
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1994

An algorithm for processing stem

analysis data and sampling intensities

for immature jack pine growth

Sheng, Tiemen

http://knowledgecommons.lakeheadu.ca/handle/2453/1003

Downloaded from Lakehead University, KnowledgeCommons

AN ALGORITHM FOR PROCESSING STEM ANALYSIS DATA AND

SAMPLING INTENSITIES FOR IMMATURE JACK PINE GROWTH

by

Tiemin Sheng

A thesis submitted for the degree of Master of Science in Forestry

Lakehead University

Thunder Bay, Ontario

1994

ProQuest Number: 10611893

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10611893

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

National Library
of Canada

Biblioth6que nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa. Ontario Ottawa (Ontario)
K1A0N4 K1A0N4

Your file Votre r^t^fence

Our file Notre r^fervfKe

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNEINTERESSEES.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PPUNTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D’AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETREIMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97066-9

Canada

ABSTRACT

Tiemin Sheng. 1994 An algorithm for processing stem analysis
data and sampling intensities for immature jack pine growth
176 pp.

Major advisor: Dr. H. G. Murchison

Key Words: Stem analysis, computer algorithm,
two-stage sampling. computer simulation.

This study examined two topics. In the first, a computer
algorithm was developed to process stem analysis data produced by
Tree Ring Increment Measure (TRIM) system. The algorithm
developed not only processed TRIM data for cumulative increment of
volume, height, and dbh by one-year intervals for individual trees,
but also calculated annual volume increment per unit area (vol./ha)
by one-year intervals for stands. A hashing technique with a linked
list data structure was used in the algorithm. The advantages of the
algorithm are to process stem analysis and manage outputs
efficiently and to provide a user with quick access to any processed
stem analysis tree records. In the second, sampling intensities on
both plot and tree levels were investigated. Two forms of two-stage
sampling strategies were employed. The study indicated that
subsampling using Probabilities Proportional to Size (PPS) could
produce reliable estimates for an annual growth. The study
suggested that over 91 percent of precision of mean growth estimate
can be obtained with the sample plot intensities of 66 percent at the
first stage and with the sample tree intensities of 2.1 percent at the
second stage at the 95 percent confidence level. The study also
showed that subsampling with PPS was superior to that with simple
random subsampling.

11

ACKNOWLEDGEMENTS

I wish to sincerely acknowledge my supervisor, Dr. H. G.
Murchison, for kindly offering me valuable suggestions and advice,
providing me with the data set, and the time he gave to read the
preceding drafts, without which this thesis and research would have
been impossible.

I would like to extend my warmest thanks to both Dr. K. M.
Brown and Dr. A. J. Kayll, the members of my committee, for their
suggestions and time to read the drafts.

A special thank goes to my wife, Jieping, for providing me with
devotion and encouragement.

iii

CONTENTS

Page

ABSTRACT ii

ACKNOWLEDGEMENTS iii

TABLES Vi

FIGURES viii

1. INTRODUCTION 1

2. LITERATURE REVIEW 4

2.1 STEM ANALYSIS COMPUTER PROGRAMS 4

2.2 MULTI-STAGE SAMPLING DESIGNS 7

2.2.1 DESIGN PRINCIPLES 7

2.2.2 ADVANTAGES 9

2.2.3 DISADVANTAGES 10

2.2.4 ITS APPLICATIONS

IN FOREST INVENTORIES 10

3. TRIM DATABASE 15

4. DEVELOPMENT OF THE HASHING ALGORITHM 2 1

4.1 HASHING TABLE 21

4.2 LINKED LIST 24

4.3 COLLISION-RESOLUTION POLICY 28

4.4 DEFINITION OF A NODE 28

IV

4.5 HASHING FUNCTION 3 1

4.6 LOGIC OF COMPUTER PROGRAMS 33

4.7 IMPLEMENTATION 35

4.8 ACHIEVMENTS 37

4.9 ANALYSIS OF EFFICIENCY 41

5. TWO-STAGE SAMPLING 52

5.1 METHODOLOGY 53

5.2 DATA USED 58

5.3 COMPUTER SAMPLING SIMULATION 58

5.4 SIMULATION PROCESS 62

5.5 SAMPLING SIMULATION RESULTS 64

6. DISCUSSION 73

6.1 THE HASHING ALGORITHM 73

6.2 THE TWO-STAGE SAMPLING RULES 76

7. CONCLUSION 80

LITERATURE CITED 82

APPENDICES

I. THE PROGRAM TRIMHASH.C 88

II. THE PROGRAM PRINT.C 109

III. THE SIMULATION PROGRAM SIMULATION.C 122

V

TABLES

Table

Page
1. A portion of directory listings from a UNIX

operating system 17

2. Part of Kl_9.OUT file 18

3. Part of AD_K 1 _9. file 19

4. Part of ANNV_K1_9. file 20

5. The example of output of tree number 9 within plot 1
in Kirkland Lake District printed by the PRINT.C 40

6. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.9
and the hashing function is h|(w) = (i +1)*w^ 44

7. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.9

2
and the hashing function is h2(tv) = (i+1) 44

8. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.9

3
and the hashing function is h^(w) = (i +1) *w^ 45

9. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.1
and the hashing function is hj(w) = 2j^>Q(i+l)*w^ 45

VI

10. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.1

2
and the hashing function is h2(w) - (i +1) w I 46

11. Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load factor is 0.1

3
and the hashing function is h^(w) = (i+1) *W|

12. Summary of information for the immature TRIM
jack pine plots sampled within the Kirkland Lake
District 59

13- Source file named DEFINE.H 75

14. The comparison of effects in change of subsample
intensities on the precision of mean estimate when
the primary sample intensities were 100 percent 77

15. The comparison of effects in change of subsample
intensities on the precision of mean estimate when
the primary sample intensities were 66 percent 78

Vll

FIGURES

Figure

Page

1. An example of a hash table 23

2. An example of occurrence of a collision 25

3. An example of a linked list 27

4. An example of solving a collision problem 29

5. The fields of a node 30

6. The interrelations between the hash table,
the data base, and the linked lists 38

7. The directory structure under the existing TRIM
data base management system 42

8. The directory structure after the TRIM data files
were processed by the algorithm developed 42

9. Comparison of the effects of the different forms of
hashing functions on the algorithm performance
when the load factor was 0.9 47

10. Comparison of the effects of the different forms of
hashing functions on the algorithm performance
when the load factor was 0.1 48

11. Comparison of the effects of the different load factors
on the algorithm performance when k was equal to 1 49

Vlll

12. Comparison of the effects of the different load factors
on the algorithm performance when k was equal to 2 50

13. Comparison of the effects of the different load factors
on the algorithm performance when k was equal to 3 51

14. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 100 percent and the subsample
intensities were 10 percent 66

15. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 100 percent and the subsample
intensities were 5.8 percent 68

16. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 100 percent and the subsample
intensities were 3.1 percent 69

17. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 66 percent and the subsample
intensities were 6.7 percent 70

18. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 66 percent and the subsample
intensities were 3.8 percent 71

19. The worst results produced by the unequal probability
subsampling rule and the best results produced by the
equal probability subsampling rule when the primary
sample intensities were 66 percent and the sub sample
intensities were 2.1 percent 72

IX

1. INTRODUCTION

The Ontario Ministry of Natural Resources through District Offices

and Technological Development Units have conducted studies on stem

analysis of individual trees in a number of stands (Murchison and

Kavanagh, 1989). These studies were intended to investigate the

effects of treatments such as drainage, fertilization, thinning, etc.

(Murchison and Kavanagh, 1989). In the study, extensive stem

analysis data have been collected and a stem analysis database

system was developed. Under the system, named Tree Ring

Increment Measure (TRIM) and developed by the Ontario Tree

Improvement and Forest Biomass Institute, the database includes

extensive information on individual stem analysis trees (Murchison

and Kavanagh, 1989). In the locally developed TRIM database,

individual tree data are stored in four separate files: the first file

named *.OUT.*, the second file named RAD*., the third file named

AD*.*, and the last file named ANNV*.*.

A major defficulty in processing this TRIM database in growth

and yield purposes is that there are several thousands of data files

which are managed by using directory management. With this

technique, four different types of files concerning an individual tree

2

were stored separately in directories. Although TRIM files were

managed into separate directories there were still several hundred

files of the same type which appeared in a subdirectory. The first

question raised was how to process all the TRIM data with only one

execution of a computer program to obtain the growth attributes by

one-year intervals for all stem analyzed trees. The second question

was how to develop a computer algorithm to store the processed data,

and manipulate them so that a TRIM data user can have an efficient

way to retrieve such stored information.

With the present TRIM methodology, the TRIM sample unit is a

20 m by 20 m plot with an inner plot of 10 m by 10 m. All trees in

the inner plot are felled and then stem analyzed to reconstruct

growth development and yield (Murchison and Kavanagh, 1989). This

is a labour-intensive and time consuming activity. A lot of financial

and labour input must be made to collect stem analysis data.

Therefore, any alternatives, which are cost effective, will be beneficial

to those intending to investigate stand growth and yield of immature

jack pine in northern Ontario. As an alternative to TRIM methodology,

two two-stage sampling rules are examined in this study in order to

get reliable information about jack pine growth with reduced cost and

time. At present, no results are available on how many TRIM plots

and how many trees are required to produce reliable estimates of

volume growth for immature jack pine. Such information may be

useful as a guide for foresters and decision makers in evaluating

various silviculture treatments and forest resource management

plans.

3

The objectives of this study are two-fold. One is to develop an

algorithm to process TRIM data. The other is to investigate two-stage

sampling for tree growth using TRIM data.

The first part of the thesis considers the development of

computer programs to process TRIM data for the various growth

attributes and manage the output efficiently. A hashing technique

with the data structure of a linked list is employed.

The second part of this thesis deals with the problem of

determining sample intensities for an estimate of volume growth of

immature jack pine. Two two-stage sampling rules are investigated.

4

2. LITERATURE REVIEW

2.1 STEM ANALYSIS COMPUTER PROGRAMS

Stem analysis is a widely used method of studying the past

growth of individual trees (Husch et al., 1972). No other method could

replace stem analysis completely in reconstructing past growth or

development of individual trees. The disadvantage, however, is that

the process is time consuming and laborious (Maciver, 1987).

With the advent of annual growth ring measuring equipment

such as the ADDO-X system and Holman Digimicrocomputer system

and rapid development of advanced computer technology, interest in

using stem analysis is high in forest research. But, so far, only a few

stem analysis computer programs have been written. With the

renewed interest in stem analysis it is becoming apparent that

development of an efficient computer algorithm to process stem

analysis data is warranted.

The earliest documented simple computer program for processing

stem analysis data was developed by Brace and Mager (1968). The

program was developed only for plotting the stem analyzed tree

profile. The stem analysis data used were recorded in a prespecified

5

format and involved a data checking procedure. In their research,

Brace and Mager (1968) compared the cost of the three computation

methods.

Three years later, Pluth and Cameron (1971) developed an

algorithm that graphed the derived tree growth parameters of

periodic annual increment, and mean annual increment in basal area,

height, and total volume. The printed output also includes; average

diameter, basal area, and section volume by heights of cutting point

and age intervals: total volume increments by age intervals; heights

by cumulative age, and cumulative height and total volume by one-

year intervals.

A few years later, Herman et al. (1975) developed an algorithm

to process stem analysis data. Their algorithm was written specifically

for site index research.

Another computer algorithm for plotting stem analysis was

developed by Timmer and Verch (1983). The algorithm was

developed specifically for forest productivity studies requiring

comparisons of tree growth on sites of different productivities. The

algorithm generated a set of growth curves showing the development

of patterns of trees and computes the growth parameters such as

MAI, CAI, height/age, height/dbh, and volume/age.

Fayle et al. (1983) developed a program to graphically display

the radial growth pattern of the tree. The input data this program

would require were produced by DIGI-MIC tree ring measurer. The

advantage of this program is that line graphs of ring widths along

6

radii of a stem cross section and the average for successive stem

sections could be compared visually.

Kavanagh (1983) developed two programs which handled stem

analysis data primarily from HOLMAN Digimicrometer data. These

two programs served, first, to verify stem analysis data, and second,

to produce a set of sequences for the ring width data.

In addition, Kavanagh (1983) reported that there were two

unpublished computer programs; one by Wang (1976) and the other

by Chapeskie and Fleet (1981). Kavanagh (1983) reported that the

algorithm by Wang calculated the periodic annual increment and the

mean annual increment for a tree, and the algorithm by Chapeskie

and Fleet (1981) was written specifically for handling Holman

Digimicrometer data. This algorithm computed estimates of dbh,

height, and volume, at the time of cutting and for the previous one-

and five-year growth periods.

In summary, all the available algorithms process the stem

analysis data from an electronic measuring machine and all outputs of

these programs have similar formats. Some algorithms compute MAI,

CAI, individual tree height, volume and dbh by age, and some

algorithm plots a tree growth profile. All the computer algorithms

except one by Kavanagh (1983) are restricted to processing a limited

number of stem analysis trees at an execution. An ordered list was

the only data structure used in all algorithms. Of all the computer

algorithms, only that by Pluth and Cameron (1971) can be used to

calculate cumulative height and total volume for a tree by one-year

7

intervals. However, none of the available algorithms can be used

directly to process TRIM data. None of them can be used to calculate

volume increment per unit area (m^/ha) for a given stand by one-

year intervals. Nor did they consider using hashing techniques to

manage output files efficiently.

2.2 MULTI-STAGE SAMPLING DESIGNS

2.2.1 DESIGN PRINCIPLES

Multi-stage sampling techniques are presented in many text

books. The notable books are by Deming (1950), Schumacher and

Chapman (1954), Yates (1960), Cochran (1963), Yamane (1967),

Sukhatme and Sukhatme (1970), Husch et al. (1972), Barnett (1974),

Williams (1978), and de Vries (1986).

Multi-stage sampling is a technique which involves selecting a set

of clusters of elements of interest from a target population, using

selection rules either simple random sampling (SRS) or probability

proportional to size (PPS) sampling, with subsequent subsampling

within the selected clusters and measuring the elements at the final

stage of selection (Deming, 1950; Cochran, 1963: Yamane, 1967;

Sukhatme and Sukhatme, 1970). Sometimes this technique is referred

to as subsampling (Cochran, 1963).

The basic procedure with multi-stage sampling is to construct a

sample frame. According to Deming (1950), a frame needs to be

constructed at every successive stage and the frame should describe

all the subsequent sampling units in the population.

8

In a good design of two-stage sampling, one very important

requirement is to delineate and define both primary and secondary

sampling units as alike as possible (Deming, 1950). Because when

elements in the same unit are alike precision can be gained even with

a small number of subsamples (Cochran, 1963).

To avoid producing larger sampling errors in the final results

with sample selection rule of equal probability, the populations of the

primary sampling units and of the secondary sampling units should

be as equal as possible (Deming, 1950). Williams (1978) thought that

if first-stage units vary in size a loss in precision may be possible

with a selection of units by a simple random selection rule. Selection

of subsample with PPS may be the best choice if the units vary in size

and sizes are known (Yates, I960; Cochran, 1963). Because the

selection of a subsample with PPS recognizes some inequalities of

sample units (Stuart ,1968). Furthermore, this sampling rule may

result in smaller Mean Square Error since it has a small contribution

from variation between units (Cochran, 1963).

The sample precision of two-stage sampling is very closely

related to the distribution of the sample between the two stages

(Sukhatme and Sukhatme, 1970). According to these methods, a gain

in precision may be realized by three approaches: (i) by selecting

more primary sampling units at the first stage and then selecting

fewer secondary sampling units at the second stage, as opposed to the

other way around in which a small number of primary units is

selected at the first stage and then a large number of secondary units

at the second stage; (ii) by making primary sample units larger if the

9

condition of population is that the intra-class correlation within first-

stage units is positive and it decreases with an increase of size of

primary sampling units; and (iii) by clustering the first stage units

that are as heterogeneous as feasible.

2.2.2 ADVANTAGES

Multi-stage sampling has some advantages. Yates (1960)

remarked that "it enables existing natural divisions and subdivisions

of populations to be utilized as units at the various stages: it permits

the concentration of field work of censuses and surveys to cover

larger areas; it is very useful for survey of undeveloped areas where

no frame exists since only the parts of the population selected at any

stage need to be listed for subsampling at the next stage".

To meet a prescribed precision, two-stage sampling is considered

to be cheaper because at every successive stage the sampling units

become smaller and smaller (Deming, 1950). The other advantage of

multi-stage sampling is that laying out a frame for the next stage is

needed only in the units which have already fallen into the sample

and only the parts of the population selected at any stage need to be

listed for subsampling at the next stage (Deming, 1950).

Multi-stage sampling is flexible and could be possibly extended

to n-stages as needed according to specific research purposes

(Cochran, 1963: Yamane, 1967; Stuart, 1968; Sukhatme and

Sukhatme, 1970; Husch et al., 1972; Prayer 1979). The sampling units

of multi-stage sampling shrink in size at each step, as opposed to

multi-phase sampling in which the sampling units remains the same

10

size (Lund, 1982). In comparison with random sampling, two-stage

sampling may reduce travelling and administration cost (Yamane,

1967) and it could bring a gain in precision compared with one-stage

sampling (Stuart, 1968).

2.2.3 DISADVANTAGES

In general, a multi-stage sample is considered to be less precise

compared with a sample containing the same number of final-stage

units which have been selected by some suitable single-stage process

(Yates, 1960).

The other disadvantage is that as we obtain greater flexibility

with multi-stage sampling we may have to pay the price of greater

complexity in the sampling selection and the analysis of the sample

(Stuart, 1 968).

In addition, there is also a difficulty in design of multi-stage

sampling. According to Yamane (1967), if one is to select primary

sampling units and subsampling units with SRS, it may be difficult to

have those units roughly equal in size. Fortunately, this defect can be

solved by the selection rule of PPS (Yamane, 1967).

2.2.4 ITS APPLICATIONS IN FORESTRY INVENTORIES

A number of forest scientists and researchers have conducted

forest inventories using multi-stage sampling techniques. Several

forms of multi-stage sampling strategies have been employed.

Notably, of all the varied applications of multi-stage sampling, two-

stage sampling schemes have been frequently used by foresters in

their research.

The efficiency of two-stage sampling in forest inventories are

closely related to distance between sampled items, i.e. travel cost,

number of items or plots in sampled first-stage units, and the

variation between and within first-stage units (Prayer, 1979;

Johnston, 1982).

Cunia (1965) designed two-stage sampling with regression where

auxiliary variables are observed and both primary units of plots at

stage one and subsample units of trees are selected by simple random

sampling.

Farmer et al. (1973) used two-stage sampling to study coniferous

standing volume and increments. They clustered the coniferous forest

by stands. The stands were selected with replacement by

probabilities proportional to size (area) at stage one and the plots

were selected by simple random sampling at stage two. They used

volume tables and a regression technique to obtain the total volumes

and increments for each secondary unit. They found that in all

circumstances two-stage sampling was not superior to the simple

random sampling because of great variations between stands.

Bonner (1974) derived estimators for a stratified two-stage

sampling design and then he described a timber inventory using this

sampling design. Aldred and Hall (1975) extended Bonner s sampling

design by incorporation of more sample units.

12

Langley (1975) developed multi-stage sampling theory and

reported that estimators under two-stage PPS were unbiased. In his

study, he derived estimators for up to four stages of sampling. At

each stage of sampling, a level of remotely sensed data was used to

generate sampling selection probabilities and trees were observed at

the final stage. He applied his four stage sampling design to timber

surveys.

Yandle (1977) designed the two-stage sampling which could be

used to obtain updated volume growth attributes and additional

measurements. Both primary units and secondary units are trees.

They were selected with PPS at both stages; selection of primary units

with probability proportional to basal area and selection of secondary

units with probability proportional to height. He reported that a gain

in efficiency was achieved since two variables most correlated to

volume were used in two successive stages. Also, he found that two-

stage sampling with selection of both primary units and secondary

units with equal probability at both stages was inferior to that using

PPS sampling at both stages.

Variance estimators were unbiased if SRS was used at both stages

(Prayer, 1979; Johnston, 1982). Johnston (1982) suspected that

bounds on an unbiased variance estimator might exist if systematic

sampling was employed at stage two.

Prayer (1979) derived a set of formulas for multi-stage sampling

with applications in remote sensing in forestry. Murchison (1984)

13

modified one of Prayer's two-stage formulas by modifying the

expansion factor at the second stage.

Murchision (1984) used three two-stage sampling schemes as a

part of methodology to investigate optimal tree height sampling

intensities. The three two-stage sampling schemes resulted from the

combinations of simple random sampling or point sampling at stage

one and SRS or PPS sampling at stage two. Monte Carlo simulation was

performed to compare efficiencies of these three sampling schemes.

He generalized that plot based sampling schemes were more

advisable than point sample based sampling schemes. With the plot

based sampling schemes, he ranked the three sampling schemes in

descending order according to their precisions; (i) selection of plot

with SRS at stage one and "of trees with probability proportional to

basal area, (ii) selection of plots and of trees with SRS at both stages,

and (iii) point samples at stage one and selection of trees with SRS at

stage two. As to their desirable usage, he pointed out that sampling

scheme (i) could find its best use in stands with uniformly distributed

trees; sampling scheme (ii) was suggested for softwood stands

showing clustered spatial distributions.

Murchison and Kavanagh (1989, and 1990) conducted research on

sampling intensities for yield for two coniferous species using two-

stage sampling. They delineated first-stage units by three methods;

clustering technique, Pielou's index method and stands. The primary

units of plots were selected by SRS at stage one. At stage two,

secondary units of trees were selected by two selection rules; SRS and

14

probability proportional to basal area. They found that two-stage

sampling strategy with PPS was more efficient than that of SRS.

In summary, the two-stage sampling strategies implemented so

far take forms of such combinations as selection of primary sampling

units with either SRS or PPS rules, and selection of secondary

sampling units with either SRS or PPS rules. Usually, the sample

frame for population is constructed based on the forest area at first

stage and characteristics of trees at the second stage. The PPS

selection rule, if applicable at the first stage, is performed pertaining

to forest area in most cases and, if applicable at the second stage, is

usually related to basal area of individual trees. The various

estimators with two-stage sampling strategies are unbiased (Prayer,

1979). The varied applications of two-stage sampling strategies in

forest inventories have been used more frequently than other multi-

stage sampling involving more than two stages. In this sense, two-

stage sampling appears to be an important sampling technique in

forest inventories.

15

3. TRIM DATABASE

The TRIM database consisted of all TRIM plot data from both

immature and mature jack pine and black spruce stands collected by

the OMNR in 1988. In the TRIM database, there were approximtely

10,000 files. A very small portion of the directory listings is shown in

Table 1. Under the TRIM data base system, information for each stem

analysis tree was stored in four separate files. Any particular record

of stem analysis and its contents were identified by their plot number

and tree number combined with OUT, or RAD, or AD, or ANNV. In

other words, the four separate files stored information which could be

used to describe both growth and yield for any stem analyzed trees.

The format of these files was as follows:

(1) *.0UT;* which described diameter information. This

file was created in Timmins using a Pascal program developed by

Domenic Colantonio (Murchison and Kavanagh, 1989). An example of

such a file is shown in Table 2.

(2) RD*.;* which described height information. This file

and the following two files were created by the TRIM software

package (Murchison and Kavanagh 1989).

16

(3) AD*.;* which also described height information. They

might be required when the RD*.;* file was missing or incomplete

(Murchison and Kavanagh, 1989). A portion of such a file is shown in

Table 3. The data (bold, italics) appeared in a string (one value per

line). The remainder of the information in the table is the explanation

of the value on that line and is not part of the file. There is a

program called SAP in TRIM. The program uses the AD* and RD*

ringwidths of data. This program is not available at present.

(4) ANNV*.;* which describes volume information. A

portion of such a file is shown in Table 4. The data were the bold,

italicized values in string format. The remaining information

explained the contents of that line and is not part of the file.

17

Table 1. A portion of directory listings from a UNIX operating
system. For file names with format * K *, K was a plot label followed
by a plot number and a tree number and when combined with
'OUT', it indicated the diameter information files, with "Ad"
indicated the height information files, and ANNV indicated volume
information files.

K1_1.0UT
K1_2.0UT
K1_3.0UT

K3-1.0UT
K3-2.0UT
K3-3.0UT

AD_K1_1.
AD_K1_2.
AD_K1_3.

AD_K3_1.
AD_K3-2.
AD_K3-3.

ANNV_K1_1.
ANNV_K1_2.
ANNV_K1_3.

ANNV_K3-1.
ANNV_K3-2.
ANNV_K3_3.

18

Table 2. Part of K1_9.0UT file shown as an example of one of *.OUT
files. Lines 1 to 3 were the complete information for the disc taken at
2.00 metres up the tree Line 1 contained the following information:
species code, the year the tree was harvested, the height (cm) the
cross-section was taken from, cross-section age, single bark
thickness (mm), pith radius (mm) and the radial distance across the
rings (mm). Lines 2 and 3 contained the ring widths (mm) for each
ring on the disc.

Pj 1986

1986 2.190

5.160

1976 5.960

Pj 1986

1986 2.205

4.500

1976 4.775

Pj 1986

1986 2.570

4.575

1976 5.360

Pj 1986

1986 2.165

4.055

1976 4.370

Pj 1986

1986 4.510

3.615

1976 4.280

2.565

1966 1.045

200 17

2.760 3.240

6.100 5.845

150 17

2.590 2.510

5.290 5.070

130 18

2.415 2.765

5.940 5.750

120 18

2.595 2.665

5.105 5.155

0 21

4.660 4.815

4.670 4.460

2.350 1.555

2.520 2.735

5.565 3.980
2.620 0.725

2.360 2.675

5.015 5.270

2.155 1.300

2.345 2.545

6.215 5.000

1-535 1.475

2.235 2.375

7.500 6.575

3.695 0.695

3.405 2.945

5.415 4.895

63.480

3.180 3.325

1.185 1.675

65.520

2.710 3.135

7.680 2.705

65.755
2.770 2.995

3.350 2.570

66.820

2.750 2.980

5.245 2.925

84.665

3.685 3.875

4.190 4.790

4.035 4.025

3.680 3.350

3.920 3.500

1.170

3.230 3.210

1.685

5.485 4.325

3.740 3.295

19

Table 3. Pari of AD_K1_9. file, as an example of AD* file, is shown.
Other actual AD* files resembled the information in column 1. The
remaining information added by the writer explained the contents
of the file and is not part of the file.

3 Ring count 3 (bark and pith included)

5 Ignore this line

1.215 Bark thickness in millimetres

1.265 Ring width in millimetres
1.62

12 Ring count is 12 and age is 10 years

5 Ignore this line
1.38 Bark thickness in millimetres

3 58 Ring width in millimetres

4.68

1185 Total height at 21 years in centimetres

073 Height increment of 1 year's growth (cm)
1112 Total height at 20 years (cm)

060

1052

045
0052

045
0007 Total height (cm) at 1 year

007 Height growth (cm) in 1 year

20

Table 4. Part of ANNV_K1_9. file, as an example of one ANNV* file,
is shown. Information for the first three cross-sections and the last
cross-section of the tree are shown. The other actual ANNV* files
resembled column 1. The remaining comments added by the writer
explained the contents of such kinds of files and were not part of the
ANNV* files.

3
2
1

0

3
3
3
1

3
3
4
1

Ring count for disc 1
Ring 1 volume (cubic centimetres)
Ring 2 volume
Ring 3 volume
Ring count (bark and pith included)

165 Ring count on last disc
129
126
96

65
56
32
18
6
0

0

21

4. DEVELOPMENT OF THE HASHING ALGORITHM

4.1 HASHING TABLE

Hashing is an address calculation technique and is an excellent

way to maintain a static or dynamic dictionary in database

management (Harrison. 1972; Flores, 1977; VanWyk, 1988). Harrison

(1972) described hashing as an ingenious technique which could be

used in a number of areas. Stone (1972) thought that, in particular,

hashing could find its best use in dealing with large data sets.

A hash table and a key are important components in hashing

techniques. According to Standish (1980), a hash table is an aggregate

of individual components called records. Distinct records in a hash

table contain distinct keys and each record stores information

associated with its key. The key is either the name of the entity to

which a record pertains, or is chosen to identify a particular record

uniquely in a hash table. The basic idea about hashing is that a

function, called a hashing function, is applied to an item or its key,

and the result, called a hash value, is used as a sort of abbreviation of

the item (Harrison, 1972).

22

According to Aho et al. (1983), in general, there are two forms of

hashing. The first is called open or external hashing which allows the

set to be stored in a potentially unlimited space. The advantage of

this form of hashing is that it places no limit on the size of the set.

The second is referred to as closed or internal hashing. This form of

hashing limits the size of sets due to using a fixed space for storage.

Several methods of hashing have been developed. One attractive

and inexpensive method is to multiply or weight each character of a

key (VanWyk, 1988).

Hashing provides a way of finding the target sublist quickly

where the record is localized by operating on its key (Flores, 1977).

At the price of the small amount of space for pointers, a table of

potentially unlimited size can be obtained by hashing methods

(Vanwyk, 1988). Aho et al. (1983) thought that hashing was an

important and widely useful technique for implementing dictionaries.

With regard to the advantages of hashing, Standish (1980) stated:

"hashing methods are not only good for tables stored in internal

memory: they are also helpful for searching files of records stored on

secondary memory devices such as disks and drums. When retrieving

records from, say, a disk, whole groups of records can frequently be

brought into primary memory at a time. Since it is relatively costly in

time to move read/write arms on disks and to wait for rotational

delays, it often pays to take care in computing a hash function since

the extra cost of hash computation is often repaid by reducing costly

mechanical repositioning and rotational delay."

23

According to Horowitz and Sahni (1983), hash table data

structures can be illustrated as in Figure 1. Suppose we have a total

number of 8 information records. Each record stores some

information about each of 8 provinces in Canada.

1
2
3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18

19

26

Figure 1 An example of a hash table. The hash table is partitioned
into 26 slots. Some slots are occupied by provincial information.
The rest indicated by 0 are empty.

Assume that the identifiers for the 8 records happen to be the

provincial names: Alberta, British Columbia, Manitoba, Nova Scotia,

Alberta
British Columbia
0

0

0

0

0

0

0

0

0

Manitoba
Nova Scotia
Ontario
Prince Edward Island
Quebec
0

Saskatchewan

0

24

Ontario, Prince Edward Island, Quebec, and Saskatchewan. We

define an integer array TABLE, which is actually a hash table in

memory. This hash table is partitioned into 26 slots. The hash

function / which is to be chosen must map each of the 8 identifiers

into one of the numbers 1-26. If the internal binary

representation for the letters A-Z corresponds to the numbers 1-26

respectively, then the function f defined by: / (identifier) = the first

character of 8 identifiers: will hash all 8 identifiers into the hash

table. The identifiers Alberta, British Columbia, Manitoba, Nova Scotia,

Ontario, Prince Edward Island, Quebec, and Saskatchewan will be

hashed into slots 1,2, 13, 14, 15, 16, 17 and 19 respectively by this

function.

Now, assume that we want to add two more records into this

table, say, to store Newfoundland and New Brunswick information

records into the table. The identifiers Newfoundland and New

Brunswick will also be hashed into slot 13 by the function (see Figure

2). In Figure 2. we can see that the three identifiers. Nova Scotia,

Newfoundland, and New Brunswick are mapped into the same slot.

This is called collision according to some text books. This causes a

problem because for each slot only one record can be stored. In this

study, a linked list data structure must be introduced to solve this

problem.

4.2 LINKED LIST

Brillinger and Cohen (1972) defined a linked list as a data

structure composed of numerous items called nodes or records,

each containing several fields. A field may contain a primitive

25

New Brunswick

Newfoundland

Figure 2. An example of occurrence of a collision. The hash table is
partitioned into 26 slots. The three records with the
identifiers. Nova Scotia, Newfoundland, and New Brunswick,
are hashed into the same slot numbered 13.

data item. According to Flores (1977), these nodes or records were

not necessarily physically in consecutive memory locations, but they

were logically linked together. He stated that each node contained

26

a pointer to the next record according to the order relation on their

key field(s).

Standish (1980) described a linked list as a method which "...

provides a natural way of allocating storage for cyclic and re-entrance

lists, and provides allocation for pure lists that conveniently

accommodates growth and decay properties, as well as certain natural

traversals of the elements ".

A linked list was considered to be an excellent solution to the

collision problems since the linked list was composed of nodes whose

keys hash to the same value, chains never coalesced (VanWyk, 1988).

No matter how small we make the hash table, the number of nodes

that can be stored in it is limited only by the amount of memory that

can be allocated dynamically (Flores, 1977). At the price of some

space (the size defined as 4097 in this study) for pointers, we obtain

a table of potentially unlimited size that readily supports insertions

(VanWyk, 1988).

In comparing to a linked list with an ordered list, Aho et al.

(1983) pointed out that ordered list implementation wasted space

because it occupied the maximum amount of space independent of

the number of nodes actually on the list at any time. In contrast, a

linked list implementation employed only as much space as was

required for the nodes currently on the list.

On this issue, Horowitz and Sahni (1983) remarked that "by

storing each list in a different array of maximum size, storage may be

27

wasted They also thought that operation such as insertion on the

ordered lists was expensive. They also pointed out that unlike an

ordered list where successive items of a list were located a fixed

distance apart, in a linked list these items might be placed anywhere

in memory.

Flores (1977) thought that a linked list had an advantage over an

ordered list: "it is easy to append new records and to delete expired

records; it is also easy to search a linked list sequentially.".

Furthermore, he pointed out that when insertion operations were

needed there would be trouble with an ordered list in which a lot of

information movement would need to be done to place a new record

into the file.

Figure 3 illustrates Standish's (1980), linked list data structure.

Each cell has two fields, an INFO field containing some information

which is to be stored, and a LINK field containing an address of

another cell. The LINK field of the last cell contains the distinct

quantity often defined as zero, which denotes the address of the

empty list (END defined by zero here). It should be stressed that all

cells are linked logically, not necessarily physically.

INFO LINK INFO LINK INFO LINK INFO LINK

Figure 3. An example of a linked list. Each cell or node consists of two
parts, INFO and LINK. INFO's contain information to be stored and
LINK'S contain addresses indicated by arrows.

28

4.3 COLLISION-RESOLUTION POLICY

There are three collision-resolution policies: (i) chaining (a

synonym for a linked list), (ii) the use of buckets, and (iii) open

addressing. Chaining, or a linked list, is viewed as a desirable data

structure to solve a collision problem in hashing table methods

(Hutchison, 1988), since the linked list is composed of nodes; chains in

this way never coalesced (VanWyk, 1988). Standish (1980) also

suggested that the chaining method was a better choice.

A linked list data structure can be introduced to solve the

collision problem above. The technique of solving the collision is that

whenever a collision happens a linked list will be created. In Figure 4,

the linked list was created to chain Nova Scotia, Newfoundland, and

New Brunswick.

4.4 DEFINITION OF A NODE

The data base file NEWTRIM.DAT consisted of the collection of all

the tree nodes or records. Each tree record or node, which was

named TREENODE.H file in the program, consists of the specific fields

and was presented in the C language syntax in Figure. 5.

In Figure 5, a tree number was defined as tn which can be used

with a plot label and plot number to retrieve any required records of

the stem analysis trees. Tree age was defined as age. Age at DBH is

defined as dbh..^age. The last cookie age was defined as last—ck^age.

The variables above were all declared as integers. DBH outside bark,

defined as dbhob, and volume outside bark, defined as vio, were

29

1
2

3

4

5

6

7

8

9

10

1 1
12

13

14

15

16

17

18

19

26

Alberta
British Columbia

0

0

0

0

0

0

15-

Manitoba
Nova Scotia
Ontario
Prince Edward Island
Quebec

Saskatchewar

Newfoundlan* New Brunswick

Figure 4. An example of solving a collision problem. The hash table is
partitioned into the 26 slots. The three identifiers, Nova Scotia,
Newfoundland, and New Brunswick, which are hashed into slot 13,
are linked together, that is, the 13th slot of Nova Scotia contains the
address of Newfoundland which then contains the address of New
Brunswick.

30

struct tree-record
{

char plt^labl LAB-LEN];

int tn;

char sp-codef3 h

int age;

int dbh-age;

int last-ck-age;

double dbhob;

double vio;

double dbhsf MAX-YEAR-NUM];

double hghsl MAX-YEAR-NUM];

double volsl MAX-YEAR-NUM];

double S-Cor[3 1;

double c-corf 3];

int next;

):

Figure 5. The fields of a node, as a file called TREENODE.H in
program, are shown in the C language syntax. The struct tree_record
is the syntax name under which the first column is a type and the
second column is the names of variables declared.

declared as real variable with double precision. A plot label was

defined as plt-lab[J and a species code was defined as sp-codel],

both being character arrays. DBH defined as dbhsf] which would

31

store a cumulative DBH, tree height defined as hghs [] which would

store a cumulative height, and volume defined as vols[] which would

store a cumulative volume, were declared as real variable with

double precision. The spatial locations of trees were stored in S—Cor[]

, double precision array for square plots, or c-Cor[], double precision

array for circular plots. The oldest tree, denoted MAX_YEAR_NUM,

was defined aslOO . Finally, a linked list pointer was defined as n&xt,

an integer, which can be used to chain the nodes with the same hash

value. Each Struct tree-record or each node consumed 2496 bytes in

the main memory.

4.5 HASHING FUNCTION

Under the existing TRIM data base system, the way that

information for stem analyzed tree records was stored was related to

the plot label, plot number, and tree number in the particular plot.

For example, the information for tree number 9 within the plot

number 1 in Kirkland Lake district was stored in such four separate

files K1_9.0UT, AD_K1_9., RAD_K1_9., and ANNV_K1_9.. In this study,

a plot label, a plot number, and a tree number were used as a key to

calculate a hash value. This value was then used as an index into the

hash table, which contained, at this table address, a pointer to the

tree record location in the TRIM database. Thus, access to any tree

record was intended to be direct. When presented with a plot label

and tree number, we just applied the hashing function to create

the number associated with that tree record, and proceeded directly

to this table address. At this table address we would find a pointer to

the tree record in the new TRIM database system.

32

In the hash function, the plot label, the plot number, and the

tree number are simply treated as character strings. The hashing

function is applied to sum their ASCII values or internal

representations in some fashion. We can simply sum internal

representation of plot label, plot number, and tree number to produce

the hash value. For example, internal representation for plot label k

was 107, internal representation for plot number 1 was 49, and

internal representation for tree number 9 was 57. Applying simple

hash function to sum their values, we get a hash value of 107 + 49 +

57 = 213. This simple hash function is considered to be a poor hash

function, because it results in too many collisions. For example, the

ASCII value was 107 for character k, 49 for character 1 and 50 for

character 2. By applying the simple hash function to sum ASCII

values of file names k 1_2 and k2_l, we get hash values of 1 07 + 49 +

50 = 206 and 107 + 50 + 49 = 206 respectively. Both the file names

are hashed into the same slot.

According to Hutchison(1988), when we design hash functions to

perform address calculation we must consider that the hash function

to be used has less possibility to produce the same hash value.

According to VanWyk (1988), we should balance carefully between

two desirable properties: a hash function should randomly distribute

keys over the table well, and should also be inexpensive to compute.

In this study, the hash function by VanWyk (1988) was used. His

hash function has two properties, that is, spreading keys over the

hash table well, and also inexpensive to compute.

33

If w was a string, let w (i) be the i(th) character ofw. for 0 <= i

< Iw I, and k is a power of (i + 1). The general form of VanWyk’s

(1988) hash function is described as:

)- + 1 j j

Let k = 0, function h^Cw) = j simply adds the characters

in a string w ; this is not likely to be a good hash function, since three

letter string of TRIM file names could hash to only a small number of

unique values causing a large number of collisions. For example, the

hash value for tree number 9 within the plot number 1 in the plot

label k was 107 + 49 + 57 = 2 13, while the hash value for the tree

number 8 within the plot number 2 in the plot label k was 107 + 56

+ 50 = 213. But if we Let k = 1, function hj(w) = (i + 1) * w ^

weighted each character by its position in w ; two character strings

that are permutations of the same set of letters could get different
_ 2

hash values under hjO. Function h2 i w) = (i + 1) * Wj

weighs each character by the square of its position in w.

4.6 LOGIC OF COMPUTER PROGRAMS

Two computer programs written in C language were developed

(see APPENDICES I and II). The strategy of development of these two

programs was to minimize interface between computer and user,

hiding all the intermediate procedures from a user.

The first program called TRIMHASH.C consisted of 29 modules or

source files. Each source file is comprised of a certain number of

34

functions and further, within each function there are sub-functions

within which there are sub-sub-functions, and so on. When the

program is executed, functions will call their sub-functions and sub-

functions will call their sub-sub-functions and so on.

The logic of this program in C language format is as follows:

mainO
(

prompt for input of plot label

prompt for tree number

for(plot label NOT END)
{

for(tree number NOT END)
(

file names building

open necessary files

read hash table or create hash table file

process data

install nodes

add nodes to TRIM data file

close files
)

)

What this program expected was just two pieces information; plot

label and number of stem analyzed trees in the plot. After such

information was given the program would call its 29 modules one by

one, within which one function would call another, to process the

35

TRIM data and would write the results onto the target file,

NEWTRIM.DAT.

The logic of this program in the C language format is presented as

follows:

mainO
{

while(look next tree record NOT END)
{

get plot lable and tree number

open necessary files

read hash table file

search for a required record

print tree record

get next command from user
)

close files

This program will keep asking you if you would like to view the

next record. Each time the program receives responses from the user

it will show the record on the screen until the program receives a

"No" response.

4.7 IMPLEMENTATION

The hashing algorithm developed in this study would process the

TRIM data to calculate cumulative volume growth, cumulative height

growth, and cumulative DBH growth for each individual tree by one-

36

year intervals. To add each tree record to the TRIM data file, called

NEWTRIM.DAT, a plot label and a tree number for that tree is first

passed through the hashing function, which translated the plot label,

the plot number, and the tree number into an offset of the hash table.

If this location in the hash table is empty, the tree information and its

associated information is added to the end of the TRIM data file

NEWTRIM.DAT and its location is placed into the hash table. However,

if this location in the hash table is occupied, then another tree record

had already been hashed into this table location and a ’collision”

occurs. In this case, the current pointer in the table is replaced with a

pointer to the new structure. The new tree record and associated

information is then added to the end of the TRIM data file. The

address of the record that had been in the hash table is placed into

the next field of the new record. Thus, the linked list will effectively

extended by "bumping " all entries down the chain and placing the

new tree record at the beginning of the corrected hash list.

When searching for a tree record we proceed to its table address.

If the tree record pointed to by the address in the table did not match

the target tree record by matching fields which were defined as plot

label and tree number, we proceed down the chain until we find the

required tree record, or come to the end of the TRIM data base,

whichever comes first. It is guaranteed that if the tree record existed

in the data base it would be on the selected list.

As an example, the interrelations between the hash table, the

database file, and the linked lists are presented in Figure 6. In this

37

example, the load factor 0.1 was chosen and the hash function [•4.11

was used where the power of k was defined as 3.

In Figure 6, for tree number 1 with plot label kl, by applying

the hashing function, the hash value was 1822 and the hash value

was 1849 for tree number 2. Therefore, the 1822th slot contained the

address of the tree number 1 from plot kl in the database file

NEWTRIM.DAT and the 1849th slot pointed to the location of tree

number 2 in plot k2 in the database file NEWTRIM.DAT. For the tree

number 36 of the plot label nl2, by applying the hashing function, the

hash value was 47. Unfortunately, by applying the function, the hash

value for the tree number 49 of plot label nil7 was 47 too. Since both

had the same hash value, a "collision" occurred.

Collision is solved as follows: the 47th slot in the hash table

pointed to the location numbered 109 (a record number or node

number) in NEWTRIM.DAT file; this location not only contained the

information of the tree number 49 of the plot nll7, but also the

location, numbered 96, of the record of the tree number 36 of the

plot nl2. If more collisions occur, the linked list would be formed

exactly in the same way and the nodes with the same hash value

would be chained.

4.8 ACHIEVEMENTS

The 543 stem analysis trees, or a total of 543 * 3 = 1629 files,

were processed by the hashing algorithm, TRIMHASH.C, with the

hashing function [4.1] where the power of the hashing function was

set to 3 and the load factor 0.1 was chosen. When executing the

38

HASH.TBL file NEWTRIM.DAT file

(or hash table)

[0 I

[1]

[2]

[47]

11622]

[1849]

[4094]

[4095]

[4096]

Figure 6. The interrelations between the hash table, the database
file, and the linked lists. The left hash table called HASH.TBL
is partitioned into 4097 slots.The right called NEWTRIM.DAT
is output file. The chain, the 48th slot of the hash table,
node# 109 and node No.96 is the linked list. The load factor

3
is 0.1 and the hash function is: h^(^) = (i + 1) * w

wherew(i) is the i(th) character of wordsw for 0 <= i < I w I.

39

program TRIMHASH.C, the user would only need to enter the

following information: (1) the plot label, and (2) the total number of

trees in that plot. Then, the computer would run the program

TRIMHASH.C and would report that the execution was successful.

Obviously, this simple executing process greatly reduced the chance

of occurrence of errors due to much interface between the user and

the computer.

The value of 1.0752 of ALOSS was achieved by this hashing

algorithm. It could be interpreted that only one comparison would be

made on average to retrieve or visit any of the records of stem

analysis trees processed by the hashing algorithm. After processing,

any of the records of the stem analysis trees could be retrieved by

the other program, PRINT.C. What the PRINT.C program expected was

just two pieces of information which the user had to input from the

key board: (1) plot label, and (2) tree number which the user would

like to retrieve. As an example, the output of one record by the

PRINT.C program is shown in Table 5.

After the TRIM data files are processed by the hashing algorithm

developed, the working directory no longer necessarily consisted of

subdirectories in order to accommodate hundreds of TRIM

data files. Instead, there were only two files in a working directory.

One was the TRIM database file defined as NEWTRIM.DAT and the

other was hash table file defined as HASH.TBL. The directory

structures, therefore, were greatly simplified, but the property of

direct access to any required tree records was maintained. Both the

40

Table 5. The example of output of tree number 9 within plot 1 in
Kirkland Lake district printed by the PRINT.C program, is shown. The
first line includes plot label, tree number, and species code; the
second line includes age; the third, fourth, and fifth lines include
the cumulations of DBH, height, and volume respectively at the age
shown.

Plot label: kl Tree number: 9 Species code: Pj

Age:
DBH(m):
Height! m):
Volume(m“3);

21
1.341100
1 1.85000
0.098708

Age 1
DBH 0.000000
Height 0.070000
Volume 0.000050

0.000000
0.520000
0.000155

0.026000
0.970000
0.000362

4
0.049400
1.400000
0.000777

0.100800
2.120000
0.001406

Age 6
DBH 0.167800
Height 2.370000
Volume 0.002565

7
0.267800
2.750000
0.004366

8
0.392100
3.250000
0.006640

0.507100
4.750000
0.009833

10
0.625900
5.100000
0.013831

Age 1 1
DBH 0.733100
Height 5.750000
Volume 0.018572

12
0.824600
6.620000
0.024036

13
0.894600
6.870000
0.031398

14
0.973000
7.750000
0.038513

15
1.032900
8.250000
0.045367

Age 16
DBH 1.088300
Height 8.750000
Volume 0.052790

17
1.139200
9.670000
0.060550

18
1.186100
9.920000
0.070397

19
1.241400

10.520000
0.081352

20
1.289700

1 1.120000
0.090860

Age 21
DBH 1.341100
Height 1 1.850000
Volume 0.098708

41

directory structures under the existing TRIM database management

and the directory structure after the TRIM data files were processed

were shown in Figures 7 and 8.

4.9 ANALYSIS OF EFFICIENCY

In an analysis of efficiency for the hashing algorithm, the hash

function [4.1] was used where let k = 1, k = 2, and k = 3 respectively.

The two load factors 0.1, and 0.9 were chosen. According to VanWyk

(1988), a load factor is a result of a number of items to be processed

divided by the size of a hash table. The combinations of three forms

of hashing functions with the two load factors were studied with the

hashing algorithm to evaluate the efficiency of the hashing algorithm

developed. The average length of successful search (ALOSS) by

VanWyk (1988) was used to analyze the efficiency of the algorithm.

According to VanWyk (1988), the value of ALOSS measures the

quickness of encountering any required records. When the value of

the ALOSS is 1 it means that there would be no comparison to be

made to encounter any required record. Therefore, any required

record could be retrieved directly. When the ALOSS value was 2 or 3

it suggested that there would be 2 or 3 comparisons to be made on

average to encounter any required tree record in the data base.

For example, suppose that there are 10,000 tree information

records in the database, a value of ALOSS of a hashing algorithm

developed is equal to 2. Therefore, there will be only 2 comparisons

to be made on average to retrieve any records you would specify. In

comparison, the 10,000 comparisons might be made to encounter the

42

Working Directory

subdirectory 1 subdirctory2 subdirctory3 subdirectory4

hundreds of
*.OUT files

hundreds of
AD. * files

hundreds of
ANNV. * files

hundreds of
RAD. * files

Figure 7. The directory structure under the existing TRIM data
base management system.

Working Directory

NEWTRIM.DAT file HASH.TBL file

Figure 8. The directory structure after the TRIM data files were
processed by the algorithm developed.

43

record which you would like to retrieve and which happens to be the

last record in the database, if you would use the ordinary sequential

search algorithm. In general, the bigger the value of ALOSS, the more

comparisons would be made on average, or more time would be

spent, to encounter any required tree record in the data base.

The statistics of the values of ALOSS are given in Tables 6, 7, 8. 9,

10, and 11. Based upon these statistics. Figures 9, 10, 11, 12 and 13

were plotted.

(i) When the hash table size was fixed.

When the hash table size was fixed or the load factor was set, the

effects of the hashing functions on the goodness of performance of the

algorithm could be explored. Figures 9 and 10 illustrated the effects

of three forms of hashing functions on the goodness of performance of

the hashing algorithm with the load factor 0.1 and 0.9 respectively.

In Figure 9, when the power k was equal to 1 the values of ALOSS

ranged between 3 1250 and 4.7619, the highest curve among the

three curves. It suggested that there would be between 3 and nearly

5 comparisons to be made on average to encounter any required tree

record. It was also noted that the values of ALOSS were sensitive to

the number of trees. Therefore, this was a poor selection method.

When the power of k was increased to 2 from 1, the values of

ALOSS decreased dramatically. When the number of trees reached the

maximum and k was equal to 2, the value of ALOSS was 1.5603, less

than 2 comparisons to be made to encounter any tree record on

average, compared with over a value of 3 of ALOSS when k was

44

Table 6

Table 7.

Statistics of hash values for jack pine trees in all plots in
the Kirkland Lake District when the load factor is 0.9 and
the hashing function is hj(w) = (i +1)*W|

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

16
21
36
49
66
81
90

101
104
109
123

3.1250
4.7619
4.1667
4.0816
3.7879
3.7037
3.8889
3.9604
4.4269
4.5872
4.4146

Statistics of hash values for jack pine trees in all plots in
the Kirkland Lake District when the load factor is 0.9 and

2
the hashing function is h2(w) = (i +1) *W|

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

39
70
94

116
138
165
200
236
272
310
348

1.2821
1.4286
1.5957
1.7241
1.81 16
1.8182
1.7500
1.6964
1.6544
1.6129
1.5603

45

Table 8

Table 9.

Statistics of hash values for jack pine trees in all plots in
the Kirkland Lake District when the load factor is 0.9 and

3
the hashing function is h^(w ^ ^i=>0 ^ i +1) * w".

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

34
62
90

1 18
152
183
218
251
287
321
351

1.4706
1.6129
1.6667
1.6949
1.6447
1.6393
1.6055
1.5936
1.5679
1.5576
1.5470

Statistics of hash values for jack pine trees in all plots
in the Kirkland Lake District when the load 0.1 and
the hashing function is hj(w) = 2|^^Q(i+l)*w^

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

26
47
52
80
99

122
153
175
175
186
195

1.9230
2.1276
2.8846
2.5000
2.5252
2.4590
2.2876
2.2857
2.5714
2.6882
2.7846

Table 10. Statistics of hash values for jack pine trees in all plots in

46

Table 1

the Kirkland Lake District when the load factor is 0.1 and
2

the hashing function is h2(w * W j

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

32
68

113
157
201
248
296
344
387
422
461

1.5625
1.4706
1.3274
1.2739
1.2438
1.2097
1.1824
1.1628
1.1628
1.1848
1.1779

1. Statistics of hash values for jack pine trees in all plots in
the Kirkland Lake District when the load factor is 0.1 and

3
the hashing function is h^(w) = (i+1) *w -^

Number of
trees

Number of
unique No.

Average length of
successful search

50
100
150
200
250
300
350
400
450
500
543

41
88

137
187
235
285
334
380
427
470
505

1.2195
1.1363
1.0949
1.0695
1.0638
1.0526
1.0479
1.0526
1.0539
1.0638
1.0752

47

CD
cz
(D

O)
CD
«□
L-
CD
>
<

Number of trees

1

2

3

Figure 9. Comparison of the effects of the different forms of hashing
functions on the algorithm performance when the load factor was 0.9.

equal to 1. When k was increased to 3, a further increase of 1 more

unit, the performance of the hashing algorithm was improved only

slightly.

In Figure 10. when the load factor was decreased to 0.1 from 0.9

and k was 1, the same trends were explicitly shown as when the load

factor was 0.9 and k was equal to 1. The performance of the hashing

algorithm in this case was still not satisfactory, nearly 3 comparisons

to be made on average to retrieve any required tree record. It was

noted that when k was equal to 2 and k was equal to 3 respectively,

48

the values of ALOSS were obviously improved and the latter was

1.5603 and the former was 1.5470.

Number of trees

Figure lO.Comparison of the effects of the different forms of hashing
functions on the algorithm performance when the load factor was 0.1.

(ii) When the power of the hashing function was fixed

When the power of hashing function was fixed the effects of the

load factor on the performance of the hashing algorithm could be

investigated. The effects of the two load factors on the goodness of

the performance of the hashing algorithm are shown in Figures 11,12

and 13.

49

Figure 11. Comparison of the effects of the load factors
on the algorithm performance when k was equal to 1.

In Figure 1 1, when k was equal to 1 the trends of the two lines

tended to extend similarly. When the load factor was 0.9 most of the

values of ALOSS fell between 4 and 5. While all the values of ALOSS

were within 2 and 3, the former value of ALOSS were two units

greater than the latter ones on average. It was apparent that the

values of ALOSS were sensitive to the number of trees in data base.

50

Figure 12. Comparison of the effects of the load factor
on the algorithm performance when k was equal to 2.

In Figure 12 when the load factor was 0.9, almost all the values

of ALOSS exceeded 1.5. When the load factor was 0.1, almost all the

values were below 1.5. In the former case, it was obvious that the

values of ALOSS were sensitive to the number of trees in data base.

In the latter case, the sensitivity of the values of ALOSS to the

number of trees appeared to be insignificant. Overall, there was

approximately one unit of ALOSS difference between the two curves.

51

Figure 13. Comparison of the effects of the load factor
on the algorithm performance when k was equal to 3.

In Figure 13 the performances of the hashing algorithm were

further improved compared with that in Figure 12 in both cases. The

values of ALOSS were no longer subject to the number of trees in the

data base when the load factor was 0.9. Also, the overall values of

ALOSS were lowered a bit compared to these in Figure 12. When the

load factor was lowered to 0.1 from 0.9, the overall values of ALOSS

were decreased by one unit, falling to about 1.2 on average.

52

5. TWO-STAGE SAMPLING

This section considers the question of determining what sample

intensities of both plot samples and tree samples were required to

obtain an accurate estimate of annual volume growth of immature

jack pine. The yearly volume growth investigated was limited to the

last 10-year period in this study. The two 2-stage sampling

techniques were simulated with immature jack pine data collected in

stands in the Kirkland Lake District in northeastern Ontario.

53

5.1 METHODOLOGY

The first sampling scheme was simple random sampling of the

primary samples of fixed plots within individual stands and simple

random sampling of the subsamples of trees within the plots at the

second stage. This sampling scheme would be referred to as the 1st 2-

stage sampling rule hereafter.

The second sampling scheme was simple random sampling of the

primary samples of the plots within the individual stands and the

selection of second-stage subsamples of the trees within the plots

using the probability proportional to basal area. This sampling

scheme is referred to as the 2nd 2-stage sampling rule hereinafter.

The function for computing total volume based upon the 1st two-

stage sampling rule was given by Prayer (1979) and adjusted by

Murchison (1984) as follows:

estimate of population mean;

n n

BA2i. [5.11

i=1 i=1

Mi

i = 1

N Mi

BAl N * ^ Mi * ^
i=1 j=1

BAl N

54

BA2i.

and variance:

Mi

m* 2 BA2ij
j=l

V(VSl) =
1 - n
N * n

n

2 Mi • (^

i=1

- RVBA BA2i.)^/(n-)

where;

1
N * n

n
2/ mi

Mi M 1 -)/mi *

i=l

mi

S DV2i = 2 I DV2ij - /I mi - 1]

j=1

 1_
DV2i. = mi

mi

2 DV2ij

j=l

DV2ij = Vij - RVBA * BA2ij

n n

and RVBA = 2 Mi * 2 Mi *

i=1 i=1

total volume estimate;

TVSl = M * VSl

15.2]

2
S DV2i

and its variance;

55

V(TVSl) = * V (VSl)
Where;

N = the number of primary sample units (plots) in the

population (stand or hectare):

n = the number of sample units in the sample:

Mi = the number of sample elements in sample unit i;

mi = the number of elements sampled in sample unit i;

vij = the volume of the tree j in plot i;

bij = the basal area of tree j on plot i;

Vij = the volume of tree j in cluster i.

Vi. = total volume of all trees on secondary cluster i.

BAij = basal area of tree j in cluster i.

= mean volume per tree in second-stage sample

for cluster i.

RVBA = the mean tree volume to tree basal area ratio.

= mean basal area of second-stage of cluster i.

Vk = total tree volume per unit area or per primary

cluster as estimated by two-stage sample rule k.

DV2ij = the difference between actual tree volume and

volume estimated by simulation for tree j on cluster i.

PY2I = mean difference between actual and estimated

56

tree volume for cluster i.

2
S DV2i = variance of DV2ik.

VSk = total tree volume per unit area or per primary

cluster as estimated by two-stage sample rule k.

TVSk = estimated total volume of trees in stand by

two-stage method k.

The functions for computing total volume based upon the 2nd

two-stage sampling rule were adapted from Murchison (1984) and

were given as follows:

estimate of population mean u;

N Ml Mi

u = 2 I 2 BAij/Mi * 2 I Vij/BAij]]/ N
i=1 j=1 j=l

where;
Mi Mi

Vi. = ^ * 2 t Vij *(2 BAij)/BAij 1

j=1 j=1

[5.31

variance for u;

. _ N - n VI u 1 N * n M n - 1)

n Mi mi

* 2 I 2 BAij/mi * 2 Vij/BAij
i=1 j=1 j = 1

[5.4]

57

n Ml mi

- ~ * 2 [S BAij/mi * 2 Vij/BAij
i=l j = 1 J = 1

n Mi
1 ^ ^ ^ x2 Mi - tni

+ rri * i i BAij) ,—}—: rr N*!!" ■" ^ Ml* mi* (mi - 1)
i=1 j=1

mi mi

* 2 I Vij/BAij - -;^ * 2 Vij/BAij
j=1 j=1

total volume estimate;

TVS2 = N * VS2

and its variance;

V(TVS2) = * V(VS2)

In this study, the basal areas converted from diameters at breast

height were used as the means of selection of the subsamples. Using

methodology described by Husch et al. (1972), a cumulative list of

tree basal areas by tree number within the plot was made and a

random selection of the trees to be subsampled was made from this

list. All trees used are located within 10 m by 10 m plots and they

were all stem analyzed in accordance with TRIM methodology.

58

5.2 DATA USED

Stem analyzed tree data from Kirkland Lake District were used to

investigate the sampling intensities for jack pine growth. All plots

consisted of a 20 m by 20 m measurement plot with alOmbylOm

destructively sampled inner plot. All the trees within the inner plot

were stem analyzed according to TRIM procedures. The data

information provided by Murchison and Kavanagh (1988) are given

in Table 12.

5.3 COMPUTER SAMPLING SIMULATION

Simulation is a numerical technique for conducting experiments

on a digital computer (Naylor et al., 1966) and it is commonly used by

scientists (Kleijnen, 1974). Simulation can serve as a "preservice test"

to evaluate the decision rules to avoid running the risk of

experiments on the real system (Naylor et al., 1966).

According to Kleijnen (1974) there are two methods of problem

solving in general. One is an analytical solution technique which relies

on calculus. The other is a numerical solution technique which

substitutes numbers for the independent variables and manipulates

these numbers. He pointed out that the numerical technique was

iterative, i.e., each step in the solution gave a better solution using

the results from the previous steps. The numerical technique solved

the problem by approximating the real state of nature (Arvanitis,

1966). The Monte Carlo method is a special numerical technique

(Kleijnen, 1974).

59

Table 12. Summary of information for the immature TRIM jack

pine plots sampled within the Kirkland Lake District

Plot Sp Age Dbh Ht Vol Density Pielou's Site

Label yr. cm m m‘3/ha No./m"2 Index Class

K1 PJ 21 10.3235 10.86 54.151 0.2600 0.831405 1

K2 PJ 20 11.6786 10.22 62.349 0.2000 0.903702 1

K3 PJ 20 11.6352 10.33 62.867 0.1900 0.647512 1
NL2 PJ 19 7.6101 6.24 20.522 0.1591 4.990989 2

NL17 PJ 20 7.9851 7.56 27.731 0.1927 5-596667 2

NL27 PJ 19 6.6207 5.76 13-477 0.1409 4.575950 2

KLD_P1 PJ 21 9.2544 8.76 31-738 0.5100 1.026528 1

KLD_P2 PJ 22 7.9871 7.45 23-907 0.2900 1.206741 2

KLD_P3 PJ 21 7.5219 7.82 31.637 0.4100 1.130969 2
T1 PJ 28 15-2928 13-76 136.039 0.1448 0.772097 1

T2 PJ 28 12.4293 13-02 90.594 0.2641 0.637634 1

T3 PJ 27 15-9670 12.74 146.156 0.1228 0.826934 1
T4 PJ 28 11.0890 12.38 67.307 0.2983 0.797199 2

T5 PJ 28 13.1 124 12.81 102.796 0.1739 0.995269 1
T6 PJ 26 14.4276 12.29 1 15.812 0.1353 0.765531 1

T7 PJ 27 19.2818 14.97 21 1.714 0.1 166 0.790287 1

T8 PJ 28 16.3938 12.33 139.481 0.1589 0.779978 1

UT9 PJ 26 7.0484 7.42 18.323 0.3592 0.657926 3

UTIO PJ 28 13.3050 12.60 99.623 0.2798 0.684092 1

UTll PJ 28 14.4960 13-23 121.155 0.2577 0.778577 1

UT12 PJ 28 9.2712 11.08 47.822 0.4995 1.481926 2

UT13 PJ 28 14.2218 13.87 127.080 0.1401 0.887776 1

Note; All information was calculated by Murchison and Kavanagh

(1989).

60

The Monte Carlo method is also referred to as the method of

statistical trials (Buslenko et al.. 1966). Hammersley and Handscomb

(1965) defined the Monte Carlo method as "that branch of

experimental mathematics which is concerned with experiments on

random numbers". Monte Carlo can be any technique for the problem

solving using random numbers or pseudorandom numbers (Kleijnen,

1974). Monte Carlo methods have found wide application on digital

computers (Buslenko et al., 1966).

In comparing mathematical models with simulation procedures,

Ackoff (1962) remarked "that a model represents a phenomenon

while simulation imitates it, the first being the photograph' and the

second the motion picture' of the phenomenon in question.".

Modelling deals primarily with the relationships between real

systems and models; simulation refers primarily to the relationships

between computers and models (Zeigler, 1976).

In this study, estimates for the two 2-stage sampling schemes

were computed for each cluster of plots within stands. As controls, an

estimate of stand yearly volume growth per hectare for the last 10-

year period for all trees included on all plots within the stand were

computed. The estimate of stand yearly growth volume per hectare

was used as controls for comparison of the precision of the population

mean estimates for the two 2-stage sampling rules.

For the 1st 2-stage sampling rule, subsampling of trees within

plots was performed using simple random sampling for the selection

of individual trees within plots and all the possible levels of the

61

subsampling of trees within the plots were simulated for the last 10-

year growth period. The formula to compute the various estimators

were given in expressions [5.1 1 and [5.2].

For the 2nd 2-stage sampling rule, the subsampling of trees

within plots was carried out based upon probabilities proportional to

tree basal areas. All the possible levels of subsampling of trees were

simulated for the last 10-year growth periods. The formula to

compute the various estimators were given in expressions [5.3] and

[5.4 1.

In this study, the precisions of the mean estimates for both the

unequal probability subsampling rule and the equal probability

subsampling rule were computed and were used to evaluate the

accuracy of the mean estimates for both sampling rules. A confidence

limit of 95 percent was set throughout this study.

According to Statistics by Beijing Forestry University, (1977), the

precision may be explained as follows: for example, u is a estimate

mean, 5 is a standard deviation of n samples, t value can be

determined given the confident limits, 1.96, for example, for a 95

percent of confidence limit, estimate error limits for a mean estimate

is defined as t value multiplied by a standard error, it *is //IT)),

relative mean estimate error (E) is defined as estimate error limits

divided by a mean estimate, E = (i *is //JT))/u. Finally, a precision

(P) is defined as 1 minus a relative mean estimate error then

multiplied by 100 percent.

62

p = (1 - E)MOO%. I 5.5]

It can be interpreted that the higher the value of precision, the

more accurate the sample mean estimate. The highest value of

precision is 1 or 100 percent.

In this study, because of a small number of stem analyzed jack

pine trees in stands T and UT (only 5 stem analyzed trees in each plot

except plot T1 which had 13 trees), computer sampling simulation

was only performed with three stands K. NL, and KLD_P. The

confidence limits were set at 95 percent throughout the analysis of

this study.

5.4 SIMULATION PROCESS

The simulation processes can be divided into the two major steps;

database preparation and sample rules simulation. The hashing

algorithm developed in the earlier section was used to process the

TRIM database as the first step preparation of a smaller database.

The file NEWTRIM.DAT and the file HASH.TBL produced by the

developed algorithm were used as the part of the sampling simulation

program. The second step, sample rules simulation, only included one

large program, SIMULATION.C. This program consisted of 41 modules

or source files which were composed of a total of 78 functions all

together under the main program. The main controlling function

mainO coordinated all 78 functions to be executed as designed.

63

At the very beginning of the simulation, the program expected a

plot label and the number of primary sample units, the number of

subsample units and the total number of stem analyzed trees in each

of the plots. The program after receiving such information would

build up the names for all trees. Then, the names were immediately

used to calculate their hash values in order to retrieve the required

information stored in the TRIM data base file NEWTRIM.DAT.

The minimum subsample number was defined as 2 in the source

file DEFINE.H. The maximum number of subsample size was 1 less

than the total number of jack pine trees in the plot that had the least

number of jack pine trees among the primary sample plots. The

source file FINDMAXNUM.H was designed to compute the total

number of jack pine trees in each plot and then set the maximum

subsample number of trees. To speed up the simulation process the

quick sort algorithm and the recursive call were introduced into the

the simulation program. Under the computer sampling simulation

loop the rule of two-stage random sampling with simple random

subsampling was run first and then was followed by the rule of 2-

stage random sampling with unequal probability of selection of

subsample.

The most outer loop was the yearly volume growth loop. The

yearly volume growth to be investigated was limited to the last 10

years. It was defined as MAX_YEAR in the file DEFINE.H. The next

enclosed loop was subsample size loop. As mentioned, the maximum

subsample was decided by the function FINDMAXNUM. The inner

most loop was the sampling simulation loop.

64

Each plot was repeatedly sampled by each simulator in the

following manner. All estimates such as estimate for population mean

and estimate for its variance from the current cycle were combined

with those of all previous cycles run under the same factors and were

averaged at the end of each cycle. The sampling simulation estimates

of the volume growth per hectare and standard error estimates for

the two two-stage sampling rules were computed from these

estimates. The simulator was possibly run up to 2500 times which

was defined as SIMULATION_TIMES in the file DEFINE.H or until

stable estimates were obtained, whichever came first. The source file

STABLETEST.H was designed to evaluate the difference between the

current estimates average and the previous estimates average and

the standard of evaluating the difference was defined as 0.001. This

was defined as ALLOWABLE_ERROR in file DEFINE.H. After the 2500

loops ended or the stability test was satisfied, the results of the

sampling rules simulation were written to the external file,

SIMULATION.OUT. This process was run for all possible levels of

subsampling for TRIM plots within a stand. The results were

appended to the external file after each run ended.

5.5 SAMPLING SIMULATION RESULTS

Due to the huge sampling simulation results, the way to present

the simulation results is explained as follows: to evaluate both

sampling rules and draw reasonable conclusions, only results from

the worst cases for the unequal probability subsampling rule and the

results from the best cases for the equal probability subsampling rule

are presented in this part. The final conclusions are drawn in such a

65

way that if the results from the worst cases are satisfactory, the

method to produce the results can be considered to be adopted; if the

results from the best cases are not acceptable, the method which

produces the results will be not recommended.

Under each of both primary sample intensities of 100 percent

and 66 percent, for the unequal probability subsampling rule, the

worst cases were selected from the simulation results with the lowest

precision of mean estimates when subsample size was equal to 2, and

for the equal probability subsampling rule, the best cases were

selected from the simulation results with the highest precision of

mean estimate when subsample size was equal to 2.

All the TRIM means lie within the mean estimate ranges

produced by both sampling rules with confidence limit of 95 percent.

There were no significant differences to be found between TRIM

means and the estimate means through the analysis of the simulation

results for both sampling rules. Therefore, the focus of the

investigation was placed on comparison of precisions of mean

estimates produced by both sampling rules.

(1) Under the primary sample intensities of 100 percent

(i) When the subsample intensities were 10 percent both results

from the worst case for the unequal probability subsampling rule and

results from the best case for the equal probability subsampling rule

are presented in Figure 14.

66

Number of subsample of trees

Figure 14. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 100 percent and subsample intensities were 10 percent.

In this case, for the unequal probability subsampling rule the

precision of the mean estimate was 96 percent, while for the equal

probability subsampling rule the precision of the mean estimate was

only 76 percent. With an increase of the subsample size or

subsampling intensities the precision of mean estimate for the equal

probability subsampling appeared increasing. For this sampling rule

when subsample size was increased to 10 trees from 2 trees the

67

precision rose up to 91 percent. If the precision of mean estimate for

the equal probability subsampling climbed up to the point which can

be reached for the unequal probability subsampling rule with only 2

trees, the subsample size should be further increased to 17 trees for

the equal probability subsampling.

(ii) When the subsample intensities were 5.8 percent both result

from the worst case for the unequal probability subsampling rule and

result from the best case for the equal probability subsampling rule

are presented in Figure 15.

In this case, the precision of mean estimate for the unequal

probability subsampling rule was still high, 97 percent. To obtain

over 90 percent of the precision of mean estimate for the equal

probability subsampling rule the subsample intensities must be

increased to 66 percent.

68

Number of subsample of trees

Figure 15. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 100 percent and subsample intensities were 5.8 percent.

(iii) When the subsample intensity ratio at 3.1 percent both results

from the worst case for the unequal probability subsampling rule and

result from the best case for the equal probability subsampling rule

are presented in Figure 16.

69

Number of subsample of trees

Figure 16. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 100 percent and subsample intensities were 3.1 percent.

In this case, the precision of mean estimate for the unequal

probability subsampling rule remained over 90 percent, compared

with only 36 percent of the precision of mean estimate for the equal

probability subsampling rule. It is noted that for the equal

probability subsampling rule the 90 percent of the precision would

still not be obtained even when the subsample intensities rose to 75

percent.

(2) Under the primary sample intensities of 66 percent

(i) When the subsample intensities were 6.7 percent both results

from the worst case for the unequal probability subsampling rule and

70

result from the best case for the equal probability subsampling rule

are presented in Figure 17.

Number of subsample of trees

Figure 17. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 66 percent and subsample intensities were 6.7 percent.

In this case, the precision of mean estimate for the unequal

probability subsampling rule remained well over 93 percent. While,

the precision of mean estimate for the equal probability subsampling

was 88 percent and was sharply increased with an increase of

subsample intensities.

(ii) When the subsample intensities were 3.8 percent both results

from the worst case for the unequal probability subsampling rule and

result from the best case for the equal probability subsampling rule

are presented in Figure 18.

71

Figure 18. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 66 percent and subsample intensities were 3.8 percent.

In this case, the precision of mean estimate for the unequal

probability subsampling rule was 92 percent, compared with 55

percent for the equal probability subsampling rule. For the equal

probability subsampling rule, even when the subsample sizes were

increased to the maximum, the precision for this sampling rule was

still below 80 percent.

(iii) When the subsample intensities were 2.1 percent both results

from the worst case for the unequal probability subsampling rule and

result from the best case for the equal probability subsampling rule

are presented in Figure 19.

72

Number of subsample of trees

Figure 19. The worst results produced by the unequal probability
subsampling rule and the best results produced by the equal
probability subsampling rule when the primary sample intensities
were 66 percent and subsample intensities were 2.1 percent.

In this case, the precision of mean estimate for the unequal

probability subsampling rule was 88 percent, a little below 90

percent. When the subsamples were increased to 3 from 2, or to

subsample intensities of 3.1 percent from 2.1 percent , 90 percent of

precision was secured. The precision of mean estimate for the equal

probability subsampling was very poor, only 43 percent. When the

subsample intensities rose to the maximum subsample size, that is,

subsample of 47 trees per plot, the precision was still below 76

percent.

73

6. DISCUSSION

6.1 THE HASHING ALGORITHM

In this study, all the combinations of two hash table sizes with

the three forms of hashing function [4.1] were studied to evaluate the

efficiency of the hashing algorithm. The results of the value of ALOSS

and their trends were consistent throughout the analysis. The

combinations of the further increase of the power of the hash

function [4.1] and the further decrease of load factor have been

attempted with the hashing algorithm. But, the performance of the

hashing algorithm was not improved significantly. In addition, when

the power of the hashing function [4.1] was set to 3, the performance

of the hashing algorithm was tested with the load factors 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, and 0.8 respectively. All of the values of ALOSS fall

within 1.0479 and 4.7619.

It could be seen that the performance of the hashing algorithm

developed depended upon two factors, load factors and hashing

functions. Once the load factor was set, with an increase of the power

of hashing function [4.1], the performance of the hashing algorithm

was improved, that is, the values of ALOSS were decreased with an

increase of insensitivity of ALOSS to the number of trees in the

74

database. That is because the more weight given to character position

of both the plot label and the tree number, the greater spread of the

hash values. The best performance of the hashing algorithm resulted

from the combination of the load factor 0.1 with the power 3 of hash

function [4.1]. It was also apparent that once the hashing function was

chosen the performance of the hashing algorithm benefited from the

decrease of the load factor.

Although the total of 1629 files including 543 stem analysis trees

were processed in demonstration, actually, this hashing algorithm can

be used to process all the TRIM data files. It should be pointed out

that it is up to the user to balance the performance of the hashing

algorithm and the use of the computer memory space. In other words,

better performance of this hashing algorithm requires more space.

Based on the findings, the better performance of this hashing

algorithm can be obtained by changing the load factor. If a user

would like to have the best performance of the hashing algorithm the

load factor should be set to 0.1 with which a value of 1.2 ALOSS can

be expected with the power of 3 of hashing function [4.1]. If the

memory space is at a premium, the load factor can be set to 0.9 with

which 1.5 ALOSS can be obtained at the expense of a small hash table.

Computer memory space consumed by a hash table depends upon the

number of trees to be processed and the load factor chosen, both

determining the size of a hash table. For example, if there are 10,000

trees to be processed, the power of hashing function [4.1] is set to 3.

For performance of value of 1.2 ALOSS, the memory space consumed

by the hash table will be a result of a number of trees divided by a

75

load factor: (10,000/0.1) * 2 = 2,00,000 bytes (because a hash table is

declared to be integer which consists of 2 bytes), in comparison to

(10,000/0.9) * 2 = 22,222 bytes for a performance of value of 1.5

ALOSS. The later performance of the hashing algorithm can be

obtained at expense of a significant reduction in memory space.

The modification of load factor can be done by redefinition of the

hash table size in the source file called DEFINE.H (see Table 13.).

Specifically, first, open the file DEFINE.H, next, define the hash table

size by dividing the number of stem analysis trees by load factor

(either 0.1 or 0.9).

Table 13. Source file named DEFINE.H.

Syntax Variables Values defined

name declared

^define SUCCESS
^define FAILURE
^define END
^define NOT_END_FILE
*^define START
define YES
^define SAME
^define FOUND
^define NOT_FOUND
define NOT_OPEN
define OK
^define HASH_FUN_POWER
^define MAX_PLT_LAB
define LAB_LEN
^define FN_LEN
^define MAX_YEAR_NUM
^define HASH_TBL_SIZE

1
0
0
1
1
1
0
1
0
0
0

3
22
20
40

100
dividing a total number of
trees y either 0.1 or 0.9

76

6.2 THE TWO-STAGE SAMPLING RULES

The major objective of this investigation was to determine both

the minimum primary sample intensities and the minimum

subsample intensities required for estimating yearly volume growth

of immature jack pine. The worse cases for the unequal probability

subsampling rule and the best cases for the equal probability

subsampling rule under the different primary sample intensities and

the various subsample intensities have already been presented.

For the equal probability subsampling rule, given all the

combinations of the primary sample intensities with the subsample

intensities there was no significant difference between the estimate

mean and the TRIM mean, but, the precisions of mean estimate were

all below 88 percent and the precisions were below 60 percent on

average. Therefore, this sampling rule is not recommended for use to

estimate the yearly volume growth of immature jack pine in

northeastern Ontario.

For the unequal probability subsampling rule, when the primary

sample intensities were 100 percent, the effect of lowering the

subsample intensities on the precision is shown in Table 14. The

average of precision of mean estimate was 98.2 percent with the

subsample intensities of 10 percent; the average of precision of mean

estimate was 97.6 percent with the subsample intensities of 5.8

percent: and the average of precision of mean estimate was 94.6

percent with the subsample intensities of 3.1 percent. When the

subsample intensities were reduced 5.8 percent, nearly half of the

77

first subsample intensities, the precision was only dropped by 0.6

percent on average. When the subsample intensities were further

decreased to 3.1 percent the precision was not reduced much, only 3

percent. These results suggest that when the primary sample

intensities were set to 100 percent, lowering the subsample number

per plot would not reduce the precision significantly. In this case, it

means that the rules with the first two higher subsample intensities

were indeed unnecessary since the 94.6 precision is close to the true

value.

Table 14. The comparison of effects in change of subsample
intensities on the precision of mean estimate when
the primary sample intensities were 100 percent

Average
precision

(%)

98.2
97.6
94.6

Subsample
intensities

(%)

10.0

5.8

3.1

As shown in Table 15, when the primary sample intensities were

reduced to 66 percent from 100 percent and the subsample

intensities were reduced to 6.7 and 3.8 percent, the precisions of 94.4

and 93.8 on average were obtained respectively. When the subsample

intensities were further lowered to 2.1 percent the 91.2 percent of

precision on average still can be secured where the precisions ranged

from 88.2 percent to 98.8 percent. When comparing the figures in

Table 14 with those in Table 15. it can be noted that when the

78

primary sample intensities were lowered to 66 percent, with the

subsample intensities of 6.7 percent, nearly the same precision could

be obtained as with the primary sample intensities of 100 percent

together with the subsample 3.1 percent.

Table 15. The comparison of effects in change of subsample
intensities on the precision of mean estimate when
the primary sample intensities were 66 percent

Average
precision

(%)

94.4
93.8
91.2

Subsample
intensities

(%)

6.7
3.8
2.1

In this study, the three types of stands may be classified in terms

of their trees spatial distributions using the Pielou's index. According

to the definition of the Pielou’s index the trees in stand K showed

uniform spatial distributions, the trees in the stand KLD_P showed

random spatial distributions , and those in stand NL showed

significant aggregations or clustering. Through the analysis of

simulation results, the trees spatial distributions did not appear to

influence the precision significantly. This finding is consistent with

the conclusion made by Murchison and Kavanagh (1989), that is, "tree

spatial distribution as defined by Pielou’s Nonrandomness Index

appeared to have little influence on sample rule performance. ”

79

In summary, throughout the sampling simulations the simulation

results, overall, were consistent. In all cases with the same primary

sample intensities, with the same subsample intensities, and with the

same confidence limit, the precision of the mean estimates for the

unequal probability subsampling rule was much higher than that for

the equal probability subsampling rule. In most of the cases, the

precision of the mean estimates produced by the equal probability

subsampling rule was too low to be acceptable even when the

subsample sizes were increased to the maximum number allowed by

the sampling simulation. In all cases, with all the limited possible

combinations of the primary sample intensities together with the

subsample intensities the precisions produced by the unequal

probability subsampling rule were reliable.

The database in this study were limited to the 10 m by 10 m

destructive sample plots for TRIM projects conducted in immature

jack pine in northeastern Ontario by the OMNR. The studies were

limited to 3 plots per stand. Although the simulation results appeared

to be limited by these low numbers of plots, consistent trends

appeared and should serve as guidelines. Since the stands and plots

were presumably randomly selected, the results should be applicable

to the populations from which they were drawn.

80

7. CONCLUSION

For the hashing algorithm developed in this study, three goals

have been achieved:

(1) by using a hashing technique with the data structure of

linked list, the TRIM data was processed and all the output were

placed into one file which uses a small hash table file, greatly

simplifying the directory structures ;

(2) the hashing algorithm can be used to process TRIM data to

obtain the various growth attributes (volume cumulative increments,

height cumulative increments, and dbh cumulative increment) by

one-year intervals for all individual trees;

(3) the hashing algorithm was developed to provide a user with

quick access to any required stem analyzed tree record in the output

file.

For the computer sampling simulation, based on the findings of

this study dealing with the two two-stage subsampling of fixed area

plots in immature jack pine stands in northeastern Ontario, it can be

concluded:

81

(1) the subsampling rule using probability proportional to the

basal area selection of trees proved to be superior in precision for

estimating tree annual volume growth of immature jack pine in

northeastern Ontario:

(2) for each stand with the subsampling rule using probability

proportional to basal area, with the minimum of primary sample

intensity ratio at 66 percent together with the minimum of

subsample intensity ratio at 2.1 percent, a precision of 90 percent for

the mean estimate of the annual volume growth can be guaranteed

with a confidence limit of 95 percent;

(3) given the same confidence limit, for the subsampling rule

with the simple random selection of trees, even with larger primary

sample intensities of plots together with larger subsample intensities

of stem analyzed trees, the reliable estimate could not obtained in

this study.

82

LITERATURE CITED

Ackoff, R. L. 1962. Scientific method: optimizing applied research
decisions. John Wiley and Sons, Inc., New York. 46-4 pp.

Aho, A. V., Hopcroft, J. E.. and Ullman, J. D. 1983. Data structure
and algorithm. Addision-Wesley Publishing Company. Bell
Laboratories, Murray Hill, New Jersey. 48 pp.

Aldred, A. H., and J. K. Hall 1975. Application of large scale
photography to a forest inventory. For. Chron. 51(1): 9-15

Arvanitis, L. G. 1966. Decision rules for design of forest sampling
system: a contribution to methodology based on computer
simulation. Doctoral Dissertation. U. of California, Berkeley.
168 pp.

Barnett, V. 1974. Elements of sampling theory. The English
Universities Press Ltd. St Paul's House, Warwick Lane,
London. 126 pp.

Beijing Forestry University, 1977. Statistics. China's Forestry
Publishing House. 196 pp.

Bonner, G. M. 1974. A forest sampling design for inventories using
large-scale aerial photography. State University of New York
College of Environmental Science and Forestry. Doctoral
dissertation. University Microfilms, a XEROX Company,
Ann Arbor, Michigan. 27 pp.

Brace, L. G., and K. M. Mager 1968. Automated computation and
plotting of stem analysis data. Can. Dep. For. Rur. Dev.,
For. Br. Pub. No. 1209, 8 pp.

83

Brillinger, P. C., and Cohen. D. J. 1972. Introduction to data structures
and non-numeric computation. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey. 126 pp.

Buslenko, N. P., Golenko, D. I., Shreider, Y. A., Sobol, I. M.. and
Sragovich, V. G. 1966. The Monte Carlo Method. Pergmon Press.
New York. 29 pp.

Chapeskie, D., and R. Fleet 1981. Stem analysis program. OMNR.
Brockville. (unpublished-cited in Kavanagh 1983)

Cochran. W. G. 1963. Sampling techniques. John Wiley and Sons.
New York. 413 pp.

Cunia, T. 1965. Some theory on reliability of volume estimates in a
forest inventory sample. For. Sci. 1 1 (1) : 115-128.

Deming, W. E. 1950. Some theory of sampling. Dover Publications Inc.,
New York. 517 pp.

de Vries, P. G. 1986. Sampling theory for forest inventory.
Springer-Verlag. Berlin Heidelberg, New York. 161 pp.

Farmer, R. A., M. S. Philip and A. R. Sayers. 1973. Some experience
with two-stage sampling in a forest survey. Forestry 46(1) :
95-104.

Fayle, D. C. F., D. Maciver and C. V. Bentley. 1983. Computer-graphing
of annual ring widths during measurement. For. Chron.
59 : 291-293 pp.

Flores, I. 1977. Data structure and management. 2nd edition.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 156 pp.

Frayer, W. E. 1979. Multi-level sampling designs for resource
inventories. Report RM contract 16-747-CA, CSU Project
3 1 -1 470-1468. Rocky Mountain For. and Range Exp. Stn. USDA
For. Ser. Ft. Collins, CO. 1 13 pp.

Hammersley J. M., and Handscomb D. C. 1965. Monte Carlo Methods.
John Wiley and Sons Inc. 178 pp.

84

Harrison, R. V. 1972. Data-struclures and programming. Courant
Institute of Mathematical Sciences. New York University.
195 pp.

Herman, F. R., D. J. DeMars and R. F. Woollard. 1975- Field and
computer techniques for stem analysis of coniferous forest
trees. USDA For. Serv. Res. Pap. PNW-194, Pacific Northwest
For. and Range Expt. Station, Portland, Oregon. 51 pp.

Horowitz, E., and Sahni, S. 1983. Fundamentals of data structures.
Computer Science Press, Inc. Rockville, Maryland, USA. 106 pp.

Husch, B., C. I. Miller and T. W. Beers. 1972. Forest mensuration.
2nd. ed. John Wiley and Sons, New York. 41 0 pp.

Hutchison, R. C. and Just, S. B. 1988. Programming using the C
language. McGraw-Hill Book Company. Formal Systems, Inc.
299 pp.

Johnston. D. C. 1982. Theory and application of selected multi-level
sampling designs. Ph. D. Dissertation. Univ. Microfilms
International, Ann Arbor, Michigan. 197 pp.

Kavanagh, J. 1983. Stem analysis: sampling techniques and data
processing. M. Sc. F. Thesis, Lakehead University, Thunder Bay.
Ont. 2 1 pp.

Kleijnen, J. P. 1974. Statistical techniques in simulation. Marcel
DeKKer, Inc., New York. 5 pp.

Langley, P. G. 1975. Multistage variable probability sampling: Theory
and use in estimating timber resources from space and aircraft
photography. Doctoral dissertation. U. of California, Berkeley, Ca.
92 pp.

Lund, H. G. 1982. In-place resource inventories: principles & practices
Proceedings of a national workshop.
Society of American Foresters.Washington, D. C. 4 pp.

MacIver, D. C. 1987. TRIM compunications. Proc. TRIM users
workshop, OMNR, Timmins, Ont. July 9, 1987. 91 pp.

85

Murchison, H. G. 1984. Efficiency of multi-phase and multi-stage
sampling for tree heights in forest inventory.
Doctoral dissertation, U. of Minnesota, St. Paul, MN. 158 pp.

Murchison, H. G., and J. Kavanagh. 1988. Evaluation of TRIM database
for jack pine. Lakehead Univ. Report submitted to OMNR. 17 pp.

 1989. Sample intensities and cost model for TRIM
projects for mature jake pine in northeastern Ontario. 1 pp.

 1990. Sample intensities for TRIM sampling of
mature black spruce in northeastern Ontario.
Report Submitted To OMNR-NFDG, Timmins, Ontario. 62 pp.

Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chu. K. 1966. Computer
simulation techniques. John Wiley & Sons. Inc., New York. 8 pp.

Pluth, D. J. and D. R. Cameron. 1971. Announcing Fortran IV program
for computing and growth parameters from stem analysis.
Forest Science 17: 1-102 pp.

Schumacher, F. X., and R. A. Chapman. 1954. Sampling methods in
forestry and range management. School of Forestry, Duke Univ.
Durham, North Carolina. 95 pp.

Sukhatme, P. V. and B. V. Sukhatme. 1970. Sampling theory and
applications. 2nd. ed. Iowa State University Press. Ames, Iowa.
267 pp.

Standish, T. A. 1980. Data structure techniques. Addision-Wesley
Publishing Company. Univ. of California, Irvine. 192 pp.

Stone, H. S. 1972. Introduction to computer organization and data
structures. Stanford Univ. McGraw-Hill Book Company. 266 pp.

Stuart, A. 1968. Basic ideas of scientific sampling. Charles Griffin & Co.
Ltd. London. 77-83 pp.

Timmer, V. R., and B. R. Verch. 1983. SAPP: A computer program for
plotting stem analysis. For. Chron. 59 (1): 298 pp.

86

VanWyk, C. J. 1988. Data structures and C programs. AT & T Bell
Laboratories. Murray Hill. New Jersey. 177 pp.

Wang, E. 1976. Stem analysis program. Lakehead University
Thunder Bay. (unpublished - cited in Kavangh 1983)

Williams. B. 1978. A sampler on sampling. John Wiley & Sons,
New York. 148 pp.

Yamane, T. 1967. Elementary sampling theory. Prentice-Hall, Inc.,
Englewood Cliffs, New. Jersey. 292 pp.

Yandle, D. 0. and F. M. White. 1977. An application of two-stage
forestry sampling. Southern Journal of Applied Forestry,
vol. 1:3 27 - 32 pp.

Yates, F. R. S. 1960. Sampling methods for censuses and surveys.
3rd Ed. Charles Griffin & Co. Ltd. London. 34 pp.

Zeigler, B. P. 1976. Theory of modelling and simulation.
John Wiley & Sons. New York. 3 pp.

87

APPENDICES

88

APPENDIX I

This appendix includes the TRIMHASH.C program which was

written in C language. This program processed the existing TRIM

data files using a hashing function with the data structure of the

table pointer, database file, and the linked list. After TRIM data files

were proccessed by the program, two files, NEWTRIM.DAT and

HASH.TBL, were created. The NEWTRIM.DAT file contained the

collection of all processed stem analysis trees' records, or nodes and

an associated file HASH.TBL stored the addresses of all the nodes.

When executing the program TRIMHASH.C, the user will be

prompted to enter the following information: (1) plot label, and (2)

total number of trees in plot. The example for the excution of this

program is given in this appendix.

Author: Tiemin Sheng

School of Forestry

Lakehead University

Dec. 1992

89

Figure I-l. The flow chart of the TRIMHASH.C program:

90

Here is an example of how to execute the TRIMHASH.C program:

$cc TRIMHASH.C -Im < return >
%a.out < return >
$ENTER NEXT PLOT LABEL: K1 < return >
SENTER TOTAL NUMBER OF TREES IN PLOT LABEL<K>: 31 < return >
SENTER NEXT PLOT LABEL: K2 < return >
SENTER TOTAL NUMBER OF TREES IN PLOT LABEL<K2>: 22 < return>
$WAIT
ISUCCESS

91

Main program: TRIMHASH.C

#include<stdio.h>
^include "define.h"
^include "trdefine.h"
*^include "processdata.h"
*^include "fileclose.h"

FILE * fpt_l;
FILE * fpt_2:
FILE * fpt_3:
FILE * hashptr;
FILE * fptr;

char fn_l[FN_LEN];
char fn_2[FN_LEN];
char fn_3[FN_LEN];
long hash_tbl[HASH_TAB_SIZE];
char lab[MAX_PLT_LAB][LAB_LEN];
ini num_trl MAX_PLT_LAB];
struct tree_info temp;

mainO
(

int i, trnum;

label_tr_num_input():

for(i = 0; i < MAX_PLT_LAB; i++)
(

for(trnum = 1; trnum <= *(numtr+i); trnum++)
(

process_data(&i, Sctrnum);
)

)
file_close():

92

Source File; clear.nod

^include "define.h"
^include "extern.h"

node_clear()
{

int i, j, k;

temp.plt_lab[0] = \0’;

temp.sp_code[0] = '\0':

temp.tn = 0;

temp.age = 0;

temp.dbh_age = 0;

temp.last_ck_age = 0;

temp.dbhob = 0.0;

temp.vio = 0.0;

for(i = 0; i < 2; i++)
(

*(temp.s_cor+i) = 0.0;

*(temp.c_cor+i) = 0.0;
)
for(j = 0; j < 100; j++)
{

*(temp.dbhs+j) = 0.0;
)
for(k = 0; k < MAX_YEAR_NUM;
{

*(temp.vols+k) = 0.0;
)
temp.next = 0;

)

k++)

93

Source File: clear.tbl

^include "define.h"
^include "extern.h"

clear_tbl()
(

int i;

for(i = 0; i < HASH_TAB_SIZE; i++)
{

*(hash_tbl + i) = 0;
}

)

Source File: closefile.h

^include "extern.h"

close_file()
{

)

fclose(fpt_l):

fclose(fpt_2);

fclose(fpt_3):

94

Source File: dbhput.h

^include<sldio.h>
^include <assert.h>
*^include "define.h"
^include "extern.h"

dbhs_put(old)
int * old;

C
int i, yearcut, re;

char sc[3 1, line! 1000];
double dht, sbt, pith, rad. array[100];

while(fgets(line, 1000, fpt_l) != NULL)
{

assert(sscanf(line,"%s%d%lf%d%lf%lf%lf", sc, &yearcut,&dht,

&rc,&sbt,&pith,&rad)==?)■
if(dht == 130.0000)
{

read_ring_wid(&rc, array);

assign_dbhs_to_temp(&rc, &sbt, &pith, &rad, array);
}
else
(

for(i = 0; i < skip_over_line(&rc); i++)
{

fgets(line, 1000, fpl_l); /*cast unwanted lines*/
)

)
)
*old = rc;

temp.age = rc;

strcpy(temp.sp_code, sc);

return(SUCCESS)
)

95

skip_over_line(rc)
int * rc;

{
int num_line, remainder;
num_line = 0;
remainder = *rc;

if(remainder <= 10)
{

num_line = 1;
)

else
(

while(remainder > 10)
{

remainder = remainder - 10;
num_line++;

}
if(remainder > 0)
{

num_line = num_line + 1;
)

)
return(num_line);

}

read_ring_wid(rc, ring_array)
int * rc;
double * ring_array;
{

int i;
for(i = 0; i < *rc; i++)
C

if(!(i%10)) /* skip over year, then read data */
{

fscanf(fpt_l, "%*s%lf", ring_array+i);
)
else
{

fscanf(fpt_l, "%lf", ring_array+i);

96

)
)
fscanf("\n"); /* skip over \n', end of line char */

assign_dbhs_to_temp(rc, sbt, pith, rad, ring_array)
int * rc;
double * sbt;
double * pith:
double * rad;
double * ring_array;

{
int i, j:

double dib, dob, yr_r_wdth;

yr_r_wdth = 0;

dib = ((*rad + *pith) * 2.0);

dob = ((*sbt + *rad + *pith) * 2.0);

temp.dbh_age = *rc;

temp.dbhob = dob;

*(temp.dbhs) = dib;

for(i = 0; i < *rc; i++)
{

yr_r_wdth += (*(ring_array + i))* 2.0;

*(temp.dbhs + i + 1) = dib - yr_r_wdth;
)

}

97

Sourec File; define.h

^define SUCCESS 1
^define FAILURE 0
^define END 0
define NOT_END_FILE 1
^define START 1
^define YES 1
^define SAME 0
define FOUND 1
^define NOT_FOUND 0
^define NOT_OPEN 0
^define OK 0
^define MAX_PLT_LAB 22
define LAB_LEN 20
^define FN_LEN 40
^define MAX_YEAR_NUM 100
^define HASH_TAB_SIZE 4097

Source File: extern.h

extern char lab[MAX_PLT_LAB][LAB_LEN];
extern int num_tr[MAX_PLT_LAB];
extern char fn_l [FN_LEN I;
extern char fn_2[FN_LEN I;
extern char fn_3[FN_LEN];
extern FILE *fpt_l;
extern FILE * fpt_2;
extern FILE * fpt_3:
extern FILE * hashptr;
extern FILE * fptr;
extern long hash_tbl[HASH_TAB_SIZE];
extern struct tree_info temp;

98

Source File: fileclose.f

*^include "extern.h"

file_close();
{

fclose(hashptr):

fclose(fptr):

printf("SUCCESSXn■');
}

Source File: fnamebult.h

^include <assert.h>
^include "extern.h"
^include "define.h"

file_names_bult(i, tr_count)
int * i;
int * tr_count;

{
assert(f_l_bult(i, tr_count) =

assert(f_2_bult(i, tr_count) =

assert(f_3_bult(i, tr_count) =
)

f_l_bult(i, tr_count)
int *i;
int *tr_count;

(
static int j = 1;

int k;

char buffi 10];

char array! FN_LEN];

arraylO] = '\0';

= SUCCESS):

= SUCCESS):

= SUCCESS);

99

k = *tr_count;

sprintn buff, "%d ’, k); /* convert ini to char */

strcat(array, labi *i]);
strcat(array,);
strcat(array, buff);
strcat(array, ".out");
fn_l[0] = ’\0':
strcpy(fn_l, array);

return(SUCCESS);
}

f_2_bult(i, tr_count)
int *i;
int *tr_count;
{

int k;
char buff[10];
char array [FN_LEN];

arraylO] = \0';
k = *lr_count;

sprintf(buff, "%d", k); /* convert int to char */

strcpy(array, "ad_");
strcat(array, lab[*i]);
strcal(array,);
strcal(array, buff);
strcat(array,);
fn_2[0] = \0’:
strcpy(fn_2, array);

)
return(SUCCESS);

100

f-3-bult(i, tr_count)
int *i;
ini *tr_count;

{
int k;
char buffi 20];
char arrayi FN_LEN];

arraylO] = \0';
k = *tr_count;

sprintf(buff, "%d", k) /* convert int to char */

strcpy(array, "annv_");
strcat(array, lab[*i]);
strcat(array,);
strcat(array, buff);
strcat(array,);
fn_3i0] = \0':
strcpyC fn_3, array);

return(SUCCESS);
}

Source File; hash.fun

^include <math.h>
^include "define.h"
^include "extern.h"

hash(i, lr_count)
int *i;
int *tr_count;

(
char cbuffi 20], *cptr;
double constnt, position;

101

long hash_value;

hash_value = 0;
position = 0;
constnt = 3:

sprintf(cbuff, “%d”, *tr_count);
cpir = cbuff:

while(*(lab[*i] + position) != \0')
{

hash_value += pow(position+l, constnt)*(*(lab[*il+position));
position++:

)
while(*cptr++ != \0')
{

hash_value += pow(position+1, constnt) * (*(cptr-l));
position++:

)
return((int) (hash_value%HASH_TAB_SIZE));

Source File; hghput.h

^include "extern.h"
^include "define.h"

hghs_put(old)
int * old;
{

int i, j, k, num, start, index;
double array[5000];
k = 0;
index = 0;

while(fscanf(fpt_2, "%lf", array+index) == NOT_END_FILE)
{

102

index++:

)
num = (*old) * 2;

start = index - num;

for(j = 0; j < *old; j++)
{

*(temp.hghs + j) = *(array + start + k)/100

k += 2;

)
return(SUCCESS);

Source File; install.nod

^include <assert.h>
^include "define.h"
^include "extern.h"
^include "dbhput.h"
^include "hghput.h"
^include "volclt.h"
^include "clear.nod"

install_node(i, tr_indx)
int * i;
int * tr_indx;

{
int old;

node_clear();

strcpy(temp.plt_lab, lab [*i]):

temp.tn = *tr_indx;

assert(dbhs_put(&old) == SUCCESS);

assert(hghs_put(&old) == SUCCESS);

assert(vols_clt() == SUCCESS);
)

103

Source File; numput.h

#include<stdio.h>
#include<string.h>
^include'define.h"
^include'extern.h"

label_tr_nu m_input()
(

int n;

char *cpointer;

for(n = 0; n < MAX_PLT_LAB; n++)
{

printf("\nEnter Next Plot Label: ");

fgets(lab[n], LAB_LEN, stdin);

cpointer = strchr(lab[n], '\n');

*cpointer = \0';

printf("\nEnter Total Number Of Trees:");

scanf("%d", num_tr + n);

getcharO:

printf("\n\nWhat you just input are as follows:");

printf("\n\n%-12s%-12s", "Plot Label;", lab[n]);

printf("\n%-24s%-8d\n", "Total Number Of Trees:",

*(num_tr+n));
3
printf("\n\nWAIT \n");

Source File; openfile.h

^include <assert.h>
^include "extern.h"
^include "define.h"

104

open_files()
{

if(fplr == NOT_OPEN)
{

assert! (fptr == fopen("trim.dat",
)
assert! ! fpt_l = fopen! fn_l, "r"))

assert! ! fpt_2 = fopen! fn_2, "r"))

assert! ! fpt_3 = fopen! fn_3, "r"))

Source File: readhash.h

*^include <assert.h>
^include "define.h"
^include "extern.h"
^include "clear.tbl"

readhash!)
(

clear_tbl!);

openhash!):

if! fread! hash_tbl, sizeof!long), HASH

{
hash_update!):

}
)

openhash!)
!

if! hashptr — 0)
(

assert! ! hashptr = fopen! "hash.tbl",
)
else
{

"a+")) != FAILURE);

= FAILURE):

= FAILURE):

= FAILURE):

,TAB_SIZE, hashptr)

< HASH_TAB_SIZE)

"r+")) != FAILURE);

fseek! hashptr, !long)0, 0);

105

)
)
hash_updale()
{

3

rewind(hashplr);

assert((fwrite(hash_tbl, sizeof(long), HASH_TAB_SIZE, hashptr))
!= FAILURE):

Source File: trdefine.h

^include "define.h"

struct tree_info
{

char plt_lab[LAB_LEN];

int tn;

char sp_code[3 1:

int age;

int dbh_age;

int last_ck_age;

double dbhob;

double dbhs[100];

double hghs[100];

double vio;

double vols[MAX_YEAR_NUM];

double s_cor[2];

double c_cor[2];

int next;

3:

106

Source File; volclt.h

^include <stdio.h>
^include <assert.h>
^include "extern.h"
^include "define.h"

vols_clt()
{

int max_shth, tot_disc;

double array! 100][150 1;

clear_array(array);

assert! read_shth_vol(&tot_disc, &max_shth, array)==SUCCESS);

assert! clt_vol! &tot_disc, &max_shth, array) == SUCCESS);

return! SUCCESS);
}

clear_array! array)
double !* array)! 150];

{
int line, col;

for! line = 0; line < 100; line++)
{

for! col = 0; col < 150; col++)
{

*! array! line] + col) = 0.0;
)

)

read_shth_vol! tot_disc, max_shth, array)
int * tot_disc;
int * max_shth;
double !* array)! 150];

(

107

ini r_count, disc_num, col;
disc_num = 0;
while(fscanf(fpt_3, "%d “, &r_count) == NOT_END_FILE)
{

disc_num ++;
for(col = 0; col < r_count; col++)

{
fscanf(fpt_3, "%lf", (array[disc_num-1]+col));

)
)
*max_shth = r_count;
*lot_disc = disc_nutn;
letnp.last_ck_age = r_count - 2;

return(SUCCESS);
)

clt_vol(tot_disc, max_shth, array)
int * tot_disc;
int * max_shth;
double (* array)! 150];
{

int i, line_num, col_nutn:
double vob, shth_vol;
shth_vol = 0;
for(col_num = *tnax_shth; col_num > 0; col_num--)
{

for(line_num = 0; line_nutn < *tot_disc; line_num++)
{

shth_vol += *(array! line_num 1 + col_num - 1);
)

*(temp.vols + col_num - 1) = shth_vol/l000000;
/* unit: m''3 */

)
return(SUCCESS);

)

108

Source File; writetofile.h

^include "define.h"
^include "extern.h"
^include "hash.fun"

file_add(i, tr_num)
int * i;
int * tr_num;

(
long hash_value, record;

hash_value = hash(i, tr_num);

temp.next = hash_tbl[hash_value];

record = addtofileO;

hash_tbl[hash_value] = record + 1;

addtofileO /* always adds record to end of file */
{

long here;

fseek(fptr, (long)O, 2);

here = ftelK fptr);

fwrite((char*) &temp, sizeof(struct tree_info), 1, fptr);

}
return(byle_lo_record(here));

109

APPENDIX II

This appendix includes the PRINT.C program which was

written in C language. This program was developed for a user to

print the stored information of any processed stem analyzed trees

from TRIMHASH.DAT files.

Author: Tiemin Sheng
School of Forestry
Lakehead University
Dec. 1992

110

Figure II-1. The flow chart of the PRINT.C program:

Here is an example of how to execute the PRINT.C program :

tcc PRINT.C -Im < return >
%a.out < return >
SENTER PLOT LABEL: K1 < return >
SENTER TREE NUMBER: 9 < return >

(Note: Results printed on computer screen were shown in Table 7.)

SWOULD YOU LIKE PRINT MORE ?

SENTER < 1 > FOR YES, OR
SENTER < 0 > FOR NO.

SYOUR CHOICE ?

$0 < return >

112

Table II-1. The example of results printed by the PRINT.C
program;

Plot label: k 1 Tree number: 9

Species code: Pj
Age: 21
DBH(m): 1.341100
Height(m): 1 1.85000
Volume(m‘3): 0.098708

Year

DBH
Height
Volume

1

0.000000
0.070000
0.000050

2

0.000000
0.520000
0.000155

7

0.267800
2.750000
0.004366

12

0.824600
6.620000
0.024036

17

1.139200
9.670000
0.060550

3

0.026000
0.970000
0.000362

8

0.392100
3.250000
0.006640

13

0.894600
6.870000
0.031398

18

4

0.049400
1.400000
0.000777

9

0.507100
4.750000
0.009833

14

0.973000
7.750000
0.038513

19

5

0.100800
2.120000
0.001406

10

0.625900
5.100000
0.013831

15

1.032900
8.250000
0.045367

20

Year 6

DBH 0.167800
Height 2.370000
Volume 0.002565

Year 11

DBH 0.733100
Height 5.750000
Volume 0.018572

Year 16

DBH 1.088300
Height 8.750000
Volume 0.052790

Year 21

DBH 1.341100
Height 1 1.850000
Volume 0.098708

1.186100
9.920000
0.070397

1.241400
10.520000
0.081352

1.289700
1 1.120000
0.090860

113

The main program PRINT.C:

^include <stdio.h>
^include <assert.h>
^include "define.h"
^include "irdefine.h"
^include 'preadhash.h'
^include "popenfile.h"
^include "pgetnum.h"
^include "pgetcom.h"
^include "plook.up"
^include "pclosefile.h"

FILE *fptr;
FILE *hashptr;
FILE *wfpl;

char tr_num[20];
char lab[20];
long hash_tbl[HASH_TAB_SIZE];
struct tree_info temp;

mainO
{

int look_next;

look_next = START;

while(look_next == YES)
{

get_lab_tr_num();

open_file();

readhashO;

lookupO:

get_next_command(&look_next);
)
close_file();

114

Source File: processdata.h

*include<stdio.h>
^include fnamebult.h”
^include "openfile.h"
^include "readhash.h"
^include 'install.nod"
^include "write.nod"
^include "closefile.h"

process_data(&i, &lr_nutn);
int *i;
int *lr_nutn:
{

file_names_bull(&i, &lr_nutn);

open_files();

readhashO:

install_node(&i. &tr_num);

file_add(&i, &tr_num);

hash_update():

close_file();
}

Source File: pclear.h

^include "define.h"

extern struct tree_info temp;

temp_clear()
{

int i. j, k;

temp.plt_lab[0] = \0':

temp.sp_codeI 0] = \0';

temp.tn = 0;

temp.age = 0;

115

temp.dbh_age = 0;

temp.dbhob = 0.0;
temp.vio = 0.0;

for(i = 0; i < 2; i++)
(

*(lemp.s_cor+i) = 0.0;

*(temp.c_cor+i) = 0.0;
}
for(j = 0; j < 100; j++)
{

*(temp.dbhs+j) = 0.0;
)
for(k = 0; k < MAX_YEAR_NUM;
{

*(temp.vols+k) = 0.0;
)
temp.next = 0;

Source File: pclosefile.h

^include "pexlern.h"

close_file()
{

fclose(hashptr);

fclose(fptr);

fclose (wfpt);
)

Source File: pextern.h

extern FILE * fptr;

extern FILE * hashptr;

extern FILE * wfpt;

extern char lab[20];

k++)

116

extern char tr_num[20];
extern long hash_tbl[HASH_TAB_SIZE];

Source File: pgetcom.h

get_next_command(answer)
int *answer;
(

printf("\nLook Next Record ? \n Press< 1 > For Yes\nPress< 0 >
For No\n"):

printf("Enter Your Choice: ");
scanf("%d", answer);
getcharO:

Source File: pgetnum.h

^include "pextern.h"

get_lab_tr_nutn()
{

printf("\nEnter Next Plot Lable:");
fgets(lab, 20, stdin);

printf("\nEnter Tree Number:");
fgets(tr_num, 20, stdin);

Source File: phash.h

^include <math.h>
*^include <string.h>
*^include "pextern.h"

hash_function()
{

long hash_value;

117

char *cpointer, *cplr;
double constnt, position;

cpointer = strchr(lab, \n');
*cpointer = '\0';

cpointer = strchr(tr_num, '\n');
*cpointer = '\0';

position = 0;
hash_value = 0;
constnt = 3:
cptr = &tr_numl 0];

while(*(lab + position) != \0')
C

hash_value += pow(position+1, constnt)*(*(lab + position));
position++;

}
while(*cptr++ != \0')
{

hash_value += pow(position+1, constnt) *(*(cptr-l));
position++:

)
return((int) (hash_value%HASH_TAB_SIZE));

Source File: plook.up

^^include <string.h>
^include <stdlib.h>
^include 'define.h’
^include "phash.fun"
^include "pextern.h"
*^include "pprint.h"
^^include "pclear.h"

extern struct tree_info temp;

118

lookupO
(

if(record-searchO == FOUND)
{

print_record():
temp_clear():

}
else
{

printf("\nlnvalid Plot Label Or Tree Number.\n");
return:

)

Source File: popenfile.h

^include <assert.h>
^include "define.h"
^include "pextern.h"

open_file()
(

assert((fptr = fopen("trim.dat", "r+")) != FAILURE);
assert((hashptr = fopen("hash.tbl", "r+")) != FAILURE);
assert((wfpt = fopen("trim.out", "w")) != FAILURE);

3

Source File; preadhash.h

^^include <assert.h>
^include "define.h"
^include "pextern.h"

readhashO
{

int n;

119

openhashO;

if((n = fread(hash_tbl, sizeof(long), HASH_TAB_SIZE, hashptr))
< HASH_TAB_SIZE)

{
printfC “HASH TABLE CORRUPTEDAn");

exit(1):
)

)

Source File: print.h

extern struct tree_info temp;

print_record()
(

print_header():
print_content();

print_header()
{

printf(' \n%20s%-12s%-1 Os", " "Plot label:", temp.plt_lab);

printfC "%-12s%s%-10d\n\n\n", "Tree number:", " ", temp.tn);

printf("%-15s%s\n", "Species code:", temp.sp_code);

printf("%-15s%d\n", "Age:", temp.age);

printf("%-15s%f\n", 'DBH(m):", temp.dbhslO]/100);

printf("%-15s%f\n", "Height!m):", temp.hghslO]);

printf("%-15s%f\n\n\n", "Volume(m'3):", temp.volslO]);

print_content()
{

int i, j, k, h, p, n, time, old, line, remainder;

120

time = 0;

old = temp.age;

remainder = old%5:

line = old/5;

for(i = 0; i < line; i++)
(

printf("%-5s", "Year");

for(j = 1: j <= 5: j++)
(

printf("% 12d", j+time);
)
printf("\n\n");

printf("%-8s", "DBH");

for(k = 0; k < 5: k++)
{

printf("% 12f", *(temp.dbhs+old-time-k-l)/l 00);
)
printf("\n");

printf("%-8s", "Height");

for(h = 0; h < 5: h++)
{

printf("% 12f", *(temp.hghs+old-time-h-1));
)
printf("\n");

printf("%-8s", "Volume");

for(p = 0; p < 5: P++)
{

printf("% 12f", *(temp.vols+old-time-p-1));
)

printf("\n\n");

time += 5:
)
if(remainder > 0)
(

printf("%-5s", "Year");

for(j = 1; j <= remainder: j++)
(

printf("%12d", j+time);

121

)
printf("\n\n");

printf("%-8s", "DBH");

for(k = 0: k < remainder: k++)
{

printf(■'% 12f", *(temp.dbhs+old-time-k-1)/100)
)
printf("\n");

printf("%-8s"', "Height");

for(h = 0; h < remainder: h++)
(

printf(12f ", *(temp.hghs+old-time-h-1)):
)
printf("'\n'"):

printf(""%-8s"’, "'Volume'"):

for(p = 0: p < remainder: p++)
(

printf("'% 12f"', *(temp.vols+old-time-p-l)):
}
printf(""\n\n "):

}
)

122

APPENDIX III

This appendix includes the SIMULATION.C program which

was written in C language. This program was developed to perform

two two-stage sampling simulations. The program would use both

NEWTRIM.DAT and hash table HASH.TBL. After this program was

executed the SIMULATION.DAT file would be created.

Author: Tiemin Sheng
School of Forestry
Lakehead University
Dec. 1992

123

Figure III-l. The flow chart of the SIMULATION.C program:

continue continue

wrtitleO
T

writefile 1 ()

prhderO

wtitleO

writefile2()

j wrtresuiiO

prheaoerO

locnarO

jgeuruenumO

geisiorO

wrtresuiiO

getsiorO

gettruemeanO

ciiraiioO

turntocnarO

puiresuiiO

puuiiieO

pnnineaoerO

writefile3()

124

Fig III -1 continued

continue of flow chart of the SIMULATION.C program:

continue

125

Here is an example how to execute the SIMULATION.C program:

%cc SIMULATION.C -Im < return >
$a.out < return >
lENTER LABEL: K < return >
SENTER TOTAL NUMBER OF PLOTS: 3 < return >
SHOW MANY PLOTS WOULD YOU LIKE TO SAMPLE:

SENTER PLOT NUMBER: 1 < return >
SENTER PLOT NUMBER: 3 < return >
SENTER TOTAL NUMBER OF TREES FOR < K1 > : 31
SENTER TOTAL NUMBER OF TREES FOR < K3 >: 23
SWAIT

SSUCCESS

2 < return >

< return >
< return >

126

The simulation main program; SIMULATION.C

^include <stdio.h>
^include "define.h"
^include "openfile.h"
^include "readhash.h"
^include "getinfo.h"
^include "findpjnum.h"
^include "popuinfo.h"
^include "sampling.h"
^include "closefile.h"
^include "sumbasal.h"

FILE *rfpt;
FILE *hfpt;
FILE *wfpt;
FILE *tfpt:
FILE *pfpt;
FILE *sfpt;
FILE *cfpt;

int NP;
int totplt;
int totpj;
int maxsample;
int pjperplt[MAX_PLOT];
int trperpltl MAX_PLOT 1;
char pltlabl MAX_PLOT];
char plotnol MAX_PLOT][6];
int pjnumi MAX_PLOT][MAX_TREE];
long hash_tbl[HASH_TAB_SIZE];
double volpopi PJ_NUM][MAX_YEAR];
double baspopi PJ_NUM][MAX_YEAR];
double volspU MAX_SAMPLE_TREE];
double basspll MAX_SAMPLE_TREE];
double mvolperhal MAX_YEAR];
double mbaspertrl MAX_YEAR];
double stdrr[MAX_YEAR];
double sumbasl PJ_NUM 11 MAX_PLOT 1;
double vppsspi MAX_SAMPLE_TREE][MAX_PLOT];
double bppsspi MAX_SAMPLE_TREE][MAX_PLOT];

127

mainO
{

int year;

open_file():
read_hash():
get_info():
find_pj_num():
popu_info():
for(year = 0; year < MAX_YEAR;
{

sum_basal(year);
sampling(year);

}
close_file():

)

Source File; nodedef.h

struct tree_info
{

char plt_lab[20];
int tn;
char sp_code[3 1:
int age;
int dbh_age;
int last_ck_age;
double dbhob;
double dbhs[100];
double hghs[100];
double vio;
double vols[100];
double s_corI 2 1;
double c_cor[2 1;
int next;

):

year++)

128

Source File; openfile.h

^include <assert.h>
^include "define.h"

extern FILE *rfpt;
extern FILE *wfpt;
extern FILE *tfpt;
extern FILE *pfpt;
extern FILE *sfpt;
extern FILE *cfpt;

open_file()
{

assert! (rfpt = fopen("trim.dat", "r "))

assert! ! tfpt = fopen! "true.dat", ""r+""))

assert! ! sfpt = fopen! "stdr.dat ", '"r+ "))

assert! !wfpt = fopen! "mean.dat"", '"w")

assert! ! pfpt = fopen! '"erre.dat ", "w""))

assert! ! cfpt = fopen! "prcn.dat", "w""))
)

Source File: basal.h

double basal! prev, next)
double prev;
double next;
(

double currarea, prevarea, cbas, pbas,

double a, b, c;

c = 2;

parameter = 15*666.7;

a = prev/2;

b = next/2;

!= FAILURE);

!= FAILURE);

1= FAILURE);
) != FAILURE);

!= FAILURE);

!= FAILURE);

incre, parameter;

currarea = pow! a, c) * 3.141592;

prevarea = pow! b, c) * 3-141592;

129

cbas = currarea/parameter;
pbas = prevarea/parameter;
incre = fabs(cbas - pbas); /* in case of data error */

return(incre);
)

Source File: closefile.h

extern FILE *rfpt;
extern FILE *hfpt;
extern FILE *wfpt;
extern FILE *tfpt;
extern FILE *pfpt;
extern FILE *sfpt;
extern FILE *cfpt;

close_file()
{

fcloseC rfpt);
fclose(hfpt):
fclose(wfpt);
fclose(tfpt):
fclose(pfpt);
fclose(sfpt):
fclosel cfpt):

)
printfl "SUCCESSNn");

130

Source File: define.h

^define SUCCESS 1
^define FAILURE 0
define END 0
^define YES 1
^define NOT 0
^define FOUND 1
^define NOT_FOUND 0
^define DONE 1
define NOT_DONE 0
define OK 0
^define M INSAMPLE 2
^define MAX_YEAR 10
^define MAX_PLOT 20
^define MAX_TREE 200
^define PJ_NUM 500
^define MAX_SAMPLE_TREE 500
^define MAX_SIMULATION 2500
^define HASH_TAB_SIZE 4097
^define ALLOW ABLE_ERROR 0.001

Source File: findpjnum.h

^include <string.h>
^include "searchpj.h"

extern int totplt;
extern int trperplt[MAX_PLOT];
extern int pjperpltl MAX_PLOT];
extern char pltlab[MAX_PLOT];

find_pj_num()
{

int i, j;
char array! 20];

131

for{ i = 0; i < totpit; i++)
{

join_plt_lab(i, array);

within_plt(i, array);
)
f in d_ tn in_n u m ():

join_plt_lab(i, array)
int i;
char * array:
{

char num[3 1:

num[0] = ’\0';

*array = \0';

strcpy(num, plotno+i);

strcat(array, pltlab);

strcat(array, nutn);
)

within_plt(i, array)
int i;
char *array:
{

int j, indx;

indx = 0;

for(j = 1; j <= trperpltl i];
{

search_pj(i, array, j,
}

}

find_min_nutn()
(

int i, tempi 20 1;

/* result ex: k 1 */

j-)

&indx):

for(i = 0: i < totpit: i++)

132

{
temp[i] = pjperpitl i];

)
quick_sort(temp, temp+totplt-1);

maxsample = temp[0];

quick_sort(lower, upper)
int *lower, *upper;
(

int partition:

int *iptr, *previous_low;

if(lower < upper)
{

partition = *lower;

previous_low = lower;

for(iptr = lower+1; iptr <= upper; iptr++)
(

if(*iptr < partition)
{

previous_low++:

swap(previous_low, iptr);
}

)
swap(lower, previous_low);

quick_sort(lower, previous_low - 1);

quick_sort(previous_low + 1, upper);
)

}

swap(left, right)
int *left;
int *right;

{
int shelt;

133

shell = *left;

*left = *right;

*righl = shell;

Source File: gelinfo.h

^include <asserl.h>
^include <slring.h>
^include "define.h"

exlern char plllab[MAX_PLOT];
exlern ini NP;
exlern ini lolpll;
exlern char plolno[MAX_PLOT][6];
exlern ini Irperplll MAX-PLOT];

gel_info()
{

asserl(gel_pll_lab() == SUCCESS);

asserl(gel_plol_nutn() == SUCCESS);

asserl(gel_sample_plolno() == SUCCESS);

asserl(gel_lrperpll() == SUCCESS);

prinlf("WAIT \n");
)

gel_pll_lab()
{

char *cpoinler;

prinlf("\n\nENTER LABEL:");

fgels(plllab, 20, sldin);

cpoinler = slrchrC plllab, \n');

*cpoinler = \0';

prinlf("\n");

134

return(SUCCESS);
)

get_plol_num()
{

printf("HOW MANY PRIMATIVE PLOTS:");
scanf("%d", &NP);
getcharO;
printf("\n");

printf("HOW MANY PLOTS YOU WANT TO SAMPLE:");
scanf("%d", &totplt);
getcharO;
printf("\n");

return(SUCCESS);
}

get_sam ple_plotno()
(

int i;
char *cptr;

for(i = 0; i < totplt; i++)
{

printf("ENTER SAMPLED PLOT NUMBER:");
fgets(plotno+i, 6, stdin);
cptr = strchr(plotno+i, '\n');
*cptr = \0':
printf("\n");

)
return(SUCCESS);

135

get_trperplt()
{

int i;

for(i = 0; i < totplt; i++)
{

printf("ENTER TOTAL NUMBER OF TREES IN %s%s:", pltlab,
plotno+i):

scanf("%d", trperplt+i);

getcharO:

printf("\n");
)
printf("\n");

return(SUCCESS);

Source File: formerclt.h

^include<math.h>
^include "define.h”

extern int totplt;
extern int pjperplt[MAX_PLOT];
extern double vppsspf MAX_SAMPLE_TREE][MAX_PLOT];
extern double bppsspi MAX_SAMPLE_TREE][MAX_PLOT];
extern double sumbasi PJ_NUM][MAX_PLOT];

double former_clt(size)
int size;
{

int i;

double a, c, iteml, item2, result;

double iteml_clt(), item2_clt();

c = 2;

result = 0;

item2 = item2_clt(size);

for(i = 0; i < totplt; i++)

136

(
iteml = iteml_clt(size, i);

a = fabs(iteml - item2);

result += pow(a, c);
)
returnC result);

double iteml_clt(size, i)
int size:
int i;
{

int p, mi, Mi;

double sum, result;

mi = size;

sum = 0;

Mi = pjperplt[i];

for(p = 0; p < mi; p++)
{

sum += vppssp[p][i]/bppssp[p][i]
)
result = (sumbasl Mi-1][i]*sum)/mi;

return! result);
)

double item2_clt(size)
int size;
{

int j, p, Mi;
double sum, tot, mi, result:

sum = 0;

tot = 0;

mi = size;

for(j = 0; j < totplt; j++)

137

{
Mi = pjperplt[j];

for(p = 0; p < mi; p++)
(

sum += vppsspi p][j]/bppssp[p II j];
}
tot += (sumbasi Mi-1][j 1 * sum)/mi;

)
result = tot/totplt;

return(result);

Source File: latterclt.h

*^include <math.h>

extern int totplt;
extern int NP;
extern int pjperpltl MAX_PL0T];
extern double sumbas[PJ_NUM][MAX_PL0T 1;
extern double vppssp[MAX_SAMPLE_TREE][MAX_PL0T];
extern double bppsspi MAX_SAMPLE_TREE][MAX_PL0T 1;

double latter_clt(size)
int size;
{

int j;

double iteml, item2, sum, n, N, result;

double clt_iteml(), clt_item2();

sum = 0;

n = totplt:

N = NP;

for(j = 0; j < totplt: j++)
(

iteml = clt_iteml(size, j);

item2 = clt_item2(size, j);

138

sum += iteml * item2;
)
result = sum/(N*n):

return(result);

double clt_iteml(size, j)
int size;
int j;
{

int Mi;

double c, mi, sumpltbas, sum, squ, result;

c = 2,
Mi = pjperplU j];

mi = size;

sumpltbas = sumbasi Mi - 1][j];

squ = pow(sumpltbas, c);

result = (squ*(Mi - mi))/(Mi*mi*(mi-1));

returnC result);
)

double clt_item2(size, j)
int size;
int j;
{

int p;
double a, b, c, mi, sum, result;

c = 2;

sum = 0;

for(p = 0; p < size; p++)
(

sum += vppssp[p][j]/bppssp[p]I j 1;
)
a = sum/size;

139

b = fabs(sum - a);
result = pow(b, c);

return(result);
)

Source File: getstdr.h

extern FILE *sfpt;
extern double stdrr[MAX_YEAR];

get_stdr(year)
int year;
(

int i;

rewind(sfpt);

for(i = 0; i < year; i++)
{

fscanf(sfpt, "%*s");
)
fscanf(sfpt. "%lf“, Scstdrrl year]);

Source File: getruemean.h

extern FILE *tfpt;
extern double mvolperha[MAX_YEAR];

get_true_mean(year)
int year;
(

int i;

rewind(tfpt);

for(i = 0; i < year; i++)
{

140

fscanf(tfpt, "%*s");
)
fscanf(tfpt, Scmvolperhaf year]);

Source File: getvolbas.h

^include "define.h"
^include "basal.h"

extern int totpj;
extern double volpopl PJ_NUM][MAX_YEAR];
extern double baspopf PJ_NUM][MAX_YEAR];

get_vol_bas(temp)
struct tree_info temp;
(

int i;

double prev, next;

double basalO:

for(i = 0: i < MAX_YEAR; i++)
(

volpop[totpj][i] = temp.volsli] - temp.volsli

prev = temp.dbhs[i]; /*

next = temp.dbhs[i+1];

baspopf totpj][i] = basaK prev, next);

)
)

Source File: hash.fun

^include <math.h>
^include "define.h"

hash(label, trnum)
char *label;

+1]; /* unit: m"3 */

unit: mm */

/* mm''2/ha. */

141

int trnum;
{

int num;

char chuff I 100 1;

char *cptr;

double constnl, position;

long hash_value;

hash_value = 0;

position = 1;

constnt = 3:

num = trnum;

sprintf(chuff, "%d", num);

cptr = chuff;

while(*label++ != \0')
{

hash_value += pow(position, constnt)*(*(label-l));

position++;
)
while(*cptr++ != \0’)
(

hash_value += pow(position, constnt) * (*(cptr-l));

position++;
)
returnC (int) (hash_value%HASH_TAB_SIZE));

)

Source File: ischeck.h

^include "define.h"

extern int pjnum[MAX_PL0T][MAX_TREE];
extern int pjperpltl MAX_PL0T];

isfirsttime(chosennum, array, j)
int chosennum;

142

int *array, j;
{

int p;

for(p = 0; p < j: P++)
{

if(*(array+p) == chosennum)
{

return(NOT);
)

}
return(YES);

)

int ispj(i, chosennum)
int i;
int chosennum;
{

int position:

for(position = 0; position < pjperpltl i]; position++)
{

if(pjnumi i][position] == chosennum)
(

returnC position + 1): /*in case zero position */
)

)
return(NOT);

3

Source File: pltsmpl.h

extern int pjperplt[MAX_PLOT];
extern double volpopi PJ_NUM][MAX_YEAR];
extern double baspopi PJ_NUM][MAX_YEAR];
extern double sumbas[PJ_NUM][MAX_PLOT];
extern double vppsspi MAX_SAMPLE_TREE][MAX_PLOT];
extern double bppsspi MAX_SAMPLE_TREE][MAX_PLOT];

plt_smpl(k, year, j, count)

143

int k;
int year;
int j:
int *count;
{

int p, end, indx, max;

double num, randnum;

end = pjperplt[j];

max = sumbas[end - 1][j] * 1000000;/* ! rescale basal area */

for(p = 0; p < k; p++)
(

randnum = rand()%(max+1); /* number ranging: 0 max */

num = randnum/1000000; /*!scale back */

indx = locating(j, num);

vppssp[p][j] = volpopi *count+indx][year I;

bppsspl p][j] = baspopi *count+indx][year];
)
count += end; / enter next plot data field */

)

locating(j, num)
int j;
double num;
{

int h;

for(h = 0; h < pjperplt[j }; h++)
(

if(num <= sumbas[h][j])
(

return(h);
)

)
)

144

Source File: popuinfo.h

^include <assert.h>
^include "define.h"
^include "popumean.h"
*finclude "popustdr.h"

extern int totplt;
extern int NP;

popu_info()
{

double aver[MAX_YEAR];

assert(popu_mean(aver) == SUCCESS);

if(totplt == NP)
(

assert(popu_stdr(aver) == SUCCESS);

assert(save_stdr() == SUCCESS);
)

Source File: popumean.h

^include <math.h>
^include ' define.h"

extern FILE *tfpt;
extern int totplt;
extern int totpj;
extern double mvolperhal MAX_YEAR];
extern double mbaspertr[MAX_YEAR];
extern double volpop[PJ_NUM][MAX_YEAR];
extern double baspopi PJ_NUM II MAX_YEAR 1;

popu_mean(aver)
double *aver;
(

145

int i, i:

double vincre, bincre, aveperplt, parameter;

parameter = 15*666.7/100;

vincre = 0;

bincre = 0;

for(i = 0; i < MAX_YEAR; i++)
{

for(j = 0; j < totpj; j++)
(

vincre += volpopl j][i];

bincre += baspopi j][i];
)
aveperplt = vincre/totplt; /* average vol/plot */

if(totplt == NP)
{

mvolperhal i] = aveperplt*parameter; /* mean vol/ha. */

(aver+i) = vincre/totpj; / mean vol/tree */
}
mbaspertrl i] = bincre/totpj; /* average basal area/tree */

/* unit: mm"2 of a tree/ha.*/

vincre = 0;

bincre = 0;
)
if(totplt == NP)
{

save_true_mean();
}
return(SUCCESS);

save_true_mean()
{

int i;

char stringl 20];

for(i = 0; i < MAX_YEAR; i++)

146

(

sprintf(string, mvolperha[i]);

fprintf(tfpt, "%s\n”, string);
)

)

Source File: popustdr.h

^include <math.h>
^include "define.h"

extern FILE *sfpt;
extern int totpj;
extern double stdrri MAX_YEAR];
extern double volpop[PJ_NUM][MAX_YEAR]

popu_stdr(aver)
double *aver;
{

int i, j:

double c, diff, squ, sum;

double trv, totv, hacv, base;

sum = 0;

c = 2;

for(i = 0; i < MAX_YEAR; i++)
(

for(j = 0; j < totpj; j++)
{

diff = fabs(volpop[j][i] - *(aver+i));

squ = pow(diff, c);

sum += squ;
)
trv = sum/totpj;

totv = pow((double)totpj, c) * trv;

hacv = totv * 15*666.7/(3*100);

stdrri i] = sqrt(hacv);

sum = 0;
)

147

return(SUCCESS);
)
save_stdr()
(

ini i;

char stringf 20 1;

for(i = 0; i < MAX_YEAR;
{

sprintf(string,

fprintf(sfpt, "%s\n",
)
relurn(SUCCESS);

Source File: ppsesti.h

^include <assert.h>
*^include "define.h"
^include "ppstnean.h"
^include "ppsvari.h"

pps_esti(n, m, v)
int n;
double *m;
double *v;
{

assertC pps_mean(n, tn)

assert(pps_vari(n, v) =

return! SUCCESS);
)

Source File; ppsmean.h

)

stdrr[i]);

string):

== SUCCESS):

= SUCCESS):

^include ’define.h”

148

extern int tolplt;
extern int totpj;
extern int pjperpltl MAX_PLOT];
extern double vppsspi MAX_SAMPLE_TREE][MAX_PLOT];
extern double bppsspi MAX_SAMPLE„TREE][MAX_PLOT];
extern double sumbas[PJ_NUM][MAX_PLOT];

pps_mean(n, m)
int n;
double *m;
{

int i. p, mi, Mi;
double sum, parameter, plotvol, totvol, avepltvol;

sum = 0;
totvol = 0;
mi = n;
parameter = 15*666.7/100;

for(i = 0; i < totplt; i++)
{

Mi = pjperpltl i 1:

for(p = 0; p < mi; p++)
(

sum += vppsspi p][i]/bppsspI p][i];
)
plotvol = (sumbasi Mi-1][i]*sum)/mi;

totvol += plotvol;

sum = 0;
)
avepltvol = totvol/totplt; /* mean plot volume */

*m = avepltvol*parameter; /* estimated vol/ha. */

return(SUCCESS);
}

Source File: ppssampling.h

^include "define.li'

149

^include "pltsmpl.h"

extern int totplt;
extern int pjperpltl MAX_PLOT];
extern double totbas;
extern double baspopi PJ_NUM][MAX_YEAR];
extern double sumbasi PJ_NUM][MAX_PLOT];

pps_sampling(k, year)
int k;
int year;
{

int j, count;

count = 0;

for(j = 0; j < totplt: j++)
{

plt_smpl(k, year, j, &count);
/* select sample within plot */

)
return(SUCCESS);

}

Source File: ppssimu.h

^include <assert.h>
^include "define.h"
^include "ppssampling.h"
*^include "ppsesti.h"

pps_simu(n, year, mean, vari)
int n;
int year;
double *mean;
double *vari;
{

int p:
double prevsum, currsum, vsum;

150

prevsutn = 0;
currsum = 0;
vsutn = 0;
for(p = 0; p < MAX_SIMULATION; p++)
{

srand(n+p+98); /* set seed starting from 100 */
assert(pps_sampling(n, year) == SUCCESS);
assert(pps_esti(n, mean, vari) == SUCCESS);
if(stable_test(p, mean, vari, &vsum, &prevsum, Sccurrsum)

== YES)
{

break; /* terminate loop */
}

)

Source File: ppsvari.h

^include <math.h>
^include 'define.h’
^include formerclt.h"
^include "latterclt.h"

extern int totplt;
extern int NP;

pps_vari(size, v)
int size;
double *v;
(

double n, N;
double c, former, latter, varperplt, parameter;
double former_clt(), latter_clt();

n = totplt;
N = NP;
parameter = 15*666.7/(3*100);

151

former = former_clt(size);

latter = latter_clt(size);

varperplt = ((N-n)/(N*n*(n-1))) * former + latter; /*

variance/plot */
*v = pow(NP, c)*varperplt*parameter;

return! SUCCESS);
)

Source File: readhash.h

^include <assert.h>
^include "define.h"

extern FILE *hfpt;
extern long hash_tbl[HASH_TAB_SIZE];

read_hash()
(

open_hash():

if(fread(hash_tbl, sizeof(long), HASH_TAB_SIZE, hfpt)
< HASH_TAB_SIZE)

(
fprintf! stderr, "%s\n", "Hash Table Corrupted");

exit! 1):
)

)

open_hash!)
{

if! hfpt == 0)
{

assert! ! hfpt = fopen! "hash.tbl", "r")) 1= FAILURE);
)
else
!

fseek! hfpt, !long)0, 0);
)

152

)

Source File: samplemean.h

*^include ‘define.h"

extern int totplt;
extern int totpj;
extern double mbaspertrl MAX_YEAR];

sample_tnean(year, vsum, bsum, mean)
int year;
double vsum;
double bsum;
double *mean;
{

double parameter, tot;

parameter = 15*666.7/100;
tot = mbaspertrl year]*(vsum/bsum)*totpj;
*mean = (tot*parameter)/totplt; /* average volum/ha. */

return! SUCCESS);

Source File: samplevari.h

^include <assert.h>
^include <math.h>
^include "define.h"

extern int
extern int
extern int
extern int

NP;
totplt;
totpj;
pjperpltl MAX_PL0T];

extern double volspH MAX_SAMPLE_TREE];

153

extern double bassplf MAX_SAMPLE_TREE];
extern double mbaspertr[MAX_YEAR 1;

sample_vari(k. vsum, bsutn, vari, yave, xave)
int k;
double vsum, bsum;
double *vari, *yave, *xave;
{

int j;
double r, term;
double md[MAX_PLOT]. s2[MAX_PLOT];
double d[MAX_SAMPLE_TREE];

r = vsum/bsum;

assert(lst_term(r, &term, yave, xave) == SUCCESS);
assert(clcl_md(k, r, md, d) == SUCCESS);
assertC clcl_s(k, s2, md, d) == SUCCESS);
assert(clcl_v(k, s2, term, vari) == SUCCESS);

return(SUCCESS);
)

lst_term(r, term, yave, xave)
double r;
double *term, *yave, *xave;
{

int i, np;
double a, b. c, fl, n, sum. Mi, Msqu, y_rx;

n = totplt;
c = 2:
sum = 0;
fl = (double)totplt/(double)NP;

for(i = 0; i < n; i++)
(

154

Mi = pjperpltl i];

Msqu = pow(Mi, c);

b = *(yave+i) - (*(xave+i)*r);

y_rx = fabs(b);

a = pow(y_rx, c);

sum += (Msqu * a)/(n - 1);
}
*term = ((1 - fl)*sum)/n;

returnC SUCCESS);
)

clcl_md(k, r, md, d)
int k;
double r;
double *md;
double *d;
{

int j, p, line;

double sum, vincre, bincre, dtemp;

line = 0;

sum = 0;

for(j = 0; j < totplt; j++)
{

for(p = 0; p < k; p++)
(

vincre = volspll line + p];

bincre = basspK line + p 1;

dtemp = fabs(vincre - (r * bincre));

*(d + line + p) = dtemp:

sum += dtemp:
)

*(md+j) = sum/k:

line += k:

sum = 0:
}

155

return(SUCCESS);
)

clcl_s(k, s2, md, d)
int k;
double *s2;
double *md;
double *d;
{

int j, p, line;

double a, b, c, h, squ, what;

line = 0;

squ = 0;

c= 2;

for(j = 0; j < totplt; j++)
{

for(p = 0; p < k; p++)
{

a = *(d+line+p);

b = *(md+j):

h = fabs(a-b);

squ += pow(h, c):
)
*(s2+j) = squ/(k-1);

line += k;

squ = 0;
}
return(SUCCESS);

clcl_v(k, s2, term, vari)
int k;
double *s2;
double term;
double *vari;

156

int i;
double b, c, fl, f2, Mi, Mi2, Mo. Mo2, n, n2, N;
double mvar, sum, convert, temp:

sum = 0;
c = 2:
Mo = totpj;
N = NP:
n = totplt;
fl = n/N;
n2 = pow(n, c);
Mo2 = pow(Mo. c):
convert = 15*666.7/100;

for(i = 0; i < totplt; i++)
(

Mi = pjperplti i];
Mi2 = pow(Mi, c);
f2 = k/Mi;
temp = (Mi2*(1-f2)*(*(s2+i))):
sum += temp;

)

mvar = term + (f 1/n2)*(sum/k); /* variance for mean */
mvar = (Mo2 * mvar); /* total variance for <totplt> */
*vari = (mvar*convert)/totplt; /* converted to: variance/ha. */
*vari = *vari/l 0;

returnC SUCCESS);

Source File: sampling.h

^include "define.h"
*^include "srssimu.h"
^include "ppssimu.h"
^include "writetofile.h"

157

extern int maxsample;

satnpling(year)
int year;
(

int n;
double msrs, vsrs, mpps, vpps;

for(n = MINSAMPLE; n < maxsample; n++)
(

srs_simu(n, year, &msrs, Scvsrs);
pps_simu(n, year, &mpps, Scvpps);
write_to_file(n, year, msrs, vsrs, mpps, vpps)

)
}

Source File; searchpj.h

^include "define.h"
^include "nodedef.h'
^include "hash.fun”
^include "getvolbas.h"

extern FILE *rfpt;
extern int totpj;
extern int maxsample;
extern int pjperpltl MAX_PLOT];
extern long hash_tbl[HASH_TAB_SIZE];
extern int pjnum[MAX_PLOT][MAX_TREE];

search_pj(i, array, j, indx)
int i;
char *array;
int j;
int *indx;
{

158

struct tree_info temp;
int record:

for(record = hash_tbl[hash(array, j)]; record != END &&
r_record(record, &temp); record = temp.next)

{
if(!strcmp(temp.plt_lab, array) && temp.tn == j &&

!strcmp(temp.sp_code, "Pj"))
{

pjnum[i][*indx] = j; /* remember tree # which is pj */

*indx += 1:

pjperpltl i 1 += 1; /* remember how many pj trees */
/* in each secondary plots */

get_vol_bas(temp);
totpj++:

return:
)

)
)

r_record(record, temp)
int record:
struct tree_info *temp:
{

if(fseek(rfpt, (long)((record-1)*sizeof(struct tree_info)), 0) !=
OK)

{
printf(‘AnSEEK ERRORXn"):

return(FAILURE):
)
if(fread(temp, sizeof(struct tree_info), 1, rfpt) == FAILURE)
{

printf("\nRECORD NOT FOUNDNn"):

return! FAILURE):
)
return! SUCCESS):

159

Source File: smplplt.h

^include <assert.h>
^include "define.h"
^include "smpllr.h”

smpl_plt(n, year, i, count, line)
int n;
int year;
int i;
int *count;
int line;

(

int j:

int array[100];

clear_arr(array);

for(j = 0; j < n; j++)
{

smpl_tr(year, i, count, line, j, array)
)

}

clear_arr(array)
int *array:
{

int i;

for(i = 0; i < 100; i++)
{

*(array+i) = 0;

)
}

160

Source File: smpltr.h

^include "define.h"
^include "ischeck.h"

extern int trperpltl MAX_PLOT];
extern double volpop[PJ_NUM][MAX_YEAR];
extern double baspopl PJ_NUM][MAX_YEAR];
extern double volspli MAX_SAMPLE_TREE];
extern double basspll MAX_SAMPLE_TREE];

smpl_tr(year, i, count, line, j, array)
int year;
int i;
int *count;
int line;
int j:
int *array:
{

int max, chosennum, indx;
int isfirsttimeO, ispjO;

max = trperplt[i];

while(chosennum = randO)
{

if(chosennum) /* if it happens to be 0, excluding it */
(

if(chosennum = chosennum%(max+1))
/* number range: l...max */

{
if(isfirsttime(chosennum, array, j)&&

(indx = ispj(i, chosennum)))
{

*(array+j) = chosennum;

indx = indx - 1; /* restore its value */

volspli *count I = volpopi indx + line][year];

basspll *count] = baspopl indx + line][year];

*count += 1;

161

)

break;

Source File: srsesti.h

^include <assert.h>
*^include "define.h"
^include "totmean.h"
^include "samplemean.h"
^include "samplevari.h"

srs_esti(k. year, mean, vari)
int k;
int year;
int *mean;
int *vari;
{

double vsum, bsum, yave[MAX_PLOT], xave[MAX_PLOT];

vsum = 0;
bsum = 0;

assert(tot_mean(k, &vsum, Scbsum, yave, xave) == SUCCESS);
assert(sample_mean(year, vsum, bsum, mean) == SUCCESS);
assert(sample_vari(k, vsum, bsum, vari, yave, xave)==SUCCESS);

return(SUCCESS);
)

Source File: srssampling.h

^include "define.h"
^include "smplplt.h"

162

extern int totplt;
extern int pjperpltl MAX_PLOT];

srs_sampling(n, year)
int n;
int year;
(

int i. count, line;

count = 0;
line = 0;

for(i = 0; i < totplt; i++)
(

smpl_plt(n, year, i, &count, line);
line += pjperpltl i];

)
return! SUCCESS);

Source File: srssimu.h

^include <assert.h>
^include 'define.h'
^include "srssampling.h"
^include "srsesti.h"
^include "stabletest.h"

srs_simu(n, year, mean, vari)
int n;
int year:
double *mean;
double *vari;
(

int p;
double prevsum, currsum, vsum;

prevsum = 0;

163

currsutn = 0;
VSUEH = 0;
for(p = 0; p < MAX_SIMULATION: p++)
{

srand(n+p-1); /* set seed starting from 1 */

assert(srs_satnpling(n, year) == SUCCESS);

assert(srs_esti(n, year, mean, vari) == SUCCESS);

if(stable_test(p, mean, vari, &vsum, &prevsum, Sccurrsum)
== YES)

{
break; /* terminate loop */

)
)

)

Source File: sumbasal.h

extern int totplt;
extern int pjperplt[MAX_PL0T];
extern double baspopi PJ_NUM][MAX_YEAR I;
extern double sumbasl PJ_NUM][MAX_PL0T];

sum_basal(year)
int year;
{

int i, p, count;
double sum;

count = 0;
sum = 0;

for(i = 0; i < totplt; i++)
(

for(p = 0; p < pjperpltl i]; p++)
(

sum += baspopi count + p][year];

sumbasi p][i] = sum;
)
sum = 0;
count += p;

164

)
)
Source File: totmean.h

^include "define.h"

extern int totplt;
extern int pjperplt[MAX_PLOT];
extern double volspl[MAX_SAMPLE_TREE 1;
extern double basspK MAX_SAMPLE_TREE];

tot_mean(k, vsum, bsum, yave, xave)
int k;
double *vsum, *bsum;
double *yave, *xave;
(

int j, p, line;
double vincre, bincre, vaver, baver;

line = 0;
vincre = 0;
bincre = 0;

for(j = 0; j < totplt; j++)
{

for(p = 0; p < k; p++)
{

vincre += volspl[line + p];

bincre += basspll line + p];
)
vaver = vincre/k;

baver = bincre/k;

*(yave+j) = vaver;

*(xave+j) = baver;

*vsum += vaver * pjperpltl j];

*bsum += baver * pjperplt[j];

vincre = 0; /* reseted for next plot */

bincre = 0;

line += k;
)
return(SUCCESS);

165

)

Source File: writetofile.h

^include "writefile 1 .h‘
^include "writefile2.Ji"
^include "writefile3 h"

write_to_file(k, year, msrs, vsrs, mpps, vpps)
int k, year;
double msrs, vsrs;
double mpps, vpps;
{

write_file 1 (k, year, msrs, mpps);
write_file2(k, year, vsrs, vpps);
write_file3(k, year, msrs, vsrs, mpps, vpps)

}

Source File: writefile 1 .h

*^include <math.h>
^include "gettruemean.h"

extern int totplt;
extern int NP;
extern int maxsample;
extern FILE *wfpt;
extern double mvolperhal MAX_YEAR];
extern char pltlabl MAX_PLOT];
extern char plotnol MAX_PLOT][6 1;

write_filel(k, year, msrs, mpps)
int k, year;
double msrs, mpps;
{

static int interval = 0;

double a;
char msl 20], mp[20];

166

char size[20], time[20], lruemean[20];

if(tolplt < NP)
{

get_true_mean(year);
)
a = tnvolperha[year];
to_char(msrs, mpps, a, ms, mp, truemean, k, year, size, lime);

if(interval == year)
{

write_title(time);
write_result(k, size, truemean, ms, mp);

interval+= 1;
)
else
(

write_result(k, size, truemean, ms, mp);
)

to_char(msrs, mpps, a, ms, mp, truemean, k, year, size, time)
double msrs, mpps, a;
char *ms, *mp, *truemean;
ini k, year;
char *size, *lime;
{

year = year + 1;

sprintf(ms, "%lf", msrs);
sprintf(mp, ■■%lf", mpps);
sprintf(truemean, ■'%lf, a);
sprintf(size, "%d", k);
sprintf(time, "%d", year);

)

write_title(time)
char *time;

(
int i, j;

pr_header 1 0;

167

for(i = 0; i < tolplt; i++)
{

fprintf(wfpt, "%s%s%s", pltlab, plotno+i, " ")
)
fprintf(wfpt, "\n\n\n%8s%-1 Is", " ", "Year:");

fprinlf(wfpt, "%s%s\n", time);
fprintf(wfpt, "%8s%s\n\n", " ", "(backward)");

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt,

fprintf(wfpt.

"%8s%-14s", " ", "Number of");

"%-17s", "TRIM"):

"%-17s", "Mean for"):

"%-14s\n", "Mean for");

"%8s%-14s", "Trees in"):

"%-17s", "Mean for");

"%-17s", "Unequal Pr"):

"%-14s\n", "Equal Pr"):

"%8s%-14s", " ", "Subsample");

"%-17s", "Stand");

"%-17s", "Subsampling");

"%-14s\n", "Subsampling");

fprintf(wfpt, "%22s%-17s", " ", "(m'3/ha.)");

fprintf(wfpt, "%-17s", "(m''3/lia.)");

fprintf(wfpt, "%-14s\n", "(m"3/ha.)");

fprintf(wfpt, "%8s". " "):

for(j = 0; j < 59; j++)
(

fprintf(wfpt, "%s",);
)
fprintf(wfpt, "%s", "\n\n");

168

write_result(k, size, truemean, ms, mp)
int k;
char *size;
char *truemean;
char *ms;
char *mp:
{

int i, j:

i = maxsample - 1;

fprintf(wfpt,

fprintf(wfpl,

fprintf(wfpt,

fprintf(wfpt,

"% 13s", size);

"%18s", truemean):

"%17s", ms):

"% 17s\n", mp);

if(i == k)
(

fprintf(wfpt, "%s", ”\n"):

fprintf(wfpt, "%8s", " "):

for(j = 0; j < 59: j++)
{

fprintf(wfpt, "%s",):
}
fprintfC wfpt, "%s", ”\n\n\n\n\n\n");

)
)

pr_headerl()
{

fprintf(wfpt, '% 1 4s%s\n", " ", "Accuracy of estimates for mean
volume per hectare"):

fprintfC wfpt, "%14s%s\n", " ", "for both equal and unequal
probability subsampling"):

fprintfC wfpt, "%14s%s%s", " ", "rules for plots:", " "):
)

169

Source File: writefile2.h

^include <math.h>
^include "getstdr.h"

extern FILE *pfpt;
extern int totplt;
extern int NP;
extern double stdrr[MAX_YEAR 1;
extern char pltlabl MAX_PLOT];
extern char plotnol MAX_PLOT II 6];

write_file2(k, year, vsrs, vpps)
int k, year;
double vsrs, vpps;
(

static int ring = 0;
double se;
char eqv[20], uqv[20];
char size! 20], timel 20], strsel 20];

if(totplt < NP)
(

get_stdr(year);
)
se = stdrri year];

convt_to_char(eqv, uqv, strse, size, time, vsrs, vpps, se, k, year);

if(ring == year)
{

wrt_title(time);

wrt_result(k, size, eqv, uqv, strse);

ring += 1;
)
else
{

wrt_result(k, size, eqv, uqv, strse);

170

)
}

convl_to_char(eqv, uqv, strse, size, time, vsrs, vpps, se, k, year)
char *eqv, *uqv;
char *strse, *size, *time;
double vsrs, vpps, se;
int k, year;
{

double uqroot, eqroot;

year = year+1;

vpps = fabs(vpps);

uqroot = sqrt(vpps);

eqroot = sqrt(vsrs);

sprintf(eqv, "%lf, eqroot);

sprintf(uqv, "%lf", uqroot);

sprintf(size, ”%d", k);

sprintf(time, "%d ', year);

sprintf(strse, "%lf ', se);
)

wrt_title(time)
char *time;
{

int i, j:

print_header2():

for(i = 0; i < totplt; i++)
{

fprintf(pfpt, "%4s%s", pltlab, plotno+i);
)
fprintf(pfpt, "\n\n\n% 1 1 s%-11 s", " "Year;"):

fprintf(pfpt, "%s%s\n", time);

fprintf(pfpt, "%1 ls%s\n\n", " ", "(backward)");

171

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,
fprintf(pfpt,

fprintf(pfpt.

"%1 ls%-15s", “ ", "Number of");

"%-15s", "S. E. for");

"%-15s", "S. E. for");

"%-15s\n", "S. E. for");

"%lls%-15s", " ", "Trees in");

"%-15s", "TRIM plots");

"%-15s", "Unequal Pr");
"%-15s\n", "Equal Pr");

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt,

fprintf(pfpt.

"%1 ls%-15s", " ", "Subsample");

"%-15s", "Stand");

"%-15s", "Subsampling"):
"%-15s\n", "Subsampling");

"%26s%-15s", " ", "(m‘3/ha.)");

"%-15s", "(m*3/ha.)");

"%-15s\n", "(m‘3/ha.)”);

fprintf(pfpt, "%1 Is", " ");

for(j = 0; j < 56; j++)
{

fprintf(pfpt, "%s",);
)
fprintfC pfpt, "%s", "\n\n");

wrt_result(k, size, eqv, uqv, strse)
int k;
char *size, *eqv;
char *uqv, *strse;
{

int i, j;

i = maxsample - 1;

fprintf(pfpt, "%16s", size);

fprintf(pfpt, "%19s", strse);

172

fprintf(pfpt, "%15s", uqv);

fprintf(pfpt, "%15s\n", eqv);
if(i == k)
{

fprintf(pfpt, "%s", "\n");

fprintf(pfpt, "%1 Is", " "):

for(j = 0; j < 56; j++)
{

fprintf(pfpt, "%s",);
)
fprintf(pfpt, "%s", "\n\n\n\n\n\n");

}

print_header2()
{

fprintf(pfpt, "%1 ls%s\n", " ", "Precision of estimates for standard
errer of mean volume");

fprintf(pfpt, "% 11 s%s\n", " "per hectare for both equal and
unequal pobability");

fprintf(pfpt, "%1 ls%s", " ", "subsampling rules for plots:");
)

Source File; writefile3-h

^include <math.h>

extern FILE *cfpt;
extern int totplt;
extern int NP;
extern double stdrr[MAX_YEAR];
extern double mvolperha[MAX_YEAR];
extern char pltlabl MAX_PLOT];
extern char plotnol MAX_PLOT][6];

write_file3(k, year, msrs, vsrs, mpps, vpps)
int k, year;
double msrs, vsrs;

173

double mpps, vpps;
(

static int count = 0;

double serr, aver;
char eqm[20], eqe[20], uqm[20], uqe[20];
char size! 20], time! 20];

if(totplt < NP)
{

get_stdr(year);
get_true_mean(year);

)
serr = stdrri year];
aver = mvolperhal year];
compute_ratio(aver, serr, &msrs, &vsrs, &mpps, &vpps);
turn_to_char(eqm, eqe, uqm, uqe, size, time, msrs, vsrs,

mpps,vpps,k,year);

if(count == year)
{

put_title(time);
put_result(k, size, uqm, uqe, eqm, eqe);

count += 1:
)
else
{

put_result(k, size, uqm, uqe, eqm, eqe);
)

compute_ratio(aver, serr, msrs, vsrs. mpps, vpps)
double aver, serr;
double *msrs, *vsrs;
double *mpps, *vpps;
{

double eqstdr, uqstdr;

*vpps = fabs(*vpps):

174

eqstdr = sqrl(*vsrs);

uqstdr = sqrt(*vpps);

vsrs = (eqstdr/serr) 100;
vpps = (uqstdr/serr) 100;

*msrs = (*msrs/aver)* 100;

*mpps = (*mpps/aver)* 100;

turn_to_char(eqm, eqe, uqtn, uqe, size, time, msrs, vsrs, mpps, vpps,
k, year)
char *eqm, *eqe, *uqm, *uqe;
char *size, *time;
double msrs, vsrs, mpps, vpps;
int k, year;
(

year = year+1;

sprintf(eqm, "%lf", msrs);

sprintf(eqe, "%lf", vsrs);

sprintf(uqm, "%lf", mpps);

sprintf(uqe, "%lf”, vpps);

sprintf(size, "%d", k);

sprintf(time, "%d", year);
}

put_title(time)
char *time;
{

int i, j;

print„header 3 ();

for(i = 0; i < totplt; i++)
{

fprintf(cfpt, "%5s%s%s", pltlab, plotno+i, " ");
)
fprintf(cfpt, "\n\n%-lls", "Year;");

fprintf(cfpt, "%s%s\n", time);

175

fprintf(cfpt, %s\n\n", ■■(backward)"');

fprintfC cfpt,

fprintf(cfpt,

fprintf(cfpt.

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt.

%-15s", "Number of"):

%-15s", "Mean for "):

%-17s", "S. E. for "):

%-15s", "Mean, for"):

%-15s\n ", "S. E. for");

%-15s ", "Trees in"):

%-15s ", "Unequal Pr "):

%-17s ", "Unequal Pr");

%-15s ". "Equal Pr "):

%-15s\n". "Equal Pr ");

fprintfC cfpt,
fprintf(cfpt,
fprintfC cfpt,
fprintfC cfpt.
fprintfC cfpt.

%-15s ", "Subsample ");

%-15s ". "Subsampling ");

%-17s ", "Subsampling"):

%-15s ". "Subsampling ");

%-15s\n", "Subsampling ");

fprintfC cfpt,
fprintfC cfpt,
fprintfC cfpt,
fprintfC cfpt.

%19s%-15s", " ", "(%)"):

%-17s", "(%)"):

%-15s", "(%)");

%-15s\n", "(%)");

forC j = 0; j < 73: j++)
{

fprintfC cfpt, "%s",);
)
fprintfC cfpt, "%s ", "\n\n");

put_result(k, size, uqm, uqe, eqm, eqe)
int k;
char *size;
char *uqm, *uqe;
char *eqm, *eqe;
{

176

int i. j:

i = maxsample - 1;

fprintf(cfpt, "%5s ", size);

fprinlf(cfpt, "%20s", uqm):

fprintf(cfpt, "%15s", uqe);

fprintf(cfpt, "%17s", eqm);
fprintf(cfpt, "% 15s\n", eqe);

if(i == k)
{

fprintf(cfpt, "%s", "\n");

for(j = 0; j < 73: j++)
(

fprintf(cfpt, "%s",);
)
fprintf(cfpt, "%s", "\n\n\n\n\n\n");

3

print_header3()
(

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt,

fprintf(cfpt.

"%15s%s\n", " "Accuracy and precision of
estimates for mean");

"%15s%s\n", " ", "volume per hectare, and standard
error, for ");

"%15s%s\n", " ", "both equal and unequal probability
subsampling ");

"% 15s%s",
)

" ", "rules for plots:");

