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ABSTRACT 

Tiemin Sheng. 1994 An algorithm for processing stem analysis 
data and sampling intensities for immature jack pine growth 
176 pp. 

Major advisor: Dr. H. G. Murchison 

Key Words: Stem analysis, computer algorithm, 
two-stage sampling. computer simulation. 

This study examined two topics. In the first, a computer 
algorithm was developed to process stem analysis data produced by 
Tree Ring Increment Measure (TRIM) system. The algorithm 
developed not only processed TRIM data for cumulative increment of 
volume, height, and dbh by one-year intervals for individual trees, 
but also calculated annual volume increment per unit area (vol./ha) 
by one-year intervals for stands. A hashing technique with a linked 
list data structure was used in the algorithm. The advantages of the 
algorithm are to process stem analysis and manage outputs 
efficiently and to provide a user with quick access to any processed 
stem analysis tree records. In the second, sampling intensities on 
both plot and tree levels were investigated. Two forms of two-stage 
sampling strategies were employed. The study indicated that 
subsampling using Probabilities Proportional to Size (PPS) could 
produce reliable estimates for an annual growth. The study 
suggested that over 91 percent of precision of mean growth estimate 
can be obtained with the sample plot intensities of 66 percent at the 
first stage and with the sample tree intensities of 2.1 percent at the 
second stage at the 95 percent confidence level. The study also 
showed that subsampling with PPS was superior to that with simple 
random subsampling. 
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1. INTRODUCTION 

The Ontario Ministry of Natural Resources through District Offices 

and Technological Development Units have conducted studies on stem 

analysis of individual trees in a number of stands (Murchison and 

Kavanagh, 1989). These studies were intended to investigate the 

effects of treatments such as drainage, fertilization, thinning, etc. 

(Murchison and Kavanagh, 1989). In the study, extensive stem 

analysis data have been collected and a stem analysis database 

system was developed. Under the system, named Tree Ring 

Increment Measure (TRIM) and developed by the Ontario Tree 

Improvement and Forest Biomass Institute, the database includes 

extensive information on individual stem analysis trees (Murchison 

and Kavanagh, 1989). In the locally developed TRIM database, 

individual tree data are stored in four separate files: the first file 

named *.OUT.*, the second file named RAD*., the third file named 

AD*.*, and the last file named ANNV*.*. 

A major defficulty in processing this TRIM database in growth 

and yield purposes is that there are several thousands of data files 

which are managed by using directory management. With this 

technique, four different types of files concerning an individual tree 
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were stored separately in directories. Although TRIM files were 

managed into separate directories there were still several hundred 

files of the same type which appeared in a subdirectory. The first 

question raised was how to process all the TRIM data with only one 

execution of a computer program to obtain the growth attributes by 

one-year intervals for all stem analyzed trees. The second question 

was how to develop a computer algorithm to store the processed data, 

and manipulate them so that a TRIM data user can have an efficient 

way to retrieve such stored information. 

With the present TRIM methodology, the TRIM sample unit is a 

20 m by 20 m plot with an inner plot of 10 m by 10 m. All trees in 

the inner plot are felled and then stem analyzed to reconstruct 

growth development and yield (Murchison and Kavanagh, 1989). This 

is a labour-intensive and time consuming activity. A lot of financial 

and labour input must be made to collect stem analysis data. 

Therefore, any alternatives, which are cost effective, will be beneficial 

to those intending to investigate stand growth and yield of immature 

jack pine in northern Ontario. As an alternative to TRIM methodology, 

two two-stage sampling rules are examined in this study in order to 

get reliable information about jack pine growth with reduced cost and 

time. At present, no results are available on how many TRIM plots 

and how many trees are required to produce reliable estimates of 

volume growth for immature jack pine. Such information may be 

useful as a guide for foresters and decision makers in evaluating 

various silviculture treatments and forest resource management 

plans. 
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The objectives of this study are two-fold. One is to develop an 

algorithm to process TRIM data. The other is to investigate two-stage 

sampling for tree growth using TRIM data. 

The first part of the thesis considers the development of 

computer programs to process TRIM data for the various growth 

attributes and manage the output efficiently. A hashing technique 

with the data structure of a linked list is employed. 

The second part of this thesis deals with the problem of 

determining sample intensities for an estimate of volume growth of 

immature jack pine. Two two-stage sampling rules are investigated. 
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2. LITERATURE REVIEW 

2.1 STEM ANALYSIS COMPUTER PROGRAMS 

Stem analysis is a widely used method of studying the past 

growth of individual trees (Husch et al., 1972). No other method could 

replace stem analysis completely in reconstructing past growth or 

development of individual trees. The disadvantage, however, is that 

the process is time consuming and laborious ( Maciver, 1987). 

With the advent of annual growth ring measuring equipment 

such as the ADDO-X system and Holman Digimicrocomputer system 

and rapid development of advanced computer technology, interest in 

using stem analysis is high in forest research. But, so far, only a few 

stem analysis computer programs have been written. With the 

renewed interest in stem analysis it is becoming apparent that 

development of an efficient computer algorithm to process stem 

analysis data is warranted. 

The earliest documented simple computer program for processing 

stem analysis data was developed by Brace and Mager (1968). The 

program was developed only for plotting the stem analyzed tree 

profile. The stem analysis data used were recorded in a prespecified 
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format and involved a data checking procedure. In their research, 

Brace and Mager (1968) compared the cost of the three computation 

methods. 

Three years later, Pluth and Cameron (1971) developed an 

algorithm that graphed the derived tree growth parameters of 

periodic annual increment, and mean annual increment in basal area, 

height, and total volume. The printed output also includes; average 

diameter, basal area, and section volume by heights of cutting point 

and age intervals: total volume increments by age intervals; heights 

by cumulative age, and cumulative height and total volume by one- 

year intervals. 

A few years later, Herman et al. (1975) developed an algorithm 

to process stem analysis data. Their algorithm was written specifically 

for site index research. 

Another computer algorithm for plotting stem analysis was 

developed by Timmer and Verch (1983). The algorithm was 

developed specifically for forest productivity studies requiring 

comparisons of tree growth on sites of different productivities. The 

algorithm generated a set of growth curves showing the development 

of patterns of trees and computes the growth parameters such as 

MAI, CAI, height/age, height/dbh, and volume/age. 

Fayle et al. (1983) developed a program to graphically display 

the radial growth pattern of the tree. The input data this program 

would require were produced by DIGI-MIC tree ring measurer. The 

advantage of this program is that line graphs of ring widths along 
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radii of a stem cross section and the average for successive stem 

sections could be compared visually. 

Kavanagh (1983) developed two programs which handled stem 

analysis data primarily from HOLMAN Digimicrometer data. These 

two programs served, first, to verify stem analysis data, and second, 

to produce a set of sequences for the ring width data. 

In addition, Kavanagh (1983) reported that there were two 

unpublished computer programs; one by Wang (1976) and the other 

by Chapeskie and Fleet (1981). Kavanagh (1983) reported that the 

algorithm by Wang calculated the periodic annual increment and the 

mean annual increment for a tree, and the algorithm by Chapeskie 

and Fleet (1981) was written specifically for handling Holman 

Digimicrometer data. This algorithm computed estimates of dbh, 

height, and volume, at the time of cutting and for the previous one- 

and five-year growth periods. 

In summary, all the available algorithms process the stem 

analysis data from an electronic measuring machine and all outputs of 

these programs have similar formats. Some algorithms compute MAI, 

CAI, individual tree height, volume and dbh by age, and some 

algorithm plots a tree growth profile. All the computer algorithms 

except one by Kavanagh (1983) are restricted to processing a limited 

number of stem analysis trees at an execution. An ordered list was 

the only data structure used in all algorithms. Of all the computer 

algorithms, only that by Pluth and Cameron (1971) can be used to 

calculate cumulative height and total volume for a tree by one-year 
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intervals. However, none of the available algorithms can be used 

directly to process TRIM data. None of them can be used to calculate 

volume increment per unit area (m^/ha) for a given stand by one- 

year intervals. Nor did they consider using hashing techniques to 

manage output files efficiently. 

2.2 MULTI-STAGE SAMPLING DESIGNS 

2.2.1 DESIGN PRINCIPLES 

Multi-stage sampling techniques are presented in many text 

books. The notable books are by Deming (1950), Schumacher and 

Chapman (1954), Yates (1960), Cochran (1963), Yamane (1967), 

Sukhatme and Sukhatme (1970), Husch et al. (1972), Barnett (1974), 

Williams (1978), and de Vries (1986). 

Multi-stage sampling is a technique which involves selecting a set 

of clusters of elements of interest from a target population, using 

selection rules either simple random sampling (SRS) or probability 

proportional to size (PPS) sampling, with subsequent subsampling 

within the selected clusters and measuring the elements at the final 

stage of selection (Deming, 1950; Cochran, 1963: Yamane, 1967; 

Sukhatme and Sukhatme, 1970). Sometimes this technique is referred 

to as subsampling (Cochran, 1963). 

The basic procedure with multi-stage sampling is to construct a 

sample frame. According to Deming (1950), a frame needs to be 

constructed at every successive stage and the frame should describe 

all the subsequent sampling units in the population. 
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In a good design of two-stage sampling, one very important 

requirement is to delineate and define both primary and secondary 

sampling units as alike as possible (Deming, 1950). Because when 

elements in the same unit are alike precision can be gained even with 

a small number of subsamples (Cochran, 1963). 

To avoid producing larger sampling errors in the final results 

with sample selection rule of equal probability, the populations of the 

primary sampling units and of the secondary sampling units should 

be as equal as possible (Deming, 1950). Williams (1978) thought that 

if first-stage units vary in size a loss in precision may be possible 

with a selection of units by a simple random selection rule. Selection 

of subsample with PPS may be the best choice if the units vary in size 

and sizes are known (Yates, I960; Cochran, 1963). Because the 

selection of a subsample with PPS recognizes some inequalities of 

sample units (Stuart ,1968). Furthermore, this sampling rule may 

result in smaller Mean Square Error since it has a small contribution 

from variation between units (Cochran, 1963). 

The sample precision of two-stage sampling is very closely 

related to the distribution of the sample between the two stages 

(Sukhatme and Sukhatme, 1970). According to these methods, a gain 

in precision may be realized by three approaches: (i) by selecting 

more primary sampling units at the first stage and then selecting 

fewer secondary sampling units at the second stage, as opposed to the 

other way around in which a small number of primary units is 

selected at the first stage and then a large number of secondary units 

at the second stage; (ii) by making primary sample units larger if the 
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condition of population is that the intra-class correlation within first- 

stage units is positive and it decreases with an increase of size of 

primary sampling units; and (iii) by clustering the first stage units 

that are as heterogeneous as feasible. 

2.2.2 ADVANTAGES 

Multi-stage sampling has some advantages. Yates (1960) 

remarked that "it enables existing natural divisions and subdivisions 

of populations to be utilized as units at the various stages: it permits 

the concentration of field work of censuses and surveys to cover 

larger areas; it is very useful for survey of undeveloped areas where 

no frame exists since only the parts of the population selected at any 

stage need to be listed for subsampling at the next stage". 

To meet a prescribed precision, two-stage sampling is considered 

to be cheaper because at every successive stage the sampling units 

become smaller and smaller (Deming, 1950). The other advantage of 

multi-stage sampling is that laying out a frame for the next stage is 

needed only in the units which have already fallen into the sample 

and only the parts of the population selected at any stage need to be 

listed for subsampling at the next stage (Deming, 1950). 

Multi-stage sampling is flexible and could be possibly extended 

to n-stages as needed according to specific research purposes 

(Cochran, 1963: Yamane, 1967; Stuart, 1968; Sukhatme and 

Sukhatme, 1970; Husch et al., 1972; Prayer 1979). The sampling units 

of multi-stage sampling shrink in size at each step, as opposed to 

multi-phase sampling in which the sampling units remains the same 
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size (Lund, 1982). In comparison with random sampling, two-stage 

sampling may reduce travelling and administration cost (Yamane, 

1967) and it could bring a gain in precision compared with one-stage 

sampling (Stuart, 1968). 

2.2.3 DISADVANTAGES 

In general, a multi-stage sample is considered to be less precise 

compared with a sample containing the same number of final-stage 

units which have been selected by some suitable single-stage process 

(Yates, 1960). 

The other disadvantage is that as we obtain greater flexibility 

with multi-stage sampling we may have to pay the price of greater 

complexity in the sampling selection and the analysis of the sample 

(Stuart, 1 968). 

In addition, there is also a difficulty in design of multi-stage 

sampling. According to Yamane (1967), if one is to select primary 

sampling units and subsampling units with SRS, it may be difficult to 

have those units roughly equal in size. Fortunately, this defect can be 

solved by the selection rule of PPS (Yamane, 1967). 

2.2.4 ITS APPLICATIONS IN FORESTRY INVENTORIES 

A number of forest scientists and researchers have conducted 

forest inventories using multi-stage sampling techniques. Several 

forms of multi-stage sampling strategies have been employed. 

Notably, of all the varied applications of multi-stage sampling, two- 



stage sampling schemes have been frequently used by foresters in 

their research. 

The efficiency of two-stage sampling in forest inventories are 

closely related to distance between sampled items, i.e. travel cost, 

number of items or plots in sampled first-stage units, and the 

variation between and within first-stage units (Prayer, 1979; 

Johnston, 1982). 

Cunia (1965) designed two-stage sampling with regression where 

auxiliary variables are observed and both primary units of plots at 

stage one and subsample units of trees are selected by simple random 

sampling. 

Farmer et al. (1973) used two-stage sampling to study coniferous 

standing volume and increments. They clustered the coniferous forest 

by stands. The stands were selected with replacement by 

probabilities proportional to size (area) at stage one and the plots 

were selected by simple random sampling at stage two. They used 

volume tables and a regression technique to obtain the total volumes 

and increments for each secondary unit. They found that in all 

circumstances two-stage sampling was not superior to the simple 

random sampling because of great variations between stands. 

Bonner (1974) derived estimators for a stratified two-stage 

sampling design and then he described a timber inventory using this 

sampling design. Aldred and Hall (1975) extended Bonner s sampling 

design by incorporation of more sample units. 
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Langley (1975) developed multi-stage sampling theory and 

reported that estimators under two-stage PPS were unbiased. In his 

study, he derived estimators for up to four stages of sampling. At 

each stage of sampling, a level of remotely sensed data was used to 

generate sampling selection probabilities and trees were observed at 

the final stage. He applied his four stage sampling design to timber 

surveys. 

Yandle (1977) designed the two-stage sampling which could be 

used to obtain updated volume growth attributes and additional 

measurements. Both primary units and secondary units are trees. 

They were selected with PPS at both stages; selection of primary units 

with probability proportional to basal area and selection of secondary 

units with probability proportional to height. He reported that a gain 

in efficiency was achieved since two variables most correlated to 

volume were used in two successive stages. Also, he found that two- 

stage sampling with selection of both primary units and secondary 

units with equal probability at both stages was inferior to that using 

PPS sampling at both stages. 

Variance estimators were unbiased if SRS was used at both stages 

(Prayer, 1979; Johnston, 1982). Johnston (1982) suspected that 

bounds on an unbiased variance estimator might exist if systematic 

sampling was employed at stage two. 

Prayer (1979) derived a set of formulas for multi-stage sampling 

with applications in remote sensing in forestry. Murchison (1984) 
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modified one of Prayer's two-stage formulas by modifying the 

expansion factor at the second stage. 

Murchision (1984) used three two-stage sampling schemes as a 

part of methodology to investigate optimal tree height sampling 

intensities. The three two-stage sampling schemes resulted from the 

combinations of simple random sampling or point sampling at stage 

one and SRS or PPS sampling at stage two. Monte Carlo simulation was 

performed to compare efficiencies of these three sampling schemes. 

He generalized that plot based sampling schemes were more 

advisable than point sample based sampling schemes. With the plot 

based sampling schemes, he ranked the three sampling schemes in 

descending order according to their precisions; (i) selection of plot 

with SRS at stage one and "of trees with probability proportional to 

basal area, (ii) selection of plots and of trees with SRS at both stages, 

and (iii) point samples at stage one and selection of trees with SRS at 

stage two. As to their desirable usage, he pointed out that sampling 

scheme (i) could find its best use in stands with uniformly distributed 

trees; sampling scheme (ii) was suggested for softwood stands 

showing clustered spatial distributions. 

Murchison and Kavanagh (1989, and 1990) conducted research on 

sampling intensities for yield for two coniferous species using two- 

stage sampling. They delineated first-stage units by three methods; 

clustering technique, Pielou's index method and stands. The primary 

units of plots were selected by SRS at stage one. At stage two, 

secondary units of trees were selected by two selection rules; SRS and 
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probability proportional to basal area. They found that two-stage 

sampling strategy with PPS was more efficient than that of SRS. 

In summary, the two-stage sampling strategies implemented so 

far take forms of such combinations as selection of primary sampling 

units with either SRS or PPS rules, and selection of secondary 

sampling units with either SRS or PPS rules. Usually, the sample 

frame for population is constructed based on the forest area at first 

stage and characteristics of trees at the second stage. The PPS 

selection rule, if applicable at the first stage, is performed pertaining 

to forest area in most cases and, if applicable at the second stage, is 

usually related to basal area of individual trees. The various 

estimators with two-stage sampling strategies are unbiased (Prayer, 

1979). The varied applications of two-stage sampling strategies in 

forest inventories have been used more frequently than other multi- 

stage sampling involving more than two stages. In this sense, two- 

stage sampling appears to be an important sampling technique in 

forest inventories. 
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3. TRIM DATABASE 

The TRIM database consisted of all TRIM plot data from both 

immature and mature jack pine and black spruce stands collected by 

the OMNR in 1988. In the TRIM database, there were approximtely 

10,000 files. A very small portion of the directory listings is shown in 

Table 1. Under the TRIM data base system, information for each stem 

analysis tree was stored in four separate files. Any particular record 

of stem analysis and its contents were identified by their plot number 

and tree number combined with OUT, or RAD, or AD, or ANNV. In 

other words, the four separate files stored information which could be 

used to describe both growth and yield for any stem analyzed trees. 

The format of these files was as follows: 

( 1 ) *.0UT;* which described diameter information. This 

file was created in Timmins using a Pascal program developed by 

Domenic Colantonio (Murchison and Kavanagh, 1989). An example of 

such a file is shown in Table 2. 

( 2 ) RD*.;* which described height information. This file 

and the following two files were created by the TRIM software 

package (Murchison and Kavanagh 1989). 
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( 3 ) AD*.;* which also described height information. They 

might be required when the RD*.;* file was missing or incomplete 

(Murchison and Kavanagh, 1989). A portion of such a file is shown in 

Table 3. The data (bold, italics) appeared in a string (one value per 

line). The remainder of the information in the table is the explanation 

of the value on that line and is not part of the file. There is a 

program called SAP in TRIM. The program uses the AD* and RD* 

ringwidths of data. This program is not available at present. 

( 4 ) ANNV*.;*  which describes volume information. A 

portion of such a file is shown in Table 4. The data were the bold, 

italicized values in string format. The remaining information 

explained the contents of that line and is not part of the file. 
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Table 1. A portion of directory listings from a UNIX operating 
system. For file names with format * K *, K was a plot label followed 
by a plot number and a tree number and when combined with 
'OUT', it indicated the diameter information files, with "Ad" 
indicated the height information files, and ANNV indicated volume 
information files. 

K1_1.0UT 
K1_2.0UT 
K1_3.0UT 

K3-1.0UT 
K3-2.0UT 
K3-3.0UT 

AD_K1_1. 
AD_K1_2. 
AD_K1_3. 

AD_K3_1. 
AD_K3-2. 
AD_K3-3. 

ANNV_K1_1. 
ANNV_K1_2. 
ANNV_K1_3. 

ANNV_K3-1. 
ANNV_K3-2. 
ANNV_K3_3. 
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Table 2. Part of K1_9.0UT file shown as an example of one of *.OUT 
files. Lines 1 to 3 were the complete information for the disc taken at 
2.00 metres up the tree Line 1 contained the following information: 
species code, the year the tree was harvested, the height (cm) the 
cross-section was taken from, cross-section age, single bark 
thickness (mm), pith radius (mm) and the radial distance across the 
rings (mm). Lines 2 and 3 contained the ring widths (mm) for each 
ring on the disc. 

Pj 1986 

1986 2.190 

5.160 

1976 5.960 

Pj 1986 

1986 2.205 

4.500 

1976 4.775 

Pj 1986 

1986 2.570 

4.575 

1976 5.360 

Pj 1986 

1986 2.165 

4.055 

1976 4.370 

Pj 1986 

1986 4.510 

3.615 

1976 4.280 

2.565 

1966 1.045 

200 17 

2.760 3.240 

6.100 5.845 

150 17 

2.590 2.510 

5.290 5.070 

130 18 

2.415 2.765 

5.940 5.750 

120 18 

2.595 2.665 

5.105 5.155 

0 21 

4.660 4.815 

4.670 4.460 

2.350 1.555 

2.520 2.735 

5.565 3.980 
2.620 0.725 

2.360 2.675 

5.015 5.270 

2.155 1.300 

2.345 2.545 

6.215 5.000 

1-535 1.475 

2.235 2.375 

7.500 6.575 

3.695 0.695 

3.405 2.945 

5.415 4.895 

63.480 

3.180 3.325 

1.185 1.675 

65.520 

2.710 3.135 

7.680 2.705 

65.755 
2.770 2.995 

3.350 2.570 

66.820 

2.750 2.980 

5.245 2.925 

84.665 

3.685 3.875 

4.190 4.790 

4.035 4.025 

3.680 3.350 

3.920 3.500 

1.170 

3.230 3.210 

1.685 

5.485 4.325 

3.740 3.295 
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Table 3. Pari of AD_K1_9. file, as an example of AD* file, is shown. 
Other actual AD* files resembled the information in column 1. The 
remaining information added by the writer explained the contents 
of the file and is not part of the file. 

3 Ring count 3 (bark and pith included) 

5 Ignore this line 

1.215 Bark thickness in millimetres 

1.265 Ring width in millimetres 
1.62 

12 Ring count is 12 and age is 10 years 

5 Ignore this line 
1.38 Bark thickness in millimetres 

3 58 Ring width in millimetres 

4.68 

1185 Total height at 21 years in centimetres 

073 Height increment of 1 year's growth (cm) 
1112 Total height at 20 years (cm) 

060 

1052 

045 
0052 

045 
0007 Total height (cm) at 1 year 

007 Height growth (cm) in 1 year 
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Table 4. Part of ANNV_K1_9. file, as an example of one ANNV* file, 
is shown. Information for the first three cross-sections and the last 
cross-section of the tree are shown. The other actual ANNV* files 
resembled column 1. The remaining comments added by the writer 
explained the contents of such kinds of files and were not part of the 
ANNV* files. 

3 
2 
1 

0 

3 
3 
3 
1 

3 
3 
4 
1 

Ring count for disc 1 
Ring 1 volume (cubic centimetres) 
Ring 2 volume 
Ring 3 volume 
Ring count (bark and pith included) 

165 Ring count on last disc 
129 
126 
96 

65 
56 
32 
18 
6 
0 

0 
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4. DEVELOPMENT OF THE HASHING ALGORITHM 

4.1 HASHING TABLE 

Hashing is an address calculation technique and is an excellent 

way to maintain a static or dynamic dictionary in database 

management (Harrison. 1972; Flores, 1977; VanWyk, 1988). Harrison 

(1972) described hashing as an ingenious technique which could be 

used in a number of areas. Stone (1972) thought that, in particular, 

hashing could find its best use in dealing with large data sets. 

A hash table and a key are important components in hashing 

techniques. According to Standish (1980), a hash table is an aggregate 

of individual components called records. Distinct records in a hash 

table contain distinct keys and each record stores information 

associated with its key. The key is either the name of the entity to 

which a record pertains, or is chosen to identify a particular record 

uniquely in a hash table. The basic idea about hashing is that a 

function, called a hashing function, is applied to an item or its key, 

and the result, called a hash value, is used as a sort of abbreviation of 

the item (Harrison, 1972). 
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According to Aho et al. (1983), in general, there are two forms of 

hashing. The first is called open or external hashing which allows the 

set to be stored in a potentially unlimited space. The advantage of 

this form of hashing is that it places no limit on the size of the set. 

The second is referred to as closed or internal hashing. This form of 

hashing limits the size of sets due to using a fixed space for storage. 

Several methods of hashing have been developed. One attractive 

and inexpensive method is to multiply or weight each character of a 

key (VanWyk, 1988). 

Hashing provides a way of finding the target sublist quickly 

where the record is localized by operating on its key (Flores, 1977). 

At the price of the small amount of space for pointers, a table of 

potentially unlimited size can be obtained by hashing methods 

(Vanwyk, 1988). Aho et al. (1983) thought that hashing was an 

important and widely useful technique for implementing dictionaries. 

With regard to the advantages of hashing, Standish (1980) stated: 

"hashing methods are not only good for tables stored in internal 

memory: they are also helpful for searching files of records stored on 

secondary memory devices such as disks and drums. When retrieving 

records from, say, a disk, whole groups of records can frequently be 

brought into primary memory at a time. Since it is relatively costly in 

time to move read/write arms on disks and to wait for rotational 

delays, it often pays to take care in computing a hash function since 

the extra cost of hash computation is often repaid by reducing costly 

mechanical repositioning and rotational delay." 
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According to Horowitz and Sahni (1983), hash table data 

structures can be illustrated as in Figure 1. Suppose we have a total 

number of 8 information records. Each record stores some 

information about each of 8 provinces in Canada. 

1 
2 
3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

17 

18 

19 

26 

Figure 1 An example of a hash table. The hash table is partitioned 
into 26 slots. Some slots are occupied by provincial information. 
The rest indicated by 0 are empty. 

Assume that the identifiers for the 8 records happen to be the 

provincial names: Alberta, British Columbia, Manitoba, Nova Scotia, 

Alberta 
British Columbia 
0 

0 

0 

0 

0 

0 

0 

0 

0 

  

Manitoba 
Nova Scotia 
Ontario 
Prince Edward Island 
Quebec 
0 

Saskatchewan 

0 
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Ontario, Prince Edward Island, Quebec, and Saskatchewan. We 

define an integer array TABLE, which is actually a hash table in 

memory. This hash table is partitioned into 26 slots. The hash 

function / which is to be chosen must map each of the 8 identifiers 

into one of the numbers 1-26. If the internal binary 

representation for the letters A-Z corresponds to the numbers 1-26 

respectively, then the function f defined by: / (identifier) = the first 

character of 8 identifiers: will hash all 8 identifiers into the hash 

table. The identifiers Alberta, British Columbia, Manitoba, Nova Scotia, 

Ontario, Prince Edward Island, Quebec, and Saskatchewan will be 

hashed into slots 1,2, 13, 14, 15, 16, 17 and 19 respectively by this 

function. 

Now, assume that we want to add two more records into this 

table, say, to store Newfoundland and New Brunswick information 

records into the table. The identifiers Newfoundland and New 

Brunswick will also be hashed into slot 13 by the function (see Figure 

2). In Figure 2. we can see that the three identifiers. Nova Scotia, 

Newfoundland, and New Brunswick are mapped into the same slot. 

This is called collision according to some text books. This causes a 

problem because for each slot only one record can be stored. In this 

study, a linked list data structure must be introduced to solve this 

problem. 

4.2 LINKED LIST 

Brillinger and Cohen (1972) defined a linked list as a data 

structure composed of numerous items called nodes or records, 

each containing several fields. A field may contain a primitive 
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New Brunswick 

Newfoundland 

Figure 2. An example of occurrence of a collision. The hash table is 
partitioned into 26 slots. The three records with the 
identifiers. Nova Scotia, Newfoundland, and New Brunswick, 
are hashed into the same slot numbered 13. 

data item. According to Flores (1977), these nodes or records were 

not necessarily physically in consecutive memory locations, but they 

were logically linked together. He stated that each node contained 
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a pointer to the next record according to the order relation on their 

key field(s). 

Standish (1980) described a linked list as a method which "... 

provides a natural way of allocating storage for cyclic and re-entrance 

lists, and provides allocation for pure lists that conveniently 

accommodates growth and decay properties, as well as certain natural 

traversals of the elements ". 

A linked list was considered to be an excellent solution to the 

collision problems since the linked list was composed of nodes whose 

keys hash to the same value, chains never coalesced (VanWyk, 1988). 

No matter how small we make the hash table, the number of nodes 

that can be stored in it is limited only by the amount of memory that 

can be allocated dynamically (Flores, 1977). At the price of some 

space (the size defined as 4097 in this study) for pointers, we obtain 

a table of potentially unlimited size that readily supports insertions 

(VanWyk, 1988). 

In comparing to a linked list with an ordered list, Aho et al. 

(1983) pointed out that ordered list implementation wasted space 

because it occupied the maximum amount of space independent of 

the number of nodes actually on the list at any time. In contrast, a 

linked list implementation employed only as much space as was 

required for the nodes currently on the list. 

On this issue, Horowitz and Sahni (1983) remarked that "by 

storing each list in a different array of maximum size, storage may be 
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wasted They also thought that operation such as insertion on the 

ordered lists was expensive. They also pointed out that unlike an 

ordered list where successive items of a list were located a fixed 

distance apart, in a linked list these items might be placed anywhere 

in memory. 

Flores (1977) thought that a linked list had an advantage over an 

ordered list: "it is easy to append new records and to delete expired 

records; it is also easy to search a linked list sequentially.". 

Furthermore, he pointed out that when insertion operations were 

needed there would be trouble with an ordered list in which a lot of 

information movement would need to be done to place a new record 

into the file. 

Figure 3 illustrates Standish's (1980), linked list data structure. 

Each cell has two fields, an INFO field containing some information 

which is to be stored, and a LINK field containing an address of 

another cell. The LINK field of the last cell contains the distinct 

quantity often defined as zero, which denotes the address of the 

empty list (END defined by zero here). It should be stressed that all 

cells are linked logically, not necessarily physically. 

INFO LINK INFO LINK INFO LINK INFO LINK 

Figure 3. An example of a linked list. Each cell or node consists of two 
parts, INFO and LINK. INFO's contain information to be stored and 
LINK'S contain addresses indicated by arrows. 
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4.3 COLLISION-RESOLUTION POLICY 

There are three collision-resolution policies: (i) chaining (a 

synonym for a linked list), (ii) the use of buckets, and (iii) open 

addressing. Chaining, or a linked list, is viewed as a desirable data 

structure to solve a collision problem in hashing table methods 

(Hutchison, 1988), since the linked list is composed of nodes; chains in 

this way never coalesced (VanWyk, 1988). Standish (1980) also 

suggested that the chaining method was a better choice. 

A linked list data structure can be introduced to solve the 

collision problem above. The technique of solving the collision is that 

whenever a collision happens a linked list will be created. In Figure 4, 

the linked list was created to chain Nova Scotia, Newfoundland, and 

New Brunswick. 

4.4 DEFINITION OF A NODE 

The data base file NEWTRIM.DAT consisted of the collection of all 

the tree nodes or records. Each tree record or node, which was 

named TREENODE.H file in the program, consists of the specific fields 

and was presented in the C language syntax in Figure. 5. 

In Figure 5, a tree number was defined as tn which can be used 

with a plot label and plot number to retrieve any required records of 

the stem analysis trees. Tree age was defined as age. Age at DBH is 

defined as dbh..^age. The last cookie age was defined as last—ck^age. 

The variables above were all declared as integers. DBH outside bark, 

defined as dbhob, and volume outside bark, defined as vio, were 
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1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 
12 

13 

14 

15 

16 

17 

18 

19 

26 

Alberta 
British Columbia 

0 

0 

0 

0 

0 

0 

15- 

Manitoba 
Nova Scotia 
Ontario 
Prince Edward Island 
Quebec 

Saskatchewar 

Newfoundlan* New Brunswick 

Figure 4. An example of solving a collision problem. The hash table is 
partitioned into the 26 slots. The three identifiers, Nova Scotia, 
Newfoundland, and New Brunswick, which are hashed into slot 13, 
are linked together, that is, the 13th slot of Nova Scotia contains the 
address of Newfoundland which then contains the address of New 
Brunswick. 
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struct tree-record 
{ 

char plt^labl LAB-LEN ]; 

int tn; 

char sp-codef3 h 

int age; 

int dbh-age; 

int last-ck-age; 

double dbhob; 

double vio; 

double dbhsf MAX-YEAR-NUM ]; 

double hghsl MAX-YEAR-NUM ]; 

double volsl MAX-YEAR-NUM ]; 

double S-Cor[ 3 1; 

double c-corf 3 ]; 

int next; 

): 

Figure 5. The fields of a node, as a file called TREENODE.H in 
program, are shown in the C language syntax. The struct tree_record 
is the syntax name under which the first column is a type and the 
second column is the names of variables declared. 

declared as real variable with double precision. A plot label was 

defined as plt-lab[ J and a species code was defined as sp-codel ], 

both being character arrays. DBH defined as dbhsf ] which would 
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store a cumulative DBH, tree height defined as hghs [ ] which would 

store a cumulative height, and volume defined as vols[ ] which would 

store a cumulative volume, were declared as real variable with 

double precision. The spatial locations of trees were stored in S—Cor[ ] 

, double precision array for square plots, or c-Cor[ ], double precision 

array for circular plots. The oldest tree, denoted MAX_YEAR_NUM, 

was defined aslOO . Finally, a linked list pointer was defined as n&xt, 

an integer, which can be used to chain the nodes with the same hash 

value. Each Struct tree-record or each node consumed 2496 bytes in 

the main memory. 

4.5 HASHING FUNCTION 

Under the existing TRIM data base system, the way that 

information for stem analyzed tree records was stored was related to 

the plot label, plot number, and tree number in the particular plot. 

For example, the information for tree number 9 within the plot 

number 1 in Kirkland Lake district was stored in such four separate 

files K1_9.0UT, AD_K1_9., RAD_K1_9., and ANNV_K1_9.. In this study, 

a plot label, a plot number, and a tree number were used as a key to 

calculate a hash value. This value was then used as an index into the 

hash table, which contained, at this table address, a pointer to the 

tree record location in the TRIM database. Thus, access to any tree 

record was intended to be direct. When presented with a plot label 

and tree number, we just applied the hashing function to create 

the number associated with that tree record, and proceeded directly 

to this table address. At this table address we would find a pointer to 

the tree record in the new TRIM database system. 



32 

In the hash function, the plot label, the plot number, and the 

tree number are simply treated as character strings. The hashing 

function is applied to sum their ASCII values or internal 

representations in some fashion. We can simply sum internal 

representation of plot label, plot number, and tree number to produce 

the hash value. For example, internal representation for plot label k 

was 107, internal representation for plot number 1 was 49, and 

internal representation for tree number 9 was 57. Applying simple 

hash function to sum their values, we get a hash value of 107 + 49 + 

57 = 213. This simple hash function is considered to be a poor hash 

function, because it results in too many collisions. For example, the 

ASCII value was 107 for character k, 49 for character 1 and 50 for 

character 2. By applying the simple hash function to sum ASCII 

values of file names k 1_2 and k2_l, we get hash values of 1 07 + 49 + 

50 = 206 and 107 + 50 + 49 = 206 respectively. Both the file names 

are hashed into the same slot. 

According to Hutchison( 1988), when we design hash functions to 

perform address calculation we must consider that the hash function 

to be used has less possibility to produce the same hash value. 

According to VanWyk (1988), we should balance carefully between 

two desirable properties: a hash function should randomly distribute 

keys over the table well, and should also be inexpensive to compute. 

In this study, the hash function by VanWyk (1988) was used. His 

hash function has two properties, that is, spreading keys over the 

hash table well, and also inexpensive to compute. 
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If w was a string, let w ( i ) be the i(th) character ofw. for 0 <= i 

< Iw I, and k is a power of ( i + 1 ). The general form of VanWyk’s 

(1988) hash function is described as: 

)- + 1 j j 

Let k = 0, function h^Cw ) = j simply adds the characters 

in a string w ; this is not likely to be a good hash function, since three 

letter string of TRIM file names could hash to only a small number of 

unique values causing a large number of collisions. For example, the 

hash value for tree number 9 within the plot number 1 in the plot 

label k was 107 + 49 + 57 = 2 13, while the hash value for the tree 

number 8 within the plot number 2 in the plot label k was 107 + 56 

+ 50 = 213. But if we Let k = 1, function hj( w ) = ( i + 1 ) * w ^ 

weighted each character by its position in w ; two character strings 

that are permutations of the same set of letters could get different 
_ 2 

hash values under hjO. Function h2 i w ) = ( i + 1 ) * Wj 

weighs each character by the square of its position in w. 

4.6 LOGIC OF COMPUTER PROGRAMS 

Two computer programs written in C language were developed 

(see APPENDICES I and II). The strategy of development of these two 

programs was to minimize interface between computer and user, 

hiding all the intermediate procedures from a user. 

The first program called TRIMHASH.C consisted of 29 modules or 

source files. Each source file is comprised of a certain number of 
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functions and further, within each function there are sub-functions 

within which there are sub-sub-functions, and so on. When the 

program is executed, functions will call their sub-functions and sub- 

functions will call their sub-sub-functions and so on. 

The logic of this program in C language format is as follows: 

mainO 
( 

prompt for input of plot label 

prompt for tree number 

for( plot label NOT END ) 
{ 

for( tree number NOT END ) 
( 

file names building 

open necessary files 

read hash table or create hash table file 

process data 

install nodes 

add nodes to TRIM data file 

close files 
) 

) 

What this program expected was just two pieces information; plot 

label and number of stem analyzed trees in the plot. After such 

information was given the program would call its 29 modules one by 

one, within which one function would call another, to process the 
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TRIM data and would write the results onto the target file, 

NEWTRIM.DAT. 

The logic of this program in the C language format is presented as 

follows: 

mainO 
{ 

while( look next tree record NOT END ) 
{ 

get plot lable and tree number 

open necessary files 

read hash table file 

search for a required record 

print tree record 

get next command from user 
) 

close files 

This program will keep asking you if you would like to view the 

next record. Each time the program receives responses from the user 

it will show the record on the screen until the program receives a 

"No" response. 

4.7 IMPLEMENTATION 

The hashing algorithm developed in this study would process the 

TRIM data to calculate cumulative volume growth, cumulative height 

growth, and cumulative DBH growth for each individual tree by one- 
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year intervals. To add each tree record to the TRIM data file, called 

NEWTRIM.DAT, a plot label and a tree number for that tree is first 

passed through the hashing function, which translated the plot label, 

the plot number, and the tree number into an offset of the hash table. 

If this location in the hash table is empty, the tree information and its 

associated information is added to the end of the TRIM data file 

NEWTRIM.DAT and its location is placed into the hash table. However, 

if this location in the hash table is occupied, then another tree record 

had already been hashed into this table location and a ’collision” 

occurs. In this case, the current pointer in the table is replaced with a 

pointer to the new structure. The new tree record and associated 

information is then added to the end of the TRIM data file. The 

address of the record that had been in the hash table is placed into 

the next field of the new record. Thus, the linked list will effectively 

extended by "bumping " all entries down the chain and placing the 

new tree record at the beginning of the corrected hash list. 

When searching for a tree record we proceed to its table address. 

If the tree record pointed to by the address in the table did not match 

the target tree record by matching fields which were defined as plot 

label and tree number, we proceed down the chain until we find the 

required tree record, or come to the end of the TRIM data base, 

whichever comes first. It is guaranteed that if the tree record existed 

in the data base it would be on the selected list. 

As an example, the interrelations between the hash table, the 

database file, and the linked lists are presented in Figure 6. In this 
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example, the load factor 0.1 was chosen and the hash function [•4.11 

was used where the power of k was defined as 3. 

In Figure 6, for tree number 1 with plot label kl, by applying 

the hashing function, the hash value was 1822 and the hash value 

was 1849 for tree number 2. Therefore, the 1822th slot contained the 

address of the tree number 1 from plot kl in the database file 

NEWTRIM.DAT and the 1849th slot pointed to the location of tree 

number 2 in plot k2 in the database file NEWTRIM.DAT. For the tree 

number 36 of the plot label nl2, by applying the hashing function, the 

hash value was 47. Unfortunately, by applying the function, the hash 

value for the tree number 49 of plot label nil7 was 47 too. Since both 

had the same hash value, a "collision" occurred. 

Collision is solved as follows: the 47th slot in the hash table 

pointed to the location numbered 109 (a record number or node 

number) in NEWTRIM.DAT file; this location not only contained the 

information of the tree number 49 of the plot nll7, but also the 

location, numbered 96, of the record of the tree number 36 of the 

plot nl2. If more collisions occur, the linked list would be formed 

exactly in the same way and the nodes with the same hash value 

would be chained. 

4.8 ACHIEVEMENTS 

The 543 stem analysis trees, or a total of 543 * 3 = 1629 files, 

were processed by the hashing algorithm, TRIMHASH.C, with the 

hashing function [ 4.1 ] where the power of the hashing function was 

set to 3 and the load factor 0.1 was chosen. When executing the 
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HASH.TBL file NEWTRIM.DAT file 

( or hash table ) 

[ 0 I 

[ 1 ] 

[ 2 ] 

[ 47 ] 

11622] 

[1849] 

[4094] 

[4095] 

[4096] 

Figure 6. The interrelations between the hash table, the database 
file, and the linked lists. The left hash table called HASH.TBL 
is partitioned into 4097 slots.The right called NEWTRIM.DAT 
is output file. The chain, the 48th slot of the hash table, 
node# 109 and node No.96 is the linked list. The load factor 

3 
is 0.1 and the hash function is: h^(^ ) = ( i + 1 ) * w 

wherew(i) is the i(th) character of wordsw for 0 <= i < I w I. 
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program TRIMHASH.C, the user would only need to enter the 

following information: (1) the plot label, and (2) the total number of 

trees in that plot. Then, the computer would run the program 

TRIMHASH.C and would report that the execution was successful. 

Obviously, this simple executing process greatly reduced the chance 

of occurrence of errors due to much interface between the user and 

the computer. 

The value of 1.0752 of ALOSS was achieved by this hashing 

algorithm. It could be interpreted that only one comparison would be 

made on average to retrieve or visit any of the records of stem 

analysis trees processed by the hashing algorithm. After processing, 

any of the records of the stem analysis trees could be retrieved by 

the other program, PRINT.C. What the PRINT.C program expected was 

just two pieces of information which the user had to input from the 

key board: (1) plot label, and (2) tree number which the user would 

like to retrieve. As an example, the output of one record by the 

PRINT.C program is shown in Table 5. 

After the TRIM data files are processed by the hashing algorithm 

developed, the working directory no longer necessarily consisted of 

subdirectories in order to accommodate hundreds of TRIM 

data files. Instead, there were only two files in a working directory. 

One was the TRIM database file defined as NEWTRIM.DAT and the 

other was hash table file defined as HASH.TBL. The directory 

structures, therefore, were greatly simplified, but the property of 

direct access to any required tree records was maintained. Both the 
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Table 5. The example of output of tree number 9 within plot 1 in 
Kirkland Lake district printed by the PRINT.C program, is shown. The 
first line includes plot label, tree number, and species code; the 
second line includes age; the third, fourth, and fifth lines include 
the cumulations of DBH, height, and volume respectively at the age 
shown. 

Plot label: kl Tree number: 9 Species code: Pj 

Age: 
DBH(m): 
Height! m): 
Volume(m“3); 

21 
1.341100 
1 1.85000 
0.098708 

Age 1 
DBH 0.000000 
Height 0.070000 
Volume 0.000050 

0.000000 
0.520000 
0.000155 

0.026000 
0.970000 
0.000362 

4 
0.049400 
1.400000 
0.000777 

0.100800 
2.120000 
0.001406 

Age 6 
DBH 0.167800 
Height 2.370000 
Volume 0.002565 

7 
0.267800 
2.750000 
0.004366 

8 
0.392100 
3.250000 
0.006640 

0.507100 
4.750000 
0.009833 

10 
0.625900 
5.100000 
0.013831 

Age 1 1 
DBH 0.733100 
Height 5.750000 
Volume 0.018572 

12 
0.824600 
6.620000 
0.024036 

13 
0.894600 
6.870000 
0.031398 

14 
0.973000 
7.750000 
0.038513 

15 
1.032900 
8.250000 
0.045367 

Age 16 
DBH 1.088300 
Height 8.750000 
Volume 0.052790 

17 
1.139200 
9.670000 
0.060550 

18 
1.186100 
9.920000 
0.070397 

19 
1.241400 

10.520000 
0.081352 

20 
1.289700 

1 1.120000 
0.090860 

Age 21 
DBH 1.341100 
Height 1 1.850000 
Volume 0.098708 
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directory structures under the existing TRIM database management 

and the directory structure after the TRIM data files were processed 

were shown in Figures 7 and 8. 

4.9 ANALYSIS OF EFFICIENCY 

In an analysis of efficiency for the hashing algorithm, the hash 

function [4.1] was used where let k = 1, k = 2, and k = 3 respectively. 

The two load factors 0.1, and 0.9 were chosen. According to VanWyk 

(1988), a load factor is a result of a number of items to be processed 

divided by the size of a hash table. The combinations of three forms 

of hashing functions with the two load factors were studied with the 

hashing algorithm to evaluate the efficiency of the hashing algorithm 

developed. The average length of successful search (ALOSS) by 

VanWyk (1988) was used to analyze the efficiency of the algorithm. 

According to VanWyk (1988), the value of ALOSS measures the 

quickness of encountering any required records. When the value of 

the ALOSS is 1 it means that there would be no comparison to be 

made to encounter any required record. Therefore, any required 

record could be retrieved directly. When the ALOSS value was 2 or 3 

it suggested that there would be 2 or 3 comparisons to be made on 

average to encounter any required tree record in the data base. 

For example, suppose that there are 10,000 tree information 

records in the database, a value of ALOSS of a hashing algorithm 

developed is equal to 2. Therefore, there will be only 2 comparisons 

to be made on average to retrieve any records you would specify. In 

comparison, the 10,000 comparisons might be made to encounter the 
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Working Directory 

subdirectory 1 subdirctory2 subdirctory3 subdirectory4 

hundreds of 
*.OUT files 

hundreds of 
AD. * files 

hundreds of 
ANNV. * files 

hundreds of 
RAD. * files 

Figure 7. The directory structure under the existing TRIM data 
base management system. 

Working Directory 

NEWTRIM.DAT file HASH.TBL file 

Figure 8. The directory structure after the TRIM data files were 
processed by the algorithm developed. 
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record which you would like to retrieve and which happens to be the 

last record in the database, if you would use the ordinary sequential 

search algorithm. In general, the bigger the value of ALOSS, the more 

comparisons would be made on average, or more time would be 

spent, to encounter any required tree record in the data base. 

The statistics of the values of ALOSS are given in Tables 6, 7, 8. 9, 

10, and 11. Based upon these statistics. Figures 9, 10, 11, 12 and 13 

were plotted. 

( i ) When the hash table size was fixed. 

When the hash table size was fixed or the load factor was set, the 

effects of the hashing functions on the goodness of performance of the 

algorithm could be explored. Figures 9 and 10 illustrated the effects 

of three forms of hashing functions on the goodness of performance of 

the hashing algorithm with the load factor 0.1 and 0.9 respectively. 

In Figure 9, when the power k was equal to 1 the values of ALOSS 

ranged between 3 1250 and 4.7619, the highest curve among the 

three curves. It suggested that there would be between 3 and nearly 

5 comparisons to be made on average to encounter any required tree 

record. It was also noted that the values of ALOSS were sensitive to 

the number of trees. Therefore, this was a poor selection method. 

When the power of k was increased to 2 from 1, the values of 

ALOSS decreased dramatically. When the number of trees reached the 

maximum and k was equal to 2, the value of ALOSS was 1.5603, less 

than 2 comparisons to be made to encounter any tree record on 

average, compared with over a value of 3 of ALOSS when k was 
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Table 6 

Table 7. 

Statistics of hash values for jack pine trees in all plots in 
the Kirkland Lake District when the load factor is 0.9 and 
the hashing function is hj(w ) = ( i +1 )*W| 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

16 
21 
36 
49 
66 
81 
90 

101 
104 
109 
123 

3.1250 
4.7619 
4.1667 
4.0816 
3.7879 
3.7037 
3.8889 
3.9604 
4.4269 
4.5872 
4.4146 

Statistics of hash values for jack pine trees in all plots in 
the Kirkland Lake District when the load factor is 0.9 and 

2 
the hashing function is h2(w) = ( i +1 ) *W| 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

39 
70 
94 

116 
138 
165 
200 
236 
272 
310 
348 

1.2821 
1.4286 
1.5957 
1.7241 
1.81 16 
1.8182 
1.7500 
1.6964 
1.6544 
1.6129 
1.5603 
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Table 8 

Table 9. 

Statistics of hash values for jack pine trees in all plots in 
the Kirkland Lake District when the load factor is 0.9 and 

3 
the hashing function is h^(w ^ ^i=>0 ^ i +1 ) * w". 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

34 
62 
90 

1 18 
152 
183 
218 
251 
287 
321 
351 

1.4706 
1.6129 
1.6667 
1.6949 
1.6447 
1.6393 
1.6055 
1.5936 
1.5679 
1.5576 
1.5470 

Statistics of hash values for jack pine trees in all plots 
in the Kirkland Lake District when the load 0.1 and 
the hashing function is hj(w) = 2|^^Q(i+l )*w^ 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

26 
47 
52 
80 
99 

122 
153 
175 
175 
186 
195 

1.9230 
2.1276 
2.8846 
2.5000 
2.5252 
2.4590 
2.2876 
2.2857 
2.5714 
2.6882 
2.7846 

Table 10. Statistics of hash values for jack pine trees in all plots in 
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Table 1 

the Kirkland Lake District when the load factor is 0.1 and 
2 

the hashing function is h2(w * W j 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

32 
68 

113 
157 
201 
248 
296 
344 
387 
422 
461 

1.5625 
1.4706 
1.3274 
1.2739 
1.2438 
1.2097 
1.1824 
1.1628 
1.1628 
1.1848 
1.1779 

1. Statistics of hash values for jack pine trees in all plots in 
the Kirkland Lake District when the load factor is 0.1 and 

3 
the hashing function is h^(w ) = ( i+1 ) *w -^ 

Number of 
trees 

Number of 
unique No. 

Average length of 
successful search 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
543 

41 
88 

137 
187 
235 
285 
334 
380 
427 
470 
505 

1.2195 
1.1363 
1.0949 
1.0695 
1.0638 
1.0526 
1.0479 
1.0526 
1.0539 
1.0638 
1.0752 
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CD 
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O) 
CD 
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CD 
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Number of trees 

1 

2 

3 

Figure 9. Comparison of the effects of the different forms of hashing 
functions on the algorithm performance when the load factor was 0.9. 

equal to 1. When k was increased to 3, a further increase of 1 more 

unit, the performance of the hashing algorithm was improved only 

slightly. 

In Figure 10. when the load factor was decreased to 0.1 from 0.9 

and k was 1, the same trends were explicitly shown as when the load 

factor was 0.9 and k was equal to 1. The performance of the hashing 

algorithm in this case was still not satisfactory, nearly 3 comparisons 

to be made on average to retrieve any required tree record. It was 

noted that when k was equal to 2 and k was equal to 3 respectively, 
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the values of ALOSS were obviously improved and the latter was 

1.5603 and the former was 1.5470. 

Number of trees 

Figure lO.Comparison of the effects of the different forms of hashing 
functions on the algorithm performance when the load factor was 0.1. 

( ii ) When the power of the hashing function was fixed 

When the power of hashing function was fixed the effects of the 

load factor on the performance of the hashing algorithm could be 

investigated. The effects of the two load factors on the goodness of 

the performance of the hashing algorithm are shown in Figures 11,12 

and 13. 
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Figure 11. Comparison of the effects of the load factors 
on the algorithm performance when k was equal to 1. 

In Figure 1 1, when k was equal to 1 the trends of the two lines 

tended to extend similarly. When the load factor was 0.9 most of the 

values of ALOSS fell between 4 and 5. While all the values of ALOSS 

were within 2 and 3, the former value of ALOSS were two units 

greater than the latter ones on average. It was apparent that the 

values of ALOSS were sensitive to the number of trees in data base. 
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Figure 12. Comparison of the effects of the load factor 
on the algorithm performance when k was equal to 2. 

In Figure 12 when the load factor was 0.9, almost all the values 

of ALOSS exceeded 1.5. When the load factor was 0.1, almost all the 

values were below 1.5. In the former case, it was obvious that the 

values of ALOSS were sensitive to the number of trees in data base. 

In the latter case, the sensitivity of the values of ALOSS to the 

number of trees appeared to be insignificant. Overall, there was 

approximately one unit of ALOSS difference between the two curves. 



51 

Figure 13. Comparison of the effects of the load factor 
on the algorithm performance when k was equal to 3. 

In Figure 13 the performances of the hashing algorithm were 

further improved compared with that in Figure 12 in both cases. The 

values of ALOSS were no longer subject to the number of trees in the 

data base when the load factor was 0.9. Also, the overall values of 

ALOSS were lowered a bit compared to these in Figure 12. When the 

load factor was lowered to 0.1 from 0.9, the overall values of ALOSS 

were decreased by one unit, falling to about 1.2 on average. 
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5. TWO-STAGE SAMPLING 

This section considers the question of determining what sample 

intensities of both plot samples and tree samples were required to 

obtain an accurate estimate of annual volume growth of immature 

jack pine. The yearly volume growth investigated was limited to the 

last 10-year period in this study. The two 2-stage sampling 

techniques were simulated with immature jack pine data collected in 

stands in the Kirkland Lake District in northeastern Ontario. 
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5.1 METHODOLOGY 

The first sampling scheme was simple random sampling of the 

primary samples of fixed plots within individual stands and simple 

random sampling of the subsamples of trees within the plots at the 

second stage. This sampling scheme would be referred to as the 1st 2- 

stage sampling rule hereafter. 

The second sampling scheme was simple random sampling of the 

primary samples of the plots within the individual stands and the 

selection of second-stage subsamples of the trees within the plots 

using the probability proportional to basal area. This sampling 

scheme is referred to as the 2nd 2-stage sampling rule hereinafter. 

The function for computing total volume based upon the 1st two- 

stage sampling rule was given by Prayer (1979) and adjusted by 

Murchison (1984) as follows: 

estimate of population mean; 

n n 

BA2i. [5.11 

i=1 i=1 

Mi 

i = 1 

N Mi 

BAl N * ^ Mi * ^ 
i=1 j=1 

BAl N 
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BA2i. 

and variance: 

Mi 

m* 2 BA2ij 
j=l 

V( VSl) = 
1 - n 
N * n 

n 

2 Mi • ( ^ 

i=1 

- RVBA BA2i. )^/( n- ) 

where; 

1 
N * n 

n 
2/ mi 

Mi M 1 - )/mi * 

i=l 

mi 

S DV2i = 2 I DV2ij - /I mi - 1 ] 

j=1 

   1_ 
DV2i. = mi 

mi 

2 DV2ij 

j=l 

DV2ij = Vij - RVBA * BA2ij 

n n 

and RVBA = 2 Mi * 2 Mi * 

i=1 i=1 

total volume estimate; 

TVSl = M * VSl 

15.2] 

2 
S DV2i 

and its variance; 
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V( TVSl) = * V ( VSl ) 
Where; 

N = the number of primary sample units (plots) in the 

population (stand or hectare): 

n = the number of sample units in the sample: 

Mi = the number of sample elements in sample unit i; 

mi = the number of elements sampled in sample unit i; 

vij = the volume of the tree j in plot i; 

bij = the basal area of tree j on plot i; 

Vij = the volume of tree j in cluster i. 

Vi. = total volume of all trees on secondary cluster i. 

BAij = basal area of tree j in cluster i. 

= mean volume per tree in second-stage sample 

for cluster i. 

RVBA = the mean tree volume to tree basal area ratio. 

= mean basal area of second-stage of cluster i. 

Vk = total tree volume per unit area or per primary 

cluster as estimated by two-stage sample rule k. 

DV2ij = the difference between actual tree volume and 

volume estimated by simulation for tree j on cluster i. 

PY2I = mean difference between actual and estimated 
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tree volume for cluster i. 

2 
S DV2i = variance of DV2ik. 

VSk = total tree volume per unit area or per primary 

cluster as estimated by two-stage sample rule k. 

TVSk = estimated total volume of trees in stand by 

two-stage method k. 

The functions for computing total volume based upon the 2nd 

two-stage sampling rule were adapted from Murchison (1984) and 

were given as follows: 

estimate of population mean u; 

N Ml Mi 

u = 2 I 2 BAij/Mi * 2 I Vij/BAij ] ]/ N 
i=1 j=1 j=l 

where; 
Mi Mi 

Vi. = ^ * 2 t Vij *( 2 BAij )/BAij 1 

j=1 j=1 

[5.31 

variance for u; 

. _  N - n  VI u 1 N * n M n - 1 ) 

n Mi mi 

* 2 I 2 BAij/mi * 2 Vij/BAij 
i=1 j=1 j = 1 

[5.4] 
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n Ml mi 

- ~ * 2 [ S BAij/mi * 2 Vij/BAij 
i=l j = 1 J = 1 

n Mi 
1 ^ ^ ^ x2 Mi - tni 

+ rri  * i i BAij ) ,—}—: rr N*!!" ■" ^ Ml* mi* (mi - 1) 
i=1 j=1 

mi mi 

* 2 I Vij/BAij - -;^ * 2 Vij/BAij 
j=1 j=1 

total volume estimate; 

TVS2 = N * VS2 

and its variance; 

V( TVS2 ) = * V( VS2 ) 

In this study, the basal areas converted from diameters at breast 

height were used as the means of selection of the subsamples. Using 

methodology described by Husch et al. (1972), a cumulative list of 

tree basal areas by tree number within the plot was made and a 

random selection of the trees to be subsampled was made from this 

list. All trees used are located within 10 m by 10 m plots and they 

were all stem analyzed in accordance with TRIM methodology. 
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5.2 DATA USED 

Stem analyzed tree data from Kirkland Lake District were used to 

investigate the sampling intensities for jack pine growth. All plots 

consisted of a 20 m by 20 m measurement plot with alOmbylOm 

destructively sampled inner plot. All the trees within the inner plot 

were stem analyzed according to TRIM procedures. The data 

information provided by Murchison and Kavanagh (1988) are given 

in Table 12. 

5.3 COMPUTER SAMPLING SIMULATION 

Simulation is a numerical technique for conducting experiments 

on a digital computer (Naylor et al., 1966) and it is commonly used by 

scientists (Kleijnen, 1974). Simulation can serve as a "preservice test" 

to evaluate the decision rules to avoid running the risk of 

experiments on the real system (Naylor et al., 1966). 

According to Kleijnen (1974) there are two methods of problem 

solving in general. One is an analytical solution technique which relies 

on calculus. The other is a numerical solution technique which 

substitutes numbers for the independent variables and manipulates 

these numbers. He pointed out that the numerical technique was 

iterative, i.e., each step in the solution gave a better solution using 

the results from the previous steps. The numerical technique solved 

the problem by approximating the real state of nature (Arvanitis, 

1966). The Monte Carlo method is a special numerical technique 

(Kleijnen, 1974). 
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Table 12. Summary of information for the immature TRIM jack 

pine plots sampled within the Kirkland Lake District 

Plot Sp Age Dbh Ht Vol Density Pielou's Site 

Label yr. cm m m‘3/ha No./m"2 Index Class 

K1 PJ 21 10.3235 10.86 54.151 0.2600 0.831405 1 

K2 PJ 20 11.6786 10.22 62.349 0.2000 0.903702 1 

K3 PJ 20 11.6352 10.33 62.867 0.1900 0.647512 1 
NL2 PJ 19 7.6101 6.24 20.522 0.1591 4.990989 2 

NL17 PJ 20 7.9851 7.56 27.731 0.1927 5-596667 2 

NL27 PJ 19 6.6207 5.76 13-477 0.1409 4.575950 2 

KLD_P1 PJ 21 9.2544 8.76 31-738 0.5100 1.026528 1 

KLD_P2 PJ 22 7.9871 7.45 23-907 0.2900 1.206741 2 

KLD_P3 PJ 21 7.5219 7.82 31.637 0.4100 1.130969 2 
T1 PJ 28 15-2928 13-76 136.039 0.1448 0.772097 1 

T2 PJ 28 12.4293 13-02 90.594 0.2641 0.637634 1 

T3 PJ 27 15-9670 12.74 146.156 0.1228 0.826934 1 
T4 PJ 28 11.0890 12.38 67.307 0.2983 0.797199 2 

T5 PJ 28 13.1 124 12.81 102.796 0.1739 0.995269 1 
T6 PJ 26 14.4276 12.29 1 15.812 0.1353 0.765531 1 

T7 PJ 27 19.2818 14.97 21 1.714 0.1 166 0.790287 1 

T8 PJ 28 16.3938 12.33 139.481 0.1589 0.779978 1 

UT9 PJ 26 7.0484 7.42 18.323 0.3592 0.657926 3 

UTIO PJ 28 13.3050 12.60 99.623 0.2798 0.684092 1 

UTll PJ 28 14.4960 13-23 121.155 0.2577 0.778577 1 

UT12 PJ 28 9.2712 11.08 47.822 0.4995 1.481926 2 

UT13 PJ 28 14.2218 13.87 127.080 0.1401 0.887776 1 

Note; All information was calculated by Murchison and Kavanagh 

(1989). 



60 

The Monte Carlo method is also referred to as the method of 

statistical trials (Buslenko et al.. 1966). Hammersley and Handscomb 

(1965) defined the Monte Carlo method as "that branch of 

experimental mathematics which is concerned with experiments on 

random numbers". Monte Carlo can be any technique for the problem 

solving using random numbers or pseudorandom numbers (Kleijnen, 

1974). Monte Carlo methods have found wide application on digital 

computers (Buslenko et al., 1966). 

In comparing mathematical models with simulation procedures, 

Ackoff (1962) remarked "that a model represents a phenomenon 

while simulation imitates it, the first being the photograph' and the 

second the motion picture' of the phenomenon in question.". 

Modelling deals primarily with the relationships between real 

systems and models; simulation refers primarily to the relationships 

between computers and models (Zeigler, 1976). 

In this study, estimates for the two 2-stage sampling schemes 

were computed for each cluster of plots within stands. As controls, an 

estimate of stand yearly volume growth per hectare for the last 10- 

year period for all trees included on all plots within the stand were 

computed. The estimate of stand yearly growth volume per hectare 

was used as controls for comparison of the precision of the population 

mean estimates for the two 2-stage sampling rules. 

For the 1st 2-stage sampling rule, subsampling of trees within 

plots was performed using simple random sampling for the selection 

of individual trees within plots and all the possible levels of the 
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subsampling of trees within the plots were simulated for the last 10- 

year growth period. The formula to compute the various estimators 

were given in expressions [ 5.1 1 and [ 5.2 ]. 

For the 2nd 2-stage sampling rule, the subsampling of trees 

within plots was carried out based upon probabilities proportional to 

tree basal areas. All the possible levels of subsampling of trees were 

simulated for the last 10-year growth periods. The formula to 

compute the various estimators were given in expressions [5.3] and 

[5.4 1. 

In this study, the precisions of the mean estimates for both the 

unequal probability subsampling rule and the equal probability 

subsampling rule were computed and were used to evaluate the 

accuracy of the mean estimates for both sampling rules. A confidence 

limit of 95 percent was set throughout this study. 

According to Statistics by Beijing Forestry University, (1977), the 

precision may be explained as follows: for example, u is a estimate 

mean, 5 is a standard deviation of n samples, t value can be 

determined given the confident limits, 1.96, for example, for a 95 

percent of confidence limit, estimate error limits for a mean estimate 

is defined as t value multiplied by a standard error, it *is //IT)), 

relative mean estimate error (E) is defined as estimate error limits 

divided by a mean estimate, E = (i *is //JT))/u. Finally, a precision 

(P) is defined as 1 minus a relative mean estimate error then 

multiplied by 100 percent. 
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p = (1 - E)MOO%. I 5.5 ] 

It can be interpreted that the higher the value of precision, the 

more accurate the sample mean estimate. The highest value of 

precision is 1 or 100 percent. 

In this study, because of a small number of stem analyzed jack 

pine trees in stands T and UT (only 5 stem analyzed trees in each plot 

except plot T1 which had 13 trees), computer sampling simulation 

was only performed with three stands K. NL, and KLD_P. The 

confidence limits were set at 95 percent throughout the analysis of 

this study. 

5.4 SIMULATION PROCESS 

The simulation processes can be divided into the two major steps; 

database preparation and sample rules simulation. The hashing 

algorithm developed in the earlier section was used to process the 

TRIM database as the first step preparation of a smaller database. 

The file NEWTRIM.DAT and the file HASH.TBL produced by the 

developed algorithm were used as the part of the sampling simulation 

program. The second step, sample rules simulation, only included one 

large program, SIMULATION.C. This program consisted of 41 modules 

or source files which were composed of a total of 78 functions all 

together under the main program. The main controlling function 

mainO coordinated all 78 functions to be executed as designed. 
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At the very beginning of the simulation, the program expected a 

plot label and the number of primary sample units, the number of 

subsample units and the total number of stem analyzed trees in each 

of the plots. The program after receiving such information would 

build up the names for all trees. Then, the names were immediately 

used to calculate their hash values in order to retrieve the required 

information stored in the TRIM data base file NEWTRIM.DAT. 

The minimum subsample number was defined as 2 in the source 

file DEFINE.H. The maximum number of subsample size was 1 less 

than the total number of jack pine trees in the plot that had the least 

number of jack pine trees among the primary sample plots. The 

source file FINDMAXNUM.H was designed to compute the total 

number of jack pine trees in each plot and then set the maximum 

subsample number of trees. To speed up the simulation process the 

quick sort algorithm and the recursive call were introduced into the 

the simulation program. Under the computer sampling simulation 

loop the rule of two-stage random sampling with simple random 

subsampling was run first and then was followed by the rule of 2- 

stage random sampling with unequal probability of selection of 

subsample. 

The most outer loop was the yearly volume growth loop. The 

yearly volume growth to be investigated was limited to the last 10 

years. It was defined as MAX_YEAR in the file DEFINE.H. The next 

enclosed loop was subsample size loop. As mentioned, the maximum 

subsample was decided by the function FINDMAXNUM. The inner 

most loop was the sampling simulation loop. 
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Each plot was repeatedly sampled by each simulator in the 

following manner. All estimates such as estimate for population mean 

and estimate for its variance from the current cycle were combined 

with those of all previous cycles run under the same factors and were 

averaged at the end of each cycle. The sampling simulation estimates 

of the volume growth per hectare and standard error estimates for 

the two two-stage sampling rules were computed from these 

estimates. The simulator was possibly run up to 2500 times which 

was defined as SIMULATION_TIMES in the file DEFINE.H or until 

stable estimates were obtained, whichever came first. The source file 

STABLETEST.H was designed to evaluate the difference between the 

current estimates average and the previous estimates average and 

the standard of evaluating the difference was defined as 0.001. This 

was defined as ALLOWABLE_ERROR in file DEFINE.H. After the 2500 

loops ended or the stability test was satisfied, the results of the 

sampling rules simulation were written to the external file, 

SIMULATION.OUT. This process was run for all possible levels of 

subsampling for TRIM plots within a stand. The results were 

appended to the external file after each run ended. 

5.5 SAMPLING SIMULATION RESULTS 

Due to the huge sampling simulation results, the way to present 

the simulation results is explained as follows: to evaluate both 

sampling rules and draw reasonable conclusions, only results from 

the worst cases for the unequal probability subsampling rule and the 

results from the best cases for the equal probability subsampling rule 

are presented in this part. The final conclusions are drawn in such a 
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way that if the results from the worst cases are satisfactory, the 

method to produce the results can be considered to be adopted; if the 

results from the best cases are not acceptable, the method which 

produces the results will be not recommended. 

Under each of both primary sample intensities of 100 percent 

and 66 percent, for the unequal probability subsampling rule, the 

worst cases were selected from the simulation results with the lowest 

precision of mean estimates when subsample size was equal to 2, and 

for the equal probability subsampling rule, the best cases were 

selected from the simulation results with the highest precision of 

mean estimate when subsample size was equal to 2. 

All the TRIM means lie within the mean estimate ranges 

produced by both sampling rules with confidence limit of 95 percent. 

There were no significant differences to be found between TRIM 

means and the estimate means through the analysis of the simulation 

results for both sampling rules. Therefore, the focus of the 

investigation was placed on comparison of precisions of mean 

estimates produced by both sampling rules. 

(1) Under the primary sample intensities of 100 percent 

( i ) When the subsample intensities were 10 percent both results 

from the worst case for the unequal probability subsampling rule and 

results from the best case for the equal probability subsampling rule 

are presented in Figure 14. 
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Number of subsample of trees 

Figure 14. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 100 percent and subsample intensities were 10 percent. 

In this case, for the unequal probability subsampling rule the 

precision of the mean estimate was 96 percent, while for the equal 

probability subsampling rule the precision of the mean estimate was 

only 76 percent. With an increase of the subsample size or 

subsampling intensities the precision of mean estimate for the equal 

probability subsampling appeared increasing. For this sampling rule 

when subsample size was increased to 10 trees from 2 trees the 
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precision rose up to 91 percent. If the precision of mean estimate for 

the equal probability subsampling climbed up to the point which can 

be reached for the unequal probability subsampling rule with only 2 

trees, the subsample size should be further increased to 17 trees for 

the equal probability subsampling. 

( ii ) When the subsample intensities were 5.8 percent both result 

from the worst case for the unequal probability subsampling rule and 

result from the best case for the equal probability subsampling rule 

are presented in Figure 15. 

In this case, the precision of mean estimate for the unequal 

probability subsampling rule was still high, 97 percent. To obtain 

over 90 percent of the precision of mean estimate for the equal 

probability subsampling rule the subsample intensities must be 

increased to 66 percent. 
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Number of subsample of trees 

Figure 15. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 100 percent and subsample intensities were 5.8 percent. 

( iii ) When the subsample intensity ratio at 3.1 percent both results 

from the worst case for the unequal probability subsampling rule and 

result from the best case for the equal probability subsampling rule 

are presented in Figure 16. 
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Number of subsample of trees 

Figure 16. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 100 percent and subsample intensities were 3.1 percent. 

In this case, the precision of mean estimate for the unequal 

probability subsampling rule remained over 90 percent, compared 

with only 36 percent of the precision of mean estimate for the equal 

probability subsampling rule. It is noted that for the equal 

probability subsampling rule the 90 percent of the precision would 

still not be obtained even when the subsample intensities rose to 75 

percent. 

(2) Under the primary sample intensities of 66 percent 

( i ) When the subsample intensities were 6.7 percent both results 

from the worst case for the unequal probability subsampling rule and 
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result from the best case for the equal probability subsampling rule 

are presented in Figure 17. 

Number of subsample of trees 

Figure 17. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 66 percent and subsample intensities were 6.7 percent. 

In this case, the precision of mean estimate for the unequal 

probability subsampling rule remained well over 93 percent. While, 

the precision of mean estimate for the equal probability subsampling 

was 88 percent and was sharply increased with an increase of 

subsample intensities. 

( ii ) When the subsample intensities were 3.8 percent both results 

from the worst case for the unequal probability subsampling rule and 

result from the best case for the equal probability subsampling rule 

are presented in Figure 18. 
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Figure 18. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 66 percent and subsample intensities were 3.8 percent. 

In this case, the precision of mean estimate for the unequal 

probability subsampling rule was 92 percent, compared with 55 

percent for the equal probability subsampling rule. For the equal 

probability subsampling rule, even when the subsample sizes were 

increased to the maximum, the precision for this sampling rule was 

still below 80 percent. 

( iii ) When the subsample intensities were 2.1 percent both results 

from the worst case for the unequal probability subsampling rule and 

result from the best case for the equal probability subsampling rule 

are presented in Figure 19. 
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Number of subsample of trees 

Figure 19. The worst results produced by the unequal probability 
subsampling rule and the best results produced by the equal 
probability subsampling rule when the primary sample intensities 
were 66 percent and subsample intensities were 2.1 percent. 

In this case, the precision of mean estimate for the unequal 

probability subsampling rule was 88 percent, a little below 90 

percent. When the subsamples were increased to 3 from 2, or to 

subsample intensities of 3.1 percent from 2.1 percent , 90 percent of 

precision was secured. The precision of mean estimate for the equal 

probability subsampling was very poor, only 43 percent. When the 

subsample intensities rose to the maximum subsample size, that is, 

subsample of 47 trees per plot, the precision was still below 76 

percent. 
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6. DISCUSSION 

6.1 THE HASHING ALGORITHM 

In this study, all the combinations of two hash table sizes with 

the three forms of hashing function [4.1] were studied to evaluate the 

efficiency of the hashing algorithm. The results of the value of ALOSS 

and their trends were consistent throughout the analysis. The 

combinations of the further increase of the power of the hash 

function [4.1] and the further decrease of load factor have been 

attempted with the hashing algorithm. But, the performance of the 

hashing algorithm was not improved significantly. In addition, when 

the power of the hashing function [4.1] was set to 3, the performance 

of the hashing algorithm was tested with the load factors 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, and 0.8 respectively. All of the values of ALOSS fall 

within 1.0479 and 4.7619. 

It could be seen that the performance of the hashing algorithm 

developed depended upon two factors, load factors and hashing 

functions. Once the load factor was set, with an increase of the power 

of hashing function [4.1], the performance of the hashing algorithm 

was improved, that is, the values of ALOSS were decreased with an 

increase of insensitivity of ALOSS to the number of trees in the 
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database. That is because the more weight given to character position 

of both the plot label and the tree number, the greater spread of the 

hash values. The best performance of the hashing algorithm resulted 

from the combination of the load factor 0.1 with the power 3 of hash 

function [4.1]. It was also apparent that once the hashing function was 

chosen the performance of the hashing algorithm benefited from the 

decrease of the load factor. 

Although the total of 1629 files including 543 stem analysis trees 

were processed in demonstration, actually, this hashing algorithm can 

be used to process all the TRIM data files. It should be pointed out 

that it is up to the user to balance the performance of the hashing 

algorithm and the use of the computer memory space. In other words, 

better performance of this hashing algorithm requires more space. 

Based on the findings, the better performance of this hashing 

algorithm can be obtained by changing the load factor. If a user 

would like to have the best performance of the hashing algorithm the 

load factor should be set to 0.1 with which a value of 1.2 ALOSS can 

be expected with the power of 3 of hashing function [4.1]. If the 

memory space is at a premium, the load factor can be set to 0.9 with 

which 1.5 ALOSS can be obtained at the expense of a small hash table. 

Computer memory space consumed by a hash table depends upon the 

number of trees to be processed and the load factor chosen, both 

determining the size of a hash table. For example, if there are 10,000 

trees to be processed, the power of hashing function [4.1] is set to 3. 

For performance of value of 1.2 ALOSS, the memory space consumed 

by the hash table will be a result of a number of trees divided by a 
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load factor: (10,000/0.1) * 2 = 2,00,000 bytes (because a hash table is 

declared to be integer which consists of 2 bytes), in comparison to 

(10,000/0.9) * 2 = 22,222 bytes for a performance of value of 1.5 

ALOSS. The later performance of the hashing algorithm can be 

obtained at expense of a significant reduction in memory space. 

The modification of load factor can be done by redefinition of the 

hash table size in the source file called DEFINE.H (see Table 13.). 

Specifically, first, open the file DEFINE.H, next, define the hash table 

size by dividing the number of stem analysis trees by load factor 

(either 0.1 or 0.9). 

Table 13. Source file named DEFINE.H. 

Syntax Variables Values defined 

name declared 

^define SUCCESS 
^define FAILURE 
^define END 
^define NOT_END_FILE 
*^define START 
# define YES 
^define SAME 
^define FOUND 
^define NOT_FOUND 
# define NOT_OPEN 
# define OK 
^define HASH_FUN_POWER 
^define MAX_PLT_LAB 
# define LAB_LEN 
^define FN_LEN 
^define MAX_YEAR_NUM 
^define HASH_TBL_SIZE 

1 
0 
0 
1 
1 
1 
0 
1 
0 
0 
0 

3 
22 
20 
40 

100 
dividing a total number of 
trees y either 0.1 or 0.9 
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6.2 THE TWO-STAGE SAMPLING RULES 

The major objective of this investigation was to determine both 

the minimum primary sample intensities and the minimum 

subsample intensities required for estimating yearly volume growth 

of immature jack pine. The worse cases for the unequal probability 

subsampling rule and the best cases for the equal probability 

subsampling rule under the different primary sample intensities and 

the various subsample intensities have already been presented. 

For the equal probability subsampling rule, given all the 

combinations of the primary sample intensities with the subsample 

intensities there was no significant difference between the estimate 

mean and the TRIM mean, but, the precisions of mean estimate were 

all below 88 percent and the precisions were below 60 percent on 

average. Therefore, this sampling rule is not recommended for use to 

estimate the yearly volume growth of immature jack pine in 

northeastern Ontario. 

For the unequal probability subsampling rule, when the primary 

sample intensities were 100 percent, the effect of lowering the 

subsample intensities on the precision is shown in Table 14. The 

average of precision of mean estimate was 98.2 percent with the 

subsample intensities of 10 percent; the average of precision of mean 

estimate was 97.6 percent with the subsample intensities of 5.8 

percent: and the average of precision of mean estimate was 94.6 

percent with the subsample intensities of 3.1 percent. When the 

subsample intensities were reduced 5.8 percent, nearly half of the 
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first subsample intensities, the precision was only dropped by 0.6 

percent on average. When the subsample intensities were further 

decreased to 3.1 percent the precision was not reduced much, only 3 

percent. These results suggest that when the primary sample 

intensities were set to 100 percent, lowering the subsample number 

per plot would not reduce the precision significantly. In this case, it 

means that the rules with the first two higher subsample intensities 

were indeed unnecessary since the 94.6 precision is close to the true 

value. 

Table 14. The comparison of effects in change of subsample 
intensities on the precision of mean estimate when 
the primary sample intensities were 100 percent 

Average 
precision 

( % ) 

98.2 
97.6 
94.6 

Subsample 
intensities 

( % ) 

10.0 

5.8 

3.1 

As shown in Table 15, when the primary sample intensities were 

reduced to 66 percent from 100 percent and the subsample 

intensities were reduced to 6.7 and 3.8 percent, the precisions of 94.4 

and 93.8 on average were obtained respectively. When the subsample 

intensities were further lowered to 2.1 percent the 91.2 percent of 

precision on average still can be secured where the precisions ranged 

from 88.2 percent to 98.8 percent. When comparing the figures in 

Table 14 with those in Table 15. it can be noted that when the 
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primary sample intensities were lowered to 66 percent, with the 

subsample intensities of 6.7 percent, nearly the same precision could 

be obtained as with the primary sample intensities of 100 percent 

together with the subsample 3.1 percent. 

Table 15. The comparison of effects in change of subsample 
intensities on the precision of mean estimate when 
the primary sample intensities were 66 percent 

Average 
precision 

( % ) 

94.4 
93.8 
91.2 

Subsample 
intensities 

( % ) 

6.7 
3.8 
2.1 

In this study, the three types of stands may be classified in terms 

of their trees spatial distributions using the Pielou's index. According 

to the definition of the Pielou’s index the trees in stand K showed 

uniform spatial distributions, the trees in the stand KLD_P showed 

random spatial distributions , and those in stand NL showed 

significant aggregations or clustering. Through the analysis of 

simulation results, the trees spatial distributions did not appear to 

influence the precision significantly. This finding is consistent with 

the conclusion made by Murchison and Kavanagh (1989), that is, "tree 

spatial distribution as defined by Pielou’s Nonrandomness Index 

appeared to have little influence on sample rule performance. ” 
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In summary, throughout the sampling simulations the simulation 

results, overall, were consistent. In all cases with the same primary 

sample intensities, with the same subsample intensities, and with the 

same confidence limit, the precision of the mean estimates for the 

unequal probability subsampling rule was much higher than that for 

the equal probability subsampling rule. In most of the cases, the 

precision of the mean estimates produced by the equal probability 

subsampling rule was too low to be acceptable even when the 

subsample sizes were increased to the maximum number allowed by 

the sampling simulation. In all cases, with all the limited possible 

combinations of the primary sample intensities together with the 

subsample intensities the precisions produced by the unequal 

probability subsampling rule were reliable. 

The database in this study were limited to the 10 m by 10 m 

destructive sample plots for TRIM projects conducted in immature 

jack pine in northeastern Ontario by the OMNR. The studies were 

limited to 3 plots per stand. Although the simulation results appeared 

to be limited by these low numbers of plots, consistent trends 

appeared and should serve as guidelines. Since the stands and plots 

were presumably randomly selected, the results should be applicable 

to the populations from which they were drawn. 
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7. CONCLUSION 

For the hashing algorithm developed in this study, three goals 

have been achieved: 

(1) by using a hashing technique with the data structure of 

linked list, the TRIM data was processed and all the output were 

placed into one file which uses a small hash table file, greatly 

simplifying the directory structures ; 

(2) the hashing algorithm can be used to process TRIM data to 

obtain the various growth attributes (volume cumulative increments, 

height cumulative increments, and dbh cumulative increment) by 

one-year intervals for all individual trees; 

(3) the hashing algorithm was developed to provide a user with 

quick access to any required stem analyzed tree record in the output 

file. 

For the computer sampling simulation, based on the findings of 

this study dealing with the two two-stage subsampling of fixed area 

plots in immature jack pine stands in northeastern Ontario, it can be 

concluded: 
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(1) the subsampling rule using probability proportional to the 

basal area selection of trees proved to be superior in precision for 

estimating tree annual volume growth of immature jack pine in 

northeastern Ontario: 

(2) for each stand with the subsampling rule using probability 

proportional to basal area, with the minimum of primary sample 

intensity ratio at 66 percent together with the minimum of 

subsample intensity ratio at 2.1 percent, a precision of 90 percent for 

the mean estimate of the annual volume growth can be guaranteed 

with a confidence limit of 95 percent; 

(3) given the same confidence limit, for the subsampling rule 

with the simple random selection of trees, even with larger primary 

sample intensities of plots together with larger subsample intensities 

of stem analyzed trees, the reliable estimate could not obtained in 

this study. 
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APPENDIX I 

This appendix includes the TRIMHASH.C program which was 

written in C language. This program processed the existing TRIM 

data files using a hashing function with the data structure of the 

table pointer, database file, and the linked list. After TRIM data files 

were proccessed by the program, two files, NEWTRIM.DAT and 

HASH.TBL, were created. The NEWTRIM.DAT file contained the 

collection of all processed stem analysis trees' records, or nodes and 

an associated file HASH.TBL stored the addresses of all the nodes. 

When executing the program TRIMHASH.C, the user will be 

prompted to enter the following information: (1) plot label, and (2) 

total number of trees in plot. The example for the excution of this 

program is given in this appendix. 

Author: Tiemin Sheng 

School of Forestry 

Lakehead University 

Dec. 1992 
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Figure I-l. The flow chart of the TRIMHASH.C program: 
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Here is an example of how to execute the TRIMHASH.C program: 

$cc TRIMHASH.C -Im < return > 
%a.out < return > 
$ENTER NEXT PLOT LABEL: K1 < return > 
SENTER TOTAL NUMBER OF TREES IN PLOT LABEL<K>: 31 < return > 
SENTER NEXT PLOT LABEL: K2 < return > 
SENTER TOTAL NUMBER OF TREES IN PLOT LABEL<K2>: 22 < return> 
$WAIT  
ISUCCESS 
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Main program: TRIMHASH.C 

#include<stdio.h> 
^include "define.h" 
^include "trdefine.h" 
*^include "processdata.h" 
*^include "fileclose.h" 

FILE * fpt_l; 
FILE * fpt_2: 
FILE * fpt_3: 
FILE * hashptr; 
FILE * fptr; 

char fn_l[ FN_LEN ]; 
char fn_2[ FN_LEN ]; 
char fn_3[ FN_LEN ]; 
long hash_tbl[ HASH_TAB_SIZE ]; 
char lab[ MAX_PLT_LAB ][ LAB_LEN ]; 
ini num_trl MAX_PLT_LAB ]; 
struct tree_info temp; 

mainO 
( 

int i, trnum; 

label_tr_num_input(): 

for( i = 0; i < MAX_PLT_LAB; i++ ) 
( 

for( trnum = 1; trnum <= *(numtr+i); trnum++ ) 
( 

process_data( &i, Sctrnum ); 
) 

) 
file_close(): 
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Source File; clear.nod 

^include "define.h" 
^include "extern.h" 

node_clear() 
{ 

int i, j, k; 

temp.plt_lab[ 0 ] = \0’; 

temp.sp_code[ 0 ] = '\0': 

temp.tn = 0; 

temp.age = 0; 

temp.dbh_age = 0; 

temp.last_ck_age = 0; 

temp.dbhob = 0.0; 

temp.vio = 0.0; 

for( i = 0; i < 2; i++ ) 
( 

*( temp.s_cor+i ) = 0.0; 

*( temp.c_cor+i ) = 0.0; 
) 
for( j = 0; j < 100; j++ ) 
{ 

*( temp.dbhs+j ) = 0.0; 
) 
for( k = 0; k < MAX_YEAR_NUM; 
{ 

*( temp.vols+k ) = 0.0; 
) 
temp.next = 0; 

) 

k++ ) 
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Source File: clear.tbl 

^include "define.h" 
^include "extern.h" 

clear_tbl() 
( 

int i; 

for( i = 0; i < HASH_TAB_SIZE; i++ ) 
{ 

*(hash_tbl + i) = 0; 
} 

) 

Source File: closefile.h 

^include "extern.h" 

close_file() 
{ 

) 

fclose( fpt_l ): 

fclose( fpt_2 ); 

fclose( fpt_3 ): 
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Source File: dbhput.h 

^include<sldio.h> 
^include <assert.h> 
*^include "define.h" 
^include "extern.h" 

dbhs_put( old ) 
int * old; 

C 
int i, yearcut, re; 

char sc[ 3 1, line! 1000 ]; 
double dht, sbt, pith, rad. array[ 100 ]; 

while( fgets( line, 1000, fpt_l ) != NULL ) 
{ 

assert( sscanf(line,"%s%d%lf%d%lf%lf%lf", sc, &yearcut,&dht, 

&rc,&sbt,&pith,&rad )==?)■ 
if( dht == 130.0000 ) 
{ 

read_ring_wid( &rc, array ); 

assign_dbhs_to_temp( &rc, &sbt, &pith, &rad, array ); 
} 
else 
( 

for( i = 0; i < skip_over_line( &rc ); i++ ) 
{ 

fgets( line, 1000, fpl_l ); /*cast unwanted lines*/ 
) 

) 
) 
*old = rc; 

temp.age = rc; 

strcpy( temp.sp_code, sc ); 

return( SUCCESS ) 
) 
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skip_over_line( rc ) 
int * rc; 

{ 
int num_line, remainder; 
num_line = 0; 
remainder = *rc; 

if( remainder <= 10 ) 
{ 

num_line = 1; 
) 

else 
( 

while( remainder > 10 ) 
{ 

remainder = remainder - 10; 
num_line++; 

} 
if( remainder > 0 ) 
{ 

num_line = num_line + 1; 
) 

) 
return( num_line ); 

} 

read_ring_wid( rc, ring_array ) 
int * rc; 
double * ring_array; 
{ 

int i; 
for( i = 0; i < *rc; i++ ) 
C 

if( !(i%10) ) /* skip over year, then read data */ 
{ 

fscanf( fpt_l, "%*s%lf", ring_array+i ); 
) 
else 
{ 

fscanf( fpt_l, "%lf", ring_array+i ); 
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) 
) 
fscanf( "\n" ); /* skip over \n', end of line char */ 

assign_dbhs_to_temp( rc, sbt, pith, rad, ring_array ) 
int * rc; 
double * sbt; 
double * pith: 
double * rad; 
double * ring_array; 

{ 
int i, j: 

double dib, dob, yr_r_wdth; 

yr_r_wdth = 0; 

dib = ( ( *rad + *pith ) * 2.0 ); 

dob = ( ( *sbt + *rad + *pith ) * 2.0 ); 

temp.dbh_age = *rc; 

temp.dbhob = dob; 

*(temp.dbhs) = dib; 

for( i = 0; i < *rc; i++ ) 
{ 

yr_r_wdth += (*( ring_array + i ) )* 2.0; 

*( temp.dbhs + i + 1 ) = dib - yr_r_wdth; 
) 

} 
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Sourec File; define.h 

^define SUCCESS 1 
^define FAILURE 0 
^define END 0 
# define NOT_END_FILE 1 
^define START 1 
^define YES 1 
^define SAME 0 
# define FOUND 1 
^define NOT_FOUND 0 
^define NOT_OPEN 0 
^define OK 0 
^define MAX_PLT_LAB 22 
# define LAB_LEN 20 
^define FN_LEN 40 
^define MAX_YEAR_NUM 100 
^define HASH_TAB_SIZE 4097 

Source File: extern.h 

extern char lab[ MAX_PLT_LAB ][ LAB_LEN ]; 
extern int num_tr[ MAX_PLT_LAB ]; 
extern char fn_l [ FN_LEN I; 
extern char fn_2[ FN_LEN I; 
extern char fn_3[ FN_LEN ]; 
extern FILE *fpt_l; 
extern FILE * fpt_2; 
extern FILE * fpt_3: 
extern FILE * hashptr; 
extern FILE * fptr; 
extern long hash_tbl[ HASH_TAB_SIZE ]; 
extern struct tree_info temp; 
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Source File: fileclose.f 

*^include "extern.h" 

file_close(); 
{ 

fclose( hashptr): 

fclose( fptr ): 

printf( "SUCCESSXn■' ); 
} 

Source File: fnamebult.h 

^include <assert.h> 
^include "extern.h" 
^include "define.h" 

file_names_bult( i, tr_count ) 
int * i; 
int * tr_count; 

{ 
assert( f_l_bult( i, tr_count ) = 

assert( f_2_bult( i, tr_count ) = 

assert( f_3_bult( i, tr_count ) = 
) 

f_l_bult( i, tr_count ) 
int *i; 
int *tr_count; 

( 
static int j = 1; 

int k; 

char buffi 10]; 

char array! FN_LEN ]; 

arraylO] = '\0'; 

= SUCCESS ): 

= SUCCESS ): 

= SUCCESS ); 
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k = *tr_count; 

sprintn buff, "%d ’, k ); /* convert ini to char */ 

strcat( array, labi *i ] ); 
strcat( array, ); 
strcat( array, buff ); 
strcat( array, ".out" ); 
fn_l[0] = ’\0': 
strcpy( fn_l, array ); 

return( SUCCESS ); 
} 

f_2_bult( i, tr_count ) 
int *i; 
int *tr_count; 
{ 

int k; 
char buff[ 10 ]; 
char array [ FN_LEN ]; 

arraylO] = \0'; 
k = *lr_count; 

sprintf( buff, "%d", k ); /* convert int to char */ 

strcpy( array, "ad_" ); 
strcat( array, lab[*i] ); 
strcal( array, ); 
strcal( array, buff ); 
strcat( array, ); 
fn_2[0] = \0’: 
strcpy( fn_2, array ); 

) 
return( SUCCESS ); 
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f-3-bult( i, tr_count ) 
int *i; 
ini *tr_count; 

{ 
int k; 
char buffi 20 ]; 
char arrayi FN_LEN ]; 

arraylO] = \0'; 
k = *tr_count; 

sprintf( buff, "%d", k ) /* convert int to char */ 

strcpy( array, "annv_" ); 
strcat( array, lab[*i] ); 
strcat( array, ); 
strcat( array, buff ); 
strcat( array, ); 
fn_3i0] = \0': 
strcpyC fn_3, array ); 

return( SUCCESS ); 
} 

Source File; hash.fun 

^include <math.h> 
^include "define.h" 
^include "extern.h" 

hash( i, lr_count ) 
int *i; 
int *tr_count; 

( 
char cbuffi 20 ], *cptr; 
double constnt, position; 
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long hash_value; 

hash_value = 0; 
position = 0; 
constnt = 3: 

sprintf( cbuff, “%d”, *tr_count ); 
cpir = cbuff: 

while( *( lab[ *i ] + position ) != \0' ) 
{ 

hash_value += pow(position+l, constnt)*(*(lab[*il+position )); 
position++: 

) 
while( *cptr++ != \0' ) 
{ 

hash_value += pow(position+1, constnt) * (*(cptr-l)); 
position++: 

) 
return( (int) ( hash_value%HASH_TAB_SIZE ) ); 

Source File; hghput.h 

^include "extern.h" 
^include "define.h" 

hghs_put( old ) 
int * old; 
{ 

int i, j, k, num, start, index; 
double array[ 5000 ]; 
k = 0; 
index = 0; 

while( fscanf( fpt_2, "%lf", array+index ) == NOT_END_FILE ) 
{ 
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index++: 

) 
num = (*old) * 2; 

start = index - num; 

for( j = 0; j < *old; j++ ) 
{ 

*( temp.hghs + j ) = *( array + start + k )/100 

k += 2; 

) 
return( SUCCESS ); 

Source File; install.nod 

^include <assert.h> 
^include "define.h" 
^include "extern.h" 
^include "dbhput.h" 
^include "hghput.h" 
^include "volclt.h" 
^include "clear.nod" 

install_node( i, tr_indx ) 
int * i; 
int * tr_indx; 

{ 
int old; 

node_clear(); 

strcpy( temp.plt_lab, lab [ *i ] ): 

temp.tn = *tr_indx; 

assert( dbhs_put( &old ) == SUCCESS ); 

assert( hghs_put( &old ) == SUCCESS ); 

assert( vols_clt() == SUCCESS ); 
) 
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Source File; numput.h 

#include<stdio.h> 
#include<string.h> 
^include'define.h" 
^include'extern.h" 

label_tr_nu m_input() 
( 

int n; 

char *cpointer; 

for( n = 0; n < MAX_PLT_LAB; n++ ) 
{ 

printf( "\nEnter Next Plot Label: " ); 

fgets( lab[ n ], LAB_LEN, stdin ); 

cpointer = strchr( lab[ n ], '\n' ); 

*cpointer = \0'; 

printf( "\nEnter Total Number Of Trees:" ); 

scanf( "%d", num_tr + n ); 

getcharO: 

printf( "\n\nWhat you just input are as follows:" ); 

printf( "\n\n%-12s%-12s", "Plot Label;", lab[ n ] ); 

printf( "\n%-24s%-8d\n", "Total Number Of Trees:", 

*(num_tr+n) ); 
3 
printf( "\n\nWAIT \n" ); 

Source File; openfile.h 

^include <assert.h> 
^include "extern.h" 
^include "define.h" 
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open_files() 
{ 

if( fplr == NOT_OPEN ) 
{ 

assert! ( fptr == fopen( "trim.dat", 
) 
assert! ! fpt_l = fopen! fn_l, "r" ) ) 

assert! ! fpt_2 = fopen! fn_2, "r" ) ) 

assert! ! fpt_3 = fopen! fn_3, "r" ) ) 

Source File: readhash.h 

*^include <assert.h> 
^include "define.h" 
^include "extern.h" 
^include "clear.tbl" 

readhash!) 
( 

clear_tbl!); 

openhash!): 

if! fread! hash_tbl, sizeof!long), HASH 

{ 
hash_update!): 

} 
) 

openhash!) 
! 

if! hashptr — 0 ) 
( 

assert! ! hashptr = fopen! "hash.tbl", 
) 
else 
{ 

"a+" ) ) != FAILURE ); 

= FAILURE ): 

= FAILURE ): 

= FAILURE ): 

,TAB_SIZE, hashptr ) 

< HASH_TAB_SIZE ) 

"r+" ) ) != FAILURE ); 

fseek! hashptr, !long)0, 0 ); 
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) 
) 
hash_updale() 
{ 

3 

rewind( hashplr ); 

assert((fwrite(hash_tbl, sizeof(long), HASH_TAB_SIZE, hashptr)) 
!= FAILURE ): 

Source File: trdefine.h 

^include "define.h" 

struct tree_info 
{ 

char plt_lab[ LAB_LEN ]; 

int tn; 

char sp_code[ 3 1: 

int age; 

int dbh_age; 

int last_ck_age; 

double dbhob; 

double dbhs[ 100 ]; 

double hghs[ 100 ]; 

double vio; 

double vols[ MAX_YEAR_NUM ]; 

double s_cor[ 2 ]; 

double c_cor[ 2 ]; 

int next; 

3: 
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Source File; volclt.h 

^include <stdio.h> 
^include <assert.h> 
^include "extern.h" 
^include "define.h" 

vols_clt() 
{ 

int max_shth, tot_disc; 

double array! 100 ][ 150 1; 

clear_array( array ); 

assert! read_shth_vol( &tot_disc, &max_shth, array )==SUCCESS); 

assert! clt_vol! &tot_disc, &max_shth, array ) == SUCCESS ); 

return! SUCCESS ); 
} 

clear_array! array ) 
double !* array)! 150]; 

{ 
int line, col; 

for! line = 0; line < 100; line++ ) 
{ 

for! col = 0; col < 150; col++ ) 
{ 

*! array! line ] + col ) = 0.0; 
) 

) 

read_shth_vol! tot_disc, max_shth, array ) 
int * tot_disc; 
int * max_shth; 
double !* array)! 150]; 

( 
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ini r_count, disc_num, col; 
disc_num = 0; 
while( fscanf( fpt_3, "%d “, &r_count ) == NOT_END_FILE ) 
{ 

disc_num ++; 
for( col = 0; col < r_count; col++ ) 

{ 
fscanf( fpt_3, "%lf", (array[disc_num-1 ]+col) ); 

) 
) 
*max_shth = r_count; 
*lot_disc = disc_nutn; 
letnp.last_ck_age = r_count - 2; 

return( SUCCESS ); 
) 

clt_vol( tot_disc, max_shth, array ) 
int * tot_disc; 
int * max_shth; 
double (* array)! 150]; 
{ 

int i, line_num, col_nutn: 
double vob, shth_vol; 
shth_vol = 0; 
for( col_num = *tnax_shth; col_num > 0; col_num-- ) 
{ 

for( line_num = 0; line_nutn < *tot_disc; line_num++ ) 
{ 

shth_vol += *( array! line_num 1 + col_num - 1 ); 
) 

*( temp.vols + col_num - 1 ) = shth_vol/l000000; 
/* unit: m''3 */ 

) 
return( SUCCESS ); 

) 
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Source File; writetofile.h 

^include "define.h" 
^include "extern.h" 
^include "hash.fun" 

file_add( i, tr_num ) 
int * i; 
int * tr_num; 

( 
long hash_value, record; 

hash_value = hash( i, tr_num ); 

temp.next = hash_tbl[ hash_value ]; 

record = addtofileO; 

hash_tbl[ hash_value ] = record + 1; 

addtofileO /* always adds record to end of file */ 
{ 

long here; 

fseek( fptr, (long)O, 2 ); 

here = ftelK fptr ); 

fwrite( (char*) &temp, sizeof( struct tree_info ), 1, fptr ); 

} 
return( byle_lo_record( here ) ); 
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APPENDIX II 

This appendix includes the PRINT.C program which was 

written in C language. This program was developed for a user to 

print the stored information of any processed stem analyzed trees 

from TRIMHASH.DAT files. 

Author: Tiemin Sheng 
School of Forestry 
Lakehead University 
Dec. 1992 
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Figure II-1. The flow chart of the PRINT.C program: 



Here is an example of how to execute the PRINT.C program : 

tcc PRINT.C -Im < return > 
%a.out < return > 
SENTER PLOT LABEL: K1 < return > 
SENTER TREE NUMBER: 9 < return > 

(Note: Results printed on computer screen were shown in Table 7.) 

SWOULD YOU LIKE PRINT MORE ? 

SENTER < 1 > FOR YES, OR 
SENTER < 0 > FOR NO. 

SYOUR CHOICE ? 

$0 < return > 
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Table II-1. The example of results printed by the PRINT.C 
program; 

Plot label: k 1 Tree number: 9 

Species code: Pj 
Age: 21 
DBH(m): 1.341100 
Height(m): 1 1.85000 
Volume(m‘3): 0.098708 

Year 

DBH 
Height 
Volume 

1 

0.000000 
0.070000 
0.000050 

2 

0.000000 
0.520000 
0.000155 

7 

0.267800 
2.750000 
0.004366 

12 

0.824600 
6.620000 
0.024036 

17 

1.139200 
9.670000 
0.060550 

3 

0.026000 
0.970000 
0.000362 

8 

0.392100 
3.250000 
0.006640 

13 

0.894600 
6.870000 
0.031398 

18 

4 

0.049400 
1.400000 
0.000777 

9 

0.507100 
4.750000 
0.009833 

14 

0.973000 
7.750000 
0.038513 

19 

5 

0.100800 
2.120000 
0.001406 

10 

0.625900 
5.100000 
0.013831 

15 

1.032900 
8.250000 
0.045367 

20 

Year 6 

DBH 0.167800 
Height 2.370000 
Volume 0.002565 

Year 11 

DBH 0.733100 
Height 5.750000 
Volume 0.018572 

Year 16 

DBH 1.088300 
Height 8.750000 
Volume 0.052790 

Year 21 

DBH 1.341100 
Height 1 1.850000 
Volume 0.098708 

1.186100 
9.920000 
0.070397 

1.241400 
10.520000 
0.081352 

1.289700 
1 1.120000 
0.090860 
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The main program PRINT.C: 

^include <stdio.h> 
^include <assert.h> 
^include "define.h" 
^include "irdefine.h" 
^include 'preadhash.h' 
^include "popenfile.h" 
^include "pgetnum.h" 
^include "pgetcom.h" 
^include "plook.up" 
^include "pclosefile.h" 

FILE *fptr; 
FILE *hashptr; 
FILE *wfpl; 

char tr_num[ 20 ]; 
char lab[ 20 ]; 
long hash_tbl[ HASH_TAB_SIZE ]; 
struct tree_info temp; 

mainO 
{ 

int look_next; 

look_next = START; 

while( look_next == YES ) 
{ 

get_lab_tr_num(); 

open_file(); 

readhashO; 

lookupO: 

get_next_command( &look_next ); 
) 
close_file(); 
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Source File: processdata.h 

*include<stdio.h> 
^include fnamebult.h” 
^include "openfile.h" 
^include "readhash.h" 
^include 'install.nod" 
^include "write.nod" 
^include "closefile.h" 

process_data( &i, &lr_nutn ); 
int *i; 
int *lr_nutn: 
{ 

file_names_bull( &i, &lr_nutn ); 

open_files(); 

readhashO: 

install_node( &i. &tr_num ); 

file_add( &i, &tr_num ); 

hash_update(): 

close_file(); 
} 

Source File: pclear.h 

^include "define.h" 

extern struct tree_info temp; 

temp_clear() 
{ 

int i. j, k; 

temp.plt_lab[ 0 ] = \0': 

temp.sp_codeI 0 ] = \0'; 

temp.tn = 0; 

temp.age = 0; 
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temp.dbh_age = 0; 

temp.dbhob = 0.0; 
temp.vio = 0.0; 

for( i = 0; i < 2; i++ ) 
( 

*( lemp.s_cor+i ) = 0.0; 

*( temp.c_cor+i ) = 0.0; 
} 
for( j = 0; j < 100; j++ ) 
{ 

*( temp.dbhs+j ) = 0.0; 
) 
for( k = 0; k < MAX_YEAR_NUM; 
{ 

*( temp.vols+k ) = 0.0; 
) 
temp.next = 0; 

Source File: pclosefile.h 

^include "pexlern.h" 

close_file() 
{ 

fclose( hashptr ); 

fclose( fptr ); 

fclose ( wfpt ); 
) 

Source File: pextern.h 

extern FILE * fptr; 

extern FILE * hashptr; 

extern FILE * wfpt; 

extern char lab[ 20 ]; 

k++ ) 
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extern char tr_num[ 20 ]; 
extern long hash_tbl[ HASH_TAB_SIZE ]; 

Source File: pgetcom.h 

get_next_command( answer ) 
int *answer; 
( 

printf( "\nLook Next Record ? \n Press< 1 > For Yes\nPress< 0 > 
For No\n"): 

printf( "Enter Your Choice: " ); 
scanf( "%d", answer ); 
getcharO: 

Source File: pgetnum.h 

^include "pextern.h" 

get_lab_tr_nutn() 
{ 

printf( "\nEnter Next Plot Lable:" ); 
fgets( lab, 20, stdin ); 

printf( "\nEnter Tree Number:" ); 
fgets( tr_num, 20, stdin ); 

Source File: phash.h 

^include <math.h> 
*^include <string.h> 
*^include "pextern.h" 

hash_function() 
{ 

long hash_value; 
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char *cpointer, *cplr; 
double constnt, position; 

cpointer = strchr( lab, \n' ); 
*cpointer = '\0'; 

cpointer = strchr( tr_num, '\n' ); 
*cpointer = '\0'; 

position = 0; 
hash_value = 0; 
constnt = 3: 
cptr = &tr_numl 0 ]; 

while( *( lab + position ) != \0' ) 
C 

hash_value += pow( position+1, constnt )*( *(lab + position) ); 
position++; 

} 
while( *cptr++ != \0' ) 
{ 

hash_value += pow(position+1, constnt) *( *(cptr-l) ); 
position++: 

) 
return( (int) ( hash_value%HASH_TAB_SIZE ) ); 

Source File: plook.up 

^^include <string.h> 
^include <stdlib.h> 
^include 'define.h’ 
^include "phash.fun" 
^include "pextern.h" 
*^include "pprint.h" 
^^include "pclear.h" 

extern struct tree_info temp; 
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lookupO 
( 

if( record-searchO == FOUND ) 
{ 

print_record(): 
temp_clear(): 

} 
else 
{ 

printf( "\nlnvalid Plot Label Or Tree Number.\n" ); 
return: 

) 

Source File: popenfile.h 

^include <assert.h> 
^include "define.h" 
^include "pextern.h" 

open_file() 
( 

assert( ( fptr = fopen( "trim.dat", "r+" ) ) != FAILURE ); 
assert( ( hashptr = fopen( "hash.tbl", "r+" ) ) != FAILURE ); 
assert( ( wfpt = fopen( "trim.out", "w" ) ) != FAILURE ); 

3 

Source File; preadhash.h 

^^include <assert.h> 
^include "define.h" 
^include "pextern.h" 

readhashO 
{ 

int n; 
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openhashO; 

if( (n = fread(hash_tbl, sizeof(long), HASH_TAB_SIZE, hashptr) ) 
< HASH_TAB_SIZE ) 

{ 
printfC “HASH TABLE CORRUPTEDAn" ); 

exit( 1 ): 
) 

) 

Source File: print.h 

extern struct tree_info temp; 

print_record() 
( 

print_header(): 
print_content(); 

print_header() 
{ 

printf( ' \n%20s%-12s%-1 Os", " "Plot label:", temp.plt_lab ); 

printfC "%-12s%s%-10d\n\n\n", "Tree number:", " ", temp.tn ); 

printf( "%-15s%s\n", "Species code:", temp.sp_code ); 

printf( "%-15s%d\n", "Age:", temp.age ); 

printf( "%-15s%f\n", 'DBH(m):", temp.dbhslO]/100 ); 

printf( "%-15s%f\n", "Height!m):", temp.hghslO] ); 

printf( "%-15s%f\n\n\n", "Volume(m'3):", temp.volslO] ); 

print_content() 
{ 

int i, j, k, h, p, n, time, old, line, remainder; 
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time = 0; 

old = temp.age; 

remainder = old%5: 

line = old/5; 

for( i = 0; i < line; i++ ) 
( 

printf( "%-5s", "Year" ); 

for( j = 1: j <= 5: j++ ) 
( 

printf( "% 12d", j+time ); 
) 
printf( "\n\n" ); 

printf( "%-8s", "DBH" ); 

for( k = 0; k < 5: k++ ) 
{ 

printf( "% 12f", *(temp.dbhs+old-time-k-l )/l 00 ); 
) 
printf( "\n" ); 

printf( "%-8s", "Height" ); 

for( h = 0; h < 5: h++ ) 
{ 

printf( "% 12f", *(temp.hghs+old-time-h-1) ); 
) 
printf( "\n" ); 

printf( "%-8s", "Volume" ); 

for( p = 0; p < 5: P++ ) 
{ 

printf( "% 12f", *(temp.vols+old-time-p-1) ); 
) 

printf( "\n\n" ); 

time += 5: 
) 
if( remainder > 0 ) 
( 

printf( "%-5s", "Year" ); 

for( j = 1; j <= remainder: j++ ) 
( 

printf( "%12d", j+time ); 
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) 
printf( "\n\n" ); 

printf( "%-8s", "DBH" ); 

for( k = 0: k < remainder: k++ ) 
{ 

printf( ■'% 12f", *(temp.dbhs+old-time-k-1)/100 ) 
) 
printf( "\n" ); 

printf( "%-8s"', "Height" ); 

for( h = 0; h < remainder: h++ ) 
( 

printf( 12f ", *(temp.hghs+old-time-h-1) ): 
) 
printf( "'\n'" ): 

printf( ""%-8s"’, "'Volume'" ): 

for( p = 0: p < remainder: p++ ) 
( 

printf( "'% 12f"', *(temp.vols+old-time-p-l) ): 
} 
printf( ""\n\n " ): 

} 
) 
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APPENDIX III 

This appendix includes the SIMULATION.C program which 

was written in C language. This program was developed to perform 

two two-stage sampling simulations. The program would use both 

NEWTRIM.DAT and hash table HASH.TBL. After this program was 

executed the SIMULATION.DAT file would be created. 

Author: Tiemin Sheng 
School of Forestry 
Lakehead University 
Dec. 1992 
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Figure III-l. The flow chart of the SIMULATION.C program: 
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Fig III -1 continued 

continue of flow chart of the SIMULATION.C program: 

continue 
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Here is an example how to execute the SIMULATION.C program: 

%cc SIMULATION.C -Im < return > 
$a.out < return > 
lENTER LABEL: K < return > 
SENTER TOTAL NUMBER OF PLOTS: 3 < return > 
SHOW MANY PLOTS WOULD YOU LIKE TO SAMPLE: 

SENTER PLOT NUMBER: 1 < return > 
SENTER PLOT NUMBER: 3 < return > 
SENTER TOTAL NUMBER OF TREES FOR < K1 > : 31 
SENTER TOTAL NUMBER OF TREES FOR < K3 >: 23 
SWAIT  

SSUCCESS 

2 < return > 

< return > 
< return > 
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The simulation main program; SIMULATION.C 

^include <stdio.h> 
^include "define.h" 
^include "openfile.h" 
^include "readhash.h" 
^include "getinfo.h" 
^include "findpjnum.h" 
^include "popuinfo.h" 
^include "sampling.h" 
^include "closefile.h" 
^include "sumbasal.h" 

FILE *rfpt; 
FILE *hfpt; 
FILE *wfpt; 
FILE *tfpt: 
FILE *pfpt; 
FILE *sfpt; 
FILE *cfpt; 

int NP; 
int totplt; 
int totpj; 
int maxsample; 
int pjperplt[ MAX_PLOT ]; 
int trperpltl MAX_PLOT 1; 
char pltlabl MAX_PLOT ]; 
char plotnol MAX_PLOT ][ 6 ]; 
int pjnumi MAX_PLOT ][ MAX_TREE ]; 
long hash_tbl[ HASH_TAB_SIZE ]; 
double volpopi PJ_NUM ][ MAX_YEAR ]; 
double baspopi PJ_NUM ][ MAX_YEAR ]; 
double volspU MAX_SAMPLE_TREE ]; 
double basspll MAX_SAMPLE_TREE ]; 
double mvolperhal MAX_YEAR ]; 
double mbaspertrl MAX_YEAR ]; 
double stdrr[ MAX_YEAR ]; 
double sumbasl PJ_NUM 11 MAX_PLOT 1; 
double vppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
double bppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
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mainO 
{ 

int year; 

open_file(): 
read_hash(): 
get_info(): 
find_pj_num(): 
popu_info(): 
for( year = 0; year < MAX_YEAR; 
{ 

sum_basal( year ); 
sampling( year ); 

} 
close_file(): 

) 

Source File; nodedef.h 

struct tree_info 
{ 

char plt_lab[ 20 ]; 
int tn; 
char sp_code[ 3 1: 
int age; 
int dbh_age; 
int last_ck_age; 
double dbhob; 
double dbhs[ 100 ]; 
double hghs[ 100 ]; 
double vio; 
double vols[ 100 ]; 
double s_corI 2 1; 
double c_cor[ 2 1; 
int next; 

): 

year++ ) 
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Source File; openfile.h 

^include <assert.h> 
^include "define.h" 

extern FILE *rfpt; 
extern FILE *wfpt; 
extern FILE *tfpt; 
extern FILE *pfpt; 
extern FILE *sfpt; 
extern FILE *cfpt; 

open_file() 
{ 

assert! ( rfpt = fopen( "trim.dat", "r " ) ) 

assert! ! tfpt = fopen! "true.dat", ""r+"" ) ) 

assert! ! sfpt = fopen! "stdr.dat ", '"r+ " ) ) 

assert! !wfpt = fopen! "mean.dat"", '"w" ) 

assert! ! pfpt = fopen! '"erre.dat ", "w"" ) ) 

assert! ! cfpt = fopen! "prcn.dat", "w"" ) ) 
) 

Source File: basal.h 

double basal! prev, next ) 
double prev; 
double next; 
( 

double currarea, prevarea, cbas, pbas, 

double a, b, c; 

c = 2; 

parameter = 15*666.7; 

a = prev/2; 

b = next/2; 

!= FAILURE ); 

!= FAILURE ); 

1= FAILURE ); 
) != FAILURE); 

!= FAILURE ); 

!= FAILURE ); 

incre, parameter; 

currarea = pow! a, c ) * 3.141592; 

prevarea = pow! b, c ) * 3-141592; 
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cbas = currarea/parameter; 
pbas = prevarea/parameter; 
incre = fabs( cbas - pbas ); /* in case of data error */ 

return( incre ); 
) 

Source File: closefile.h 

extern FILE *rfpt; 
extern FILE *hfpt; 
extern FILE *wfpt; 
extern FILE *tfpt; 
extern FILE *pfpt; 
extern FILE *sfpt; 
extern FILE *cfpt; 

close_file() 
{ 

fcloseC rfpt ); 
fclose( hfpt ): 
fclose( wfpt ); 
fclose( tfpt ): 
fclose( pfpt ); 
fclose( sfpt ): 
fclosel cfpt ): 

) 
printfl "SUCCESSNn" ); 
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Source File: define.h 

^define SUCCESS 1 
^define FAILURE 0 
# define END 0 
^define YES 1 
^define NOT 0 
^define FOUND 1 
^define NOT_FOUND 0 
^define DONE 1 
# define NOT_DONE 0 
# define OK 0 
^define M INSAMPLE 2 
^define MAX_YEAR 10 
^define MAX_PLOT 20 
^define MAX_TREE 200 
^define PJ_NUM 500 
^define MAX_SAMPLE_TREE 500 
^define MAX_SIMULATION 2500 
^define HASH_TAB_SIZE 4097 
^define ALLOW ABLE_ERROR 0.001 

Source File: findpjnum.h 

^include <string.h> 
^include "searchpj.h" 

extern int totplt; 
extern int trperplt[ MAX_PLOT ]; 
extern int pjperpltl MAX_PLOT ]; 
extern char pltlab[ MAX_PLOT ]; 

find_pj_num() 
{ 

int i, j; 
char array! 20 ]; 
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for{ i = 0; i < totpit; i++ ) 
{ 

join_plt_lab( i, array ); 

within_plt( i, array ); 
) 
f in d_ tn in_n u m (): 

join_plt_lab( i, array ) 
int i; 
char * array: 
{ 

char num[ 3 1: 

num[ 0 ] = ’\0'; 

*array = \0'; 

strcpy( num, plotno+i ); 

strcat( array, pltlab ); 

strcat( array, nutn ); 
) 

within_plt( i, array ) 
int i; 
char *array: 
{ 

int j, indx; 

indx = 0; 

for( j = 1; j <= trperpltl i ]; 
{ 

search_pj( i, array, j, 
} 

} 

find_min_nutn() 
( 

int i, tempi 20 1; 

/* result ex: k 1 */ 

j- ) 

&indx ): 

for( i = 0: i < totpit: i++ ) 
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{ 
temp[ i ] = pjperpitl i ]; 

) 
quick_sort( temp, temp+totplt-1 ); 

maxsample = temp[ 0 ]; 

quick_sort( lower, upper ) 
int *lower, *upper; 
( 

int partition: 

int *iptr, *previous_low; 

if( lower < upper ) 
{ 

partition = *lower; 

previous_low = lower; 

for( iptr = lower+1; iptr <= upper; iptr++ ) 
( 

if( *iptr < partition ) 
{ 

previous_low++: 

swap( previous_low, iptr ); 
} 

) 
swap( lower, previous_low ); 

quick_sort( lower, previous_low - 1 ); 

quick_sort( previous_low + 1, upper ); 
) 

} 

swap( left, right ) 
int *left; 
int *right; 

{ 
int shelt; 
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shell = *left; 

*left = *right; 

*righl = shell; 

Source File: gelinfo.h 

^include <asserl.h> 
^include <slring.h> 
^include "define.h" 

exlern char plllab[ MAX_PLOT ]; 
exlern ini NP; 
exlern ini lolpll; 
exlern char plolno[ MAX_PLOT ][ 6 ]; 
exlern ini Irperplll MAX-PLOT ]; 

gel_info() 
{ 

asserl( gel_pll_lab() == SUCCESS ); 

asserl( gel_plol_nutn() == SUCCESS ); 

asserl( gel_sample_plolno() == SUCCESS ); 

asserl( gel_lrperpll() == SUCCESS ); 

prinlf( "WAIT \n" ); 
) 

gel_pll_lab() 
{ 

char *cpoinler; 

prinlf( "\n\nENTER LABEL:" ); 

fgels( plllab, 20, sldin ); 

cpoinler = slrchrC plllab, \n' ); 

*cpoinler = \0'; 

prinlf( "\n" ); 
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return( SUCCESS ); 
) 

get_plol_num() 
{ 

printf( "HOW MANY PRIMATIVE PLOTS:" ); 
scanf( "%d", &NP ); 
getcharO; 
printf( "\n" ); 

printf( "HOW MANY PLOTS YOU WANT TO SAMPLE:" ); 
scanf( "%d", &totplt ); 
getcharO; 
printf( "\n" ); 

return( SUCCESS ); 
} 

get_sam ple_plotno() 
( 

int i; 
char *cptr; 

for( i = 0; i < totplt; i++ ) 
{ 

printf( "ENTER SAMPLED PLOT NUMBER:" ); 
fgets( plotno+i, 6, stdin ); 
cptr = strchr( plotno+i, '\n' ); 
*cptr = \0': 
printf( "\n" ); 

) 
return( SUCCESS ); 
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get_trperplt() 
{ 

int i; 

for( i = 0; i < totplt; i++ ) 
{ 

printf( "ENTER TOTAL NUMBER OF TREES IN %s%s:", pltlab, 
plotno+i ): 

scanf( "%d", trperplt+i ); 

getcharO: 

printf( "\n" ); 
) 
printf( "\n" ); 

return( SUCCESS ); 

Source File: formerclt.h 

^include<math.h> 
^include "define.h” 

extern int totplt; 
extern int pjperplt[ MAX_PLOT ]; 
extern double vppsspf MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
extern double bppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
extern double sumbasi PJ_NUM ][ MAX_PLOT ]; 

double former_clt( size ) 
int size; 
{ 

int i; 

double a, c, iteml, item2, result; 

double iteml_clt(), item2_clt(); 

c = 2; 

result = 0; 

item2 = item2_clt( size ); 

for( i = 0; i < totplt; i++ ) 
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( 
iteml = iteml_clt( size, i ); 

a = fabs( iteml - item2 ); 

result += pow( a, c ); 
) 
returnC result ); 

double iteml_clt( size, i ) 
int size: 
int i; 
{ 

int p, mi, Mi; 

double sum, result; 

mi = size; 

sum = 0; 

Mi = pjperplt[ i ]; 

for( p = 0; p < mi; p++ ) 
{ 

sum += vppssp[ p ][ i ]/bppssp[ p ][ i ] 
) 
result = ( sumbasl Mi-1 ][ i ]*sum )/mi; 

return! result ); 
) 

double item2_clt( size ) 
int size; 
{ 

int j, p, Mi; 
double sum, tot, mi, result: 

sum = 0; 

tot = 0; 

mi = size; 

for( j = 0; j < totplt; j++ ) 
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{ 
Mi = pjperplt[ j ]; 

for( p = 0; p < mi; p++ ) 
( 

sum += vppsspi p ][ j ]/bppssp[ p II j ]; 
} 
tot += (sumbasi Mi-1 ][ j 1 * sum)/mi; 

) 
result = tot/totplt; 

return( result ); 

Source File: latterclt.h 

*^include <math.h> 

extern int totplt; 
extern int NP; 
extern int pjperpltl MAX_PL0T ]; 
extern double sumbas[ PJ_NUM ][ MAX_PL0T 1; 
extern double vppssp[ MAX_SAMPLE_TREE ][ MAX_PL0T ]; 
extern double bppsspi MAX_SAMPLE_TREE ][ MAX_PL0T 1; 

double latter_clt( size ) 
int size; 
{ 

int j; 

double iteml, item2, sum, n, N, result; 

double clt_iteml(), clt_item2(); 

sum = 0; 

n = totplt: 

N = NP; 

for( j = 0; j < totplt: j++ ) 
( 

iteml = clt_iteml( size, j ); 

item2 = clt_item2( size, j ); 
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sum += iteml * item2; 
) 
result = sum/(N*n): 

return( result ); 

double clt_iteml( size, j ) 
int size; 
int j; 
{ 

int Mi; 

double c, mi, sumpltbas, sum, squ, result; 

c = 2, 
Mi = pjperplU j ]; 

mi = size; 

sumpltbas = sumbasi Mi - 1 ][ j ]; 

squ = pow( sumpltbas, c ); 

result = (squ*(Mi - mi))/(Mi*mi*(mi-1)); 

returnC result ); 
) 

double clt_item2( size, j ) 
int size; 
int j; 
{ 

int p; 
double a, b, c, mi, sum, result; 

c = 2; 

sum = 0; 

for( p = 0; p < size; p++ ) 
( 

sum += vppssp[ p ][ j ]/bppssp[ p ]I j 1; 
) 
a = sum/size; 
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b = fabs( sum - a ); 
result = pow( b, c ); 

return( result ); 
) 

Source File: getstdr.h 

extern FILE *sfpt; 
extern double stdrr[ MAX_YEAR ]; 

get_stdr( year ) 
int year; 
( 

int i; 

rewind( sfpt ); 

for( i = 0; i < year; i++ ) 
{ 

fscanf( sfpt, "%*s" ); 
) 
fscanf( sfpt. "%lf“, Scstdrrl year ] ); 

Source File: getruemean.h 

extern FILE *tfpt; 
extern double mvolperha[ MAX_YEAR ]; 

get_true_mean( year ) 
int year; 
( 

int i; 

rewind( tfpt ); 

for( i = 0; i < year; i++ ) 
{ 
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fscanf( tfpt, "%*s" ); 
) 
fscanf( tfpt, Scmvolperhaf year ] ); 

Source File: getvolbas.h 

^include "define.h" 
^include "basal.h" 

extern int totpj; 
extern double volpopl PJ_NUM ][ MAX_YEAR ]; 
extern double baspopf PJ_NUM ][ MAX_YEAR ]; 

get_vol_bas( temp ) 
struct tree_info temp; 
( 

int i; 

double prev, next; 

double basalO: 

for( i = 0: i < MAX_YEAR; i++ ) 
( 

volpop[totpj][i] = temp.volsli] - temp.volsli 

prev = temp.dbhs[ i ]; /* 

next = temp.dbhs[ i+1 ]; 

baspopf totpj ][ i ] = basaK prev, next ); 

) 
) 

Source File: hash.fun 

^include <math.h> 
^include "define.h" 

hash( label, trnum ) 
char *label; 

+1 ]; /* unit: m"3 */ 

unit: mm */ 

/* mm''2/ha. */ 
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int trnum; 
{ 

int num; 

char chuff I 100 1; 

char *cptr; 

double constnl, position; 

long hash_value; 

hash_value = 0; 

position = 1; 

constnt = 3: 

num = trnum; 

sprintf( chuff, "%d", num ); 

cptr = chuff; 

while( *label++ != \0' ) 
{ 

hash_value += pow(position, constnt )*( *(label-l) ); 

position++; 
) 
while( *cptr++ != \0’ ) 
( 

hash_value += pow( position, constnt ) * ( *(cptr-l) ); 

position++; 
) 
returnC (int) ( hash_value%HASH_TAB_SIZE ) ); 

) 

Source File: ischeck.h 

^include "define.h" 

extern int pjnum[ MAX_PL0T ][ MAX_TREE ]; 
extern int pjperpltl MAX_PL0T ]; 

isfirsttime( chosennum, array, j ) 
int chosennum; 
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int *array, j; 
{ 

int p; 

for( p = 0; p < j: P++ ) 
{ 

if( *(array+p) == chosennum ) 
{ 

return( NOT ); 
) 

} 
return( YES ); 

) 

int ispj( i, chosennum ) 
int i; 
int chosennum; 
{ 

int position: 

for( position = 0; position < pjperpltl i ]; position++ ) 
{ 

if( pjnumi i ][ position ] == chosennum ) 
( 

returnC position + 1 ): /*in case zero position */ 
) 

) 
return( NOT ); 

3 

Source File: pltsmpl.h 

extern int pjperplt[ MAX_PLOT ]; 
extern double volpopi PJ_NUM ][ MAX_YEAR ]; 
extern double baspopi PJ_NUM ][ MAX_YEAR ]; 
extern double sumbas[ PJ_NUM ][ MAX_PLOT ]; 
extern double vppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
extern double bppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 

plt_smpl( k, year, j, count ) 
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int k; 
int year; 
int j: 
int *count; 
{ 

int p, end, indx, max; 

double num, randnum; 

end = pjperplt[ j ]; 

max = sumbas[ end - 1 ][ j ] * 1000000;/* ! rescale basal area */ 

for( p = 0; p < k; p++ ) 
( 

randnum = rand()%(max+1); /* number ranging: 0 max */ 

num = randnum/1000000; /*!scale back */ 

indx = locating( j, num ); 

vppssp[ p ][ j ] = volpopi *count+indx ][ year I; 

bppsspl p ][ j ] = baspopi *count+indx ][ year ]; 
) 
*count += end; /* enter next plot data field */ 

) 

locating( j, num ) 
int j; 
double num; 
{ 

int h; 

for( h = 0; h < pjperplt[ j }; h++ ) 
( 

if( num <= sumbas[ h ][ j ] ) 
( 

return( h ); 
) 

) 
) 
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Source File: popuinfo.h 

^include <assert.h> 
^include "define.h" 
^include "popumean.h" 
*finclude "popustdr.h" 

extern int totplt; 
extern int NP; 

popu_info() 
{ 

double aver[ MAX_YEAR ]; 

assert( popu_mean( aver ) == SUCCESS ); 

if( totplt == NP ) 
( 

assert( popu_stdr( aver ) == SUCCESS ); 

assert( save_stdr() == SUCCESS ); 
) 

Source File: popumean.h 

^include <math.h> 
^include ' define.h" 

extern FILE *tfpt; 
extern int totplt; 
extern int totpj; 
extern double mvolperhal MAX_YEAR ]; 
extern double mbaspertr[ MAX_YEAR ]; 
extern double volpop[ PJ_NUM ][ MAX_YEAR ]; 
extern double baspopi PJ_NUM II MAX_YEAR 1; 

popu_mean( aver ) 
double *aver; 
( 
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int i, i: 

double vincre, bincre, aveperplt, parameter; 

parameter = 15*666.7/100; 

vincre = 0; 

bincre = 0; 

for( i = 0; i < MAX_YEAR; i++ ) 
{ 

for( j = 0; j < totpj; j++ ) 
( 

vincre += volpopl j ][ i ]; 

bincre += baspopi j ][ i ]; 
) 
aveperplt = vincre/totplt; /* average vol/plot */ 

if( totplt == NP ) 
{ 

mvolperhal i ] = aveperplt*parameter; /* mean vol/ha. */ 

*( aver+i ) = vincre/totpj; /* mean vol/tree */ 
} 
mbaspertrl i ] = bincre/totpj; /* average basal area/tree */ 

/* unit: mm"2 of a tree/ha.*/ 

vincre = 0; 

bincre = 0; 
) 
if( totplt == NP ) 
{ 

save_true_mean(); 
} 
return( SUCCESS ); 

save_true_mean() 
{ 

int i; 

char stringl 20 ]; 

for( i = 0; i < MAX_YEAR; i++ ) 
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( 

sprintf( string, mvolperha[ i ] ); 

fprintf( tfpt, "%s\n”, string ); 
) 

) 

Source File: popustdr.h 

^include <math.h> 
^include "define.h" 

extern FILE *sfpt; 
extern int totpj; 
extern double stdrri MAX_YEAR ]; 
extern double volpop[ PJ_NUM ][ MAX_YEAR ] 

popu_stdr( aver ) 
double *aver; 
{ 

int i, j: 

double c, diff, squ, sum; 

double trv, totv, hacv, base; 

sum = 0; 

c = 2; 

for( i = 0; i < MAX_YEAR; i++ ) 
( 

for( j = 0; j < totpj; j++ ) 
{ 

diff = fabs( volpop[j][i] - *(aver+i) ); 

squ = pow( diff, c ); 

sum += squ; 
) 
trv = sum/totpj; 

totv = pow( (double)totpj, c ) * trv; 

hacv = totv * 15*666.7/(3*100); 

stdrri i ] = sqrt( hacv ); 

sum = 0; 
) 
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return( SUCCESS ); 
) 
save_stdr() 
( 

ini i; 

char stringf 20 1; 

for( i = 0; i < MAX_YEAR; 
{ 

sprintf( string, 

fprintf( sfpt, "%s\n", 
) 
relurn( SUCCESS ); 

Source File: ppsesti.h 

^include <assert.h> 
*^include "define.h" 
^include "ppstnean.h" 
^include "ppsvari.h" 

pps_esti( n, m, v ) 
int n; 
double *m; 
double *v; 
{ 

assertC pps_mean( n, tn ) 

assert( pps_vari( n, v ) = 

return! SUCCESS ); 
) 

Source File; ppsmean.h 

) 

stdrr[ i ] ); 

string ): 

== SUCCESS ): 

= SUCCESS ): 

^include ’define.h” 
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extern int tolplt; 
extern int totpj; 
extern int pjperpltl MAX_PLOT ]; 
extern double vppsspi MAX_SAMPLE_TREE ][ MAX_PLOT ]; 
extern double bppsspi MAX_SAMPLE„TREE ][ MAX_PLOT ]; 
extern double sumbas[ PJ_NUM ][ MAX_PLOT ]; 

pps_mean( n, m ) 
int n; 
double *m; 
{ 

int i. p, mi, Mi; 
double sum, parameter, plotvol, totvol, avepltvol; 

sum = 0; 
totvol = 0; 
mi = n; 
parameter = 15*666.7/100; 

for( i = 0; i < totplt; i++ ) 
{ 

Mi = pjperpltl i 1: 

for( p = 0; p < mi; p++ ) 
( 

sum += vppsspi p ][ i ]/bppsspI p ][ i ]; 
) 
plotvol = ( sumbasi Mi-1 ][ i ]*sum )/mi; 

totvol += plotvol; 

sum = 0; 
) 
avepltvol = totvol/totplt; /* mean plot volume */ 

*m = avepltvol*parameter; /* estimated vol/ha. */ 

return( SUCCESS ); 
} 

Source File: ppssampling.h 

^include "define.li' 
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^include "pltsmpl.h" 

extern int totplt; 
extern int pjperpltl MAX_PLOT ]; 
extern double totbas; 
extern double baspopi PJ_NUM ][ MAX_YEAR ]; 
extern double sumbasi PJ_NUM ][ MAX_PLOT ]; 

pps_sampling( k, year ) 
int k; 
int year; 
{ 

int j, count; 

count = 0; 

for( j = 0; j < totplt: j++ ) 
{ 

plt_smpl( k, year, j, &count ); 
/* select sample within plot */ 

) 
return( SUCCESS ); 

} 

Source File: ppssimu.h 

^include <assert.h> 
^include "define.h" 
^include "ppssampling.h" 
*^include "ppsesti.h" 

pps_simu( n, year, mean, vari ) 
int n; 
int year; 
double *mean; 
double *vari; 
{ 

int p: 
double prevsum, currsum, vsum; 
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prevsutn = 0; 
currsum = 0; 
vsutn = 0; 
for( p = 0; p < MAX_SIMULATION; p++ ) 
{ 

srand( n+p+98 ); /* set seed starting from 100 */ 
assert( pps_sampling( n, year ) == SUCCESS ); 
assert( pps_esti( n, mean, vari ) == SUCCESS ); 
if( stable_test(p, mean, vari, &vsum, &prevsum, Sccurrsum) 

== YES ) 
{ 

break; /* terminate loop */ 
} 

) 

Source File: ppsvari.h 

^include <math.h> 
^include 'define.h’ 
^include formerclt.h" 
^include "latterclt.h" 

extern int totplt; 
extern int NP; 

pps_vari( size, v ) 
int size; 
double *v; 
( 

double n, N; 
double c, former, latter, varperplt, parameter; 
double former_clt(), latter_clt(); 

n = totplt; 
N = NP; 
parameter = 15*666.7/(3*100); 
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former = former_clt( size ); 

latter = latter_clt( size ); 

varperplt = ((N-n)/(N*n*(n-1))) * former + latter; /* 

variance/plot */ 
*v = pow( NP, c )*varperplt*parameter; 

return! SUCCESS ); 
) 

Source File: readhash.h 

^include <assert.h> 
^include "define.h" 

extern FILE *hfpt; 
extern long hash_tbl[ HASH_TAB_SIZE ]; 

read_hash() 
( 

open_hash(): 

if( fread( hash_tbl, sizeof(long), HASH_TAB_SIZE, hfpt ) 
< HASH_TAB_SIZE ) 

( 
fprintf! stderr, "%s\n", "Hash Table Corrupted" ); 

exit! 1 ): 
) 

) 

open_hash!) 
{ 

if! hfpt == 0 ) 
{ 

assert! ! hfpt = fopen! "hash.tbl", "r" ) ) 1= FAILURE ); 
) 
else 
! 

fseek! hfpt, !long)0, 0 ); 
) 
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) 

Source File: samplemean.h 

*^include ‘define.h" 

extern int totplt; 
extern int totpj; 
extern double mbaspertrl MAX_YEAR ]; 

sample_tnean( year, vsum, bsum, mean ) 
int year; 
double vsum; 
double bsum; 
double *mean; 
{ 

double parameter, tot; 

parameter = 15*666.7/100; 
tot = mbaspertrl year ]*(vsum/bsum)*totpj; 
*mean = (tot*parameter)/totplt; /* average volum/ha. */ 

return! SUCCESS ); 

Source File: samplevari.h 

^include <assert.h> 
^include <math.h> 
^include "define.h" 

extern int 
extern int 
extern int 
extern int 

NP; 
totplt; 
totpj; 
pjperpltl MAX_PL0T ]; 

extern double volspH MAX_SAMPLE_TREE ]; 
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extern double bassplf MAX_SAMPLE_TREE ]; 
extern double mbaspertr[ MAX_YEAR 1; 

sample_vari( k. vsum, bsutn, vari, yave, xave ) 
int k; 
double vsum, bsum; 
double *vari, *yave, *xave; 
{ 

int j; 
double r, term; 
double md[ MAX_PLOT ]. s2[ MAX_PLOT ]; 
double d[ MAX_SAMPLE_TREE ]; 

r = vsum/bsum; 

assert( lst_term( r, &term, yave, xave ) == SUCCESS ); 
assert( clcl_md( k, r, md, d ) == SUCCESS ); 
assertC clcl_s( k, s2, md, d ) == SUCCESS ); 
assert( clcl_v( k, s2, term, vari ) == SUCCESS ); 

return( SUCCESS ); 
) 

lst_term( r, term, yave, xave ) 
double r; 
double *term, *yave, *xave; 
{ 

int i, np; 
double a, b. c, fl, n, sum. Mi, Msqu, y_rx; 

n = totplt; 
c = 2: 
sum = 0; 
fl = (double )totplt/(double)NP; 

for( i = 0; i < n; i++ ) 
( 
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Mi = pjperpltl i ]; 

Msqu = pow( Mi, c ); 

b = *( yave+i ) - ( *(xave+i)*r ); 

y_rx = fabs( b ); 

a = pow( y_rx, c ); 

sum += (Msqu * a)/(n - 1 ); 
} 
*term = ( (1 - fl)*sum )/n; 

returnC SUCCESS ); 
) 

clcl_md( k, r, md, d ) 
int k; 
double r; 
double *md; 
double *d; 
{ 

int j, p, line; 

double sum, vincre, bincre, dtemp; 

line = 0; 

sum = 0; 

for( j = 0; j < totplt; j++ ) 
{ 

for( p = 0; p < k; p++ ) 
( 

vincre = volspll line + p ]; 

bincre = basspK line + p 1; 

dtemp = fabs( vincre - (r * bincre) ); 

*( d + line + p ) = dtemp: 

sum += dtemp: 
) 

*( md+j ) = sum/k: 

line += k: 

sum = 0: 
} 
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return( SUCCESS ); 
) 

clcl_s( k, s2, md, d ) 
int k; 
double *s2; 
double *md; 
double *d; 
{ 

int j, p, line; 

double a, b, c, h, squ, what; 

line = 0; 

squ = 0; 

c= 2; 

for( j = 0; j < totplt; j++ ) 
{ 

for( p = 0; p < k; p++ ) 
{ 

a = *(d+line+p); 

b = *(md+j): 

h = fabs( a-b ); 

squ += pow( h, c ): 
) 
*( s2+j ) = squ/(k-1); 

line += k; 

squ = 0; 
} 
return( SUCCESS ); 

clcl_v( k, s2, term, vari ) 
int k; 
double *s2; 
double term; 
double *vari; 
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int i; 
double b, c, fl, f2, Mi, Mi2, Mo. Mo2, n, n2, N; 
double mvar, sum, convert, temp: 

sum = 0; 
c = 2: 
Mo = totpj; 
N = NP: 
n = totplt; 
fl = n/N; 
n2 = pow( n, c ); 
Mo2 = pow( Mo. c ): 
convert = 15*666.7/100; 

for( i = 0; i < totplt; i++ ) 
( 

Mi = pjperplti i ]; 
Mi2 = pow( Mi, c ); 
f2 = k/Mi; 
temp = (Mi2*( 1-f2)*(*(s2+i))): 
sum += temp; 

) 

mvar = term + (f 1/n2)*(sum/k); /* variance for mean */ 
mvar = ( Mo2 * mvar ); /* total variance for <totplt> */ 
*vari = (mvar*convert)/totplt; /* converted to: variance/ha. */ 
*vari = *vari/l 0; 

returnC SUCCESS ); 

Source File: sampling.h 

^include "define.h" 
*^include "srssimu.h" 
^include "ppssimu.h" 
^include "writetofile.h" 
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extern int maxsample; 

satnpling( year ) 
int year; 
( 

int n; 
double msrs, vsrs, mpps, vpps; 

for( n = MINSAMPLE; n < maxsample; n++ ) 
( 

srs_simu( n, year, &msrs, Scvsrs ); 
pps_simu( n, year, &mpps, Scvpps ); 
write_to_file( n, year, msrs, vsrs, mpps, vpps ) 

) 
} 

Source File; searchpj.h 

^include "define.h" 
^include "nodedef.h' 
^include "hash.fun” 
^include "getvolbas.h" 

extern FILE *rfpt; 
extern int totpj; 
extern int maxsample; 
extern int pjperpltl MAX_PLOT ]; 
extern long hash_tbl[ HASH_TAB_SIZE ]; 
extern int pjnum[ MAX_PLOT ][ MAX_TREE ]; 

search_pj( i, array, j, indx ) 
int i; 
char *array; 
int j; 
int *indx; 
{ 
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struct tree_info temp; 
int record: 

for( record = hash_tbl[ hash(array, j) ]; record != END && 
r_record( record, &temp ); record = temp.next ) 

{ 
if( !strcmp(temp.plt_lab, array) && temp.tn == j && 

!strcmp( temp.sp_code, "Pj" ) ) 
{ 

pjnum[ i ][ *indx ] = j; /* remember tree # which is pj */ 

*indx += 1: 

pjperpltl i 1 += 1; /* remember how many pj trees */ 
/* in each secondary plots */ 

get_vol_bas( temp ); 
totpj++: 

return: 
) 

) 
) 

r_record( record, temp ) 
int record: 
struct tree_info *temp: 
{ 

if( fseek( rfpt, (long)(( record-1 )*sizeof(struct tree_info)), 0) != 
OK ) 

{ 
printf( ‘AnSEEK ERRORXn" ): 

return( FAILURE ): 
) 
if( fread( temp, sizeof( struct tree_info ), 1, rfpt ) == FAILURE ) 
{ 

printf( "\nRECORD NOT FOUNDNn" ): 

return! FAILURE ): 
) 
return! SUCCESS ): 
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Source File: smplplt.h 

^include <assert.h> 
^include "define.h" 
^include "smpllr.h” 

smpl_plt( n, year, i, count, line ) 
int n; 
int year; 
int i; 
int *count; 
int line; 

( 

int j: 

int array[ 100 ]; 

clear_arr( array ); 

for( j = 0; j < n; j++ ) 
{ 

smpl_tr( year, i, count, line, j, array ) 
) 

} 

clear_arr( array ) 
int *array: 
{ 

int i; 

for( i = 0; i < 100; i++ ) 
{ 

*( array+i ) = 0; 

) 
} 
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Source File: smpltr.h 

^include "define.h" 
^include "ischeck.h" 

extern int trperpltl MAX_PLOT ]; 
extern double volpop[ PJ_NUM ][ MAX_YEAR ]; 
extern double baspopl PJ_NUM ][ MAX_YEAR ]; 
extern double volspli MAX_SAMPLE_TREE ]; 
extern double basspll MAX_SAMPLE_TREE ]; 

smpl_tr( year, i, count, line, j, array ) 
int year; 
int i; 
int *count; 
int line; 
int j: 
int *array: 
{ 

int max, chosennum, indx; 
int isfirsttimeO, ispjO; 

max = trperplt[ i ]; 

while( chosennum = randO ) 
{ 

if( chosennum ) /* if it happens to be 0, excluding it */ 
( 

if( chosennum = chosennum%(max+1) ) 
/* number range: l...max */ 

{ 
if( isfirsttime( chosennum, array, j )&& 

(indx = ispj( i, chosennum )) ) 
{ 

*( array+j ) = chosennum; 

indx = indx - 1; /* restore its value */ 

volspli *count I = volpopi indx + line ][ year ]; 

basspll *count ] = baspopl indx + line ][ year ]; 

*count += 1; 
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) 

break; 

Source File: srsesti.h 

^include <assert.h> 
*^include "define.h" 
^include "totmean.h" 
^include "samplemean.h" 
^include "samplevari.h" 

srs_esti( k. year, mean, vari ) 
int k; 
int year; 
int *mean; 
int *vari; 
{ 

double vsum, bsum, yave[ MAX_PLOT ], xave[ MAX_PLOT ]; 

vsum = 0; 
bsum = 0; 

assert( tot_mean( k, &vsum, Scbsum, yave, xave ) == SUCCESS ); 
assert( sample_mean( year, vsum, bsum, mean ) == SUCCESS ); 
assert(sample_vari(k, vsum, bsum, vari, yave, xave)==SUCCESS ); 

return( SUCCESS ); 
) 

Source File: srssampling.h 

^include "define.h" 
^include "smplplt.h" 
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extern int totplt; 
extern int pjperpltl MAX_PLOT ]; 

srs_sampling( n, year ) 
int n; 
int year; 
( 

int i. count, line; 

count = 0; 
line = 0; 

for( i = 0; i < totplt; i++ ) 
( 

smpl_plt( n, year, i, &count, line ); 
line += pjperpltl i ]; 

) 
return! SUCCESS ); 

Source File: srssimu.h 

^include <assert.h> 
^include 'define.h' 
^include "srssampling.h" 
^include "srsesti.h" 
^include "stabletest.h" 

srs_simu( n, year, mean, vari ) 
int n; 
int year: 
double *mean; 
double *vari; 
( 

int p; 
double prevsum, currsum, vsum; 

prevsum = 0; 
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currsutn = 0; 
VSUEH = 0; 
for( p = 0; p < MAX_SIMULATION: p++ ) 
{ 

srand( n+p-1 ); /* set seed starting from 1 */ 

assert( srs_satnpling( n, year ) == SUCCESS ); 

assert( srs_esti( n, year, mean, vari ) == SUCCESS ); 

if( stable_test(p, mean, vari, &vsum, &prevsum, Sccurrsum) 
== YES ) 

{ 
break; /* terminate loop */ 

) 
) 

) 

Source File: sumbasal.h 

extern int totplt; 
extern int pjperplt[ MAX_PL0T ]; 
extern double baspopi PJ_NUM ][ MAX_YEAR I; 
extern double sumbasl PJ_NUM ][ MAX_PL0T ]; 

sum_basal( year ) 
int year; 
{ 

int i, p, count; 
double sum; 

count = 0; 
sum = 0; 

for( i = 0; i < totplt; i++ ) 
( 

for( p = 0; p < pjperpltl i ]; p++ ) 
( 

sum += baspopi count + p ][ year ]; 

sumbasi p ][ i ] = sum; 
) 
sum = 0; 
count += p; 
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) 
) 
Source File: totmean.h 

^include "define.h" 

extern int totplt; 
extern int pjperplt[ MAX_PLOT ]; 
extern double volspl[ MAX_SAMPLE_TREE 1; 
extern double basspK MAX_SAMPLE_TREE ]; 

tot_mean( k, vsum, bsum, yave, xave ) 
int k; 
double *vsum, *bsum; 
double *yave, *xave; 
( 

int j, p, line; 
double vincre, bincre, vaver, baver; 

line = 0; 
vincre = 0; 
bincre = 0; 

for( j = 0; j < totplt; j++ ) 
{ 

for( p = 0; p < k; p++ ) 
{ 

vincre += volspl[ line + p ]; 

bincre += basspll line + p ]; 
) 
vaver = vincre/k; 

baver = bincre/k; 

*(yave+j) = vaver; 

*(xave+j) = baver; 

*vsum += vaver * pjperpltl j ]; 

*bsum += baver * pjperplt[ j ]; 

vincre = 0; /* reseted for next plot */ 

bincre = 0; 

line += k; 
) 
return( SUCCESS ); 
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) 

Source File: writetofile.h 

^include "writefile 1 .h‘ 
^include "writefile2.Ji" 
^include "writefile3 h" 

write_to_file( k, year, msrs, vsrs, mpps, vpps ) 
int k, year; 
double msrs, vsrs; 
double mpps, vpps; 
{ 

write_file 1 ( k, year, msrs, mpps); 
write_file2( k, year, vsrs, vpps ); 
write_file3( k, year, msrs, vsrs, mpps, vpps ) 

} 

Source File: writefile 1 .h 

*^include <math.h> 
^include "gettruemean.h" 

extern int totplt; 
extern int NP; 
extern int maxsample; 
extern FILE *wfpt; 
extern double mvolperhal MAX_YEAR ]; 
extern char pltlabl MAX_PLOT ]; 
extern char plotnol MAX_PLOT ][ 6 1; 

write_filel( k, year, msrs, mpps ) 
int k, year; 
double msrs, mpps; 
{ 

static int interval = 0; 

double a; 
char msl 20 ], mp[ 20 ]; 
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char size[ 20 ], time[ 20 ], lruemean[ 20 ]; 

if( tolplt < NP ) 
{ 

get_true_mean( year ); 
) 
a = tnvolperha[ year ]; 
to_char(msrs, mpps, a, ms, mp, truemean, k, year, size, lime ); 

if( interval == year ) 
{ 

write_title( time ); 
write_result( k, size, truemean, ms, mp ); 

interval+= 1; 
) 
else 
( 

write_result( k, size, truemean, ms, mp ); 
) 

to_char( msrs, mpps, a, ms, mp, truemean, k, year, size, time ) 
double msrs, mpps, a; 
char *ms, *mp, *truemean; 
ini k, year; 
char *size, *lime; 
{ 

year = year + 1; 

sprintf( ms, "%lf", msrs ); 
sprintf( mp, ■■%lf", mpps ); 
sprintf( truemean, ■'%lf, a ); 
sprintf( size, "%d", k ); 
sprintf( time, "%d", year ); 

) 

write_title( time ) 
char *time; 
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for( i = 0; i < tolplt; i++ ) 
{ 

fprintf( wfpt, "%s%s%s", pltlab, plotno+i, " " ) 
) 
fprintf( wfpt, "\n\n\n%8s%-1 Is", " ", "Year:" ); 

fprinlf( wfpt, "%s%s\n", time ); 
fprintf( wfpt, "%8s%s\n\n", " ", "(backward)" ); 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt, 

fprintf( wfpt. 

"%8s%-14s", " ", "Number of" ); 

"%-17s", "TRIM"): 

"%-17s", "Mean for" ): 

"%-14s\n", "Mean for" ); 

"%8s%-14s", "Trees in" ): 

"%-17s", "Mean for" ); 

"%-17s", "Unequal Pr" ): 

"%-14s\n", "Equal Pr" ): 

"%8s%-14s", " ", "Subsample" ); 

"%-17s", "Stand" ); 

"%-17s", "Subsampling" ); 

"%-14s\n", "Subsampling" ); 

fprintf( wfpt, "%22s%-17s", " ", "(m'3/ha.)" ); 

fprintf( wfpt, "%-17s", "(m''3/lia.)" ); 

fprintf( wfpt, "%-14s\n", "(m"3/ha.)" ); 

fprintf( wfpt, "%8s". " " ): 

for( j = 0; j < 59; j++ ) 
( 

fprintf( wfpt, "%s", ); 
) 
fprintf( wfpt, "%s", "\n\n" ); 
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write_result( k, size, truemean, ms, mp ) 
int k; 
char *size; 
char *truemean; 
char *ms; 
char *mp: 
{ 

int i, j: 

i = maxsample - 1; 

fprintf( wfpt, 

fprintf( wfpl, 

fprintf( wfpt, 

fprintf( wfpt, 

"% 13s", size ); 

"%18s", truemean): 

"%17s", ms): 

"% 17s\n", mp ); 

if( i == k ) 
( 

fprintf( wfpt, "%s", ”\n" ): 

fprintf( wfpt, "%8s", " " ): 

for( j = 0; j < 59: j++ ) 
{ 

fprintf( wfpt, "%s", ): 
} 
fprintfC wfpt, "%s", ”\n\n\n\n\n\n" ); 

) 
) 

pr_headerl() 
{ 

fprintf( wfpt, '% 1 4s%s\n", " ", "Accuracy of estimates for mean 
volume per hectare" ): 

fprintfC wfpt, "%14s%s\n", " ", "for both equal and unequal 
probability subsampling" ): 

fprintfC wfpt, "%14s%s%s", " ", "rules for plots:", " " ): 
) 
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Source File: writefile2.h 

^include <math.h> 
^include "getstdr.h" 

extern FILE *pfpt; 
extern int totplt; 
extern int NP; 
extern double stdrr[ MAX_YEAR 1; 
extern char pltlabl MAX_PLOT ]; 
extern char plotnol MAX_PLOT II 6 ]; 

write_file2( k, year, vsrs, vpps ) 
int k, year; 
double vsrs, vpps; 
( 

static int ring = 0; 
double se; 
char eqv[ 20 ], uqv[ 20 ]; 
char size! 20 ], timel 20 ], strsel 20 ]; 

if( totplt < NP ) 
( 

get_stdr( year ); 
) 
se = stdrri year ]; 

convt_to_char(eqv, uqv, strse, size, time, vsrs, vpps, se, k, year); 

if( ring == year ) 
{ 

wrt_title( time ); 

wrt_result( k, size, eqv, uqv, strse ); 

ring += 1; 
) 
else 
{ 

wrt_result( k, size, eqv, uqv, strse ); 
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) 
} 

convl_to_char( eqv, uqv, strse, size, time, vsrs, vpps, se, k, year ) 
char *eqv, *uqv; 
char *strse, *size, *time; 
double vsrs, vpps, se; 
int k, year; 
{ 

double uqroot, eqroot; 

year = year+1; 

vpps = fabs( vpps ); 

uqroot = sqrt( vpps ); 

eqroot = sqrt( vsrs ); 

sprintf( eqv, "%lf, eqroot ); 

sprintf( uqv, "%lf", uqroot ); 

sprintf( size, ”%d", k ); 

sprintf( time, "%d ', year ); 

sprintf( strse, "%lf ', se ); 
) 

wrt_title( time ) 
char *time; 
{ 

int i, j: 

print_header2(): 

for( i = 0; i < totplt; i++ ) 
{ 

fprintf( pfpt, "%4s%s", pltlab, plotno+i ); 
) 
fprintf( pfpt, "\n\n\n% 1 1 s%-11 s", " "Year;" ): 

fprintf( pfpt, "%s%s\n", time ); 

fprintf( pfpt, "%1 ls%s\n\n", " ", "(backward)" ); 
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fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 
fprintf( pfpt, 

fprintf( pfpt. 

"%1 ls%-15s", “ ", "Number of" ); 

"%-15s", "S. E. for"); 

"%-15s", "S. E. for"); 

"%-15s\n", "S. E. for"); 

"%lls%-15s", " ", "Trees in" ); 

"%-15s", "TRIM plots" ); 

"%-15s", "Unequal Pr" ); 
"%-15s\n", "Equal Pr" ); 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt, 

fprintf( pfpt. 

"%1 ls%-15s", " ", "Subsample" ); 

"%-15s", "Stand" ); 

"%-15s", "Subsampling" ): 
"%-15s\n", "Subsampling" ); 

"%26s%-15s", " ", "(m‘3/ha.)" ); 

"%-15s", "(m*3/ha.)" ); 

"%-15s\n", "(m‘3/ha.)” ); 

fprintf( pfpt, "%1 Is", " " ); 

for( j = 0; j < 56; j++ ) 
{ 

fprintf( pfpt, "%s", ); 
) 
fprintfC pfpt, "%s", "\n\n" ); 

wrt_result( k, size, eqv, uqv, strse ) 
int k; 
char *size, *eqv; 
char *uqv, *strse; 
{ 

int i, j; 

i = maxsample - 1; 

fprintf( pfpt, "%16s", size); 

fprintf( pfpt, "%19s", strse ); 
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fprintf( pfpt, "%15s", uqv ); 

fprintf( pfpt, "%15s\n", eqv ); 
if( i == k ) 
{ 

fprintf( pfpt, "%s", "\n" ); 

fprintf( pfpt, "%1 Is", " " ): 

for( j = 0; j < 56; j++ ) 
{ 

fprintf( pfpt, "%s", ); 
) 
fprintf( pfpt, "%s", "\n\n\n\n\n\n" ); 

} 

print_header2() 
{ 

fprintf( pfpt, "%1 ls%s\n", " ", "Precision of estimates for standard 
errer of mean volume" ); 

fprintf( pfpt, "% 11 s%s\n", " "per hectare for both equal and 
unequal pobability" ); 

fprintf( pfpt, "%1 ls%s", " ", "subsampling rules for plots:" ); 
) 

Source File; writefile3-h 

^include <math.h> 

extern FILE *cfpt; 
extern int totplt; 
extern int NP; 
extern double stdrr[ MAX_YEAR ]; 
extern double mvolperha[ MAX_YEAR ]; 
extern char pltlabl MAX_PLOT ]; 
extern char plotnol MAX_PLOT ][ 6 ]; 

write_file3( k, year, msrs, vsrs, mpps, vpps ) 
int k, year; 
double msrs, vsrs; 
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double mpps, vpps; 
( 

static int count = 0; 

double serr, aver; 
char eqm[ 20 ], eqe[ 20 ], uqm[ 20 ], uqe[ 20 ]; 
char size! 20 ], time! 20 ]; 

if( totplt < NP ) 
{ 

get_stdr( year ); 
get_true_mean( year ); 

) 
serr = stdrri year ]; 
aver = mvolperhal year ]; 
compute_ratio( aver, serr, &msrs, &vsrs, &mpps, &vpps ); 
turn_to_char( eqm, eqe, uqm, uqe, size, time, msrs, vsrs, 

mpps,vpps,k,year ); 

if( count == year ) 
{ 

put_title( time ); 
put_result( k, size, uqm, uqe, eqm, eqe ); 

count += 1: 
) 
else 
{ 

put_result( k, size, uqm, uqe, eqm, eqe ); 
) 

compute_ratio( aver, serr, msrs, vsrs. mpps, vpps ) 
double aver, serr; 
double *msrs, *vsrs; 
double *mpps, *vpps; 
{ 

double eqstdr, uqstdr; 

*vpps = fabs( *vpps ): 
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eqstdr = sqrl( *vsrs ); 

uqstdr = sqrt( *vpps ); 

*vsrs = (eqstdr/serr)* 100; 
*vpps = (uqstdr/serr)* 100; 

*msrs = (*msrs/aver)* 100; 

*mpps = (*mpps/aver)* 100; 

turn_to_char( eqm, eqe, uqtn, uqe, size, time, msrs, vsrs, mpps, vpps, 
k, year ) 
char *eqm, *eqe, *uqm, *uqe; 
char *size, *time; 
double msrs, vsrs, mpps, vpps; 
int k, year; 
( 

year = year+1; 

sprintf( eqm, "%lf", msrs ); 

sprintf( eqe, "%lf", vsrs ); 

sprintf( uqm, "%lf", mpps ); 

sprintf( uqe, "%lf”, vpps ); 

sprintf( size, "%d", k ); 

sprintf( time, "%d", year ); 
} 

put_title( time ) 
char *time; 
{ 

int i, j; 

print„header 3 (); 

for( i = 0; i < totplt; i++ ) 
{ 

fprintf( cfpt, "%5s%s%s", pltlab, plotno+i, " " ); 
) 
fprintf( cfpt, "\n\n%-lls", "Year;"); 

fprintf( cfpt, "%s%s\n", time ); 



175 

fprintf( cfpt, %s\n\n", ■■(backward)"' ); 

fprintfC cfpt, 

fprintf( cfpt, 

fprintf( cfpt. 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt. 

%-15s", "Number of" ): 

%-15s", "Mean for " ): 

%-17s", "S. E. for " ): 

%-15s", "Mean, for" ): 

%-15s\n ", "S. E. for" ); 

%-15s ", "Trees in" ): 

%-15s ", "Unequal Pr " ): 

%-17s ", "Unequal Pr" ); 

%-15s ". "Equal Pr " ): 

%-15s\n". "Equal Pr " ); 

fprintfC cfpt, 
fprintf( cfpt, 
fprintfC cfpt, 
fprintfC cfpt. 
fprintfC cfpt. 

%-15s ", "Subsample " ); 

%-15s ". "Subsampling " ); 

%-17s ", "Subsampling" ): 

%-15s ". "Subsampling " ); 

%-15s\n", "Subsampling " ); 

fprintfC cfpt, 
fprintfC cfpt, 
fprintfC cfpt, 
fprintfC cfpt. 

%19s%-15s", " ", "(%)" ): 

%-17s", "(%)" ): 

%-15s", "(%)" ); 

%-15s\n", "(%)" ); 

forC j = 0; j < 73: j++ ) 
{ 

fprintfC cfpt, "%s", ); 
) 
fprintfC cfpt, "%s ", "\n\n" ); 

put_result( k, size, uqm, uqe, eqm, eqe ) 
int k; 
char *size; 
char *uqm, *uqe; 
char *eqm, *eqe; 
{ 
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int i. j: 

i = maxsample - 1; 

fprintf( cfpt, "%5s ", size ); 

fprinlf( cfpt, "%20s", uqm ): 

fprintf( cfpt, "%15s", uqe ); 

fprintf( cfpt, "%17s", eqm ); 
fprintf( cfpt, "% 15s\n", eqe ); 

if( i == k ) 
{ 

fprintf( cfpt, "%s", "\n" ); 

for( j = 0; j < 73: j++ ) 
( 

fprintf( cfpt, "%s", ); 
) 
fprintf( cfpt, "%s", "\n\n\n\n\n\n" ); 

3 

print_header3() 
( 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt, 

fprintf( cfpt. 

"%15s%s\n", " "Accuracy and precision of 
estimates for mean" ); 

"%15s%s\n", " ", "volume per hectare, and standard 
error, for " ); 

"%15s%s\n", " ", "both equal and unequal probability 
subsampling " ); 

"% 15s%s", 
) 

" ", "rules for plots:" ); 


