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Preface

In this thesis, we study the problem of key management within an access 
hierarchy. Our contribution to the key management problem is an indi­
rect key derivation approach we call the HMAC-method. It is called the 
HMAC-method, because it is based on hashed message authentication codes 
(HMACs) built from a fast, single, dedicated hash function (SHA-1). It is 
intended to provide an efScient indirect key management method for large 
access hierarchies resembling tree structures. We are able to achieve bet- 
ter tree traversals using a technique we created called path addressing. Our 
path addressing scheme allows us to efficiently calculate relationships between 
security classes, determine traversal paths, and improve the performance of 
indirect key derivation. We also present our cached key update scheme which 
is meant to improve the indirect key derivation schemes on tree hierarchies by 
delaying key updates when changes to the structure of the access hierarchy 
are necessary, but the re-calculation and re-assignment of keys would either 
be costly or inconvenient.

For access hierarchies represented as weakly/strongly connected directed 
acyclic graphs, we suggest modifications to our path addressing and key 
derivation scheme which could allow our HMAC-method to be apphed to 
these types of hierarchies.

Along the way, we discuss various current key management methods and 
discuss certain pragmatic issues that can arise which affect the applicability 
and implementation of a key management method.
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Chapter 1 

Introduction

1.1 Interest and M otivation
Within multi-user computer systems, we would like to have a methodology 
that allows for the secure and trusted sharing of information amongst users 
of the system. In essence, we wish to control an individual’s access to the 
information stored on the system. We require an access control mechanism.

Access control mechanisms have been a part of computer operating sys­
tem development since the creation of MULTICS in 1965 [40]. The princi­
ple of least privilege is at the heart of all access control mechanisms. The 
principle stipulates that users of a computer system receive no more access 
than required to perform their responsibilities [16]. Implementation efforts 
have given rise to three prominent mechanisms: discretionary access con­
trol (DAC); mandatory access control (MAC); and role-based access control 
(RBAC) [16]. Shared amongst these mechanisms is the concept that users 
are divided and grouped into classes, which can be organized into a hierarchi­
cal structure according to the class’s importance or level of trust. Thus, the 
priveleges a user may have on the computer system is determined according 
to the class he belongs to and the privileges associated with his class [16].

However, these access control mechanisms only attempt to limit the ac­
tions of users on stored information or computer resources. The access hi- 
erarchies by themselves do not provide ways in which the information may 
be kept in trust or secret [16]. We require a method which extends access 
control mechanisms to support the encryption, decryption, and keyed access 
of computer information and resources. But, this stipulation brings forth
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Officer Keychain
General General, Major, Colonel, Captain, Lieutenant
Major Major, Colonel, Captain, Lieutenant
Colonel Colonel, Captain, Lieutenant
Captain Captain, Lieutenant
Lieutenant Lieutenant

Table 1.1: A hierarchy of army officers and their cryptographic keychains.

new challenges.
First, most mainstream cryptographic cipher systems are key based [37]. 

Whether they be symmetric or asymmetric, these modern cryptosystems 
hinge on the necessity of a shared key or accessible key for all interested 
participants. Within an access control mechanism, the problem hes not in the 
implementation of the cryptosystem or integration of the cryptosystem into 
the mechanism, but in the management of the keys amongst the participants 
within the classes of the access hierarchy [2], [3].

For example, let us examine a simple access hierarchy of army officers 
sharing a single computer workstation. In descending order of authority, we 
have the General, Colonel, Captain, and Lieutenant (Table 1.1).

Amongst this group of officers, all information stored on the workstation 
is kept secret through some cryptosystem. Each officer encrypts his infor­
mation with his key. The hierarchy of officers and the actions they may 
perform on the workstation is controlled by an access control mechanism. 
Within this access hierarchy, a senior officer is given the authority to access 
information belonging to any subordinate officer. For example, the General 
may access everyone's information, but the Lieutenant may only access his 
own. As such, there will come a time when a senior officer must have access 
to a subordinate’s information. Fortunately, the hierarchy defines such a re­
lationship and the access control mechanism wiU allow it. But, information 
stored at each level in the hierarchy is encrypted with a different key. How 
can the senior officer access the information? As a simple solution, the army 
could order all officers to share their keys with each senior officer (Table 1.1). 
This simple method of key sharing is inefficient because the General is left 
to manage the keys of all his subordinates. If, for example, there are 10,000 
men in the army (including the General), then the General must hold and 
manage 10,000 keys. Obviously, this simple sharing solution is too inefficient.
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How can we effectively address this key management problem without having 
to resort to a shared common key amongst all security classes?

This question is known as the key management problem. We will search 
for methods that allow each class within a hierarchy its own security key, but 
wiU allow a class the ability to access or derive keys belonging a subordinate 
class over wdiich they have the proper authority.

1.2 A Survey of Solutions to the Key Man­
agement Problem

Akl and Taylor proposed the first solution to the key management problem in 
an access control hierarchy (Sec. 3.3.1) [2]. The foundation of their solution 
was RSA's modular exponentiation arithmetic (Sec. 2.2). In their method, 
they would assign each security class a distinct prime number which in turn 
was used to calculate a public parameter. These values were used in the 
modular exponentiation equation to generate a key for each security class 
within the access hierarchy. The abihty to access keys for other security 
classes and derive those keys was determined using the appropriate public 
parameters within the modular exponentiation equation. While many agreed 
that their method had merit, it was criticized for being inefficient [20], [34], 
[3|, [26], 118].

The inefficiency arose from the computation and assignment of the public 
parameters. The initial algorithm generated numbers that were very large 
to store when the hierarchy itself contained many security classes [3]. Also, 
when a class was added or removed, all the parameters and keys had to be 
recomputed [18]. Later, Akl and MacKinnon proposed two new procedures 
which sought to find an efficient method of generating and assigning public 
parameters. The first method produced values that were smaller than the 
original algorithm, but proved to be susceptible to co-operative key recovery 
attacks [3]. The second method addressed the problem of security, but was 
not as efficient in generating smaller values as the first; it was slightly better 
than the original [3]. MacKinnon et al. found an optimal method for gener- 
ating and assigning public parameters [26]. However, MacKinnon concluded 
the method was still inefficient for use within large access hierarchies [26]. 
Thus, the efficient calculation and assignment of public parameters was left 
unsolved [26]. Also, the inefficiencies of adding and removing security classes
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was never addressed; this too was left as an open problem [26] [18].
A second key management solution came when Sandhu proposed a method 

that used DES to generate and derive keys within the hierarchy [36]. The key 
assignment and derivation method was recursive; each subordinate received 
a key that was a digest of the direct principal’s key and public parameter. 
Using his recursive approach, Sandhu avoided the costly storage inefficiencies 
of the Akl-Taylor method. However, Sandhu’s proposed method of traversing 
the tree and generating keys with DES was criticized for being slow. Also, 
it was unable to deal with hierarchies represented as directed acychc graphs. 
[181. [20].

The works of Akl-Taylor and Sandhu have since defined the two major 
approaches to the key management problem [34], [20]. The first approach 
is called the direct approach because access to other security classes and 
their keys can be determined using the appropriate set of public parameters 
[20]. Most approaches in this category build on the work of the Akl-Taylor 
method. These approaches use RSA’s modular exponentiation arithmetic 
as their key generating and derivation function. Most proposals suggest 
new algorithms for assigning parameters to security classes, and using those 
parameters within the RSA modular exponentiation equation to generate and 
derive keys for other security classes. The second approach, commonly called 
the indirect approach, focuses on devising schemes in which hash functions 
and other one-way function constructions are used as the key derivation 
algorithm [20]. These approaches propose a recursive key derivation method 
that applies some public identifier and principal key to the inputs of one or 
several one-way functions.

1.3 Our Contributions to  Key Management 
M ethods

Our contribution to the key management problem is an indirect approach 
we call the HMAC-method. It is called the HMAC-method, because it is 
based on hashed message authentication codes (HMACs) built from a fast, 
single, dedicated hash function (SHA-1). It is intended to provide an efficient 
indirect key management method for large access hierarchies resembhng tree 
structures. We can achieve better key traversals using a technique we created 
called pof/i oddnesstng. Roth oddressing aHows us to determine security class
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relationships before generating keys and thus improve the responsiveness and 
efficiency of a single function indirect key management scheme.

We also present our coched hey update scheme which is meant to provide
flexibility to our indirect approach by delaying unnecessary key updates when 
changes to the structure of the access hierarchy are necessary, but the re- 
calculation and re-assignment of keys would either be costly or inconvenient. 
This can allow users within the security classes to continue working with 
their present keys, but delay a key update to a more convenient time.

For access hierarchies represented as weakly/strongly connected directed 
acyclic graphs, we suggest a modification to our path oddmssmg and key 
derivation scheme which would allow our single function indirect approach 
to be applied to hierarchies resembhng DAGs. The scheme we propose works, 
but it is not optimal for all DAG hierarchies.

Finally, we discuss some pragmatic issues surrounding the applicabihty 
and implementation of diriect and indirect approaches.

1.4 Thesis Outline
In chapter two, we provide a review on some topics in cryptography relevant 
to understanding the design of key management methods. Chapter three 
will discuss previous research in the field of key management in an access 
hierarchy. We will show how key management solutions have evolved over 
time and discuss the two most prominent approaches for key assignment 
and derivation. In chapter four, we introduce our key management method 
called the HMAC-method. In chapter five, we discuss some pragmatic issues 
surrounding the applicability and implementation of direct and indirect ap­
proaches. Finally, we close with chapter six where we summarize our research 
and suggest a direction of future research.
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Chapter 2 

Relevant Topics in 
Cryptography

To facilitate our discussion of key management methods, we review some 
topics in cryptography that play an important role in the current research 
into key management and in the method presented in this thesis. We cannot 
replace a textbook or course on cryptography, so where a greater understand­
ing of theory is necessary, we refer the reader to the cited literature.

We shall review the following topics: one-way functions, the RSA cryp­
tosystem, hash functions, and message authentication codes.

2.1 One-Way Functions
One-way functions play a pivotal role in modem cryptography. They are im-
portant for creating public-key cryptosystems, message authentication codes, 
hash functions, and digital signature schemes [27].

One-way functions are functions which are easy to compute but difficult 
to inverse. That is, we look for problems that are computationally difficult to 
solve in a reasonable amount of time; for example, the problem of factoring 
a number A  that is the composite of two large prime numbers [37]. As yet, 
there is no polynomial time algorithm that can perform the prime factoriza- 
tion of a number that is composed Rom sufficiently large prime factors [25]. 
To compose the number is easy, to factor it becomes difficult. Other com- 
putationally difficult problems include the discrete logarithm within a finite 
group, the graph colouring problem and the quadratic residue problem [25].
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One-way functions are excellent candidates for constructing cryptographic 
schemes.

However, a question that still remains unanswered is whether one-way 
functions are mathematically correct. There has never been any mathemat­
ical proof that one-way functions truly exist or that they can be constructed 
[37]. To be clear, it is best to say that we coT êcture the one-wayedness of 
a particular function or problem, knowing that in the future this may not 
be the case. For example, someone may find a prime factorization algorithm 
that runs in polynomial time; thus, the problem of factoring a number which 
is the composite of two primes would become easy to solve and would no 
longer be considered sufficiently one-way for use in a cryptosystem.

Let us examine how one-way functions can lead to higher constructions, 
such as the RSA cryptosystem and hash functions.

2.2 The RSA Cryptosystem
Since first implemented in the Akl-Taylor method of key management, RSA’s 
modular arithmetic equation has appeared in many key management meth- 
ods[2], [18], [10], [19], [20].

RSA is a public-key (asymmetric) cryptosystem. Unlike traditional sym­
metric cryptosystems that use one secret key, RSA uses two keys -  one for 
encryption (a public key) and one for decryption (a secret key). It has been 
designed in such a way that it is considered computationally infeasible to de­
duce one key from the other. The algorithms that produce public-key cryp­
tosystems are commonly referred to as trapdoor one-way functions. These 
functions are similar to the one-way functions discussed in the previous sec­
tion; however, unlike true one-way functions, the inverse of the function is 
computationally feasible to deduce using a known trapdoor.

RSA is built on the problem of factorization (Sec. 2.1). The RSA encryp­
tion function, E, is the function that is easy to compute while the decryp­
tion function, D, is computationally infeasible to deduce unless a trapdoor 
is known. More formally, we may describe the RSA cryptosystem as follows 
[39]:

Let n be the product of two unique large primes p and g. We define the
keyspace^ K of the cryptosystem to be

^The set of all possible keys.
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/C =  (n,p, g, e, d) : m =  pg, ed =  1 mod

where <̂ (m) =  (p — l)(g — 1) is the Euler totient function of
For 1C =  (n,p, q, e, d), we define the encryption function to be

=  z" mod Ti, (2.1)

for some message x. The decryption function is

^x:(z/) =  mod n, (2.2)
for some ciphertext y. The values n  and e are public, while the values p,

g, and d are secret.

2.2.1 Security o f th e RSA Cryptosystem
As discussed, RSA is based on the conjecture that the factorization problem
is one-way. Therefore, it should be computationally infeasible for anyone else 
but the proper recipient to decrypt the ciphertext. The trapdoor is knowing 
the factorization of n =  pg, known only to the recipient. Knowledge of the 
trapdoor allows one to compute 4>{n) =  (p — l)(g — 1) and use the Extended 
Euclidean Algorithm [24] to compute the decryption exponent d for use in 
(Eqn. 2.2).

Key management solutions that use the RSA modular exponentiation 
equation rely on the one-way trapdoor conjecture of factorization. However, 
there are known security attacks against RSA that one must be aware of 
when using it to devise key management schemes. Some attackers try to 
find ways of factoring n, while others will attempt to attack a flaw in an 
implementation of the cryptosystem, and others may attack the protocol in 
which RSA is being used [37], [25].

Because n and e are public, a rudimentary attack is to try to factor the 
value of n in order to recover the decryption key d [39]. Currently, the best 
known algorithm for factoring numbers is the Number Field Sieve (NFS) 
algorithm [25]. Recently, NFS was used in the RSA Factoring Challenge 
to factor an n value 576-bits (174 digits) long in seven months [25]. As a

^The totient function is defined as the number of positive integers which are relatively 
prime to n. Two numbers are relatively prime if their greatest common divisor is 1.
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consequence, RSA Laboratories now recommends using an n, value of 1024- 
bits or longer [25]. An attacker could also try to randomly guess values of 
d, but this brute force attack is far less efficient than using an algorithm like 
NFS [37].

There are three other attacks which target implementation flaws that can 
occur within RSA: low encryption exponent attack, low decryption exponent 
attack, and the common modulus attack.

Low encryption exponent attacks exploit a weakness in RSA that occurs 
when a low encryption exponent (e) value is used to encrypt e (e  -I- l)/2  
linearly independent messages, or e identical messages [37]. Similarly, if the 
decryption exponent, d, is up to one-quarter the size of M and e < u, then d 
could be recovered [37]. These attacks can be avoided by ensuring that all 
RSA parameters are properly selected [37].

The common modulus attack is critical to RSA-based key management 
solutions because many of them implement a connnon modulus as part of 
their key assignment and derivation schemes. Consequently, designers of 
RSA centric key management solutions are cautious of placing any critical 
values as the residue within the modular exponentiation equation. We can 
demonstrate the attack with a simple example.

Consider two people who share a common modulus n. The first person has 
the encryption and decryption exponent, ei and d% respectively. Similarly, 
the second person has his own encryption and decryption exponents, eg and 
da respectively.

Let m be a plaintext message that both people will encrypt.

Cl =  rrf^ mod n 
C2 =  mod n

(2.3)

Since an attacker knows the values of c%, cg, ei, eg and n, he may also 
recover m.

Because ci and eg are relatively prime, you can use the extended Eu­
clidean algorithm to find parameters r and g such that

rci -f seg =  1

Using the extended Euclidean algorithm calculate ci"^. The message is 
recovered with
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(ci) X câ  =  m mod n.

Two other attacks eilso exploit a common modulus [37]. One uses prob-
abilistic methods to factor n, while the other uses a deterministic algorithm 
to calculate a secret key without factoring n. We refer you to [37] for details.

2.3 Hash FYmctions
Hash functions are a special form of one-way functions. A hash function, 
H,  takes a message^, M,  of arbitrary finite length and generates a unique 
fixed-length value, h, called a hash^. That is,

h =  Ff(M).

In addition to the definition above, hash functions possess an additional
set of features [27]. They are as follows:

1. C om pression: H  maps an input M  of arbitrary finite length to a an 
output h of fixed length.

2. E ase o f  com putation: Given M, it is easy to compute h.

3. P reim age resistance: Given h, it is hard to compute M  such that 
R(M ) =  h.

4. 2 ^ -preim age resistomce; Given M, it is hard to find another mes­
sage, such that R(M ) =  Ff(M').

5. CofZision reststonce; It is hard to find two remdom messages, Af ^
such that H(M) =  If(AR).

The last two constraints set hash functions apart from one another. These 
constraints define the collision resistance properties of hash functions. A 
collision occurs when a hash function produces the same message digest for 
two different messages. Given that a hash function takes an arbitrary finite 
length message of m-bits and produces a fixed n-bit message digest, where

^Also known as a
'‘Also known as a message digest or simply digest

10
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n < m, the ingtance of collisions is unavoidable. Hash functions that meet 
only the fourth constraint are known as weoWy collision resistant. This means 
that if we know M, it should be difficult for us to use that knowledge to find 
another message M ' which produces a coUision with M  -  h{M) = h{M'). 
Hash functions that adhere to the fifth constraint are known as strongly 
collision-resistant. That is, it is computationally difficult to find two random 
messages, not equal to one another, that will produce the same message 
digest. A hash function that is atmngZy collision-resistant implies it is also 
weoWy collision-resistant, but the reverse is not true [28].

2.3.1 Classification o f Hash Functions
Hash functions can be subdivided into two families:

# modification detection codes (MDCs), and

• message authentication codes (MACs).

MDCs are typically used to provide a representative image (digest) of 
some given input. MDCs are commonly used in digital signature schemes, 
i.e., a digest is created for a message and the digest is encrypted with the 
owner’s secret-key [37]. MDCs may be further classified as one-way func­
tions or collision resistant functions. The two categories differ depending 
on the features they implement. One-way functions only provide features 
(1-4)(Sec. 2.3), while collision resistant hash functions implement features 
(1-5) (Sec. 2.3). Most of the strong hash functions used today are collision 
resistant hash functions and are designed to implement all five features listed 
in (Sec. 2.3).

The second family of hash functions, MACs, are known as keyed hash 
functions. MACs can provide message authentication without reliance on 
a secondary cryptographic construction. When a message digest is created 
with a MAC, only parties holding the proper secret key may re-calculate and 
verify the digest [27]. We continue our discussion on MACs in (Sec. 2.4).

2.3.2 Constructing Hash Functions
It is not easy to design colhsion resistant hash functions [28], [12], [37], [27]. 
First, the function should work for inputs of arbitrary finite length and pro­
duce a fixed-length digest. Second, the function should be one-way. Finally,
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the function should implement the collision resistance properties. Not sur­
prisingly, there are only a handful of collision-resistant hash functions that 
have managed to withstand scrutiny [37], [27].

In general, a hash function is composed of three stages: a pre-processing 
stage, an iterated processing stage, and a transformation stage (Figure 2.1).

f(M2)...f(Mn_i)
pre-processing 

stage
Round Function

iterated processing stage

t ( f ( M n  ) )  message
transformation d'Oest

stage

Figure 2.1: A general model of a hash function operating on a message M of
size n.

A hash function works on message blocks of size m-bits. In the prepro­
cessing stage, the message is padded to a multiple of m-bits (if necessary) 
and concatenated to a message block indicating the unpadded length of the 
message. This padding technique is known as MD strengthening [27]. The 
compression function is iterated on the formatted message, where the input 
to each round of the compression function is the intermediate message digest 
{Hi-i) and the next message block, M^. The hash of the last message block 
{Hi), undergoes a final transformation t{Hi) to become the message digest.

We may represent this process mathematically as

Ro =  =  /(Afi, h(-i); /i(z) =  t(z),

where I V  represents some predefined initialization value used to start the 
hashing process.

The underlying compression function, / ,  is not limited to a particular 
mathematical construction. In fact, many different constructions have been 
proposed. Everything from cellular automata [12], [11], to algebraic matrices 
[17], to modifications of the Merkle-Hellman knapsack algorithm [11]. How­
ever, many of these hash functions were found to be insecure [11], [37], [9]. 
The three most popular constructions used to build hash functions today are: 
block ciphers, modular arithmetic, and dedicated hash functions.
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Block Ciphers

Block ciphers, like DES, can be used to produce hash functions [27]. By 
using a strong block cipher the supposition is that the hash function should 
be as secure as the underlying block cipher, but that is not always the case 
[30], [8], [41], [33], [38].

The compression function is built from the underlying block cipher en­
cryption function, R (Figure 2.2)). If given a message M of size n and a block 
cipher whose block size is m, we may produce a message digest as follows 
[27):

# Preprocess M. Divide M into blocks the size of m.

# Start the first round of hashing with some random initial value, IV,  
and the first message block Mi.

# The remaining intermediate digests are generated ty: Hi =  Rr(K) 
where the values of I, K, and T can be: R*_i, Af, @ ffi-i, or some
constant C.

Figure 2.2: The general construction of a hash function from a symmetric 
block cipher.

Because the values of I, K, and T can be taken from the set A/,, Af̂ @
C, this provides the possibihty of 4  ̂=  64 different constructions for /()

[37]. Bart Preneel studied them all and found that fifteen of them are triv­
ially weak, thirty-seven are insecure, and the remaining twelve have varying 
levels of security [37]. Of the twelve, four are secure against all attacks and 
the remaining eight are secure against everything but a fixed-point attack 
(Sec. 2.3.3) [37].

Block cipher hash functions are generally categorized according to the 
size of the message digest they produce and the rate at which the hash is
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calculated. Hash functions which produce message digests equal to the block 
size, or twice the size of the underlying block cipher are called stngZe-Zengfh 
and block cipher hash functions, respectively [27].

The rate of a hash function (r) measures the number of block encryptions 
(s) required to process each successive n-bit message block. The rate is 
calculated as: r =  1/g [27]. Thus, a hash function with a rate of 1/2 is twice 
as slow to produce a message digest as a hash function of rate 1.

Single-block or double-block hash functions with a rate of 1 are the most 
desirable because of the speed at which they can generate a message digest. In 
practice, it is very difficult to develop double-block hash functions with rate 
1; most have a rate < 1 [27] [31]. Also, research has shown that most single­
block hash functions with rate 1 created to date are not sufficiently strong 
enough to withstand a collision (birthday) attack (Sec. 2.3.3) [31]. Recent 
research by Knudsen, Lai, and Preneel also suggests that certain double- 
block hash functions built from 64-bit block ciphers are also not sufficiently 
strong enough to protect against a collision attack [23] [22].

In recent years, new block ciphers with block and key sizes greater than 
128-bits have been introduced [38]. However, some research suggests that 
not all of these new block ciphers are secure enough to use as hash functions
[38], [29]. Also, almost all have a hash rate < 1, making them less efficient 
than their dedicated hash function counterparts, and in some instances, an 
increase in key size can cause a decrease in performance [38].

M odular A rithm etic

The modular exponentiation arithmetic of the RSA cryptosystem can be 
used as a hash function [37]. If the message to be hashed, M,  is used in the 
place of the residue; n is the modulo (the product of two primes p, q), and e 
is relatively prime to (p — l)(g — 1), then the hash function becomes^

(M) =  mod u.

Compromising the hash is as hard as factoring n. Compared to other 
symmetric block cipher constructions and dedicated hash functions, RSA 
modular arithmetic as a hash function is less efficient. Therefore, it is not 
recommended to use RSA or RSA-like constructions as hash functions [37], 
(251.

^H{M)  is the hash value.
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D edicated Hash Functions

Dedicated hash functions are specifically designed only to create message
digests. These functions are designed to compress and permute the input 
message via a series of rounds. Rounds typically involve the bits of a message 
block being XOR’d with one or more of the following values; the values of a 
previous block, the values from an S-box or constant, or the values resulting 
from a previous round [27]. The construction of each dedicated hash function 
is unique; however, designing good dedicated hash functions is very hard [37].

The following is the number of reliable dedicated hash functions available 
today [5]:

• MD5 (128-bit digest);

.  SHA-1, SHA-256, SHA-384, SHA-512 (Secure Hash Standard);

® RlPEMD-128, RIPEMD-160;

• Tiger (optimized for 64-bit processors);

•  WHIRLPOOL; and

• Subhash.

Dedicated hash functions are designed for speed and efficiency, and their 
run-time performance in software is better than most block cipher and mod­
ular arithmetic hash functions [37], [25]. Table 2.1 from [32] highlights the 
performance of dedicated hash functions with respect to one another and 
with respect to symmetric block ciphers.

2.3.3 Security o f Hash Functions
Attacks on hash functions fall into one of the following categories [4]:

• attacks independent of the algorithm, and

•  attacks dependent on the algorithm.

We shall quickly review both categories.
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Algorithm Performance (Mbits/s)
Hash Functions

MD5 136.2
RJPEMD-128 77.6
RIPEMD-160 45.3
SHA-1 54.9
TIGER 34.9

Symmetric Block Ciphers
DES 16.9
IDEA 9.75
CAST 16.2
Blowfish 26.5

Table 2.1: Performance in Mbits/s of several hash functions and symmetric 
block cipher hash functions.

Attacks Independent of the Algorithm

These attacks depend on the length of the message digest (m) and/or, in the 
case of MACs (Sec. 2.4), the key length {I). Such attacks are the coUision 
(birthday) attack, the exhaustive key search attack, the preimage (random) 
attack, and the pseudo attack [4].

The coUision (birthday) attack examines the probability of producing two 
equivalent message digests from the same hash function [39]. For example, 
given a hash function, h : X  —* Y , n — |X| > m = \2Y\ we can see that the 
probability of coUision is at least | . To find a coUision, we choose k random 
values of xeX,  compute h{x) =  z, zeZ, and see if a coUision results. The 
lower bound on the probabiUty of coUision is dependent on k and n, but not 
m  [39]. Stinson shows that if the estimate for this lower bound is taken to 
be 50% then k % 1.17y/n. That is, if we hash at least l.lT y^n) random 
z's, the probabiUty of a coUision occurring wiU be % 50%. Stinson provides 
a complete treatment of the attack, so we refer the reader to [39] for more 
detaU.

In general, MDCs which produce larger message digests are less suscep- 
tible to the coUision attack [27]. Much of the literature agrees that hash 
functions producing digests larger than 128-bits are computationaUy secure 
for the time being [27], [37]. The general principle is that given a hash
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function with a digest length of ?7t-bits, the time complexity of a successful 
collision attack is given as 0(2"^/^) [27].

The exhaustive key search attack applies only to MACs (Sec. 2.4). If
an attacker can obtain a {message,digest) pair, then it is possible for him 
to perform an exhaustive key search to find a key that transforms the mes- 
soge into the corresponding digest [4]. Since collisions in hash functions are 
unavoidable, it is theoretically possible to find more than one valid key. Gen­
erally, if the key Z-bits in size, then the probability of an attacker finding the 
correct key is 2"  ̂ However, in some instances if the attacker has access to 
a suKciently large number of (massoge, digest) pairs created with the same 
key, then the search space for keys could be reduced [4].

In the preimage (random) attack, an attacker chooses a message at ran­
dom and hopes that the digest he produces is equal to the authentic one [4]. 
The probability of success for this attack is 2“’”, where m  is the length of 
the message digest. To thwart this attack, it is recommended to use hash 
functions that produce digests longer than 64-bits [39], [27], [37].

Finally, the pseudo attack tries to find a pseudo key that wül produce the 
same MAC digest as an authentic {key,message) pair [4]. The goal for the 
attacker is to try to find a key that could possibly identify him as a legitimate 
holder of the authentic secret key. As noted in [4], this does not mean that the 
pseudo key will produce valid digests for other {key,message) pairs. Rather, 
the attacker is seeking evidence of authority by using a fraudulent key instead 
of the authentic one. The probability of success for this attack is similar to 
the exhaustive key search attack [4].

A ttacks Dependent on th e Algorithm

These attacks target specific weaknesses in specific hash function construc­
tions. There are four categories of attack: meet-in-the-middle, correcting 
block, fixed-point, and differential cryptanalysis [4].

A meet-in-the-middle attack is a variation of the birthday attack [4]. It 
can be applied to hash functions whose compression functions are invertible 
on intermediate digests Hi or message block Mj. The goal is to produce 
a fraudulent message that will produce the original message digest [4]. To 
start, the attacker chooses some initial value, TV, and generates the first in- 
termediate digest, Hi = f{IV,Mi) .  Working backward, the attacker inverts 
the compression function on the authentic digest to recover the last authentic 
message block and the last intermediate digest Hm_i. The attack contin-
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ues until it meets in the middle. Then, the chaining variables are compared. 
The probability that the chaining variables are the same is

f  «  1 -

where m  is the length of the message digest [4] and X\, X2 are the num- 
ber of forward and backward samples the attacker undertakes. If chaining 
variables match, then the concatenation of the all the fraudulent and recov­
ered message blocks form a collision on M. This attack can be thwarted by 
carefully choosing compression functions that are not easily inverted, or by 
using a transformation function that is difficult to invert [4].

The correcting block attack attempts to change one or more message 
blocks, without affecting the message digest [4]. Den Boer and Bosselaers 
successfully used this attack against one round of MD5 [13]. A method to 
help thwart this attack is to ensure that all bits of the message digest are de­
pendent on all bits of the message blocks [13]. Dobbertin [14] demonstrated 
how changing the recommended initialization variable (IV) to the compres- 
sion function of the dedicated hash function MD5 could result in unwanted 
collisions. Dobbertin’s attack creates suspiciouns around MD5 [37] and since 
then, designers are cautious of modifying the parameters of dedicated hash 
functions [37].

In the fixed-point attack, an attacker looks for a particular chaining vari­
able i7i_i, such that /(/7j_i, Mi) =  That is, the message block and
compression function has no effect on the chaining variable [4] — a fixed- 
point. A fixed-point allows an attacker to substitute a fraudulent message 
block at each fixed-point location. One can overcome this attack by adding 
redundancy to the hash function in a similar manner one would use to thwart 
the correcting block attack [4].

Finally, differential cryptanalysis was first proposed by Biham and Shamir 
[8], who demonstrated how the technique could be used to compromise a 
reduced version of DES, a full 16 round version of DES, and the hash func­
tions SNEFRU and N-HASH. Using differential cryptanalysis, an attacker 
monitors the input and output of a hash function on a chosen set of {mes­
sage, digest) pairs. By studying how a specific difference in the message affects 
the digest, the attacker can gain information about the underlying block ci- 
pher or compression function [8]. In hash functions, one can use differential 
cryptanalysis to deduce collisions. Berson showed how the technique could 
be applied to produce a collision on a single round of MD5 [7]. Unlike other
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attacks, one cannot easily thwart differential cryptanalysis. A hash function's 
ability to thwart such an attack is dependent on the underlying strength of 
the bashing process and compression function [4].

2.4 M essage Authentication Codes
Message authentication codes (MACs) are keyed collision resistant hash func­
tions. Their properties eue similar to those of regular hash functions, but the 
message digest is also dependent on a secret key [6]. All parties wishing to
verify the message digest must possess the secret key [27] [6].

As noted in [37], MACs are typically used to verify file transfers or to 
provide message authenticity without the need of an additional cryptosystem.
For example, Alice and Bob share a secret key K. Alice calculates a MAC 
digest using K  on some file. Alice transfers the digest and the file to Bob. 
Assuming that no one else has obtained Æ, only Bob may verify the digest. 
And, since he knows the key is only shared between him and Alice, Bob is 
assured that if the two digests match, then Alice is likely the source of the 
file. If the digests do not match. Bob will suspect tampering.

Because MAC codes are simply keyed hash functions, their constructions 
are rather trivial [27]. We simply introduce a key at some step in the process. 
There are two common types of message authentication codes: dedicated 
hash function based and block-cipher based [37].

2.4.1 Block Cipher Based MAC
We have discussed the properties of block ciphers as hash functions in (Sec. 2.3.2). 
To extend these hash function constructions to MACs, we use the block ci­
pher in cipher block chaining mode (CBC) and use the key to encrypt each 
message block as it goes through a round. The last encrypted message block 
becomes the message digest [27], [39].

2.4.2 Dedicated Hash Functions
One may use dedicated hash functions, like MD5 and SHA-1, as a MAC. 
The resulting construction is often called a Hashed Message Authentication 
Code (HMAC) [6]. To use a dedicated hash function as a MAC, one must
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simply concatenate the key to the message in some fashion and calculate the 
message digest. For example,

H =  (AT, M).

Preneel notes that this basic construction may not be secure if an attacker 
can obtain enough digests calculated with the same key [37] [33]. One can 
employ certain techniques to strengthen HMACs, and we shall discuss those 
issues in the next section.

2.4.3 Security o f M essage A uthentication Codes
The security of a message authentication code hinges upon the security of 
the underlying hash function and the security of the key.

As alluded to in the previous section, MACs built from dedicated hash 
functions depend on both the security of the underlying hash function and 
the concatenation of the key with the message.

Bart Preneel studied HMAC constructions and found that certain con- 
structions such as Ff(M, A ), If (A, M, FT), and Ff(FTi, M, Ag) (where Ai and 
K 2 are different) could be compromised if an attacker obtained many mes­
sage digests calculated with the same key [33]. In response, he recommends 
the following constructions [37] [33]:

. A(Ai,A(A2,M)) 

' A(A,A(AT,M))

- Ff(A,p, M, A ), where p pads K to a full message block.

For dedicated hash functions, Preneel has created MDx-MAC [33], a
strengthening technique that can harden dedicated hash functions against 
key recovery attacks with only a slight decrease in digest throughput [33].

2.5 Summary
The key management methods based on the direct approach of key assign­
ment and derivation functions use the RSA modular exponentiation eilgo- 
rithm. As discussed, this algorithm represents a trap-door one-way function 
whose strength is dependent on the factorization of a well chosen modulus.
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In lien of recent factorization results, RSA recommends using moduli larger 
than 576-bits. When parameters for the function are chosen, the user should 
take care to ensure secret information is not compromised with a common
modulus attack, low exponent attack, or low decryption exponent attack.

Key management methods based on the indirect approach of key assign- 
ment and derivation use other one-way functions, but hash functions are 
common. A hash function's security rehes heavily on the underlying pre­
processing stage and compression function. Consequently, developing hash 
functions is still a challenge. Some hash functions are more susceptible than 
others to certeiin attacks, so careful consideration must be taken when choos- 
ing an appropriate hash function. In general, hash functions with larger 
digests are more secure. Given the inefficiency of modular arithmetic, and 
the performance of block ciphers, dedicated hash functions are more favoured 
when a reliable, secure, and efficient hash function is required. However, the 
number of dedicated hash functions available for use today is limited.

The HMAC-method we propose in this thesis uses message authentication 
codes built from dedicated hash functions (HMACs). Message authentica- 
tion codes concatenate a key along with the pre-image to produce a digest. 
Only users holding the appropriate key may compute and verify the digest. 
Certain attacks exist on message digests, but these occur under special cir­
cumstances. If such circumstances arise, certain constructions can be used to 
thwart the attack, or one may use Preneel's MDx-MAC method to strengthen 
the HMACs security.

Now that we have reviewed the relevant topics in cryptography, we may 
examine previous research into the key management problem. In chapter 
three, we will see how RSA and hash functions have been apphed to the key 
management problem.
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Chapter 3 

Previous Research

3.1 Introduction
This chapter presents the previous research in the field of key management
for access hierarchies. We will cover both the direct and indirect approaches 
to key management that have been proposed and shown to be secure.

3.2 Direct versus Indirect Approaches
All direct approaches to key management proposed thus far build on the 
Akl-Taylor method [3]. That is, using RSA’s modular exponentiation arith­
metic and a set of public parameters, a user in a principal security class can 
directly calculate the key belonging to a subordinate security class, provided 
the principal has the authority to do so. With limitations in the Akl-Taylor 
method, new proposals suggest new algorithms for assigning parameters to 
security classes, and using those parameters within the modular exponenti­
ation equation to generate and derive keys.

The indirect approaches to key management focus on devising schemes in 
which other one-way functions are used as the key derivation algorithm. Most 
methods propose a recursive traversal of the hierarchy and the key derivation 
method applies some public identifier and principal key to the inputs of one 
or several one-way functions.
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3.3 Direct Approaches to  Key Management 
using RSA

Akl and Taylor first proposed the problem of key management in an access 
hierarchy [2]. The goal then was to devise a method in which each security 
class within an access hierarchy maintains a m inim um  number of keys, but 
can derive keys of subordinate classes through a set of public parameters 
and known cryptographic algorithms. Their method was based on RSA's 
modular exponentiation encryption function (Sec. 2.2). We shall discuss how 
their model performed, its advantages and disadvantages and how others have 
modified their work to produce new RSA-based key management methods.

3.3.1 The Akl-Taylor M ethod o f K ey M anagement
The Akl-Taylor method of key management [3] starts with a few assumptions:

* The access hierarchy is controlled by some trusted central authority 
(CA) responsible for marshaling and monitoring all actions performed 
within the hierarchy and amongst security classes. It is assumed that 
the CA is a secure environment that provides no viable communication 
channel vulnerable to attack.

• All users within the access hierarchy are divided into security classes, 
SC  = S C i, . . . ,  SCn, which are partially ordered by the binary relation 
<  The resulting relations, SCj < SCi, means that users belonging to 
security class SCi have access to information stored at the subordinate 
security class SCj] however, the reverse relation does not hold. That 
is, subordinates are not allowed access to information stored at the 
principal (SCi).

The key assignment and transformation scheme is devised as follows. A 
random secret key, Kq is generated and assigned to the CA. The CA generates 
a value, A , where A  =  pg and p, g are prime. This value will be used as 
a common modulus in the key transformation function. Next, each security 
class in the hierarchy is assigned a distinct prime number and unique public 
parameter (PB) so that PBi | P Bj if and only if SCj < SCi. The PBs 
are computed by the algorithm
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= II ^
where e, is the distinct prime number assigned to SCi. An example of the 
prime number assignment and P B  calculation is shown in (Figure 3.1) and 
listed in (Table 3.1).

SC
P, = 7

SC
P. = 11

SC

PB, = 42

SC sc

PB = 4 2 9 0

PB =130

PB =2310PB, =2730

PB, = 2

SC
P. = 13

Figure 3.1: Public parameter assignment within the Akl-Taylor method.

Keys are then assigned to security classes using a key generation and
transformation function based on RSA’s modular exponentiation (Sec. 2.2):

K,. =  mod AT. (3.1)

Thus, for a user in security class SCi to derive the key of a subordinate 
class, SCj, SCi must use (Eqn. 3.1), his key (Ki), and obtain from the CA 
the appropriate pubhc parameters AT). If then is
principal to 5'Cj and (Eqn. 3.1) will successfully derive Kj.

The security of the Akl-Taylor method is sound [2 ], [3], [26], [18]. Since

gcd(P B i, P B j) 7̂  1,
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Security Class 5*^ Prime e* PuNicPPf
7 4230 =  62 X eg X 64 X 65 X eg
11 2730 =  6 i X 63 X 64 X 65 X 6g

a-Cs 13 2310 =  61 X 62 X 64 X 65 X 6g
g Q 3 130 =  63 X 65 X 6g

5 42 =  63 X 64 X 6g
(CA) 2 2  =  6 g

Table 3.1: Prime number assignment and public parameter calculation for
the Akl-Taylor hierarchy shown in (Figure 3.1).

where gcd represents the greatest common divisor, the common modulus 
attack (Sec. 2.2.1) cannot be used to recover the master key, Kq, from 
(Elqn. 3.1). Thus, the security of the system equal to that of RSA.

However, the Akl-Taylor method was not without its faults. First, the 
method does not allow for the efficient addition of security classes to the hier­
archy [1], [3], [18], [20]. For each security class added into the hierarchy, one 
must undertake a whole new round of public parameter calculation and key 
assignment [1], [3], [18], [20] [34]. Also, the method used to assign and calcu­
late PBs  results in values that quickly grow as the number of security classes 
in the hierarchy increases [1]. MacKinnon and Akl show that for hierarchies 
that contain as few as twenty security classes, the largest public parameter 
generated and stored will be 278970415063349480483707695 [1]. Thus, they 
concluded their assignment of PBs  to security classes would be inefficient 
for larger hierarchies [1], [20]. In the following years, MacKinnon and Akl 
devised new methods for the efficient generation and assignment of public 
parameters. In the following years, they discovered two new methods [1]. 
One method was susceptible to a collaborative attack, but the other showed 
promising results. However, this second algorithm was still not optimal [1]. 
Soon after, MacKinnon et al. derived, what they called, the canonical as­
signment method, which somewhat reduced the size public parameters, but 
not enough when the hierarchy contained many classes [1], [18]. In addtion, 
it was difficult to find an optimal canonical algorithm that could make an 
optimal assignment for all hierarchies [26], [20]. Thus, the problem of gen­
erating and assigning PBs was left open. So too was the problem of adding 
security classes in an efficient fashion.
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In subsequent years, new direct key management methods built upon 
the work of the Akl-Taylor method. Most of these new methods propose 
new procedures of assigning and generating public parameters, which try 
to improve the efficiency of public parameter storage, and the addition and 
removal of security classes to the underlying hierarchy. For the purpose of 
brevity, we shall only highlight those changes to the Akl-Taylor model that 
result in a new and secure key management system and refer the reader to 
the literature for further deteiils.

3.3.2 Other RSA Based K ey M anagem ent M ethods
Ham and Lin proposed the first modification to the Akl-Taylor method [18]. 
Their improvement came in the way the PBs were calculated and security 
keys were generated. As shown in (Figure 3.1), the Akl-Taylor method as­
signs prime numbers and calculates P Bs  in a top-down fashion. The Harn- 
Lin method proposed the opposite -  they calculated the PHs and derived 
the keys from the bottom-up. This simple change to the system allowed for a 
method to add classes, and removed the necessity for a secret key controlled 
by the CA.

In the Hara-Lin method, security classes may be removed without any 
overhead. However, additions were stiU not efficiently accommodated [18]. 
If a security class was added to any position within the hierarchy, then all 
security classes principal to the added class would require new prime num­
bers, new public parameters, and new keys. Harn-Lin commented that their 
method was more storage efficient for pubhc parameters than the Akl-Taylor 
method [18]. However, as commented by Hwang, the improvement was not 
significant [20]. As the number of security classes increases, more prime num­
bers are needed and stored and the public parameters continue to grow in 
size. Overall, the achievement of the Harn-Lin scheme is its ability to add se­
curity classes without affecting all portions of the hierarchy and the removal 
of a secret key Kq held by the CA.

Within their method Ham and Lin made slight modifications to the key 
generation function. The CA still generates a common modulus N  as before, 
but the CA no longer generates a random secret key Ao. Rather, the CA 
chooses Ko as a value in the range [2 ... N  — 1] and makes it public. Each 
security class receives a prime number e* whose multiplicative inverse 
is calculated by:
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d =  e  ̂ mod

where (̂7V) represents the Enler totient of N (Sec. 2.2). To assign a key to 
required a public parameter f  such that:

n
The key was then generated using

j J l s C j < s C i  4  mod ^ N )
Ki =  Kq ' mod A.

For a principal security class SCi to derive the key of its subordinate, 
SCj, the key transformation function becomes

Kj =  mod K.

With these modifications to the Akl-Taylor method. Ham and Lin still 
thwart the common modulus attack because the recoverable value K q  is al­
ready public [18]. Thus, their system is as secure as RSA.

Following Harn-Lin, Chick and Tavares proposed their variation of the 
Akl-Taylor method [10]. Their system did not require security classes and 
did not assign a master key to the CA. They modified the access hierarchy 
to define the binary relation < on the set of services, S \ , , Sn, provided 
by a system. The resulting relationship, Sj < Si, means that if a user is 
granted privileges to the services of Si, he is also conferred the services of 
Sj. Further, each service is assigned an access key, SKi, also subject to the 
binary relation < That is, SK j < SKi, indicates that service key SK j can 
be derived from service key SKi.

The master key (MK) is re-defined as a compact representation of a 
subset of services. For any master key, M Ki, the relation SK j < M Ki 
indicates that the master key can derive the service keys for the specified 
subset of services. The master keys are managed, but not assigned to the 
CA. To use the computer system, a user must be assigned an appropriate 
master key that he can use to derive service keys for his required services.

Assignment of prime numbers (e) and pubhc parameters (BB) is sim ilar 
to the Akl-Taylor model, and we refer the reader to [10] for specific details. 
The noticeable additions are the pubhc parameter T defined as
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r  = n
N

—  1 T  Cri)
n=l

where N is the number of primes generated by the CA, and the public pa- 
rameter Uj, defined for each MKy as

A master key is defined as

To calculate a service key, from its master key, M K,, the generation
equation as follows:

=  iff SK* < MKj

Thus, any user who is assigned a master key M K j can use this master 
key and the appropriate public parameters to derive the service key, SKi, for 
all services SKi < M K j.

The Chick-Tavares key management method is unique amongst all RSA 
based methods, because it is the only one that does not use a hierarchy 
of security classes. Rather, the users’ access to objects and information is 
limited to the services provided by their master key [10]. However, if a 
new service is added to the hierarchy, or someone required access to a new 
service, the master key belonging to the service subset would have to be 
recalculated. Also note that the size of the service keys can be rather large 
if a user is holding access to many services. This could be inefficient if one 
uses only some services within the subset very sparingly. The Chick-Tavares 
method is as secure as the Akl-Taylor method. Users cannot collaborate to 
recover keys -  Ko is pubhc. Thus, the strength of the overah system is equal 
to that of RSA [10].

In more recent years, the research of Ham-Lin has inspired others to find 
different ways in which to assign pubhc parameters to the hierarchy of users,
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and the ways in which to use the RSA modular exponentiation function 
for key generation and transformation. What follows is a discussion of this 
research, and the proposed methods.

Hwang and Yang [20] proposed a variation on the Akl-Taylor method 
that attempts to reduce the magnitude of the prime numbers and thus, the 
amount of storage required for pubhc parameters. They did this by adopting 
Ham and Lin’s method of bottom-up assignment [18] and by using composed 
prime sets to reduce the number of primes required and the magnitude of 
the pubhc parameters [20].

Their approach views the access hierarchy as a tree where the most prin- 
cipal security class is the root and the most subordinate are the leaves. Key 
generation and assignment proceeds as follows [2 0 ]:

The CA chooses two large prime numbers p and q and computes the 
public parameter N  =  pq, where p and q are secret and N  is pubhc.

#

# The CA chooses a pubhc parameter p between [2 ... TV — 1] such that 
p and Af are relatively prime.

The CA selects a set of primes Cj and calculates the multiphcative 
inverse di for each prime.

Each leaf class is assigned a composed prime set, z,, which is not a 
subset of zi if SCi ^  SCi. SCi and SCi are leaf security classes. The 
CA stores the composed prime set for each leaf-class.

The CA assigns to each non-leaf security class, SCi, a distinct prime 
number ê . BQ is assigned a composed prime set T* which is a union of 
its e* and the composed prime set of all its direct subordinate classes.

The CA calculates a pubhc parameter BB* and secret key for each
leaf security class SC f

where e/ E z* and /( .)  is a one-way function. To thwart the com­
mon modulus attack, Hwang and Yiang discard BB* and Kj if BB^Kj 
mod (̂ (AT).
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The CA calculates a public parameter BBj and secret keys for all 
non-leaf security classes BCj.

ei

K j =  mod^M niod K ,

where e; E Zy and df is the multiphcative inverse of each e;.

Finally, if a security class wishes to derive the secret key, K, of a subor- 
dinate class, the formulas are:

f  mod Af, if SC* is a leaf class,
( A7 mod Af, if SC* is a non-leaf class.

The size and storage requirements for prime numbers and pubhc param-
eters is smaller than many of the RSA-based methods reviewed thus far. For 
example, an access hierarchy with one thousand security classes under the 
Akl-Taylor method would require one thousand distinct prime numbers and 
would result in very large pubhc parameters [3], [20]. For certain structures 
of hierarchies, Hwang and Yang’s scheme can greatly reduce the number of 
unique prime numbers; thus, the size of the public parameters can be kept 
much smaUer. Consequently, less storage is needed for the pubhc parameters, 
but there is the added requirement of having to store the composed prime 
set for each leaf-class. Hwang determines the size of a leaf’s composed prime 
set, by using the equation

Z/= I ^  Pi +  Ua 4- Tk,
\for ah LC* /

where:

• LGi is the ^  leaf-group. A leaf-group is any security class that is the 
direct ancestor of a leaf security class (Figure 3.2). The numbers of 
members belonging to TG is denoted as u/g.

# ĝ* is a number such that > u;g, where t  denotes the number of 
primes that (hstinguish a leaf security class from each leaf group.
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Mo denotes the number of leaf security classes which have two or more 
immediate ancestors, and % denotes the number of non-leaf security 
classes in the hierarchy.

Leaf groups

Leaf

Figure 3.2: Graph illustrating Hwang-Yang leaf-group and leaf-classes.

Addition and removal of security classes is also possible, but certain ad­
ditions can create the need for key regeneration on large sub-portions of the 
hierarchy [20]. When additions are made as leaf-classes the CA must ensure 
that the composed prime set assigned to the new class does not match any of 
the other composed prime sets. Also, all security classes principal and acces­
sible to the added security class must have new public parameters calculated 
and keys assigned [20]. Further, in hierarchies where a large number of leaf- 
classes have more than one direct principal class, the Hwang-Yang method 
can be no more efficient than the Harn-Lin method, and any efficiencies that 
the composed prime sets brought is lost.

As noted earlier, the Hwang-Yang method of key management takes great 
caution to generate proper values so as to foil common modulus attacks. 
Hwang and Yang conjecture that the security of their method is as strong as 
the underlying RSA prime factorization problem.

Finally, we review a recent solution proposed by Ray et al. [34]. The 
solution proposed by Ray is best described with a diagram (Figure 3.3). In 
(Figure 3.3), we see an access hierarchy consisting of five security classes. 
Table 3.2 shows how the method proposed by Ray e( ol. assigns keys to the 
security classes in the hierarchy.

Each security class the hierarchy has a key which is composed from the 
moduli of its principals. For each 5'C, <  the modulus is calculated 
using the procedure,
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Figure 3.3: A simple access hierarchy.

Person Assigned Security Key
1 =  (e, di, Ai)
2 Kg =  (e, da, A% x A )̂
3 Ks =  (e, da, Ai x A )̂
4 K i =  (e, di, Ai X Aa x A4)
5 Ag =  (e, dg, Ai X A3 X Ag)

Table 3.2: Ray’s key assignment scheme.

/  =  r X Ai for a random factor r, such that 
gcd(/, Ap) =  1 for some random Ay, such that 

A; =  Ar X / .

Once the modulus has been determined for the security class, a decryption
key is calculated using the public exponent e and the class modulus, such 
that

ejdj =  1 mod < (̂A;).

With each security class receiving a decryption key d, modulus A  and 
public exponent e, the authors propose using this scheme with RSA (Sec. 2.2) 
to encrypt and decrypt information shared amongst members of the hierar­
chy.

32

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Ray e( oZ.’s method hag the possibility of defin ing access requirements 
that do not match the access hierarchy’s organization. For example, if 2 is 
not allowed access to 4’s information, then 4’s key should not be composed 
using 2 ’s modulus (Figure 3.3). By generating keys from a subset of moduli, 
one can essentially compose multiple access restrictions to information and 
security classes [34].

Ray et of. state that the security, stability, and efficiency of the overall 
system has yet to be proven and tested [34]. In our examination of their 
method, we noted that most of the examples given in their research dealt with 
very small shallow hierarchies; thus, keys were composed from a few moduli. 
However, as the hierarchy becomes broader and deeper, the magnitude of 
the moduli increase as does the size of the decryption keys. If RSA is to 
be used as the underlying cryptosystem, larger keys will cause a decrease in 
performance of RSA [25], [34]. In response to this concern, the researchers 
suggest using methods, such as Fast Fourier Transforms, to speed encryption 
and key generation [34], although these solutions have yet to be tested. While 
this is a logical approach to the problem of large keys, we feel this approach 
has practical applications to only small shallow security hierarchies.

In terms of security, Ray et al.'s method is resistant to the the common 
modulus attack [34] and should be as secure as RSA. However, e must be 
sufficiently large or else a low-exponent attack (Sec. 2 .2 .1 ) is possible [34], 
[37].

3.4 Indirect Approaches to  Key Management 
using One-Way Functions

The solutions we examine in this section differ from the RSA-based solutions 
in that the key derivation schemes all manifest an indirect key derivation 
behaviour. That is, for a principal security class to derive the key of a subor­
dinate, some recursive procedure is executed until the desired key is derived. 
This is in contrast to the RSA-methods that allow security classes direct ac­
cess to another security class’s secret key via a set of public parameters into 
the RSA modular exponentiation function. Surprisingly, little research and 
experimentation has been done in the eirea of indirect key derivation con­
structions, and we believe there may be room for efficiency improvements. 
Thus, we will review the solutions proposed to date.
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3.4.1 Sandhu's Indirect Approach
Sandhu proposed a method of key management on an access hierarchy repre-
sented as a simple tree [36]. Following the same assumptions as Akl-Taylor, 
Sandhu was the first to propose a recursive or indirect method of key deriva­
tion based on one-way function families [36].

His method used DES encryption as the key generation and derivation 
function. The key assignment and derivation scheme proceeds as follows:

•  The security class hierarchy is represented as a simple tree. That is, 
there are no subordinate classes with more than one principal class.

» The CA is assigned to the highest security class in the hierarchy (root 
of the tree).

•  The CA generates for itself a random key, K q .

• If security class SCi  is an immediate subordinate of security class SCj,  
then the key assigned to SCi is,

Ki  =  E kj {name{SCi)).

Here, E  is the DES encryption function operating on the message block 
name{SCi)  (the name of the security class) with a key of Kj (belonging to 
SCj).  The 64-bit ciphertext from DES becomes the key, Ki, assigned to 
security class SCi.

At the time, Sandhu raised concerns over the efficiency, block size, key 
size, and ciphertext size of DES [36]. DES operates on a 56-bit key, but each 
round of DES produces an output that is 64-bits long [37]. This output be­
comes the key for the next subordinate. Thus, the output must be reduced to 
a 56-bit key. Sandhu noted that there existed a possibility that a degeneracy 
of keys from 64-bits asssigned to the security class to 56-bits used in DES 
may result in a collision of keys and a breach of security [36]. As for the 
names assigned to security classes, names larger than 64-bits was discour­
aged because that would require additional rounds of DES which would lead 
to a decrease in key generation and derivation performance [36]. However, 
research suggests that single round DES used in this manner is vulnerable to 
differential cryptanalysis [8]; thus, keys could be recovered.
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We also note that Sandhn’s method of traversal to generate keys does 
not verify access relationships before commencing the traversal [36]. In this 
sense, traversals to security classes where access relationships fail to exist 
consume time in generating no viable key. In design of our HMAC - method, 
we propose a solution that can verify these access relationships before we 
start generating the key.

3.4.2 Yang's Indirect Approach
Recently, Yang proposed a key management method for object-oriented role-
based access control hierarchies [42].

To begin, Yang defines a set of one-way hash functions

=  { ^ 1 , ^ 2 , . . . ,  An},

where n is the maximum number of direct subordinate roles present in the 
hierarchy. Each hash function obeys the properties set forth in (Sec. 2.3). 
Key assignment proceeds as follows:

• For each role not part of the hierarchy, the CA generates a random key 
K  and assigns it to the role.

• For each role that is part of the hierarchy, but does not have a principal 
role, the CA assigns a random key Kroie-

• If a role Rj has only one direct principal role, E4 , and Rj is the
subordinate of Ri, then the key for Rj will be A,(A%).

•  If a role Aj has more than one direct principal role, and A, is the
direct subordinate of its left-most parent, direct subordinate of Am, 
and k*'̂  direct subordinate of A ,̂ then the key for Rj becomes 
A<(Aj(KA«) , . . . ,Aj(KA„,) , . . . ,Ak(K%,)) ,  1 <  <  n.

Yang’s method of key management is as secure as the underlying hash 
functions used in Ti.. It also improves upon Ravi Sandhu’s method because 
hierarchies other than simple trees can be represented [42]. However, we be­
lieve there may be some implementation issues with the method that should 
be addressed.

For example, in implementing this method one would likely prefer to use 
the fastest hash functions available -  dedicated hash functions. However,
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as noted in (Sec. 2.3.2) there are only a small number of dedicated hash 
functions available. If the maximmn number of direct subordinate roles of a 
single role does not exceed the number of dedicated hash functions available,
we may benefit from their use. Any more, and alternatives must be sought.

The first alternative would be to build more dedicated hash functions. As 
discussed in (Sec. 2.3), building secure dedicated hash functions is hard, and 
modifying existing ones could lead to an undermining of security (Sec. 2.3.3). 
Our next alternative would be to use block cipher hash functions (Sec. 2.3.2). 
The benefit with using the block cipher hash functions is that only one block 
cipher algorithm is required. Multiple hash functions can be created by 
simply changing the initialization value given to the block cipher (Sec. 2.3.2). 
This solution seems more favourable, but the penalty is that performance of 
block cipher hash functions is typically half that of dedicated hash functions 
[33] [35] [32] (Sec. 2.3.2), which will lead to slower key throughput if long tree 
traversals are required to generate keys. Also, not every block cipher can be 
used as a hash function, so particular attention must be paid to the inner 
workings of the cipher and its suitability as a hash function before being 
implemented [29] [38].

Also, in studying Yang’s method, it appears that some time could be 
consumed trying to verify role relationships before generating a key. In Fig­
ure 3.4, we show a position role hierarchy where each position role is labeled 
with its position relative to its principal role. In Yang’s method, positions 
from the left of a principal role determine which hash functions from Ji are 
required to generate the position role’s key. From this hierarchy, it seems 
hard for B to efficiently verify his access to F unless he examines a diagram 
or representation of the hierarchy. If a public parameter for F could return 
its relative child position, 1, B would generate the key for D. If the public pa­
rameter returned F ’s relative position from the root (2 ,1 ), B would generate 
the key for H. Two keys which are both incorrect. An alternative strategy 
could be for B to search all his subordinates for F, finding nothing, or for the 
search to start from F and stop at A if B was not found. In either situation, 
generating the wrong keys and performing exhaustive searches could become 
time consuming if they are frequent, or if the hierarchy is broad and deep.
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Figure 3.4: A simple hierarchy showing relative subordinate-principal posi­
tions.

3.5 Summary
We have discussed the two major approaches to the problem of key manage­
ment in a hierarchy. Much of the research has been focused on modifying 
the Akl-Taylor model of using RSA modular exponentiation. Models foUow- 
ing the Akl-Taylor method tackle problems with the assignment of prime 
numbers, storage of prime numbers and public parameters, and addition and 
removal of security classes from the hierarchy. The merit of these solutions 
is that one can easily verify principal-subordinate relationships in order to 
derive keys.

Indirect key derivation solutions rely on the structure of the hierarchy 
to provide key generation and derivation techniques. Sandhu’s proposed 
method and approach is inefficient for large hierarchies, and the use of DES is 
questionable in both security and performance. Yang’s method is unique, but 
its performance within hierarchies may degrade if long principal-subordinate 
paths must be searched to verify access and generate a key.

The method we present in the next chapter is not concerned with adding 
yet another RSA approach. Rather, we believe there may still be room to 
improve indirect methods of key derivation. In the chapter four, we introduce 
our HMAC-method and our enhancements that may help to improve the 
efficiency of indirect key derivation methods.
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Chapter 4 

K ey M anagem ent Using  
HM ACs

4.1 Introduction
Our contribution to the key management problem is a method we developed
called the HMAC-method. The HMAC-method is an indirect key approach 
concerned with improving the efficiency of generating and deriving keys in 
a tree structured access hierarchy. Our method uses HMAC constructions 
(Sec. 2.4) built from a single and secure fast hash function, SHA-1.

In comparison to previous indirect approaches ((Sec. 3.4)), our method 
improves key generation through the use of accessibihty queries using a tech­
nique we call path addressing. Also, by using SHA-1, we can keep key sizes 
small (160-bits) without sacrificing their security (Sec. 4.2.2). However, the 
method is also very flexible. We use only one hash function, so should con­
cerns be raised over the use of SHA-1 or 160-bit keys, we can substitute 
SHA-1 with a better hash function without affecting our key generating and 
derivation procedures.

During the development of the HMAC-method, we faced issues that pre­
vious researchers faced: namely, the efficient addition and removal of security 
classes to and from the hierarchy, and accommodation of indirect approaches 
to security hierarchies structured as weakly/strongly directed acyclic graphs. 
With that, we present our scheme to dealing with the key update problem 
through a technique we devised called the coched tey update strategy, and 
we present a modified potA addressing scheme which attempts to address
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the problem of traversing hierarchies that are structured as weakly/strongly 
connected directed acyclic graphs.

4.2 The HM AC-m ethod
We begin with a set of assumptions:

# The access hierarchy is defined and controlled by some trusted central 
authority (CA). It is assumed that the CA is in a secure environment
that provides no viable communication channel vulnerable to attack.

# AU users within the CA’s environment are divided into security classes, 
SC  =  S C i , . . . ,  SCn,  which are partially ordered by the binary relation 
<  The resulting relations, SCj < SCi,  means that users belonging to 
security class SCj  have access to information stored at the subordinate 
security class AC,; however, the reverse relation does not hold. That 
is, subordinates are not allowed access to information stored at the 
principal (SCi).

• Users belonging to a security class SCi only know direct relationships. 
That is, members in SCi know who their direct principal security class 
(SCp) is, and who their direct subordinate classes (SCg) are.

• For now, we assume the hierarchy is represented as a simple tree. That 
is, no security class has more than one direct principal security class, 
and the most principal security class is located at the root of the tree. 
Later, we modify the method to handle more general hierarchies rep­
resented as directed acyclic graphs.

• All keys within the hierarchy expire after time C- After which, new 
keys are generated and assigned to the security classes. Maintaining 
the common principle of good key management [37], we place this re­
striction to discourage exhaustive key search attacks and cryptanalysis 
of key-encrypted information.

We denote A (A |M ), to be the hashed message authentication code (HMAC) 
that uses the dedicated hash function SHA-1 (A), with a key (A), concate­
nated with a security class property (M).

Hierarchy preparation and key assignment proceeds as foUows:
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UN=1
T'fl]

UN=gUN=4 UN=6 UN=7

1

Y:[1 2 4] Y:[1 2 5] Y:[1 3 6] Y:[1 3 7]

Figure 4.1: A tree-structured access control hierarchy.

. Each security class (SQ) in the hierarchy contains three properties: a 
human readable name (Q ), a unique number ([/IV*), and a path address
array (1 )̂. These properties are the public parameters other security 
classes are allowed to view.

2. The human readable name, C, is the name of the security class that 
allows users to discriminate one security class from another. Common 
names can be any length.

3. A unique number (UN) is assigned sequentially, starting at 1 at the 
root and in a left-to right top-down manner, to each security class in 
the hierarchy (Figure 4.1). Later, as we add classes to the hierarchy,
regardless of their position within the hierarchy, we assign them the 
next number in the sequence.

4. The path array (F) acts as an address for a security class (Table 4.1). 
The address assigned to a security class records the UN  traversal path 
starting from the root to the security class. The last entry in a security 
class’s path array should correspond to its UN.

5. The CA assigns the root of the tree (the most principal security class) 
a randomly generated 1024-bit master key, %i, which is kept secret 
(Sec. 4.2.2).
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Unique Number (UN) Path Array (Y)
1 11]
2 [1 2 ]
3 [13]
4 [12 4]
5 [12 5]
6 [13 6]
7 [13 7]

Table 4.1: Summary of public parameters assigned to security classes be­
longing to (Figure 4.1).

6 . A security class SCk is assigned a key dependent on its direct principal 
security class as follows:

(4.1)

When a user belonging to a security class SCi wishes to derive the key 
for security class SCk, and SCk is the direct subordinate of SCi, then Kk is 
obtained using

Kk =  % |[ / N k ) .
Otherwise, if SCk is not a direct subordinate of SCi, SCi proceeds as 

follows:

1 . SCi retrieves the path array for SCk, Yk-

2. Using a sequential search on the array, SCi checks for his UNi within

3. If the search returns FALSE, then SCi knows that it lacks the sufficient 
permission to access security class SCk and does not proceed to gen­
erate the key. If the search returns TRUE, SCi stops and records the 
index a: at which its was located and proceeds to the next step.

4. Starting from a: -F 1 to the end of «S'Q generates the key using the 
SHA-1 HMAC. For example, if the portion of the array is [LUV̂ ,[7Aj ,[UV&] 
then the key derivation step is:
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4.2.1 A dding and Rem oving Security Classes &om the  
Hierarchy

Ideally, it would simplify all key management solutions if the hierarchy re­
mains static. Unfortunately, this is not always the case. As users come and
go, or as an organization changes, the need to add and remove security classes 
from the hierarchy will arise. As such, our key management method should
handle these changes.

We identified four cases for adding and removing security classes from the 
hierarchy. They are as follows:

1. Adding a security class to a leaf position,

2. Removing a security class from a leaf position,

3. Adding a security class to an interior position, and

4. Removing a security class from an interior position.

Adding and removing security classes to or from a leaf position is trivial. 
In Figure 4.2 8  is added to a leaf position, becoming the new subordinate to 2 . 
It is assigned a common name Cg and a unique number UNs = 8 . The path 
array for 8  (Ig) is created by inheriting the path array from 2  ( I 2 =  [1 ,2 ]) 
and appending UN — 8  to the end of the path (Kg =  [1,2,8]). Removing a 
security class from a leaf position in the hierarchy can be done without any 
affect to any principal classes.

Adding iiiui removing scxnuuityr classes to and from interior (non-leaf) po- 
sitions presents some challenges. In studying the key management problem, 
we saw that all previous direct and indirect methods dealt with the problem 
in a similar manner. Their designers chose to immediately re-calculate and 
update the keys for the affected classes [18], [34], [20], [36], [42]. This may 
or may not be advantageous in sJl situations. For example, the necessity to 
immediately add or remove a security class cannot be delayed or overlooked, 
but the disturbance caused to users within the afiected security classes, or 
the time and resources required to update the keys would be costly or in­
convenient. In these instances, it would be better to have a method that
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Figure 4.2: Adding a new security class to a leaf position in a simple tree 
hierarchy.

could delay a key update until a more convenient time arises, or as in the 
HMAC-method, a pre-specified key freshness time {U) expires.

To address the problem of key updates, we created an update strategy 
called the cached key update strategy. The cost associated with the method 
is that it requires a newly added security classes to have additional storage 
allocated for one extra key (a key cache), and a modification to the key 
derivation process.

Cached Key Update Strategy

The cached key update strategy is best understood with illustrations. In 
Figure 4.3, we show our simple tree access hierarchy. For brevity, we refer to 
security classes by their UNs (e.g. (8 )).

For internal additions to the hierarchy the rule-set is as follows:

# (Figure 4.4) If a new security class (28) is added between two classes 
whose key caches are empty, (1,2), the CA assigns the new class (28) 
a path address from 1 (F% =[1,28]) and a key from its direct principal 
class (Agg =  .ff(Ki|28)). The CA also provides the key for the direct 
subordinate (2) to the new class (28), which the new class (28) will store 
in its key cache. If additional classes (25) are added to the new class
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Figure 4.3: A simple tree hierarchy.

(28) 88 direct subordinates, they are assigned a path and key relative 
to the new class (28) -  (25: %2s=H(A[28|25), (}% =  [1,28,25])).

Cache 
key: K;

Figure 4.4: Adding a new security class between two classes with empty key
caches.

• (Figure 4.5) If a new security class (38) is added between two classes 
where the subordinate key cache is empty (2 ) and the principal full 
(28), the new class (38) is given a path from 1 (F% =[1,28,38]), a key 
derived from its parent's key (A!38=H(jK28|38)), and a key from the 
direct subordinate (2) which the class (38) will store in its key cache. 
If additional classes (25) are added to the new class (38) they will
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receive a path containing the new class (}% =[1,28,38,25]) and a key 
generated from the new class =H(Æ3g|25)).

Cached
KeyK̂

Cached 
Key:K \

Figure 4.5: Adding a new security class between two classes were the subor- 
dinate's key cache is empty.

• (Figure 4.6) If a new security class (48) is added between two classes 
where each key cache is full (28,38), we initiate an update. Key caches
are cleared (28,38). The new class (48) is given a path from 1 (F^ =[1,28,48]) 
and a key derived from its principal’s key (jQg =H(K28|48)). The 
classes subordinate to the new class (38,2,4,5) have their keys regener­
ated and paths updated.

•  (Figure 4.7) If a new security class (58) is added as a principal to a 
class that has a full key cache (28), we initiate an update. Key caches 
are cleared. The new class (58) is given a path from 1 [1, 58]. The 
classes subordinate to the new class (28,38,2,4,5,...) have their keys 
regenerated and paths updated.

The process to remove a key follows a similar method to addition. The 
ruleset is as follows:

• (Figure 4.8) If the security class being removed (8) has subordinates 
that are leaf-classes (9, 10), the leaf-classes (9, 10) are assigned to the
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cache
cleared

cache
cleared

update

Figure 4.6: Adding a new security class between two classes with full key 
caches.

principal (2). Because the paths from the principal (2) to new subordi­
nates (9,10) is short, there are two options. First, ff the update of keys 
and paths to the subordinates (9,10) would cause no inconvenience, 
then the keys and paths may be updated immediately. Otherwise, the 
principal (2) caches the key of the outgoing class (8).

(Figure 4.9) If the security class being removed (5) has subordinates 
that are not leaf-classes (8,9,10), the principal (2) receives the outgoing 
class’s (5) key to store in the key cache, and the subordinates belonging 
to the outgoing class (9,10) are added as subordinates to the principal 
(2).

(Figure 4.10) If the security class being removed (8) is not a leaf-class 
and is subordinate to a principal whose key cache is full (2), the prin­
cipal receives the subordinate classes (9,10) of the outgoing class (8), 
clears its (2) cache, and updates paths and keys to all its subordinate 
classes (9,10).
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cache
cleared

updatecache
cleaned

Figure 4.7: Adding a new security class as the principal to a class that has 
a full key cache.

Each security class holding a cached key must modify its search strategy 
when searching a path array. For example, in Figure 4.4 if 28 requests the 
path array for 4 (I4), then 28 searches I 4 for its UN and the UN belonging to 
the cached key {K2 ). If it locates the UN belonging to its cached key (A’2 ), 
then 28 uses the cached key (2) to derive the key for 4 by following the path 
and using the cached key. Otherwise if 28 finds its UN within I 4 , it uses its 
key to follow the path and recursively generate the key for 4 (Eqn. 4.2).

Another benefit of the cached key strategy is that we may be able to 
accommodate additions where previous deletions occurred. For example, in 
Figure 4.8 if a class was added into the position previously held by 8 , we could 
modify our addition strategy to have the CA simply reassign the new class a 
UN = 8 and the key held in cache by 2 (Kg). This would suggest that rather 
than removing a class completely from the hierarchy, the better strategy 
might be to have the CA maintain a deletion list to keep track of classes 
that are removed. This way, if a new class is re-introduced to a deletion 
point, adding it can be accommodated much more easily than undergoing a 
completely new addition step.
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To summarize, the cocAed update strategy proposed here is to address 
concerns with the overhead and costs incurred if we update the hierarchy in 
response to every addition and deletion of a security class. As the name
suggests, the cached key update strategy sacrifices a small amount of storage 
per affected security class. Updates to portions of the hierarchy are delayed 
if such updates would be costly or inconvenient. Fortunately for additions, 
the cached key is assigned to the newly added security class, thus it may 
be easier to assign a cached key to a new class than to update keys in the 
affected subordinates. For example, a new employee or level of management 
is brought into the organization and must begin work immediately, but it 
would be costly and inconvenient to re-calculate and re-issue keys during the 
work day. It would be easier to give the new level of management or worker 
an additional key for a brief period of time then to re-issue keys to all security 
classes.

A removed class provides its key to its principal so that the principal may
access the inherited subordinates. Using a deletion list and cached keys, we 
may also be able to accommodate unique situations where classes are deleted, 
yet new classes are re-introduced into the same position sometime later. We 
should reiterate that the cached key update strategy may not be suitable 
for all situations. The nature of the keys and organization may warrant the 
simple immediate update strategy that previous indirect and direct methods 
took. For example, an employee leaves abruptly and management wishes to 
change all the keys immediately.

In our cached key update strategy, the size of the key cache determines 
the delay between key updates. Increasing the number of cached keys will 
increase the delay between key updates. However, increasing the size of 
the key cache will require some modifications to the rule-set of adding and 
removing classes. With one key cache, we are able to cache keys belonging 
to immediate subordinates. Consequently, in situations where more than 
one key from a subordinate would need to be cached, we currently initiate 
an update. With larger key caches the rule-sets will need to be modified to 
reflect the fact that keys from lower subordinates will need to be cached as 
well. The need for larger or smaller key caches will be dependent upon the 
nature of the organization the hierarchy represents and/or the key expiry 
and key update schedule within an organization.

We believe the cached tey update strategy helps improve the flexibility of 
our HMAC-method with respect to previous mdirecf methods. With respect 
to direct methods of key management, we found no method proposed to
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date that can adequately accommodate a similar key update strategy for 
the addition of security classes. This limitation arises from the fact that 
in the access relationships between security classes within the hierarchy the
public parameters must remain factors of one another. Otherwise, the test 
for divisibility {PBi\PB 2 ) (Sec. 2.2) fails and key derivation cannot take 
place.
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update update
key key

Figure 4.8: Security class (with leaf-classes) being removed.
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cached 
key: K

cached 
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Figure 4.9: Security class (with non-leaf subordinates) being removed.
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Figure 4.10: Removing a subordinate from a principal with a full key cache.
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4.2.2 Security o f th e H M AC-m ethod
The security of the HMAC-method lies in the underlying security of the mas-
ter key, the SHA-1 dedicated hash function and in the HMAC construction.

We chose the master key be at least 1024-bits in size, because the master 
key can derive all keys within the hierarchy. Such a large key size helps 
thwart random guessing of the master key. The probability of an attacker 
guessing the key would be 2"^°^. An exhaustive key search of the key would 
require the attacker to generate and test all 2 ^^ possible key combinations. 
We believe this key size will provide adequate protection of the master key

As discussed in Sec. 2.3, there is no mathematical means in which to show 
that a particular hash function is truly one-way. We cannot say that a fixed- 
output hash function is truly collision resistant (Sec. 2.3). However, as we 
discussed in Sec. 2.3.3, there are certain features which help hash functions 
resist attack.

We chose to speciGcally use SHA-1 in the HMAC-method, because it 
produces a digest length of 160-bits, resulting in 2 ^  ̂possible message digests
(Sec. 2.3.3). Under the birthday attack, to force a colhsion under SHA-1 
would require an exhaustive search and comparison of at least 2®° message 
digests (Sec. 2.3.3). However, without having access to the message digests 
that are being used as keys for security classes, the attacker would have to 
generate all 2̂ ®° message digests and test each one he creates against each 
security class in the hierarchy. This increases the complexity of the attack. 
If the attacker tries to simply guess a key, his probability of success is 2~̂ ®° 
(Sec. 2.3.3).

Also, in choosing SHA-1 for our hash function, we note that as of the 
date this thesis was written, no one has successfully attacked SHA-1 [37]. 
While this does not prove SHA-1 is undeniably secure, it does speak to how 
well SHA-1 was designed and how strong the hash function has proved to 
be. If in the future SHA-1 was found to be insecure, the dedicated hash 
function used in the HMAC-method can be easily replaced with a better 
one. For example, nothing prevents the use of RIFEMD-160 [15] or an MDx- 
MAC enhanced [33] hash function (Sec. 2.4). In a worst case scenario, if we 
have no suitable dedicated hash functions available, then we may use a block 
cipher hash function at the expense of throughput.

As for our HMAC construction, we based our choice of construction in 
accordance with Preneehs recommendations for HMAC security (Sec. 2.4.3).

Bart Preneel studied HMAC constructions and found that certain con-
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8tructions could be compromised if an attacker obtained many message di­
gests calculated with the same key [33]. In response, he recommended some 
constructions to strengthen HMACs (Sec. 2.4.3) [37] and proposed a mod-
ification, MDx-MAC, that can strengthen dedicated hash functions used in 
HMAC constructions [33].

We are not at danger in using the construction jH(%|M) within the 
HMAC-method. As Preneel noted, the attacker attempts to use a birth­
day attack to create collisions on the digests [33]. For this attack to work, 
the attacker would require at least 2 ^  message digests (keys) from the hier­
archy to compare against his results. Otherwise, an attacker is left no other 
option but to randomly guess a key or generate all 2^60 possible keys and 
try them against all classes in the hierarchy.

We are also not at danger in using a single number as the security class 
property within the HMAC construction. The first keys generated by the 
HMAC-method are created with the 1024-bit random key assigned to the 
principal class. When keys are re-calculated, the 1024-bit random key is 
also re-assigned. So, from key assignment to key assignment the keys for 
security classes will be different. Also, SHA-1 is designed to use all bits of 
the pre-image within the rounds of the compression function [21]. Thus, if 
the derivation of two keys only differs by a single number (8 bits), under 
SHA-1 they should be different [21].

4.3 Considerations and Limitations
One drawback of any indirect key management method is the computational 
complexity of the key derivation process. Consequently, the best approach 
to improve efficiency is to try and optimize the derivation process.

In the HMAC-method, we looked to achieve better traversals then [36] 
implementing the path addressing array. The array allows us to verify class 
relationships before undertaking a key derivation process. Thus, we search 
only the path that can lead us to the desired security class. We do not spend 
time searching all portions of the sub-tree and creating keys as we go. In the 
worst case, we search through an entire path array; however, we do avoid the 
cost of searching the entire hierarchy, and we do avoid the cost of having to 
create keys as we search a path. With path addressing, we only create keys 
once we veri^ the searcher's UN is in the path.

In choosing the format of the path array, we found that using just numbers
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is more e@cient that using a string concatenation strategy. For example, 
we could have represented a path to a security class by concatenating the 
names of security classes along the path and using some delimiter to separate 
names. We found this approach too inefficient. First, named paths are 
much longer than numbered paths. For example, assume a security class is 
represented by a modest 8  character (80-bit) common name (C), emd we have 
a leaf secmity class whose path is 50 traversals away hrom the root. Using 
a name concatenation approach, the leaf class would be assigned a name 
80 X 50 =  4000 bits long. If we use 16-bits to represent the numbers in our 
potA addressing array, the numeric path to the same leaf class would require 
50 X 16 =  800 bits -  80% less storage than name concatenation. Also, 
having a numeric array allows us to search more efficiently and save time when 
trying to verify an access relationship. With a string concatenation approach, 
we must sequentially search through each character of the string looking for 
name delimiters, construct the names, perform a string comparison, then 
continue to move along the string. With numbers in an array, search and 
comparison can occur much faster.

In comparison to Yang’s method [42], we beheve our path addressing 
scheme is more efficient because Yang’s principal-subordinate search strat­
egy is local in scope. That is, for a principal to derive the key of a subordinate 
lower in the hierarchy, a path must be traversed through the hierarchy by 
following through the principal-subordinate relationships. Once the proper 
sequence of principal-subordinate relationships is discovered, then the corre­
sponding sequence of hash functions is called to create a key. Otherwise, the 
search halts and returns no result, and we incur the penalty of using time to 
conduct a search without a successful key. In our approach, we simply scan 
though the path address array and avoid traversing other hierarchy relation­
ships. As soon as a security class finds its UN within the path addressing 
array, it begins to assemble the key using the remaining numbers in the array.

In our cached key update strategy, the size of the key cache determines 
the delay between key updates. Increasing the number of cached keys will 
increase the delay between key updates. Using a single key cache requires 
that a class make room for an additional 160-bit key, an added comparison 
during a path search, and an additional time factor during key derivation as 
the cached key is retrieved and used. However, if performance is a concern or 
key updates are inconvenient and must be delayed to a more opportunistic 
time, we believe our coched A;ey update strategy improves the applicability 
and efficiency of the approach in these situations.
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In addition to the cocked key update strategy, the HMAC-method also 
benefits from the performance of using the SHA-1 hash function. Preenel's 
examination of hash functions showed that an optimized SHA-1 implemen- 
tation had a digest throughput of approximately 54.9Mbits/sec [32]. Given 
that our keys are 160-bits^ concatenated with the string representation of 
the UN, we can estimate the maximum key generating throughput of SHA- 1  

in the HMAC-method to be «  300,000 keys /  sec. If searching a path ar­
ray is as efficient as key generation, this suggests that the HMAC-method 
could adequately deal with path searches and key generations on very large 
and deep hierarchies. Empirical evidence from experimentation would be 
required before a more definitive metric in throughput performance could be 
reached.

The consequence of using both the path address array and the cached key 
update strategy is that we must hold an additional set of public parameters 
and cached keys in order to implement these improvements. For a hierarchy 
containing n security classes, the total space required for the potk address 
arrays would be O(n^). With cached keys, we require an additional 160-bits 
per key. Given the minimum 512-bit key lengths the RSA-based methods are 
required to produce, the additional 160-bits for a cached key seems small. 
With the benefits a cached key update strategy could have for an organiza­
tion, we feel the additional 160-bits of space is acceptable. If the cached key 
update strategy is not required, there is the option to use the immediate key 
update strategy that the other methods use. The option to use either one 
simply adds flexibility to our approach.

Finally, in studying Yang’s approach to indirect key management, he was 
able to accommodate hierarchies structured as directed acyclic graphs by us­
ing a family of hash functions [42]. In the HMAC-method, we have presented 
thus far, our method is only designed to efficiently handle hierarchies struc­
tured as simple trees. To address this shortcoming, we present a design that 
modifies the path address array so that the HMAC-method could be applied 
to hierarchies represented as directed acyclic graphs (DAGs).

^Except for the root of the tree -  that is 1024-bits.
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4.4 Modified Path Addressing Scheme for DAG  
Hierarchies

In access hierarchies represented as directed acyclic graphs, a subordinate se­
curity class can have more than one direct principal class (Figure 4.11). Con- 
sequently, the subordinate requires a key that can allow both direct principal 
classes access to the subordinate.

With indirect approaches, directed acyclic graphs present issues regarding 
traversals of paths. Referring to Figure 4.11, when either 2 or 3 wishes to 
access information stored at 5, they must have some knowledge about the 
composition of 5’s key. Similar to Yang’s approach, we chose to generate the 
subordinate’s key by composing the direct principals’ keys. For example, in 
Figure 4.11 the key assigned to 5 would be

^ 5  =  F f ( F f ( Æ 2 |5 ) | f f ( A '3 |5 ) ) .

Thus, in order for either 2 or 3 to derive the key for 5, either 2 would 
require the knowledge of the sub-key H(Kz\5), or 3 would require the knowl­
edge of the sub-key H{K2\5). We chose to have the CA cache the sub-keys.
A consequence of this approach is that principal classes which share a direct 
subordinate will rely upon the CA to provide the cached key.

However, the more immediate problem was how to represent this security 
class as having a key composed from two or more direct subordinates. Yang’s 
solution was to use multiple hash functions, but we preferred the flexibility 
of having a single fast dedicated hash function within the HMAC-method. 
The best solution we could devise modified the path address array (Y).

Using Figure 4.11 as an example. Table 4.2 shows how each security 
class’s path address would appear under the modified addressing scheme.
For brevity, we refer to security classes by their unique numbers (UN).

Our modification was to change the structure of the path address from 
being an array to being a list that could contain nested lists. A nested list 
within the list (e.g. ((2 3) , 5)), indicates that the security class holds a key 
which is composed from the sub-key belonging to the security classes in the 
nested list. For example, from Table 4.2 the address list for security class 5,
((2 3) , 5), indicates that 5 is composed from the sub-keys of security class 2 
and security class 3. Security classes that are not composed of sub-keys are 
simply represented as a list of numbers (e.g. 4, (1 , 2 , 4)). Next, we modified 
the key derivation process to reflect the modified potk list addressing scheme.
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Figure 4.11: Directed acyclic graph structured hierarchy.

If the first element in a path list is not a nested list ( e.g. ( 1 , 2 , 4 ) ) ,  
then we know that a direct path exists to the desired class and we operate 
on the list as if we were using the path address array from a security class in 
a simple tree hierarchy.

If the first element in a path list is a nested list (e.g. ( ( 2 3 ) , 5 ) ), 
we implement an expand-and-search strategy. For example, in Figure 4.11 if 
security class 1 wanted to access security class 5, it requests the path list for 
security class 5, ( ( (2 3 ) , 5 ) ), notices the nested list as the first element, 
and proceeds to follow the expand-and-search strategy;

1. The security class searches the nested list looking for its UN. In our
example, 1 searches the list ( ( 2 3 ) , 5 ) and does not find itself in the
nested list.

2. If the UN is not located within the nested list, the address for the
first element in the nested list is expanded. In our example, the list
( ( 2 3 ) 5 ) i s  expanded and becomes ( ( ( 1 2 ) 3 ) , 5 ) .

3. The principal security class repeats steps 1-2 until it finds its UN within 
an expanded list. In our example, 1 will find itself in the expansion 
of 2's address list: ( ( ( 1 2 ) 3 ) , 5 ) .  If 1 did not find itself in the
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Security Class Path Address
1 (1 )
2 (1 . 2 )
3 (1,3)
4 (1, 2, 4)
5 ((2 3), 5)
6 (1, 3, 6 )
7 ((4 5 6 ), 7)

Table 4.2: Modified path addresses for security classes in a DAG access 
hierarchy.

expanded list of 2, it would move onto the next element, 3, and perform 
the expand-and-search again.

4. Once the UN is found within a list, the key represented for that list is
generated. In our example 1 will create the key for 2 by following the 
path address ( ( ( ( 1 2 ) 3 ) , 5 ) - + ( ( (  {K2 ) 3 ) , 5 ).

5. At this point, search-and-expand stops and the security class will re­
quest the CA to produce the sub-keys for the other members of the 
sub-list. In our example, having generated the key for 2, 1 will stop 
expand-and-search and request the CA to produce 3’s sub-key for 5: 
((% , 5).

6. Having received the remaining sub-keys from the CA, the principal can 
combine them in order to produce the key for the desired subordinate. 
In our example, 1 will create 5's key using H(H(fC2 |5 )|K 3g).

With this new derivation method, the best case scenario is that the first 
element in the nested list produces a valid key and the search-and-expand 
is aborted so that the remaining sub-keys can be requested. The worst case 
scenario is that all members of the nested list undergo search-and-expand 
and no keys are produced. This situation could occur frequently in weakly 
connected directed acyclic graph access hierarchies. For example. Figure 4.12 
shows just such a hierarchy. If 1 were to request access to 4, it would spend 
time performing search-and-expand only to find that it lacked the proper 
access. Having spent time with the problem we leave it as open and state that
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although our newly devised potk fist addressing scheme could accommodate 
DAG hierarchies, it is not an optimal method for all DAG hierarchies.

Figure 4.12: A weakly connected DAG hierarchy.

4.5 Summary
We have introduced the HMAC-method of key management for an access 
control hierarchy. We propose a solution that seeks to improve the effi­
ciency and apphcability of indirect approaches to simple tree hierarchies. 
The HMAC-method is as secure as the underlying SHA-1 hash function and 
chosen HMAC construction.

Our contributions to the indirect approach for key derivation was the 
creation of a path array and cached key update strategy. The path array 
allows us to assign numeric addresses to security classes in the hierarchy so 
that we may verify access relationships before we generate keys, improving 
performance by not producing unnecessary intermediate keys or searching 
the entire hierarchy. The cached key update strategy was in response to our 
observations that there may be a better strategy to updating the hierarchy 
under structural changes. The cached key update strategy allows for changes 
to the hierarchy, but key updates to any affected security classes can be 
reasonably delayed if immediately updating the keys to affected subordinates 
would be costly or inconvenient.

Finally, observing that Sandhu was unable to address DAG hierarchies, 
we set out to modify our pntk addnsssinp scheme so that the single function 
HMAC-method could also apply to DAG hierarchies. Yang was able to deal 
with the problem by using multiple hash functions, but we wished to continue

60

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



using one hash function. As such, we were able to make modifications to 
the potk scheme so that DAG hierarchies could be representend.
Unfortunately, the search-and-expand method developed for use with the 
modified scheme is not optimal. Finding an optimal method is left as an 
open problem.

In the next chapter, we wfil address some observations we have on factors 
we believe can affect the suitability and implementation of key management 
methods.
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Chapter 5 

Im plem enting Key  
M anagem ent M ethods: 
Analysis and Considerations

5.1 Introduction
In the previous chapter, we introduced the HMAC-method and our improve­
ments to previous indirect approaches. We addressed issues of efficiency 
when determining role relationships, strategies to handle key updates, and 
weakly/strongly connected directed acyclic graphs.

In this chapter, we examine the pragmatic issues which can affect the 
implementation and apphcability of direct and indirect methods.

5.2 Direct Versus Indirect Key Management 
M ethods

The comparison of direct and indirect methods is difficult. This is in part 
to the nature of how each method attempts to solve the problem of key 
management. In the direct approach, the chaUenge is to discover an optimal 
solution of assigning primes to the members of a hierarchy. For small hi­
erarchies, the methods can provide reasonably-sized pubhc parameters, but 
for larger hierarchies, the pubhc parameters can become quite large to store 
and manipulate. However, direct methods can address directed acychc graph
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hierarchies more easily than the indirect approaches.
In the indirect approaches, storage requirements are not as large. The 

challenge in indirect approaches is to efficiently derive the keys recursively 
from the structure of the hierarchy. Directed acychc graphs can prove difficult 
to address because, parties holding authority over a common subordinate 
require cached sub-keys. Having cached sub-keys may also alter the way in 
which users interact with the central authority. The benefit of the indirect 
methods is that procedures to assign keys to the hierarchy is easily done, 
and we may construct fiexible key update strategies to address a dynamic 
hierarchy.

In studying the key management problem, we observed that certain fac­
tors pertaining to the hierarchies, and certain pragmatic factors with respect 
to an implementation can arise, and that in understanding these issues, we 
may be able to design more apphcable key management schemes. That is, 
rather then attempting to fit one particular key management method to all 
hierarchies, a better approach would tailor the key management method to 
the structure of the hierarchy, the nature of the organization, and the appli­
cation of the keys.

5.2.1 Structural Properties o f the Hierarchy
The three structural properties affecting all hierarchies are breadth, depth, 
and connectedness. Each one will vary depending on the nature of the orga­
nization and the relationships between security classes within the hierarchy.

We summarize the space complexity of the Akl-Taylor, Harn-Lin, and 
Hwang-Yang methods in table Table 5.1 [20]. In the method of Ray et al. 
(Sec. 3.3) (not shown Table 5.1), a user’s key is dependent on the size and 
number of moduli (m and d respectively) composed to produce his key. In 
the HMAC-method, our storage complexity is 0(n?) and the largest public 
parameter would be the longest path address (I).

Breadth and D epth of a Hierarchy

For very small and shallow hierarchies, as shown in Figure 5.1, both indi- 
recf and direct schemes work well. The public parameters stored by the 
direct schemes are small and the paths traversed by the indirect approaches 
are short. Given the direct approaches small storage requirement and 0(1)
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Method Number of 
Primes

Maximum
Public
Parameter

Storage
Space

Akl-Taylor n 0 {n^ log n)
Ham-Lin n 0(n^ log Ti)
Hwang-Yang y 0 (n^logp)

Table 5.1: Space complexity for direct key derivation schemes, n is the num­
ber of security classes in the hierarchy, y the number of primes the Hwang- 
Yang method requires (Sec. 3.3).

Figure 5.1: A small and shallow tree shaped access hierarchy.

computational complexity to derive keys, direct approaches may be more 
appropriate for small hierarchies than indirect approaches.

With broad and shallow hierarchies (Figure 5.2), we see a dramatic differ­
ence between the direct and indirect approaches. Here, the public parameters 
of direct approaches will increase rapidly as more security classes are added 
to the hierarchy.

Amongst the direct approaches, the Hwang-Yiemg method should be more 
efficient for storage than the Harn-Lin approach because of Hwang-Yang’s use 
of composed prime sets (Sec. 3.3). However, while the Hwang-Yang method 
does use fewer primes, the public parameters may not necessarily be smaller. 
The hierarchy shown in Figure 5.2 was taken from [20] where we attempted to 
implement the Hwang-Yang approach. In following their recommendations
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500 501 502 503 504 1000

Figure 5.2: A broad and shallow tree shaped access hierarchy.

of prime number selection and composed prime set assignment, our use of 
the first 42 primes did not show an improvement over the 1000 primes used 
by the Harn-Lin method. The public parameter stored for the most principal 
class under Ham-Lin was 3393 digits long and in the Hwang-Yang approach 
it was 5204 digits long. We attribute t his discrepancy to the selection and 
assignment of the composed prime sets. The Hwang-Yang approach should 
produce smaller numbers, but only if the optimal selection and assignment 
of composed prime sets is found. This suggests that although the Harn-Lin 
approach uses more primes, it can be more efficient and more applicable 
than the Hwang-Yang approach. For the Hwang-Yang approach to produce 
smaller numbers when implemented will require solving the larger problem 
of optimally assigning composed prime sets [20]. From our results, we found 
O(n^logm) <  O(M^logy) < O(n^logn), for Ham-Lin, Hwang-Yeing, and 
Akl-Taylor respectively.

For the hierarchy in Figure 5.2, we expect Ray e( oFs method and our 
HMAC-method to perform well. Under the HMAC-method, the small path 
addresses can quickly be searched. However, compared to Ray et al’s method 
where key sizes will increase as one moves deeper into the hierarchy, our 
HMAC-method will assign the same sized key to all classes.

As the hierarchies become deeper and broader, the prime numbers within 
the direct methods will continue to increase and public parameters will con­
tinue to grow in magnitude. Within Ray et ot.'s method, key sizes for subor-
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dînâtes will continue to increase, and in the HMAC-method the number and 
length of path addresses wiU become longer. With very large hierarchies, it 
becomes difficult to predict which method will perform the best and at which
point these systems begin to fail or become cumbersome.

W eakly/Strongly Connected Hierarchies

Connectedness of a hierarchy describes the degree of relationships between 
the security classes. In linear or tree hierarchies, these relationships are
well defined with classes having only one direct principal and no shared 
subordinate classes.

Shared classes increase the connectedness of a hierarchy. Within direct 
approaches shared classes will result in larger public parameters for the prin­
cipals of the common subordinate, while in and Yang’s method and ours, 
shared classes result in sub-keys having to be cached for each principal of the 
common subordinate. In the HMAC-method, we incur the overhead of the 
additional search-and-expand method we use to verify access relationships 
before we create keys.

Unfortunately, the degree of connectedness between classes will vary de­
pending on apphcation and organization and in some instances one method 
may be more applicable than another. For example, consider Figure 5.3 
which illustrates a hierarchy where a few administrative users share access to 
many different subordinates. This hierarchy could represent a student records 
database in a university, where each individual student record is protected by 
the student’s key. If there are 7000 students attending the university, then 
under the direct approaches, each administrative class is assigned a pub­
lic parameter composed of 7001 prime numbers. Under our HMAC-method 
and Yang’s method there would be 49000 shared sub-keys. Finally, under 
Ray et aVs approach the student would hold a key 8 times larger than the 
administrative staff.

At first glance, it would appear that Ray et al. ’s approach seems the 
most efficient of the three. However, in this situation we can improve the 
efficiency of both indirect approaches by changing the connectedness of the 
hierarchy and implementing a common security class shared amongst the 
administrators for accessing the database (Figure 5.4). Now, the number of 
sub-keys drops from 49000 to 7. Unfortunately, in this instance, our changes 
will not improve the magnitude of the public parameters within the dinect 
methods.
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Figure 5.3: A hierarchy of a university student record database.

Figure 5.4: A hierarchy of a university student record database where an 
addition of a common security class allows us to apply indirect methods 
more efficiently.

Thus, the role connectivity plays within a hierarchy is also important. 
There may be instances, such as the student database, where understanding 
the nature and intention of the relationships may allow us to manage con­
nectivity better and improve the applicability of key management methods 
we have available.

5.2.2 K ey Sizes and K ey U pdates
No encryption key should be used for an indefinite period of time [37]. The 
longer a key is used, the greater the chances of the key being lost, compro­
mised, or stolen, and the greater the chances the data protected by the key 
becomes cryptanalyzed [37]. Thus, key updates should occur within any key 
management method. However, the size and type of key, and how and when
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we update keys can bring forth interesting questions regarding the applica­
bility of one method over another.

The size and type of key is dffierent between indirect and direct ap-
prcaches. Within Yang’s approach and ours, the keys used are generated 
from hash functions with digest spaces of 2^, where m  is the digest size. 
Thus, for an attacker to recover a key, he must exhaustively search all 2"* 
possible combinations of keys. For digest sizes of 160-bits or more, this pro­
vides a sufficiently strong key for most encryption/ decryption of data with a 
symmetric cryptosystem [37]. With direct approaches using full RSA imple­
mentations (Hwang-Yiang, Ham-Lin, Ray et oZ.), this is not always the case. 
The weakness in RSA keys is their weakness to factorization [25] (Sec. 2.2). 
The consequence is that in order for RSA keys to provide a key strength sim­
ilar to a hash function’s symmetric key, RSA keys must be longer -  typically 
512-bits or more [25].

These dffierences in key length may not be important for some application 
of keys. For example, if keys are used only to authenticate users to services 
or to authenticate their identity, the length and type of key is unimportant, 
but if the intention is to use the keys within symmetric cryptosystems, then 
key type and key size becomes a consideration.

Because most symmetric cryptosystems have key sizes fixed between 64 
and 256 bits [37] [38], the much larger 512-bit RSA key will need to be trun­
cated. How truncation will affect the key’s security is difficult to determine
[36]. The solution may be to use smaller RSA keys and simply have more 
key updates, but if information is stolen between key updates and the mod­
ulus within the smaller RSA key is known, then factorization of the key and 
recovery of the data is possible. In this respect, the more appropriate sym­
metric keys that Yang’s method and our HMAC-method produce would be 
more suitable for use with symmetric cryptosystems.

As for key updates, the social organization of the hierarchy can have 
an effect on the suitabifity of a key management method. For example, 
in some organizations members near the bottom of the hierarchy are the 
most transient. In corporations, these may represent the workers or contract 
employees.

There may be situations where, for cost or convenience, an organization 
decides to have monthly key updates, but workers are added and removed to 
the hierarchy throughout the month. With direct approaches, the addition 
of a new user to the hierarchy requires that all classes principal to the sub­
ordinate must have their public parameters updated and keys re-calculated.
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With our HMAC-method, Yang's method, and Ray et oZ.'s method this does 
not occur because key updates occur from principal to subordinate. Thus, in 
the situation we propose with the contract employees and the corporation,
we may add new security classes to the bottom of the hierarchy without 
initiating key updates to principal classes before they should occur.

An additional benefit that our HMAC-method brings to key updates is 
the fiexibility for a principal to initiate a key update on just its portion of the 
hierarchy. Because we calculate keys for subordinates through a combination 
of the principal's key and the subordinate's unique number, if we need to 
refresh the keys for a particular part of the hierarchy, we may assign new 
unique numbers to the direct subordinates, update their paths, and calculate 
new keys and paths for the remaining subordinates. In situations where we 
would like to update keys to a specific area of the hierarchy, we are free to 
do this before a scheduled key update without affecting classes principal to 
us. Another method that can do this is Ray et oZ.'s where a subordinate's 
key can be re-calculated with a new modulus and composing it with the 
moduli from its principals (Sec. 2.2). Other methods cannot do this. Keys 
must either be re-calculated for the entire hierarchy (Akl-Taylor, Yang) or 
for affected sub-portions of the hierarchy (Harn-Lin, Hwang-Yang).

5.2.3 Role and Design o f the Central Authority
The central authority (CA) has appeared throughout most of the literature 
[3], [10], [18], [20], [36], [42], yet very little discussion goes into the design 
and implementation of it.

For example, in our HMAC-method and Yang’s method we call upon the 
CA to cache the sub-keys produced for shared subordinates. One concern 
with this approach is that the sub-keys, if combined together, can produce 
a valid key for a shared security class. In an implementation, the pragmatic 
issue would be how to securely transfer the sub-keys to just the intended 
recipients.

One solution would secure communication channel between the requester 
and the CA with encrypted connections (SSL), then use a challenge/response 
system between the requester and the CA. Here, the requester generates his 
sub-key for a shared subordinate and sends it to the CA. The CA then verifies 
the received sub-key against the set it stores for the intended subordinate. 
If the requester's sub-key matches one of the cached keys stored for the 
subordinate, the CA replies to the requester and transfers the remaining

69

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



sub-keys for the subordinate back to the requester. Once the sub-keys are 
assembled, the requester can produce the key for the shared subordinate. 
The issue that remains is in securing the CA from attacks such that sub-keys
are not stolen or replaced with frauds.

Other pragmatic issues surrounding the central authority center around 
its role with public parameters used in both the dinsct approaches and our 
HMAC-method.

For example, in the HMAC-method we store path addresses as arrays 
of integers. Thus, a 16-bit integer array could allow us to address up to 
2̂ 6 security classes. How we store and distribute this array is a pragmatic 
issue. For example, we may store the address arrays using a database, such
as Oracle or PostgreSQL, that supports the variable array type, or we may 
store the addresses as a simple Java dictionary where the key is the security 
class name and the value is an address object or vector array. Similarly, as 
public parameters within the direct approaches grow beyond the 2 2̂ Eind 2̂ 4 
bit integer capacity of many computers, special large integer hbraries are 
required to store and manipulate these numbers. Which libraries are used 
and how they implement large integer support can affect the performance of 
direct approaches.

Common to both approaches is the issue of the central authority’s avail­
ability. If we consohdate the hierarchy, public parameters, and requests to 
one central authority, we must ensure that the CA is reliable and secure. If 
the central authority is prone to failure or susceptible to attack, we may want 
to rephcate the CA across a network. If so, we must ensure consistency such 
that changes to the hierarchy are replicated in a timely manner.

5.3 Summary
In this chapter we raised some pragmatic issues surrounding the implemen­
tation and apphcability of key management methods.

Implementing the Hwang-Yang approach from chapter three, we found 
that while their approach uses fewer prime numbers, the success of reducing 
the public parameters is dependent on solving the problem of selecting and 
assigning the appropriate composed prime sets to the proper leaf security 
classes. For larger and deeper hierarchies, judging the performance of a key 
management method becomes difficult without some form of metric or results 
collected from experimentation.
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Further, we discussed and illustrated the importance of connectedness 
within the hierarchy. Our HMAC-method and Yang's method must cache 
sub-keys in order to address security classes with two or more direct principal
classes. In some respects, this may be a limitation of the indirect approach. 
However with the example of the university student database, we demon- 
strated that by changing the structure of the hierarchy without affecting the 
nature of the relationships between the security classes, we produce a hierar­
chy that still maintains its purpose and intent, but can allow more than one 
key management method to apply.

In the remaining sections, we raised some pragmatic issues surrounding 
the keys, key updates, and central authority. If the intent of the access hi- 
erarchy is to provide support for encryption and decryption of information 
there are some considerations that must be taken into account when select­
ing the appropriate keys and the corresponding key management method. 
In updating the hierarchy, the nature of the organization being represented 
may have certain business operations that favour the use of one key manage­
ment method and its key update flexibility over another. Finally, the central 
authority which is present in many methods is addressed. We discuss some 
factors affecting the design of the CA with respect to the cached sub-keys of 
the indirect approaches, reliability, security, and replication.
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Chapter 6 

Conclusions and Future 
Research

In this thesis, we studied the problem of key management within an ac-
cess hierarchy. Our contribution to the key management problem is an in­
direct key derivation approach called the HMAC-method. It is called the 
HMAC-method, because it is based on hashed message authentication codes 
(HMACs) built from a single, fast, dedicated hash function (SHA-1). It is 
intended to provide a more efficient indirect key management method for 
large access hierarchies resembling tree structures. We are able to achieve 
better tree traversals using a technique we created called path addressing. 
Our path addressing scheme allows us to more efficiently calculate relation­
ships between security classes, determine traversal paths, and improve the 
performance of the indirect key derivation method. We also presented our 
cached key update scheme which is meant to improve the indirect key deriva­
tion schemes by delaying key updates when changes to the structure of the 
access hierarchy are necessary, but the re-calculation and re-assignment of 
keys would either be costly or inconvenient.

For access hierarchies represented as a weakly/strongly connected di­
rected acyclic graph (DAG), we suggested modifications to our path address­
ing and key derivation scheme which could allow our HMAC-method to be 
applied to these types of hierarchies; however our solution was not optimal.

Finally, we raised some pragmatic issues surrounding the implementation 
and applicability of key management methods. By implementing the Harn- 
Lin and Hwang-Yang approach, we found that the Hwang-Yang approach 
does produce fewer primes, but requires the solution to an optimization prob-
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lem in order for small public parameters to result. We also demonstrated that 
in certain applications of key management, there may be changes to the hier­
archy we can perform that allows us to apply more than one key management
method without affecting the nature of the relationships. Other issues we 
raised discussed the type, size, and apphcation of keys, key updates and the 
role emd implementation of the central authority.

Future research into key management should include the design and im­
plementation of a ffamework that allows the testing of key management 
methods. Much of the work in the research held thus far has been theo- 
retical and results from design and implementation could be of benefit to 
understanding the performance and applicability of key management meth­
ods. Problems left open from this thesis are the optimal addressing of shared 
security classes within the HMAC-method and the optimal assignment of 
composed prime sets to leaf classes in the Hwang-Yang method.

Further, an interesting research direction into key management may be 
in combining direct and indirect approaches. An idea to explore would be 
dividing the hierarchy into sub-hierarchies each placed under a different CA. 
We could use the Ham-Lin direct approach to generate and assign each CA 
a master key, which we then use with indirect approaches to generate keys 
for classes within the sub-hierarchy. Thus, we move around large portions 
of the hierarchy using direct methods, but traverse the smaller pathed sub­
hierarchies with indirect methods. This may yield a method of average per­
formance, yet a system that may be apphcable to distributed key manage­
ment methods.
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