traversed from the HomePage to the CustomerLogin

page. The client then attempted to login, and navigated to the CreateAccount page if no

customer login existed. Each web client was provided with a randomly selected user account

upon creation. The client attempted to login with this credential, and if unsuccessful created

the appropriate user account. New users then executed a login. Upon a successful login, the

client was redirected back to the HomePage. Each link selection was again separated by a

five second delay as in Test Case One. The web client selected a product link and navigated

to the ProductDetail page. The product was added to the Cart and subsequently purchased.

The web client was then be presented the PurchaseSummary page, and terminated the session

after the standard five-second delay.

 82

Table 3. WPO test case two

Step Description

1 Navigate to the WPO URL HomePage and delay five seconds

2 Select the CustomerLogin link and delay five seconds

3 Login with a random selection of user account credentials with the

assigned username / password combination. If successful, go to Step 5

4 Create a new customer account and return to Step 3 after a five second

delay

5 Return to HomePage and select a product after a five second delay

6 Select the add to cart link on the ProductDetail page and navigate to

the Cart page after a five second delay

7 Select the purchase product link from the Cart page, and view the

PurchaseSummary page. Terminate the session after a five second

delay

Test Case Three provided a variation on Test Case Two and traversed the WPO site

to make a purchase through a different path. After navigating to the HomePage, a product

was selected and the ProductDetail page was displayed. The product was then added to the

Cart, and a purchase was be attempted. Since the user was not logged in, the web client was

redirected to the CustomerLogin page. The web client attempted a login, and a successful

login redirected the customer back to the Cart page. If the web client’s credentials were not

recognized, then the client was directed to the CreateAccount page. As in Test Case Two a

new account was created and the new accountholder logged in. Upon a successful login the

web client was redirected back to the Cart page, and the client purchased the product. The

client was presented with the PurchaseSummary page, and the session ended five seconds

after the transition. As in the other test cases a five second delay was implemented between

actions. These steps are detailed in Table 4 below.

 83

Table 4. WPO test case three

Step Description

1 Navigate to the WPO URL HomePage and delay five seconds

2 Randomly select a product and navigate to the associated

ProductDetail page and delay for five seconds

3 Add the product to the Cart and delay five seconds

4 Attempt to purchase a product, and then be re-directed to the

CustomerLogin screen after a five second delay

5 Login. If successful, go to Step 6

6 Create a new customer account, and then return to Step 5 after a five

second delay

7 Purchase a product from the Cart page after a five second delay

8 View the PurchaseSummary page, and terminate the session after a

five second delay

Each WPO server consumed some small percentage of CPU load to run the basic

operating system, Apache Tomcat, and other associated infrastructure applications. This

quiescent load was defined as MinLoad, and may be identified by CPU, IDLE, or I/O wait

times as identified by sar data. In this phase of experimentation it was determined which was

dominant factor in WPO application session performance. The remaining IDLE, CPU, or I/O

capacity was divided into equal increments, called Load Increments or Li. Each Li

represented 5% of the available WPO processing capability, divided into 20 unique

increments. Each test case Cycle consisted of 50 test case runs, and each test case run was

interspersed with a short delay between the start of sequential test cases. This delay was

called the intra-cycle delay (Ca), and was defaulted to five seconds. No benefit or limitation

was implied by the five second default. Since each test case run spanned many seconds, and

file service access was sporadic within the test case steps. Ca was a factor used to tune a

Cycle to achieve a relatively flat or even CPU utilization throughout the Cycle. Purchase test

 84

cases were randomly interspersed between browse-only test cases and resulted in increased

processing load as shown in the CPU usage spikes of Figure 24. In order to increment load

on a WPO server in 5% chunks, multiple Cycles had to be run simultaneously. The number

of simultaneous Cycles that had to be run to achieve a single Li was referred to as Concurrent

Cycles or Cc. Lastly, when multiple cycles were run to achieve an Li increment, a delay could

be required between these incremental Cycles to achieve a smooth step function of load.

This delay between the start of Cycles was referred to as inter-cycle delay or Cr. The formula

in Figure 24 defined the triple of the factors of Li. Figure 25 showed a graphical

representation of each of these factors in Li as well.

Figure 24. Max WPO server load equation using load increments

𝑀𝑎𝑥𝐿𝑜𝑎𝑑 ∶= 20 ×𝐿𝑖⟨𝐶𝑐|𝐶𝑟|𝐶𝑎⟩

 85

Figure 25. Load increment factor visualization

Phase two test cases

As has been previously stated, the purpose of experimentation in this phase was to

activate SAS feedback behavior, and subsequently measure the impact of a second RV&V

feedback layer while re-using the same inputs. To that end, phase two test cases differed in

structure and form from those in Phase One, but they utilized the phase one Cycle approach

of browsing and buying to apply a realistic WPO load. Time-based load rates in the form of

Li multiples formed the basis for phase two test cases, along with external context events at

specific points in time. These external context events were injected into the feedback

subsystem, shown in Figure 17, in order to produce expected SAS responses. These

multiples of Li provided a descriptive tool to instrument increasing or decreasing

browsing/buying load.

 86

The distinctions between the Li load concept and the PPO metrics were further

expanded below. While both metrics were baselined in phase one, they served two different

purposes. Li defined a measure of concurrent web sessions that produced a 5% load on the

WPO application. The Li approach encapsulated the number and frequency of WPO

sessions. The PPO metric exclusively defined the number of seconds it took to execute a

purchase. Li was not a metric that was measured or tracked by the context feedback system.

It was exclusively used to drive simulated traffic. PPO focused on purchasing response

behavior and RV&V interactions within the feedback loop.

For the purposes of the phase two test cases, a maximum PPO value (MaxPPO) was

established, and maintained throughout the life of the test case in this experimentation.

Varying the MaxPPO metric based on feedback was also a possibility to further hone

performance, but this additional facet of the SAS RV&V problem was reserved for future

work. Li multiples were defined in the test cases themselves, varied with time, and spurred

SAS and RV&V behavioral changes in concert with context events. MaxPPO was an entity

defined in the ExperimentalRepresentation ontology

Three test cases were executed in this phase, and each was inferred from the description

in Tamura et al. (2012) of a concrete industrial case study. Additional detail and constraints

were applied to each of these test cases in order to better emulate a realistic shopping site

behavior. The first of these constraints was a consistent load pattern that varied based on the

time of day for a shopping website. Figure 26 showed a representative hourly load gleaned

from Rosenstein (2000) of measurements taken from a United States e-commerce web site

operating primarily in the Eastern Time zone. In this graphic the black bars represented true

 87

customer traffic versus the total traffic that included web-bots or other automated tools. This

general pattern of web traffic was used in the phase two experimentation.

In Table 5 below, the percentage utilization values were achieved by incrementing Li

multiples and applying these values to each test case time period. From midnight until 8am

server load stayed within a range of 10 to 20% of MaxLoad. This maximum load for a single

server was 20 times Li as shown in Figure 24. At 8am, server load increased in a pseudo-

linear fashion until 10am when it achieved 50% of the MaxLoad. From 10am until 5pm the

WPO load oscillated between 50% at the start of this period to 90% of the MaxLoad as

determined in phase one. From 6pm until 10pm, load was reduced in a pseudo-linear fashion

back down to 10-20% of the MaxLoad. Lastly, from 10pm until midnight server load was

maintained at 10% of the MaxLoad.

Figure 26. Hourly web traffic (Rosenstien, 2000)

 88

The first test case covered a 24-hour period that spanned a normal day of operation,

with varying loads by shopping hour. This first test case verified that the system operated

Table 5. Periodic server load

Time Period Customer Load Description

12am to 8am Server load set at 10% and 20% of the

MaxLoad

8am to 10am Pseudo-linear increase to 50% MaxLoad

10am to 5pm Hourly oscillations from 50% MaxLoad

load up to 90% of the MaxLoad

5pm to 10pm Linear decrease to 10% of MaxLoad

10pm to 12am Maintain 10% of maximum MaxLoad value

properly without state transitions in the Normal state, roughly following the Figure 26 curve.

The second test case modeled a 24-hour period that spans the day before, during, and after a

holiday sale. This test case demonstrated the Normal to Medium transition and back, based

on a changing calendar context. The third test case covered a 24-hour period where a

Normal day included a four-hour social networking event sale and corresponding transition

to the Medium state. The last test case encompassed a 56-hour period bracketing a Black

Friday sales event where the system expected maximum loading, but this test case was not

executed during experimentation. Table 6 below described each test case.

 89

Table 6. Phase two test case descriptions

Number Name Period Number

of WPO

servers

expected

Description

1 Basic 24 hours 1 Demonstrates Normal state

behavior of the WPO without state

transitions, but changing load

throughout the day with a fraction

C/s value

2 Sale Day 24 hours 2 Demonstrates Medium state

behavior of the WPO with state

transitions based on a Calendar

event. The system will execute the

test case where a SaleDay event

begins at 0800 and concludes at

1800. A Normal to Medium state

transition is expected.

3 Social

Network

24 hours 2 Demonstrates Medium state

behavior of the WPO with state

transitions based on a Social

Network sale event. The system

will start out in a Normal state and

ramp up to Medium capacity

during a four-hour sale, and then

conclude the Normal day.

4 Black

Friday

26 hours 3 Demonstrates complete state

transition behavior with transitions

from a Normal state on the day

prior to a High state during Black

Friday, and then back down to a

Medium state with a following day

sale. This behavior is based on a

Black Friday calendar event and a

following day Calendar sale event.

 Test case one – called Basic – executed completely within the Normal state. It closely

mimicked the load profile shown in Figure 26 and Table 5, and spanned a 24-hour period.

Table 7 displayed the content that was encoded in the JSON format discussed in previous

 90

sections and displayed in Figure 23. No external context events were enabled during this test

case, and no SAS state transitions nor was RV&V intervention expected.

Table 7. Basic test case definition

Time Period % of CPU

0000 10

0100 10

0200 15

0300 10

0400 10

0500 15

0600 10

0700 10

0800 30

0900 40

1000 50

1100 90

1200 60

1300 55

1400 70

1500 55

1600 60

1700 40

1800 35

1900 25

2000 20

2100 15

2200 10

2300 10

The second test case, called Sale Day, again spanned a 24-hour period and introduced

an external context change of a sale day between 0900 and 1700. The test case started at

0000, which was the beginning of a sale day. As Figure 23 denoted the sale day event was

encoded in the JSON file, and the SAS system reacted by activating a second WPO

application server environment slightly in advance of the beginning of the sale day. Using

 91

the basic hourly profile discussed above, load increased by using the Li multiples, except that

the two-server load was no longer a fractional value less than 1.0. This load followed the

Basic test case structure, but scaled to a maximum value of 175% of MaxLoad throughout

the test case. As in the Basic test case, the PPO value set at the start of the test case was

maintained throughout. Table 8 defined the associated load values for each hour. The Sale

Day test case provided a structure by which the SAS behavior of reconfiguration to a two-

server environment was evaluated to comply with the description in Tamura et al. (2012).

This same test case caused different RV&V behavior to be exhibited to maintain system

goals.

 92

Table 8. Sale day test case definition

Time Period % of CPU

0000 15

0100 20

0200 25

0300 20

0400 15

0500 25

0600 20

0700 20

0800 55

0900 70

1000 90

1100 160

1200 105

1300 100

1400 125

1500 95

1600 105

1700 70

1800 60

1900 45

2000 35

2100 25

2200 20

2300 20

The third test case, called Social Network, also spanned a 24-hour period and roughly

followed the Basic test case curve; however, between 0900 and 1259 a social network event

was introduced that attempted to increase MaxLoad by a factor of 2.0. This caused the SAS

behavior to adapt to a two-server configuration prior to the start of the event and then

reverted to a single server configuration after the social network event concluded. The input

profile for the Social Network test case was displayed in Table 9 below. The Social Network

 93

test case again provided a format by which the Tamura et al (2012) description of SAS

adaption was evaluated. As in the Sale Day test case, different behavior was exhibited when

RV&V was enabled.

Table 9. Social network test case definition

Time Period % of CPU

0000 10

0100 10

0200 15

0300 10

0400 5

0500 15

0600 10

0700 10

0800 5

0900 10

1000 100

1100 180

1200 120

1300 55

1400 70

1500 55

1600 60

1700 40

1800 35

1900 25

2000 20

2100 15

2200 10

2300 10

The last test case, called Black Friday, spanned a 26-hour period starting at 2300 on

day one and ending at 0059 on day three. This test case was developed for experimentation

but held for future work. The following description shows expected behaviors, but none of

these outcomes were measured by experimentation. This test case, shown in Table 10, would

 94

exhibit a combination of the Black Friday event from 0000 to 1759 and a Sale Day event

from 1800 to 2359 as would typically occur on the day after Thanksgiving. Black Friday

load should activate the High state in the SAS state machine for the WPO application, and

then revert to the Medium state after Black Friday concludes at 6pm. At the end of the Sale

Day, the system should revert to Normal state behavior. This behavior should also engage

RV&V behaviors that are unique from the SAS decisions. During the Black Friday period

the MaxLoad factor will be multiplied by 2.8, and during the Sale Day period, the MaxLoad

factor will again be multiplied by 1.75.

 95

Table 10. Black Friday test case definition

Time Period % of CPU

2300 10

2400 22

2500 30

2600 40

2700 30

2800 20

2900 35

3000 30

3100 30

3200 85

3300 115

3400 140

3500 255

3600 170

3700 155

3800 195

3900 155

4000 170

4100 115

4200 60

4300 45

4400 35

4500 25

4600 20

4700 20

4800 10

Each test case defined for phase two exhibited a specific context event and associated

load profile identified by Tamura et al. (2012). The combination of context changes and

varying load generated a dataset required to determine if the addition of SAS RV&V in a

second feedback loop provided improved QoS performance over a single SAS feedback loop.

 96

Experimentation

The proposed experimentation was conducted in two phases and consisted of three

major steps. The first step was to collect load measurements and establish set-points using

the phase one test cases in a single-server WPO configuration. The second step involved

running the SAS simulation without RV&V responses enabled in a full WPO architecture to

verify that the system demonstrated appropriate SAS behaviors. The last step was to

introduce RV&V management of the second feedback loop in order to determine if RV&V

improved overall system adherence to QoS metrics as ordered goals.

Analysis was conducted throughout phase one experiments to determine the appropriate

settings for the Li increments. Subsequent analysis after phase one testing was complete

determined the maximum PPO settings for phase two. Some rudimentary analysis of SAS

behaviors was also performed after step two to determine the total WPO application server

up-time and if the MaxPPO metric was violated; however, the majority of phase two analysis

was performed following the RV&V experimentation to compare SAS performance to that of

SAS RV&V performance. The following paragraphs described each experimentation step in

further detail.

Phase one experimentation

The purpose of this phase of experimentation was to baseline the performance of a

single-server WPO application and the web load simulator. To achieve a repeatable method

of increasing and decreasing load in 20 Li increments, the quiescent server load was first

base-lined as MinLoad. Then, the parameters for the proper implementation of Li were tuned

to establish a single 5% load increment. Next, the WPO server load was incremented up to

 97

the 50% level and back down. Any modifications needed in Li parameters were made based

on analysis results from these increasing and decreasing profiles. The system was then fully

loaded and MaxLoad was determined. At any point up to MaxLoad the system performed

within an acceptable PPO performance range. Beyond MaxLoad, PPO was not guaranteed.

In each of these phase sub-steps PPO, preferred PPO, and CC/svr values were written to

storage.

Analysis after phase one determined when PPO values degraded with increasing server

load, and these analyzed values became the MaxPPO setpoint. The maximum preferred PPO

(MaxPPPO) was also determined based on the results of the MaxLoad testing, and its value

was at least 10% less than the regular PPO value. This 10% factor applied to MaxPPPO

came from the Tamura et al. (2012) definition of a preferred customer having settings that

resulted in a 10% preference over Regular users. The CC/svr value was sampled each

minute, and was established as the mean of the last five samples before the system achieves

MaxLoad. With the load simulator calibrated, and set points established in this first phase,

the subsequent SAS RV&V experimentation proceeded. The following paragraphs detailed

the steps of phase one.

This first measure to be established was the MinLoad value previously discussed. The

MinLoad value was a measure of load with no user simulated web client traffic applied to the

system. It was determined as follows. After an AWS Small instance was started with the

WPO application running, five measures of quiescent system utilization were logged over a

one hour period using the Unix sar command that accessed sysstat library data. One of the

factors to be determined was whether I/O utilization, CPU utilization, or a combination of

 98

multiple factors drove the overall WPO performance; thus, using sar will allow phase one

analysis to determine the overall drivers of system performance, whether they be cpu, iowait,

or a combination of these times. Measures were taken in reference to the experiment start

time at 10 minute increments, and the averaged value was established as MinLoad. This

MinLoad value was determined to have a negligible value in baselining overall system

performance.

Once MinLoad was established by identifying the CPU, I/O, or a combination of

factors in quiescent operation, a single repeating Cycle of web transactions was introduced

using the defaults shown in Table 11. The Cc, C
r, and Ca values were modified to achieve the

first 5% Li increment by increasing or decreasing Ca to flatten out load spikes. Secondly, Cc

was increased if a single Cycle of repeating transactions did not produce enough load – CPU

or I/O – to reach the 5% increment. The tuning of Li was accomplished in 10 minute

intervals. sar dumps were collected each minute and evaluated after each 10-minute interval

to determine if further modifications need to be made to the Cc, C
r, or Ca values. The sar

values of %user, %iowait, and %idle were the focus of analysis to determine the load

increment values.

This initial value of Li was now used to move the system to a load mid-point. The

system was loaded with increasing Li values to reach a 50% utilization level, and then back

down to MinLoad over a one-hour period. In each 10-minute period the system was brought

to 50% load at the five-minute point, held at 50% load for two minutes, and then back down

to MinLoad. sar readings were taken every minute for subsequent analysis with the same

 99

focus on %user, %iowait, and %idle as previously described. Cr values would have been

incremented to achieve a smooth, step transition in this step, if needed.

Table 11. Initial parameters for Li

Parameter Initial

Value

Units

Cc 1 Scalar

Cr 0.0 Seconds

Ca 5.0 Seconds

Lastly, the system utilized Li increments to fully load the single-server configuration

over a one-hour period. Again, testing was broken into 10 minute increments. Load was

immediately ramped to the 50% level and then brought up to a maximum utilization at the

five-minute point, remain at maximum load for two minutes, and then be reduced to 50% at

the end of the 10 minute period. sar data will collected each minute. The system did

become unresponsive at some point below 100% cpu utilization due to locks or iowait times,

and performance became non-linear above 50% CPU utilization. Therefore, the MaxLoad

value was positioned to be a value just below where the server became unresponsive. Again,

Li parameters were adjusted after this step to achieve as smooth a step function to MaxLoad

as possible. The output set points from this phase were listed in Table 12. The method by

which they were determined was also discussed in further detail in the Analysis section.

 100

Table 12. WPO load criteria

Measurement Set Three

Metric Description Unit of

Measure

Criteria

MinLoad Steady state CPU utilization of an

AWS small instance with Tomcat,

and the WPO application running

but no client connections

% Quiescent load

tests executed

five times and

a mean

calculated

using sar data

output

Li Load increment determined by

modifying the parameters in

Table 11

Function

of Ca,Cr,

and Cc

Determined

from a mean of

five sar

samples of the

5% load tests

and then tuned

in subsequent

testing

MaxPPO Maximum number of seconds that

is system is permitted to process a

purchase transaction for a regular

customer

Seconds Determined

from a mean of

five sar

samples of the

50% - 100%

load tests

MaxPPPO Maximum number of seconds that

the system is permitted to process

a purchase transaction for a

preferred customer

Seconds Determined

from a mean of

five sar

samples of the

50% - 100%

load tests

MaxLoad Maximum CPU utilization of an

AWS small instance; 20 * Li load

is generated; Also, the point at

which the server and WPO

application become unresponsive

may require MaxLoad to be tuned

down from absolute maximum

server load

% Determined

from a mean of

five sar

samples of the

50% - 100%

load tests

CC/Svr Number of concurrent

connections to the WPO

application at the time that

MaxLoad is achieved

Scalar Determined

from

transaction

logs

 101

Phase two experimentation

In this phase of experimentation three test cases were executed against the full three-

server WPO architecture in two different steps. In the first step RV&V feedback behaviors

were disabled and only SAS feedback actions occurred. The RV&V system performed data

collection, but the Executor module suppressed RV&V execution commands. In the second

step, RV&V feedback was enabled, and the same three test cases re-run. The test cases

spanned the time periods defined in Table 6, and each test case was run five times. sar

performance monitoring was also conducted on each WPO application at 10 minute intervals.

Further detail on how the test run data was evaluated was described in the validation section.

 This first step in the phase two experimentation was to produce baseline SAS data

that was used in the determination of whether SAS RV&V behaviors reduced the cost of

operating the WPO system, yet maintained expected performance. The feedback server was

the first server started in the environment. The MaxPPO, MaxPPPO, and CC/svr values from

phase one were added to the ExperimentalRepresentation, and a single WPO server was

started. The simulation server was then started, and the Basic test case loaded. Based upon

successful registration of all participants in the ServerManager, the environment was ready to

execute test cases. As each WPO application server started, it logged its start time to a local

file, and did the same when it shut down. These time reference points were used to

determine the total WPO server up-time. The cumulative server up-time for all WPO servers

in each test case was the baseline measure of performance for the QoS measure of Minimize

Cost.

 102

The first test case to be executed was the Basic test case. It executed for 24 hours of

simulation time and was repeated five times. After each simulation run, WPO server start

and stop times were be collected, and the database was queried for all relevant PPO

performance data. If the feedback loop issued any commands to the ServerManager, those

commands were also be logged. The expected behavior of the Basic test case was that no

self-adaptive behavior should be exhibited as the system should not have experienced

MaxLoad. PPO values were also collected, but since RV&V feedback is suppressed, no

PPO-based transitions can occur. As noted above, server activation and deactivation times for

each WPO server were also collected.

The second test to be executed was the SaleDay test case. Once initiated with the

values derived from phase one, the ExperimentalRepresentation was not modified for any of

the SAS test case runs, and RV&V feedback behaviors continued to be suppressed. The test

case input to the simulation server was set to load the SaleDay content, and all servers were

re-initialized in the same way as the Basic test case described above. The SaleDay test case

was executed for 24 hours of simulation time, and then repeated five times. The SaleDay test

case simulated a SAS transition from the Normal to the Medium state and two WPO servers

were activated to address this SaleDay context change. Again, PPO values were collected,

but no PPO-based transitions were possible in this SAS-only mode of operation. PPO

violations were possible during this test case, as no RV&V feedback is enabled.

The third test to be executed was the SocialNetwork test case. Initialization was

performed similarly to the previous two test case descriptions, and this 24-hour test case will

be executed five times. The SocialNetwork test case mirrored the Basic test case, except for

 103

the SocialNetwork context change of a few hours. The self-adaptive feedback system

enabled a second WPO application server for the SocialNetwork period, and the system

transit from the Normal state to the Medium state. Once the SocialNetwork event concluded,

the system eventually resumed a Normal state. It was again possible that PPO values were

violated during the execution of this test, and these values were logged for comparison to the

RV&V runs in the RV&V step.

In this last series of steps in experimentation, three of the four test cases were re-run

with SAS RV&V execution commands enabled. At the beginning of each test case run the

metric collection database was re-initialized, the ExperimentalRepresentation file was re-

loaded, and the appropriate test case loaded into the SimulationManager. Initialization

actions follow the same order as in the SAS steps, except that the global setting for SAS

RV&V was enabled. The PPO values for each run were collected as well as server activation

and deactivation times. Each test case was executed five times over the same test case

periods described above. System behaviors were different from those behaviors recorded

from the SAS-only experiments.

 104

Validation

 To determine if the experimentation demonstrated that the inclusion of a secondary

SAS RV&V feedback loop reduced cloud costs while maintaining system performance, the

following validation approach was proposed. The first task of validation was to analyze the

output from the phase one experimentation, and populate the values required by Table 11.

Next, load rates for each SAS test case execution, shown in Table(s) six through nine, were

compared to the sar output for each of the five runs, and the mean of the five runs. The

evaluation of sar data focused on %user, %iowait, and %idle values, seeking to determine if

CPU, I/O, or a combination of these drivers dominate WPO load. This step was necessary to

verify that proposed input was consistent with actual measured load. These results were

presented in both tabular and graphical form. The processor utilization and PPO/PPPO times

were also displayed compared to the time of each test case. These same values were then

displayed for the SAS RV&V experiments. Last, a comparative summary of results was

presented to show how SAS RV&V experiments performed versus SAS-only experiments.

 The first phase one step was to establish MinLoad and this was accomplished by

displaying the five sar outputs and an average of the %user, %iowait, and %idle results. The

Li increment was then initially established, and tuned over a 50% load. Finally tuning over a

maximum load was also documented in tables. By using the maximum load experiments

PPO, PPPO, MaxLoad, and CC/Svr were established and shown in tabular format.

 The QoS goal of maximize throughput was applied to the metrics of PPO and PPPO.

The secondary SAS RV&V goal was to minimize cost. Each of these goals used terms that

communicated the slope or direction of the goal, but not a mathematical maximum or

 105

minimum. Thus, the highest goal named maximize QoS throughput informed the system to

maintain PPO and PPPO. The secondary goal of minimize QoS cost attempted to reduce

system cost. These two goals were clearly in conflict, and this experimentation demonstrated

that the SAS RV&V feedback sub-system attempted to manage these competing goals.

 PPO and PPPO values were extracted from the database by time, and displayed in

tabular and graphical form. A mean value for each test case time period was tabulated.

Notation was made of the number of times that the QoS performance metric was violated and

an average duration of the violations per measurement period in each test case. With PPO

and PPPO means calculated for each test case, the SAS versus SAS RV&V values were

shown. It was expected that SAS-only tests resulted in few PPO violations, but that the SAS

system will not react to these PPO violations. It was expected that the SAS RV&V system

violated the PPO set points more often, but reacted more quickly to these violations and

reduced their durations.

The next activity of validation was to compare SAS server utilization to SAS RV&V

server utilization. Cloud providers have many different charge rates schemes for the time

that a server instance was utilized, but server uptime formed the basis for all cost models.

Therefore, the simple measure of server uptime determined cost for this experimentation.

Cost savings were achieved when – for the same test case inputs – one configuration

executed with less overall WPO server uptime. For each test case a measure of server uptime

was established based on the start and stop times in the log files. Again, a mean was

calculated for each test case and experimentation step – whether SAS or SAS RV&V. Then,

the ratio of mean SAS RV&V uptime to the mean SAS uptime for each test case was

 106

calculated to determine if system costs are reduced. It was expected that no savings were

achieved in the Basic test case, but it was possible that a PPO violation could occur and a

second server would be added in the SAS RV&V test case runs. A SAS RV&V PPO

violation that caused a second server activation will result in SAS-only cost savings over the

SAS RV&V experiments. It was expected that SAS RV&V uptime for the SaleDay and

SocialNetwork test cases demonstrated savings over SAS-only test case runs.

The combination of mean PPO measures and mean utilization measures by test case

validated whether the SAS RV&V feedback system improved QoS performance over a SAS-

only system. This determination required an analysis of both QoS performance measures

over time. These results were again graphed and highlights were made where performance

differs between SAS-only and SAS RV&V results. It was expected that the SAS-only

system achieved the highest goal of maximize throughput, but failed to reduce costs over all

test cases. The SAS RV&V system was expected to have more PPO performance violations,

but to react and restore PPO more quickly, while executing test cases at an overall reduced

cost. If these expectations hold, the system will have demonstrated that hierarchical goal-

based SAS RV&V improves QoS performance over a single SAS feedback loop approach.

Resources

The resources shown in Table 13 were required to develop the WPO application,

RV&V simulation, and conduct experiments for this research.

 107

Table 13. Resource list

Resource Description

Java language Language utilized for WPO example and

RV&V simulation

Apache Jena Java Ontology Library

Eclipse platform Development environment

Junit Test library

Apache Wicket Library used to develop the WPO

application

Stanford Protégé Ontology developer Ontology development tool

Windows desktop (development) Development workstation

Linux Server (test) Testing workstation for simulation

Ubuntu operating System OS used for all experimentation

Apache Tomcat Java web server

Apache Commons HTTP client side library

Log4j Logging library

VMWare Virtual machine application

Amazon Web Services Cloud services provider

MySQL SQL Database

Summary

This experimentation quantitatively explored the value of expanding SAS with a second

SAS RV&V feedback loop. The integration of QoS goals into the RV&V structure allowed

for an implementation of an independent SAS RV&V documentation construct. The

research effort began by developing a fully functioning WPO application in the AWS

environment (“Amazon web services,” 2013). This WPO application itself did not have SAS

or SAS RV&V components. Baseline measurements were collected from this basic

environment and then those measurements were used to instrument the simulation and

feedback behaviors. The simulation was then employed in a SAS-only configuration with

four test cases that execute the intent of the Tamura et al. (2012) example problem. The Basic

24-hour test case demonstrated normal, single-server behavior. The Sale Day test case

 108

forced the addition of a second server to the WPO configuration, and the Social Network test

case demonstrated the temporary addition of a second server to the WPO configuration.

Each of the test cases described above were executed using simulated web clients in

SAS-only and then SAS RV&V configurations. Both the SAS-only and SAS RV&V

simulations utilized the addition of states, temporal logic, and goal-oriented behavior by

expanding the Villegas et al. (2011) SmartContext taxonomy. The results of each SAS-only

and SAS RV&V test case run were compared to determine if the introduction of SAS RV&V

quantitatively improves goal achievement by reducing server costs, while maintaining QoS

throughput goals. This research demonstrated that the integration of these additional

components to the Villegas et al. (2011) SmartContext provided a generic method for

documenting SAS RV&V systems.

 109

Chapter 4

Results

Overview

SAS systems make it inherently difficult for users to establish trust in these

architectures (Dahm, 2010; Tamura et al., 2012), and therefore a new construct to verify non-

functional requirements was needed. SAS RV&V was proposed by Tamura et al. (2012) as a

method to reduce the complexity of confirming that SAS systems can maintain their non-

functional requirements. The problem statement also highlighted that a baseline reference

model for SAS RV&V, like the one proposed by Tamura et al. (2012), was not available to

the research community. This proposed baseline model (Tamura et al., 2012) also defined a

series of test cases with which to evaluate SAS RV&V performance.

This dissertation provided a method to document SAS and SAS RV&V behavior by

extending the Villegas et al. (2011) SmartContext taxonomy. It then quantitatively verified

that this SAS RV&V monitoring method improved overall non-functional performance. The

baseline reference model and test cases were also implemented so that the community can

further extend this SAS RV&V experimentation.

The many different paths of execution that a SAS system may take requires that SAS

RV&V requirements languages allow for a broad syntax of non-functional goal criteria,

generalization in defining system limits, and a decoupling of design versus implementation.

The Fu et al. (2007) QoS taxonomy provided the structure for a goal description language.

Lapouchnian et al. (2005) proposed a positive and negative goal approach for autonomic

 110

systems, and this Lapouchnian et al. (2005) directedness was required by SAS RV&V so that

the feedback loop can make tradeoffs between competing non-functional goals. The Fu et al.

(2007) goals were then decorated with Maximize or Minimize qualifiers to guide the

feedback subsystem. This dissertation quantitatively demonstrated that a SAS RV&V goal

tree of directed, static rules improved the performance over SAS-only experiments.

The extension of the Villegas et al. (2011) SmartContext language was accomplished

by adding states connected with temporal logic transitions and a hierarchy of directed,

RV&V goals. These new language constructs allowed for the definition of SAS-only and

SAS RV&V behaviors to be generically defined during design. The conversion of the

temporal logic state machine into an executable feedback system was found to follow that of

a non-deterministic, finite automata transformation (Sipser, 2006). New synthetic states were

required to capture temporal logic transitions and establish deterministic feedback behavior.

This transformation from the requirements representation to the operational representation is

discussed further in the data analysis section.

A realistic baseline model was needed to test quantitative SAS RV&V behavior, and

an implementation of the Tamura et al. (2012) web-based purchase order application in the

Amazon cloud environment was employed. A tunable load generation application was also

produced that simulated the WPO responses through three different test cases. The

combination of these test case results showed that the implementation of SAS RV&V

improved performance using a goal tree of RV&V rules.

This chapter will first analyze the baseline settings required to configure the web load

generator and simulate the WPO application to move through a CPU load profile consistent

 111

with that of Figure 27. In order to establish these settings for stable SAS and SAS RV&V

operation, key variable values were established. Since the WPO application are required to

scale across multiple web servers in a cloud-based environment, verifying that a stable load

generation profile was established was key to gathering quantitative metrics for measuring

SAS RV&V performance.

Next, the Basic test case data was analyzed. The SAS-only test cases were evaluated

to capture a mean of the best possible performance that the WPO application can deliver

under single server load. Enabling competing goals resulted in degradation of some

performance metrics compared to unconstrained SAS-only operation. Performance was

analyzed for all Basic test cases by looking at the number of RV&V violations to identify

where the highest goal of customer satisfaction is violated, and then server uptime was

evaluated to determine the impact of the subordinate RV&V goal of minimizing cost.

The data analysis section then focused on the results of the Social Network test case

results. In this test case SAS-only behavior was compared to SAS RV&V behavior for a

short-term load increase caused by a social networking announcement. The evaluation of

these data determined whether SAS RV&V introduction maintained customer satisfaction yet

reduced cloud-server costs when load increases through a temporary spike in purchases.

The Sale Day test case was then analyzed to evaluate the performance differences

when the normal load profile was augmented by an extended sale period. SAS-only behavior

established values for RV&V violations, purchases, and server uptime hours. With the

introduction of SAS RV&V, Sale Day results were evaluated to determine the mean of each

 112

of the previously mentioned performance criteria. A comparison of cost savings and overall

performance was then provided.

The last data analysis section provided a description of the transformation required

for a temporal logic state machine defined in Figure 20 to be utilized as the SAS RV&V

feedback loop. It was determined that the use of temporal logic required additional states

that the system must implement for both the SAS and SAS RV&V feedback system to meet

the requirements defined in the SmartContext extensions (Villegas et al., 2011).

The chapter concludes with a summary of the SAS-only and SAS RV&V

performance results to show that the RV&V goal tree, integrated in a temporal logic state

machine, does improve the performance of the WPO reference application.

Baseline Data Analysis

The Phase One effort described in the Methodology section outlined the tasks

necessary to establish web load to roughly conform to the curve shown in Figure 26. A

number of observations were made during this phase of experimentation that resulted in

minor modifications to the experimental architecture. First, the use of AWS Elastic Load

Balancer (“Amazon elastic load balancing,” 2013) introduced an unwanted side effect.

Sporadic load behavior was observed because the load balancer forced TCP connections to

Tomcat instances to implement HTTP Pipelining. Pipelining defeated the web load client

approach of creating new connections to simulate a smooth load curve. Figure 27 below

shows that the elastic load balancer introduced staccato behavior because the load balancer

was continually attempting to combine new transactions with existing connections. The

elastic load balancer was then removed from the experiment and the web load generator was

 113

modified to perform software load balancing internally. After simulating the load balancer in

the web client, Li increments were achieved in a more compressed form than was predicted.

Figure 27. Basic test case output with load balancer

Web load peaks at the times proposed, but the overall increments compressed as load

increased, especially beyond 50% load. The mean curve of Figure 28 more closely aligns

with the Rosenstien (2000) curve of Figure 26, and there are no staccato movements. The

curve shown in Figure 29 also shows that web load changes in amplitude are more gradual

due to residual load from past transactions.

 114

Figure 28. Basic SAS output mean

To achieve the curve in Figure 29, the load parameter settings shown in Table 14

were established. By executing the Basic test case and repeatedly increasing or decreasing

values shown in the table below, a stable movement through the test cases was achieved

without HTTP Client Protocol Exceptions, I/O Exceptions, or Client I/O Exceptions. The

use of the Cr setting to ramp into a Li transition proved unnecessary and was left at the

default value of 1. Movement of Cc or Ca to values greater than those shown in Table 14

resulted in the errors previously mentioned.

 115

Table 14. Baseline web load settings

Parameter Setting

Cc 2

Ca 4

Cr 1

Using the web load settings shown above, PPO load values were measured over five

runs of the Basic test case and are shown in Table 15. The maximum value for RegularPPO

value of all runs was 62 seconds under nominal load. The SocialNetwork and SaleDay test

cases were expected to greatly increase PPO transaction times over unloaded test cases.

Thus, the setting selected for Regular MaxPPO was 5% greater than the maximum measured

value, or 66 seconds. The Preferred MaxPPO was then set to a value of 10% less than the

Regular MaxPPO, or 60 seconds.

Table 15. Baseline settings for Regular and Preferred MaxPPO

Run

Preferred Avg
Second Count

Max

Regular Avg
Second Count

Max

1 52 47

2 46 60

3 51 47

4 49.5 62

5 51 48

MAX() 52 62

MAXPPO 60 66

The maximum CPU value predicted in the methodology section of 90% was not

achieved, but the load curve of Figure 29 did provide a reference load necessary to conduct

the phase two test cases. Like the Amazon Elastic Load Balancer (2013), the Tomcat server

 116

also attempts to pipeline all HTTP connections and this behavior degrades the use of new

connections to linearly increase load. Maximum CPU utilization varied between 63% and

70% in the Basic test cases. Because of the pipelining behavior a different metric had to be

chosen to replace the CC/Svr metric that was proposed in the Methodology. CC/Svr did not

provide a measure of server utilization on each server because of pipelining, and a

replacement metric was required. By using the %idle value of SAR output, a stable metric

that combines CPU utilization, I/O utilization, and operating system waits properly

instrumented the RV&V rules. Minimum CPU averaged less than 1% and proved negligible

throughout the experimentation.

Basic Test Case Data Analysis

The Basic test case provided a worst case analysis for SAS RV&V behavior. The

SAS-only performance never loaded the WPO application sufficiently to transition to a

second server, and therefore SAS RV&V behavior could only provide poorer performance

than the SAS-only test cases. The feedback loop was active during test case execution, but

no SAS RV&V transitions were activated for this test case. SAS-only CPU utilization over

the 24 hour period is shown in Figure 29 below. CPU load performance was consistent

across all five test cases. Similarly, server uptime hours were exactly the same across all five

test cases at 24 hours as shown in Table 16 below. Even without server transitions RV&V

violations do occur in the experiment, as would be expected in any web application due to

network latency and cloud-server constraints applied by the cloud provider. Maximum CPU

utilization was consistent across all test cases, and transaction counts also showed consistent

 117

performance at a mean of 718 transactions. These results provide a best-case view of the

WPO application with competition between the goals of minimizing cost versus maintaining

Figure 29. Basic SAS-only test case runs

customer satisfaction.

The same five test cases were then executed with the SAS RV&V feedback loop

Table 16. Basic SAS-only test case statistics

Basic Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 63 63 60 61 65 62

RV&VViolations 10 9 9 11 12 10

MaxCpuUtilization 64 64 61 61 70 64

Server Uptime (Hrs) 24 24 24 24 24 24

Transaction Count 724 737 700 718 712 718

 118

activated. While there were still no server transition rules active, the SAS RV&V feedback

loop activated when SAS RV&V MaxPPO violations occurred. Note that this research

implements static SAS RV&V rules that did not learn or derive heuristics to minimize the

impact of periodic PPO violations. Any PPO violation that occurred twice, in consecutive

samplings, triggered a PPO violation.

The approach of setting static limits for rule violation turned out to be the most

significant weakness in the experimentation. For example, the consecutive MaxPPO

violation count of two was established in the ExperimentalRepresentation, not at runtime. If

the feedback sub-system were permitted to establish this value during SAS-only operation, it

would have noted that MaxPPO violations do tend to occur in clusters, likely due to

concentrated I/O periods that are a natural side effect of a magnetic disk backing store.

While SAS RV&V must always have a starting point, the collection of runtime behavior

within a viability zone would have better established the MaxPPO limit likely eliminated the

performance degradation in this Basic test case set of experiments. PPO violations during

the activation and deactivation of the second server also demonstrated the quandary of

determining what a valid period of settling time was. Again, this settling time period was

statically established in the representation, but could have been better determined by

monitoring server four activations. This probably would have resulted in suppression of

server four activations in the subsequent test cases. Feedback memory is a topic for future

research.

Table 17 below shows the impact of two additional PPO violations over the five test

cases. Consecutive RV&V violations in test case one and five resulted in server four

 119

activation and a 1% average increase in server uptime over SAS-only performance. The

impact of these server four activations was amplified because a two-minute period simulates

an hour of wall time. The server four activations actually had no impact on transactional

performance as the overall average transaction count actually increased from 718 to 723 with

SAS RV&V feedback. Thus, the activation of a second server did not leave transactions in an

orphaned state during server activation in this test case. The slight increase in RV&V

violations can be accounted for by the activation of server four in test cases one and five, but

the maximum transaction second count mean remained exactly the same.

Table 17. Basic SAS RV&V test case statistics

Basic RV&V Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 65 61 58 63 65 62

RV&VViolations 17 13 10 9 12 12

MaxCpuUtilization 133 65 76 77 151 100

Server Uptime (Hrs) 24.5 24 24 24 24.5 24

Transaction Count 709 729 734 724 718 723

Savings -2% 0% 0% 0% -2% -1%

Like static rules, the expansion of simulation time would likely have resulted in better

performance for this worst-case test case. Because a one-day test period was simulated by 24

two-minute periods, the impact of server activations was greatly amplified. While the two-

minute period was selected so that data collection from all test cases could be accomplished

in 30 hours, the expansion of the simulated time of one hour to even five minutes would have

drawn down the impact of a second server activation significantly.

Based on these results it can be concluded that the activation of SAS RV&V feedback

on the Basic test cases had only a minimal negative performance impact, and one that is

 120

likely greatly amplified by the simulation aspects of testing. Figure 30 below showed the

impact of the two, server four activations on combined CPU utilization. The two spikes are

largely anomalies accounting for the startup of the AWS instance. Each instance was

deactivated utilizing the RV&V server shutdown rules as soon as the settling time setting had

expired after an RV&V decision was taken. It should be noted that the tuning of settling time

– either manually or through a learning algorithm – would have increased the positive impact

of SAS RV&V rule activation in every test case. Both activations do correlate to the two

peaks in the test case where load should be at its highest level. The SAS RV&V feedback

loop had no knowledge of CPU load for server activation, but the MaxPPO readings do

directly correlate to these local maxima at 1200 and 1600.

Figure 30. Basic test case SAS RV&V combined CPU utilization

 121

The Basic test case data demonstrated that the addition of SAS RV&V feedback had

only a minimal negative server uptime impact. Because the Basic test case with SAS-only

behavior contained no SAS server activations, it can be considered the worst case on which

to measure the impact of SAS RV&V performance. The number of transactions processed

increased, and the maximum processing time for any transaction was consistent between

SAS-only and SAS RV&V test cases. The impact of SAS RV&V server activations was

likely amplified by the shortening of a simulation hour to two minutes because in actual

clock time the second server would deactivate far more quickly than a half hour, which is the

smallest unit of measure in simulation time.

Social Network Test Case Data Analysis

The Social Network test case was the first to exercise SAS-only, multi-server

operation. It also provided insight into the short-term activation impacts of SAS RV&V

behavior. The Social Network test case activated a server for a short duration prior to the

start of a sale, triggered by advertisements on a social networking site. In the SAS-only test

cases, server activation was triggered at a set time. In the SAS RV&V test cases, server

activation was retarded until PPO violations triggered activation.

The Social Network SAS-only CPU performance is shown in Figures 31, 32, and 33.

Figure 31 displays the primary server performance, and Figure 32 shows the activation of

server four during the social network event. Figure 33 shows the combined CPU utilization

 122

Figure 31. Social Network test case SAS-only CPU performance for server three

of both servers. A similar overall CPU performance curve is observed in the Social Network

test case as that of the Basic test case, except for the social network event where server four

is activated as shown in Figure 32. The server four performance curves are also very

consistent, showing a spike in user load at 1200 and then a rapid degradation of server

utilization until the server is deactivated at approximately 1500.

The combined CPU performance shown in Figure 33 demonstrates that server load

was properly balanced across two servers even over the short period of the simulation, with a

mean maximum CPU utilization for the SAS-only test case being 120%. Since the single

 123

Figure 32. Social Network test case SAS-only CPU performance for server four

server baseline fluctuated between 60-70%, this result shows that the SAS-only simulation

tracked very closely to expected WPO system performance. The period of the social network

sale event can be clearly determined by the CPU load curve.

The overall performance of the SAS-only test cases is displayed in Table 18 below.

Over the same 24-hour simulation period only two additional RV&V violations occurred

over the Basic test case, and this result again showed that server transitions had a minimal

impact in creating orphaned transactions in the simulation at this load value. The maximum

 124

Figure 33. Social Network test case SAS-only CPU performance combined

transaction times for each test case did increase and demonstrate that the system was fully

loaded during the spike shown in Figure 33. Server uptime – shown in the graph of

Table 18. Social network SAS-only test case statistics

Social Network Sas Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 67 76 78 80 90 78

RV&VViolations 20 15 12 14 10 14

MaxCpuUtilization 115.2 124.82 119.85 120.52 118.32 120

Server Uptime (Hrs) 30 30 30 30 30 30

Transaction Count 790 719 759 796 751 763

Figure 34 – was consistent as the combination of the 24-hour period of server three and the

six hour period of server four. It was clearly demonstrated that the SAS-only performance

 125

reacted only to the social network sale event, and that CPU load had no impact on server

uptime decisions.

In contrast to SAS-only Social Network performance the SAS RV&V test case results

demonstrated the first benefit of the RV&V feedback loop behavior. Figure 35 demonstrated

a substantially different CPU utilization curve for server three from that of server three in

Figure 34. Social Network test case SAS-only server utilization

Figure 31. SAS RV&V feedback had a definite impact on server utilization, as server

utilization at the peak point of 1200 hours was actually a trough compared to the SAS-only

test case. The addition of server four and server five CPU utilization showed an actual

increase in total CPU utilization for the system.

In Figure 36 below, server four CPU performance showed how the server three

trough was supplanted with server four transactions. All server four and server five

 126

activations began with very high CPU utilization as basic operating system services

consumed the CPU until server initiation processes quiesced. Comparing each test case run to

its peers, performance was very consistent. The activation of server four was delayed more

than an hour in every test case, but deactivation occurred around 1500 for both SAS-only and

SAS RV&V tests.

Figure 35. Social Network test case SAS RV&V CPU performance for server three

The weakness of SAS RV&V static rules was also demonstrated with this test case as

consecutive RV&V violations were not tuned during run time to address periodic

performance failures that should not have triggered RV&V intervention. Figure 37 shows

that the Social Network test case triggered SAS RV&V activation of server five in every test

case due to PPO violations; however, server five activation has no positive impact on

transactional performance. As soon as the settling time clock expired, server five was

 127

deactivated as total CPU utilization did not require a three-server configuration. Based on a

measurement of failed transactions comparing SAS-only versus SAS RV&V transaction

counts, server five deactivation caused transactions to be aborted because the server was

available for such a limited time. In only run two was server five active for more than a

Figure 36. Social Network test case SAS RV&V CPU performance for server four

single measurement cycle of a half an hour.

The combination of all three server CPU performance graphs is shown in Figure 38

below. This figure clearly shows that the social network sales event does drive server

performance to the limit of two-server operation. Except for one outlier spike in run two, all

five test cases show a consistent single spike during the social network sale event, with the

rest of the graph matching baseline performance. SAS RV&V combined performance shows

that the entire system exhibited higher CPU utilization in spikes and in the overall area under

 128

the curve compared to SAS-only performance shown in Figure 33. This increased CPU

utilization is likely due to the increased number of server transitions. No other WPO

behavior should have been modified on each server due to the implementation of SAS

RV&V feedback. It should be noted that the increased CPU utilization had no impact on

server uptime as a cloud-based server cost was incurred no matter whether the server was

fully utilized as they were with SAS RV&V test cases, or incurred more idle time with SAS-

only

Figure 37. Social Network test case SAS RV&V CPU performance for server five

test cases.

Competing SAS RV&V goals in a hierarchy where maximizing customer satisfaction

measured by PPO responsiveness was a higher-level goal than minimizing cost was expected

to reduce transactional performance in some manner. The feedback loop with competing

 129

goals must attempt to balance cost minimization with maximizing user satisfaction. This

competition was demonstrated in the results of Table 19. The implementation of SAS

RV&V reduced server costs by an average of 4% over SAS-only test cases. Transaction

counts were also reduced by 7%. These two results demonstrated the competing behavior of

maximizing transactional performance versus minimizing server uptime costs. RV&V

violations were comparable with an average of 14 for SAS-only behavior versus a mean of

16 for SAS RV&V. Thus, RV&V violations remained consistent across both feedback

approaches; however the SAS RV&V feedback loop attempted to reduce these violations by

spinning up new servers. The major change between the two profiles was that the maximum

Figure 38. Social Network test case SAS RV&V CPU performance combined

transaction second count went up by almost 100 seconds. This is likely due to the activation

and deactivation impacts of server five for such a limited time. While this maximum

 130

transaction second count was a negative metric, it accounted for only a single reading that

mapped to server five deactivation.

The last data analysis artifact in this section was Figure 39 where the mean values of

server uptime were compared. This graph shows that SAS RV&V narrows the uptime of

server four substantially, and that cost savings would have been greater had not server five

been activated for this short period due to static SAS RV&V rules. The SAS RV&V mean

Table 19. Social network SAS RV&V test case statistics

Social Network RV&V Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 141 210 203 174 127 171

RV&VViolations 24 9 18 17 10 16

MaxCpuUtilization 159.41 157.05 155.3 184.59 149.09 161

Server Uptime (Hrs) 28.5 29.5 29 28.5 28.5 29

Transaction Count 719 667 659 740 773 712

Savings 5% 2% 3% 5% 5% 4%

clearly demonstrated that server activation was delayed by an hour and half. Deactivation

also demonstrated one of the negative impacts of cloud-based server behavior. Cloud-server

deactivation often took far longer than activation as shown by the SAS RV&V mean line.

SAS RV&V attempted to deactivate an hour before SAS-only performance, but both lines

meet at 1600. This same deactivation delay was shown between 1300 and 1400 for server

five where the graph did not demonstrate linear deactivation.

 131

Figure 39. Social network server uptime mean comparison

Social Network sale data analysis demonstrated the conflict between competing SAS

RV&V goals, where PPO violations were addressed by spinning up new servers, while the

SAS RV&V cost savings rules attempted to retard server activations until customer

performance was impacted. SAS RV&V demonstrated a 4% cost savings over a limited

multi-server activation period. Total transactions decreased by 7% due to the short activation

time of server five that likely caused aborted transactions. Server logs showed substantial

transaction aborts at the same time that server five began termination. Overall, the Social

Network test case showed that SAS RV&V behavior did improve cost savings with only a

nominal increase of RV&V violations at 2% between SAS-only and SAS RV&V feedback.

 132

Sale Day Test Case Data Analysis

 The Sale Day test cases demonstrated a more realistic comparison between SAS-only

and SAS RV&V behavior over a full day, sale event. Like the Social Network test case

SAS-only behavior activated server four, but for a full eight-hour period. The SAS-only

system did not pay attention to RV&V violations or cost minimization. Evaluation of SAS

RV&V feedback for the Sale Day test case expanded on the results of the Social Network test

case in the positive and negative impacts of a fixed set of SAS RV&V rules over an extended

time period. Like the previous data analysis sections, CPU performance of each server was

analyzed and then a comparison of SAS-only versus SAS RV&V performance was provided.

In Figure 40 below, the SAS-only server-three graph showed the same trough created in the

Social Network test cases when a second server was activated to share the highest load. For

the first time the basic shape of the server three curve was no longer distinguishable because

server four played an active part in balancing overall load. It should also be noted that this

graph showed more variability between test cases as server three performance varied between

each sample data point because two servers were balancing the load for the majority of the

test cases.

 133

Figure 40. Sale Day test case SAS-only CPU performance for server three

Figure 41 shows the accompanying server four performance curve for SAS-only

behavior. Two characteristics of this curve deserve note. First, all five test case runs show

that the CPU utilization during server initialization begins at a maximum level and rapidly

decrease to a stable state around 50% utilization. This observation demonstrated that the

load balancing algorithm of the web client was appropriately balancing load in a stable

manner across the two servers. The second notable item in this graph was that it took almost

two simulation hours for server four to deactivate further reinforcing that server shutdown in

AWS environments was much less predictable than server activations. There was really no

other significant variability between the five test case runs for server four behaviors.

0

10

20

30

40

50

60

70

80

0
0

0
0

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2

0
0

2
3

0
0

%
 C

P
U

 U
ti

liz
at

io
n

Simulated Time in Hours

Run 1

Run 2

Run 3

Run 4

Run 5

 134

Figure 41. Sale Day test case SAS-only CPU performance for server four

The combined graph of SAS-only Sale Day test case CPU performance is shown in

Figure 42. It shows that the system started to execute a normal Basic test case curve when

the Sale Day event activated the second server and load increased almost vertically around

0800. Then, a stable state was achieved at about 110% CPU utilization. There was a

consistent trough in CPU performance at about 1000 hours that can’t be accounted for in the

test case, but it was very consistent across all test cases. At about 1800 conformance to the

Basic test case curve resumed and all test cases conformed to expected behaviors.

The summary statistics from the SAS-only, Sale Day test case execution are shown in

Table 20. RV&V violations remained consistent with those of the Social Network SAS-only

 135

Figure 42. Sale Day test case SAS-only CPU performance combined

and SAS RV&V results, but total transactions were increased from 763 to 1241. This

increased transactional performance was due to the increased simulation load, but also

because server four was active for over a third of the total test case duration. The server

uptime hours peaked for all SAS-only test cases at 36 hours because of the addition of 12

hours allocated to server four.

SAS RV&V results demonstrated the significant contrast in performance by the

inclusion of a second-level feedback loop that enforced competition between maximizing

customer satisfaction and minimizing costs. These test cases clearly showed that even static

SAS RV&V feedback decreased costs with increasing load and maintained RV&V violations

at a nominal level throughout the test case runs. In Figure 43 the server three graph showed

 136

that server four and server five do augment load above the maximum CPU value of server

three shown in the Basic test case runs. CPU volatility was again greater as the overall stress

Table 20. Sale Day SAS-only test case statistics

Sale Day Sas Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 75 66 64 85 72 72

RV&VViolations 14 19 17 12 19 16

MaxCpuUtilization 128 126 125 136 121 127

Server Uptime (Hrs) 36 36.5 36 36 36 36

Transaction Count 1219 1221 1256 1227 1280 1241

on the system increased, and was shown by the staccato spikes and troughs in a graph that

still remained consistent with Basic test case performance.

Server four performance, shown in Figure 44, was consistent with the SAS-only

server four performance curve where maximal startup utilization rapidly stabilized at a shelf

below 60%. The comparison of these two curves showed that when the second server was

active for a longer period of time, SAS RV&V server four utilization was actually lower than

SAS-only behavior. The SAS RV&V curves for server also terminated earlier in all five test

cases as the shutdown SAS RV&V rules were engaged.

Much like the Social Network test case results, server five activations were for only

short durations due to the static RV&V violation rules, and server five was active only for the

mandatory settling time period. Note that this settling time period was statically established

before runtime, and therefore did not have the benefit of measuring performance on the edge

of viability zones (Tamura et al., 2012). The results of server five activations can be seen in

Figure 45. Each activation was at the maximum CPU utilization load period of the Sale Day

 137

test cases, and therefore there is a direct correlation to CPU load and PPO response times.

As CPU load reached a maximum value for two server operation, PPO violations caused

Figure 43. Sale Day test case SAS RV&V CPU performance for server three

server five activation in all five test cases. The total server load did not warrant a third server

joining the WPO transactions, but PPO violations from the static SAS RV&V rules triggered

server five. These results, along with those of the Social Network test cases, show that SAS

RV&V rule tuning would likely have yielded better performance than static rule violation.

The combined CPU utilization of the WPO application is shown in Figure 46, and it

showed the impact of the server five activations in the spikes from each test case. These

activations were not caused by increased web load, but by Regular or Preferred PPO

violations when the WPO application was at maximum sustained utilization. While overall

PPO violations remained consistent between SAS-only and SAS RV&V test cases, the

 138

combination of RV&V violations and maximum load accounted for server five activations.

Because server five was active for only short durations, long running transactions were

clearly aborted causing a reduced total transaction volume. This experimentation did not

anticipate the impact to total transactions in the SAS RV&V rules as a measure of

performance; however, total transactions did seem to provide a marker to predict user

performance that PPO violations alone could not predict. The combined server CPU

Figure 44. Sale Day test case SAS RV&V CPU performance for server four

utilization graph also demonstrated the advantage of allowing a server to stay active for

longer periods of time as opposed to sporadic activations and deactivations. Without the

server five spikes this CPU performance curve showed the best server utilization among all

test cases.

 139

The total SAS RV&V statistics shown in Table 21 show that Sale Day server uptime

savings had a minimum improvement in a single test case of 4% and maximum improvement

in a single test case of 10%. The mean of 7% shows that SAS RV&V cost minimization

improved with the duration of multi-server operation. RV&V violations of SAS-only

performance were measured at 1.3% of total transactions and remained consistent with SAS

RV&V violations recorded at 1.5%. The total number of transactions did decrease in the

Figure 45. Sale Day test case SAS RV&V CPU performance for server five

same form as the Social Network test cases, largely due to the short duration of server five

activations. Overall, the Sale Day SAS RV&V results show that SAS RV&V continues to

minimize cost at a greater rate as multi-server operation occurs in a test case. Despite the

 140

brute force of SAS RV&V activation and de activation rules, customer satisfaction as a

Figure 46. Sale Day test case SAS RV&V CPU performance combined

measure of RV&V violations was maintained and a 7% mean cost saving was achieved. This

Table 21. Sale Day SAS RV&V test case statistics

Sale Day RV&V Test Case Runs

1 2 3 4 5 Mean

MaxTransSecCnt 154 141 180 178 104 151

RV&VViolations 21 21 17 19 15 19

MaxCpuUtilization 162 219 168 199 204 190

Server Uptime (Hrs) 32.5 35 34.5 33 33.5 34

Transaction Count 1212 1141 1148 1120 1206 1165

Savings 10% 4% 4% 8% 7% 7%

savings was achieved because the SAS RV&V rules retarded server four activation until PPO

violations required it, and reduced the activation time of server four as web load decreased

 141

below single server maximums. This result can be clearly seen by comparing server

activation times in Figure 47.

Figure 47. Sale Day test case server uptime comparison

Temporal Logic Transformation Data Analysis

The extraction of the state machine from the extended SmartContext (Villegas et al.,

2011) with states and temporal logic transitions was straightforward using the Gamma et al.

State pattern (1995); however, experimentation showed that the desired flexibility that

temporal logic provides defeated the specificity required by a state machine. The state

machine shown in Figure 16 utilized two different temporal logic constructs: next and until.

The use of these decorators for the edges required the implementation of additional synthetic

states that can be programmatically inserted into the state machine implementation.

Figure 48 shows the actual state machine necessary to implement the temporal logic

transitions. For each transition where a temporal logic decorator was implied, a new state was

injected into the state machine and a measurement was necessary to transition to the

subsequent state. Injected synthetic states are shown in green. The transition from the

NORMAL state to the MEDIUM state required that SAS rules one or two fire, or that RV&V

 142

rules one or two fire. State transition rules are shown in red. When these rules were

triggered, the state machine immediately transitioned to the NormalMedium synthetic

Figure 48. Derived temporal logic state machine

injected state even though the Figure 16 state machine showed a Normal to Medium

transition with the Until decorator. The Until decoration implied that all Normal state

behavior must be maintained until the input condition for the next state was satisfied. In this

case that input condition was that server four was active and available to accept connections.

The combination of the state machine shown in Figure 16, the SAS rules shown in

Figure 20, and the RV&V rules of Figures 21 and 22 were integrated into this final state

machine. The required information was available in the proposed SmartContext (Villegas et

al., 2011) extension, and a simple transformation process produced the final state machine.

 143

This transformation process was similar to that of a non-deterministic finite automata (NFA)

to deterministic finite automata (DFA) described in Sipser (2006). In the general case, every

state transition that had a temporal logic decorator required the injection of a synthetic state

to verify input conditions before the proposed state transition was achieved. Figure 49

clearly demonstrated that the language constructs proposed in the problem statement

contained all of the information necessary to construct a primary and secondary feedback

loop state machine infused with goals. The NFA transformation method also provided the

algorithm by which the extended SmartContext (Villegas et al., 2011) RDF graph was

transformed into a DFA using temporal logic.

Findings

SAS systems were inherently designed in such a way that exhaustive or quantitatively

verifiable testing of non-functional requirements can be intractable (Dahm, 2010); therefore,

new methods of verification and validation must be shown to assure system goals. SAS

RV&V was proposed as one method by which SAS systems can be quantitatively verified.

Tamura et al. (2012) proposed a conceptual design for a baseline application and test cases

that could be used to expand research in the SAS RV&V area. Using this baseline the

viability of SAS RV&V methods in a cloud-server environment could be determined.

Villegas et al. (2011) also proposed an RDF taxonomy to quantitatively measure

performance of web-based applications, and document a measurement framework for

monitoring.

This dissertation extended the SmartContext (Villegas et al., 2011) RDF language

with states, goals, and temporal logic to document the SAS and SAS RV&V feedback loops.

 144

As well, the Tamura et al. (2012) baseline WPO application was implemented in a set of

AWS (“Amazon web services,” 2013) server instances. Two competing SAS RV&V goals

were implemented that sought to maximize user satisfaction while minimizing cloud server

costs, and three of the proposed test cases from Tamura et al. (2012) were evaluated against

the baseline implementation using a static, rule-based feedback approach.

The Basic test case was the first test case evaluated in the WPO environment and five

SAS-only runs were executed. The data from these runs was then tabulated and graphed to

characterize the best-case operation of a single-server WPO environment. SAS RV&V

feedback was then enabled and the same five test cases were executed. Since only a single

server was utilized, SAS RV&V server uptime minimization could not improve over the

SAS-only execution. The SAS RV&V cloud-server uptime was only 2% worse than SAS-

only performance, but RV&V violations were maintained between the two configurations.

This result shows that the implementation of SAS RV&V increased cloud server costs only

minimally in a worst case scenario, but maintained customer satisfaction. The 2%

degradation in cloud server was amplified by the shorted simulation time of two minutes per

hour of wall time.

This first experiment demonstrated two shortcomings of the environment. First, static

rules that bound variables at startup time caused SAS RV&V rules to fire too soon when PPO

violations occurred. The feedback loop environment was not structured to learn an

appropriate value for PPO violations from test case to test case; therefore, the system reacted

too quickly when two violations happened in consecutive measurements. Secondly, the 2%

degradation in cloud server uptime was largely the result of simulation time being set at two

 145

minutes per hour. Because this value was set at a comparably small number, the impact of

server activations and deactivations spanned multiple measurement periods, amplifying the

impact far beyond real-world impacts.

The Social Network test case was the second scenario evaluated against the WPO

application using the same testing approach previously defined. In this instance both SAS-

only and SAS RV&V performance required multi-server operation. The SAS RV&V

second-level feedback loop reduced mean cloud-server costs by 4%, while RV&V violations

increased by only 2% over a sample of five test cases. There was a reduction in total

transactions caused by the short activation time of server five. This test case demonstrated

that SAS RV&V does minimize cloud server costs to a greater degree than the increase in

RV&V violations. It also further exposes a weakness in the approach of static rules for

RV&V that are not tuned to a specific application in either a manual or learning-mode

method. Server five activations should have been suppressed and would have prevented the

decrease in total transactions if some form of RV&V tuning were available within the

experiment.

The Social Network test cases demonstrated that a goal-based hierarchy must

sacrifice some top-level goal performance for subordinate goals. While in SAS-only mode,

neither RV&V violations nor server uptime resulted in changes to the server configuration;

however, RV&V violations were minimized because servers were under-subscribed in all

cases. In SAS RV&V mode an increase in RV&V violations must be permitted to optimize

server uptime. While this outcome was not explicitly defined by the feedback loop, it is

logical that a hierarchical goal tree would have to surrender some top level goal achievement

 146

to subordinate goals. Otherwise, all subordinate goal behavior would be suppressed. In the

Social Network test case, a 2% increase in RV&V violations permitted a 4% decrease in

WPO server uptime. This tradeoff demonstrated the intent of the goal tree that attempted to

balance WPO rule achievement.

The last test case executed against the WPO application was one where an extended

Sale Day period required the daylong activation of a second server. Multi-server load had to

be maintained for one third of total test case duration. In this instance SAS RV&V

interaction continued to reduce cloud-server costs by attaining a 7% mean decrease in server

uptime. RV&V violations, which were the primary measure of customer satisfaction, only

increased by 0.2% over SAS-only test cases. Sale Day goal satisfaction quantitatively

reduced cloud server costs while maintaining customer satisfaction as a measure of regular

and preferred RV&V violation in a tiered set of competing rules. The Sale Day test case also

demonstrated a byproduct of simple static rule behavior requiring further exploration. As has

been previously noted, the variables for each SAS RV&V rule were populated at system

startup. Thus, the feedback system was not able to measure or learn from operations within

single server or multi-server viability zones. If such a feedback memory were available, the

system would have suppressed the activation of server five in all cases, reduced the total

number of RV&V violations caused by server transitions, and completed more total

transactions. In the general case, RV&V intervention should be suppressed unless the system

has moved completely outside its ability to recover under normal, SAS operation. Lastly,

RV&V injection always has some negative side effects. This can be shown in the Sale Day

test case as the reduction in the total number of completed transactions. While not a

 147

feedback loop measured value, the reduced number of total WPO transactions would

eventually impact customer satisfaction.

Along with the demonstration that SAS RV&V did quantitatively improve the

performance of a SAS application, an extension of states with temporal logic was proposed.

This documentation method was proposed to capture SAS and SAS RV&V behavior without

having to specify every possible SAS execution path. The inclusion of states, goals and

temporal logic into the SmartContext (Villegas et al., 2011) RDF language was proposed as a

method to document SAS RV&V measurement and non-functional requirements.

Experimentation showed that these extensions to the RDF language, along with a hierarchical

goal tree, did provide enough information from which the two feedback loops could be

constructed. The use of temporal logic does require a transformation of the state machine

that injects synthetic states wherever a temporal logic decorator is used as an edge in the state

machine graph.

This dissertation implemented the proposed baseline application from Tamura et al.

(2012) in a cloud-server environment, and developed a web load generation approach for

three proposed test cases: Basic, Social Network, and Sale Day. An extension to the Villegas

et al. (2011) SmartContext RDF language was implemented that allowed for the creation of

states with temporal logic transitions, and QoS goals to monitor SAS performance. These

same goal constructs allowed for the establishment of SAS RV&V rules. Two goals were

implemented in the experimentation with the highest level goal being that of maintaining

customer satisfaction. The second goal was a competing goal to minimize server costs.

Experimentation showed that this SAS RV&V approach increased cloud server costs over

 148

SAS-only behavior by 2% in the worst case Basic scenario, minimized costs by 4% in the

Social Network test case, and minimized cost by 7% in the Sale Day test case. In all test

cases customer satisfaction was degraded only minimally showing a quantitative

improvement by the use of SAS RV&V methods on SAS-only systems. This research

demonstrated that even simple, statically refined SAS RV&V rules implemented in a second-

level feedback loop did improve the performance of a SAS cloud-server application.

 149

Chapter 5

Conclusions

This dissertation demonstrated a new approach for verifying that SAS systems

maintain their non-functional requirements by implementing a second-level SAS RV&V

feedback loop. This method was demonstrated in an Amazon cloud-based server

environment where a web purchasing application demonstrated self-adaptive behavior by

spinning up new cloud servers based on external context events. The structure of the primary

and secondary feedback loops was defined using an extension to the SmartContext (Villegas

et al., 2011) monitoring taxonomy that implemented states connected by temporal logic. QoS

goals were linked to the state machine via rules that defined generic SAS and SAS RV&V

performance boundaries.

This work validated that the implementation of a second-level SAS RV&V feedback

loop reduced the cloud-server costs up to a mean of 7% in one of three test cases while only

increasing PPO violations by a mean of 0.2% in that same test case. This work achieved the

dissertation goal of demonstrating that a hierarchal QoS goal tree in a temporal logic state

machine quantitatively improved performance over SAS-only application behavior. This

research also provided a sample implementation of the Tamura et al. (2012) baseline

application on which future SAS RV&V research can be extended. Three sample test cases

were developed and a novel web load generator was provided to simulate load against the

benchmark application.

 150

Experimentation demonstrated that the second-level feedback loop increased server

costs in the worst case – the Basic SAS-only test case – by 2% because of consecutive PPO

violations. In the short-duration Social Network test case, the SAS RV&V feedback loop

reduced server costs by a mean of 4% with only a 2% increase in PPO violations. The more

sustained external context event inside the Sale Day test case permitted SAS RV&V

feedback to engage in one third of the total simulated 24-hour test case duration. When SAS

RV&V feedback was enabled for this eight-hour period, a 7% mean reduction in cloud server

costs was attained with only a 0.2% increase in PPO violations.

This research also introduced a method by which the myriad of possible state

transitions contained in a SAS system can be more generically documented at design time.

The addition of temporal logic as part of a feedback process has been previously proposed

for SAS systems (Calinescu et al., 2012); however, its definition in a generic modeling

language was novel. The addition of states and temporal logic to the SmartContext language

(Villegas et al., 2011) provided this needed construct. As part of experimentation it was

discovered that the addition of temporal logic transitions required additional synthetic states

to be added to the state machine. This transformation followed the NFA to DFA automata

construction methods (Sipser, 2006), and resulted in a method to blend SAS and SAS RV&V

state transitions with a hierarchy of QoS goals codified in static rules.

Implications

The fundamental implication of this research was that the proposal made by Tamura

et al. (2012) that SAS RV&V might be a method by which SAS-only systems can

quantitatively build trust was valid. Not only were non-functional requirements maintained

 151

by the second-level feedback loop, but non-functional metrics improved consistently with the

duration of SAS RV&V engagement. As SAS systems become more complex and used in

mainstream applications, this research demonstrated that an RV&V feedback capability had

minimal impact on primary system behavior in the worst case, and consistently improved

overall non-functional requirements achievement, even with a very simplistic static rule

implementation.

Secondly, the Tamura et al. (2012) baseline application proposal has also been

implemented in a demonstrable cloud-server environment with accompanying test cases.

The baseline proposal did not specify how to generate load for the environment, but a web

load simulator was developed to make the WPO application a valuable SAS RV&V research

tool. The web load simulator was also novel in that it provided a three-variable method of

defining how to generate parallel transactions consistent with the RosenStein (2000) daily

transaction model. The method of assigning a load value by hour for the web load simulator

and allowing it to determine the appropriate mix of browse-only events versus transactional

events was new to the literature.

AI or stochastic approaches have been a focal point for SAS feedback loop behaviors

(Arshad et al., 2004; Calinescu et al., 2012). Defining complex AI solutions or populating

probabilities for a Markov’s Random Walk algorithm are likely too complex for most

commercial applications; however, the simple rules that instrumented the state machine

transitions in this experimentation should be easily defined for most applications. Secondly,

the RDF taxonomy approach is easily ingested by almost every high-level language, and may

enable the creation of feedback systems without special tools or skills.

 152

Beyond just demonstrating the value of SAS RV&V, there are several other areas

where the literature can be further expanded based on this work. The problem of RV&V

intervention side effects was clearly demonstrated in the Sale Day test case when the total

transaction count was negatively impacted due to short-duration server five activations and

deactivations. The total transaction count was not a value that the Tamura et al. (2012)

baseline proposed to measure, but failed transactions would clearly impact customer

satisfaction. The fundamental decision of what constitutes an appropriate intervention

sequence for RV&V in the general case versus further measurement is a new research

question. The value of RV&V is not only intervention, but a documentation method for how

the SAS-only system operates. Like SAS RV&V for spacecraft and the avionics industry

(Felt et al., 2010; Laurent, 2010), much of the value of SAS RV&V may be measurement

feedback for the developer of the next software update, not intervention in current system

operation. Each test case independently demonstrated that SAS RV&V must lean toward

application stability over intervention whenever possible, even at the edges of a viability

zone.

The SmartContext (Villegas et al., 2011) extensions were shown to have substantial

value for implementing a system performance specification in the form of a temporal logic

state machine. This specification was then transformed into the logic of the feedback

subsystem. The work of Calinescu et al. (2012) also used temporal logic within the SAS

system, but it did not result in a generally reusable semantics. The temporal logic state

machine was shown to be an effective method of defining and measuring adaptive behavior.

 153

The syntax was also readily transformed into high-level language code, and could be used

beyond SAS as a method of instrumenting software systems.

Decision trees are not new methods for documenting learning systems (Mitchell,

1997), but the integration of a QoS taxonomy (Fu et al., 2007) as the syntax for a goal tree

provided a new semantics for the goal tree approach. With the addition of the Maximize and

Minimize directional attributes, like those proposed by Lapouchnian et al. (2005), a complete

method of defining a system-level measurement language was provided. The structure of a

directional goal being represented by definitive rules draws from Villegas et al. (2011), but

its implementation at the system level is unique. Further exploration could be performed to

define a generic rule syntax that is also directly transformed into high-level languages.

Recommendations

While this dissertation’s purpose was to quantitatively demonstrate that SAS RV&V

methods improved non-functional goal achievement over SAS-only systems, it did uncover

some areas requiring further investigation. Tamura et al. (2012) noted that additional

research needed to be conducted in the area of settling time and measurement at the edges of

viability zones. This prediction proved true. The utilization of SAS RV&V rules with values

fixed at system startup caused the SAS RV&V feedback system to override SAS

performance too early when the system neared the edges of a viability zone. Secondly,

settling time was also established at a global level and not localized to a particular viability

zone – or state – transition. In both cases there would have been substantive improvement by

having the feedback system record performance of the SAS RV&V system in each test case

and then modify its rule variables based on previous performance. The baseline system did

 154

not define that the feedback loop have persistent memory, but this capability would likely

have improved SAS RV&V performance over these experiments.

The total number of test cases proposed by Tamura et al. (2012) was truncated as the

first three demonstrated quantitative improvement; however, continued experimentation with

the Black Friday test case may have shown further improvement in SAS RV&V performance

metrics. The Black Friday test case was developed by this research, but was not executed

due to the added tuning and experimentation time required. The Black Friday test case

should demonstrate an upper bound of SAS-only activity when all three servers are active.

SAS RV&V rules will likely have a more substantial impact in this test case than any of the

others because the viability zone is larger and is distributed over most the test case duration.

Thus, the highest SAS RV&V performance may be expected by the Black Friday event

experiments.

The experimentation also established a simulation time ratio where two minutes

equaled one hour of wall time. The Amazon cloud server environment was, however,

running in wall time and the impact of server activation and deactivation times were

substantially amplified. Server transitions were recorded at longer intervals than they would

be in real operation. This amplification of cloud-server effects degraded the cost savings of

each test case’s performance. In future experimentation the simulation time ratio should be

reduced to further negate the activation and deactivation time impacts on cost savings. This

experimentation also showed that there was very little variability in test case performance

between any of the runs of the same type. Thus, five runs per test case may not be required

to establish new performance criteria.

 155

The invocation of SAS RV&V rules in the WPO application was observed to almost

always have negative side effects. This behavior was anticipated because the system is being

forced into a stable state and the context that caused instability is likely to continue until the

settling time clock expires. An example of this behavior was the spinning up of server five

during the Sale Day test case. The additional server provided no improvement in PPO

performance metrics, but load began to be shifted to server five before the settling time clock

expired. The feedback system then determined that the total transaction load did not warrant

three active servers, and began the server five shutdown processes stranding several long-

running transactions. Unintended side effects of SAS RV&V intervention are also an area

where further exploration is required.

The concept of settling time was mentioned by Tamura et al. (2012) in a few differing

contexts; however, this experimentation brought the concept into clearer focus. When an

RV&V intervention takes place, the simple approach of activating a settling time clock was

ineffective. The events that caused the intervention are likely still occurring and the system

is ignoring the side effects until a stable state is achieved. Settling time is likely better

determined by satisfying a new set of constraints, not by a determination of time. The time-

based approach may result in a looping of RV&V intervention, which is always undesirable.

Summary

The concept of self-adaption is a further specification of the concepts put forward by

Kephart and Chess (2003) in their autonomic computing challenge. Self-adaption is a

systems design approach where a feedback loop operates externally from the primary

application and samples internal and external system context to maintain system goals.

 156

Internal context refers to those measures within the application that the feedback loop should

monitor, and external context the events happening in the environment outside the

application that impact performance. The fundamental feedback approach for a self-adaptive

system was defined by Salehie and Tahvildari (2009) and its structure remains largely

unchanged. Interest in SAS systems has resulted in substantial research, but there has been a

limited commercial acceptance of these new concepts because of a lack of trust in SAS

system performance (Tamura et al., 2012).

Space systems depend largely on autonomic software and the same problems of trust

have been addressed in that domain by the use of RV&V concepts (Goldberg et al., 2005).

Runtime verification methods have been successfully applied for spacecraft and avionics

systems where all possible outcomes can’t be predicted prior to deployment. In each case

temporal logic was employed to simplify complex state machines and permit the RV&V

system to verify high-level goals while allowing the primary system to operate without

secondary intervention. The ability to rapidly establish trust in these complex software

systems has also been requested for future unmanned aerial vehicles, and was listed as one of

the U.S. Air Forces primary research challenges over the next 30 years (Dahm, 2010).

Several SAS research roadmaps called out the need for quantitative verification

methods for SAS systems as being a critical priority for this technology to achieve substantial

commercial acceptance (Calinescu et al., 2012; Cheng et al., 2009; Lemos et al., 2012;

Tamura et al., 2012). The Tamura et al. (2012) roadmap suggested an extension to the

MAPE-K feedback system (Salehie & Tahvildari, 2009) that added a secondary RV&V

feedback loop to operate in concert with the primary SAS feedback loop. Tamura et al.

 157

(2012) also proposed a web purchasing application and associated test cases as a platform on

which SAS RV&V experimentation could be conducted. These building blocks were a

necessary first step in establishing a research agenda for SAS improvements.

Because SAS applications are inherently complex, new methods of documenting

requirements – especially non-functional requirements – were required if runtime methods

were to be successfully employed (Sawyer, Bencomo, & Whittle, 2010). Villegas et al.

(2011) had developed a web application monitoring language called SmartContext to provide

an approach for documenting SLAs at the application level. Tamura et al. (2012) also

suggested that SmartContext might be adapted to document SAS RV&V systems. Tamura et

al. (2012) suggested that the Requirements@Runtime initiative might also play a role in

documenting SAS RV&V capabilities (Sawyer, Bencomo, & Whittle, 2010). The confluence

of these requirements efforts provided a vector for this research.

While SmartContext (Villegas et al., 2011) provided a language construct for

monitoring SLAs, it did not address the semantics required for defining non-functional

requirements. The majority of non-functional characteristics – such as application

performance, availability, cost, and reliability – were defined in a QoS taxonomy of Fu et al.

(2007). Because SmartContext was based in the RDF specification, the Fu et al. (2007)

taxonomy could easily be attached to the semantics as a goal tree.

Previous efforts in SAS RV&V have used AI or stochastic methods to (Arshad et al.,

2004; Calinescu et al., 2012) achieve the Planner functions from the Tamura et al. (2012)

model; however, these functions were always tightly coupled to the feedback loop or even

integrated into the primary application. The research roadmaps called for a more general

 158

method of documenting non-functional requirements that could be readily integrated into

feedback loops from many different applications. Thus, a language-based approach like

SmartContext was desired. The space systems RV&V approach always employed some

form of temporal logic as part of their language specification (Artho, Barringer, & Goldberg,

2005), and a temporal logic approach does provide the opportunity for the state machine to

be quantifiably verifiable via a Büchi automation; therefore, the addition of a temporal logic

approach for defining SAS RV&V states was a viable formal method to be explored.

The problem statement of this dissertation was to show that SAS RV&V could

quantifiably improve the adherence to non-functional requirements over SAS-only systems.

This was to be accomplished by implementing the Tamura et al. (2012) baseline application

and test cases to evaluate the use of an extended SmartContext language containing QoS

goals and states connected by temporal logic.

The baseline application defined by Tamura et al. (2012) ran in a cloud-server

environment where the addition and subtraction of application servers constituted the SAS

behavior. The WPO application was implemented in the Apache Wicket (2014) framework

and complied with the baseline requirements of having two classes of customers: Regular

and Preferred. The time to complete a purchase was defined as the primary application

metric of PPO, and would be the basis for RV&V measurement of internal context. The

WPO application had no knowledge of the feedback loop nor of the number of application

servers processing transactions.

In order to properly evaluate the WPO application in a SAS-only and then SAS

RV&V context, a web load generator was required. To create a realistic profile of internet

 159

purchasing site transactions, the Rosenstien (2000) load profile was utilized to develop a load

generator where 49 browses of the site were randomly interspersed with one of two differing

purchasing scenarios. Each of these 50 web transactions with the WPO application was

referred to as a cycle, and the definition of parallel cycles was the metric by which load was

generated against the WPO application. The entire WPO application environment was

implemented in the Amazon cloud on three small Ubuntu instances. Each instance had an

independent version of the WPO application that was externally loaded.

Three of the four Tamura et al. (2012) test cases were implemented using the web

load generator and JSON-based load profiles. The Basic test case provided a single-server

load profile over a 24-hour period that closely followed the Rosenstein (2000) load profile.

The second test case was a Social Network test case that loaded the WPO application with an

external context sale event. This event triggered the primary feedback loop to require a

second server to join the application environment. Load increased to approximately double

that of the Basic test case over a short duration. The last test case was the Sale Day tests

case. This experiment also triggered the primary feedback loop to activate a second server

over an eight-hour period and approximate a sustained two-server load.

The baseline WPO application, web load simulator, and feedback loops were hosted

in the AWS environment in five Ubuntu images. Experimentation was separated into two

phases. The first phase tuned the web load generator to attain a stable load curve that did not

exhibit substantial HTTP exceptions and was repeatable across each of the test cases. It was

determined that the Amazon software load balancer implemented connection pipelining with

the Apache Tomcat instances, and therefore defeated the load generation algorithm by

 160

combining transactions into a single TCP connection. To resolve this problem, the load

balancing requirements were implemented inside the web load generator and all phase one

goals were achieved.

The second phase of experimentation was to execute each of the three test cases

previously described in SAS-only mode and then with the second-level SAS RV&V

feedback loop activated. Each test case was executed five times in the SAS-only mode and

then SAS RV&V mode. Mean values were calculated of each required statistic and

comparisons were made among the SAS-only and SAS RV&V values to determine if

quantitative improvements were achieved.

The Basic test case execution represented the worst-case as SAS RV&V intervention

could never reduce cloud server costs when only one server was active in SAS-only mode.

The SAS RV&V results did show that PPO violations remained consistent between SAS-

only and SAS RV&V execution. Customer satisfaction was maintained or Maximized per the

QoS goal tree; however, cloud server costs increased by a 2% mean because static RV&V

rules fired with consecutive PPO violations. The Social Network test case was the first

multi-server experiment and cloud server savings of a 4% mean were achieved with only a

2% mean increase in PPO violations. Lastly, the Sale Day test case achieved a 7% mean

reduction in cloud server costs while increasing PPO violations by no more than 0.2%. The

system did, therefore, quantitatively demonstrate that the SAS RV&V method improved the

QoS goal of “Maximize performance throughput” compared to SAS-only data.

Several topics for future research were discovered during experimentation. The first

of these was that static RV&V whose variables are bound at instantiation are not the best

 161

method for triggering RV&V intervention. Secondly, the Black Friday test case proposed by

Tamura et al. (2012) was not executed in this research and likely would have shown further

cloud server cost savings over the other three test cases. The topic of RV&V intervention

versus continued measurement also requires further research. In many cases the side effects

from RV&V intervention nearly cancelled out its benefits; therefore, RV&V intervention

should be explored as a minimally invasive construct, but actively used to provide feedback

for future software improvement. Simulation time in these experiments was set to a ratio of

two minutes per hour of wall time. Because this ratio was so short, the impact of AWS cloud

server activations and deactivations was amplified and likely reduced the actual cloud server

savings that would have been achieved. Lastly, settling time as described by Tamura et al.

(2012) can clearly be seen to be better defined by a set of constraints that have been satisfied

in the feedback process vice the timeout of a single, global settling time clock. A constraint

based approach to settling time requires further research.

This dissertation explored how SAS non-functional requirements can be documented

in a language-based approach that is easily implemented into a feedback loop. The research

showed that the implementation of a second-level RV&V feedback loop demonstrated

quantitative improvement over SAS-only methods, even with simple static rules. States with

temporal logic transitions were an adequate documentation method to capture SAS system

operations without requiring too much specificity. The use of a QoS goal hierarchy enabled

the translation of human readable goals to SAS RV&V rules that the second-level feedback

loop could support. This dissertation achieved its goals, and added new content to the SAS

literature.

 162

Appendix A

Basic Test Case Results

The following tables provide additional detail from executing the Basic test cases.

Basic SAS-only test case performance for server 3

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 12.5 15.23 14 16.37 13.29 14.278

12.91 14.34 12.85 15.59 16.59 14.456

0100 12.97 17.1 14.69 16.98 14.93 15.334

15.85 19.11 16.69 17.06 18.04 17.35

0200 17.75 17.96 21.04 18.39 18.47 18.722

17.64 26.25 19.18 20.6 19.48 20.63

0300 16.67 16.77 17.68 18.36 16.93 17.282

13.44 15.13 14.13 17.97 15.14 15.162

0400 13.67 14.7 14.51 15.76 16.6 15.048

13.8 14.98 14.6 15.26 16.14 14.956

0500 15.34 17.52 15.93 17.08 17.54 16.682

16.06 19.21 18.27 18.43 23.28 19.05

0600 15.88 15.85 13.78 16.49 17.46 15.892

14.37 14.82 14.48 16.19 16.05 15.182

0700 16.31 14.69 15.16 16.06 16.89 15.822

14.16 15.88 14.86 16.37 16.44 15.542

0800 15.76 21.09 20.56 20.27 21.93 19.922

23.72 27.08 27.53 30.04 32.43 28.16

0900 32.42 35.16 37.27 38.21 40.6 36.732

38.21 40.89 40.52 42.39 43.81 41.164

1000 41.73 45.58 41.59 46.71 48.38 44.798

46.71 47.43 47.89 52.85 55.32 50.04

1100 52.4 52.95 54.68 59.97 59.22 55.844

60.77 63.96 61.06 71.76 70.02 65.514

1200 64.47 58.86 56 64.73 65.2 61.852

55.86 59.37 56.25 61.13 64.5 59.422

1300 56.22 56.57 52.88 59.51 62.69 57.574

54.31 52.67 53.78 58.97 61.86 56.318

1400 55.42 56.89 55.49 60.26 61.43 57.898

60.69 60.36 61.34 65.85 66.31 62.91

1500 60.54 59.55 56.43 60.34 60.2 59.412

54.8 52.17 55.25 57.76 57.97 55.59

1600 58.8 57.32 54 60.49 62.31 58.584

58.6 55.55 57.05 61.69 65.32 59.642

1700 54.07 48.38 49.01 49.92 52.22 50.72

41.17 46.07 40.41 46.39 46.69 44.146

1800 39.45 40.26 36.74 41.23 44.67 40.47

36.4 36.54 36.97 44.97 40.86 39.148

1900 37.99 31.86 28.72 33.72 34.57 33.372

27.8 28.06 27.15 32.04 30.69 29.148

2000 24.98 26.79 23.61 27.38 27.32 26.016

22.47 21.74 22.59 25.84 28.54 24.236

2100 20.91 20.54 17.18 24.35 22.97 21.19

16.46 17.69 16.73 19.33 19.84 18.01

2200 18.23 14.59 13.23 18.31 16.39 16.15

12.85 13.55 11.11 13.4 13.75 12.932

2300 12.59 12.79 12.29 13.39 14.16 13.044

11.93 13.59 12.53 15.75 12.66 13.292

Basic Test Case Runs

 163

Basic SAS RV&V test case performance for server three

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 17.21 15.48 18.73 15.98 16.93 16.866

18.06 16.44 18.26 17.29 20.29 18.068

0100 18.15 19.37 21.55 23.29 20.45 20.562

20.66 20.22 20.31 24.78 27.24 22.642

0200 25.05 18.04 24.83 23.09 22.79 22.76

16.42 15.83 21.84 18.9 18.15 18.228

0300 16.61 15.75 18.14 18.05 17.93 17.296

16.92 15.96 17.58 18.08 17.92 17.292

0400 18.1 14.5 17.85 20.66 22.67 18.756

23.86 16.75 20.35 19.63 20.92 20.302

0500 21.28 18.1 20.93 21.79 21.41 20.702

17.01 13.83 21.59 18.87 18.72 18.004

0600 16.38 17.09 18.27 18.1 17.67 17.502

16.43 14.38 19.92 21.1 21.48 18.662

0700 19.84 15.34 19.93 18.73 20.82 18.932

22 21.92 21.74 22.54 29.26 23.492

0800 33 31.56 28.91 31.69 37.29 32.49

40.62 39.97 41.21 42.4 47.4 42.32

0900 41.95 41.79 49.83 56.06 56.53 49.232

50.45 47.33 54.75 53.09 54.68 52.06

1000 52.74 50.42 56.31 57.2 62.97 55.928

59.18 58.49 63.35 65.26 72.52 63.76

1100 66.08 64.67 73.03 76.3 75.58 71.132

57.73 56.18 75.55 77.14 67.62 66.844

1200 58.86 56.8 70.02 68.36 66.27 64.062

61.57 54.11 68.24 67.84 63.69 63.09

1300 56.18 54.97 65.91 65.38 66.26 61.74

59.28 61.02 69.94 69.17 71.86 66.254

1400 65.03 62.26 71.12 74.76 74.29 69.492

59.87 53.14 73.56 67.82 64.19 63.716

1500 59.32 56.36 65.1 64.81 66.42 62.402

60.6 59.28 70.08 68.86 68.28 65.42

1600 59.62 57.94 70.73 66.52 65.81 64.124

42.02 43.8 67.61 62.24 53.29 53.792

1700 48.36 43.82 57.57 51.3 51.39 50.488

42.13 37.34 51.57 47.46 47.74 45.248

1800 39.37 38.46 46.18 45.71 41.07 42.158

31.02 30.97 44.67 41.64 34.9 36.64

1900 29.33 27.06 36.02 37.54 36.86 33.362

28.99 24.88 32.94 34.72 27.7 29.846

2000 26.19 24.43 31.6 29 28.71 27.986

21.23 18.36 28.83 29.82 22.27 24.102

2100 21.64 20.02 21.36 25.44 19.63 21.618

17.43 13.48 20.33 21.45 17.17 17.972

2200 18.95 13.16 19.44 19.12 15.13 17.16

13.69 14.44 14.65 15.52 15.11 14.682

2300 14.31 13.1 15.28 16.13 12.72 14.308

10.29 13.1 16.89 15.02 12.72 13.604

Basic Rvv Test Case Runs - Server 3

 164

Basic SAS RV&V test case performance for server four

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0 0 0 0 0 0

0 0 0 0 0 0

0100 0 0 0 0 0 0

0 0 0 0 0 0

0200 0 0 0 0 0 0

0 0 0 0 0 0

0300 0 0 0 0 0 0

0 0 0 0 0 0

0400 0 0 0 0 0 0

0 0 0 0 0 0

0500 0 0 0 0 0 0

0 0 0 0 0 0

0600 0 0 0 0 0 0

0 0 0 0 0 0

0700 0 0 0 0 0 0

0 0 0 0 0 0

0800 0 0 0 0 0 0

0 0 0 0 0 0

0900 0 0 0 0 0 0

0 0 0 0 0 0

1000 0 0 0 0 0 0

0 0 0 0 0 0

1100 0 0 0 0 0 0

0 0 0 0 83.47 16.694

1200 0 0 0 0 0 0

0 0 0 0 0 0

1300 0 0 0 0 0 0

0 0 0 0 0 0

1400 0 0 0 0 0 0

0 0 0 0 0 0

1500 0 0 0 0 0 0

0 0 0 0 0 0

1600 73.55 0 0 0 0 14.71

0 0 0 0 0 0

1700 0 0 0 0 0 0

0 0 0 0 0 0

1800 0 0 0 0 0 0

0 0 0 0 0 0

1900 0 0 0 0 0 0

0 0 0 0 0 0

2000 0 0 0 0 0 0

0 0 0 0 0 0

2100 0 0 0 0 0 0

0 0 0 0 0 0

2200 0 0 0 0 0 0

0 0 0 0 0 0

2300 0 0 0 0 0 0

0 0 0 0 0 0

Basic Rvv Test Case Runs - Server 4

 165

Basic SAS RV&V test case performance combined

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 17.21 15.48 18.73 15.98 16.93 16.866

18.06 16.44 18.26 17.29 20.29 18.068

0100 18.15 19.37 21.55 23.29 20.45 20.562

20.66 20.22 20.31 24.78 27.24 22.642

0200 25.05 18.04 24.83 23.09 22.79 22.76

16.42 15.83 21.84 18.9 18.15 18.228

0300 16.61 15.75 18.14 18.05 17.93 17.296

16.92 15.96 17.58 18.08 17.92 17.292

0400 18.1 14.5 17.85 20.66 22.67 18.756

23.86 16.75 20.35 19.63 20.92 20.302

0500 21.28 18.1 20.93 21.79 21.41 20.702

17.01 13.83 21.59 18.87 18.72 18.004

0600 16.38 17.09 18.27 18.1 17.67 17.502

16.43 14.38 19.92 21.1 21.48 18.662

0700 19.84 15.34 19.93 18.73 20.82 18.932

22 21.92 21.74 22.54 29.26 23.492

0800 33 31.56 28.91 31.69 37.29 32.49

40.62 39.97 41.21 42.4 47.4 42.32

0900 41.95 41.79 49.83 56.06 56.53 49.232

50.45 47.33 54.75 53.09 54.68 52.06

1000 52.74 50.42 56.31 57.2 62.97 55.928

59.18 58.49 63.35 65.26 72.52 63.76

1100 66.08 64.67 73.03 76.3 75.58 71.132

57.73 56.18 75.55 77.14 151.09 83.538

1200 58.86 56.8 70.02 68.36 66.27 64.062

61.57 54.11 68.24 67.84 63.69 63.09

1300 56.18 54.97 65.91 65.38 66.26 61.74

59.28 61.02 69.94 69.17 71.86 66.254

1400 65.03 62.26 71.12 74.76 74.29 69.492

59.87 53.14 73.56 67.82 64.19 63.716

1500 59.32 56.36 65.1 64.81 66.42 62.402

60.6 59.28 70.08 68.86 68.28 65.42

1600 133.17 57.94 70.73 66.52 65.81 78.834

42.02 43.8 67.61 62.24 53.29 53.792

1700 48.36 43.82 57.57 51.3 51.39 50.488

42.13 37.34 51.57 47.46 47.74 45.248

1800 39.37 38.46 46.18 45.71 41.07 42.158

31.02 30.97 44.67 41.64 34.9 36.64

1900 29.33 27.06 36.02 37.54 36.86 33.362

28.99 24.88 32.94 34.72 27.7 29.846

2000 26.19 24.43 31.6 29 28.71 27.986

21.23 18.36 28.83 29.82 22.27 24.102

2100 21.64 20.02 21.36 25.44 19.63 21.618

17.43 13.48 20.33 21.45 17.17 17.972

2200 18.95 13.16 19.44 19.12 15.13 17.16

13.69 14.44 14.65 15.52 15.11 14.682

2300 14.31 13.1 15.28 16.13 12.72 14.308

10.29 13.1 16.89 15.02 12.72 13.604

Basic Rvv Test Case Runs - Combined

 166

Appendix B

Social Network Test Case Results

Social Network SAS-only test case performance for server three

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 12.19 13.35 17.09 10.13 14.73 13.498

12.82 19.51 14.7 17.38 17.03 16.288

0100 16.23 17.17 17.4 16.59 15.84 16.646

17.71 19.97 17.23 16.78 18.92 18.122

0200 15.46 21.33 20.11 18.25 20.63 19.156

20.71 25.35 21.92 21.78 21.86 22.324

0300 15.65 22.63 17.37 20.62 17.07 18.668

15.21 18.32 15.72 18.99 16.78 17.004

0400 10.56 16.31 10.65 15.49 10.96 12.794

6.63 9.82 8.3 9.06 8.91 8.544

0500 7.24 12.6 12.7 10.03 12.28 10.97

11.15 18.19 16.11 13.82 17.4 15.334

0600 13.78 18.03 18.73 18.16 15.81 16.902

12.15 17.18 15.62 14.67 20.3 15.984

0700 12.06 18.15 16.08 17.06 17.29 16.128

11.58 17.86 16.87 14.97 15.91 15.438

0800 10.43 17.38 9.99 17.24 10.97 13.202

6.47 10.31 8.56 10.07 8.79 8.84

0900 7.93 11.03 10.79 8.98 10.67 9.88

8.1 12.09 8.76 9.83 8.59 9.474

1000 11.66 16.06 21.31 10.56 21.67 16.252

28.28 39.49 39.35 28.36 38.12 34.72

1100 45.5 49.74 50.54 41.14 49.84 47.352

52.37 63.7 62.57 61.66 59.5 59.96

1200 48.09 63.18 50.83 56.69 48.76 53.51

43.62 48.25 52.7 52.36 49.34 49.254

1300 42.22 61.12 53.31 55.2 58.66 54.102

48.79 59.01 57.22 50.23 57.89 54.628

1400 51.63 66.34 59.96 54.99 61.82 58.948

52.92 67.72 63.54 60.74 64.16 61.816

1500 54.3 68.11 59.99 64.87 59.08 61.27

51.37 66.24 54.57 55.52 59.94 57.528

1600 51.23 63.52 58 58.16 56.46 57.474

54.15 68.11 58.62 59.27 61.2 60.27

1700 50.68 64.3 49.74 57.01 52.68 54.882

37.32 48.56 44.5 46.39 42.05 43.764

1800 40.34 52.04 40.07 43.13 42.9 43.696

34.64 44.48 38.47 38.27 40.95 39.362

1900 32.8 39.6 34.11 38.58 33.22 35.662

29.1 32.72 27.83 28.82 32.59 30.212

2000 24.04 32.43 25.75 28.81 27.35 27.676

23.92 30.03 25.63 26.88 25.51 26.394

2100 26.65 25.14 21.85 21.91 21.33 23.376

17.46 21.32 19.19 18.56 19.64 19.234

2200 16.28 18.41 15.84 18.52 17.81 17.372

13.02 16.69 12.72 13.28 13.44 13.83

2300 11.08 17.14 12.84 13.91 15.18 14.03

14.05 14.52 13.55 14.31 20.9 15.466

Social Network Sas Test Case Runs - Server 3

 167

Social Network SAS-only test case performance for server four

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

0

0900 0

37.99 38.47 31.71 38.42 30.48 35.414

1000 30.81 28.33 27.19 26.76 27.17 28.052

44.9 38.43 35.4 42.91 36.27 39.582

1100 52.52 52.56 49.44 53.33 50.67 51.704

62.83 61.12 57.28 58.86 58.82 59.782

1200 53.58 52.09 50.77 45.77 52.72 50.986

53.95 51.34 49.12 50.77 47.57 50.55

1300 33.83 31.42 37.86 30.11 41.93 35.03

0.62 0.52 1.08 0.5 0.87 0.718

1400 0.18 0.18 0.23 0.22 0.22 0.206

0.17 0.32 0.23 0.15 0.25 0.224

1500 0.23 0.22 0.23 0.25 0.32 0.25

0

1600 0

0

1700 0

0

1800 0

0

1900 0

0

2000 0

0

2100 0

0

2200 0

0

2300 0

0

Social Network Sas Test Case Runs - Server 4

 168

Social Network SAS-only test case performance for combined

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 12.19 13.35 17.09 10.13 14.73 13.498

12.82 19.51 14.7 17.38 17.03 16.288

0100 16.23 17.17 17.4 16.59 15.84 16.646

17.71 19.97 17.23 16.78 18.92 18.122

0200 15.46 21.33 20.11 18.25 20.63 19.156

20.71 25.35 21.92 21.78 21.86 22.324

0300 15.65 22.63 17.37 20.62 17.07 18.668

15.21 18.32 15.72 18.99 16.78 17.004

0400 10.56 16.31 10.65 15.49 10.96 12.794

6.63 9.82 8.3 9.06 8.91 8.544

0500 7.24 12.6 12.7 10.03 12.28 10.97

11.15 18.19 16.11 13.82 17.4 15.334

0600 13.78 18.03 18.73 18.16 15.81 16.902

12.15 17.18 15.62 14.67 20.3 15.984

0700 12.06 18.15 16.08 17.06 17.29 16.128

11.58 17.86 16.87 14.97 15.91 15.438

0800 10.43 17.38 9.99 17.24 10.97 13.202

6.47 10.31 8.56 10.07 8.79 8.84

0900 7.93 11.03 10.79 8.98 10.67 9.88

46.09 50.56 40.47 48.25 39.07 44.888

1000 42.47 44.39 48.5 37.32 48.84 44.304

73.18 77.92 74.75 71.27 74.39 74.302

1100 98.02 102.3 99.98 94.47 100.51 99.056

115.2 124.82 119.85 120.52 118.32 119.742

1200 101.67 115.27 101.6 102.46 101.48 104.496

97.57 99.59 101.82 103.13 96.91 99.804

1300 76.05 92.54 91.17 85.31 100.59 89.132

49.41 59.53 58.3 50.73 58.76 55.346

1400 51.81 66.52 60.19 55.21 62.04 59.154

53.09 68.04 63.77 60.89 64.41 62.04

1500 54.53 68.33 60.22 65.12 59.4 61.52

51.37 66.24 54.57 55.52 59.94 57.528

1600 51.23 63.52 58 58.16 56.46 57.474

54.15 68.11 58.62 59.27 61.2 60.27

1700 50.68 64.3 49.74 57.01 52.68 54.882

37.32 48.56 44.5 46.39 42.05 43.764

1800 40.34 52.04 40.07 43.13 42.9 43.696

34.64 44.48 38.47 38.27 40.95 39.362

1900 32.8 39.6 34.11 38.58 33.22 35.662

29.1 32.72 27.83 28.82 32.59 30.212

2000 24.04 32.43 25.75 28.81 27.35 27.676

23.92 30.03 25.63 26.88 25.51 26.394

2100 26.65 25.14 21.85 21.91 21.33 23.376

17.46 21.32 19.19 18.56 19.64 19.234

2200 16.28 18.41 15.84 18.52 17.81 17.372

13.02 16.69 12.72 13.28 13.44 13.83

2300 11.08 17.14 12.84 13.91 15.18 14.03

14.05 14.52 13.55 14.31 20.9 15.466

Social Network Sas Test Case Runs - Combined

 169

Social Network SAS RV&V test case performance for server three

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 14.51 17.75 17.31 17.7 14.05 16.264

16.47 16.49 16.46 19.15 19.36 17.586

0100 16.88 20.92 15.12 21.86 16.32 18.22

17.97 26.47 18.68 22.73 17.96 20.762

0200 19.13 24.32 19.91 24.38 19.57 21.462

18.99 21.99 20.71 20.87 20.75 20.662

0300 15.87 18.47 19 19.67 17.19 18.04

15.11 17.01 17.28 15.87 15.31 16.116

0400 8.17 11.98 10.68 10.24 11.37 10.488

9.45 10.87 12.78 14.27 9.22 11.318

0500 13.2 15.32 11.55 17.23 11.71 13.802

16.81 18.72 16.54 18.34 17.25 17.532

0600 14.55 21.94 14.34 20.52 14.45 17.16

14.88 22.1 16.96 17.12 18.58 17.928

0700 15.09 17.89 16.88 20.2 16.86 17.384

14.38 16.91 14.82 13.14 15.26 14.902

0800 8.87 9.63 11.99 11.32 12.8 10.922

8.41 10.48 8.39 12.57 8.85 9.74

0900 9.52 13.16 9.78 15.78 10.2 11.688

16.55 22.06 12.49 37.18 13.94 20.444

1000 48.63 58.26 37.14 70.7 42.05 51.356

60.62 57.1 64.63 84.67 55.94 64.592

1100 49.63 53.06 55.37 65.4 49.16 54.524

39.32 39.37 44.48 37.69 40.5 40.272

1200 40.66 37.81 28.9 44.53 47.47 39.874

48.5 48.22 45.12 44.76 45.84 46.488

1300 36.83 37.54 40.44 39.38 38.23 38.484

30.92 41.14 30.33 42.51 34 35.78

1400 31.07 44.27 34.48 42.57 37.23 37.924

46.09 40.13 35.92 55.9 44.77 44.562

1500 55.17 55.01 30.99 68.39 58 53.512

57.42 67.48 54.15 69.51 59.54 61.62

1600 57.1 68.14 56.85 72.75 58.14 62.596

57.64 70.85 56.12 63.8 58.42 61.366

1700 44.45 51.43 50.12 54.07 50.45 50.104

41.56 48.79 43.27 50.39 46.55 46.112

1800 39 47.05 38.56 49.71 42.06 43.276

36.03 44.13 38.46 42.55 41.45 40.524

1900 29.89 34.82 32.98 35.15 30.81 32.73

26.97 34.59 27.07 34.67 29.95 30.65

2000 22.74 28.84 25.15 29.66 25.44 26.366

27.17 26.73 23.45 26.37 25.2 25.784

2100 18.62 24.01 19.29 24.37 19.47 21.152

17.4 22.91 18.47 21.52 20.37 20.134

2200 14.29 15.17 15.09 15.97 15.24 15.152

12.98 15.12 12.5 16.63 12.72 13.99

2300 12.45 15.72 13.14 17.9 19.17 15.676

13.12 14.58 12.81 15.68 13.36 13.91

Social Network Rvv Test Case Runs - Server 3

 170

Social Network SAS RV&V test case performance for server four

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

0

0900 0

0

1000 0

99.95 99.92 39.974

1100 99.93 100 99.93 100 99.93 99.958

95.42 100 100 84.35 98.2 95.594

1200 65.57 81.82 86.31 65.26 69.27 73.646

45.28 54.4 62.05 46.25 55.17 52.63

1300 50.11 39.28 49.73 38.39 46.82 44.866

29.99 37.32 35.96 34.29 32.57 34.026

1400 30.72 38.7 38.52 37.64 30.62 35.24

32.21 41.06 37.33 29.84 28.088

1500 38.76 7.752

0

1600 0

0

1700 0

0

1800 0

0

1900 0

0

2000 0

0

2100 0

0

2200 0

0

2300 0

0

Social Network Rvv Test Case Runs - Server 4

 171

Social Network SAS RV&V test case performance for server five

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

0

0900 0

0

1000 0

0

1100 0

0

1200 0

65.63 98.57 94.19 93.23 70.324

1300 74.59 56.51 26.22

0

1400 0

0

1500 0

0

1600 0

0

1700 0

0

1800 0

0

1900 0

0

2000 0

0

2100 0

0

2200 0

0

2300 0

0

Social Network Rvv Test Case Runs - Server 5

 172

Social Network SAS RV&V test case performance combined

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 14.51 17.75 17.31 17.7 14.05 16.264

16.47 16.49 16.46 19.15 19.36 17.586

0100 16.88 20.92 15.12 21.86 16.32 18.22

17.97 26.47 18.68 22.73 17.96 20.762

0200 19.13 24.32 19.91 24.38 19.57 21.462

18.99 21.99 20.71 20.87 20.75 20.662

0300 15.87 18.47 19 19.67 17.19 18.04

15.11 17.01 17.28 15.87 15.31 16.116

0400 8.17 11.98 10.68 10.24 11.37 10.488

9.45 10.87 12.78 14.27 9.22 11.318

0500 13.2 15.32 11.55 17.23 11.71 13.802

16.81 18.72 16.54 18.34 17.25 17.532

0600 14.55 21.94 14.34 20.52 14.45 17.16

14.88 22.1 16.96 17.12 18.58 17.928

0700 15.09 17.89 16.88 20.2 16.86 17.384

14.38 16.91 14.82 13.14 15.26 14.902

0800 8.87 9.63 11.99 11.32 12.8 10.922

8.41 10.48 8.39 12.57 8.85 9.74

0900 9.52 13.16 9.78 15.78 10.2 11.688

16.55 22.06 12.49 37.18 13.94 20.444

1000 48.63 58.26 37.14 70.7 42.05 51.356

60.62 157.05 64.63 184.59 55.94 104.566

1100 149.56 153.06 155.3 165.4 149.09 154.482

134.74 139.37 144.48 122.04 138.7 135.866

1200 106.23 119.63 115.21 109.79 116.74 113.52

159.41 102.62 107.17 91.01 101.01 112.244

1300 86.94 76.82 90.17 77.77 85.05 83.35

60.91 78.46 66.29 76.8 66.57 69.806

1400 61.79 82.97 73 80.21 67.85 73.164

78.3 81.19 73.25 55.9 74.61 72.65

1500 55.17 55.01 69.75 68.39 58 61.264

57.42 67.48 54.15 69.51 59.54 61.62

1600 57.1 68.14 56.85 72.75 58.14 62.596

57.64 70.85 56.12 63.8 58.42 61.366

1700 44.45 51.43 50.12 54.07 50.45 50.104

41.56 48.79 43.27 50.39 46.55 46.112

1800 39 47.05 38.56 49.71 42.06 43.276

36.03 44.13 38.46 42.55 41.45 40.524

1900 29.89 34.82 32.98 35.15 30.81 32.73

26.97 34.59 27.07 34.67 29.95 30.65

2000 22.74 28.84 25.15 29.66 25.44 26.366

27.17 26.73 23.45 26.37 25.2 25.784

2100 18.62 24.01 19.29 24.37 19.47 21.152

17.4 22.91 18.47 21.52 20.37 20.134

2200 14.29 15.17 15.09 15.97 15.24 15.152

12.98 15.12 12.5 16.63 12.72 13.99

2300 12.45 15.72 13.14 17.9 19.17 15.676

13.12 14.58 12.81 15.68 13.36 13.91

Social Network Rvv Test Case Runs - Combined

 173

Appendix C

Sale Day Test Case Results

Sale Day SAS-only test case performance for server three

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 25.34 19.59 27.44 15.55 27.01 22.986

19.35 17.87 20.64 19.58 19.79 19.446

0100 26.14 24.3 26.54 19.8 23.99 24.154

28.95 31.84 34.33 28.19 30.74 30.81

0200 29.28 29.02 35.16 29.67 41.5 32.926

30.83 33.29 42.1 30.86 38.3 35.076

0300 24.79 28.43 34.58 28.27 34.81 30.176

24.83 24.89 30.73 25.65 32.84 27.788

0400 19.79 22.83 30.98 23.15 26.47 24.644

21.5 21.08 25.76 20.44 28.81 23.518

0500 25.34 22.45 34.31 22.82 28.04 26.592

25.76 27.28 33.81 24.75 29.1 28.14

0600 27.98 27.51 37.56 24.33 29.78 29.432

25.87 25.76 31.36 24.41 30 27.48

0700 25.59 27.42 29.55 26.49 32.88 28.386

27.27 27.07 36.88 23.9 30.14 29.052

0800 36.79 31.2 36.55 29.36 36.65 34.11

28.47 26.42 43.89 38.5 32.68 33.992

0900 29.02 34.88 34.73 26.48 35.18 32.058

39.4 36.94 42.02 31.58 42.7 38.528

1000 40.71 42.93 50.82 38.94 43.65 43.41

45.59 46.82 51.28 42.66 50.78 47.426

1100 52.78 52.66 55.15 49.36 61.1 54.21

59.84 57.16 68.28 54.8 61.44 60.304

1200 51.26 49.96 61.71 60.61 65.51 57.81

51.91 53.21 57.35 48.33 56.35 53.43

1300 50.6 51.97 60.76 48.6 61.5 54.686

55.92 51.65 56.65 50.55 57.34 54.422

1400 52.41 52.85 60.02 50.85 59.12 55.05

56.14 53.54 61.29 52.06 62.84 57.174

1500 49.4 49.61 60.36 48.37 58.78 53.304

48.92 49.44 56.65 48.72 56.11 51.968

1600 50.6 46.76 56.27 46.58 55.37 51.116

51.51 53.44 59.39 49.15 60.15 54.728

1700 42.56 42.6 54.1 49.37 57.35 49.196

39.29 37.28 47.87 36.86 46.67 41.594

1800 54.42 46.93 49.64 39.1 57.92 49.602

63.17 62.91 70.78 58.3 72.56 65.544

1900 53.03 53.64 65.83 58.84 66.71 59.61

48.86 51.31 55.68 50.29 57.35 52.698

2000 42.36 43.24 57.52 46.43 51.83 48.276

39.48 41.42 46.02 38.62 45.59 42.226

2100 32.48 36.96 40.91 37.16 37.85 37.072

31.23 28.6 37.79 28.06 34.58 32.052

2200 25.08 26.53 33.16 28.08 32.95 29.16

24.1 22.35 31.39 25.19 25.85 25.776

2300 25.05 25.03 29.42 24.8 27.79 26.418

24.7 25.36 29.41 23.75 31.27 26.898

Sale Day Sas Test Case Runs - Server 3

 174

Sale Day SAS-only test case performance for server four

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

99.92 99.95 70.64 99.95 72.47 88.586

0900 87.27 80.05 42.82 97.54 41.52 69.84

40.72 42.3 37.47 39.02 41.68 40.238

1000 38.62 40.89 40.97 40.03 40.66 40.234

44.12 47.81 43.32 42.22 48.78 45.25

1100 51.34 53.82 53.89 49.58 51.22 51.97

58.32 57.98 56.22 52.46 56.03 56.202

1200 51.98 61.2 49.58 46.48 55.74 52.996

51.52 49.34 50.43 45.82 49.31 49.284

1300 50.23 54.95 48.72 46.24 51.49 50.326

51.24 61.52 48.01 46.31 51.68 51.752

1400 56.84 54.02 50.72 47.01 52.63 52.244

54.55 55.8 53.94 49.06 55.33 53.736

1500 51.98 60.66 45.57 43.19 53.46 50.972

48.52 53.05 47.06 43.89 49.51 48.406

1600 49.53 52.94 48.16 43.14 50.81 48.916

52.32 54.79 50.46 46.36 51.33 51.052

1700 44.27 55.09 40.67 36.54 47.95 44.904

38.9 44.18 36.49 35.24 38.77 38.716

1800 22.15 42 17.78 18.02 25.08 25.006

0.35 10.39 0.28 0.25 0.6 2.374

1900 0.32 0.28 0.12 0.35 0.35 0.284

0.23 0.18 0.12 0.33 3.6 0.892

2000 0.17 0.18 0.37 0.18 0.28 0.236

0.17 0.034

2100 0

0

2200 0

0

2300 0

0

Sale Day Sas Test Case Runs - Server 4

 175

Sale Day SAS-only test case performance combined

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 25.34 19.59 27.44 15.55 27.01 22.986

19.35 17.87 20.64 19.58 19.79 19.446

0100 26.14 24.3 26.54 19.8 23.99 24.154

28.95 31.84 34.33 28.19 30.74 30.81

0200 29.28 29.02 35.16 29.67 41.5 32.926

30.83 33.29 42.1 30.86 38.3 35.076

0300 24.79 28.43 34.58 28.27 34.81 30.176

24.83 24.89 30.73 25.65 32.84 27.788

0400 19.79 22.83 30.98 23.15 26.47 24.644

21.5 21.08 25.76 20.44 28.81 23.518

0500 25.34 22.45 34.31 22.82 28.04 26.592

25.76 27.28 33.81 24.75 29.1 28.14

0600 27.98 27.51 37.56 24.33 29.78 29.432

25.87 25.76 31.36 24.41 30 27.48

0700 25.59 27.42 29.55 26.49 32.88 28.386

27.27 27.07 36.88 23.9 30.14 29.052

0800 36.79 31.2 36.55 129.31 36.65 54.1

128.39 126.37 114.53 136.04 105.15 122.096

0900 116.29 114.93 77.55 65.5 76.7 90.194

80.12 79.24 79.49 71.61 84.38 78.968

1000 79.33 83.82 91.79 81.16 84.31 84.082

89.71 94.63 94.6 92.24 99.56 94.148

1100 104.12 106.48 109.04 101.82 112.32 106.756

118.16 115.14 124.5 101.28 117.47 115.31

1200 103.24 111.16 111.29 106.43 121.25 110.674

103.43 102.55 107.78 94.57 105.66 102.798

1300 100.83 106.92 109.48 94.91 112.99 105.026

107.16 113.17 104.66 97.56 109.02 106.314

1400 109.25 106.87 110.74 99.91 111.75 107.704

110.69 109.34 115.23 95.25 118.17 109.736

1500 101.38 110.27 105.93 92.26 112.24 104.416

97.44 102.49 103.71 91.86 105.62 100.224

1600 100.13 99.7 104.43 92.94 106.18 100.676

103.83 108.23 109.85 85.69 111.48 103.816

1700 86.83 97.69 94.77 84.61 105.3 93.84

78.19 81.46 84.36 54.88 85.44 76.866

1800 76.57 88.93 67.42 39.35 83 71.054

63.52 73.3 71.06 58.65 73.16 67.938

1900 53.35 53.92 65.95 59.17 67.06 59.89

49.09 51.49 55.8 50.47 60.95 53.56

2000 42.53 43.42 57.89 46.43 52.11 48.476

39.48 41.59 46.02 38.62 45.59 42.26

2100 32.48 36.96 40.91 37.16 37.85 37.072

31.23 28.6 37.79 28.06 34.58 32.052

2200 25.08 26.53 33.16 28.08 32.95 29.16

24.1 22.35 31.39 25.19 25.85 25.776

2300 25.05 25.03 29.42 24.8 27.79 26.418

24.7 25.36 29.41 23.75 31.27 26.898

Sale Day Sas Test Case Runs - Combined

 176

Sale Day SAS RV&V test case performance for server three

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 17.85 26.33 25.38 19.27 22.41 17.766

23.92 24.89 19.34 22.98 25.1 18.226

0100 27.59 31.64 21.51 29.09 32.65 21.966

29.07 35.55 27.76 27.48 34.12 23.972

0200 25.99 34.34 29.23 31.99 35.4 24.31

23.15 31.61 34.42 30.36 33.69 23.908

0300 23.27 30.47 28.53 29.01 31.03 22.256

17.83 25.11 25.54 27.64 22.9 19.224

0400 18.92 23.48 21.1 21.29 22.81 16.958

22.19 25.92 20.63 20.39 26.15 17.826

0500 22.9 28.04 22.94 27.86 27.96 20.348

23.35 29.01 24.38 29.88 28.59 21.324

0600 23.99 28.57 24.9 26.87 28.72 20.866

23.97 28.84 25.74 27.96 28 21.302

0700 25.27 27.93 25.15 29.55 29.37 21.58

35.68 35.24 26.14 29.2 39.91 25.252

0800 48.31 46.9 31.95 44.57 48.02 34.346

58.08 58.16 42.78 52.19 52.49 42.242

0900 66.36 65.34 58.12 61.25 31.46 50.214

55.19 45.05 44.86 61.22 33.86 41.264

1000 29.1 27.81 24 37.68 45.38 23.718

30.63 43.46 27.07 22.13 57.61 24.658

1100 49.06 50.44 48.77 42.45 59.59 38.144

41.16 55.47 53.78 49.69 54.86 40.02

1200 48.86 54 47.5 43.25 51.31 38.722

46.86 56.27 48.13 51.24 57.18 40.5

1300 48.84 50.28 51.77 50.85 55.04 40.348

49.33 54.36 47.53 49.87 50.68 40.218

1400 50.48 57.86 52.03 53.1 55.57 42.694

44.88 50.28 51.82 52.73 52.69 39.942

1500 49.39 51.52 48.22 44.24 48.92 38.674

46.04 54.09 47.77 48.67 54.4 39.314

1600 46.96 52.08 47.75 50.38 52.24 39.434

36.52 48.47 45.88 47.4 46.2 35.654

1700 35.7 41.94 45.14 40.47 42.89 32.65

51.94 35.99 37.39 40.11 46.13 33.086

1800 57.04 36.06 36.69 53.31 66.86 36.62

47.86 33.1 58.77 59.05 58.61 39.756

1900 43.7 31.23 55.5 49.23 52.32 35.932

37.59 46.52 45.52 49.51 45.79 35.828

2000 35.16 41.66 46.13 41.1 39.66 32.81

27.18 37.09 39.05 37.44 37.55 28.152

2100 26.37 32.41 32.77 29.97 32.51 24.304

23.51 30.98 30.72 28.04 27.83 22.65

2200 21.93 25.9 26.02 24.74 27.24 19.718

22.26 28.17 22.83 24.63 28.29 19.578

2300 23.3 26.69 24.86 23.56 25.51 19.682

23.3 25.34 23.3 20.4 23.31 18.468

Sale Day Rvv Test Case Runs - Server 3

 177

Sale Day SAS RV&V test case performance for server four

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

99.93 19.986

0900 100 20

99.93 99.93 99.93 98.62 63.2 92.322

1000 100 100 100 100 45.18 89.036

88.37 75.97 91.23 99.04 65.44 84.01

1100 60.38 48.57 51.07 69.66 62.04 58.344

49.47 56.09 57.3 51.15 51.63 53.128

1200 50.59 48.79 55.88 45.86 54.7 51.164

50.26 53.54 52.6 51.71 55.38 52.698

1300 47.9 52.93 51.58 52.98 52.73 51.624

51.26 50.38 51.61 50.32 53.04 51.322

1400 49.77 51.69 53.67 53.94 55.23 52.86

44.88 47.82 56.15 51.31 47.17 49.466

1500 47.07 45.98 52.63 48.17 53.53 49.476

45.81 43.91 48.97 49.73 54.94 48.672

1600 44.27 50.3 49.82 50.22 53.56 49.634

36.63 45.32 48.3 45.53 43.98 43.952

1700 33.51 38.2 48.62 39.04 40.58 39.99

36.42 44.32 33.39 22.826

1800 33.67 37.87 14.308

32.68 6.536

1900 29.03 5.806

0

2000 0

0

2100 0

0

2200 0

0

2300 0

0

Sale Day Rvv Test Case Runs - Server 4

 178

Sale Day SAS RV&V test case performance for server five

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 0

0

0100 0

0

0200 0

0

0300 0

0

0400 0

0

0500 0

0

0600 0

0

0700 0

0

0800 0

0

0900 0

0

1000 0

99.9 19.98

1100 72.3 14.46

71.14 57.01 98.58 45.346

1200 0

0

1300 0

99.97 19.994

1400 0

0

1500 0

0

1600 0

0

1700 0

0

1800 0

0

1900 0

0

2000 0

0

2100 0

0

2200 0

0

2300 0

0

Sale Day Rvv Test Case Runs - Server 5

 179

Sale Day SAS RV&V test case performance combined

1 2 3 4 5

Wall Time 100-%idle 100-%idle 100-%idle 100-%idle 100-%idle Mean

0000 17.85 26.33 25.38 19.27 22.41 22.248

23.92 24.89 19.34 22.98 25.1 23.246

0100 27.59 31.64 21.51 29.09 32.65 28.496

29.07 35.55 27.76 27.48 34.12 30.796

0200 25.99 34.34 29.23 31.99 35.4 31.39

23.15 31.61 34.42 30.36 33.69 30.646

0300 23.27 30.47 28.53 29.01 31.03 28.462

17.83 25.11 25.54 27.64 22.9 23.804

0400 18.92 23.48 21.1 21.29 22.81 21.52

22.19 25.92 20.63 20.39 26.15 23.056

0500 22.9 28.04 22.94 27.86 27.96 25.94

23.35 29.01 24.38 29.88 28.59 27.042

0600 23.99 28.57 24.9 26.87 28.72 26.61

23.97 28.84 25.74 27.96 28 26.902

0700 25.27 27.93 25.15 29.55 29.37 27.454

35.68 35.24 26.14 29.2 39.91 33.234

0800 48.31 46.9 31.95 44.57 48.02 43.95

58.08 58.16 42.78 52.19 152.42 72.726

0900 66.36 65.34 58.12 61.25 131.46 76.506

155.12 144.98 144.79 159.84 97.06 140.358

1000 129.1 127.81 124 137.68 90.56 121.83

119 219.33 118.3 121.17 123.05 140.17

1100 109.44 171.31 99.84 112.11 121.63 122.866

161.77 111.56 168.09 199.42 106.49 149.466

1200 99.45 102.79 103.38 89.11 106.01 100.148

97.12 109.81 100.73 102.95 112.56 104.634

1300 96.74 103.21 103.35 103.83 107.77 102.98

100.59 104.74 99.14 100.19 203.69 121.67

1400 100.25 109.55 105.7 107.04 110.8 106.668

89.76 98.1 107.97 104.04 99.86 99.946

1500 96.46 97.5 100.85 92.41 102.45 97.934

91.85 98 96.74 98.4 109.34 98.866

1600 91.23 102.38 97.57 100.6 105.8 99.516

73.15 93.79 94.18 92.93 90.18 88.846

1700 69.21 80.14 93.76 79.51 83.47 81.218

51.94 72.41 81.71 73.5 46.13 65.138

1800 57.04 69.73 74.56 53.31 66.86 64.3

47.86 65.78 58.77 59.05 58.61 58.014

1900 43.7 60.26 55.5 49.23 52.32 52.202

37.59 46.52 45.52 49.51 45.79 44.986

2000 35.16 41.66 46.13 41.1 39.66 40.742

27.18 37.09 39.05 37.44 37.55 35.662

2100 26.37 32.41 32.77 29.97 32.51 30.806

23.51 30.98 30.72 28.04 27.83 28.216

2200 21.93 25.9 26.02 24.74 27.24 25.166

22.26 28.17 22.83 24.63 28.29 25.236

2300 23.3 26.69 24.86 23.56 25.51 24.784

23.3 25.34 23.3 20.4 23.31 23.13

Sale Day Rvv Test Case Runs - Combined

 180

References

Amazon elastic load balancing. (2013). Retrieved from

http://aws.amazon.com/elasticloadbalancing/

Amazon web services. (2013). Retrieved from http://http//aws.amazon.com

Apache tomcat. (2013). Retrieved from http://tomcat.apache.org

Apache wicket. (2014). Retrieved from https://wicket.apache.org

Arshad, N., Heimbigner, D., & Wolf, A. L. (2004). A planning based approach to failure

recovery in distributed systems. Proceedings of the 1st ACM SIGSOFT Workshop on

Self-Managed Systems - WOSS ’04, 8–12. http://doi.org/10.1145/1075405.1075407

Artho, C., Barringer, H., & Goldberg, A. (2005). Combining test case generation and runtime

verification. Theoretical Computer …, 336, 209–234.

http://doi.org/10.1016/j.tcs.2004.11.007

Baier, C., & Katoen, J.-P. (2008). Principles of model checking. The MIT Press. Retrieved

from http://dl.acm.org/citation.cfm?id=1373322

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2001). Discrete Event System

Simulation (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Barringer, H., Havelund, K., Rydeheard, D., & Groce, A. (2009). Rule systems for runtime

verification: A short tutorial. Runtime Verification, 1–24. Retrieved from

http://www.springerlink.com/index/V88W047845RL4416.pdf

Behrmann, G., David, A., & Larsen, K. (2006). A tutorial on Uppaal 4.0. …

/darts/papers/texts/new-Tutorial. …. Retrieved from

http://www.csi.uottawa.ca/~bochmann/ELG7187C/CourseNotes/PerformanceModeling/

Timed-Automata/UPPAAL - new-tutorial.pdf

Calinescu, R., Ghezzi, C., Kwiatkowska, M., & Mirandola, R. (2012). Self-adaptive software

needs quantitative verification at runtime. Communications of the …, 55(9), 69.

http://doi.org/10.1145/2330667.2330686

Calinescu, R., & Kwiatkowska, M. (2009). CADS*: Computer-aided development of self-*

systems. Fundamental Approaches to Software …, 1–4. Retrieved from

http://www.springerlink.com/index/y0863g33hv748262.pdf

Cheng, B., Lemos, R. De, & Giese, H. (2009). Software engineering for self-adaptive

systems: a research roadmap. Software Engineering for …, 1–26. Retrieved from

http://www.springerlink.com/index/H380742725036312.pdf

 181

Chung, H., & Park, J. (2009). Consumer motivation and site transfer behavior: weblog

analysis for online service. 2009 IEEE/INFORMS International Conference on Service

Operations, Logistics and Informatics, 78–84.

http://doi.org/10.1109/SOLI.2009.5203908

Creeger, M. (2009). Cloud computing: an overview. Queue, 7(5), 3.

http://doi.org/10.1145/1551644.1554608

Dahm, W. (2010). Report on Technology Horizons A Vision for Air Force Science &

Technology During 2010-2030 (Vol. 1). Retrieved from

http://www.af.mil/shared/media/document/AFD-100727-053.pdf

Dashorst, M., & Hillenius, E. (2009). Wicket in action. Greenwich: Manning Publications.

de la Iglesia, D. G., & Weyns, D. (2013). Guaranteeing robustness in a mobile learning

application using formally verified MAPE loops. 2013 8th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 83–92.

http://doi.org/10.1109/SEAMS.2013.6595495

Feldt, R., Torkar, R., Ahmad, E., & Raza, B. (2010). Challenges with software verification

and validation activities in the space industry. 2010 Third International Conference on

Software Testing, Verification and Validation, 225–234.

http://doi.org/10.1109/ICST.2010.37

Fu, X., Zou, P., Jiang, Y., & Shang, Z. (2007). QoS consistency as basis of reputation

measurement of web service. In The First International Symposium on Data, Privacy,

and E-Commerce (ISDPE 2007) (pp. 391–396). IEEE.

http://doi.org/10.1109/ISDPE.2007.23

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns. Reading, MA:

Addison-Wesley Publishing Company.

Goldberg, A., Havelund, K., & McGann, C. (2005). Runtime verification for autonomous

spacecraft software. IEEE Aerospace Conference Proceedings, 2005, 507–516.

http://doi.org/10.1109/AERO.2005.1559341

Gupta, M., Mittal, H., Singla, P., & Bagchi, A. (2014). Characterizing Comparison Shopping

Behavior : A Case Study. http://doi.org/10.1109/ICDEW.2014.6818314

Heimdahl, M. P. E., & Leveson, N. G. (1996). Completeness and consistency in hierarchical

state-based requirements. IEEE Transactions on Software Engineering, 22(6), 363–377.

http://doi.org/10.1109/32.508311

Herman, I. (2014). Web Ontology Language (OWL). Retrieved from

http://www.w3.org/2004/OWL/

Jureta, I. J., Borgida, A., Ernst, N. A., & Mylopoulos, J. (2010). Techne: towards a new

generation of requirements modeling languages with goals, preferences, and

inconsistency handling. 2010 18th IEEE International Requirements Engineering

Conference, 115–124. http://doi.org/10.1109/RE.2010.24

 182

Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer, (January),

41–50. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055

Lamsweerde, A. Van. (2000). Requirements Engineering in the Year 00 : A Research

Perspective. In Proceedings of the International Conference on Software Engineering

(pp. 5–19). Limerick, Ireland: ICSE. http://doi.org/10.1109/ICSE.2000.870463

Lapouchnian, A., Yu, Y., Liaskos, S., & Mylopoulos, J. (2005). Requirements-driven design

of autonomic application software. In Proceedings of the Workshop on Design and

Evolution of Autonomic Application Software (pp. 1–7).

Laurent, O. (2010). Using formal methods and testability concepts in the avionics systems

validation and verification (v&v) process. … , Verification and Validation (ICST), 2010

Third …, 1–10. http://doi.org/10.1109/ICST.2010.38

Lemos, R. De, Giese, H., Muller, H. a., & Shaw, M. (2011a). Software Engineering for Self-

Adaptive Systems: A Second Research Roadmap (Draft Version of May 20, 2011),

(October 2010). Retrieved from

http://didattica.uniroma2.it/assets/uploads/corsi/144538/dagstuhl-

2ndSelfAdaptRoadmap.pdf

Lemos, R. De, Giese, H., Muller, H. A., & Shaw, M. (2011b). Software engineering for self-

adaptive systems: a second research roadmap. InProceedings of Software Engineering

for Self-Adaptive Systems. Retrieved from http://vesta.informatik.rwth-

aachen.de/opus/volltexte/2011/3156/

Merz, S. (2001). Model checking: A tutorial overview. Modeling and Verification of Parallel

Processes. Retrieved from http://www.springerlink.com/index/111t8re3ww3l5nbt.pdf

Mitchell, T. (1997). Machine learning. Boston, MA: McGraw-Hill.

Qureshi, N. A., Jureta, I. J., & Perini, A. (2011). Requirements engineering for self-adaptive

systems : core ontology and problem statement. In CAiSE’11: Proceedings of the 23rd

international conference on Advanced information systems engineering (pp. 33–47).

Berlin Heidelberg: Springer-Verlag.

Qureshi, N. A., Jureta, I. J., & Perini, A. (2012). Towards a requirements modeling language

for self-adaptive systems. REFSQ’12 Proceedings of the 18th International Conference

on Requirements Engineering: Foundation for Software Quality, 263–279. Retrieved

from http://www.springerlink.com/index/0Q2KU352L70732T4.pdf

Rosenstein, M. (2000). What is actually taking place on web sites : e-commerce lessons from

web server logs. EC ’00: Proceedings of the 2nd ACM Conference on Electronic

Commerce, 38–43.

Russell, S., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd ed.). Upper

Saddle River, NJ: Pearson.

 183

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: landscape and research

challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2), 1–42.

http://doi.org/10.1145/1516533.1516538

Sawyer, P., Bencomo, N., & Whittle, J. (2010). Requirements-aware systems. International

…, 95–103. http://doi.org/10.1109/RE.2010.21

Sipser, M. (2006). Introduction to the theory of computation (2nd Editio). Boston, MA:

Thomson Course Technology.

Tamura, G., Villegas, N., Muller, H., Sousa, J. P., Becker, B., Karsai, G., … Wong, K.

(2012). Towards practical runtime verification and validation of self-adaptive software

systems. … -Adaptive Systems …, 108–132. Retrieved from http://hal.archives-

ouvertes.fr/hal-00709943/

Ubuntu. (2013). Retrieved from http://www.ubuntu.com

Unified modeling language. (2013). Retrieved from http://www.uml.org

Villegas, N. M., Muller, H. a., & Tamura, G. (2011). Optimizing run-time SOA governance

through context-driven SLAs and dynamic monitoring. 2011 International Workshop on

the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, 1–10.

http://doi.org/10.1109/MESOCA.2011.6049036

Welsh, K., Sawyer, P., & Bencomo, N. (2011). Towards Requirements Aware Systems :

Run-time Resolution of Design-time Assumptions. In 26th IEEE/ACM International

Conference on Automated Software Engineering (pp. 560–563).

Weyns, D., Iftikhar, M. U., de la Iglesia, D. G., & Ahmad, T. (2012). A survey of formal

methods in self-adaptive systems. In Proceedings of the Fifth International C*

Conference on Computer Science and Software Engineering - C3S2E ’12 (pp. 67–79).

New York, New York, USA: ACM Press. http://doi.org/10.1145/2347583.2347592

	Nova Southeastern University
	NSUWorks
	2017

	A Runtime Verification and Validation Framework for Self-Adaptive Software
	David B. Sayre
	Share Feedback About This Item
	NSUWorks Citation

	APA paper format

