
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1988

Approximate inverse based multigrid

solution of large sparse linear systems

Banerjee, Rabindra Nath

http://knowledgecommons.lakeheadu.ca/handle/2453/1614

Downloaded from Lakehead University, KnowledgeCommons

j - /L.^ 'd>0

Approximate Inverse Based Multigrid Solution

of Large Sparse Linear Systems

A thesis submitted to

Lakehead University

in partial fulfillment of the requirements

for the degree of

Master of Science

Rabindra Nath Banerjee Fdez.-Bordas

by

1988

1

ProQuest Number: 10611767

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10611767

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106 - 1346

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a 4te accordee
a la Bibliotheque nationals
du Canada de microfilmer
cette these et de preter ou
de vendre des exemplaires du
film.

L*auteur (titulaire du droit
d'auteur) se reserve les
autres droits de publication;
ni la these ni de longs
extraits de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation ecrite.

ISBN 0-315-44789-3

Acknowledgements

I want to thank my supervisor, Professor M.W. Benson, for his advice, encourage-

ment and generous support during the preparation of this thesis. I thank him for his

friendship and patient dedication through many stimulating discussions.

I am also indebted to Professor D.L. Black and Ms. J. Rives for their generous help

in the translation of a Russian reference.

I extend my deepest appreciation to the Sarbadhikari and Chahal families; this

thesis would not have been completed without their love and hospitality.

Finally, I dedicate this work to my parents and Susana, for their faithful support

and encouragement during these years of uncertainty.

11

Abstract

In this thesis we study the approximate inverse based multigrid algorithm FAPIN

for the solution of large sparse linear systems of equations.

This algorithm, which is closely related to the well known multigrid V-cycle, has

proven successful in the numerical solution of several second order boundary value prob-

lems. Here we are mainly concerned with its application to fourth order problems. In

particular, we demonstrate good multigrid performance with discrete problems arising

from the beam equation and the biharmonic (plate) equation. The work presented also

represents new experience with FAPIN using cubic B-spline, bicubic B-spline and piece-

wise bicubic Hermite basis functions. We recast a convergence proof in matrix notation

for the nonsingular case.

Central to our development are the concepts of an approximate inverse and an

approximate pseudo-inverse of a matrix. In particular, we use least squares approxi-

mate inverses (and related approximate pseudo-inverses) found by solving a Frobenius

matrix norm minimization problem. These approximate inverses are used in the mul-

tigrid smoothers of our FAPIN algorithms.

iii

IV

Table of Contents

Introduction 1

Chapter I : Theoretical Background 4

1. Linear Stationary Iterative Methods 5

2. Approximate Inverses and Approximate Pseudo-inverses 8

3. LSQ-approximate Inverses and LSQ-approximate Pseudo-inverses 13

4. The Fast Approximate Inverse (FAPIN) 18

Chapter II : Numerical Experiments 32

1. Model problems 33

2. Experimental Measures 39

3. One-dimensional Model Problems 46

4. Two-dimensional Second Order Model Problems 50

5. Two-dimensional Fourth Order Model Problems 58

6. Conclusions and Suggestions for Further Study 63

Bibliography 65

Appendix I : Calculation of Element Matrices 68

1. Cubic Splines 69

2. Piecewise Cubic Hermites 72

3. Rescaling of the Piecewise Cubic Hermites : Scaling 1 75

4. Rescaling of the Piecewise Cubic Hermites : Scaling 2 76

Appendix II ; Imposing Essential Boundary Conditions 79

1. A Second Order Problem 80

V

2. A Fourth Order Problem 83

3. Periodic Boundary Conditions 85

Appendix IH : Interpolation and Collection Operators 88

1. Periodic Cubic Splines 89

2. Non-Periodic Cubic Splines 91

3. Piecewise Cubic Hermites 100

4. Piecewise Linear Elements 105

5. Kronecker Product Formulation of Interpolation Operators 107

Appendix IV : The High Level Environment HL 110

1. Description Ill

2. Some Sparse Operators 112

3. Sample C-Source Code for an HL Operator 114

4. Sample HL Code 117

Appendix V : Proof of Theorem 3.1 of Chapter I 119

Introduction

The approximate inverse based multigrid algorithm FAPIN (‘Fast Approximate

Inverse’ Frederickson [1975] for nonsingular problems, ‘Fast Approximate Pseudo-

Inverse’ Frederickson & Benson [1986] for singular problems), has been used for the solu-

tion of linear systems arising from the finite element discretization of two-point second

order eigenvalue problems (Chew [1977]), triangular finite element discretizations of

second order eigenvalue and boundary value problems (abbreviated BVP’s) (Liong

[1977]) and and finite element discretizations of two-dimensional second order BVP’s

(Baumgardner & Frederickson [1985], Frederickson & Benson [1986] and Benson &

Frederickson [1987]).

In this thesis we apply FAPIN to the solution of certain large sparse linear sys-

tems constructed from the finite element discretization of some one and two dimen-

sional second and fourth order BVP’s with both periodic and non-periodic boundary

conditions. To this end, we consider finite element bases of piecewise linear, piecewise

cubic Hermite and cubic spline functions. We also consider some two dimensional coun-

terparts of these bases.

The logical units in this thesis are chapters and appendices, both of which are

further subdivided into sections.

In Chapter I we introduce most of our notation and establish the necessary

theoretical background. In Section 1, we consider linear stationary methods and relate

them, in Section 2, to the concepts of an approximate inverse and an approximate

pseudo-inverse of a matrix. Section 3 deals with the Least Squares (LSQ) approximate

inverse (Benson [1973]) and the LSQ-approximate pseudo-inverse (Frederickson & Ben-

son [1986])of a given matrix. These are used, together with other approximate inverses

and approximate pseudo-inverses derived from them, to build the required multigrid

1

2

smoothers. Though not directly applicable to our work, we also state in this section a

property of Kronecker products of LSQ-approximate inverses. This result finds applica-

tion when solving spline approximation problems in a rectangular domain by means of

an LSQ-approximate inverse based linear stationary method. Finally, in Section 4 we

describe the algorithm FAPIN and recast in matrix notation a convergence proof for

the nonsingular case.

Chapter II is devoted to our numerical experiments. In Sections 1 and 2 we define

our model problems and the experimental measures used for their analysis. Sections 3 to

5 present our experimental results, while in Section 6 we give our conclusions and some

suggestions for further study.

The theoretical and practical considerations necessary to set up our experiments

are contained in the appendices. The first of them contains the calculation of the ele-

ment matrices required for the construction of our model problems. Appendix II

describes how some essential boundary conditions may be imposed on a B-spline discret-

ization of two-point BVP’s. In Appendix III we calculate the intergrid transfer operators

required for the implementation of the algorithm FAPIN for the different finite element

bases considered. We also show that, when the two-dimensional bases have a Kronecker

product structure, only the one-dimensional operators need be calculated and the two-

dimensional operators can be generated from Kronecker products of these one-

dimensional operators. Appendix IV briefly describes the high level environment HL (see

Benson [1987]) used to implement our numerical experiments. Finally, in Appendix V we

give the proof of the Kronecker product property of the LSQ-approximate inverse men-

tioned above.

References to different material in this thesis will be done according to the follow-

ing conventions : We use the standard symbol § to denote section. Further, theorem

(definition, equation) k in section j of Chapter i (where i is a Roman numeral) will be

referred as Tj.k (Dj.k, (j.k)) within Chapter ? and as Ch.z.Tj.A: (Ch.i.Dj’.^, Ch.j.(j.^)) in

3

other chapters or appendices. Similarly, material in the appendices will be referenced

following the same conventions with the prefix ‘Ch.’ changed to ‘Ap.’ .

CHAPTER I

Theoretical Background

In this chapter we introduce the necessary theoretical background for the

definition and analysis of the multigrid algorithm FAPIN.

In Section 1 we recall some results concerning linear stationary iterative methods

for the solution of nonsingular systems of equations. These ideas are related, in Section

2, to the concepts of an approximate inverse and an approximate pseudo-inverse of a

matrix. The iterative solution of singular systems of equations is also considered within

this framework. Section 3 describes the LSQ-approximate inverse and the LSQ-

approximate pseudo-inverse of a matrix, together with some of their properties. Finally,

in Section 4 we define the algorithm FAPIN. We study its properties and recast a con-

vergence proof in terms of matrices and energy norms.

4

5

1. Linear Stationary Iterative Methods

In this section we present some theoretical results concerning linear stationary

iterative methods for solving linear systems of equations. We also set up some of the

notation we will use in this thesis and create the framework within which we will

analyze the concepts of an approximate inverse and an approximate pseudo-inverse (or

‘generalized inverse’ as in Ben-Israel & Greville [1974]) of a given matrix. These con-

cepts are of central importance to this thesis. We begin with some notation.

We let R, Z and 'L^, denote the set of real, integer and non-negative integer

numbers, respectively. We let M„^„,(R) denote the set of n by m real matrices, under-

standing n = m when only one subscript is given. Furthermore we denote by p{A) the

spectral radius of the matrix A. N{A), and if (A) will denote the null space and the

range space of A, respectively.

Next we state some well known definitions and theorems, referring the reader to

the indicated references for the proofs.

In what follows, we restrict our attention to the real case, though the definitions

given apply also to problems based on the complex field. Suppose we are given a linear

system of equations

Au=f ,A6M„(R) , «,/GR’* . (1.1)

All iterative methods employed in this thesis for the solution of (1.1) are of the form :

«(*■+!) = -b fc, j = 0, 1, • • • , (1.2)

for some G e M„ and some k e R", and 6 R" an arbitrary initial approximation.

In the terminology of Young [1971] these are called linear stationary iterative methods

of degree one. Since these are the only iterative methods considered here we will call

them, for simplicity, just linear stationary methods.

If the sequence defined by (1.2) converges to some vector u*, then, in the limit

u* = Gu* -f k, or equivalently : (/ — G)u* = k. In other words, is a solution to the

6

linear system (/ — G)u — k. Hence, if we want the method (1.2) to converge to a solu-

tion of (1.1), some relationship between the solutions of the system

{I-G)u=k (1.3)

and (1.1) must exist. This observation motivates the following definition :

Definition 1.1 (Young [1971, p.64] : The method (1.2) is said to be

(i) Consistent with (1.1) if every solution of (1.1) is a solution of (l.S).

(ii) Reciprocally consistent with (1.1) if every solution of (l.S) is a solution of (l.l).

(iii) Completely consistent with (l.l) ifiS) and (ii) hold simultaneously

When condition Dl.l.(i) holds then, if applying (1.2), we arrive to a solution « of (l.l),

then all further iterations remain the same. Moreover, definition Dl.l.(ii) requires that,

if the sequence defined by (1.2) converges to a limit u*, then this limit is a solution of

(1.1).

Next we examine under what conditions Dl.l are satisfied. We give these in the

form of a theorem referring the reader to Young [1971, p.68j for the proof.

Theorem 1.1 ; If the system (1.1) has a solution then the method (1.2) is :

(i) Consistent with (1.1) if and only if there exists Z e M„(R) such that :

G = I — ZA, and k = Zf (1-4)

(ii) Reciprocally consistent with (l.l) if and only if there exists Q e M„(R) such

that :

A =Q{I - G), and f = Qk

(iii) Completely consistent with (1.1) if and only if condition (i) holds with a non-

singular Z.

In the next section of this chapter we will see that equation (1.4) in Tl.l.(i) is closely

related to the concept of an approximate inverse (see Froberg [1969, p.94| and Benson &

Frederickson [1982, p.l28]) of the matrix A, since if we let Z = A~^, then we would

have : G = 0 and k =A~^f. Therefore it is reasonable to expect that the closer (in a

7

sense to be made precise later) ^ is to A when this is defined, the better the iterative

method (1.2), based on G, will perform.

Now we turn our attention to the convergence properties of the method (1.2). We

first introduce some notation and then give a convergence theorem. Both are adapted

from Young [1971, p.77].

Definition 1.2 ; We call the method (1.2) convergent if the sequence defined by (1.2) con-

verges for all and it does so to a limit that is independent of

We can now state the fundamental convergence result for linear stationary

methods (see Young [1971, p.77]) :

Theorem 1.2 : The iterative method (1.2) is Convergent if and only if p{G)<.l.

The previous results allow us to summarize the conditions under which (1.2) can be

used to iteratively solve (1.1) when A is nonsingular :

Conditions 1.1 : For A nonsingular :

(i) p(a)<i.

(ii) G = ! -ZA ,t =Zf

Observe that from condition 1.1.(i) we can immediately conclude (see Atkinson [1978,

Theorem 7.10]) that I — G = ZA is nonsingular and therefore Z must be nonsingular.

Conditions 1.1 imply complete consistency of (1.2) with (1.1) and convergence of

(1.2). Note also that, under these conditions, the method (1.2) satisfies :

= , (1.5)

where the error in the i-th iteration is defined by — u, where

{«(»)}, i =0,1, ■ ■ ■ is the sequence defined by (1.2) for some initial vector and u is

the solution of (1.1). Also, when conditions 1.1 hold, we have 0 as n —► oo.

So far we have restricted ourselves to the case A nonsingular. In the singular

case, we need additional conditions on the matrix G to guarantee that the method (1.2)

will yield a solution of (1.1) (when this exists). These will be provided in the next

8

section, where we concentrate on the concepts of an approximate inverse and an

approximate pseudo-inverse of a given matrix A. We build linear stationary methods by

letting the matrix Z in Tl.l be an approximate inverse or an approximate pseudo-

inverse of A when A is nonsingular or singular, respectively.

2. Approximate Inverses and Approximate Pseudo-inverses

In this section we introduce the concepts of an approximate inverse of a given non-

singular matrix and that of an approximate pseudo-inverse of a given singular matrix.

Their use for the construction of linear stationary methods, which is central to this

thesis, is also examined. Though these concepts can be defined in more general settings

(see, for example, Ben-Israel & Greville [1974, pp. 306-357] and Frederickson & Benson

[1986], where a Hilbert Space framework is adopted), the algebraic point of view will

suffice for our purposes.

Assume we are given a linear system of equations

Au=f , A € M„(R), u,/ € R" (2.1)

to be solved numerically by means of a linear stationary method. Assume further that

A is nonsingular. Recalling the results of §1, we would like to find a matrix Z such that

conditions 1.1 are satisfied and thus have a completely consistent convergent method.

If we can build a Z with the property that II / — ZA = e < 1, for some compatible

matrix o-norm (|| . is compatible iff || Ax < !! A 11(^11 x \f

A 6M„(R), xeR"; see Atkinson [1978, p.415j), this would be accomplished, since con-

dition 1.1.i would be automatically satisfied (p(A) < II A 11,^ for any compatible matrix

o-norm). These observations motivate the following definition :

Definition 2.1 (Benson & Frederickson [1982, p.l28]) ;

Given a nonsingular matrix A e M„(R), we say that Z eM„(R) is an e-approximate

9

inverse of A if for e < 1

II / - Z4 lU < € ,

where || .11,^ is any compatible matrix norm.

Observe that by taking norms in equation (1.5), we have II < e” || C^IIQ,.

Thus, the closer Z is to A~^ in the or-norm, the better we might expect the iterative

method (1.2) to perform asymptotically (see Varga [1970]). We point out that the com-

mon iterative methods (Jacobi, Gauss-Seidel, SOR) can be studied within the frame-

work of approximate inverses (see Benson [1973] for an extensive account), which is also

closely related to that of Regular Splittings of a matrix (see §3 of both Varga [1970]

and Young [1971]).

For the remainder of this section we will view a matrix in M„(R) as a linear map

of R” into itself. Further, we consider that an inner product has been defined in R",

since we will need the notion of orthogonality to be defined. We also let II . II denote

the corresponding norm derived from the inner product defined in R".

When A is singular we must work with a pseudo-inverse instead of an inverse.

Among all the possible definitions of a pseudo-inverse (see Ben-Israel & Greville [1974])

we find the following convenient (we note that this is not the Moore-Penrose pseudo-

inverse) :

Definition 2.2 : Given a singular A e M„(R), we call Z a pseudo-inverse of A if:

(i) Z = ZAZ

(ii) Af(A>l = R(^),R(A).l=Ar(Z) ,

where N'\A) denotes the orthogonal complement o/N{A) with respect to the defined inner

product in R".

The above definition corresponds, in the notation of Ben-Israel & Greville [1974, p.61] to

that of a {2}-inverse with prescribed range and null space. We also note that, if in

addition to (i) and (ii) above, we require Z to satisfy the condition A = AZA, then Z

10

would be the Moore-Penrose pseudo-inverse (A"*") of A (see exercise 32 in Ben-Israel &

Greville [1974, p.62]).

An analogous definition to D2.1, for the singular case, is adapted from Frederick-

son & Benson [1986] ;

Definition 2.3 : The matrix Z e M„(R) is an e-approximate pseudo-inverse of A if for

e < 1 :

(i) II {Z - ZAZ)v II < e II Zv II, V« e R" and

(ii) N{A)J- = R{Z), R{A)-^ = N{Z).

Observe that D2.3 reduces to D2.1 when A and Z are nonsingular. Moreover, if we

rewrite D2.3.(i) as II (/ — ZA){Zv) II < e II Zv II, \fv e R" we see that the orthogonality

conditions D2.3.(ii) essentially require Z to be an approximate inverse of A, the latter

considered as a linear mapping from the orthogonal complement of N{A) onto ^(A).

This null space behavior of our approximate pseudo-inverses will allow us to build linear

stationary methods based on them. The precise convergence properties of these

methods are given in the following theorem from Frederickson & Benson [1986]. V/e give

the proof since it illustrates how the orthogonality conditions in D2.3 are essential for

convergence.

Theorem 2.1 : If Z is an e-approximate pseudo-inverse of A, then the method (1.2),

based on Z, converges at the geometric rate €, for any initial £ R” to a vector u, such

tAofll / —Au II is minimal. Moreover, if =0, then u is the Moore-Penrose pseudo-

inverse solution : u = u^ = A~^f.

Proof :

We first write (1.2) in the form of a residual iteration, that is :

r = / -Au(") I «("+!) = u(") +

where is the residual in the n-th iteration. Two consecutive iterations of (2.2)

11

yield : (Z -ZAZ) (/-Since Z is an €-approximate

pseudoinverse, we obtain : II — u^"MI < e 1| Z(/ — AM^"~^^)IL From (2.2)

we have :

II Z(/ - Au(”-i)) II = II Zr("-i) II = II II . (2.3)

Thus ;

II o(»+l) _ „(n)]| < II yl _ y0||

Therefore converges geometrically to a certain element u € R”. If we take the

limit n—hoo in (2.3) we have II Zr II == II « — u || = 0, where r is the residual for u.

Therefore, r &N(Z). Since, by hypothesis, N{Z) =/?(A)-^, we finally have r L/?(A),

and therefore r is minimal.

If = 0 then, from (2.2) and the orthogonality properties of Z, we see that

6 R{Z) =iV-^A), \/n e Z"*". Thus the limit u e /?(Z). u is also of minimum

norm, for if u' is another residual minimizer, we must have Au = Au', and then

(w — v!) € N(A). But then u L (w — u’) and therefore || u || < || u’ II. Thus

u=u-*-=A'*-f □.

Several observations follow from the previous theorem. First we note that the

method (2.2) (or equivalently (1.2)) converges to the vector u closest to in the norm

II . II such that II / — Au II is minimal. Thus for a II . II2 minimization, when = 0, u

is the usual least squares solution of minimum norm (see Stewart [1973] and Ben-Israel

& Greville [1974]). Second, if (2.1) is solvable then / €/?(A). Thus the minimum of

II / — Au II is 0 and u is an exact solution of (2.1). Hence, we have a convergent con-

sistent method in the sense of Young [1971, p.68]. It is also worth noting that two con-

secutive iterations of (1.2), based on an approximate pseudo-inverse Z, would be

equivalent to a single iteration of the same method but based on the matrix Z ' defined

by : Z ' = 2Z - ZAZ.

This Z ' can be shown to be an e"-approximate pseudo-inverse, whenever Z is an

€-approximate pseudo-inverse (see Frederickson & Benson [1986]). This suggests the

12

recursive definition — Z^'^^AZS’'\ Z^^^ = Z with n e Z"*". It has been

shown (Ben-Israel & Cohen [1966], Ben-Israel [1965, 1966] and Ben-Israel & Greville

[1974]) that, in the limit n—►oo, 2'^"^ tends to the Moore-Penrose pseudo-inverse A"^, of

A. However, as observed by Sodestrom and Stewart [1974] there are some important

numerical considerations required for the use of this approach : The iteration must be

started with a rather restricted class of matrices and, even for matrices that are

moderately ill-conditioned the convergence will be slow. Also, for a p x g matrix, each

iteration requires about 2pg^ floating-point multiplications which, in addition to the

possible slow convergence, represents a serious drawback (see Sodestrom and Stewart

[1974] for further details). We also note that, when dealing with large sparse linear sys-

tems, it is not feasible, to explicitly construct A"*".

We observe that, in the limit, applying (1.2) based on Z is equivalent to perform-

ing a single iteration with A'*’ in its place. Doing this, the solution to the least

squares problem is given by

xJ == {I - A+A)«(°) -H AV (2.4)

Since (see Ben-Israel & Greville [1974, p.70[) A'^A = have

I — A~^A =Pff{A)> where P denotes the orthogonal projector onto the indicated sub-

space. Thus, when u(®^liV(A) we get the Moore-Penrose solution u'*'. On the other

hand, when has some null space component, we get a minimizing solution

v! = A A'^f which is closest to (since the projection is orthogonal). This

approach leads to an alternate proof of T2.1.

In the next chapter we will show how approximate inverses and approximate

pseudo-inverses can be applied to the solution of large sparse linear systems through a

multigrid algorithm. We will solve certain linear systems constructed from the discreti-

zation of boundary value problems with periodic and non-periodic boundary conditions.

These results represent an extension of current experience in this area.

13

3. Least Squares-Approximate Inverses and Approximate Pseudo-Inverses

In this section we introduce the concepts of a Least Squares (LSQ)-approximate

inverse and that of a Least Squares-approximate pseudo-inverse of a given matrix A.

The idea of an LSQ-approximate inverse, along with several other approximate

inverses, was first introduced by Benson [1973] and has been utilized in the construction

of different iterative methods that either apply it directly or use it to build more sophis-

ticated approximate inverses and approximate pseudo-inverses. Its applicability ranges

from the solution of several different spline approximation problems and boundary value

problems by means of linear stationary methods (Benson [1973], Benson & Frederickson

[1982] and Benson, Krettman & Wright [1984]) and preconditioned conjugate gradient

methods (Benson, Krettman & Wright [1982] and Benson & Frederickson [1986]), to the

multigrid solution of boundary value problems in two dimensions (Baumgardner &

Frederickson [1985]) and Frederickson & Benson [1986])

Assume we are given a linear system of equations :

Au — f , A eM„(R), u,f € R” (3.1)

where A is a sparse matrix (i.e. the ratio of the number of nonzero entries to the

number of zero entries, in A is small). To solve (3.1) numerically, we build an approxi-

mate inverse B E M„(R) (or approximate pseudo-inverse, if A is singular). Of course,

we could consider B = A~^, but this is not practical in most cases of interest. Thus, we

restrict the candidates B to those which have a particular sparsity pattern. For exam-

ple, we can consider B to have the same sparsity pattern as A (that is

^ 0 iff o,-y ^ 0, i,j = 1, 2, • • • , n). We would like to have BA equal to I, but this

gives rise to n overdetermined independent systems that cannot be solved exactly. We

elect to solve them in a least squares sense. Defining the Frobenius norm of a matrix

G e as (see, for example, Stewart [1973, p.l73])

II GIlf = (ESA-)'
t=iy=i

14

the least squares solution of the independent overdetermined systems, amounts to the

minimization of II I — BA IIjr over ail matrices with a given sparsity pattern. We

observe that the relation R defined between matrices P, Q e M„(R) by :

P K Q iff {P has the same sparsity pattern as Q)

iff {%■ 7^0 iff Pij 7^ 0),

is an equivalence relation. As usual, we denote by [P] the class of P 6 M„(R) under the

relation R. The above ideas lead to the following definition :

Definition 3.1 ; Let A,P eM„(R) and let [P] denote the class of P e M„(R) with

respect to the relation R. We call B an LSQ- approximate inverse of A if

II / - PA IL = min II / - MA II jr -
Af e [Pj

Benson & Frederickson [1982] give a similar definition in terms of a more specialized set

of sparsity patterns.

Since B need not have the same sparsity pattern as A, we have some flexibility for

approximating more difficult parts of A“^. We also observe that the j-th row of B is

determined from only a few of the rows of A. The precise form of the linear system for

the 2-th row is the following : Let P,- denote the row-vector corresponding to the f-th

row of the matrix P 6 [P], for some P e M„(R). Let P,- have nonzero entries in posi-

tions ii, 22, . . . , ir and let 0^ be the row-vector built from the nonzero entries in P,-,

i.e. /?,• = , 6,j)■ Then is required to satisfy ;

A-CU=e,., (3.3)

where e,- is the 2-th canonical basis row-vector of R” and is the following (rxn)

block extracted from A according to the positions of the nonzero entries in the 2-th row

of P :

15

(3.4)

Some columns of (7^ may be identically zero. Observe that the rows forming the block

corresponding to the f-th row of B are those rows Ay of A such that :

(Ay is in iff 6,y ^ 0). (3.5)

Of course, when actually calculating the approximate inverse, the possible null columns

in Cj^ are discarded.

Certainly, D3.1 does not guarantee that p{G) = p{I — BA) < 1. Nevertheless, as

p(C) <11 G\\f^,\/G it is reasonable to expect that the minimization of

II <7 11^ will lead, in some cases, to an iteration matrix G with an spectral radius less

than one. This has been the case for example in Benson & Frederickson [1982], Benson,

Krettman & Wright [1984] and is the case for the results in Chapter II. Thus, in many

cases of interest, the LSQ-approximate inverse of a nonsingular matrix is a nonsingular

matrix that is a useful approximate inverse for the construction of completely con-

sistent iterative methods (in the sense of Dl.l) to numerically solve (3.1).

In some cases, matrices arising from the discretization of higher dimensional prob-

lems, are expressible as linear combinations of Kronecker products (also called tensor or

cross products in the literature) of the corresponding matrices for the one dimensional

case (e.g. certain spline approximation problems and separable partial differential equa-

tions in rectangular parallelepipeds). When building LSQ-approximate inverses B for

these types of matrices, it is reasonable to choose J5’s that have a sparsity pattern

which has also a Kronecker product structure. We will show later how, in some cases,

considerable computational effort can be saved by taking advantage of this structure.

Following Ben-Israel & Gieville [1974, p.41], we define a Kronecker product :

A.-

®»i2

®»2n

16

Definition 3.5 : The Kronecker Product C<^D of the two matrices C = [c^y] e

D = [i,y] e is the mpxnq matrix K = [fc,-y] e M^p^„j(R), expressed in parti-

tioned form as :

K =. C<^D =

' C-^^D

C21-D C22-D • • •

Observe that the J j-th entry in K is given by ; k^j = c^^d^^, where i ={a — l)p + p

and j = [l3 — l)q + i/.

Some properties of this product are (see Jacobson [1953]) :

{C<SD){P^Q) = CPi^DQ , (3.6)

(Ci^DY =C‘iS)D* , (3.7)

where precedence of ordinary matrix multiplication over Kronecker product is to be

understood.

If the matrix to be approximately inverted has the form A = A'<^A" and we are

looking for an LSQ-approximate inverse B 6 [i?05], for some R G M^(R), S G M„(R),

much work can be saved by applying theorem 3.1 below. Though we cannot use it for

our experiments since they arise from differential equation problems, this theorem finds

application in the numerical solution of linear systems arising, for example, from cubic

spline approximation problems.

Theorem 3.1 z Let A = A' G M„,(R), A” G M„(R). Let B ' G [R], B " € [^j, be

LSQ-approximate inverses of A', A", respectively. Then, the LSQ-approximate inverse

B G of A satisfies ;

B = B'<^B" . (3.8)

Since this result is not essential to our developments, we refer the reader to Ap.V below

for a proof.

When A in (3.1) is singular, we have to modify D3.1 to have the desired null space

17

behavior for an approximate pseudo-inverse (see D2.2). First, we introduce two

definitions from Ben-Israel & Greville [1974, p.82] :

Definition 3.2 : Let A e M„(R) be the matrix representation of a linear transformation

ofR». lefScR" be a subspace. We denote by A |5j the restriction of A to the subspace

S, defined as the linear transformation

A^-.S^A(S)

yljj|ar = Ax, \fx € S.

We remark that the notation J4|5] should not be confused with the notation [A] for the

equivalence class of A under the relation R.

The counterpart of the above definition is ;

Definition 3.3 : Let A be a linear transformation from S C R” to R". Then we define

ext{A), the extension of A to all o/R", by

(AX U X e S

In light of D3.2 and D3.3 we see that, if A e M„(R), then ex?(A[_yj) = APg, where is

the orthogonal projector onto S.

Consider the linear system (3.1) with A singular. Since the map is an iso-

morphism of iV-^A) onto R(A), the map is well defined. Let R be a linear

map of R", such that Observe that then the corresponding exten-

sions satisfy ;

)l)ext{A)|)

= -®li!(.4)l^«(A)^-l//i^A)]^JV-i(.4)B\R(A)fR{A)

= ext{B^^^y^.

18

Thus, is a pseudoinverse (in the sense of D2.2) of since the

orthogonality conditions are satisfied by definition. Observe also that, in this case,

is precisely A. Therefore is a pseudoinverse of A.

Thus, for a singular A, if we can find an approximate inverse of with the

null space behavior taken care of by suitable projectors, we can construct an approxi-

mate pseudoinverse of A, in the sense of D2.2. We thus have (see Frederickson & Ben-

son [1986]) :

Definition 3.4 ; The LSQ-approximate pseudo-inverse of a matrix A € M„(R) is defined

as the matrix

where B minimizes the Frobenius norm II / — BA Hz’, subject to the constraint B e [Q],

for some Q 6 M„(R).

Note that, as for D3.1, there is no guarantee that B will be a good approximate inverse

of Nevertheless, good experimental results have been obtained in several

different situations (see references at the beginning of the section) and, as we show in

the next chapter, D3.4 can be used successfully for the numerical solution of several

linear systems constructed from the discretization of second and fourth order boundary

value problems with periodic boundary conditions. Also, for D3.4 to be of any practical

use, N{A) must be known. For the singular problems in this thesis, this is not a

difficulty and, moreover, the application of the required orthogonal projectors is inex-

pensive.

4. The Fast Approximate Inverse (FAPIN)

In this section we present the algorithm FAPIN (Fast Approximate Inverse), intro-

duced by Frederickson [1975], along with a convergence proof. This algorithm can be

19

used to solve certain large sparse linear systems of equations. Given a system Au = /,

FAPIN effectively builds an approximate inverse (see §2) to A in a multigrid fashion.

This approximate inverse is never built explicitly. FAPIN, in its original version for non-

singular problems has proven successful in the numerical solution of some second order

boundary value and eigenvalue problems in one and two dimensions (see Chew [1977]

and Liong [1977]). Moreover, an extension of FAPIN to singular problems (in which

case the acronym FAPIN stands for Fast Approximate Pseudo-Inverse), which we

describe later in this section, has given good results when applied to the solution of

some second order boundary value problems in two dimensions (see Baumgardner &

Frederickson [1985], Frederickson & Benson [1986] and Benson & Frederickson [1987]).

Given the wide variety of multigrid algorithms that appear in the literature, we

do not intend to give here a general definition that would embrace all of them. Rather,

we use a more restricted one, suitable to our needs, and refer the reader to the bibliog-

raphy for other points of view (see, for example, Hackbusch & Trottenberg [1981] and

references therein).

We will develop our ideas in an algebraic framework, though we will relate them

to variational formulations of multigrid algorithms whenever possible (see, for example,

McCormick & Ruge [1982], Douglas [1984], Maitre & Musy [1984] , Bank & Douglas

[1985] and McCormick [1984, 1985]).

Assume we are given a linear system of equations

= / , (4.1)

where A e M„(R), is a symmetric and positive-definite matrix. From now on we will

interpret matrices as the expression, in terms of the corresponding canonical bases, of

linear maps defined between spaces of the form R*, for some s e Z"*", endowed with the

inner product : <x,y> = x*y. We want to solve (4.1) iteratively by means of a linear

stationary method (see §1). To this end we want to build an approximate inverse (see

D2.1) F to the matrix A such that the iterative process ;

20

r r(") = / -
I u("+i) = u(") + iTr(")

converges to the solution u of (4.1). If p{I — FA) < 1 we will obtain a completely con-

sistent convergent iterative method as defined in Dl.l and Dl.3. To build F, we define a

sequence of nested Euclidean spaces

Xn C X, C C Xj. C cX^=R" ,

and refer to Xjj. as ‘grid k\ Between the above spaces we define the full rank maps :

Qk-l ■ Xfc_i —+■ Xjt ,

such that :

n = (Qk-iY . l<k<M. (4.3)

P/i. is a restriction operator, usually called ‘collection’, while Qk^i, usually called ‘inter-

polation’, is the matrix representation of the containment (ar e Xj(._i implies x € X^) in

the chosen bases for the above spaces. Furthermore, letting be the matrix A of

(4.1), we define the maps

^k-i ■ ^*-1

by :

Ah_i = PifAkQit^i , l<k<M. (4.4)

We now prove an important property of the matrices defined above :

Lemma 4.1 : If Aj^ is symmetric and positive definite then so is

Proof ;

First we prove symmetry. Since Af. is symmetric by assumption :

={PkAkQk-iY

= Qk-Mk^Pk^
— Pk^kQk-v (4-3)

21

Positive definiteness is shown in a similar fashion. Since A^. is positive definite by

assumption ;

y X e Xfc_i , X

= x\Pk^kQk-\)^ ^
= x^ Qk-i*Ak*Pk*X

= {Qk-x^y ^k{Qk-i^)

= w^Aj^w > 0, since w = Qk-iX and Q^t-i rank □

Since the Af., 0<^<M are symmetric and positive definite, we can define new

inner products, in the usual way, on the corresponding spaces Xjj. :

— <^k^^y>> ^>y e x*, (4.5)

and the corresponding norms :

II ^ ILi = (4-6)

We note that when the spaces Xjj. are the coefficient spaces corresponding to a

nested sequence of finite element spaces H^, the operator Q/g^i is just the interpolation

operator resulting from writing a function in as a linear combination of basis

functions for This fact is used in Ap.III to calculate the interpolation and collection

operators required for our numerical experiments. Furthermore in this case, if we define

Pjc = Qk-i^ we let Af., 0<^<M be the assembled element matrices derived from

the Ritz-Galerkin formulation of a given boundary value problem in the space Hj(., then

(4.4) follows automatically (see Nicolaides [1977, p.896]). Also, <.,.>^^ is just the energy

(associated with the corresponding energy functional) in the finite element space Hf..

Thus we will use the notation ‘energy inner product’ to denote (4.5). Consequently, we

will speak of ‘orthogonality in the energy inner product’ or ‘A^-orthogonality’ and

denote it by 1^^. We will also call the norm in (4.6) the ‘energy norm ’ or ‘Aj.-norm’.

With the above notation, we now observe that any x € X^j. has a unique represen-

tation :

Ax!’, J e N{PkAk), 6 N\Pf,Ak) ,

22

and where N denotes the complement of the null space of PkA^

in Xj|.. As will be shown later, this decomposition will prove essential in understanding

the convergence of the algorithm FAPIN. We now give some properties of the previously

defined operators :

Lemma 4.2 : Let A^, P^ be as above. Then :

=ArKmPi)) ■
Proof ;

The case a: = 0 is trivial. Thus assume x ^ 0. Then :

xeN{PkAk)iff {PkAk)x=0

iff Pki^k^) =0

iff PkV =o> y =^k^

iff y eN{Pk)

iff X e Ak-\N{Pk)) □.

Lemma 4.3 : Let A^, Pk Q^-i be as above. Then :

where R{Qk-^ denotes the range of Qk-i-

Proof;

Assume x Then :

X e N\p,Ak) iff <AkX,w> = 0, V «' e AT(P,A,) = A,"W*))

iff <AifeX,A^~V> = 0, V y e N{Pk)

iff <x,A*UrV> = 0, V y € N{Pk)

iff <x,y> = 0, V y e ^{Pk)
iff X e N^Pk) = R{Qk.^) , by (4.3) □.

Lemma 4.4 : Let Qk—i be as above, and let x e Then :

II Qk-x^ IL* =11 a: \\A,_, ■

Proof;

II Qk-l^ IIA/ ~ ^^kQk-l^’Qk-1^^

23

= <Qk-Mk Qk-i^,^>

= <.A^._-^x jX^ , by (4.3) and (4.4)

= 11 ^IL ^ °-
Next we define the concept of a nested e-approximate inverse Zj^ to a given non-

singular matrix Aj^. This is an adaptation of the somewhat more general definition

given in Frederickson & Benson [1986]. It tailors the idea of an e-approximate inverse

(see D2.1) to a multigrid environment.

Definition 4.1 : We call the set of maps Zi :"Ki —*■ X/, 0 < / < ^ a sequence of nested

e-approximate inverses of the set of maps A/g : "Kj^ —r Xj, 0 < / < there exists e < 1,

independent of I, such that :

II (/ - ZfAi)x ||^^2 < ^2 II 11^ 2 + II j, 11^ 2 ^ , 0<l <k

where a: = a/ -H a/', a/ € N{PiAi) and xf' e N ^‘(P{Ai). When I = 0 we define a/' = 0 and

T! = X.

We are now prepared to define the algorithm FAPIN. We adapt the definition

given in Frederickson & Benson [1986] to our case. We will avoid additional subscripts

by letting the symbol <— denote replacement.

Definition 4.2 : With the above definitions and notation, the algorithm FAPIN (Fast

Approximate Inverse) is defined by the following pseudo-code :

FAPIN ik,r,) {

if {k = 0) then

Wo ^o»‘o

else {

(1) restrict residual to next coarser grid

^k-i *- Pk^k

(2) apply FAPIN recursively to this new residual problem

24

^ FAPIN {k,r,)

(3) interpolate result to finer grid

^ Qk-i^k-i

(4) perform one iteration of (4.2) on finer grid with Zjj.

^k -^k^k

% + ^k^k

}

return

}

Steps (1) through (3) in the ‘else’ part of FAPIN are usually called the ‘coarse grid

correction’, while step (4) is usually regarded as a ‘relaxation’ or ‘smoothing’ step.

We can now interpret D4.1. Observe that coarse grid correction terms, for grid k,

1A
lie in R{Qk-i)- But, since by Lemma 4.3 we have —N we are requir-

ing Z). to act as an e-approximate inverse (see D2.1) on the subspace N{Pj^Aj^)

of that is, on the set of vectors of X^. which are not affected by the

coarse grid correction. This is easily seen by letting x 6 N^Pj^Af.) in D4.1.

We note that ^i-Pk-^k) ^\Qk-i) are, respectively, the subspaces

of X;j. of ’smooth’ and ’oscillatory’ vectors defined in McCormick & Ruge [1982], McCor-

mick [1984] and McCormick [1985].The terminology stems from the ‘modal analysis’

framework for the study of multigrid algorithms, introduced by Brandt [1977], More-

over, we observe the close relationship of FAPIN to the well known V-cycle algorithm,

as pointed out in Lemma 4.1 of McCormick [1984].

To interpret FAPIN we first examine a two-grid algorithm, that is, ^ =0, 1.

Assume we want to solve the system

A,!! =/ (4.7)

25

using the iterative process :

f

fi -f- / -A^u

■ Wj (4.8)

u ■«— u + tyj

where is an e-approximate inverse to Observe that if the solution to the residual

problem

Ai^i = ri (4.9)

was known, we could immediately solve (4.7). The two-grid FAPIN algorithm seeks the

iterative solution of (4.9), by using as an initial guess the coarse grid correction. This

correction is the result of interpolating an approximate solution of the problem

AQWQ = ro = . (4.10)

Observe that if WQ is the solution of (4.10) then Wi = QQWQ is the solution of

=Piri in since PIAIQQWQ =P\r^ would be satisfied. Thus (4.10) is the

formulation of (4.9) restricted to X^_j and hence an approximate solution to (4.10) is an

approximate solution to (4.9) on R{Qk^^. The approximate solution of (4.10) is

obtained by applying one relaxation step with a linear stationary method based on ZQ,

an e-approximate inverse of AQ (when A: = 0, the concepts of a sequence of nested

approximate inverses and an approximate inverse are equivalent), and starting with the

vector WQ = 0, that is :

/) 4- rp -AQWQ

■ 6 4— ZQP

^0 WQ + 5

Observe however that the above relaxation step is equivalent to the replacement

WQ 4— ZQTQ, since the initial WQ is zero.

Once the initial guess w^ <— QQWQ (i e. the coarse grid correction) has been calcu-

lated, FAPIN proceeds to apply one relaxation step witn a Z^, a member of a sequence

of nested e-approximate inverses, to ‘smooth’ the residual :

26

f '•i -^1^1
I Wj •*—

We now can write the above process in an algorithmic form :

^ f -A-^u

■ ^ FAPIN(l,ri)

u ■*— u A Wi

where we have defined FAPIN (l,ri) as the following sequence of operations :

(1) ^0 ■*“

(2) ^ ZQTQ

(3) W]_ ■*- QQWQ

(4) Si 4- ri - Aiu;i

(5) Wi ■*— Wi + ZiSi

In view of the above it is now clear that the step involving Fi in (4.8) can be

expressed as :

F’lTi =

~ ^1^1 "b {Qo^O^ 1 ■^1-^1 l)^ 1

= i^l + (^ ~

Thus we may define ;

Fi = Zi + {I — ZIAI)QQZQP 1 . (4-11)

The above definition generalizes easily to the case of several grids. We need only

realize that the job done by ZQ on grid A; = 0 to solve (4.8) on grid Ar = 1 would be done

by F’^_i to solve the corresponding residual problem on grid k. This leads to the follow-

ing recursive definition of FAPIN for the nonsingular case (the more general singular

case in described in Frederickson & Benson [1986]) ;

Definition 4.3 : With the above definitions and notation, a Fast Approximate Inverse

(FAPIN) F^ : to a given Aj. : Xj —► X^ is the linear operator (matrix) con-

structed from a sequence of nested e-approximate inverses and defined recursively by :

27

~ ^k^k)Qk-i^k-i^k > l<k<M .

We now prove the convergence of the algorithm FAPIN. That is, we prove that

under certain conditions, the operator Fj defined in D4.3 is an e-approximate inverse of

Ajj, with e < 1, thus yielding a convergent iterative method (see Tl.2.(ii)).

Theorem 4.1 : If for e < 1, Zi is a sequence of nested e-approximate inverses for

OKI K k, then F^., as defined in D4.3 is an e-approximate inverse with the same e.

Proof;

We must show :

II (/ - FjfcAit)x 11^^ < € II X 11^^ , \/x eXk .

We prove the theorem by induction on k.

(i) k = 0

Since by definition FQ = ZQ and, by hypothesis, ZQ is a member of a sequence of

nested €-approximate inverses, we have (in the notation of D4.1) :

II (/ - F„A„)x 11^; = II (/ - lU/ , V e Xo
<.qi^iu/+ii^'iu/.

< II y ’ since i" = 0 when k = 0

(ii) Assume the theorem holds for F^_^, that is :

II (/ - < = II ^ iu._.. V * e Xj_, .
Then :

(/ - F„A,)=, = (/ - (Z* + (/ - Z,A,)Q,_,F,.,Pt)A,]x

= ((/ - Z,Ai,)(I - Q,.,Ft_,PtA,)]x

= ((/ - Z,A,)(I - Q,.,Ft_,P,A,})(ji + cf’) ,

-LA
where x' e N(Pjj.A^) and F' e N But, now, we have :

(/ - F,A,)J = ((/ - Z,A,)(l - Q,.^F,,^P,A,)]j

28

= (/ — Z^Ak)3f , since J € N{PkA^)

By Lemma 4.3, we have a/' e ^{Qk-i)- Thus, there exists y e such that ;

a/' = Qic-iV- Hence :

(/ - F„Ai)jf = ((/ -

= ((/ - ZMii -

= {I — Z^.Ajf){Q^_iy — Qk-iFk-v^k-iV)

= {I ~ ^k-^k)Qk-li^ ~ ^k-l^k-l)y

= (/ - Z,A,)^ ,

where we have defined ; V' = Qk-ii^ ~ ^k-i-^k-i)y ■

Therefore :

II (/ - F,A„)z IU,2 = II (/ _ F,A^)(J + J') IU,2

= ll(/-^,A,)(rt' +^)IIV-

Observe that :

II ^lUt =11 Qk-ii^ ~ ^k-i^k-i)y IIA*

= 1! (/ — , by Lemma 4.4

< € II y ll At_i I ^y induction hypothesis

= ^\\Qk -\y IIA^) ^y Lemma 4.4

= c II a/' 11^^ , by definition of y (4-12)

Note that, since 0 € by Lemma 4.3 we have that ip € N ^‘’{Pj^A^) and

thus J and 'ip are Aj^-orthogonal. Thus :

II (/ - F,A,)X IU/ = II (/ - FMiTf +1") 11^,2

- II {/ - ZtA,)(J + <p) lU/ ,

Since Z^. is by assumption a member of a sequence of nested e-approximate

inverses, we finally have :

II (/ - ZM{:^ + i,) 11^,’’ < £^1 I- lU/ + II i, lU/

< II i< II^^2 + j2 II ||^^2 , by (4.12)

29

= ^ II [J + a/') 11^^^ , by Ajg-orthogonality

= II X , by definition of J and 3!' □

We note that since € is independent of k the rate of convergence of FAPIN does not

depend on the number of grids considered. Thus, the rate of convergence is also

independent of the number of unknowns in the finest grid. This fact will provide us with

a test of multigrid behavior for our numerical experiments.

We now show that FAPIN also yields a completely consistent method (see

Tl.l(iii)). Let Gj, = I be the iteration matrix corresponding to F^. defined in

D4.3. Then, there exists e < 1 such that (by T4.1) :

II lUt < € II a: 11^^ , \fx eX^

Thus :

II IIA.
—1|—p <e<l,

and hence II Gj^ 11^^ < 1, which implies p{Gk) < 1. Therefore I — G/^ =Fj^A)^ is non-

singular (see Atkinson[1978, Theorem 7.10]) and Fj^ must be nonsingular.

Thus we have shown that conditions 1.1 of §1 are satisfied and therefore FAPIN

yields a completely consistent convergent iterative method.

We note that when the spaces Xj are finite element spaces, the algorithm FAPIN

described above is equivalent to the ‘/-cycle’ (‘slash cycle’) described in McCor-

mick [1984, p.2G0] and in McCormick [1985, p.635j. Furthermore, the definition of a

sequence of nested c-approximate inverses is then equivalent to equation (4.7) of

Theorem 4.1 in McCormick[l984] and to the ‘smoothing property’ defined in Lemma 2.2

of McCormick[l985], which in our notation reads :

II (/ - Z,A,)c IU.2 < a II Tc lU/ + II 5e lU/ ,

where S and T are the Ajj.-orthogonal projectors from onto ^(Qi_i) and R

respectively. Moreover, we remark that the rates of convergence o;^ that are proven in

30

the above references (see Theorem 4.1 in McCormick[1984] and Lemma 2.3 in McCor-

mick [1985]) coincide with that implied for FAPIN by T4.1 proved above.

The works by McCormick cited above prove that a Richardson smoothing step

(that is, with an approximate inverse of the form clj^ , c e R, the identity in X^)

satisfies, under certain conditions, the smoothing property. Thus clf. constitutes, in our

notation, a sequence of nested approximate inverses. This suggests trying FAPIN algo-

rithms based on different approximate inverses. In this thesis we consider the case of

LSQ-approximate inverses (see D3.1) and those resulting from the application of two

successive relaxation steps with an LSQ-approximate inverse (see description in §2). As

shown in the next chapter, good experimental results were obtained with FAPIN based

on these LSQ and LSQ based approximate inverses for the solution of certain linear sys-

tems constructed from finite element discretizations of one and two dimensional second

and fourth order boundary value problems. Of course, this does not allow us to conclude

that these sets of approximate inverses are in fact sequences of nested approximate

inverses, since this is a sufficient but not a necessary condition for the convergence of

FAPIN.

Next we briefly describe the extension of the algorithm FAPIN for the solution of

linear systems of the form (4.1), where A is singular. We refer the reader to the work

by Frederickson & Benson [1986] for further details.

When A in (4.1) is singular, a linear stationary method must be based on an

approximate pseudo-inverse of A (see D2.3). Thus, in this case, FAPIN will yield a fast

approximate pseudo-inverse. The definition of a sequence of nested approximate inverses

I (defined in D4.1) must now be extended to account for the null space

behavior of the problem to be solved. Thus, following Frederickson & Benson [1986], we

require for each Zj, 0</<A: :

R(2,)LN(A,), N(Z,)LR(A,) .

31

This defines the required sequence of nested e-approximate pseudo-inverses.

The algorithm FAPIN for singular problems is just that described in D4.2 with the

addition of a ’step (0)’ to the ’else’ part, of the form :

(O) project residual onto the range of

»•* ,

where is now a sequence of nested €-approximate pseudo-inverses.

Frederickson & Benson [1986] prove the convergence of the above version of

FAPIN by showing that it actually yields an €-approximate pseudo-inverse. Since

FAPIN is an e-approximate pseudo-inverse, T2.1 implies that, when the initial guess for

the iterative solution of (4.1) with A singular is = 0, then the above FAPIN con-

verges to the Moore-Penrose solution {A'^f) of (4.1), were A"*" is the Moore-Penrose

pseudo-inverse of A.

In Chapter Two of this thesis we show how this last version of FAPIN yields good

experimental results when applied to the solution of linear systems constructed from

periodic cubic spline and biperiodic bicubic spline discretizations of some second and

fourth order periodic boundary value problems in one and two dimensions. The approxi-

mate pseudo-inverses used in our experiments were LSQ-approximate pseudo-inverses

(see D3.4) and those resulting from the application of two successive relaxation steps

based on LSQ-approximate pseudo-inverses (see description in §2). Once again, this

convergence does not allow us to conclude that these sets of approximate pseudo-

inverses are in fact sequences of nested approximate pseudo-inverses, since Frederickson

and Benson [1986] only prove that this is a sufficient but not necessary condition for

convergence.

32

CHAPTER n

Numerical Experiments

In this chapter we present several numerical experiments consisting of the applica-

tion of the algorithm FAPIN to the solution of large sparse linear systems of equations.

The results presented here represent new experience with thi multigrid algorithm. The

matrices for these systems arise from the finite element discretizations of several

diflferent boundary value problems, both with periodic and non-periodic boundary condi-

tions. The right hand sides are built in such a manner that the exact solutions to the

systems are known in each case. We are primarily concerned with fourth order prob-

lems, both in one and two dimensions; however, we present some second order problems

for the purpose of comparison.

The experiments were all carried out on a Sun-3/l80 and were designed with the

idea of numerically identifying the general trends in the behavior of the algorithm

FAPIN, rather than building production code. For this purpose, the high level environ-

ment HL, developed by Benson [1987], proved to be well suited (we briefly describe HL

in Ap.IV). Because of this, our measures of efficiency will not consider computing time,

but rather number of arithmetic operations. Ail computations are in double precision.

The chapter is organized as follows : Section 1 describes in detail the model prob-

lems used in the difiFerent experiments. In Section 2 we describe the diflTerent experimen-

tal measures used to analyse the results in this thesis. Section 3 presents the results for

our one-dimensional experiments. Sections 4 and 5 contain the results for the two-

dimensional second and fourth order problems, respectively. Finally, in section 6 we

present our final conclusions and some suggestions for further study.

33

1. Model Problems

In this section we describe the model problems to be considered in this thesis. We

divide them into two categories :

(1) Those constructed from the discretization of two-point boundary value problems in

the interval / = [0,5T],

(2) Those constructed from the discretization of boundary value problems in the

domain O u F = [0,7T| X [0,jr] c R^.

Thus, we will use the notation ’one-dimensional’ and ’two dimensional’ problems to

reference the above categories. Despite this notation we remark that our model prob-

lems are not strictly boundary value problems, but rather, linear systems of equations

whose matrices arise from the discretization of the former. Within each of these

categories we make a further distinction according to the boundary conditions imposed

on the given boundary value problem (BVP). These are :

(1) Periodic boundary conditions (PBP),

(2) Non-Periodic boundary conditions (NPBP).

The general process we use to build our model problems is the following : Given a

BVP (in a one or two-dimensional domain) we perform a Ritz-Galerkin finite element

discretization (see Strang & Fix [1973]). This leads to a linear system of equations of

the form : Au = g , A e M„(R), g e R" for some n e Z"*". We then choose a vector

u 6 R" and build the linear system Au = (Au) (Clearly u is the desired solution to the

system). Since we are interested in testing the iterative algorithm FAPIN on these sys-

tems, we also fix an initial guess to the solution u. Thus a model problem will have

the general form :

!AU = {Au)

u, fixed

In the periodic case, however, there are some special characteristics to be considered

when we build the corresponding model problems. In these cases, the matrices arising

34

from the discretization of the corresponding BVP’s are singular and the general process

described above has to be modified to provide enough generality. In every periodic case,

considered here, we have N{A) = { 1 }, where 1 is the vector with all components equal

to one (see Table 1.1). Thus we choose a certain vector v and remove its component in

N{A). This will be our u (i.e. the solution to the linear system). Now, since A is sym-

metric, iV(A) =/?-^A) and thus, if we considered the vector / = Au as our right hand

side, / would have no components in N{A). Hence, to have full generality, we add to /

the vector 1 in Af(A) and consider / -f- 1 = {Au) -b 1 as the right hand side. The par-

ticular choices of solution vectors u and initial guesses that we make and the nota-

tion we follow to reference them are shown in Table 1.1.

Table 1.1 : Vectors to build Solutions
and Initial Guesses

Notation Vector

rand Uj e R where 0 < «, <1 and is random

1, V «■
O «, - 0, V I

The above vectors were alwa,ys combined into pairs of solution (u) and initial

guess (u^°^) vectors for the corresponding model problem, according to the boundary

conditions of the BVP from which it derived. These pairs are the following :

(i) Non-Periodic Boundary Conditions (NPBC)

(1) u = rand, = 0

(2) u =0, = 1

(ii) Periodic Boundary Conditions (PBC)

(P) u = rand — s, =0, where s is the orthogonal projection of rand onto

iV(A) with respect to the usual inner product in R".

35

We will refer to those non-periodic model problems which are based on the choices

(i).l and (i).2 above as model problems of ‘type .1’ and ‘type .2’, respectively. The

choice of random vectors for our ‘type .1’, tries to avoid unnaturally smooth vectors,

thus providing us with an extreme situation. On the other hand, the choice (i).2 is the

model problem proposed by Young [1971, p.3 & 132], thus making our ‘type .2’ model

problems actual finite element discretizations of constant coefficient homogeneous

BVP’s (in contrast to our ‘type .1’ model problems, which do not represent a discrete

boundary value problem).

Next we give details for all the model problems considered in this thesis. For brev-

ity we do this in the form of tables. Tables 1.2 and 1.3 contain the model problems aris-

ing from BVP’s with NPBC and PBC, respectively. We recall that I denotes the inter-

val [0,7r], while u P denotes the domain I X I C. R^. Further, we label the segments

of r by Fj^, F2, Fg and F^, considered counterclockwise and starting with the axis y = 0.

We also let x denote an arbitrary point of fl u F and u„(x) the directional derivative of

the function «(x) in the direction of the outward normal to F. We note that the solu-

tions «(x) to the non-periodic boundary value problems of Table 1.2 are singular at the

corners of the domain f2 union‘gm (see Stephan [1979] and Strang & Fix [1973, p.263]).

Our finite element bases where built on the elementary basis functions given by

Strang & Fix [1973]. For the one-dimensional problems we considered bases of piecewise

linear (‘roof) functions, cubic B-splines and piecewise cubic Hermite functions. In the

two-dimensional cases we considered bases of piecewise bilinear functions, bicubic B-

splines and piecewise bicubic Hermite functions. Since the domain Q u F is a square, we

built these bases as Kronecker products of the corresponding one-dimensional ones. This

Kronecker product construction, and the fact that the BVP’s considered are separable

(see Tables 1.2 & 1.3), implies a Kronecker product decomposition of the corresponding

finite element assembled matrices (see, for example, Kaufman & Warner [1984]). We

take advantage of this fact to reduce the work involved in setting up the corresponding

36

two-dimensional model problems.

The linear basis functions were used as given in Strang & Fix [1973, p.27], while
0

the B-splines were those given in Strang & Fix [1973, p.61] normalized by a factor of —

so that they would have a maximum value of 1 in their support. The Hermite basis

functions were first tried as given in Strang & Fix [1973, p.56], but the algorithm

FAPIN diverged on some preliminary one-dimensional second order experiments. As

observed by Greenbaum [1984], the scaling of the basis functions is an important factor

in the performance of a multigrid algorithm for the solution of a finite element discreti-

zation of a BVP. Following this idea, two other scalings of the Hermite basis were con-

sidered. They are described in Ap.I.§3&4 These new scalings produced good conver-

gence results.

The notation used to label the model problems consists of an alphanumeric string

composed of three segments of information separated by the character . The first seg-

ment is a mnemonic for the physical interpretation of the BVP from which the model

problem derives ; ST=string, BM=beam, MB=membrane and PT=plate. The second

string refers to the basis used for the discretization : B=B-splines, L=Iinear,

Hl=Hermite-scaling 1, H2=Hermite-scaling 2. The third and last segment labels the

choice of the pair solution-initial guess (i.e. (u, for that model problem ; l=‘type

.1’, 2=‘type .2’, P=periodic (see Tables 1.2 & 1.3).

The construction of our two-dimensional model problems was accomplished

through a Kronecker product formulation. Since this method has been widely used in

the literature, we do not elaborate extensively on it but rather refer the reader to the

bibliography for further details (see Schultz [1969] and Douglas & Dupont [1971] for

extensive theoretical expositions. See also Bank [1978], Margenov [1981], Kaufman &

Warner [1984]). The essential idea is that, for separable BVP’s in rectangular paral-

lelepipeds, the assembled element matrix can be built from linear combinations of

Kronecker products of those assembled element matrices corresponding to one-

37

dimensional problems. The latter matrices must contain the proper boundary condi-

tions. For example, it can be shown that the assembled element matrix A for the bihar-

monic operator A^, can be expressed as :

A = B0M -1- 4- 2505,

where B, S and M are the assembled bending, stiffness and mass matrices for the one-

dimensional case, respectively.

The data structure used to store our operators was a form of sparse storage analo-

gous to that described by Rivara [1984]. Our form of storage compares in efficiency to

the latter when the number of non-zero entries per row of the matrix to be stored does

not vary widely among rows. This is the case for the operators involved in multigrid

algorithms for the solution of discretized BVP’s. See Ap.IV.§2 for a full description of

our sparse storage.

The following sections present the results of the application of the algorithm

FAPIN to the model problems described in this section. We will show how this algo-

rithm seems well suited for the solution of a wide variety of linear systems constructed

from the finite element discretization of constant coefficient boundary value problems.

Table 1.2 : Model Problems for Non-Periodic Boundary Conditions

One-Dimensional

Notation Boundary Value Problem
to build the Matrix

Finite Element
Basis

Discrete Solution and
Initial Guess

ST.B.1

ST.B.2

—a"(z) - g{x), X el
tt(0) - 0
»'(«•) -=« 0

Cubic B-splines a — rand, a® 0

Cubic B-splines a - 0. a(°> «= 1

BM.B.1

BM.B.2

u“"{x) =• g{x), X el
u (0) =- nl (O) — 0
U"(K) =- 0

Cubic B-splines a = rand, =■ 0

Cubic B-splines a =• 0, = 1

Two-Dimensional

Notation Boundary Value Problem
to build the Matrix

Finite Element
Basis

Discrete Solution and
Initial Guess

MB.L.1

MB.L.2

Piecewise
Bilinear
functions

a rand, a^°^ »» 0

- O, a(°> - 1

MB.H1.1

MB.H1.2

-Aa(x) =• j(x), X e r

a(x) =>0, xeriuF4

a„(x) =-0, xeTaUFa

Piecewise Bicubic
Hermite
Scaling 1

a ™ rand, a^°* =■ 0

a = 0, a(°5 - 1

MB.H2.1

MB.H2.2

Piecewise Bicubic
Hermite
Scaling 2

a = rand, a^°' •= 0

a = 0, a^°^ =« 1

PT.Hl.l

PT.H1.2

PT.H2.1

A®a(x) — ^(x), X g r

a(x) => a,(x) — 0, xgriur4

a«»(x) =*a„,,(x) “ 0, x e FaU Fs

Piecewise Bicubic
Hermite
Scaling 1

a — rand, a*-°^ =— 0

a - 0, a(‘9- 1

PT H2 2

Piecewise Bicubic
Hermite
Scaling 2

a “ rand, a^°^ =« 0

u = 0, = 1

39

Table 1.3 : Model Problems for Periodic Boundary Conditions

One-Dimensional

Notation Boundary Value Problem
to build the Matrix

Finite Element
Basis

Discrete Solution and
Initial Guess

BM.B.P g(x), X el
PBC

Periodic Cubic
B-splines u «» rand — a, ° 0

Two-Dimensional

Notation Boundary Value Problem
to build the Matrix

Finite Element
Basis

Discrete Solution and
Initial Guess

MB.B.P -A«(x) - j(x), X e r

PBC
Biperiodic Bicubic
B-splines u =• rand — s, =• 0

PT.B.P A%(x) = ^(x), X e r
PBC

Biperiodic Bicubic
B-splines u — rand — s, — 0

2. Experimental Measures

In this section we define the experimental measures used to analyse the perfor-

mance of the algorithm FAPIN on the model problems of this thesis.

All our model are problems built from finite element discretizations of boundary

value problems. In every experiment, the number of elements into which we divide the

domain is an integer power of 2. Thus, we use the exponent of this power as a label for

the size of the corresponding linear system. We will denote a generic exponent by k. Of

course, the actual number of equations and unknowns will depend on the particular

choice of finite element basis that is made and on the boundary conditions imposed.

Some representative examples of these numbers are shown in the second column of

Table 2.1, where i4,k) represents the number of equations and unknowns for a given

value of k.

To measure the efficiency of the algorithm FAPIN, when applied to the solution of

our model problems, we considered several different measures. Those which measure its

40

convergence properties are given by the following definitions :

Definition 2.1 ; The performance in the cx-norm, in the i-th iteration is the quotient

where is the residual vector in the i-th iteration.

(2.1)

Definition 2.2 : We let denote the smallest positive integer such that :

II < 10 ,-5

II e(«)|L
where denotes the error vector in the i-th iteration.

(2.2)

Definition 2.3 : The reduction quotient in the a-norm in the i-th iteration is the ratio

ll ■
In particular, we denote by the reduction quotient in the a-norm in the N^-th itera-

tion, i.e.

Qa (2.4)

Observe that the quantities defined above give a measure of the convergence pro-

perties of the method, but do not make any reference to the work involved (work esti-

mates are provided below). A reasonable estimate of the asymptotic behavior of our

methods can be obtained from the reduction quotient. The typical behavior is shown in

figure 2.1, where we represent the reduction quotient in the infinity (uniform), 2 and A-

norms (i.e. the energy norm of Ch.I.(4.6)) versus the iteration number for the model

problem MB.Hl.l, with finest grid corresponding to k = 6. Two cases are presented,

corresponding to FAPIN algorithms based on the two different approximate inverses

(AI’s) W and 2(W) (see below for description of this notation). The cutoff value 10“^ in

definition 2.2 should provide us with an close enough to the asymptotic regime, at

least in the smoother A (energy) and 2 norms.

41

MB.Hl.l, k=6 : Reduction Quotients

R
e
d
u
c
t
i
o
n

Q
u
0
t
1
e
n
t

Iteration Number
Fig. 2.1

To include the work to obtain a solution in our experimental measures, we define

in (2.15) a new quantity which we call experimental effort (ij). This measure will include

both a work measure and a convergence measure and its value will be independent of

the number of unknowns in the problem if the algorithm being studied exhibits mul-

tigrid behavior.

We define the complexity (C) of the algorithm FAPIN when applied to a model

problem, as the number of arithmetic operations performed in one iteration on the

corresponding model problem. We neglect the work due to additions as compared to

42

that in multiplications. We also neglect the work involved in setting up the experi-

ments.

Following Varga [1974, p.62], we define the following quantities :

Definition 2.4 : Let M € M„(R). If for some m e Z'*', II M”* II2 1, then :

m R(M”^) = - In |ll M”* lls”* (2.5)

is the average rate of convergence for m iterations of the matrix M.

Definition 2.5 : We let a[m) denote the average reduction factor per iteration, where

a{m) =
.W IL

(2.6)

Observe that from the previous definitions we have (see Varga [1974]) ;

cr(m) < II M”* lia^ = e"

If we define p{m) = (i?(M’"))~^ then from (2.7) :

(2.7)

<T(m)^("*) < —. (2.8)

Thus p{m) is a measure of the number of iterations needed to reduce the 2-norm of the

initial error by a factor of e. But from (2.8) we have :

p{m) < —
ln(<7(m))

(2.10)

and thus the quantity —
ln(cr(m))

is an upper bound to the estimate p{m).

In this way we arrive at our definition of efibrt :

Definition 2.6 : We define the effort in the application of m iterations of an iterative

algorithm to the solution of a linear system of u{k) equations as :

E = - C
u{k)lucr[m) ’

where C and lf{k) are the corresponding complexity and number of unknowns, respectively.

43

We note that, asymptotically, this definition is equivalent to that given by Benson &

Frederickson [1982, p.l30]. When estimating the complexities we neglect boundary

effects and the smaller band-widths of the operators in the coarser grids. Thus we let

b^, b^, b(y and bj denote the maximum of the number of non-zero entries per row in the

corresponding matrix representation of the differential operator, the approximate

inverse, the collection operator and the interpolation operator, respectively, for the

finest grid. Also, let be the index of the finest grid considered (i.e. 2 and 2 ^ is the

number of elements in the finest grid, in the one and two-dimensional case, respec-

tively). Then, recalling the form of the algorithm FAPIN (cf. Ch.I.§5) and noting that

i4k) , where d is the dimension of the model problem (cf. §2.1), the number of

multiplications in a given grid k has the following breakdown :

Collect

Apply A

Apply Z

Interpolate

bci4^k—\) « b(^

bA lik)

h
bj i>{k+l) « bj 2^y{k)

(2.12)

Thus, If we let ^ ^—b 6^ -|- 6^ + from (2.12), an estimate of the complexity

(actually, aa upper bound) is given by :

c(K)
tAr=0)

(2.13)

where the extra interpolation term 2^bju{k^) counted in the summation when k — k^^ \s

removed by subtraction. We are also neglecting the effect of adding a term for a collec-

tion and an application of A in the coarsest grid. Performing the operations expressed

in (2.13) we obtain the desired complexities. These are shown in Table 2.1, which con-

tains all the distinct cases of this thesis.

44

Table 2.1 : Number of Equations and Complexities

Problem

ST.B.l

BM.B.1

BM.B.P

MB.L.l

MB.B.P

PT.B.P

MB.H1.1

PT.Hl.l

lik)

2*+2

2‘+l

(2*) i\2

(2(2* + l)-l)®

(2(2*+1)-2)2

C{kJ

ifi-br)2”'*'+fik,„+fi-2br

i^-br)2'’”^"-$

(|-/9-46/)4‘’"'"+(8^-166/)2*’"+2A„-^^-46,

{±fi-4br)4'-^^-j^

From Table 2.1 we observe that, in every case, the approximate number of multi-

plications per unknown is :

C{kJ
Cl/? — C2^>/ . (2.14)

Equation (2.14) is the expression we will use to estimate the effort and serves,

together with (2.11), as the basis for the definition of our last experimental measure ;

Definition 2.7 : We let rj denote the experimental effort defined by :

Cl/? — c^bj

lncr(iV2)

where is defined in (2.2).

(2.15)

Representative examples of the estimated number of multiplications per unknown,

that cover all the cases that appear in this thesis, are given in Table 2.2. Observe that,

since the complexity for a given problem depends on the sparsity pattern of the approx-

imate inverse used, these are indicated in the table under the entry ‘AP, together with

the constants ^ and 6/ used to evaluate the right member of (2.14).

The sparsity patterns of the LSQ-approximate inverses which the lables I,F,W, etc.

represent are explained more extensively in the results sections below. In brief, ID

means ‘idem’, that is, the same sparsity pattern as the corresponding discrete

45

differential operator. F and W stand for ‘fill’ and ‘wide’, respectively. F fills the zero

entries contained in the stripes (bands in the one dimensional case) of the corresponding

discrete differential operator. W applies only to our two-dimensional second order non-

periodic model problems. It consists of a Kronecker product PiS>P, where P is a nine-

diagonal matrix of the appropriate size, with nine by nine blocks of non-zero entries at

the left hand upper corner and the right hand lower corner.

The notation 2(P), where P can be ID, F, or W, indicates that the algorithm uses

two smoothing steps with the correponding LSQ-approximate inverse of the indicated

pattern. We recall that two iterations of a linear stationary iterative method with an

approximate inverse Z are equivalent to a single iteration with Z ' = 2Z — ZAZ (see

Ch.I.§2). We also recall that Z ' is an approximate inverse whenever Z is (in particular,

when Z is an LSQ-approximate inverse); thus the use of 2(P) is justified.

46

3. One-Dimensional Model Problems

In this section we present the experimental results for our one-dimensional model

problems. These are given in the form of tables. In every case, A;„, indicates the index of

the finest grid used in the corresponding experiment. Since we are dealing with one

dimensional problems, it also indicates the power of 2 that gives the number of finite

elements in the finest grid considered. Comments on the results are given at the end of

the section.

The results for the non-periodic model problems ST.B.l, ST.B.2, BM.B.l and

BM.B.2 are given in Tables 3.1.a, 3.1.b, 3.2.a and 3.2.b, respectively. For these prob-

lems, the LSQ-approximate inverses considered always had the sparsity pattern ‘fill’

(denoted by F). Some sparsity patterns for the discrete differential operators for the

BM.B.l and BM.B.2 model problems are shown, for the grids k = 3,2,1, in Figure 3.1.

The corresponding LSQ-approximate inverse patterns are obtained by ‘filling in’ the

null entries contained in the bands. The coarsest grid used in these experiments

corresponded to the index A: = 0. We recall that the number of unknowns for the ST.B.l

(and ST.B.2) and BM.B.l (and BM.B.2) experiments are 2*"' -1- 2 and 2*’" -I- 1, respec-

tively (see Table 2.1).

 **:*:*-

***- ♦ ***- * ***

 *-***-

Fig. 3.1 : Sparsity Patterns for BM.B.1&2

The results for the periodic model problem BM.B.P are given in Table 3.3 . For

this problem, the LSQ-approximate pseudo-inverse patterns were ID (i.e. that of the

corresponding differential operator), except in the coarsest grid k = 2, where the

47

pattern of a four by four tridiagonal circulant matrix was used (since in this case the

corresponding discrete operator is a singular full matrix, and thus the LSQ-approximate

inverse of this pattern corresponds to the exact inverse, which is not defined). Some

examples of these patterns are shown in Figure 3.2, for the grid indices A; = 4, 3 and 2.

 *
***_:)c if- ***-*.*-

-***-* ♦ -***_*_*
*_***_* ♦-*♦*-*- *-**
.*.***_*-- .*_***_*
--*.***-* *-*-***-

 *_**+-*- -*_*_***
 *-***-* *-*-*.*♦
-----if- if-

Fig. 3.2 ; LSQ Patterns for BM.B.P

We recall that the matrix representations of the differential operators for BM.B.P

in the different grids are all circulant matrices based on the molecule (see Ap.II.(3.7)) :

8h'
3, 0,-27, 48,-27, 0, 3 ,

where h is the mesh-size. Therefore, the corresponding LSQ-approximate pseudo-

inverses for A: > 4 will be circulant matrices based on a molecule of the form :

I — 8h^|^/i, 0, I2, I3, 0, /

Thus, since the mesh size {h) dependency in the above molecules reduces to a multipli-

cative factor, only three approximate inverses, with no h dependency, need be calcu-

lated (i.e. k = 2,3,4). Hence, for BM.B.P, we did not store the operators in the usual

sparse form (see Ap.IV.§2), but rather used the corresponding molecules. The HL pack-

age (see Ap.IV) provides a special purpose operator that calculates the vector resulting

48

from the application of a given molecule to a given vector in a circulant manner. The

collection and interpolation operators were handled by a block extension of the same

operator in HL. We recall that the number of unknowns for the BM.B.P experiments is

2*” (see Table 2.1).

Table S.l.a ; Results for ST.B.1

mui. mi.il, mi. I ^(8)11. II. N, Q. Qt
3.79e-04 9.36e-09 4.15e-04 1.06e-08 8.96e-02 9.79e-02 18.1

l.OOe-03 1.90e-08 l.Ole-03 1.82e-08 1.31e-01 1.18e-01 17.4

1.06e-03 3.58e-08 1.09e-03 3.77e-08 2.39e-01 1.39e-01 19.2

9.47e-04 3.45e-08 9.71e-04 3.72e-08 1.34e-01 1.29e-01 17

9.97e-04 3.80e-08 1.02e-03 3.93e-08 1.35e-01 1.30e-01 18.1

l.lOe-03 5.00e-08 l.lOe-03 4.91e-08 1.43e-01 1.36e-01 20.6

1.17e-03 5.92e-08 1.15e-03 5.69e-08 1.32e-01 1.36e-01 18.3

10 1.24e-03 6.34e-08 1.22e-03 6.07e-08 1.40e-01 1.36e-01 20.7

Table 3.1.b : Results for ST.B.2

^{3)11 .il ^(8)11 .IL ^(3)11 .1 ^(8)11 .11, Q. Qi
3.47e-04 8.58e-09 3.62e-04 8.93e-09 2.13e-01 8.60e-02 15.8

7.27e-04 1.25e-08 6.33e-04 1.12e-08 8.76e-02 1.15e-01 15

7.38e-04 2.62e-08 6.35e-04 2.20e-08 9.34e-02 1.18e-01 14.2

7.40e-04 2.64e-08 6.37e-04 2.21e-08 9.33e-02 1.18e-01 13.8

7.40e-04 2.64e-08 6.37e-04 2.21e-08 9.33e-02 1.18e-01 13.5

7.41e-04 2.64e-08 6.37e-04 2.21e-08 9.33e-02 1.18e-01 13.4

7.41e-04 2.64e-08 6.37e-04 2.21e-08 9.33e-02 1.18e-01 13.4

10 7.41e-04 2.64e-08 6.37e-04 2.21e-08 9.33e-02 1.18e-01 14.1

Table 3.2.a : Results for BM.B.1

^(3)11 .1 ^(8)11.1 nn\.\ ^(8)11 .1 iV. N, Q. Q, n
2.62e-04 3.77e-10 2.71e-04 4.25e-10 4.34e-02 5.60e-02 14.5

4.35e-04 3.02e-09 4,45e-04 2.97e-09 9.46e-02 9.58e-02 15.9

8.24e-04 2.32e-08 8.25e-04 2.30e-08 1.32e-01 1.23e-01 18.7

9.73e-04 3.26e-08 9.60e-04 3.18e-08 1.34e-01 1.27e-01 20

9.36e-04 3.00e-08 9.16e-04 2.89e-08 1.36e-01 1.27e-01 21.1

9.72e-04 3.19e-08 9 50e-04 3.07e-08 1.28e-01 1.28e-01 22.2

1.12e-03 3.83e-08 1.09e-03 3.67e-08 1.18e-01 1.29e-01 23.6

10 1.18e-03 4.12e-08 1.15e-03 3.9Se-08 1.25e-01 1.30e-01 26.2

Table 3.2.b : Results for BM.B.2

^(3)11 ^(8)|| .11 ^(3)11 .1 ^(8)11.1 iV. N, Qc

9.72e-05 3.21e-10 1.25e-04 3.61e-10 1.34e-01 1.16e-01 15.3

3.04e-04 2.22e-09 3 33e-04 2.36e-09 8 23e-02 9 03e-02 15.9

3.53e-04 8.02e-09 3.83e-04 8.63e-09 8.56e-02 1.08e-01 15 6

3.54e-04 8.25e-09 3.83e-04 8.87e-09 1.15e-01 1.09e-01 15 6

3.54e-04 8.25e-09 3.83e-04 8.87e-09 1.16e-01 1.09e-01 14.7

3,54e-04 8.25e-09 3 83e-04 8.87e-09 1.16e-01 1.09e-01 14.5

3.54e-04 8.25e-09 3.83e-04 8.87e-09 1.16e-01 1.09e-01 14.3

10 3.54e-04 8.25e-09 3.83e-04 8.87e-09 1.16e-01 1.09e-01 13.8

Table 3.3 : Results for BM.B.P

rnw.i mu ^(3)11.1 ^(8)11 .1 N, Q. Qi V

2.32e-03 4.65e-07 3.02e-03 6.04e-07 1.81e-01 1.82e-01 22.2

2.60e-03 3.34e-06 3.38e-03 4.47e-06 2.56e-01 2.67e-01 25.2

2.18e-03 2.00C-06 2.68e-03 2.70e-06 2.25e-01 2.56e-01 24

1.78e-03 1.03e-06 2.05e-03 1.34e-06 2.17e-01 2.37e-01 23.8

2.39e-03 1.68e-06 2.86e-03 2.16e-06 2.46e-01 2.44e-01 27.3

2.75e-03 2.55e-06 3.38e-03 3.35e-06 2.54e-01 2.57e-01 28.1

2.71e-03 2.42e-06 3.28e-03 3.18e-06 2.48e-01 2.60e-01 30.8

10 3.05e-03 2.69e-06 3.68e-03 3.53e-06 2.51e-01 2.59e-01 30.6

50

The tables are consistent with the independence of the experimental measures on

the size (i.e. and the type of the model problem solved (ST.B.l vs. ST.B.2 and

BM.B.l vs. BM.B.2). This is the expected behavior of a multigrid algorithm.

4. Two-Dimensional Second Order Model Problems

In this section we present the experimental results for our two-dimensional second

order problems. We commence with the non-periodic ones (Tables 4.1.a, 4.1.b, 4.2.a,

4.2.b, 4.3.a and 4.3.b) and summarize our results in Table 4.4. Finally we give the

results for the periodic case in Table 4.5. Comments on each set of results are given

after the corresponding set of tables.

Tables 4.1.a and 4.1.b show the results for MB.L.l and MB.L.2, respectively. We

recall that the finite element basis used in these cases consisted of bilinear ‘pagoda’

functions, built through Kronecker products of one-dimensional linear ‘roof’ functions.

In every run, the coarsest grid was that corresponding to k = 1. The approximate

inverses were, in every grid, LSQ-approximate inverses of the ID pattern (in this case,

that of a Kronecker product of tridiagonal matrices). We recall that the number of

unknowns for these experiments is (2*’")^ (see Table 2.1).

Table 4.1.a ; Results for MB.L.1

k„ ^(3)11 .1 ^(8)11 .11 ^^(3)11 . IL ^(8)11 No Qc
1.62e-03 l,50e-07 1.53e-03 1.37e-07 1.45e-01 1.56e-01 16.9

1.46e-03 1.64e-07 l,35e-03 1.47e-07 1.68e-01 1.60e-01 17.2

1.30e-03 1.27e-07 1.22e-03 1.15e-07 1.64e-01 1.58e-0i 18.2

1.20e-03 1.21e-07 1.14e-03 l.lOe-07 1.69e-01 1.59e-01 18.3

1.23e-03 1.23e-07 1.16e-03 1.12e-07 1.54e-01 1.59e-01 18.3

51

Table 4.1.b : Results for MB.L.2

J’(3)ll.lh

3.40e-03

3.78e-03

3.96e-03

4.06e-03

4.11e-03

mu
3.29e-07

5,38e-07

7.15e-07

8,22e-07

8.77e-07

^3)11,1

2.67e-03

3-01e-03

3.21e-03

3.32e-03

3.37e-03

^(8)!I
2.47e-07

4.01e-07

5.34e-07

6.15e-07

6.56e-07

iV. N, Qc

1.63e-01

1.55e-01

1.58e-01

1.59e-01

1.59e-01

Q:

1.59e-01

L70e-01

L76e-01

1.81e-01

1.82e-01

r]

16.2

17.3

18

18.4

18.6

From the above tables we observe that the algorithm FAPIN shows a clear multigrid

behavior, since the experimental results are essentially independent of the grid size.

Tables 4.2.a and 4.2.b present the results for MB.Hl.l and MB.Hl.2, respectively.

The 'finite element basis used in these cases consisted of piecewise bicubic Hermite func-

tions built through Kronecker products of one-dimensional piecewise cubic Hermite

functions, scaled according to scaling 1, described in Ap.I.§3. The coarsest grid was

always that corresponding to A: = 0. For these problems we tried four different approxi-

mate inverses (F, 2(F), W and 2(W)), based on LSQ-approximate inverses of two

different sparsity patterns : F and W. One-dimensional counterparts (recall the

Kronecker product structure of the 2D operators) of the patterns are shown in Figure

4.1 for the case k = 3.

52

- .

- .••••••••

• «.««.••«>»•

---:*c:4c:4c+:J::^:--------

 :^c:<c4at:*:4:- -----

----- - — — — —

------- -- —

------- - - -

-------- - -

 :^:****s*£--

 **:4:*:ic:|c

---------- -

4c:4c:Me

------------ - **:tc:4c

— -

----- - -

— — — — — — 4^^stcfe:^c:|c:tc:^— —

------- :^:4e:fe:(e:4::4(:4e:4e:^-

------- -

 4:********
------- -

------- -

Fig. 4.1 ; F and W LSQ Patterns for ID Hermite Bases

The above approximate inverses were used in all grids except those corresponding to

k = 1,0, for which the LSQ-approximate inverse of pattern ID was used (in this case, an

exact inverse was calculated). In Figure 4.2 we depict the sparsity patterns for the one

dimensional counterparts of the discrete differential operators, for the grids k = 3,2,1,0.

We recall that the umber of unknowns in these experiments is (2(2 4- 1)—1)^ (see

Table 2.1).

**-

- - -- -- -- --

*+4:
—

> — — . — — - —

 —

 :fe:4e:4:*

 ***-**
 -*

**-:^c*

♦-
- *+*- **
-**-***--
 ***-**
 *+-

 **+*

**♦--

*-***

-***♦

-:4:

--****

Fig. 4.2 : Differential Operator Patterns for ID Hermite Bases

Table 4.2.a : Results for MB.Hl.l

AI mu mii.iL ^(3)11 . i ^(8)11. II. No Qc Q, V

3.54e-03 1.99e-04 3.86e-03 2,30e-04 >15 >15 6.02e-01 6.06e-01 841

3.63e-03 9.07e-05 3.73e-03 1.16e-04 >15 >15 6.13e-01 6.22e-01 895

2.84e*03 4.11e-05 2.93e-03 6.21e-05 >15 >15 6,15e-01 6.30e-01 915

3.70e-03 2.27e-05 3.75e-03 4.40e-05 >15 >15 5,95e-01 6.27e-01 882

5.97e-04 3,17e-06 6.84e-04 3,67e-06 10 3.56e-01 3.59e-01 710

2(F) 2.70e-04 1.59e-06 3.38e-04 2.13e-06 11 10 3.70e-01 3.80e-01 762

1.24e-04 6.97e-07 1.78e-04 1.25e-06 11 10 3.72e-01 391e-01 779

7.05e-05 3.82e-07 1.22e-04 9.91e-07 10 10 3.66e-01 3.99e-01 787

7.16e-04 6.15e-06 9.01e-04 8.34e-06 10 3.68e-01 3.79e-01 628

W 7.64e-04 5.40e-06 l.OOe-03 1.06e-05 12 11 4.21e-01 4,38e-01 762

7.24e-04 4.31e-06 9.77e-04 1.14e-05 12 11 4.19e-01 4.54e-01 798

8.65e-04 4.29e-06 l.lle-03 1.27e-05 12 11 4.12e-01 4,59e-01 812

4.36e-05 2.26e-09 5.96e-05 3 09e-09 1.37e-01 1.41e-01 578

2(W) 2.98e-05 6.32e-09 5.73e-05 1.51e-08 1.77e-01 1.92e-01 702

2.16e-05 5.98e-09 5.72e-05 2.13e-08 1.75e-01 2.06e-01 734

2.09e-05 6.27e-09 6.18e-05 2.55e-08 1.70e-01 2.11e-01 747

Table 4.2.b : Results for MB.H1.2

AI ^(3)11 ^(8)11 .11 ^(3)11 mil. I No Q. V

l.lle-02 7.84e-04 9.47e-03 6.72e-04 >15 >15 6,05e-01 6.08e-01 858

7.80e-03 5.46e-04 6.72e-03 4.73e-04 >15 >15 6.14e-01 6.23e-01 907

5.60e-03 3.82e-04 5.15e-03 3.45e-04 >15 >15 6.14e-01 6.30e-01 927

4.18e-03 2.65e-04 4.48e-03 2.70e-04 >15 >15 5.99e-01 6.27e-01 894

2.28e-03 l,34e-05 1.94e-03 1.16e-05 11 3.65e-01 3.65e-01 730

2(F) 1.59e-03 9.88e-06 1.35e-03 8.99e-06 11 10 3.73e-01 3.81e-01 774

l.lle-03 6.94e-06 9.56e-04 7,20e-06 11 10 3,73e-01 3.91e-01 r91

7.69e-04 4.89e-06 7.20e-04 6.30e-06 11 10 3.73e-01 4,00e-01 799

2.83e-03 2.84e-05 2.92e-03 2.84e-05 11 3.69e-01 3.76e-01 643

W 3.10e-03 3.43e-05 3.41e-03 4.60e-05 13 11 4.24e-01 4.39e-01 777

3.30e-03 4.08e-05 3.94e-03 6.41e-05 13 11 4.24e-01 4,54e-01 811

3.82e-03 5,08e-05 4.50e-03 7.95e-05 13 12 4.24e-01 4.60e-01 830

2.02e-04 l.Ole-08 2.05e-04 1.02e-08 1.35e-01 1.39e-01 590

2(W) 1.89e-04 4.11e-08 2.50e-04 6,71e-08 1.82e-01 1.93e-01 715

2.00e-04 5.75e-08 3.20e-04 1.20e-07 1.82e-01 2.06e-01 746

2.28e-04 7.97e-08 3.83e-04 1.61e-07 1.82e-01 2,lle-01 758

54

The tables above again show the multigrid behavior of FAPIN. We note, however,

that since the values of and N2 were not available, for the problems using F, the

presented values of Q^, Q2 and correspond to the last iteration performed (the 15-th)

and thus the given values of rf are underestimated. We also observe that, for the choices

of approximate inverses that yield good convergence (2(F), W and 2(W)), the experimen-

tal efforts (7/) are all very similar. Thus the ‘preferred’ (at least for a non-parallel

implementation) algorithm should probably be that based on 2(F), because of its com-

paratively smaller storage requirements. The following results show how a proper scal-

ing of the basis can provide us with a significantly better algorithm.

In Tables 4.3.a and 4.3.b we give the results for MB.H2.1 and MB.H2.2, respec-

tively. These problems differ from MB.Hl.l and MB.Hl.2 in that the basis functions

were scaled according to scaling 2, described in Ap.I.§4. The ‘type .1’ problems also

differ from the previous ones in their corresponding right hand sides, since these are

built by application of the discrete differential operator for the finest grid. The number

of unknowns in these experiments are the same as for MB.Hl.l and MB.Hl.2.

Table 4.3.a : Results for MB.H2.1

AI mi. II ^(8)11 .1 ^(3)11 .1 ^(8)11 .1 N, Qc Q, n
4.52e-03 2,17e-05 7.03e-03 3.36e-05 10 3.56e-01 3.46e-01 398

3.71e-03 1.84e-05 6.73e-03 3.33e-05 10 3.63e-01 3.48e-01 393

3.71e-03 1.81e-05 6.97e-03 3.52e-05 10 3,61e-01 3,49e-01 391

3,75e-03 1.75e-05 7.10e-03 3.57e-05 10 3.61e-01 3.49e-01 385

1.85e-04 4.96e-09 2.87e-04 7.34e-09 1.28e-01 l,20e-01 348

2(F) l,51e-04 4.17e-09 2.77e-04 7.26e-09 1.32e-01 1.21e-01 343

1.48e-04 4.05e-09 2.90e-04 7.73e-09 1.31e-01 1.22e-01 341

1.43e-04 3 90e-09 2.94e-04 7,87e-09 1.31e-01 1.22e-01 334

55

Table 4.3.b : Results for MB.H2.2

AI ^(3)11. il ^(8)11.1 ^(3)11 ,|L ^(8)ll .IL N, Qc Q, V

8.32e-03 4.45e-05 1.06e-02 5.26e-05 11 3.57e-01 3.47e-01 404

7.60e-03 4.09e-05 1.07e-02 5.43e-05 11 3.60e-01 3.48e-01 399

7.20e-03 3.83e-05 1.07e-02 5.52e-05 11 3.60e-01 3.49e-01 396

6.98e-03 3.68e-05 1.08e-02 5.56e-05 11 3.60e-01 3.49e-01 395

3.73e-04 1.03e-08 4,46e-04 1.15e-08 1.28e-01 1.21e-01 353

2(F) 3.35e-04 9.33e-09 4.51e-04 1.19e-08 1.30e-01 1.21e-01 348

3.12e-04 8.59e-09 4.55e-04 1.21e-08 1.30e-01 1.22e-01 346

3,00e-04 8.17e-09 4.58e-04 1.22e-08 1.30e-01 1.22e-01 344

The above tables again show the multigrid behavior of the algorithm FAPIN. We

note however the improved performance when based on the newly scaled basis. Observe

that the experimental effort in Tables 4.3.a and 4.3.b have been approximately reduced

by half with respect to those in Tables 4.2.a and 4.2.b. A graphical representation of

this behavior is depicted in Figure 4.3. In it we plot the logarithm of the uniform norm

(i.e. II . IIQO) of the error versus the iteration number for the model problems MB.Hl.2

and MB.H2.2 =6) for the different approximate inverses used. We recall that

MB.Hl.2 and MB.H2.2 represent two different discretizations (differing in the scaling of

the finite element basis chosen) of the same boundary value problem.

56

MB.Hl.2, MB.H2.2, k=6: EfiFect of Scaling

L
0
g

U
n
1
f
o
r
m

E
r
r
o
r

Iteration Number
Fig. 4.3

The results given thus far correspond to the non-periodic cases and are summar-

ized in Table 4.4, where the experimental measures are all given for the indicated model

problem which has a finest grid corresponding to = 6.

57

Table 4.4 : Non-Periodic Membrane Experiments Summary-

Problem AI mu ^(8)11 .1 ^(8)11 .1 N, iV, iv. QA Q, Qc V

MB.L.l ID 1.21e-07 l.lOe-07 1.94e-07 1.60e-01 1.59e-01 1.69e-01 18.3

MB.L.2 ID 8.22e-07 6.15e-07 2.34e-07 1.84e-01 1.81e-01 1.59e-01 18,4

2.27e-05 4.40e-05 3.84e-04 >15 >15 >15 6.06e-01 6.27e-01 5.95e-01 882

MB.Hl.l m 3.82e-07 9.91e-07 6.05e-06 10 10 10 3.76e-01 3.99e-01 3.66e-01 787

W 4.29e-06 1.27e-05 1.22e-05 12 11 12 4.52e-01 4.59e-01 4,12e-01 812

2(W) 6,27e-09 2.55e-08 1.60e-08 2.02e-01 2.11e-01 1.70e-01 747

2.65 e-04 2.70e-04 8.81 e-04 >15 >15 >15 6.07e-01 6.27e-01 5.99e-01 894

MB.H1.2 m 4.89e-06 6.30e-06 1.60e-05 11 10 11 3.81e-01 4.00e-01 3.73e-01 799

W 5.08e-05 7.95e-05 3.03e-05 13 12 13 4.55e-01 4.60e-01 4.24e-01 830

2(W) 7.97e-08 1.61e-07 3.89e-08 2.05e-01 2.11e-01 1.82e-01 758

MB.H2.1 1.75e-05 3.57e-05 3.67e-05 10 10 3.50e-01 3.49e-01 3.61e-01 385

2(F) 3.90e-09 7.87e-09 1.08e-08 1.22e-01 1.22e-01 1.31e-01 334

MB.H2.2 3.68e-05 5.56e-05 1.46e-04 11 11 3.49e-01 3.49e-01 3.60e-01 395

2(F) 8.17e-09 1.22e-08 4.23e-08 1 22e-01 1.22e-01 1.30e-01 344

In view of Table 4.4 we remark that, since the values oi a — A,2,oo, for MB.Hl.l

and MB.Hi.2 with the F pattern for the LSQ-approximate inverse are not available, the

values of 7] for these problems are underestimated. We also note that the bilinear ele-

ments are clearly the most effective, in terms of t]. Nevertheless, the Hermite basis

with scaling 2 performs reasonably well, in terms of N^, though at a much higher cost

in terms of work, than the former basis.

Next we give the results for our two-dimensional second order periodic model prob-

lem. Table 4.5 presents the results for MB.B.P. The finite element space used in this

case consisted of biperiodic bicubic splines built through Kronecker products of one-

dimensional periodic cubic splines. The coarsest grid considered was, in all runs, that

corresponding to k = 2. Thus the case = 3 is actually a two-grid algorithm. Two

kinds of approximate pseudo-inverses were used in these experiments : LSQ-

approximate pseudo-inverses (see Ch.I.D3.4) of the ID sparsity pattern and the

corresponding 2(ID) (that is, two succesive iterations with a linear stationary method

58

based on the corresponding LSQ-approximate pseudo-inverse). These approximate

pseudo-inverses were used in all grids except in the coarsest one, were a 15-diagonal

matrix was used (since the discrete differential operator is a singular full matrix). Some

examples of the one-dimensional counterparts for these sparsity patterns (except for

k =2) are shown in Figure 3.2 of the previous section. We recall that the number of

unknows in these experiments is (2*’")^.

Table 4.5 : Results for MB.B.P

AI mu mu ^(3)|| .1 ^(8)11 .1 N, Q. Q, V

7.25e-04 3.07e-07 1.18e-03 l.lle-06 2.33e-01 2.56e-01 96.9

ID
6.42e-04 8.57e-08 7.72e-04 2.30e-07 1.98e-01 1.72e-01 81.6

6.39e-04 7.07e-08 7.23e-04 2.30e-07 1.82e-01 2.02e-01 87.8

7.44e-04 8.29e-08 8.33e-04 2.66e-07 1.98e-01 2.05e-01 89.4

7.37e-04 8.34e-08 8.30e-04 2.67e-07 1.93e-01 2.04e-01 89.3

3.80e-06 7.40e-ll 1.02e-05 2.75e-10 4.73e-02 5.09e-02 174

2(ID)
2.33e-06 3.65e-12 3.98e-06 1.40e-ll 3.13e-02 3.35e-02 155

1.84e-06 3.41e-12 3.48e-06 1.34e-ll 2.66e-02 3.36e-02 158

2.18e-06 2.71e-12 4.23e-06 1.04e-ll 3.26e-02 3.49e-02 161

2.21e-06 3.20e-12 4.18e-06 1.24e-ll 2.99e-02 3.45e-02 161

The previous table is consistent with the independence of the experimental meas-

ures and the grid size. Thus we may conclude that FAPIN also behaves like a multigrid

algorithm in this case. We note, however, some small deviations from the general trend

in the case — 3, perhaps due to the two-grid nature of these experiments.

5. Two-Dimensional Fourth Order Model Problems

In this section we present the experimental results for our two-dimensional fourth

order problems. We begin with the non-periodic ones (Tables 5.1.a, 5.1.b, 5.2.a and

59

5.2.b) and summarize our results in Table 5.3. Finally we give the results for the

periodic case in Table 5.4. Comments on each set of results are given after the

corresponding set of tables.

Tables 5.1.a and 5.1.b present the results for PT.Hl.l and PT.Hl.2, respectively.

The finite element basis used in these cases consisted of piecewise bicubic Hermite func-

tions built through Kronecker products of one-dimensional piecewise cubic Hermite

functions, scaled according to scaling 1, described in Ap.I.§3, and satisfying the per-

tinent boundary conditions. The coarsest grid was always that corresponding to A = 0.

For these problems we tried two different approximate inverses ; An LSQ-approximate

inverse of pattern F and the corresponding 2(F). The sparsity pattern for the one-

dimensional counterpart of F, for the case A: = 3, is obtained from the first pattern in

Figure 4.1 (previous section) by deleting the first row and first column. These approxi-

mate inverses were used in all grids except those corresponding to A; = 1,0, for which an

LSQ-approximate inverse of pattern pattern ID was used. In an analogous fashion, the

sparsity patterns for the one dimensional counterparts of the discrete differential opera-

tors, for the grids k = 3,2,1,0, are obtained form those in Figure 4.2 by again deleting

the first row and first column. We recall that the number of unknowns for these experi-

ments is (2(2*'" + 1)—2)^ (see Table 2.1).

60

Table 5.1.a : Results for PT.H1.1

AI ^(3)!I.|I ^(8)11 .1 ^(3)11 . II. mi. II. iV„ N, Qc Q, V

1.18e-02 l.OOe-04 1.05e-02 9.47e-05 11 10 4.10e-01 4.06e-01 460

1.48e-02 1.39e-04 1.45e-02 1.35e-04 12 10 3.97e-01 4.04e-01 471

1.35e-02 1.16e-04 1.23e-02 1.08e-04 12 10 4.17e-01 4,09e-01 474

1.40e-02 1.37e-04 1.30e-02 1.29e-04 12 10 4.11e-01 4.15e-01 479

3.50e-04 3.19e-08 3,49e-04 3.80e-08 1.90e-01 1.50e-01 409

2(F) 2.28e-04 1.87e-08 2.65e-04 3.15e-08 1.96e-01 1.51e-01 413

1.68e-04 1.12e-08 1.94e-04 2.19e-08 1.97e-01 1.47e-01 414

1.75e-04 7.84e-09 2.04e-04 1.72e-08 1.99e-01 1.57e-01 433

Table 4.1.b : Results for PT.Hl.2

AI m\\.\ ^(8)11 .1 ^(3)11 .1 ^(8)11 .11. N, Q. Q,
9.44e-03 1.66e-04 5.80e-03 1.08e-04 12 10 4.34e-01 4.38e-01 472

9.00e-03 7.99e-05 5,10e-03 5.14e-05 12 10 4.36e-01 4.28e-01 479

5.60e-03 4.59e-05 3.13e-03 3.23e-05 12 11 4.31e-01 4,37e-01 488

3.51e-03 2.68e-05 2.05e-03 2.19e-05 13 11 4.32e-01 4.37e-01 498

4.51e-04 9.93e-08 3.29e-04 7.68e-08 1.91e-01 1.90e-01 416

2(F) 2,97e-04 7.016-08 2.31e-04 6.32e-08 1.96e-01 1.976-01 426

1.746-04 4.476-08 1.58e-04 4.726-08 1.966-01 1.99e-01 428

1.046-04 2.936-08 1.156-04 3.476-08 1.96e-01 1.996-01 440

The above tables show the multigrid behavior of FAPIN when applied to these

model problems, since the experimental measures are essentially independent of the grid

size.

In Tables 5.2.a and 5.2.b we give the results for PT.H2.1 and PT.H2.2, respec-

tively. These problems differ from PT.Hl.l and PT.Hl.2 in that the basis functions were

scaled according to scaling 2, described in Ap.I.§4. The ‘type .1’ problems also differ

from the previous ones in their corresponding right hand sides, since these are built by

application of the discrete differential operator for the finest grid. The number of unk-

nowns for these experiments are the same as for PT.Hl.l and PT.Hl.2.

61

Table 5.2.a : Results for PT.H2.1

AI ^(3)11 ^(8)11 .IL ^(3)11 .1 ^(8)iUI. iV„ N,
Q. Q‘1 V

7.71e-04 7.11e-08 9.70e-04 8.78e-08 1.64e-01 1.67e-01 343

9.30e-04 8,25e-08 1.21e-03 Hle-07 2.08e-01 1.66e-01 380

9.69e-04 8.80e-08 1.26e-03 1.17e-07 10 2.22e-01 1.60e-01 411

9.86e-04 897e-08 1.29e-03 1.18e-07 10 10 1.87e-01 1.59e-01 427

2.04e-05 3.97e-ll 2.37e-05 4.65e-ll 6.73e-02 7.03e-02 378

2(F) 1.17e-05 2.31e-ll 1.42e-05 2.81e-ll 6.98e-02 7.34e-02 418

8.77e-06 1.73e-ll 1.09e-05 2.17e-ll 6.84 e-02 7.43e-02 463

6.27e-06 1.22e-ll 8.07e-06 1.55e-ll 6.90e-02 7.89e-02 483

Table 5.2.b : Results for PT.H2.2

AI m.iL mi .1 ^(3)11 .1 ^(8)11 .1 N,
Qc Q, n

1.02e-03 1.15e-07 1.24e-03 1.34e-07 2.15e-01 1.80e-01 365

1.14e-03 9.83e-08 1.39e-03 1.21e-07 10 1.64e-01 1.56e-01 388

1.20e-03 1.08e-07 1.47e-03 1.32e-07 10 1.60e-01 1.55e-01 420

1.24e-03 1.12e-07 1.51e-03 1.37e-07 11 10 1.58e-01 1.56e-01 437

2.71e-05 6.19e-ll 3.00e-05 6 89e-ll 6.87e-02 7.33e-02 398

2(F) 1.55e-05 3.25e-ll 1.78e-05 3.73e-ll 693e-02 7.38e-02 428

l.OOe-05 2.33e-ll 1.19e-05 2.72e-ll 7.00e-02 7.63e-02 475

7.41e-06 1.57e-ll 8.98e-06 1.87e-ll 6.88e-02 7.95e-02 491

The above tables again show the multigrid behavior of the algorithm FAPIN based

on the newly scaled basis. We recall that PT.Hl.2 and PT.H2.2 represent two different

discretizations (differing in the scaling of the finite element basis chosen) of the same

boundary value problem.

The results given thus far correspond to the non-periodic cases. They are summar-

ized in Table 5.3, where all the experimental measures are given for the indicated model

problem with a finest grid corresponding to — 6.

62

Table 5.3 : Non-Periodic Plate Experiments Summary

Problem AI ^(8)11 .1 ^(8)11 .1 ^(8)11 ,|L N, N, QA Q' Qc n
PT.H1.1 1.37e-04 l,29e-04 2.6Se-04 12 10 12 4.18e-01 4.15e-01 4.11e-01 479

2(F) 7.84e-09 1.72e-08 8.10e-08 1.30e-01 1.57e-01 1.99e-01 433

PT.H1.2 2.68e-05 2.19e-05 9.33e-05 13 11 13 4.38e-01 4.37e-01 4.32e-01 498

m 2.93e-08 3.47e-08 2.15e-07 2.00e-01 1.99e-01 1.96e-01 440

PT.H2.1 8.97e-08 1.18e-07 1.14e-07 10 10 10 1.57e-01 1.59e-01 1.87e-01 427

2(F) 1.22e-ll 1.55e-ll 4.26e-ll 7.86e-02 7.89e-02 6,90e-02 483

PT.H2.2 1.12e-07 1.37e-07 2.09e-07 11 10 11 1.56e-01 1.56e-01 1.58e-01 437

2(F) 1.57e-ll 1.87e-ll 1.05e-10 7.91e-02 7.95e-02 6.88e-02 491

Comparing the above tables we observe that the efficiency of the algorithm FAPIN is

not improved , in terms of the experimental effort rj, by the use of two smoothing steps

(i.e, 2(F)). We also note that the effect of the new scaling of the basis is, for these prob-

lems, almost negligible.

Next we give the results for our two-dimensional fourth order periodic model prob-

lem. Table 5.5 presents the results for model problem PT.B.P. The finite element space

used in this case consisted of biperiodic bicubic splines built through Kronecker pro-

ducts of one-dimensional periodic cubic splines. The coarsest grid was, in all runs, that

corresponding to k = 2. Thus the case =Z is actually a two-grid algorithm. The

approximate pseudo-inverses used were LSQ-approximate pseudo-inverses of pattern ID

for all grids except the coarsest one, in which we used an LSQ-approximate pseudo-

inverse with the sparsity pattern of a 15-diagonal matrix (since the discrete differential

operator is a singular full matrix). Some examples of the one-dimensional counterparts

of the above sparsity patterns (except for k =2) are given in Figure 3.2 of the previous

section. We recall that the number of unknowns for these experiments is (2*’")^

63

Table 5.4 : Results for PT.B.P

^(3)11 .11 ^(8)11 .1 ^(3)11 .1 m\\.\ N, Q. Q, V
1.03e-04 4.54e-09 1.31e-04 8.76e-09 1.04e-01 l.OOe-01 59.6

5,53e-04 1.85e-08 5.18e-04 1.69e-08 l.OOe-01 1.16e-01 64.2

4.23e-04 8.92e-09 4.03e-04 8.39e-09 9.54e-02 l.lOe-01 67.1

4.97e-04 9.64e-09 4.72e-04 9.03e-09 1.18e-01 l.lOe-01 69.2

5.01e-04 1.07e-08 4.73e-04 l.OOe-08 9.55e-02 1.12e-01 72

The previous table is consistent with the independence of the experimental results

from the grid size. Thus we may conclude that FAPIN also behaves like a multigrid

algorithm in this case.

6. Conclusions and Suggestions for Further Study

In this thesis we have shown the ability of the multigrid algorithm FAPIN to solve

singular and nonsingular large sparse linear systems of equations constructed from the

finite element discretization of several boundary value problems with periodic and non-

periodic boundary conditions. In particular, our experiments represent new experience

with FAPIN applied to fourth order problems and with FAPIN using cubic B-spline,

bicubic B-spline and piecewise bicubic Hermite bases.

Our work also suggests several topics for further study :

.(i) As pointed out in §1, the solutions to the boundary value problems used to build

our two-dimensional model problems have singularities at the corners of the

domain u P (see Stephan [1979] and Strang & Fix [1973]). Since the ability of the

discretization to approximate the eigenvectors of the continuous operator seems to

play an important role in multigrid algorithm design (see McCormick [1982,1984]),

the effect on FAPIN of including singular functions in the basis for the discretiza-

64

tion, as suggested by Strang & Fix [1973, p,263], should be explored.

(ii) We have seen (cf. §4&5) that the scaling of the basis functions can have a strong

effect on the performance of FAPIN. A detailed study of scaling and FAPIN would

be worthwhile.

(iii) In this thesis we have only considered constant coefficient boundary value prob-

lems. Future work should explore the applicability of FAPIN to the solution of the

non-constant coefficient versions of our problems.

(iv) We have shown that the LSQ-approximate inverse and the LSQ-approximate

pseudo-inverse are well suited for the construction of the required multigrid

smoothers for the singular and nonsingular versions of FAPIN, respectively. Why

this is the case is, as yet, not clear. Also, comparison with FAPIN built on other

approximate inverses (e.g. those described in Benson [1973], or perhaps approxi-

mate inverses tailored to satisfy the nested property of Ch.I.D4.1) seems to be

desirable.

(v) It has been demostrated here and elsewhere (see Frederickson & Benson [1986])

that FAPIN is an efficient Poisson solver. Thus, its applicability to coupled equa-

tion formulations of fourth order problems (e.g. Smith [1968,1970], Ehrlich

[1971,1972,1973], Greenspan & Schultz [1972], McLaurin [1974]) and mixed finite

element formulations (e.g. Scholtz [1978], Glowinski & Pironneau [1979], Stephan

[1979], Scapolla [1980]) should be explored.

(vi) FAPIN has been implemented by Frederickson & Benson [1976] on a hypercube

multiprocessor architecture and applied to the solution of periodic second order

problems. New experiments with the fourth order problems considered in this

thesis would be worthwhile.

65

BIBLIOGRAPHY

Atkinson, K. E., An Introduction to Numerical Analysis, John \\^ley & Sons., 1978.

Bank, R. E., “Efficient Algorithms for Solving Tensor Product Finite Element Equations,” Nu~
mer. Math., vol. 31, pp. 49-61, 1978.

Bank, R. E. and C. C. Douglas, “Sharp Elstimates for Multigrid Rates of Convergence with Gen-
eral Smoothing and Acceleration,” SIAM J. Numer. Anal., vol. 22, No. 4, pp. 617-633,
1985.

Baumgardner, J. R. and P. O. Frederickson, “Icosahedral Discretization of the Two-Sphere,”
SIAM J. Numer. Anal., vol. 22, no. 6, pp. 1107-1115, 1985.

Ben-Israel, A, “An iterative Method for Computing the generalized Inverse of an Arbitrary Ma-
trix,” Math. of. Comp., vol. 19, pp. 452-455, 1965.

Ben-Israel, A, “A Note on an Iterative Method for Generalized Inversion of Matrices,” Math, of
Comp., vol. 20, pp. 439-440, 1966.

Ben-Israel, A. and D. Cohen, “On Iterative Computation of the Generalized Inverse and Associ-
ated Projections,” SIAM J. Numer. Anal., vol. 3, no. 3, pp. 410-419, 1966.

Ben-Israel, A and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-
Interscience, John W^ley & Sons, 1974.

Benson, M W., “Iterative Solution of Large Scale Linear Systems,” Mathematics Report ^17-73
(MSc. Thesis). Lakehead University, Thunder Bay, Ontario, Canada, 1973.

Benson, M W., “A High Level Approach to Scientific Computing,” Mathematics Report #1-87.
Lakehead University, Thunder BAy, Ontario, Canada, 1987.

Benson, M W. and P. O. Frederickson, “Iterative Solution of Large Sparse Linear Systems Aris-
ing in Certain Multidimensional Approximation Problems,” Utilitas Mathematica, vol. 22,
pp. 127-140, 1982.

Benson, M W. and P. O. Frederickson, “Fast Parallel Algorithms for the Moore-Penrose
Pseudo-inverse Solution to Large Sparse Consistent Systems,” Computer Science Report
CCS 86/19. Chr. Michelsen Institute, Bergen, Norway., 1986.

Benson, M W. and P. O. Frederickson, “Fast Parallel Algorithms for the Moore-Penrose
Pseudo-Inverse,” in Hypercube Multiprocessors, ed. M T. Heath, pp. 597-604, SIAM, 1987.

Benson, M W., J. Krettman, and M Wright, “Parallel Algorithms for the Solution of Certain
Large Sparse Linear Systems,” Intern. J. Computer Math., vol. 16, pp. 245-260, 1984.

Brandt, A, “Multi-Level Adaptive Solutions to Boundary Value Problems,” Math. Comp., vol.
31, no. 138, pp. 333-390, 1977.

Burden, R. L., J. D. Faires, and A C. reynolds. Numerical Analysis, Prindle, Weber & Schmidt,
1981.

Chew, K.-T., “Finite Element Solutions to Boundary Value Problems,” MSc. Thesis, Lakehead
University, 1977.

de Boor, C., A practical Guide to Splines, Applied Jvlathematical Sciences No. 27, Springer-
Verlag, 1978.

Douglas, C. C., “Multi-Grid Algorithms with applications to Elliptic Boundary Value Problems,”
SIAM J. Numer. Anal., vol. 21, No. 2, pp. 236-254, 1984.

66

E>ouglas, J. Jr. and T. Dupont, “Alternating-Krection Galerkin Methods on Rectangles,” in Nu-
merical Solution of Partial Differential Equations-II, SYNSPADE 1970, ed. Bert Hubbard,
pp. 133-214, Academic Press, 1971.

Ehrlich, L. W., “Solving the Biharmonic Equation as Coupled Finite Difference Equations,”
SIAM J. Numer. Anal., vol. 8, no. 2, pp. 278-287, 1971.

Ehrlich, L. W., “Coupled Harmonic Equations, SOR, and Chebyshev Acceleration,” Math.
Comp., vol. 26, no. 118, pp. 335-343, 1972.

Ehrlich, L. W., “Solving the Biharmonic Equation in a Square : A Direct Versus a Semidirect
Method,” Comm. ACM, vol. 16, no. 11, pp. 711-714, 1973.

Frederickson, P. O., “Fast Approximate Inversion of Large Sparse Linear Systems,” Mathemat-
ics Report #7-75. Lakehad University, Thunder Bay, Ontario, Canada., 1975.

Frederickson, P. O. and M W. Benson, “Fast Parallel Solution of Large Sparse Linear Systems,”
Computer Science Report CCS 86/9. Chr. Michelsen Institute, Bergen, Norway, 1986.

Froberg, C. E., Introduction to Numerical Analysis, Addison Wesley, 1969.

Glowinski, R. and O. Pironneau, “Numerical Methods for the First Biharmonic Equation and for
the Two-Dimensional Stokes Problem,” SIAMSirev., vol. 21, no. 2, pp. 165-212, 1979.

Greenbaum, A., “Analysis of a Multigrid Method as an Iterative Technique for Solving Linear
Systems,” SIAM J. Numer. Anal., vol. 21, No. 3, pp. 473-485, 1984.

Greenspan, D. and D. Schultz, “Fast Finite-Difference Solution of Biharmonic Problems,”
Comm. ACM, vol. 15, no. 5, pp. 347-350, 1972.

Hackbusch, W. and U. Trottenberg (editors). Multigrid Methods, Lecture Notes in Mathematics,
960, Springer-Verlag, 1982.

Jacobson, N., Lectures in Abstract Algebra, Graduate Texts in Mathematics No. 31, II. Linear
Algebra, Springer-Verlag, 1953.

Kaufman, L. and D. D. Warner, “High-Order, Fast-Direct Methods for Separable Elliptic Equa-
tions,” SIAM J. Numer. Anal., vol. 21, No. 4, pp. 672-694, 1984.

Kernighan, B. W. and R. Pike, The UNIX Programming Environment, Prentice-Hall Software
Series, Prentice-Hall, 1984.

Kernighan, B. W. and D. M Ritchie, The C Programming Language, Prentice-Hall Software
Series, Prentice-Hall, 1978.

Liong, O. H., “Triangular Finite Element Solution to Boundary Value Problems,” MSc. Thesis,
Lakehead University, 1977.

Maitre, J-F. and F. Musy, “Multigrid Methods: Convergence Theory in a Variational Frame-
work,” SIAM J. Numer. Anal., vol. 21, No. 4, pp. 657-671, 1984.

Margenov, S. D., “Application of Parabolic and Cubic Splines for Solving Boundary Value Prob-
lems of Mixed Type for a Biharmonic Equation in a Rectangle,” Serdica 7, (Russian), vol.
No. 3, pp. 211-216, 1981.

McCormick, S. F., “Multigrid Methods for Variational Problems: Further Results,” SIAM J. Nu-
mer. Anal., vol. 21, No. 2, pp. 255-263, 1984.

McCormick, S. F., “Multigrid Methods for Variational Problems: General Theory for the V-
Cycle,” SIAM J. Numer. Anal., vol. 22, No. 4, pp. 634-643, 1985.

McCormick, S. F. and J. W. Ruge, “Multigrid Methods for Variational Problems,” SIAM J. Nu-
mer. Anal., vol. 19, No. 5, pp. 924-929, 1982.

67

McLaurin, J. W., “A General Coupled Equation Approach for Solving the Biharmonic Boundary
Value Problem,” SIAM J. Numer. Anal., vol. 11, no. 1, pp. 14-33, 1974.

Nicolaides, R. A., “On the 1 Convergence of an Algorithm for Solving Finite Element EJqua-
tions,” Math. Comp., vol. 31, No. 140, pp. 892-906, 1977.

Oden, J. T. and J. N. Reddy, An Introduction to the Mathematics of Finite Elements, Pure & Ap-
plied Mathematics, Wiley-Interscience, 1976.

Prenter, P. M., Splines and Variational Methods, V^ley-Interscience, John Wiley & Sons, 1975.

Rivara, Ml-C., “Design and Data Structure of a Fully Adaptive Multigrid, Finite-Element
Software,” ACM Trans. Math. Softw., vol. 10, no. 3, pp. 24^264, 1984.

Scapolla, T., “A Mixed Finite Element Method for the Biharmonic Problem,” RAIRO Num.
Anal., vol. 14, no. 1, pp. 55-79, 1980.

Scholz, R., “A Mixed Method for 4th Order Problems Using Linear Finite Elements,” RAIRO
Numer. Anal., vol. 12, no. 1, pp. 85-90, 1978.

Schultz, M. S., “Multivariate Spline Functions and Elliptic Problems,” in Approximations voith
Special Emphasis on Spline Functions, ed. I. J. Schoenberg, pp. 279-347, Academic Press,
1969.

Smith, J., “The Coupled Equation Approach to the Numerical Solution of the Biharmonic Equar^
tion by Finite Dilferences. I,” SIAM J. Numer. Anal., vol. 5, no. 2, pp. 323-339, 1968.

Smith, J., “The Coupled Eiquation Approach to the Numerical Solution of the Biharmonic Equa-
tion by Finite Differences. II,” SIAM J. Numer. Anal., vol. 7, no. 1, pp. 104-111, 1970.

Soderstrom, T. and G. W. Stewart, “On the Numerical Properties of an Iterative Method for
Computing the Mbore-Penrose Generalized Inverse,” SIAM J. Numer. Anal., vol. 11, no. 1,
pp. 61-74, 1974.

Stephan, E., “Conform and Mxed Finite Element Schemes for the Dirichlet Problem for the Bi-
laplacian in Plane Domains with Corners,” Math. Meth. Appl. Sci., vol. 1, no. 3, pp. 354-
382, 1979.

Stewart, G. W., Introduction to Matrix Computations, Computer Science and Applied Mathemat-
ics, Academic Press, 1973.

Strang, G. and G. J. Fix, An Analysis of the Finite Element Method, Series in Atutomatic Com-
putation, Prentice-Hall, 1973.

Young, D. ML, Iterative Solution of Large Linear Systems, Academic Press, 1971.

68

APPENDIX I

Calculation of Element Matrices

In this appendix we calculate the element matrices needed for the finite element

discretization of our model problems. Our work relies heavily on that in Strang & Fix

[1973, pp.61-51], though we apply their methods to bases not treated there.

We do so for a cubic spline space and for a piecewise cubic Hermite space. The ele-

ment matrices for a piecewise linear basis are given in Strang & Fix [1973, p.29j. Since

they are calculated in a fashion similar to that of the more interesting Hermite basis,

we do not present them here.

We also calculate the element matrices for two rescaled versions of the piecewise

cubic Hermite basis, which lead to matrices with a mesh size dependency contained only

in a single multiplicative factor. The latter matrices will be used in the construction of

our non-periodic two-dimensional model problems, through a Kronecker product formu-

lation.

69

1. Cubic Splines.

We want to calculate the element mass, stiffness and bending matrices (see Strang

& Fix [1973]) for a B-spline basis used in the discretization of constant coefficient one-

dimensional problems. Without loss of generality we assume that the problem to be

solved is given in the interval I = [0,6]. Let 11^ denote a uniform partition of this inter-

val with mesh size h = N e Z"*". We recognize as finite element nodes the division
i V,

points for the subintervals arising from the partition 11^. First we must build a basis for

the finite dimensional subspace of cubic splines over 11^. Let 53(1!/^) denote the space of

C^(7) cubic splines over the partition 11^. This is a subspace of the Sobolev space H^(7)

(see Oden & Reddy [1976, p.90]). A basis for 5'3(IIj) is given by the set:

= I ^-1) ■ ■ ■ > <f^Ny ^N+i |>

where, as usual,

4>, = B{f - i)

and B{t) is the cubic B-spline function with support [—2,2] such that 5(0) = 1 :

5(0 =

j- +

if ^ 6 [—2,-1]

if t e [-1,0]

if t e [0,1]

if t € [1,2]

We let v^{x) represent an arbitrary trial function in 53(11^). Since u*(x) e 53(1!^), it

can be expanded in terms of the basis :

N+l

i 1

Now we proceed to calculate the desired matrices. We are interested in evaluating

integrals of the form :

70

(y+i)A

/ = f {g^{x)fdx ,
jh

d where is v"(x), -^v^(x) and for the mass, stiffness and bending
dx dx^

matrices, respectively. Since, in every case, fir* (a:) is a linear combination of functions

which have compact support in I, the number of terms in the expansion of g^{x) that

do not vanish in [y^,(y+l)yi] is small. In fact, since the support of each is

[(?—2)/i,(f4-2)h], g^{x) is a linear combination of four terms involving only

9j-ii Qji Qj+v ^j+2> each subinterval of the form [jh,{j+l)h]. Moreover, since each

is a translated and scaled by h version of the same function B{t), the functional depen-

dence of J on h, j and the coefficients 9y_i, Qj, 9y+i, same in every

subinterval of the form Therefore, for simplicity in the calculations and

without loss of generality, we may restrict ourselves to the interval [0,^]. Now, since

v*(x) 6 53(11^), it is a cubic on [0,/i], and thus can be expressed as ;

v*(x) = aQ-l-OiX-fo2X^-f-a3X^ , x 6 [0,/i].

This is the approach taken by Strang & Fix [1973]. It simplifies considerably the calcu-

lations and can be extended to higher dimensions. J can now be written as :

J = a* N a

with

a* — (flo> ®2> *^3))

and ail we have to calculate is the matrix H that gives the change of coefficients

fif* =(?_!, qQ, qi, q<^ to a* = (OQ) ^3)- That is, we need a matrix H such that

a = Hq.

We will use k with a subscript 0, 1 or 2 to denote the element mass, stiffness or

bending matrices, respectively. With this notation we have :

ki =H^NiH , f =0, 1, 2 ,

where :

(1.1)

71

H =

4

-3
4h

3

0

-6

JL_
4

3
4^

3

0

0

4h^ 4h^ 4/J2

-1 3 -3

4A^ 4h^ 4h^ 4h^

0

1

which gives the desired transformation among the coefficients q and a. The matrices

are easily calculated. They are (cf. Strang & Fix, p. 57,58) :

iVo =

.Ai
2

li
3

4

2

3

Jil
4

JiL
5

ii
3

4

JiL
5

6

Al''
4

5

6

7

0 0

0 h

0

0

0

4A3

3

3h^

0

/l3

3/i‘‘
2

9h^

No =

0 0 0
0 0 0

0 0 4h

0

0

6/j^

0 0 6h^ 12h^
^ j

Carrying out the matrix multiplications indicated in (1.1) we arrive to the desired

element matrices, which are to be completed by symmetry :

72

1 129 3 1
112 2240 112 2240

297 933 3
560 2240 112

297 129
560 2240

1
112

9 21 -9 -3
80 160 40 160

51 -87 -9
80 160 40

51 21
80 160

18
160

and finally :

/

_3
4

^2

0 3
8

0

-9
8
3_
4

We remark that the matrices that would result from assembling the above ele-

ment matrices, apply only to problems with free boundaries (natural boundary condi-

tions). In order to use them for problems with essential boundary conditions, these con-

ditions must be imposed on the basis functions. This is done in the next appendix for

the case of periodic and certain homogeneous boundary conditions.

2. Piecewise Cubic Hermites

We want to calculate the element mass, stiffness and bending matrices for a piece-

wise cubic Hermite basis (PWC-Hermite) used for the discretization of constant

coefficient one-dimensional problems. We use the same notation as in the previous sec-

73

tion and, again, without loss of generality we assume that the problem to be solved is

given in the interval I — [0,6]. We recognize as finite element nodes the division points

for the subintervals arising from the partition 11^, but in this case, there are two nodal

parameters associated with each node : The function value and the first derivative at

the corresponding node. First we build a basis for the finite dimensional space of

PWC-Hermite functions over 11^. Let S^(II^) denote the space of C^(7) PWC-Hermites

over the partition 11^. This is a subspace of the Sobolev space H^(/) (see Oden & Reddy

[1976, p.90j). A basis for is given by the set;

= I ^0. ^o> • • • , i’Nr ^iv

where, as usual in the nodal finite element method (see Strang & Fix [1974, p.lOlj),

i’i = P{j - 0

u;.=h W(-f - t)
h

and P(i)) ^(0 Hermite cubics with support [—1,1] and such that F(0) = 1,

that is (see Strang & Fix [1974, p.56) :
ax

iff 6 [-1,0]

l(f-lf (2f+l) if t € [0,1]

for the function values and :

WM-[' if* €1-1,0] (i_l)2 ifi €|0,l|

for the derivative values. Observe that :

P(0) = 1 -4^(0) = 0 F(l) = 0 -^(1) = 0

W(0) = 0 -^(0) = 1 IF(1) = 0 -^(1) = 0
dx dx

V

thus satisfying the requirements of a nodal finite element basis.

Following Strang & Fix [1974, pp.56-57] we observe that a general cubic function

v^{x) in the interval [0,fi] can be expressed as :

74

r*(a:) = Vo P(^) + t/o A) + »i /’(-f- - 1) + i/i A W{-^ - 1) . (2.1)

where the parameters v, t/ denote the function values and the derivative values of v{x)

at the points 0 and 1. The h factors are needed since
ax h n ax

Now, substituting and collecting terras in powers of x, we obtain :

/ \
a 10 0 0

0 10 0
-3 -2 3 -1

h h
2 1-21

A^ A^

1
V /

where, as in the previous section :

u*(x) = ao+aiX+a22:^+a3a:^ , x e [0,A] .

Observe that the required integrals are still given by the same matrices Nf as in the B-

spline case. Thus the desired element matrices (which are to be completed by sym-

metry) are (see Strang & Fix [1974, p.58]) :

A
420

156 22A 54 -13A
4A2 13A -3A^

156 -22A
4A2

30A

36 3A -36 3A
4A“ —3A —A^

36 -3A
4A2

^2

12 6A -12 6A'
4A^ —6A 2A^

12 -6A•
Ah-

. ..

We note that the mesh size A appears within the element matrices. Preliminary one-

dimensional second order experiments showed divergence of the algorithm FAPIN built

on this basis. A remedy was found by rescaling the basis Bjy in such a manner that the

75

h dependency of the entries in the above matrices was contained only in a single multi-

plicative factor. This is the subject of the next section.

The matrices that would result from the assembly of the above element matrices,

apply only to problems with free boundaries. For this basis, however, imposing homo-

geneous boundary conditions only amounts to a simple deletion of appropriate rows and

columns in the assembled matrix.

3. Rescaling of the Piecewise Cubic Hermite Basis : Scaling 1

We will now show a redefinition of the basis that allows the reduction of the

mesh size dependency in the above element matrices to a single multiplicative factor.

We let rjf = h , i — 1, ■ ■ ■ , N be the new rescaled basis functions. The a;,-

remain unchanged. Thus, the rescaled basis is given by the set :

~ I ^o> ^o> ^1) ^i> • ■ •) ^N> |i
and the vector of coefficients q becomes :

v'o. ^xY = (^0, ^0, -?i, ^xY-
Thus the element matrices have to be rescaled accordingly :

^0

^ X

= M

^ 1

where M = H gives the new change of coefficients and D^^ = diag[h, 1, h, 1). Thus

the new element matrices are given by :

NoHD„

ATj M =Df,^ Df,,

l^=M^ N^M=D^* N^HD^,

or, explicitly :

76

156 22 54 -13

4 13 -3

420 156 -22
4

/

36 3 -36 3

4 -3 -1

36 -3

4

/ \

12 6 -12 6

4 -6 2

12 -6
4

/

A FAPIN algorithm using this new basis showed good convergence for some

model problems.

4. Rescaling of the Piecewise Cubic Hermite Basis : Scaling 2

In this section we will show another redefinition of the basis that allows the

reduction of the mesh size dependency in the corresponding element matrices to a single

multiplicative factor..

As suggested by Greenbaum [1984, p.482], we use the basis functions defined in

equations (3.1), (3.2) normalized to have unit L^(/)-norm (for simplicity, the same scal-

ing factor is used for the basis functions at the boundaries). Thus the new basis is

defined by :

one-dimensional tests. Thus, this basis was used to build the matrices for some of our

where we have defined :

X,' = P(y - i)

^ - 0

77

and

1 ^

n,.

(»+l)A

f dx

(«+l)A

f 0Ji\x) dx
(i-i)h

35

105

Thus, the vector of coefficients q must now be redefined as

(——«'o. —^v —^lY = iVo, 2/o> Vi, 2/l)^

and the element matrices are to be rescaled accordingly :

3
V /

= H E,

Vo

v'o

Vl

v'l

==H E,

Vo

l/o

Vi

y'l

= Q

Vo

^0

Vi

2/1

where Q = H Ej^ gives the new change of coefficients and Ef^ = diag{n^, n^, n^, n^).

Thus the new element matrices are given by :

mo = Q^ NoQ =E,^ H* N^HE„

m, = Q^ N, Q=E,^ W N,HE„

m^ = Q‘ N^Q =E,^ H* N^H E^,

or, explicitly, by ;

^ 1
21840

10920 1144(7 3780 -676(7
10920 676(7 -8190

10920 -1144(7’
10920

=

520h^

840 52(7 -840 52(7'
3640 -52(7 -910

840 -52(7’
3640

m2
1

Uh‘^

’210 78(7 -210 78(7'
2730 -78(7 1365

210 -78(7 ’
2730

78

where :

C =
3675

52

One-dimensionai experiments with the FAPIN algorithm using this new basis B^2

showed good convergence. Thus we also used B^2 construct the matrices for some of

our model problems.

APPENDIX n

Imposing Essential Boundary Conditions

In this appendix we show how certain essential boundary conditions may be

imposed on cubic B-spline discretizations of some two point constant coefficient boun-

dary value problems. We examine the cases of certain homogeneous boundary condi-

tions as well as periodic boundary conditions. In the case of non-periodic boundary con-

ditions, this is done inexpensively by substituting certain entries in the desired assem-

bled matrices by linear combinations of entries in the assembled matrix for the

corresponding problem with natural boundary conditions. The periodic case is also

inexpensive and reduces to the construction of a circulant matrix based on certain

‘molecules’ (or ‘stencils’) derived from the corresponding element matrices.

79

80

1. A Second Order Problem.

Consider the following two point boundary value problem (see Strang & Fix [1974,

P.IO]) :

(Pl) =

I s

u(0)=0,

1, X 6 [0,7T].

We want to build a cubic B-spline discretization of (Pi). Since «(0) =0 is an essential

boundary condition, the Sobolev space, within which we define the finite element minim-

ization subspace, is a subset of (see Oden & Reddy [1976, p.90]), namely :

H3^(/) = I v*(i) 6 U\I) I v^{0) = 0|.

Observe that C is actually a subspace.

Let / = [0,7T] and let 11^ denote a uniform partition of the above interval with

mesh size h = —— N G Z"*”. We recognize as finite element nodes the division points for

the subintervals arising from the partition 11^^. Let 5^(11^) denote the space of C^(/)

cubic splines over the partition 11^. We choose as the finite element minimization sub-

space the finite dimensional space of cubic splines over which are zero at the origin,

i.e.

ss'E{n,) = | »‘(x)€s3(njl t,‘(o)=o|.

We also have that S^£(I1^) c S®(II^) is a subspace of C H®.

Since the boundary condition w(0) =0 is essential, in the Ritz method the basis

functions must satisfy this condition. A basis for will satisfy it and can be

easily constructed from a corresponding one for 5^(11^). A basis for S^(II^) is given by

the set (see Ap.II.§l) :

®5 = j 4>_i, (f>Q, <l>i, . . . (■>

81

where

- 0

and B[t) is the cubic B-spline function with support [—2,2] and such that B(0) = 1.

Define (see, for example, Prenter [1975, p.208] or Burden, Faires & Reynolds [1981,

p.498]) :

V'o = « ^-1 + ^ *^0)

= c + d <f>i,

and impose the conditions :

^^o(0) = 0, rp^i-h) = 1,

0i(O)=O, =

Solving this system we obtain :

Observe that the above conditions preserve the scaling of the original basis B^.

Further, if we define :

V’i(a:) = 2 < j < N+1,

it is clear that a basis for is given by the set :

^SE = I ^0. • • • . ^N> ^N+l I •

This is so, since these functions satisfy ^,(0) = 0, V *> are linear combinations of

the ^,-’s (which are a basis for 5^(11^)) and therefore span the desired subspace of

We note that since we are imposing a non-trivial condition among the functions

and thus removing one degree of freedom, the dimension of the minimization subspace

is A^+2 rather than N+Z as it is the case for the problem with free boundaries.

Next we proceed to calculate the assembled matrices for problem (Pi). We will

assume that the corresponding matrices in terms of the basis B5 are known. That is,

82

the assembled matrices for the two point boundary value problem for the same equa-

tion with natural boundary conditions are known. This will save some work since the

‘unconstrained’ matrices are easily calculated by means of a simple assembly program.

All we have to do now is to impose the linear relationships that define the new func-

tions 0,(2:) in terms of the (^,’s.

Let KQ, K1 and K2 denote the assembled mass, stiffness and bending matrices,

respectively. Since the entries in these matrices, in the constant coefficient case, are

just the L^(/) inner products of the corresponding basis functions (or derivatives of the

appropriate order (see Prenter [1975, p.210]), we may easily calculate the entries in

these matrices in terms of the entries in the unconstrained ones. To do so, let < , >

denote the inner product in L^(/). Then, in the case of the mass matrix KO, and by

definition of the ^,’s, the following relationships hold :

^Oo,o = <^o»V'o> = (16<<6_i,<6_i> -I- <(f>Q,<i>Q> - S<4>Q,(j>^>)

-I-
15

^0Q,2 ~ -^02,0 ~ ~ 1>*^2^ —

^®0,3 ~ -^%,0 ~

K\x x — “^'4’xi'^X^ ~

^^1,2 ~ -^^2,1 ~ *^^l7'02^ ~ ^"15”^ ^ "I"

^®1,3 ~ ^®3,1 ~ ~ ^ "b ^“^^X’^3^)

= <M,> = (-i-) (- -f-

Analogous relationships hold, with the basis functions (j)^ and 0,- replaced with their first

and second derivatives, for the stiffness and bending matrices, respectively.

Thus, to calculate the assembled matrices for (Pi), all that has to be done, once

the unconstrained matrices are known, is substitute the above entries by the

83

corresponding linear combinations and delete the rows and columns that correspond to

the degree of freedom removed by imposing the essential boundary condition. In our

case, this corresponds to deleting the first row and column in the unconstrained assem-

bled matrices.

This process also applies to the calculation of the right hand side of the linear sys-

tem arising from the minimization of the energy functional over the chosen finite dimen-

sional subspace.

2. A Fourth Order Problem.

Consider the following two point boundary value problem (see Strang & Fix [1974,

P-62]) :

(F2) =

-^u{x) = l, 2 e [0,7T].
ax

«(o)=o, -^(o)=o.

JL
dx^

U{TT) = 0,
dx

JL

dx^
u (TT) =0

We want to build a cubic B-spline discretization of (F2). The first two boundary condi-

tions are essential. Thus the Sobolev space, within which we define the finite element

minimization subspace^is :

= I v'‘{x) e H^(/) I »‘(0) = 0, ~ o|.

Using the notation of the previous section, we choose as the finite element minimi-

zation subspace the finite dimensional space of cubic splines over 11^ which are zero at

the origin, together with their first derivative, i.e.

s®£i(nj) = | v*(x)es=(njl .,‘(o) = o, ■^»*(o) = ol

We see that is a subspace of

84

Since these boundary conditions are essential, once again the basis functions must

satisfy these conditions. A basis for will satisfy them and it can be easily con-

structed from a corresponding one for (see previous section).

Let :

= a ^0 + * ^1,

and impose the conditions :

(iW-o, -£^^(o) = o.

Solving this system we get :

= -i|(+ Ifl)-

Again the above conditions preserve the scaling of the basis BSE- define :

^.(x) = i^iix), 2 < J < N+l,

then a basis for is given by the set :

®5£;i = I ?1» ^ ^N+l

since these functions satisfy the essential boundary conditions, are linear combinations

of the ^,-’s and therefore span the desired subspace of We note that since we are

removing one more degree of freedom, the dimension of the minimization subspace

s^EiCn,) is v+i.

With the same notation and following the procedure described in the previous sec-

tion, we proceed to calculate the assembled matrices. We assume that the correspond-

ing matrices for (Pi) are known. In this case, the following relationships hold among

the mass matrix entries and the members of 85^ and 85^1 :

= (^)= (<%A> + <i>iA> +

= iro., = = (^) (<!i>o,V>2> + <i>i,*2>)

A‘0,,3 = A03,, = <e„e3> = (^)

85

- <ei,e4> = (^) {<M4> + <MA>)

Analogous relationships hold, with the basis functions ■0,- and replaced by their first

and second derivatives, for the stiffness and bending matrices, respectively.

Thus again, to calculate the assembled matrices for (P2), all that has to be done,

once the matrices for (Pi) are known, is substitute for the above entries the

corresponding linear combinations of entries and delete the rows and columns that

correspond to the degree of freedom removed by imposing the new essential boundary

condition (i.e. derivative condition). In this case, the first row and column in the assem-

bled matrices for (Pi) should be removed.

This process again applies to the calculation of the right hand side of the linear

system arising from the minimization of the energy functional over the chosen finite

dimensional subspace.

3. Periodic Boundary Conditions

To handle periodic boundary conditions we use a method that parallels that used

by de Boor [1978, p.326] for periodic spline interpolation. We assume we are given a two

point boundary value problem in the interval I = [0,7r], with periodic boundary condi-

tions (these will depend on the order of the problem). We consider, as before, a uniform

partition II;i(/) of the interval with mesh size h — ^.nd uniformly extend it to the

rest of the real axis R. Thus we arrive at a bi-infinite knot sequence T = { f,- } which

we consider centered at the origin (i.e. f,- = ih,\/ i e Z). We now consider the linear

space of TT-periodic cubic splines over the knot sequence T and denote it by S^p{T). We

will need the following result from de Boor [1978, p.325] :

Theorem 3.1 : Let 5(2:) be a cubic spline over the knot sequence T. Then s(a:) e S^p[T)

(s{x) is TT-periodic) if and only if its expansion in terms of B-splines <f>i{x) is an N-

periodic sequence, i.e.

86

where 4>i{^) = -S(T" ~ 0 ^■s defined in Ap.I.%1.
h

Consider now the problem of numerically solving u '{x) = g{x), x 6 / with periodic

boundary conditions and where g{x) is 7r-periodic. We seek a finite element discretiza-

tion with S^p(r) as the minimization space. To this end, we let T also be the sequence

of finite element nodes for the discretization. Since there is only a fourth derivative

term in the dififerential equation we need only assemble the bending matrix (see Ap.I.§l)

for the sequence T. Doing this we obtain the linear system :

= 9i, V* € Z , (3.1)
}

where B = [6,^] is an infinite seven-band symmetric Toeplitz matrix and g,- is the N-

periodic vector defined by :

oo (j+2)A

9i = / 4>iix)g(x) dx = / f>i(x)g{x) dx , V *•

-oo (*-2)A

Now, using theorem 3.1 we can rewrite (3.1) as :

iv-i

= 9i, ^■ = 0, 1, ■ • ■ ,N-1,
y=o

where we have defined

(3.2)

^ij = U - kN)i V ^ e Z.
k

Now, since B = [6,y] is Toeplitz, we have that 6,y = 6,.^ if f — y = r — s and hence

a,y = a,.g if J — y = r — 5 {mod N). (3.3)

Therefore A — [a^y] is a circulant matrix and thus the finite discrete version of the

problem becomes :

Au =/,
A € M^(R), A circulant, (3.4)

87

where / is the vector

f- = Qi, e = 0, 1, • ■ • ,N-1.

The above procedure can be extended to the non-constant coefficient case in

which, of course, the assembly process has to be modified to include the coefficient func-

tions. Nevertheless, from the necessary TT-periodicity of the coefficients, it can be shown

that we again obtain a N~1 x N—1 matrix with the same sparsity pattern as before,

though the circulant nature would be lost in general.

Thus, in the periodic constant coefficient case, all that needs to be calculated are

the seven non-zero entries in an arbitrary row of A. These are easily obtained from the

element matrices for the B-spline basis (see Ap.I.§l). Once they are known, the assem-

bled matrices can be represented by the following molecules :

Mass :

m =
2240

1, 120, 1191, 2416, 1191 , 120, l|. (3.5)

Stiffness

= 1
® “ 160h

and Bending :

-3, -72, -45, 240, -45, -72, -3 (3.6)

6 = -^|3, 0, -27, 48, -27, 0, 3k (3.7)

The molecules are taken to act AT-periodically (that is, modulo-N) over the set of nodes

APPENDIX m

Interpolation and Collection Operators

This appendix details the calculation of the interpolation and collection operators

necessary for the construction of the algorithm FAPIN. This is done for the different

finite element bases used for the construction of our model problems. Because of mul-

tigrid design considerations (see Ch.I.§4), we choose the collection operator to be, in

each case, the transpose of the corresponding interpolation operator. Thus only the

latter need be calculated.

We begin with the simpler case of periodic cubic splines and extend this to the

cases with non-periodic boundary conditions. We then calculate these operators for a

piecewise cubic Hermite basis and consider the three different scalings of this basis that

were used in our experiments. We also give these operators for a piecewise linear basis

(‘roof’ functions).

The operators given for both the Hermite and the linear bases apply to problems

with natural boundary conditions. The corresponding operators for problems with essen-

tial homogeneous boundary conditions are easily obtained from them by deleting

appropriate rows and columns.

In the last section we show how the operators for the one dimensional cases can be

used to build the corresponding two dimensional ones, provided that the latter act on

linear spaces which have a Kronecker product structure.

88

89

1. Periodic Cubic Splines

Let I denote the interval [0,7T] and consider two uniform partitions n^(/), Il2;i(/)

of I, with mesh sizes h = h' = 2h, respectively and where iV = 2*, for some k e

We now uniformly extend these partitions to the rest of the real axis R. Thus we define

two bi-infinite knot sequences T* which we consider centered at

the origin (i.e. f*,- = ih, = t{2h), V 0- consider the linear spaces of TT-

periodic cubic splines over the knot sequences T*, and denote them by 5^p(r*),

S^p{T^’*), respectively. Clearly 5^p(r^*) c 5^p(T*), and thus e S^p{T^^), implies

s^^{x) e S^p[T^). Let B* = {<^*,-(ar)} and denote B-spline bases for

5®p(r*), 5^p(r^*), respectively. With these definitions we have :

52A(X) = (1.1)

»■ i

Thus, given s^*(x) in the basis B^*, its expression in the basis B* can be obtained by

expressing a generic e B^* in terms of B*. This is a simple interpolation problem

whose solution is (from now to the end of this section we omit the independent variable

in the functions) :

2i-2 + + ■^^*21 + Y^*2.-+1 + ■|■^*2.•+2 > V *.

and therefore

i

= i ■~<f>^2i-2 + Y^^*2i-l + -|■^*2^ + y^*2i+l + ■^^*2.'

i \

=

3

which, by collecting terms in implies V * ^

(1.2)

(1.3)

= i-or^A. -I-

8

oc' 2i+l —

2h
i

2h
i

+

-j-

2h

2h

2

»+i

j+i

(1.4)

90

Now, since e 5^p(r^*), by Ap.II.T3.1 we know that is a -^periodic sequence.
JL

Thus we have :

ot"
2(»-+Y) 8

= 4.^2* ^ + 3.C.2A ^ +i-«2A ^
(<+f)-i 4 {i+f) 8 (.•+f-)+i

_ 1.Q;2A . , AQ,2/» . . i.Q,2A .

= «*2» , V *

and

Of \r
2(»-+4)+1

^ +i.«2A
2 (<+4) 2 (.-+4)+i

= i.c2A
2 * 2

= «%i+i. V *

Therefore, the calculated coefficient sequence a* is A^-periodic, in agreement with the

referenced theorem. Because of this periodicity we may consider only one period of the

previous sequences, thus arriving at the following expressions :

“*(2i) modN

^ (2i+l) mod N

mod
jv 4“
2

. . N +) mod •— ' 2

, w +
nod —

2
(f+l- 4)mod^

2 ‘ 2

(1.5)

where the index i takes the values : f = 0, 1,

Equations (1-5) define the desired interpolation operator from the space S^p{T^^),

into the space S^p(T^). We denote it by /ot* € M
ATxy

For example, for the case N = 8, the interpolation operator has the form (we omit

the zero entries) :

91

4 8 8

L J_ -
2 2

L 1. 1.
8 4 8

± i.
2 2

J_ 3_ JL
8 4 8

2 2

L 1.1.
8 8 4
j_ X
2 2

/

These operators will be used to build the required interpolation operators for our

one and two dimensional periodic model problems. The latter will be constructed by

means of a Kronecker product formulation (see §5 in this appendix).

2, Non-Periodic Cubic Splines

In this section we calculate the interpolation and collection operators needed in

the algorithm FAPIN when applied to the solution of our one-dimensional non-periodic

model problems (see Ch.II.§l). We follow a method similar to that used to derive the

element matrices (see Ap.I.§l). That is, we begin with the case of free boundaries and

proceed to ‘add’ the required essential boundary conditions by means of linear combina-

tions of basis functions.

Following the notation of the previous section, let / denote the interval [0,7T] and

consider two uniform partitions II^(/), n2i(/) of I, with mesh sizes h — ^ =2h,

respectively and where N =2*, for some k e Z"^. We now consider the linear spaces of

C\l) cubic splines over the these partitions and denote them by 53(n^), IS3(II2A),

respectively. Using the same superscript notation as in §1, bases for these spaces are

given by :

92

iV+1

f-

where, as usual,

(2.1)

(2.2)

<h = B(f - •)

and B{t) is the cubic B-spline function with support [—2,2] and such that B{0) = 1 :

B_2(0 = if t e [-2,-1]

B_i(t) = -^ + -|-(f+l) + — ~(f+l)^ if f G [—1,0]

B,(t) = i + •|(l-0 + ^{1-tf - if ^ G [0,1]

^2(0 = if t G [1,2]

(2.3)

We have 53(112;^) c 53(1!^), and thus G 53(112*) implies u^*(x) G 53(11*). There-

fore, we may write :

2 iv+i
v^^{x)^ i{x) = XI

.• - -1 - -1

Thus, given t;^*(ar) in the basis its expression in the basis can be obtained by

expressing a generic G B^*5 in terms of B*^. In contrast to the previous section,

however, this does not reduce to a single interpolation problem for all values of N since

we now must consider the boundaries. Thus we separate the calculations by different

values of N (we again omit the independent variable in our notation).

(i) iV = 2 :

We must solve four interpolation problems which, by symmetry, reduce to two :

93

1; Express the B2 part of (see (2.3)) in terms of

2: Express the ,B^ parts of (see (2.3)) in terms of B*^.

Solving these interpolation prc

-!■(»*-1 +

= -i-fli*-, +

We will use the notation Ifor the calculated interpolation operators. With this
T

notation, we obtain from (2.5) the desired which has the form ;

\
j_

2

1. JL
4 8

2. i.
2 2
JL 3. J_
8 4 8

2 2 ,

Proceeding in a fashion similar to that of (i) we obtain the interpolation operators for

blems we obtain :

(2.5)

the remaining values of N. For brevity we only give the final operators :

94

(ii) N =4:

(iii) iV = 2*, A; > 3 ;

T ^

j_ i.
2 2

JL A 1
8 4 8

2
2

2
8

2
8
1

2 2

2 3_
8 4

2
2

2
8

2
o

T 2*
^2^-1 —

T 4
^2

4 =

r 2 J. J_ '>
8 4 8

0 i- i-
2 2

where the 2x3 repeated block appears N-5 times, with its first column shifted to

the right by one position with respect to the first column of the previous block.

Once the operators for the case of natural boundary conditions have been

obtained, we proceed to calculate the interpolation operators between cubic spline

spaces whose vectors satisfy the essential boundary condition v*(0) =0. We use a nota-

tion consistent with that of Ap.II.§l and the one used so far in this section. Thus we let

denote the linear spaces of cubic splines over the partitions 11;^, 112/^

whose elements vanish at the origin :

95

■sVn,) = |t-*Wes^(nj)l ^‘(o)=o|,

= I «“(x) 6 s^(n,») I v^\o) -o|.

We recall that bases for these spaces are given, respectively, by (cf. Ap.II.§l)

JV+l

B‘SE = {0*,}. i - 0
N

B“SE = Wi}.
t - 0

where ;

--A if* 15 15 o>

— — <l>\.
15 ^ ° 15 ^ ^ =

i{x), 2<i<N+l,

and

(2.6)

(2.7)

(2.8)

(2.9)

2 < 1 < -^+1,

From the previous definitions we observe that only the two first basis functions of

the two new bases have been redefined in terms of linear combinations of old basis func-

tions. Thus we only need to recalculate the change of basis for them, since the rest will

transform as the ^’s did. We again separate the calculations by the different values of

N.

(i) iV = 2 ;

We must perform the following calculations ;

1: Express (see (2.9)) in terms of

2; Express (see (2.9)) in terms of SE

96

We first solve problem 1. By definition of have

_ A_ ^2H

^ ° 15 ^ ^ 15 ^ °
= 1L(±S^ , -I- ~ -I- -(—+ —^o) ~ —(-

15^2 ^ 8 15^2 1 +

— — ■‘- _ _±_0A _ ■‘- 1
15 15 15 30

(2.10)

Since the only functions involved in the right hand side of (2.10) are i = —1, 0, 1, 2,

and neither depend on <^*2> equate undetermined linear

combination of i = 0, 1 plus a term in ^*2- Doing this and using the definitions of
*v

i =0,1 we obtain :

30
f 16 ih

“ a(^— 9 _t
U5 ^

j . (2.11)

(2.10) and (2.11) to a linear system of equations from which we obtain the desired

coefficients :

Thus, from the previous calculations, we have ;

= (2.12)

which constitutes the solution to problem 1.

In a similar fashion, the solution to problem 2 can be obtained. This is given by :

A,=^lf‘o + fl*‘i+-i|V>‘2 + ^A- (2.13)

Now, using (2.12) and (2.13) we can give the change of basis :

^*0 =

. =

- -Ltpk _
8 ^ ° 8^1

1
30
23

^*2

15
•0*

^0*2 +

(2.14)

97

Thus the desired interpolation operator is given by :

A ^
8 8

-1 _3_

^ ~ -1 23 1
30 30 8

8 1_

15 2

Proceeding in an analogous fashion to that in (i), we obtain the interpolation operators

for the remaining values of N. Once again, for brevity we only give the final operators.

These have the form :

(ii) AT = 4 :

(iii) N =2^,k>3:

1. ^
8 8

-1 3^

8 8

21. J_
30 8

8 1_

15 2

2 3 1
15 4 8

2 2

r

1_

8
3_
4 8

0 i- ^
2 2

where the 2x3 repeated block appears N-5
2

times, with its first column shifted to

the right by one position with respect to the first column of the previous block.

98

Next we calculate the interpolation operators between cubic spline spaces whose

functions satisfy two (essential) boundary conditions, namely : u*(0)=0 and

-^v*(0) =0. Our notation will again be consistent with that of Ap.II.§2 and the one
dx

used so far in this section. Thus, let denote the following linear

spaces of cubic splines over the partitions 11^, Ilj* :

S £i(nj = I v\x) e 5^E(n») I -£’>“(0) = o|-

= I v^\x) 6 I = o|.

We recall that bases for these spaces are given, respectively, by (see Ap.II.§2) :

N+l
g* — fck

SEi
% - 0

N

SEI ^ le’'i).

2+1

i - 0

where :

and

2<i<N+l,

= ^ (^% +

(2.15)

(2.16)

(2.17)

(2.18)

?“,.(x)=V>=’*,.(»:), 2<i<lV+l,

From the previous definitions we observe that only the first basis function of the

two new bases has been redefined in terms of a linear combination of ^ basis functions.

Thus we only need to recalculate one of the equations in the change of basis. We again

separate the calculations by the different values of N.

(i) iV = 2 :

We must express (see (2.18)) in terms of

By definition of we have :

99

14

3 , 23 / A , 8 / A = ilJ(3.^* _ ±rph _) + (^rp\ +

14 (^8 ° 8^ ZO ''8 ° 8

= -|-(V^„ + 0‘.)+^V>‘2 + ^?(^3-

= 7^*1 +17^*2 + ^f*3'

Thus, from (2.19) we see that the change of basis is given in this case by :

(2.19)

V‘i= lv>*i+ TTI'^2 +
14 " ^ ' 14

8 ^ 2

and the interpolation operator is given by :

(2.20)

l_
4

7-2= il
^ 14 8

8 _1_
14 2 ^

In an analogous fashion we obtain the interpolation operators for the remaining values

of N. We again only give the final operators :

(ii) iV = 4 :

4

11
14 8

8 J_
14 2

2 3

T 4

14 4 8

X X
2 2

100

(iii) N =2^,k>Z:

T 2*

—

T ^ i 9

Ir =

f J_ 3_ _1.1

8 4 8

0 ^ i
2 2

where the 2x3 repeated block appears N-b times, with its first column shifted to

the right by one position with respect to the first column of the previous block.

3. Piecewise Cubic Hermitea

In this section we calculate the interpolation operators defined between spaces of

piecewise cubic polynomials. These are used to build the corresponding operators for

spaces of piecewise bicubic polynomials, using the Kronecker product nature of their

bases. We derive the operators for the case with natural boundary conditions and the

three different scalings of the basis which were considered in our experiments (see

Ap.I.§2,3&4). Essential homogeneous boundary conditions are easily imposed by deleting

appropriate rows and columns in the given operators.

Following the notation of the previous sections, we let I denote the interval [0,7r]

and consider two uniform partitions n2*(/) of /, with mesh sizes h —

y = 2h, respectively and where N = 2^, for some k e Z+. We now consider the linear

spaces of C^(/) piecewise cubic Hermite functions over the above partitions and denote

them by 5^(112*), respectively. Corresponding bases for these spaces are given

by :

(3.1)
»= 0

I
(3.2)

101

where (see Ap.I.§2) ;

= ^(f - 0

= h VF(-f - i)
h

and P{t), are the Hermite Cubic basis functions with support [—1,1] described in

Ap.I.§2.

Clearly Sff{U2^) <Z and thus (x) e Simplies e 5^(11^).

Therefore, given v^^{x) in the basis its expression in the basis can be

obtained by expressing generic i, € B^*^ in terms of B*j^. These are again

interpolation problems. They are easier to solve than the ones for the B-splines case

since , now, the basis functions can be considered one subinterval at a time.

Let Ii — \j2h,{j-{-l)2h] denote an arbitrary but fixed subinterval in the partition

Il2^(/). Then, letting I-y = I3, where 12, € n^(/) and recalling that h' = 2h, it

can be shown that :

= ^^*2(y+i)-i + -|-0*2{i+i)-i + w*2(y+i) . in A

and

= ^2j + > in h

= ~ ■|■V'*2(y+l)-l — -^'^2(y+i)-i + ^2(j+i) j in h

Thus, the basis functions as defined in (3.2) transform according to :

2}-1 + - ^^2;+l

y = - 2i-i - 2y-i + ^ 2y + 2y+1 “ 7^ 2y+i ^ ^

From equations (3.3), (3.4) and (3.5) we can now calculate the interpolation opera-

tors. Recalling that h' denotes the mesh size of the coarse partition Il2^(/) and defining

the blocks :

102

4 =

^0 -
2 2h'

0 1

4 =

i
2

-h> -1
8

Ji. ^
8 4

3

, 4 =

1. JL
2 2/j'

-1
8 4

1 0

0 1

2h' 2 2h'

0 1 — —

4 8 4

the desired operators (transposed for convenience) are given by :

(i) iV = 2 :

(V)‘ =

where the block /j/ is shifted by two columns to the right with respect to the first

column of the block /„.

(ii) N = 2\ k >2 :

where the repeated block appears N-2 times. Its first column is shifted by two

columns with respect to the first column of /„ and the first column of is shifted by

four columns with respect to the first column of the last block. In the repetition part

the shift is four columns.

We remark that, for the previous basis, the entries in the interpolation and collec-

tion operators depend explicitly on the coarse grid mesh size (as was the case with the

element matrices (see Ap.I.§2)).

Next, we consider the two rescalings of the previous basis that were used in this

103

thesis. These are described extensively in Ap.I.§3&4 . For brevity, we only recall them

here and give the corresponding operators. These are obtained in a completely analo-

gous manner to that used in the above calculations.

Scaling 1 :

This scaling uses hip instead of the functions ip as defined in equations (3.1), (3.2).

Thus the new bases become :

(3.6)
♦ 0

K

= (3.7)
I — 0

where (see Ap.I.§2) :

Vi =hiPi=h P{j- - i)

oj- = h W{-^ - i)
h

In terms of (3.6), (3.7) the new interpolation operators have the same block structure as

for but with redefined blocks of the form :

2 0 1 -3

0 1 i-
4 4

, h =

-^2 0
2

-1 0 1

Ir = -1
4

3. 2 0 1 —
2 2

=3- 0 1 i- ^
4 4 4

Scaling 2 :

This scaling uses the basis functions defined in equations (3.1), (3.2) but normalized

to have unit L^(/)-norm (for simplicity, the same scaling factor is used for the basis

functions at the boundaries). Thus the new bases become :

N

i - 0
(3.8)

B 2h
H2

n
2

i = 0
(3.9)

104

where (see Ap.I.§3) :

Xi = 0,- = P{-j - i)

9i = oJi =n^h W{-j — i)

and

1

1
n,..

(»+l)A

f dx
(»-l)A

(»■+!)*

f oJf^ix) dx
(i-l)A

26
35

2^3
105

where we have used a generic notation to embrace both the B* and the bases.

Once again, the new interpolation operators for (3.8), (3.9) have the same block struc-

ture as before, but with redefined blocks. Letting o, b and c stand for ;

3^78 a =-^ b
2 ’ 16 2 156 ’

these blocks have the form :

4

4

A ® o O —
2

0 — b
2

A ® O 0 —
2

0-^6
2

c

a
2

-b

—c o 0

As noted in Ap.I.§3&4, the above scalings of the bases provided convergence of the

algorithm FAPIN for the one dimensional tests that we conducted. Thus these scaled

versions were used to build the two dimensional operators needed for the solution of the

two dimensional non-periodic model problems considered in this thesis. The two dimen-

sional operators are easily built from Kronecker products of their one dimensional coun-

terparts. We examine this process in §5 of this appendix.

105

4. Piecewise Linear Basis

In this section we calculate the interpolation operators defined between spaces of

C® piecewise linear polynomials. These are used to build the corresponding operators for

spaces of piecewise bilinear polynomials, using the Kronecker product nature of their

bases. The interpolation operators are obtained in a completely analogous manner to

that of the Hermite bases in the previous section. Again we restrict ourselves to the

case with natural boundary conditions, since essential homogeneous boundary condi-

tions are easily imposed by deleting appropriate rows and columns in the given opera-

tors.

Following the notation of the previous sections, we let / denote the interval [0,7T]

and consider two uniform partitions n^(/), Il2^(/) of I, with mesh sizes h =

— 2h, respectively and where N =2^, for some k e Z"*”. We now consider the linear

spaces of C°(/) piecewise linear functions over the above partitions and denote them by

5^(n^), 5;;,(n2A), respectively. Corresponding bases for these spaces are given by :

(4.1)
« — 0

JV

B«i={X“,}/ (4.2)
» — 0

where (see Strang & Fix [1973, p.27])

X, =L(|-0

and L{t) is the ‘roof function with support [—1,1] such that L(0) = 1 :

,,,, _/(«+!) if«6|-l,0|
- |(i-i) ir t 6 |0,1]

Clearly C and thus e 5^(112;^) implies v^^{x) € 5'jr,(II^).

Therefore, given v^^{x) in the basis i*'® expression in the basis i can be

obtained by expressing generic e in terms of B*^^. This is again an interpola-

tion problem.

106

Let = [j2h,{j-k-\)2h\ denote an arbitrary but fixed subinterval in the partition

Il2j(/). Then, letting /^ = /2 U h, where h, h e nj(/) and recalling that =2h, the

solution to the above interpolation problem can be shown to be :

=X‘,, ini.

Thus, the basis functions as defined in (4.2) transform according to :

(4.3)

+ ^*2/ + (3-4)

From equations (4.3) and (4.4) the desired interpolation operators can now be cal-

culated. Defining the blocks :

these operators (transposed for convenience) are given by :

(i) Af = 2 :

where the first column of the block 7j is shifted by one column to the right of the first

column of the block /„.

(ii) N = 2^, k >2 :

Ir

h

where the repeated block 1^. appears N — \ times. Its first column is shifted by one

column with respect to the first column of /„ and the first column of /j is shifted by two

107

columns with respect to the first column of the last block. In the repetition part the

shift is two columns.

5. Kronecker Product Formulation of Interpolation and Collection Operators

In this section we show how interpolation operators between linear spaces which

are Kronecker products of two other linear spaces (see Jacobson [1953, p.208]), can be

expressed as Kronecker products of the interpolation operators defined between the

spaces whose product is taken. This is the case for two dimensional bicubic spline,

piecewise bicubic Hermite and piecewise bilinear spaces defined on rectangular domains.

We follow the notation used in the previous sections with some adaptations to our

present needs.

Let X*, X^*, Y* and be finite dimensional linear spaces such that X^* c X*

and Y^* c Y*. Clearly X^* ® Y^* c X* 0 Y*, where the symbol 0 denotes Kronecker

product. We want to express an arbitrary element v e X^* 0 Y^* in terms of a basis

for X* 0 Y*. This is a well defined interpolation problem. To solve it we make use of

the Kronecker product structure.

Let <i>^i{x), <f>^i{y) and denote generic members of a basis for X^,

X^*, Y* and Y^*, respectively (the range of the indices is the dimension of the

corresponding spaces and is omited for simplicity).

From the previous definitions it is clear that generic members of a basis for

X^* 0 Y^* and X* 0 Y* will have the form :

/

respectively (again the range of the indices is clear and thus it is omited). Since

<^^*,(x) 6 X* and <^^*y(y) e Y* by hypothesis, we can write :

108

m

n

Thus, we have :

m,n

= . (4.2)
m,n

Since v € X^* (g) implies u € X* 0 Y*, we must have :

(>y)
a,jS /i.i'

a,)9 m,n ft.i-

a,0 li,L> ii,u

where the last step uses the fact that m,n are dummy indices. Therefore, we finally

obtain :

11,1/ a,fi

^ = 0 /1,I/ ^

which, by the linear independence of the basis elements ^, implies :

a,jS

Equation (4.3) defines the interpolation operator from X^* 0 Y^* to X* 0 Y*,

expressed in the bases defined in (4.1). If we assume a lexicographical ordering of the

bases, (4.3) can be written as :

Defining matrices A = [a“J and B = [6^^,] we see that, with this ordering, {I^2h)i,j

nothing but the f,7-th entry in the .matrix A 0 5, which is, by definition (see (4.1) and

109

Gh.I.D2.3) the Kronecker product of the interpolation operators between and X*,

and between and Y*, respectively, expressed in the same bases.

This proves our claim that the Kronecker product structure of the spaces is inher-

ited by the interpolation operators. We made use of this fact when setting up the algo-

rithm FAPIN to solve our two-dimensional model problems. We also note that the proof

does not make explicit use of the fact that the spaces X, Y are function spaces. Thus

the result holds for general finite dimensional linear vector spaces.

110

APPENDIX IV

The High Level Environment HXi

In this appendix we describe the main characteristics of the High Level Environ-

ment HL. We begin by briefly stating its main features. In Section 2 we introduce some

of the sparse operators contained- in HL and describe the form of sparse storage used.

Section 3 presents the C-source code for one of the simplest HL sparse operators.

Finally, section Four presents the HL code for the algorithm FAPIN used to implement

the nonsingular experiments of this thesis. We assume some familiarity of the reader

with the C programming language (see, for example, Kernighan & Ritchie [1978]).

Ill

1. Description

HL was developed by Benson [1987] and is, in essence, a sophisticated calculator

based on an extension of the ‘High Order Calculator’ (‘hoc’) developed by Kernighan &

Pike [1984, pp. 233-287]. It is implemented in the C programming language and it pro-

vides us with control of flow statements, the usual arithmetic and logical operators

(extended to handle arrays), matrix operations and eigenanalysis, a sparse matrix set of

operators and the ability to define HL functions and procedures. HL also supports

recursion. Storage management is dynamic and its is handled through the UNIX

environment (see Kernighan & Pike[1984]).

Its basic data structure is a record (called a ‘structure’ in C). This structure is

defined in an ‘include file’ and it is shown in Figure 1.1 . Its fields include pointers to

data (*index, *data), description strings (*name, *varname, *mark), object size informa-

tion (row, col) and pointers for internal use by HL.

typedef struct Symbol { /* symbol table entry */
char *name;
int type;
int scratch;
int row;
int col;
int *index;
double *data;
union {

double (*ptr)(); /* BLTIN */
int (*defp)(); /* FUNCTION, PROCEDURE */
char *str; /* STRING */

} u;
struct Symbol *varlist;
struct Symbol *next; /* to link to another */
char *varname;
char *mark;

} Symbol;

Fig. 1.1

Execution is controlled by a parser which generates a vector of instructions (i.e.

pointers to variables and pointers to the C-functions that implement the corresponding

operators), while evaluation of expressions is accomplished through a stack of pointers

to the structures describing the objects (i.e. data). The parser is generated using the

112

parser-generator ‘yacc’ (see Kernighan & Pike[1984, pp.235-265]) available under UNIX.

This approach allows the user to easily add new operators which are either linked

directly to the main body of HL, or are separate executable modules, which interface

with HL through temporary files.

2. Some Sparse Operators

HL provides us with a form of sparse storage for matrices and a set of operators

to handle objects stored in this form. In this section we describe the implementation of

this kind of storage and comment briefiy on some of the associated operators. “

Given a matrix A e M„,^„(R), its sparse representation consists of two arrays of

mx/i elements, where // is the maximum number of non-zero entries in the rows of A. A

row of the first array, which we call ‘index’, contains the column indices of the non-zero

entries in the corresponding row of A. The same row of the second array, which we call

‘data’, contains the actual values of the non-zero entries in that row of A. These

arrays are pointed to by the fields ‘*index’ and ‘*data’ in the C structure representing

the sparse version of A (see Fig 1.1). A null index pointer indicates a non-sparse object.

As an example, consider the following matrix ;

A =

7 -5 -2

-2 7 -5

-2 7 -5

-2 -7 -5

-5 -2 -7

Then, its HL sparse representation is :

113

INDEX ARRAY

[1] [2] [3]
1 2
1 2
2 3
3 4
1 4

DATA ARRAY

5
3
4
5
5

[1] I 2]
7

-2
-2
-2
-5

(3]

-5
7
7
7

-2

-2
-5
-5
-5

- 7

where the number in square brackets indicates the column in the corresponding array.

Of course, HL provides us with an operator ‘sparse’ to transform a matrix from its full

representation to the sparse one and an ‘unsparse’ operator that performs the reverse

operation.

Of special interest to our experiments were the HL family of ‘stretch’ operators.

These operators make use of the mark field in a given symbol (see Fig. 1.1) to store a

string that describes the structure of matrices that have repeated blocks. This string

can be used to considerably reduce the amount of storage required to represent certain

kinds of matrices . The simplest of these operators are ‘stretch’ and ‘stretchop’. Given

a matrix in sparse representation, ‘stretch’ returns the sparse representation of the

matrix resulting from repeating a certain specified block of rows of the original matrix,

a specified number of times and shifted to the right in each repetition by a specified

number of columns to the right. The necessary specifications are contained in the mark

field of the original object for the matrix. ‘Stretchop’ applies the matrix resulting from

‘stretch’ to a given vector, without actually performing the stretch. This last operator

is useful when implementing iterative algorithms that contain applications , to vectors,

of matrices of the type that result from the discretization of two-point constant

coefficient boundary value problems.

114

There are also two-dimensional counterparts of ‘stretchop’. First HL provides us

with ‘stretchop2d’, which is a nested version of ‘stretchop’, that works with matrices of

the type that result from the discretization of constant coefficient boundary value prob-

lems in two dimensions (i.e block-striped matrices). Stretching is done for each block in

a fashion similar to ‘stretchop’. Stretching at the block level is performed using the

same pattern as for the individual block stretching. The necessary information is again

contained in the mark field of the sparse object.

A periodic version of ‘stretchop2d’ also exists in HL. This is the operator

‘pstretchop2d’, which works with matrices of the type that appear in the discretization

of constant coefficient boundary value problems with periodic boundary conditions, (e.g.

problems on a two-torus). Stretching is done as in ‘stretchop2d’ except that periodic

‘wrap-around’ is added both at the block level and internal to the blocks.

HL also provides us with some other sparse operators : ‘spsum’ adds matrices in

sparse format; the operator ‘splsq’ calculates an LSQ-approximate inverse to a given

matrix (see Ch.I.§3). The sparsity pattern to be used is specified by the user.

For a more extensive description of these operators, as well as several examples of

their use, we refer the reader to Benson [1987].

3. Sample C-Source Code for an HL Operator

In this section we present an example of source code for the operator ‘stretchop’

described in the previous section.

Observe that the actual code for the numerical operator is surrounded by the code

responsible for interfacing with the internal HL structure (that is, managing the stack,

symbol fields, etc.). This interface is quite uniform, thus making it easy for the user to

add new operators to HL.

115

stretchopO /* returns stretch operator times column vector */

{
Datum dl, d2;

endl, end2, ends, irow, blocks, nrep, shift, bstart, bend, block;
bshift;
*emalloc();

*datind;
*datbuf;
sum;

int
int
char
int
double
double
char
int
int

r
* HL Interface ;
* Pop stack,
* Extract fields from symbol,
* Check validity of input.

V

dl =— pop("stretchop");
d2 — popC'stretchop”);
extracb(dl);
extraca(d2);

r
* read mark field

V
sscanf(amark, "%s%d%d%d%d”, key, &bstart, &bend, &nrep, &shift);
if (strcmp(key, "stretch") !— O)

execerror("stretch given bad mark field", O);
block -» bend - bstart + 1;

datbuf — (double *) emalloc("stretchop”, sizeof(double) * (arow + (nrep - l) * block));

for (i = 0; i < bend; i++) {
sum =• 0;
for (k =• 0; k < acol; k++) {

ind = (*(aindex + i * acol + k));
if (ind !— 0)

sum += (*(adata + i * acol + k)) *
*(bdata + ind - l);

}
*(datbuf + i) = sum;

/*
* * allocate working space

V

r
* Code for actual operator begins

V

}
if (!((bend == arow) && (shift == 0))) {

/* stretching required */
blocks = (bstart - 1) * acol;
for (1 = 0; 1 < (nrep - 1); 1++) {

bshift — shift * (1 + 1);
for (i — 0; i < block; i++) {

sum “ 0;
irow = bend + 1 * block + i;
for (j - 0; j < acol; j++) {

ind — (*(aindex + blocks + i * acol + j));
if (ind !— O)

sum += (*(adata + blocks + i * acol
*(bdata + ind - 1 + bshift);

}
*(datbuf + irow) = sum;

}
}
endl =» acol * (nrep * block + bstart - 1);
end2 — (nrep - 1) * shift;
end3 — nrep * block + bstart - 1;
for (i =- bend; i < arow; i++) {

sum — 0;
for (k — 0; k < acol; k++) {

ind — (*(aindex + i * acol + k));
if (ind I— 0)

sum +— (*(adata + i * acol + k)) *
*(bdata + ind - 1 + end2);

}
*(datbuf + ends + i - bend) — sum;

}
}

r
* Code for operator ends

*/

r
* HL interface :
* Free space not needed,
* Define fields in new symbol representing the result,
* Create symbol,
* Push symbol onto stack.

V

freesymb("stretchop", d2);
dl.sym->row = arow + (nrep - l) * block;
dl.sym->col = 1;

dl.sym->data => datbuf;
dl.sym->scratch = 1;
symdef(dl.sym);
dl.sym->type = VEC;
push(dl);

117

4. FAPIN code in HL

This section presents the HL implementation of the algorithm FAPIN defined in §4

of Chapter One. We give the direct implementation of the pseudo-code described in

D4.2 of Chapter One. This is :

func fapin() {

/*
* arguments to function :
* $1 -> grid index
* $2 -> residual vector
V

if { $1 .— 0) {

zk =- applylsq($l,$2)
return zk

} else {

rkm — collect($l,$2)
zkm — fapin(($l-l),l*rkm)
zk — interpolate((Sl-l),zkm)

iter =■ 1
while(iter <= relax){

s — $2 - (applyop($l,zk))
zk — zk -1- (applylsq($l,s))
iter — iter -I- 1

}

return zk

}

}

The above implementation uses the functions ‘collect’ and ‘interpolate’ to accom-

plish the inter-grid transfers. The functions ‘applyop’ and ‘applylsq’ return the result of

applying the discrete differential operator and its LSQ-approximate inverse (in the

corresponding grid) to a given vector, respectively. The form of these functions is illus-

trated by ‘applyop’ (for the one dimensional non-periodic case) :

118

func applyopO {

/*
* arguments to function ;
* $1 -> Grid index
* $2 -> The vector to be acted upon

V

if($l “ 10) return (AlO stretchop $2)
if($l =>= 9) return (A9 stretchop $2)
if($l ==• 8) return (A8 stretchop $2)
if($l — 7) return (A7 stretchop $2)
if($l =■=• 6) return (A6 stretchop $2)
if($l 5) return (A5 stretchop $2)
if($l —— 4) return (A4 stretchop $2)
if($l —— 3) return (A3 stretchop $2)
if($l —— 2) return (A2 stretchop $2)
if($l —— l) return (Al stretchop $2)
if($l —0) return (AO stretchop S2)

}

We note that the ‘while’ loop in FAPIN efiFectively amounts to the use of a

different approximate inverse (see Ch.I.§2). The number of relaxations is controlled by

the global variable ‘relax’ which is initialized in the main program.

119

APPENDIX V

Proof of Theorem 3.1 of Chapter One

In this appendix we give the proof of Ch.I.TS.l. We recall it here, for convenience

and refer the reader to Ch.I.§3 for further details :

Theorem 3.1 ; Let A =A'<^A", A' e M,„(R), A" e M„(R). Let B ' e [i?], B " e [S'], be

LSQ-approxiraate inverses of A', A!', respectively. Then, the LSQ-approximate inverse

B 6 of A satisfies :

B = B '<^B " . (1)

Proof;

In this proof all vectors considered are row vectors. We remark that the notation

used is the following : Capital letters denote matrices; capital letters subscripted

by a lower case letter denote the row vector formed by the indicated row of the

corresponding matrix; subscripted lower case Greek letters denote the row vector

formed by only the non-zero entries in the indicated row of the matrix represented

by the Latin counterpart of the greek symbol; finally, doubly subscripted lower

case letters, denote entries in the corresponding matrix.

Let = Cf., and be the systems to be

satisfied (in the least squares sense) by the k-th, i-th, and j'-th row of B, B and

B ", respectively (see equations Ch.I.(3.3), Ch.I.(3.4)). These are equivalent to the

normal equations ;

respectively.

(2)

(3)

(4)

120

We first prove that, under the previous assumptions

^A'®A" = (5)

holds. Since by hypothesis B 6 [/^(S)*^], the sparsity pattern of B is that of

W = R^S. Let

Pi = ('•«,, • • w r^)

~ ^^Jh’ ^

be the row-vectors formed by the nonzero entries in the f-th, j-th row of R, S,

respectively. Then, since = R^<^Sj, k =(«—!)« + j, the nonzero entries of the

k-th row of W are :

"Jt = V

; • • * /

which are located in columns

■ ■ ■ >

+ Jl, (h-l)« + j'2> ■ ■ ■ > + Js,

(l2-l)n H-Ji, (f2-l)« +J2>---> («2-l)” + Js,

(*r-l)” +Jl, (*r-l)« + J2> ■ ■ ■ , + Js,

of Wj^. Thus, the block CA'®A" consists of the rows (see Ch.I.(3.5))

(fj—l)n + jl, . ■ . , (?,.—l)n + jg of A'<^A". But since

121

A'i<SA"j^

A'i,®A"h
A'i,®AI'j^

A'iM"i.

looking at the structure of A'(^A", written as Kronecker products of rows of A'

and A", we see that :

A'i^A"the (j'l—l)n + j^—th row of A',

f • • • J

A\^A"j is the l)n + jg—th row of A'(^A",

thus proving (5).

Now, using (5), (2) can be rewritten :

^ki^A'^^A”) {^A'^^A"y ~ ^ki^A'®^A''y Oh.I. (3.6) and Ch.I. (3.7))

l^k(0A'0A'^<^0^„C^„‘) = ek{C^f^iSiCj^,i^) iff {since ^j)

^k((^A'(^A'‘<^0^"CA"‘)={e^i<^e>'j){C^.*®C^„*) iff {by Ch.I. {3.6))

^kiOA'OA'‘<^C^"OA"^)={e'iC^,‘®e''jCy) .

Letting j3j^ = we get :

{ffi®/3"j){C^.G^,*®C^„C^,A) = {e>iC^,*®e'>jC^n^) iff {by Ch. I. {3.6))

CA' CA> CU« 0 == cy®e»j cy) ,

which is an identity (see (3) and (4)), thus proving the theorem Cl.

We note that an analogous result, for a different type of approximate inverse, is

stated without proof in Benson & Frederickson [1982, p.132].

