
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

2004

Indirect key derivation schemes for key

management of access hierarchies

Cacic, Brian John

http://knowledgecommons.lakeheadu.ca/handle/2453/4064

Downloaded from Lakehead University, KnowledgeCommons

Indirect Key Derivation Schemes for Key
Management of Access Hierarchies

Brian John Cacic

Department of Computer Science
Lakehead University

May 2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 ^ 1 Library and
A rchives C an ad a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

B ibliothèque et
A rchives C an ad a

Direction du
Patrim oine d e l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 0-612-96991-6
Our file Notre référence
ISBN: 0-612-96991-6

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque et Archives Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Preface

In this thesis, we study the problem of key management within an access
hierarchy. Our contribution to the key management problem is an indi­
rect key derivation approach we call the HMAC-method. It is called the
HMAC-method, because it is based on hashed message authentication codes
(HMACs) built from a fast, single, dedicated hash function (SHA-1). It is
intended to provide an efScient indirect key management method for large
access hierarchies resembling tree structures. We are able to achieve bet-
ter tree traversals using a technique we created called path addressing. Our
path addressing scheme allows us to efficiently calculate relationships between
security classes, determine traversal paths, and improve the performance of
indirect key derivation. We also present our cached key update scheme which
is meant to improve the indirect key derivation schemes on tree hierarchies by
delaying key updates when changes to the structure of the access hierarchy
are necessary, but the re-calculation and re-assignment of keys would either
be costly or inconvenient.

For access hierarchies represented as weakly/strongly connected directed
acyclic graphs, we suggest modifications to our path addressing and key
derivation scheme which could allow our HMAC-method to be apphed to
these types of hierarchies.

Along the way, we discuss various current key management methods and
discuss certain pragmatic issues that can arise which affect the applicability
and implementation of a key management method.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgem ents

I would like to take this opportunity to thank those individuals who have
helped me during my thesis work.

First, 1 would like to thank Dr. Wei for being my thesis advisor. His
guidance during the research and process of this thesis has been invaluable,
and 1 am happy to have had the opportunity to work with him and to learn
from him.

Next, 1 would like to thank the faculty and stfdT cditlie Computer Science
department at Lakehead University. The faculty has been wonderful to me
and 1 have enjoyed the time 1 spent with them both as a student and graduate
assistant.

Finally, 1 would like to thank those closest to me - my family. Through
thick and thin my family has supported me with patience and understanding.
1 am truly blessed to have such wonderful support.

Thank you all very much.

II

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

Preface I

Acknowledgem ents II

List o f Figures V

List o f Tables VII

1 Introduction 1
1.1 Interest and Motivation ... 1
1.2 A Survey of Solutions to the Key Management Problem 3
1.3 Our Contributions to Key Management Methods 4
1.4 Thesis O utline... 5

2 Relevant Topics in Cryptography 6
2.1 One-Way Functions.. 6
2.2 The RSA C ryp tosystem 7

2.2.1 Security of the RSA Cryptosystem 8
2.3 Hash Functions .. 10

2.3.1 Classihcation of Hash Functions..11
2.3.2 Constructing Hash Functions 11
2.3.3 Security of Hash Functions................... 15

2.4 Message Authentication Codes....................... 19
2.4.1 Block Cipher Based MAC 19
2.4.2 Dedicated Hash Functions... 19
2.4.3 Security of Message Authentication C o d es....................... 20

2.5 Sununary... 20

III

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 Previous Research 22
3.1 Introduction..22
3.2 Direct versus Indirect Approaches...22
3.3 Direct Approaches to Key Management using R S A 23

3.3.1 The Akl-Taylor Method of Key Management............... 23
3.3.2 Other RSA Based Key Management M eth od s 26

3.4 Indirect Approaches to Key Management using One-Way Func­
tions ... 33
3.4.1 Sandhu's Indirect Approach...34
3.4.2 Yang's Indirect Approach ..35

3.5 Sum m ary...37

4 K ey M anagement Using HM ACs 38
4.1 Introduction..38
4.2 The HMAC-method 39

4.2.1 Adding and Removing Security Classes from the Hier-
archy...42

4.2.2 Security of the HMAC-method 53
4.3 Considerations and L im ita tions.................... 54
4.4 Modified Path Addressing Scheme for DAG Hierarchies 57
4.5 Summary ... 60

5 Im plem enting K ey M anagement M ethods 62
5.1 Introduction................. 62
5.2 Direct Versus Indirect Key Management M eth o d s..................... 62

5.2.1 Structural Properties of the Hierarchy 63
5.2.2 Key Sizes and Key U p d ates...67
5.2.3 Role and Design of the Central Authority 69

5.3 Summary ...70

6 Conclusions and Future Research 72

rv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

2.1 A general model of a hash function operating on a message M
of size n. 12

2.2 The general construction of a hash function from a symmetric
block cipher.............................. 13

3.1 Public parameter assignment within the Akl-Taylor method. . 24
3.2 Graph illustrating Hwang-Yang leaf-group and leaf-classes. . . 31
3.3 A simple access hierarchy. 32
3.4 A simple hierarchy showing relative subordinate-principal po­

sitions . 37

4.1 A tree-structured access control hierarchy.40
4.2 Adding a new security class to a leaf position in a simple tree

hierarchy. .. 43
4.3 A simple tree hierarchy.. 44
4.4 Adding a new security class between two classes with empty

key caches..44
4.5 Adding a new security class between two classes were the sub-

ordinate's key cache is e m p ty ... 45
4.6 Adding a new security class between two classes with full key

caches... 46
4.7 Adding a new security class as the principal to a class that

has a fuH key cache... 47
4.8 Security class (with leaf-classes) being removed................................ 50
4.9 Security class (with non-leaf subordinates) being removed. . . 51
4.10 Removing a subordinate from a principal with a fuH key cache. 52
4.11 Directed acyclic graph structured hierarchy. 58
4.12 A weakly connected DAG hierarchy.. 60

V

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1 A small and shallow tree shaped access hierarchy........................64
5.2 A broad and shallow tree shaped access hierarchy........................65
5.3 A hierarchy of a university student record database.......................67
5.4 A hierarchy of a university student record database where an

addition of a common security class allows us to apply indirect
methods more efficiently.. 67

VI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

1.1 A hierarchy of army officers and their cryptographic key chains. 2

2.1 Performance in Mbits/s of several hash functions and symmet­
ric block cipher hash functions..16

3.1 Prime number assignment and public parameter calculation
for the AkhTaylor hierarchy shown in (Figure 3.1)........................25

3.2 Ray's key assignment scheme...32

4.1 Summary of public parameters assigned to security classes be­
longing to (Figure 4.1).. 41

4.2 Modified path addresses for security classes in a DAG access
hierarchy. 59

5.1 Space complexity for direct key derivation schemes, n is the
number of security classes in the hierarchy, y the number of
primes the Hwang-Yang method requires (Sec. 3.3).................. 64

VII

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

1.1 Interest and M otivation
Within multi-user computer systems, we would like to have a methodology
that allows for the secure and trusted sharing of information amongst users
of the system. In essence, we wish to control an individual’s access to the
information stored on the system. We require an access control mechanism.

Access control mechanisms have been a part of computer operating sys­
tem development since the creation of MULTICS in 1965 [40]. The princi­
ple of least privilege is at the heart of all access control mechanisms. The
principle stipulates that users of a computer system receive no more access
than required to perform their responsibilities [16]. Implementation efforts
have given rise to three prominent mechanisms: discretionary access con­
trol (DAC); mandatory access control (MAC); and role-based access control
(RBAC) [16]. Shared amongst these mechanisms is the concept that users
are divided and grouped into classes, which can be organized into a hierarchi­
cal structure according to the class’s importance or level of trust. Thus, the
priveleges a user may have on the computer system is determined according
to the class he belongs to and the privileges associated with his class [16].

However, these access control mechanisms only attempt to limit the ac­
tions of users on stored information or computer resources. The access hi-
erarchies by themselves do not provide ways in which the information may
be kept in trust or secret [16]. We require a method which extends access
control mechanisms to support the encryption, decryption, and keyed access
of computer information and resources. But, this stipulation brings forth

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Officer Keychain
General General, Major, Colonel, Captain, Lieutenant
Major Major, Colonel, Captain, Lieutenant
Colonel Colonel, Captain, Lieutenant
Captain Captain, Lieutenant
Lieutenant Lieutenant

Table 1.1: A hierarchy of army officers and their cryptographic keychains.

new challenges.
First, most mainstream cryptographic cipher systems are key based [37].

Whether they be symmetric or asymmetric, these modern cryptosystems
hinge on the necessity of a shared key or accessible key for all interested
participants. Within an access control mechanism, the problem hes not in the
implementation of the cryptosystem or integration of the cryptosystem into
the mechanism, but in the management of the keys amongst the participants
within the classes of the access hierarchy [2], [3].

For example, let us examine a simple access hierarchy of army officers
sharing a single computer workstation. In descending order of authority, we
have the General, Colonel, Captain, and Lieutenant (Table 1.1).

Amongst this group of officers, all information stored on the workstation
is kept secret through some cryptosystem. Each officer encrypts his infor­
mation with his key. The hierarchy of officers and the actions they may
perform on the workstation is controlled by an access control mechanism.
Within this access hierarchy, a senior officer is given the authority to access
information belonging to any subordinate officer. For example, the General
may access everyone's information, but the Lieutenant may only access his
own. As such, there will come a time when a senior officer must have access
to a subordinate’s information. Fortunately, the hierarchy defines such a re­
lationship and the access control mechanism wiU allow it. But, information
stored at each level in the hierarchy is encrypted with a different key. How
can the senior officer access the information? As a simple solution, the army
could order all officers to share their keys with each senior officer (Table 1.1).
This simple method of key sharing is inefficient because the General is left
to manage the keys of all his subordinates. If, for example, there are 10,000
men in the army (including the General), then the General must hold and
manage 10,000 keys. Obviously, this simple sharing solution is too inefficient.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

How can we effectively address this key management problem without having
to resort to a shared common key amongst all security classes?

This question is known as the key management problem. We will search
for methods that allow each class within a hierarchy its own security key, but
wiU allow a class the ability to access or derive keys belonging a subordinate
class over wdiich they have the proper authority.

1.2 A Survey of Solutions to the Key Man­
agement Problem

Akl and Taylor proposed the first solution to the key management problem in
an access control hierarchy (Sec. 3.3.1) [2]. The foundation of their solution
was RSA's modular exponentiation arithmetic (Sec. 2.2). In their method,
they would assign each security class a distinct prime number which in turn
was used to calculate a public parameter. These values were used in the
modular exponentiation equation to generate a key for each security class
within the access hierarchy. The abihty to access keys for other security
classes and derive those keys was determined using the appropriate public
parameters within the modular exponentiation equation. While many agreed
that their method had merit, it was criticized for being inefficient [20], [34],
[3|, [26], 118].

The inefficiency arose from the computation and assignment of the public
parameters. The initial algorithm generated numbers that were very large
to store when the hierarchy itself contained many security classes [3]. Also,
when a class was added or removed, all the parameters and keys had to be
recomputed [18]. Later, Akl and MacKinnon proposed two new procedures
which sought to find an efficient method of generating and assigning public
parameters. The first method produced values that were smaller than the
original algorithm, but proved to be susceptible to co-operative key recovery
attacks [3]. The second method addressed the problem of security, but was
not as efficient in generating smaller values as the first; it was slightly better
than the original [3]. MacKinnon et al. found an optimal method for gener-
ating and assigning public parameters [26]. However, MacKinnon concluded
the method was still inefficient for use within large access hierarchies [26].
Thus, the efficient calculation and assignment of public parameters was left
unsolved [26]. Also, the inefficiencies of adding and removing security classes

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

was never addressed; this too was left as an open problem [26] [18].
A second key management solution came when Sandhu proposed a method

that used DES to generate and derive keys within the hierarchy [36]. The key
assignment and derivation method was recursive; each subordinate received
a key that was a digest of the direct principal’s key and public parameter.
Using his recursive approach, Sandhu avoided the costly storage inefficiencies
of the Akl-Taylor method. However, Sandhu’s proposed method of traversing
the tree and generating keys with DES was criticized for being slow. Also,
it was unable to deal with hierarchies represented as directed acychc graphs.
[181. [20].

The works of Akl-Taylor and Sandhu have since defined the two major
approaches to the key management problem [34], [20]. The first approach
is called the direct approach because access to other security classes and
their keys can be determined using the appropriate set of public parameters
[20]. Most approaches in this category build on the work of the Akl-Taylor
method. These approaches use RSA’s modular exponentiation arithmetic
as their key generating and derivation function. Most proposals suggest
new algorithms for assigning parameters to security classes, and using those
parameters within the RSA modular exponentiation equation to generate and
derive keys for other security classes. The second approach, commonly called
the indirect approach, focuses on devising schemes in which hash functions
and other one-way function constructions are used as the key derivation
algorithm [20]. These approaches propose a recursive key derivation method
that applies some public identifier and principal key to the inputs of one or
several one-way functions.

1.3 Our Contributions to Key Management
M ethods

Our contribution to the key management problem is an indirect approach
we call the HMAC-method. It is called the HMAC-method, because it is
based on hashed message authentication codes (HMACs) built from a fast,
single, dedicated hash function (SHA-1). It is intended to provide an efficient
indirect key management method for large access hierarchies resembhng tree
structures. We can achieve better key traversals using a technique we created
called pof/i oddnesstng. Roth oddressing aHows us to determine security class

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

relationships before generating keys and thus improve the responsiveness and
efficiency of a single function indirect key management scheme.

We also present our coched hey update scheme which is meant to provide
flexibility to our indirect approach by delaying unnecessary key updates when
changes to the structure of the access hierarchy are necessary, but the re-
calculation and re-assignment of keys would either be costly or inconvenient.
This can allow users within the security classes to continue working with
their present keys, but delay a key update to a more convenient time.

For access hierarchies represented as weakly/strongly connected directed
acyclic graphs, we suggest a modification to our path oddmssmg and key
derivation scheme which would allow our single function indirect approach
to be applied to hierarchies resembhng DAGs. The scheme we propose works,
but it is not optimal for all DAG hierarchies.

Finally, we discuss some pragmatic issues surrounding the applicabihty
and implementation of diriect and indirect approaches.

1.4 Thesis Outline
In chapter two, we provide a review on some topics in cryptography relevant
to understanding the design of key management methods. Chapter three
will discuss previous research in the field of key management in an access
hierarchy. We will show how key management solutions have evolved over
time and discuss the two most prominent approaches for key assignment
and derivation. In chapter four, we introduce our key management method
called the HMAC-method. In chapter five, we discuss some pragmatic issues
surrounding the applicability and implementation of direct and indirect ap­
proaches. Finally, we close with chapter six where we summarize our research
and suggest a direction of future research.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Relevant Topics in
Cryptography

To facilitate our discussion of key management methods, we review some
topics in cryptography that play an important role in the current research
into key management and in the method presented in this thesis. We cannot
replace a textbook or course on cryptography, so where a greater understand­
ing of theory is necessary, we refer the reader to the cited literature.

We shall review the following topics: one-way functions, the RSA cryp­
tosystem, hash functions, and message authentication codes.

2.1 One-Way Functions
One-way functions play a pivotal role in modem cryptography. They are im-
portant for creating public-key cryptosystems, message authentication codes,
hash functions, and digital signature schemes [27].

One-way functions are functions which are easy to compute but difficult
to inverse. That is, we look for problems that are computationally difficult to
solve in a reasonable amount of time; for example, the problem of factoring
a number A that is the composite of two large prime numbers [37]. As yet,
there is no polynomial time algorithm that can perform the prime factoriza-
tion of a number that is composed Rom sufficiently large prime factors [25].
To compose the number is easy, to factor it becomes difficult. Other com-
putationally difficult problems include the discrete logarithm within a finite
group, the graph colouring problem and the quadratic residue problem [25].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

One-way functions are excellent candidates for constructing cryptographic
schemes.

However, a question that still remains unanswered is whether one-way
functions are mathematically correct. There has never been any mathemat­
ical proof that one-way functions truly exist or that they can be constructed
[37]. To be clear, it is best to say that we coT êcture the one-wayedness of
a particular function or problem, knowing that in the future this may not
be the case. For example, someone may find a prime factorization algorithm
that runs in polynomial time; thus, the problem of factoring a number which
is the composite of two primes would become easy to solve and would no
longer be considered sufficiently one-way for use in a cryptosystem.

Let us examine how one-way functions can lead to higher constructions,
such as the RSA cryptosystem and hash functions.

2.2 The RSA Cryptosystem
Since first implemented in the Akl-Taylor method of key management, RSA’s
modular arithmetic equation has appeared in many key management meth-
ods[2], [18], [10], [19], [20].

RSA is a public-key (asymmetric) cryptosystem. Unlike traditional sym­
metric cryptosystems that use one secret key, RSA uses two keys - one for
encryption (a public key) and one for decryption (a secret key). It has been
designed in such a way that it is considered computationally infeasible to de­
duce one key from the other. The algorithms that produce public-key cryp­
tosystems are commonly referred to as trapdoor one-way functions. These
functions are similar to the one-way functions discussed in the previous sec­
tion; however, unlike true one-way functions, the inverse of the function is
computationally feasible to deduce using a known trapdoor.

RSA is built on the problem of factorization (Sec. 2.1). The RSA encryp­
tion function, E, is the function that is easy to compute while the decryp­
tion function, D, is computationally infeasible to deduce unless a trapdoor
is known. More formally, we may describe the RSA cryptosystem as follows
[39]:

Let n be the product of two unique large primes p and g. We define the
keyspace^ K of the cryptosystem to be

^The set of all possible keys.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

/C = (n,p, g, e, d) : m = pg, ed = 1 mod

where <̂ (m) = (p — l)(g — 1) is the Euler totient function of
For 1C = (n,p, q, e, d), we define the encryption function to be

= z" mod Ti, (2.1)

for some message x. The decryption function is

^x:(z/) = mod n, (2.2)
for some ciphertext y. The values n and e are public, while the values p,

g, and d are secret.

2.2.1 Security o f th e RSA Cryptosystem
As discussed, RSA is based on the conjecture that the factorization problem
is one-way. Therefore, it should be computationally infeasible for anyone else
but the proper recipient to decrypt the ciphertext. The trapdoor is knowing
the factorization of n = pg, known only to the recipient. Knowledge of the
trapdoor allows one to compute 4>{n) = (p — l)(g — 1) and use the Extended
Euclidean Algorithm [24] to compute the decryption exponent d for use in
(Eqn. 2.2).

Key management solutions that use the RSA modular exponentiation
equation rely on the one-way trapdoor conjecture of factorization. However,
there are known security attacks against RSA that one must be aware of
when using it to devise key management schemes. Some attackers try to
find ways of factoring n, while others will attempt to attack a flaw in an
implementation of the cryptosystem, and others may attack the protocol in
which RSA is being used [37], [25].

Because n and e are public, a rudimentary attack is to try to factor the
value of n in order to recover the decryption key d [39]. Currently, the best
known algorithm for factoring numbers is the Number Field Sieve (NFS)
algorithm [25]. Recently, NFS was used in the RSA Factoring Challenge
to factor an n value 576-bits (174 digits) long in seven months [25]. As a

^The totient function is defined as the number of positive integers which are relatively
prime to n. Two numbers are relatively prime if their greatest common divisor is 1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

consequence, RSA Laboratories now recommends using an n, value of 1024-
bits or longer [25]. An attacker could also try to randomly guess values of
d, but this brute force attack is far less efficient than using an algorithm like
NFS [37].

There are three other attacks which target implementation flaws that can
occur within RSA: low encryption exponent attack, low decryption exponent
attack, and the common modulus attack.

Low encryption exponent attacks exploit a weakness in RSA that occurs
when a low encryption exponent (e) value is used to encrypt e (e -I- l)/2
linearly independent messages, or e identical messages [37]. Similarly, if the
decryption exponent, d, is up to one-quarter the size of M and e < u, then d
could be recovered [37]. These attacks can be avoided by ensuring that all
RSA parameters are properly selected [37].

The common modulus attack is critical to RSA-based key management
solutions because many of them implement a connnon modulus as part of
their key assignment and derivation schemes. Consequently, designers of
RSA centric key management solutions are cautious of placing any critical
values as the residue within the modular exponentiation equation. We can
demonstrate the attack with a simple example.

Consider two people who share a common modulus n. The first person has
the encryption and decryption exponent, ei and d% respectively. Similarly,
the second person has his own encryption and decryption exponents, eg and
da respectively.

Let m be a plaintext message that both people will encrypt.

Cl = rrf^ mod n
C2 = mod n

(2.3)

Since an attacker knows the values of c%, cg, ei, eg and n, he may also
recover m.

Because ci and eg are relatively prime, you can use the extended Eu­
clidean algorithm to find parameters r and g such that

rci -f seg = 1

Using the extended Euclidean algorithm calculate ci"^. The message is
recovered with

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(ci) X câ = m mod n.

Two other attacks eilso exploit a common modulus [37]. One uses prob-
abilistic methods to factor n, while the other uses a deterministic algorithm
to calculate a secret key without factoring n. We refer you to [37] for details.

2.3 Hash FYmctions
Hash functions are a special form of one-way functions. A hash function,
H, takes a message^, M, of arbitrary finite length and generates a unique
fixed-length value, h, called a hash^. That is,

h = Ff(M).

In addition to the definition above, hash functions possess an additional
set of features [27]. They are as follows:

1. C om pression: H maps an input M of arbitrary finite length to a an
output h of fixed length.

2. E ase o f com putation: Given M, it is easy to compute h.

3. P reim age resistance: Given h, it is hard to compute M such that
R(M) = h.

4. 2 ^ -preim age resistomce; Given M, it is hard to find another mes­
sage, such that R(M) = Ff(M').

5. CofZision reststonce; It is hard to find two remdom messages, Af ^
such that H(M) = If(AR).

The last two constraints set hash functions apart from one another. These
constraints define the collision resistance properties of hash functions. A
collision occurs when a hash function produces the same message digest for
two different messages. Given that a hash function takes an arbitrary finite
length message of m-bits and produces a fixed n-bit message digest, where

^Also known as a
'‘Also known as a message digest or simply digest

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

n < m, the ingtance of collisions is unavoidable. Hash functions that meet
only the fourth constraint are known as weoWy collision resistant. This means
that if we know M, it should be difficult for us to use that knowledge to find
another message M ' which produces a coUision with M - h{M) = h{M').
Hash functions that adhere to the fifth constraint are known as strongly
collision-resistant. That is, it is computationally difficult to find two random
messages, not equal to one another, that will produce the same message
digest. A hash function that is atmngZy collision-resistant implies it is also
weoWy collision-resistant, but the reverse is not true [28].

2.3.1 Classification o f Hash Functions
Hash functions can be subdivided into two families:

modification detection codes (MDCs), and

• message authentication codes (MACs).

MDCs are typically used to provide a representative image (digest) of
some given input. MDCs are commonly used in digital signature schemes,
i.e., a digest is created for a message and the digest is encrypted with the
owner’s secret-key [37]. MDCs may be further classified as one-way func­
tions or collision resistant functions. The two categories differ depending
on the features they implement. One-way functions only provide features
(1-4)(Sec. 2.3), while collision resistant hash functions implement features
(1-5) (Sec. 2.3). Most of the strong hash functions used today are collision
resistant hash functions and are designed to implement all five features listed
in (Sec. 2.3).

The second family of hash functions, MACs, are known as keyed hash
functions. MACs can provide message authentication without reliance on
a secondary cryptographic construction. When a message digest is created
with a MAC, only parties holding the proper secret key may re-calculate and
verify the digest [27]. We continue our discussion on MACs in (Sec. 2.4).

2.3.2 Constructing Hash Functions
It is not easy to design colhsion resistant hash functions [28], [12], [37], [27].
First, the function should work for inputs of arbitrary finite length and pro­
duce a fixed-length digest. Second, the function should be one-way. Finally,

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the function should implement the collision resistance properties. Not sur­
prisingly, there are only a handful of collision-resistant hash functions that
have managed to withstand scrutiny [37], [27].

In general, a hash function is composed of three stages: a pre-processing
stage, an iterated processing stage, and a transformation stage (Figure 2.1).

f(M2)...f(Mn_i)
pre-processing

stage
Round Function

iterated processing stage

t (f (M n)) message
transformation d'Oest

stage

Figure 2.1: A general model of a hash function operating on a message M of
size n.

A hash function works on message blocks of size m-bits. In the prepro­
cessing stage, the message is padded to a multiple of m-bits (if necessary)
and concatenated to a message block indicating the unpadded length of the
message. This padding technique is known as MD strengthening [27]. The
compression function is iterated on the formatted message, where the input
to each round of the compression function is the intermediate message digest
{Hi-i) and the next message block, M^. The hash of the last message block
{Hi), undergoes a final transformation t{Hi) to become the message digest.

We may represent this process mathematically as

Ro = = /(Afi, h(-i); /i(z) = t(z),

where I V represents some predefined initialization value used to start the
hashing process.

The underlying compression function, / , is not limited to a particular
mathematical construction. In fact, many different constructions have been
proposed. Everything from cellular automata [12], [11], to algebraic matrices
[17], to modifications of the Merkle-Hellman knapsack algorithm [11]. How­
ever, many of these hash functions were found to be insecure [11], [37], [9].
The three most popular constructions used to build hash functions today are:
block ciphers, modular arithmetic, and dedicated hash functions.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Block Ciphers

Block ciphers, like DES, can be used to produce hash functions [27]. By
using a strong block cipher the supposition is that the hash function should
be as secure as the underlying block cipher, but that is not always the case
[30], [8], [41], [33], [38].

The compression function is built from the underlying block cipher en­
cryption function, R (Figure 2.2)). If given a message M of size n and a block
cipher whose block size is m, we may produce a message digest as follows
[27):

Preprocess M. Divide M into blocks the size of m.

Start the first round of hashing with some random initial value, IV,
and the first message block Mi.

The remaining intermediate digests are generated ty: Hi = Rr(K)
where the values of I, K, and T can be: R*_i, Af, @ ffi-i, or some
constant C.

Figure 2.2: The general construction of a hash function from a symmetric
block cipher.

Because the values of I, K, and T can be taken from the set A/,, Af̂ @
C, this provides the possibihty of 4 ̂= 64 different constructions for /()

[37]. Bart Preneel studied them all and found that fifteen of them are triv­
ially weak, thirty-seven are insecure, and the remaining twelve have varying
levels of security [37]. Of the twelve, four are secure against all attacks and
the remaining eight are secure against everything but a fixed-point attack
(Sec. 2.3.3) [37].

Block cipher hash functions are generally categorized according to the
size of the message digest they produce and the rate at which the hash is

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

calculated. Hash functions which produce message digests equal to the block
size, or twice the size of the underlying block cipher are called stngZe-Zengfh
and block cipher hash functions, respectively [27].

The rate of a hash function (r) measures the number of block encryptions
(s) required to process each successive n-bit message block. The rate is
calculated as: r = 1/g [27]. Thus, a hash function with a rate of 1/2 is twice
as slow to produce a message digest as a hash function of rate 1.

Single-block or double-block hash functions with a rate of 1 are the most
desirable because of the speed at which they can generate a message digest. In
practice, it is very difficult to develop double-block hash functions with rate
1; most have a rate < 1 [27] [31]. Also, research has shown that most single­
block hash functions with rate 1 created to date are not sufficiently strong
enough to withstand a collision (birthday) attack (Sec. 2.3.3) [31]. Recent
research by Knudsen, Lai, and Preneel also suggests that certain double-
block hash functions built from 64-bit block ciphers are also not sufficiently
strong enough to protect against a collision attack [23] [22].

In recent years, new block ciphers with block and key sizes greater than
128-bits have been introduced [38]. However, some research suggests that
not all of these new block ciphers are secure enough to use as hash functions
[38], [29]. Also, almost all have a hash rate < 1, making them less efficient
than their dedicated hash function counterparts, and in some instances, an
increase in key size can cause a decrease in performance [38].

M odular A rithm etic

The modular exponentiation arithmetic of the RSA cryptosystem can be
used as a hash function [37]. If the message to be hashed, M, is used in the
place of the residue; n is the modulo (the product of two primes p, q), and e
is relatively prime to (p — l)(g — 1), then the hash function becomes^

(M) = mod u.

Compromising the hash is as hard as factoring n. Compared to other
symmetric block cipher constructions and dedicated hash functions, RSA
modular arithmetic as a hash function is less efficient. Therefore, it is not
recommended to use RSA or RSA-like constructions as hash functions [37],
(251.

^H{M) is the hash value.

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

D edicated Hash Functions

Dedicated hash functions are specifically designed only to create message
digests. These functions are designed to compress and permute the input
message via a series of rounds. Rounds typically involve the bits of a message
block being XOR’d with one or more of the following values; the values of a
previous block, the values from an S-box or constant, or the values resulting
from a previous round [27]. The construction of each dedicated hash function
is unique; however, designing good dedicated hash functions is very hard [37].

The following is the number of reliable dedicated hash functions available
today [5]:

• MD5 (128-bit digest);

. SHA-1, SHA-256, SHA-384, SHA-512 (Secure Hash Standard);

® RlPEMD-128, RIPEMD-160;

• Tiger (optimized for 64-bit processors);

• WHIRLPOOL; and

• Subhash.

Dedicated hash functions are designed for speed and efficiency, and their
run-time performance in software is better than most block cipher and mod­
ular arithmetic hash functions [37], [25]. Table 2.1 from [32] highlights the
performance of dedicated hash functions with respect to one another and
with respect to symmetric block ciphers.

2.3.3 Security o f Hash Functions
Attacks on hash functions fall into one of the following categories [4]:

• attacks independent of the algorithm, and

• attacks dependent on the algorithm.

We shall quickly review both categories.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Algorithm Performance (Mbits/s)
Hash Functions

MD5 136.2
RJPEMD-128 77.6
RIPEMD-160 45.3
SHA-1 54.9
TIGER 34.9

Symmetric Block Ciphers
DES 16.9
IDEA 9.75
CAST 16.2
Blowfish 26.5

Table 2.1: Performance in Mbits/s of several hash functions and symmetric
block cipher hash functions.

Attacks Independent of the Algorithm

These attacks depend on the length of the message digest (m) and/or, in the
case of MACs (Sec. 2.4), the key length {I). Such attacks are the coUision
(birthday) attack, the exhaustive key search attack, the preimage (random)
attack, and the pseudo attack [4].

The coUision (birthday) attack examines the probability of producing two
equivalent message digests from the same hash function [39]. For example,
given a hash function, h : X —* Y , n — |X| > m = \2Y\ we can see that the
probability of coUision is at least | . To find a coUision, we choose k random
values of xeX, compute h{x) = z, zeZ, and see if a coUision results. The
lower bound on the probabiUty of coUision is dependent on k and n, but not
m [39]. Stinson shows that if the estimate for this lower bound is taken to
be 50% then k % 1.17y/n. That is, if we hash at least l.lT y^n) random
z's, the probabiUty of a coUision occurring wiU be % 50%. Stinson provides
a complete treatment of the attack, so we refer the reader to [39] for more
detaU.

In general, MDCs which produce larger message digests are less suscep-
tible to the coUision attack [27]. Much of the literature agrees that hash
functions producing digests larger than 128-bits are computationaUy secure
for the time being [27], [37]. The general principle is that given a hash

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

function with a digest length of ?7t-bits, the time complexity of a successful
collision attack is given as 0(2"^/^) [27].

The exhaustive key search attack applies only to MACs (Sec. 2.4). If
an attacker can obtain a {message,digest) pair, then it is possible for him
to perform an exhaustive key search to find a key that transforms the mes-
soge into the corresponding digest [4]. Since collisions in hash functions are
unavoidable, it is theoretically possible to find more than one valid key. Gen­
erally, if the key Z-bits in size, then the probability of an attacker finding the
correct key is 2" ̂ However, in some instances if the attacker has access to
a suKciently large number of (massoge, digest) pairs created with the same
key, then the search space for keys could be reduced [4].

In the preimage (random) attack, an attacker chooses a message at ran­
dom and hopes that the digest he produces is equal to the authentic one [4].
The probability of success for this attack is 2“’”, where m is the length of
the message digest. To thwart this attack, it is recommended to use hash
functions that produce digests longer than 64-bits [39], [27], [37].

Finally, the pseudo attack tries to find a pseudo key that wül produce the
same MAC digest as an authentic {key,message) pair [4]. The goal for the
attacker is to try to find a key that could possibly identify him as a legitimate
holder of the authentic secret key. As noted in [4], this does not mean that the
pseudo key will produce valid digests for other {key,message) pairs. Rather,
the attacker is seeking evidence of authority by using a fraudulent key instead
of the authentic one. The probability of success for this attack is similar to
the exhaustive key search attack [4].

A ttacks Dependent on th e Algorithm

These attacks target specific weaknesses in specific hash function construc­
tions. There are four categories of attack: meet-in-the-middle, correcting
block, fixed-point, and differential cryptanalysis [4].

A meet-in-the-middle attack is a variation of the birthday attack [4]. It
can be applied to hash functions whose compression functions are invertible
on intermediate digests Hi or message block Mj. The goal is to produce
a fraudulent message that will produce the original message digest [4]. To
start, the attacker chooses some initial value, TV, and generates the first in-
termediate digest, Hi = f{IV,Mi) . Working backward, the attacker inverts
the compression function on the authentic digest to recover the last authentic
message block and the last intermediate digest Hm_i. The attack contin-

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ues until it meets in the middle. Then, the chaining variables are compared.
The probability that the chaining variables are the same is

f « 1 -

where m is the length of the message digest [4] and X\, X2 are the num-
ber of forward and backward samples the attacker undertakes. If chaining
variables match, then the concatenation of the all the fraudulent and recov­
ered message blocks form a collision on M. This attack can be thwarted by
carefully choosing compression functions that are not easily inverted, or by
using a transformation function that is difficult to invert [4].

The correcting block attack attempts to change one or more message
blocks, without affecting the message digest [4]. Den Boer and Bosselaers
successfully used this attack against one round of MD5 [13]. A method to
help thwart this attack is to ensure that all bits of the message digest are de­
pendent on all bits of the message blocks [13]. Dobbertin [14] demonstrated
how changing the recommended initialization variable (IV) to the compres-
sion function of the dedicated hash function MD5 could result in unwanted
collisions. Dobbertin’s attack creates suspiciouns around MD5 [37] and since
then, designers are cautious of modifying the parameters of dedicated hash
functions [37].

In the fixed-point attack, an attacker looks for a particular chaining vari­
able i7i_i, such that /(/7j_i, Mi) = That is, the message block and
compression function has no effect on the chaining variable [4] — a fixed-
point. A fixed-point allows an attacker to substitute a fraudulent message
block at each fixed-point location. One can overcome this attack by adding
redundancy to the hash function in a similar manner one would use to thwart
the correcting block attack [4].

Finally, differential cryptanalysis was first proposed by Biham and Shamir
[8], who demonstrated how the technique could be used to compromise a
reduced version of DES, a full 16 round version of DES, and the hash func­
tions SNEFRU and N-HASH. Using differential cryptanalysis, an attacker
monitors the input and output of a hash function on a chosen set of {mes­
sage, digest) pairs. By studying how a specific difference in the message affects
the digest, the attacker can gain information about the underlying block ci-
pher or compression function [8]. In hash functions, one can use differential
cryptanalysis to deduce collisions. Berson showed how the technique could
be applied to produce a collision on a single round of MD5 [7]. Unlike other

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

attacks, one cannot easily thwart differential cryptanalysis. A hash function's
ability to thwart such an attack is dependent on the underlying strength of
the bashing process and compression function [4].

2.4 M essage Authentication Codes
Message authentication codes (MACs) are keyed collision resistant hash func­
tions. Their properties eue similar to those of regular hash functions, but the
message digest is also dependent on a secret key [6]. All parties wishing to
verify the message digest must possess the secret key [27] [6].

As noted in [37], MACs are typically used to verify file transfers or to
provide message authenticity without the need of an additional cryptosystem.
For example, Alice and Bob share a secret key K. Alice calculates a MAC
digest using K on some file. Alice transfers the digest and the file to Bob.
Assuming that no one else has obtained Æ, only Bob may verify the digest.
And, since he knows the key is only shared between him and Alice, Bob is
assured that if the two digests match, then Alice is likely the source of the
file. If the digests do not match. Bob will suspect tampering.

Because MAC codes are simply keyed hash functions, their constructions
are rather trivial [27]. We simply introduce a key at some step in the process.
There are two common types of message authentication codes: dedicated
hash function based and block-cipher based [37].

2.4.1 Block Cipher Based MAC
We have discussed the properties of block ciphers as hash functions in (Sec. 2.3.2).
To extend these hash function constructions to MACs, we use the block ci­
pher in cipher block chaining mode (CBC) and use the key to encrypt each
message block as it goes through a round. The last encrypted message block
becomes the message digest [27], [39].

2.4.2 Dedicated Hash Functions
One may use dedicated hash functions, like MD5 and SHA-1, as a MAC.
The resulting construction is often called a Hashed Message Authentication
Code (HMAC) [6]. To use a dedicated hash function as a MAC, one must

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

simply concatenate the key to the message in some fashion and calculate the
message digest. For example,

H = (AT, M).

Preneel notes that this basic construction may not be secure if an attacker
can obtain enough digests calculated with the same key [37] [33]. One can
employ certain techniques to strengthen HMACs, and we shall discuss those
issues in the next section.

2.4.3 Security o f M essage A uthentication Codes
The security of a message authentication code hinges upon the security of
the underlying hash function and the security of the key.

As alluded to in the previous section, MACs built from dedicated hash
functions depend on both the security of the underlying hash function and
the concatenation of the key with the message.

Bart Preneel studied HMAC constructions and found that certain con-
structions such as Ff(M, A), If (A, M, FT), and Ff(FTi, M, Ag) (where Ai and
K 2 are different) could be compromised if an attacker obtained many mes­
sage digests calculated with the same key [33]. In response, he recommends
the following constructions [37] [33]:

. A(Ai,A(A2,M))

' A(A,A(AT,M))

- Ff(A,p, M, A), where p pads K to a full message block.

For dedicated hash functions, Preneel has created MDx-MAC [33], a
strengthening technique that can harden dedicated hash functions against
key recovery attacks with only a slight decrease in digest throughput [33].

2.5 Summary
The key management methods based on the direct approach of key assign­
ment and derivation functions use the RSA modular exponentiation eilgo-
rithm. As discussed, this algorithm represents a trap-door one-way function
whose strength is dependent on the factorization of a well chosen modulus.

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In lien of recent factorization results, RSA recommends using moduli larger
than 576-bits. When parameters for the function are chosen, the user should
take care to ensure secret information is not compromised with a common
modulus attack, low exponent attack, or low decryption exponent attack.

Key management methods based on the indirect approach of key assign-
ment and derivation use other one-way functions, but hash functions are
common. A hash function's security rehes heavily on the underlying pre­
processing stage and compression function. Consequently, developing hash
functions is still a challenge. Some hash functions are more susceptible than
others to certeiin attacks, so careful consideration must be taken when choos-
ing an appropriate hash function. In general, hash functions with larger
digests are more secure. Given the inefficiency of modular arithmetic, and
the performance of block ciphers, dedicated hash functions are more favoured
when a reliable, secure, and efficient hash function is required. However, the
number of dedicated hash functions available for use today is limited.

The HMAC-method we propose in this thesis uses message authentication
codes built from dedicated hash functions (HMACs). Message authentica-
tion codes concatenate a key along with the pre-image to produce a digest.
Only users holding the appropriate key may compute and verify the digest.
Certain attacks exist on message digests, but these occur under special cir­
cumstances. If such circumstances arise, certain constructions can be used to
thwart the attack, or one may use Preneel's MDx-MAC method to strengthen
the HMACs security.

Now that we have reviewed the relevant topics in cryptography, we may
examine previous research into the key management problem. In chapter
three, we will see how RSA and hash functions have been apphed to the key
management problem.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Previous Research

3.1 Introduction
This chapter presents the previous research in the field of key management
for access hierarchies. We will cover both the direct and indirect approaches
to key management that have been proposed and shown to be secure.

3.2 Direct versus Indirect Approaches
All direct approaches to key management proposed thus far build on the
Akl-Taylor method [3]. That is, using RSA’s modular exponentiation arith­
metic and a set of public parameters, a user in a principal security class can
directly calculate the key belonging to a subordinate security class, provided
the principal has the authority to do so. With limitations in the Akl-Taylor
method, new proposals suggest new algorithms for assigning parameters to
security classes, and using those parameters within the modular exponenti­
ation equation to generate and derive keys.

The indirect approaches to key management focus on devising schemes in
which other one-way functions are used as the key derivation algorithm. Most
methods propose a recursive traversal of the hierarchy and the key derivation
method applies some public identifier and principal key to the inputs of one
or several one-way functions.

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.3 Direct Approaches to Key Management
using RSA

Akl and Taylor first proposed the problem of key management in an access
hierarchy [2]. The goal then was to devise a method in which each security
class within an access hierarchy maintains a m inim um number of keys, but
can derive keys of subordinate classes through a set of public parameters
and known cryptographic algorithms. Their method was based on RSA's
modular exponentiation encryption function (Sec. 2.2). We shall discuss how
their model performed, its advantages and disadvantages and how others have
modified their work to produce new RSA-based key management methods.

3.3.1 The Akl-Taylor M ethod o f K ey M anagement
The Akl-Taylor method of key management [3] starts with a few assumptions:

* The access hierarchy is controlled by some trusted central authority
(CA) responsible for marshaling and monitoring all actions performed
within the hierarchy and amongst security classes. It is assumed that
the CA is a secure environment that provides no viable communication
channel vulnerable to attack.

• All users within the access hierarchy are divided into security classes,
SC = S C i, . . . , SCn, which are partially ordered by the binary relation
< The resulting relations, SCj < SCi, means that users belonging to
security class SCi have access to information stored at the subordinate
security class SCj] however, the reverse relation does not hold. That
is, subordinates are not allowed access to information stored at the
principal (SCi).

The key assignment and transformation scheme is devised as follows. A
random secret key, Kq is generated and assigned to the CA. The CA generates
a value, A , where A = pg and p, g are prime. This value will be used as
a common modulus in the key transformation function. Next, each security
class in the hierarchy is assigned a distinct prime number and unique public
parameter (PB) so that PBi | P Bj if and only if SCj < SCi. The PBs
are computed by the algorithm

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

= II ^
where e, is the distinct prime number assigned to SCi. An example of the
prime number assignment and P B calculation is shown in (Figure 3.1) and
listed in (Table 3.1).

SC
P, = 7

SC
P. = 11

SC

PB, = 42

SC sc

PB = 4 2 9 0

PB =130

PB =2310PB, =2730

PB, = 2

SC
P. = 13

Figure 3.1: Public parameter assignment within the Akl-Taylor method.

Keys are then assigned to security classes using a key generation and
transformation function based on RSA’s modular exponentiation (Sec. 2.2):

K,. = mod AT. (3.1)

Thus, for a user in security class SCi to derive the key of a subordinate
class, SCj, SCi must use (Eqn. 3.1), his key (Ki), and obtain from the CA
the appropriate pubhc parameters AT). If then is
principal to 5'Cj and (Eqn. 3.1) will successfully derive Kj.

The security of the Akl-Taylor method is sound [2], [3], [26], [18]. Since

gcd(P B i, P B j) 7̂ 1,

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Security Class 5*^ Prime e* PuNicPPf
7 4230 = 62 X eg X 64 X 65 X eg
11 2730 = 6 i X 63 X 64 X 65 X 6g

a-Cs 13 2310 = 61 X 62 X 64 X 65 X 6g
g Q 3 130 = 63 X 65 X 6g

5 42 = 63 X 64 X 6g
(CA) 2 2 = 6 g

Table 3.1: Prime number assignment and public parameter calculation for
the Akl-Taylor hierarchy shown in (Figure 3.1).

where gcd represents the greatest common divisor, the common modulus
attack (Sec. 2.2.1) cannot be used to recover the master key, Kq, from
(Elqn. 3.1). Thus, the security of the system equal to that of RSA.

However, the Akl-Taylor method was not without its faults. First, the
method does not allow for the efficient addition of security classes to the hier­
archy [1], [3], [18], [20]. For each security class added into the hierarchy, one
must undertake a whole new round of public parameter calculation and key
assignment [1], [3], [18], [20] [34]. Also, the method used to assign and calcu­
late PBs results in values that quickly grow as the number of security classes
in the hierarchy increases [1]. MacKinnon and Akl show that for hierarchies
that contain as few as twenty security classes, the largest public parameter
generated and stored will be 278970415063349480483707695 [1]. Thus, they
concluded their assignment of PBs to security classes would be inefficient
for larger hierarchies [1], [20]. In the following years, MacKinnon and Akl
devised new methods for the efficient generation and assignment of public
parameters. In the following years, they discovered two new methods [1].
One method was susceptible to a collaborative attack, but the other showed
promising results. However, this second algorithm was still not optimal [1].
Soon after, MacKinnon et al. derived, what they called, the canonical as­
signment method, which somewhat reduced the size public parameters, but
not enough when the hierarchy contained many classes [1], [18]. In addtion,
it was difficult to find an optimal canonical algorithm that could make an
optimal assignment for all hierarchies [26], [20]. Thus, the problem of gen­
erating and assigning PBs was left open. So too was the problem of adding
security classes in an efficient fashion.

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In subsequent years, new direct key management methods built upon
the work of the Akl-Taylor method. Most of these new methods propose
new procedures of assigning and generating public parameters, which try
to improve the efficiency of public parameter storage, and the addition and
removal of security classes to the underlying hierarchy. For the purpose of
brevity, we shall only highlight those changes to the Akl-Taylor model that
result in a new and secure key management system and refer the reader to
the literature for further deteiils.

3.3.2 Other RSA Based K ey M anagem ent M ethods
Ham and Lin proposed the first modification to the Akl-Taylor method [18].
Their improvement came in the way the PBs were calculated and security
keys were generated. As shown in (Figure 3.1), the Akl-Taylor method as­
signs prime numbers and calculates P Bs in a top-down fashion. The Harn-
Lin method proposed the opposite - they calculated the PHs and derived
the keys from the bottom-up. This simple change to the system allowed for a
method to add classes, and removed the necessity for a secret key controlled
by the CA.

In the Hara-Lin method, security classes may be removed without any
overhead. However, additions were stiU not efficiently accommodated [18].
If a security class was added to any position within the hierarchy, then all
security classes principal to the added class would require new prime num­
bers, new public parameters, and new keys. Harn-Lin commented that their
method was more storage efficient for pubhc parameters than the Akl-Taylor
method [18]. However, as commented by Hwang, the improvement was not
significant [20]. As the number of security classes increases, more prime num­
bers are needed and stored and the public parameters continue to grow in
size. Overall, the achievement of the Harn-Lin scheme is its ability to add se­
curity classes without affecting all portions of the hierarchy and the removal
of a secret key Kq held by the CA.

Within their method Ham and Lin made slight modifications to the key
generation function. The CA still generates a common modulus N as before,
but the CA no longer generates a random secret key Ao. Rather, the CA
chooses Ko as a value in the range [2 ... N — 1] and makes it public. Each
security class receives a prime number e* whose multiplicative inverse
is calculated by:

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

d = e ̂ mod

where (̂7V) represents the Enler totient of N (Sec. 2.2). To assign a key to
required a public parameter f such that:

n
The key was then generated using

j J l s C j < s C i 4 mod ^ N)
Ki = Kq ' mod A.

For a principal security class SCi to derive the key of its subordinate,
SCj, the key transformation function becomes

Kj = mod K.

With these modifications to the Akl-Taylor method. Ham and Lin still
thwart the common modulus attack because the recoverable value K q is al­
ready public [18]. Thus, their system is as secure as RSA.

Following Harn-Lin, Chick and Tavares proposed their variation of the
Akl-Taylor method [10]. Their system did not require security classes and
did not assign a master key to the CA. They modified the access hierarchy
to define the binary relation < on the set of services, S \ , , Sn, provided
by a system. The resulting relationship, Sj < Si, means that if a user is
granted privileges to the services of Si, he is also conferred the services of
Sj. Further, each service is assigned an access key, SKi, also subject to the
binary relation < That is, SK j < SKi, indicates that service key SK j can
be derived from service key SKi.

The master key (MK) is re-defined as a compact representation of a
subset of services. For any master key, M Ki, the relation SK j < M Ki
indicates that the master key can derive the service keys for the specified
subset of services. The master keys are managed, but not assigned to the
CA. To use the computer system, a user must be assigned an appropriate
master key that he can use to derive service keys for his required services.

Assignment of prime numbers (e) and pubhc parameters (BB) is sim ilar
to the Akl-Taylor model, and we refer the reader to [10] for specific details.
The noticeable additions are the pubhc parameter T defined as

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

r = n
N

— 1 T Cri)
n=l

where N is the number of primes generated by the CA, and the public pa-
rameter Uj, defined for each MKy as

A master key is defined as

To calculate a service key, from its master key, M K,, the generation
equation as follows:

= iff SK* < MKj

Thus, any user who is assigned a master key M K j can use this master
key and the appropriate public parameters to derive the service key, SKi, for
all services SKi < M K j.

The Chick-Tavares key management method is unique amongst all RSA
based methods, because it is the only one that does not use a hierarchy
of security classes. Rather, the users’ access to objects and information is
limited to the services provided by their master key [10]. However, if a
new service is added to the hierarchy, or someone required access to a new
service, the master key belonging to the service subset would have to be
recalculated. Also note that the size of the service keys can be rather large
if a user is holding access to many services. This could be inefficient if one
uses only some services within the subset very sparingly. The Chick-Tavares
method is as secure as the Akl-Taylor method. Users cannot collaborate to
recover keys - Ko is pubhc. Thus, the strength of the overah system is equal
to that of RSA [10].

In more recent years, the research of Ham-Lin has inspired others to find
different ways in which to assign pubhc parameters to the hierarchy of users,

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and the ways in which to use the RSA modular exponentiation function
for key generation and transformation. What follows is a discussion of this
research, and the proposed methods.

Hwang and Yang [20] proposed a variation on the Akl-Taylor method
that attempts to reduce the magnitude of the prime numbers and thus, the
amount of storage required for pubhc parameters. They did this by adopting
Ham and Lin’s method of bottom-up assignment [18] and by using composed
prime sets to reduce the number of primes required and the magnitude of
the pubhc parameters [20].

Their approach views the access hierarchy as a tree where the most prin-
cipal security class is the root and the most subordinate are the leaves. Key
generation and assignment proceeds as follows [2 0]:

The CA chooses two large prime numbers p and q and computes the
public parameter N = pq, where p and q are secret and N is pubhc.

#

The CA chooses a pubhc parameter p between [2 ... TV — 1] such that
p and Af are relatively prime.

The CA selects a set of primes Cj and calculates the multiphcative
inverse di for each prime.

Each leaf class is assigned a composed prime set, z,, which is not a
subset of zi if SCi ^ SCi. SCi and SCi are leaf security classes. The
CA stores the composed prime set for each leaf-class.

The CA assigns to each non-leaf security class, SCi, a distinct prime
number ê . BQ is assigned a composed prime set T* which is a union of
its e* and the composed prime set of all its direct subordinate classes.

The CA calculates a pubhc parameter BB* and secret key for each
leaf security class SC f

where e/ E z* and /(.) is a one-way function. To thwart the com­
mon modulus attack, Hwang and Yiang discard BB* and Kj if BB^Kj
mod (̂ (AT).

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The CA calculates a public parameter BBj and secret keys for all
non-leaf security classes BCj.

ei

K j = mod^M niod K ,

where e; E Zy and df is the multiphcative inverse of each e;.

Finally, if a security class wishes to derive the secret key, K, of a subor-
dinate class, the formulas are:

f mod Af, if SC* is a leaf class,
(A7 mod Af, if SC* is a non-leaf class.

The size and storage requirements for prime numbers and pubhc param-
eters is smaller than many of the RSA-based methods reviewed thus far. For
example, an access hierarchy with one thousand security classes under the
Akl-Taylor method would require one thousand distinct prime numbers and
would result in very large pubhc parameters [3], [20]. For certain structures
of hierarchies, Hwang and Yang’s scheme can greatly reduce the number of
unique prime numbers; thus, the size of the public parameters can be kept
much smaUer. Consequently, less storage is needed for the pubhc parameters,
but there is the added requirement of having to store the composed prime
set for each leaf-class. Hwang determines the size of a leaf’s composed prime
set, by using the equation

Z/= I ^ Pi + Ua 4- Tk,
\for ah LC* /

where:

• LGi is the ^ leaf-group. A leaf-group is any security class that is the
direct ancestor of a leaf security class (Figure 3.2). The numbers of
members belonging to TG is denoted as u/g.

ĝ* is a number such that > u;g, where t denotes the number of
primes that (hstinguish a leaf security class from each leaf group.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Mo denotes the number of leaf security classes which have two or more
immediate ancestors, and % denotes the number of non-leaf security
classes in the hierarchy.

Leaf groups

Leaf

Figure 3.2: Graph illustrating Hwang-Yang leaf-group and leaf-classes.

Addition and removal of security classes is also possible, but certain ad­
ditions can create the need for key regeneration on large sub-portions of the
hierarchy [20]. When additions are made as leaf-classes the CA must ensure
that the composed prime set assigned to the new class does not match any of
the other composed prime sets. Also, all security classes principal and acces­
sible to the added security class must have new public parameters calculated
and keys assigned [20]. Further, in hierarchies where a large number of leaf-
classes have more than one direct principal class, the Hwang-Yang method
can be no more efficient than the Harn-Lin method, and any efficiencies that
the composed prime sets brought is lost.

As noted earlier, the Hwang-Yang method of key management takes great
caution to generate proper values so as to foil common modulus attacks.
Hwang and Yang conjecture that the security of their method is as strong as
the underlying RSA prime factorization problem.

Finally, we review a recent solution proposed by Ray et al. [34]. The
solution proposed by Ray is best described with a diagram (Figure 3.3). In
(Figure 3.3), we see an access hierarchy consisting of five security classes.
Table 3.2 shows how the method proposed by Ray e(ol. assigns keys to the
security classes in the hierarchy.

Each security class the hierarchy has a key which is composed from the
moduli of its principals. For each 5'C, < the modulus is calculated
using the procedure,

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.3: A simple access hierarchy.

Person Assigned Security Key
1 = (e, di, Ai)
2 Kg = (e, da, A% x A)̂
3 Ks = (e, da, Ai x A)̂
4 K i = (e, di, Ai X Aa x A4)
5 Ag = (e, dg, Ai X A3 X Ag)

Table 3.2: Ray’s key assignment scheme.

/ = r X Ai for a random factor r, such that
gcd(/, Ap) = 1 for some random Ay, such that

A; = Ar X / .

Once the modulus has been determined for the security class, a decryption
key is calculated using the public exponent e and the class modulus, such
that

ejdj = 1 mod < (̂A;).

With each security class receiving a decryption key d, modulus A and
public exponent e, the authors propose using this scheme with RSA (Sec. 2.2)
to encrypt and decrypt information shared amongst members of the hierar­
chy.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ray e(oZ.’s method hag the possibility of defin ing access requirements
that do not match the access hierarchy’s organization. For example, if 2 is
not allowed access to 4’s information, then 4’s key should not be composed
using 2 ’s modulus (Figure 3.3). By generating keys from a subset of moduli,
one can essentially compose multiple access restrictions to information and
security classes [34].

Ray et of. state that the security, stability, and efficiency of the overall
system has yet to be proven and tested [34]. In our examination of their
method, we noted that most of the examples given in their research dealt with
very small shallow hierarchies; thus, keys were composed from a few moduli.
However, as the hierarchy becomes broader and deeper, the magnitude of
the moduli increase as does the size of the decryption keys. If RSA is to
be used as the underlying cryptosystem, larger keys will cause a decrease in
performance of RSA [25], [34]. In response to this concern, the researchers
suggest using methods, such as Fast Fourier Transforms, to speed encryption
and key generation [34], although these solutions have yet to be tested. While
this is a logical approach to the problem of large keys, we feel this approach
has practical applications to only small shallow security hierarchies.

In terms of security, Ray et al.'s method is resistant to the the common
modulus attack [34] and should be as secure as RSA. However, e must be
sufficiently large or else a low-exponent attack (Sec. 2 .2 .1) is possible [34],
[37].

3.4 Indirect Approaches to Key Management
using One-Way Functions

The solutions we examine in this section differ from the RSA-based solutions
in that the key derivation schemes all manifest an indirect key derivation
behaviour. That is, for a principal security class to derive the key of a subor­
dinate, some recursive procedure is executed until the desired key is derived.
This is in contrast to the RSA-methods that allow security classes direct ac­
cess to another security class’s secret key via a set of public parameters into
the RSA modular exponentiation function. Surprisingly, little research and
experimentation has been done in the eirea of indirect key derivation con­
structions, and we believe there may be room for efficiency improvements.
Thus, we will review the solutions proposed to date.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.4.1 Sandhu's Indirect Approach
Sandhu proposed a method of key management on an access hierarchy repre-
sented as a simple tree [36]. Following the same assumptions as Akl-Taylor,
Sandhu was the first to propose a recursive or indirect method of key deriva­
tion based on one-way function families [36].

His method used DES encryption as the key generation and derivation
function. The key assignment and derivation scheme proceeds as follows:

• The security class hierarchy is represented as a simple tree. That is,
there are no subordinate classes with more than one principal class.

» The CA is assigned to the highest security class in the hierarchy (root
of the tree).

• The CA generates for itself a random key, K q .

• If security class SCi is an immediate subordinate of security class SCj,
then the key assigned to SCi is,

Ki = E kj {name{SCi)).

Here, E is the DES encryption function operating on the message block
name{SCi) (the name of the security class) with a key of Kj (belonging to
SCj). The 64-bit ciphertext from DES becomes the key, Ki, assigned to
security class SCi.

At the time, Sandhu raised concerns over the efficiency, block size, key
size, and ciphertext size of DES [36]. DES operates on a 56-bit key, but each
round of DES produces an output that is 64-bits long [37]. This output be­
comes the key for the next subordinate. Thus, the output must be reduced to
a 56-bit key. Sandhu noted that there existed a possibility that a degeneracy
of keys from 64-bits asssigned to the security class to 56-bits used in DES
may result in a collision of keys and a breach of security [36]. As for the
names assigned to security classes, names larger than 64-bits was discour­
aged because that would require additional rounds of DES which would lead
to a decrease in key generation and derivation performance [36]. However,
research suggests that single round DES used in this manner is vulnerable to
differential cryptanalysis [8]; thus, keys could be recovered.

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We also note that Sandhn’s method of traversal to generate keys does
not verify access relationships before commencing the traversal [36]. In this
sense, traversals to security classes where access relationships fail to exist
consume time in generating no viable key. In design of our HMAC - method,
we propose a solution that can verify these access relationships before we
start generating the key.

3.4.2 Yang's Indirect Approach
Recently, Yang proposed a key management method for object-oriented role-
based access control hierarchies [42].

To begin, Yang defines a set of one-way hash functions

= { ^ 1 , ^ 2 , . . . , An},

where n is the maximum number of direct subordinate roles present in the
hierarchy. Each hash function obeys the properties set forth in (Sec. 2.3).
Key assignment proceeds as follows:

• For each role not part of the hierarchy, the CA generates a random key
K and assigns it to the role.

• For each role that is part of the hierarchy, but does not have a principal
role, the CA assigns a random key Kroie-

• If a role Rj has only one direct principal role, E4 , and Rj is the
subordinate of Ri, then the key for Rj will be A,(A%).

• If a role Aj has more than one direct principal role, and A, is the
direct subordinate of its left-most parent, direct subordinate of Am,
and k*'̂ direct subordinate of A ,̂ then the key for Rj becomes
A<(Aj(KA«) , . . . ,Aj(KA„,) , . . . ,Ak(K%,)) , 1 < < n.

Yang’s method of key management is as secure as the underlying hash
functions used in Ti.. It also improves upon Ravi Sandhu’s method because
hierarchies other than simple trees can be represented [42]. However, we be­
lieve there may be some implementation issues with the method that should
be addressed.

For example, in implementing this method one would likely prefer to use
the fastest hash functions available - dedicated hash functions. However,

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as noted in (Sec. 2.3.2) there are only a small number of dedicated hash
functions available. If the maximmn number of direct subordinate roles of a
single role does not exceed the number of dedicated hash functions available,
we may benefit from their use. Any more, and alternatives must be sought.

The first alternative would be to build more dedicated hash functions. As
discussed in (Sec. 2.3), building secure dedicated hash functions is hard, and
modifying existing ones could lead to an undermining of security (Sec. 2.3.3).
Our next alternative would be to use block cipher hash functions (Sec. 2.3.2).
The benefit with using the block cipher hash functions is that only one block
cipher algorithm is required. Multiple hash functions can be created by
simply changing the initialization value given to the block cipher (Sec. 2.3.2).
This solution seems more favourable, but the penalty is that performance of
block cipher hash functions is typically half that of dedicated hash functions
[33] [35] [32] (Sec. 2.3.2), which will lead to slower key throughput if long tree
traversals are required to generate keys. Also, not every block cipher can be
used as a hash function, so particular attention must be paid to the inner
workings of the cipher and its suitability as a hash function before being
implemented [29] [38].

Also, in studying Yang’s method, it appears that some time could be
consumed trying to verify role relationships before generating a key. In Fig­
ure 3.4, we show a position role hierarchy where each position role is labeled
with its position relative to its principal role. In Yang’s method, positions
from the left of a principal role determine which hash functions from Ji are
required to generate the position role’s key. From this hierarchy, it seems
hard for B to efficiently verify his access to F unless he examines a diagram
or representation of the hierarchy. If a public parameter for F could return
its relative child position, 1, B would generate the key for D. If the public pa­
rameter returned F ’s relative position from the root (2 ,1), B would generate
the key for H. Two keys which are both incorrect. An alternative strategy
could be for B to search all his subordinates for F, finding nothing, or for the
search to start from F and stop at A if B was not found. In either situation,
generating the wrong keys and performing exhaustive searches could become
time consuming if they are frequent, or if the hierarchy is broad and deep.

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.4: A simple hierarchy showing relative subordinate-principal posi­
tions.

3.5 Summary
We have discussed the two major approaches to the problem of key manage­
ment in a hierarchy. Much of the research has been focused on modifying
the Akl-Taylor model of using RSA modular exponentiation. Models foUow-
ing the Akl-Taylor method tackle problems with the assignment of prime
numbers, storage of prime numbers and public parameters, and addition and
removal of security classes from the hierarchy. The merit of these solutions
is that one can easily verify principal-subordinate relationships in order to
derive keys.

Indirect key derivation solutions rely on the structure of the hierarchy
to provide key generation and derivation techniques. Sandhu’s proposed
method and approach is inefficient for large hierarchies, and the use of DES is
questionable in both security and performance. Yang’s method is unique, but
its performance within hierarchies may degrade if long principal-subordinate
paths must be searched to verify access and generate a key.

The method we present in the next chapter is not concerned with adding
yet another RSA approach. Rather, we believe there may still be room to
improve indirect methods of key derivation. In the chapter four, we introduce
our HMAC-method and our enhancements that may help to improve the
efficiency of indirect key derivation methods.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

K ey M anagem ent Using
HM ACs

4.1 Introduction
Our contribution to the key management problem is a method we developed
called the HMAC-method. The HMAC-method is an indirect key approach
concerned with improving the efficiency of generating and deriving keys in
a tree structured access hierarchy. Our method uses HMAC constructions
(Sec. 2.4) built from a single and secure fast hash function, SHA-1.

In comparison to previous indirect approaches ((Sec. 3.4)), our method
improves key generation through the use of accessibihty queries using a tech­
nique we call path addressing. Also, by using SHA-1, we can keep key sizes
small (160-bits) without sacrificing their security (Sec. 4.2.2). However, the
method is also very flexible. We use only one hash function, so should con­
cerns be raised over the use of SHA-1 or 160-bit keys, we can substitute
SHA-1 with a better hash function without affecting our key generating and
derivation procedures.

During the development of the HMAC-method, we faced issues that pre­
vious researchers faced: namely, the efficient addition and removal of security
classes to and from the hierarchy, and accommodation of indirect approaches
to security hierarchies structured as weakly/strongly directed acyclic graphs.
With that, we present our scheme to dealing with the key update problem
through a technique we devised called the coched tey update strategy, and
we present a modified potA addressing scheme which attempts to address

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the problem of traversing hierarchies that are structured as weakly/strongly
connected directed acyclic graphs.

4.2 The HM AC-m ethod
We begin with a set of assumptions:

The access hierarchy is defined and controlled by some trusted central
authority (CA). It is assumed that the CA is in a secure environment
that provides no viable communication channel vulnerable to attack.

AU users within the CA’s environment are divided into security classes,
SC = S C i , . . . , SCn, which are partially ordered by the binary relation
< The resulting relations, SCj < SCi, means that users belonging to
security class SCj have access to information stored at the subordinate
security class AC,; however, the reverse relation does not hold. That
is, subordinates are not allowed access to information stored at the
principal (SCi).

• Users belonging to a security class SCi only know direct relationships.
That is, members in SCi know who their direct principal security class
(SCp) is, and who their direct subordinate classes (SCg) are.

• For now, we assume the hierarchy is represented as a simple tree. That
is, no security class has more than one direct principal security class,
and the most principal security class is located at the root of the tree.
Later, we modify the method to handle more general hierarchies rep­
resented as directed acyclic graphs.

• All keys within the hierarchy expire after time C- After which, new
keys are generated and assigned to the security classes. Maintaining
the common principle of good key management [37], we place this re­
striction to discourage exhaustive key search attacks and cryptanalysis
of key-encrypted information.

We denote A (A |M), to be the hashed message authentication code (HMAC)
that uses the dedicated hash function SHA-1 (A), with a key (A), concate­
nated with a security class property (M).

Hierarchy preparation and key assignment proceeds as foUows:

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UN=1
T'fl]

UN=gUN=4 UN=6 UN=7

1

Y:[1 2 4] Y:[1 2 5] Y:[1 3 6] Y:[1 3 7]

Figure 4.1: A tree-structured access control hierarchy.

. Each security class (SQ) in the hierarchy contains three properties: a
human readable name (Q), a unique number ([/IV*), and a path address
array (1)̂. These properties are the public parameters other security
classes are allowed to view.

2. The human readable name, C, is the name of the security class that
allows users to discriminate one security class from another. Common
names can be any length.

3. A unique number (UN) is assigned sequentially, starting at 1 at the
root and in a left-to right top-down manner, to each security class in
the hierarchy (Figure 4.1). Later, as we add classes to the hierarchy,
regardless of their position within the hierarchy, we assign them the
next number in the sequence.

4. The path array (F) acts as an address for a security class (Table 4.1).
The address assigned to a security class records the UN traversal path
starting from the root to the security class. The last entry in a security
class’s path array should correspond to its UN.

5. The CA assigns the root of the tree (the most principal security class)
a randomly generated 1024-bit master key, %i, which is kept secret
(Sec. 4.2.2).

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Unique Number (UN) Path Array (Y)
1 11]
2 [1 2]
3 [13]
4 [12 4]
5 [12 5]
6 [13 6]
7 [13 7]

Table 4.1: Summary of public parameters assigned to security classes be­
longing to (Figure 4.1).

6 . A security class SCk is assigned a key dependent on its direct principal
security class as follows:

(4.1)

When a user belonging to a security class SCi wishes to derive the key
for security class SCk, and SCk is the direct subordinate of SCi, then Kk is
obtained using

Kk = % |[/ N k) .
Otherwise, if SCk is not a direct subordinate of SCi, SCi proceeds as

follows:

1 . SCi retrieves the path array for SCk, Yk-

2. Using a sequential search on the array, SCi checks for his UNi within

3. If the search returns FALSE, then SCi knows that it lacks the sufficient
permission to access security class SCk and does not proceed to gen­
erate the key. If the search returns TRUE, SCi stops and records the
index a: at which its was located and proceeds to the next step.

4. Starting from a: -F 1 to the end of «S'Q generates the key using the
SHA-1 HMAC. For example, if the portion of the array is [LUV̂ ,[7Aj ,[UV&]
then the key derivation step is:

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.1 A dding and Rem oving Security Classes &om the
Hierarchy

Ideally, it would simplify all key management solutions if the hierarchy re­
mains static. Unfortunately, this is not always the case. As users come and
go, or as an organization changes, the need to add and remove security classes
from the hierarchy will arise. As such, our key management method should
handle these changes.

We identified four cases for adding and removing security classes from the
hierarchy. They are as follows:

1. Adding a security class to a leaf position,

2. Removing a security class from a leaf position,

3. Adding a security class to an interior position, and

4. Removing a security class from an interior position.

Adding and removing security classes to or from a leaf position is trivial.
In Figure 4.2 8 is added to a leaf position, becoming the new subordinate to 2 .
It is assigned a common name Cg and a unique number UNs = 8 . The path
array for 8 (Ig) is created by inheriting the path array from 2 (I 2 = [1 ,2])
and appending UN — 8 to the end of the path (Kg = [1,2,8]). Removing a
security class from a leaf position in the hierarchy can be done without any
affect to any principal classes.

Adding iiiui removing scxnuuityr classes to and from interior (non-leaf) po-
sitions presents some challenges. In studying the key management problem,
we saw that all previous direct and indirect methods dealt with the problem
in a similar manner. Their designers chose to immediately re-calculate and
update the keys for the affected classes [18], [34], [20], [36], [42]. This may
or may not be advantageous in sJl situations. For example, the necessity to
immediately add or remove a security class cannot be delayed or overlooked,
but the disturbance caused to users within the afiected security classes, or
the time and resources required to update the keys would be costly or in­
convenient. In these instances, it would be better to have a method that

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.2: Adding a new security class to a leaf position in a simple tree
hierarchy.

could delay a key update until a more convenient time arises, or as in the
HMAC-method, a pre-specified key freshness time {U) expires.

To address the problem of key updates, we created an update strategy
called the cached key update strategy. The cost associated with the method
is that it requires a newly added security classes to have additional storage
allocated for one extra key (a key cache), and a modification to the key
derivation process.

Cached Key Update Strategy

The cached key update strategy is best understood with illustrations. In
Figure 4.3, we show our simple tree access hierarchy. For brevity, we refer to
security classes by their UNs (e.g. (8)).

For internal additions to the hierarchy the rule-set is as follows:

(Figure 4.4) If a new security class (28) is added between two classes
whose key caches are empty, (1,2), the CA assigns the new class (28)
a path address from 1 (F% =[1,28]) and a key from its direct principal
class (Agg = .ff(Ki|28)). The CA also provides the key for the direct
subordinate (2) to the new class (28), which the new class (28) will store
in its key cache. If additional classes (25) are added to the new class

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.3: A simple tree hierarchy.

(28) 88 direct subordinates, they are assigned a path and key relative
to the new class (28) - (25: %2s=H(A[28|25), (}% = [1,28,25])).

Cache
key: K;

Figure 4.4: Adding a new security class between two classes with empty key
caches.

• (Figure 4.5) If a new security class (38) is added between two classes
where the subordinate key cache is empty (2) and the principal full
(28), the new class (38) is given a path from 1 (F% =[1,28,38]), a key
derived from its parent's key (A!38=H(jK28|38)), and a key from the
direct subordinate (2) which the class (38) will store in its key cache.
If additional classes (25) are added to the new class (38) they will

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

receive a path containing the new class (}% =[1,28,38,25]) and a key
generated from the new class =H(Æ3g|25)).

Cached
KeyK̂

Cached
Key:K \

Figure 4.5: Adding a new security class between two classes were the subor-
dinate's key cache is empty.

• (Figure 4.6) If a new security class (48) is added between two classes
where each key cache is full (28,38), we initiate an update. Key caches
are cleared (28,38). The new class (48) is given a path from 1 (F^ =[1,28,48])
and a key derived from its principal’s key (jQg =H(K28|48)). The
classes subordinate to the new class (38,2,4,5) have their keys regener­
ated and paths updated.

• (Figure 4.7) If a new security class (58) is added as a principal to a
class that has a full key cache (28), we initiate an update. Key caches
are cleared. The new class (58) is given a path from 1 [1, 58]. The
classes subordinate to the new class (28,38,2,4,5,...) have their keys
regenerated and paths updated.

The process to remove a key follows a similar method to addition. The
ruleset is as follows:

• (Figure 4.8) If the security class being removed (8) has subordinates
that are leaf-classes (9, 10), the leaf-classes (9, 10) are assigned to the

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cache
cleared

cache
cleared

update

Figure 4.6: Adding a new security class between two classes with full key
caches.

principal (2). Because the paths from the principal (2) to new subordi­
nates (9,10) is short, there are two options. First, ff the update of keys
and paths to the subordinates (9,10) would cause no inconvenience,
then the keys and paths may be updated immediately. Otherwise, the
principal (2) caches the key of the outgoing class (8).

(Figure 4.9) If the security class being removed (5) has subordinates
that are not leaf-classes (8,9,10), the principal (2) receives the outgoing
class’s (5) key to store in the key cache, and the subordinates belonging
to the outgoing class (9,10) are added as subordinates to the principal
(2).

(Figure 4.10) If the security class being removed (8) is not a leaf-class
and is subordinate to a principal whose key cache is full (2), the prin­
cipal receives the subordinate classes (9,10) of the outgoing class (8),
clears its (2) cache, and updates paths and keys to all its subordinate
classes (9,10).

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cache
cleared

updatecache
cleaned

Figure 4.7: Adding a new security class as the principal to a class that has
a full key cache.

Each security class holding a cached key must modify its search strategy
when searching a path array. For example, in Figure 4.4 if 28 requests the
path array for 4 (I4), then 28 searches I 4 for its UN and the UN belonging to
the cached key {K2). If it locates the UN belonging to its cached key (A’2),
then 28 uses the cached key (2) to derive the key for 4 by following the path
and using the cached key. Otherwise if 28 finds its UN within I 4 , it uses its
key to follow the path and recursively generate the key for 4 (Eqn. 4.2).

Another benefit of the cached key strategy is that we may be able to
accommodate additions where previous deletions occurred. For example, in
Figure 4.8 if a class was added into the position previously held by 8 , we could
modify our addition strategy to have the CA simply reassign the new class a
UN = 8 and the key held in cache by 2 (Kg). This would suggest that rather
than removing a class completely from the hierarchy, the better strategy
might be to have the CA maintain a deletion list to keep track of classes
that are removed. This way, if a new class is re-introduced to a deletion
point, adding it can be accommodated much more easily than undergoing a
completely new addition step.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To summarize, the cocAed update strategy proposed here is to address
concerns with the overhead and costs incurred if we update the hierarchy in
response to every addition and deletion of a security class. As the name
suggests, the cached key update strategy sacrifices a small amount of storage
per affected security class. Updates to portions of the hierarchy are delayed
if such updates would be costly or inconvenient. Fortunately for additions,
the cached key is assigned to the newly added security class, thus it may
be easier to assign a cached key to a new class than to update keys in the
affected subordinates. For example, a new employee or level of management
is brought into the organization and must begin work immediately, but it
would be costly and inconvenient to re-calculate and re-issue keys during the
work day. It would be easier to give the new level of management or worker
an additional key for a brief period of time then to re-issue keys to all security
classes.

A removed class provides its key to its principal so that the principal may
access the inherited subordinates. Using a deletion list and cached keys, we
may also be able to accommodate unique situations where classes are deleted,
yet new classes are re-introduced into the same position sometime later. We
should reiterate that the cached key update strategy may not be suitable
for all situations. The nature of the keys and organization may warrant the
simple immediate update strategy that previous indirect and direct methods
took. For example, an employee leaves abruptly and management wishes to
change all the keys immediately.

In our cached key update strategy, the size of the key cache determines
the delay between key updates. Increasing the number of cached keys will
increase the delay between key updates. However, increasing the size of
the key cache will require some modifications to the rule-set of adding and
removing classes. With one key cache, we are able to cache keys belonging
to immediate subordinates. Consequently, in situations where more than
one key from a subordinate would need to be cached, we currently initiate
an update. With larger key caches the rule-sets will need to be modified to
reflect the fact that keys from lower subordinates will need to be cached as
well. The need for larger or smaller key caches will be dependent upon the
nature of the organization the hierarchy represents and/or the key expiry
and key update schedule within an organization.

We believe the cached tey update strategy helps improve the flexibility of
our HMAC-method with respect to previous mdirecf methods. With respect
to direct methods of key management, we found no method proposed to

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

date that can adequately accommodate a similar key update strategy for
the addition of security classes. This limitation arises from the fact that
in the access relationships between security classes within the hierarchy the
public parameters must remain factors of one another. Otherwise, the test
for divisibility {PBi\PB 2) (Sec. 2.2) fails and key derivation cannot take
place.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

update update
key key

Figure 4.8: Security class (with leaf-classes) being removed.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cached
key: K

cached
key: K

Figure 4.9: Security class (with non-leaf subordinates) being removed.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cache full

remove

cache
emptiedupdate

Figure 4.10: Removing a subordinate from a principal with a full key cache.

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.2 Security o f th e H M AC-m ethod
The security of the HMAC-method lies in the underlying security of the mas-
ter key, the SHA-1 dedicated hash function and in the HMAC construction.

We chose the master key be at least 1024-bits in size, because the master
key can derive all keys within the hierarchy. Such a large key size helps
thwart random guessing of the master key. The probability of an attacker
guessing the key would be 2"^°^. An exhaustive key search of the key would
require the attacker to generate and test all 2 ^^ possible key combinations.
We believe this key size will provide adequate protection of the master key

As discussed in Sec. 2.3, there is no mathematical means in which to show
that a particular hash function is truly one-way. We cannot say that a fixed-
output hash function is truly collision resistant (Sec. 2.3). However, as we
discussed in Sec. 2.3.3, there are certain features which help hash functions
resist attack.

We chose to speciGcally use SHA-1 in the HMAC-method, because it
produces a digest length of 160-bits, resulting in 2 ^ ̂possible message digests
(Sec. 2.3.3). Under the birthday attack, to force a colhsion under SHA-1
would require an exhaustive search and comparison of at least 2®° message
digests (Sec. 2.3.3). However, without having access to the message digests
that are being used as keys for security classes, the attacker would have to
generate all 2̂ ®° message digests and test each one he creates against each
security class in the hierarchy. This increases the complexity of the attack.
If the attacker tries to simply guess a key, his probability of success is 2~̂ ®°
(Sec. 2.3.3).

Also, in choosing SHA-1 for our hash function, we note that as of the
date this thesis was written, no one has successfully attacked SHA-1 [37].
While this does not prove SHA-1 is undeniably secure, it does speak to how
well SHA-1 was designed and how strong the hash function has proved to
be. If in the future SHA-1 was found to be insecure, the dedicated hash
function used in the HMAC-method can be easily replaced with a better
one. For example, nothing prevents the use of RIFEMD-160 [15] or an MDx-
MAC enhanced [33] hash function (Sec. 2.4). In a worst case scenario, if we
have no suitable dedicated hash functions available, then we may use a block
cipher hash function at the expense of throughput.

As for our HMAC construction, we based our choice of construction in
accordance with Preneehs recommendations for HMAC security (Sec. 2.4.3).

Bart Preneel studied HMAC constructions and found that certain con-

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8tructions could be compromised if an attacker obtained many message di­
gests calculated with the same key [33]. In response, he recommended some
constructions to strengthen HMACs (Sec. 2.4.3) [37] and proposed a mod-
ification, MDx-MAC, that can strengthen dedicated hash functions used in
HMAC constructions [33].

We are not at danger in using the construction jH(%|M) within the
HMAC-method. As Preneel noted, the attacker attempts to use a birth­
day attack to create collisions on the digests [33]. For this attack to work,
the attacker would require at least 2 ^ message digests (keys) from the hier­
archy to compare against his results. Otherwise, an attacker is left no other
option but to randomly guess a key or generate all 2^60 possible keys and
try them against all classes in the hierarchy.

We are also not at danger in using a single number as the security class
property within the HMAC construction. The first keys generated by the
HMAC-method are created with the 1024-bit random key assigned to the
principal class. When keys are re-calculated, the 1024-bit random key is
also re-assigned. So, from key assignment to key assignment the keys for
security classes will be different. Also, SHA-1 is designed to use all bits of
the pre-image within the rounds of the compression function [21]. Thus, if
the derivation of two keys only differs by a single number (8 bits), under
SHA-1 they should be different [21].

4.3 Considerations and Limitations
One drawback of any indirect key management method is the computational
complexity of the key derivation process. Consequently, the best approach
to improve efficiency is to try and optimize the derivation process.

In the HMAC-method, we looked to achieve better traversals then [36]
implementing the path addressing array. The array allows us to verify class
relationships before undertaking a key derivation process. Thus, we search
only the path that can lead us to the desired security class. We do not spend
time searching all portions of the sub-tree and creating keys as we go. In the
worst case, we search through an entire path array; however, we do avoid the
cost of searching the entire hierarchy, and we do avoid the cost of having to
create keys as we search a path. With path addressing, we only create keys
once we veri^ the searcher's UN is in the path.

In choosing the format of the path array, we found that using just numbers

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is more e@cient that using a string concatenation strategy. For example,
we could have represented a path to a security class by concatenating the
names of security classes along the path and using some delimiter to separate
names. We found this approach too inefficient. First, named paths are
much longer than numbered paths. For example, assume a security class is
represented by a modest 8 character (80-bit) common name (C), emd we have
a leaf secmity class whose path is 50 traversals away hrom the root. Using
a name concatenation approach, the leaf class would be assigned a name
80 X 50 = 4000 bits long. If we use 16-bits to represent the numbers in our
potA addressing array, the numeric path to the same leaf class would require
50 X 16 = 800 bits - 80% less storage than name concatenation. Also,
having a numeric array allows us to search more efficiently and save time when
trying to verify an access relationship. With a string concatenation approach,
we must sequentially search through each character of the string looking for
name delimiters, construct the names, perform a string comparison, then
continue to move along the string. With numbers in an array, search and
comparison can occur much faster.

In comparison to Yang’s method [42], we beheve our path addressing
scheme is more efficient because Yang’s principal-subordinate search strat­
egy is local in scope. That is, for a principal to derive the key of a subordinate
lower in the hierarchy, a path must be traversed through the hierarchy by
following through the principal-subordinate relationships. Once the proper
sequence of principal-subordinate relationships is discovered, then the corre­
sponding sequence of hash functions is called to create a key. Otherwise, the
search halts and returns no result, and we incur the penalty of using time to
conduct a search without a successful key. In our approach, we simply scan
though the path address array and avoid traversing other hierarchy relation­
ships. As soon as a security class finds its UN within the path addressing
array, it begins to assemble the key using the remaining numbers in the array.

In our cached key update strategy, the size of the key cache determines
the delay between key updates. Increasing the number of cached keys will
increase the delay between key updates. Using a single key cache requires
that a class make room for an additional 160-bit key, an added comparison
during a path search, and an additional time factor during key derivation as
the cached key is retrieved and used. However, if performance is a concern or
key updates are inconvenient and must be delayed to a more opportunistic
time, we believe our coched A;ey update strategy improves the applicability
and efficiency of the approach in these situations.

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In addition to the cocked key update strategy, the HMAC-method also
benefits from the performance of using the SHA-1 hash function. Preenel's
examination of hash functions showed that an optimized SHA-1 implemen-
tation had a digest throughput of approximately 54.9Mbits/sec [32]. Given
that our keys are 160-bits^ concatenated with the string representation of
the UN, we can estimate the maximum key generating throughput of SHA- 1

in the HMAC-method to be « 300,000 keys / sec. If searching a path ar­
ray is as efficient as key generation, this suggests that the HMAC-method
could adequately deal with path searches and key generations on very large
and deep hierarchies. Empirical evidence from experimentation would be
required before a more definitive metric in throughput performance could be
reached.

The consequence of using both the path address array and the cached key
update strategy is that we must hold an additional set of public parameters
and cached keys in order to implement these improvements. For a hierarchy
containing n security classes, the total space required for the potk address
arrays would be O(n^). With cached keys, we require an additional 160-bits
per key. Given the minimum 512-bit key lengths the RSA-based methods are
required to produce, the additional 160-bits for a cached key seems small.
With the benefits a cached key update strategy could have for an organiza­
tion, we feel the additional 160-bits of space is acceptable. If the cached key
update strategy is not required, there is the option to use the immediate key
update strategy that the other methods use. The option to use either one
simply adds flexibility to our approach.

Finally, in studying Yang’s approach to indirect key management, he was
able to accommodate hierarchies structured as directed acyclic graphs by us­
ing a family of hash functions [42]. In the HMAC-method, we have presented
thus far, our method is only designed to efficiently handle hierarchies struc­
tured as simple trees. To address this shortcoming, we present a design that
modifies the path address array so that the HMAC-method could be applied
to hierarchies represented as directed acyclic graphs (DAGs).

^Except for the root of the tree - that is 1024-bits.

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.4 Modified Path Addressing Scheme for DAG
Hierarchies

In access hierarchies represented as directed acyclic graphs, a subordinate se­
curity class can have more than one direct principal class (Figure 4.11). Con-
sequently, the subordinate requires a key that can allow both direct principal
classes access to the subordinate.

With indirect approaches, directed acyclic graphs present issues regarding
traversals of paths. Referring to Figure 4.11, when either 2 or 3 wishes to
access information stored at 5, they must have some knowledge about the
composition of 5’s key. Similar to Yang’s approach, we chose to generate the
subordinate’s key by composing the direct principals’ keys. For example, in
Figure 4.11 the key assigned to 5 would be

^ 5 = F f (F f (Æ 2 |5) | f f (A '3 |5)) .

Thus, in order for either 2 or 3 to derive the key for 5, either 2 would
require the knowledge of the sub-key H(Kz\5), or 3 would require the knowl­
edge of the sub-key H{K2\5). We chose to have the CA cache the sub-keys.
A consequence of this approach is that principal classes which share a direct
subordinate will rely upon the CA to provide the cached key.

However, the more immediate problem was how to represent this security
class as having a key composed from two or more direct subordinates. Yang’s
solution was to use multiple hash functions, but we preferred the flexibility
of having a single fast dedicated hash function within the HMAC-method.
The best solution we could devise modified the path address array (Y).

Using Figure 4.11 as an example. Table 4.2 shows how each security
class’s path address would appear under the modified addressing scheme.
For brevity, we refer to security classes by their unique numbers (UN).

Our modification was to change the structure of the path address from
being an array to being a list that could contain nested lists. A nested list
within the list (e.g. ((2 3) , 5)), indicates that the security class holds a key
which is composed from the sub-key belonging to the security classes in the
nested list. For example, from Table 4.2 the address list for security class 5,
((2 3) , 5), indicates that 5 is composed from the sub-keys of security class 2
and security class 3. Security classes that are not composed of sub-keys are
simply represented as a list of numbers (e.g. 4, (1 , 2 , 4)). Next, we modified
the key derivation process to reflect the modified potk list addressing scheme.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.11: Directed acyclic graph structured hierarchy.

If the first element in a path list is not a nested list (e.g. (1 , 2 , 4)) ,
then we know that a direct path exists to the desired class and we operate
on the list as if we were using the path address array from a security class in
a simple tree hierarchy.

If the first element in a path list is a nested list (e.g. ((2 3) , 5)),
we implement an expand-and-search strategy. For example, in Figure 4.11 if
security class 1 wanted to access security class 5, it requests the path list for
security class 5, (((2 3) , 5)), notices the nested list as the first element,
and proceeds to follow the expand-and-search strategy;

1. The security class searches the nested list looking for its UN. In our
example, 1 searches the list ((2 3) , 5) and does not find itself in the
nested list.

2. If the UN is not located within the nested list, the address for the
first element in the nested list is expanded. In our example, the list
((2 3) 5) i s expanded and becomes (((1 2) 3) , 5) .

3. The principal security class repeats steps 1-2 until it finds its UN within
an expanded list. In our example, 1 will find itself in the expansion
of 2's address list: (((1 2) 3) , 5) . If 1 did not find itself in the

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Security Class Path Address
1 (1)
2 (1 . 2)
3 (1,3)
4 (1, 2, 4)
5 ((2 3), 5)
6 (1, 3, 6)
7 ((4 5 6), 7)

Table 4.2: Modified path addresses for security classes in a DAG access
hierarchy.

expanded list of 2, it would move onto the next element, 3, and perform
the expand-and-search again.

4. Once the UN is found within a list, the key represented for that list is
generated. In our example 1 will create the key for 2 by following the
path address ((((1 2) 3) , 5) - + ((({K2) 3) , 5).

5. At this point, search-and-expand stops and the security class will re­
quest the CA to produce the sub-keys for the other members of the
sub-list. In our example, having generated the key for 2, 1 will stop
expand-and-search and request the CA to produce 3’s sub-key for 5:
((% , 5).

6. Having received the remaining sub-keys from the CA, the principal can
combine them in order to produce the key for the desired subordinate.
In our example, 1 will create 5's key using H(H(fC2 |5)|K 3g).

With this new derivation method, the best case scenario is that the first
element in the nested list produces a valid key and the search-and-expand
is aborted so that the remaining sub-keys can be requested. The worst case
scenario is that all members of the nested list undergo search-and-expand
and no keys are produced. This situation could occur frequently in weakly
connected directed acyclic graph access hierarchies. For example. Figure 4.12
shows just such a hierarchy. If 1 were to request access to 4, it would spend
time performing search-and-expand only to find that it lacked the proper
access. Having spent time with the problem we leave it as open and state that

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

although our newly devised potk fist addressing scheme could accommodate
DAG hierarchies, it is not an optimal method for all DAG hierarchies.

Figure 4.12: A weakly connected DAG hierarchy.

4.5 Summary
We have introduced the HMAC-method of key management for an access
control hierarchy. We propose a solution that seeks to improve the effi­
ciency and apphcability of indirect approaches to simple tree hierarchies.
The HMAC-method is as secure as the underlying SHA-1 hash function and
chosen HMAC construction.

Our contributions to the indirect approach for key derivation was the
creation of a path array and cached key update strategy. The path array
allows us to assign numeric addresses to security classes in the hierarchy so
that we may verify access relationships before we generate keys, improving
performance by not producing unnecessary intermediate keys or searching
the entire hierarchy. The cached key update strategy was in response to our
observations that there may be a better strategy to updating the hierarchy
under structural changes. The cached key update strategy allows for changes
to the hierarchy, but key updates to any affected security classes can be
reasonably delayed if immediately updating the keys to affected subordinates
would be costly or inconvenient.

Finally, observing that Sandhu was unable to address DAG hierarchies,
we set out to modify our pntk addnsssinp scheme so that the single function
HMAC-method could also apply to DAG hierarchies. Yang was able to deal
with the problem by using multiple hash functions, but we wished to continue

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

using one hash function. As such, we were able to make modifications to
the potk scheme so that DAG hierarchies could be representend.
Unfortunately, the search-and-expand method developed for use with the
modified scheme is not optimal. Finding an optimal method is left as an
open problem.

In the next chapter, we wfil address some observations we have on factors
we believe can affect the suitability and implementation of key management
methods.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Im plem enting Key
M anagem ent M ethods:
Analysis and Considerations

5.1 Introduction
In the previous chapter, we introduced the HMAC-method and our improve­
ments to previous indirect approaches. We addressed issues of efficiency
when determining role relationships, strategies to handle key updates, and
weakly/strongly connected directed acyclic graphs.

In this chapter, we examine the pragmatic issues which can affect the
implementation and apphcability of direct and indirect methods.

5.2 Direct Versus Indirect Key Management
M ethods

The comparison of direct and indirect methods is difficult. This is in part
to the nature of how each method attempts to solve the problem of key
management. In the direct approach, the chaUenge is to discover an optimal
solution of assigning primes to the members of a hierarchy. For small hi­
erarchies, the methods can provide reasonably-sized pubhc parameters, but
for larger hierarchies, the pubhc parameters can become quite large to store
and manipulate. However, direct methods can address directed acychc graph

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hierarchies more easily than the indirect approaches.
In the indirect approaches, storage requirements are not as large. The

challenge in indirect approaches is to efficiently derive the keys recursively
from the structure of the hierarchy. Directed acychc graphs can prove difficult
to address because, parties holding authority over a common subordinate
require cached sub-keys. Having cached sub-keys may also alter the way in
which users interact with the central authority. The benefit of the indirect
methods is that procedures to assign keys to the hierarchy is easily done,
and we may construct fiexible key update strategies to address a dynamic
hierarchy.

In studying the key management problem, we observed that certain fac­
tors pertaining to the hierarchies, and certain pragmatic factors with respect
to an implementation can arise, and that in understanding these issues, we
may be able to design more apphcable key management schemes. That is,
rather then attempting to fit one particular key management method to all
hierarchies, a better approach would tailor the key management method to
the structure of the hierarchy, the nature of the organization, and the appli­
cation of the keys.

5.2.1 Structural Properties o f the Hierarchy
The three structural properties affecting all hierarchies are breadth, depth,
and connectedness. Each one will vary depending on the nature of the orga­
nization and the relationships between security classes within the hierarchy.

We summarize the space complexity of the Akl-Taylor, Harn-Lin, and
Hwang-Yang methods in table Table 5.1 [20]. In the method of Ray et al.
(Sec. 3.3) (not shown Table 5.1), a user’s key is dependent on the size and
number of moduli (m and d respectively) composed to produce his key. In
the HMAC-method, our storage complexity is 0(n?) and the largest public
parameter would be the longest path address (I).

Breadth and D epth of a Hierarchy

For very small and shallow hierarchies, as shown in Figure 5.1, both indi-
recf and direct schemes work well. The public parameters stored by the
direct schemes are small and the paths traversed by the indirect approaches
are short. Given the direct approaches small storage requirement and 0(1)

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Method Number of
Primes

Maximum
Public
Parameter

Storage
Space

Akl-Taylor n 0 {n^ log n)
Ham-Lin n 0(n^ log Ti)
Hwang-Yang y 0 (n^logp)

Table 5.1: Space complexity for direct key derivation schemes, n is the num­
ber of security classes in the hierarchy, y the number of primes the Hwang-
Yang method requires (Sec. 3.3).

Figure 5.1: A small and shallow tree shaped access hierarchy.

computational complexity to derive keys, direct approaches may be more
appropriate for small hierarchies than indirect approaches.

With broad and shallow hierarchies (Figure 5.2), we see a dramatic differ­
ence between the direct and indirect approaches. Here, the public parameters
of direct approaches will increase rapidly as more security classes are added
to the hierarchy.

Amongst the direct approaches, the Hwang-Yiemg method should be more
efficient for storage than the Harn-Lin approach because of Hwang-Yang’s use
of composed prime sets (Sec. 3.3). However, while the Hwang-Yang method
does use fewer primes, the public parameters may not necessarily be smaller.
The hierarchy shown in Figure 5.2 was taken from [20] where we attempted to
implement the Hwang-Yang approach. In following their recommendations

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

500 501 502 503 504 1000

Figure 5.2: A broad and shallow tree shaped access hierarchy.

of prime number selection and composed prime set assignment, our use of
the first 42 primes did not show an improvement over the 1000 primes used
by the Harn-Lin method. The public parameter stored for the most principal
class under Ham-Lin was 3393 digits long and in the Hwang-Yang approach
it was 5204 digits long. We attribute t his discrepancy to the selection and
assignment of the composed prime sets. The Hwang-Yang approach should
produce smaller numbers, but only if the optimal selection and assignment
of composed prime sets is found. This suggests that although the Harn-Lin
approach uses more primes, it can be more efficient and more applicable
than the Hwang-Yang approach. For the Hwang-Yang approach to produce
smaller numbers when implemented will require solving the larger problem
of optimally assigning composed prime sets [20]. From our results, we found
O(n^logm) < O(M^logy) < O(n^logn), for Ham-Lin, Hwang-Yeing, and
Akl-Taylor respectively.

For the hierarchy in Figure 5.2, we expect Ray e(oFs method and our
HMAC-method to perform well. Under the HMAC-method, the small path
addresses can quickly be searched. However, compared to Ray et al’s method
where key sizes will increase as one moves deeper into the hierarchy, our
HMAC-method will assign the same sized key to all classes.

As the hierarchies become deeper and broader, the prime numbers within
the direct methods will continue to increase and public parameters will con­
tinue to grow in magnitude. Within Ray et ot.'s method, key sizes for subor-

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

dînâtes will continue to increase, and in the HMAC-method the number and
length of path addresses wiU become longer. With very large hierarchies, it
becomes difficult to predict which method will perform the best and at which
point these systems begin to fail or become cumbersome.

W eakly/Strongly Connected Hierarchies

Connectedness of a hierarchy describes the degree of relationships between
the security classes. In linear or tree hierarchies, these relationships are
well defined with classes having only one direct principal and no shared
subordinate classes.

Shared classes increase the connectedness of a hierarchy. Within direct
approaches shared classes will result in larger public parameters for the prin­
cipals of the common subordinate, while in and Yang’s method and ours,
shared classes result in sub-keys having to be cached for each principal of the
common subordinate. In the HMAC-method, we incur the overhead of the
additional search-and-expand method we use to verify access relationships
before we create keys.

Unfortunately, the degree of connectedness between classes will vary de­
pending on apphcation and organization and in some instances one method
may be more applicable than another. For example, consider Figure 5.3
which illustrates a hierarchy where a few administrative users share access to
many different subordinates. This hierarchy could represent a student records
database in a university, where each individual student record is protected by
the student’s key. If there are 7000 students attending the university, then
under the direct approaches, each administrative class is assigned a pub­
lic parameter composed of 7001 prime numbers. Under our HMAC-method
and Yang’s method there would be 49000 shared sub-keys. Finally, under
Ray et aVs approach the student would hold a key 8 times larger than the
administrative staff.

At first glance, it would appear that Ray et al. ’s approach seems the
most efficient of the three. However, in this situation we can improve the
efficiency of both indirect approaches by changing the connectedness of the
hierarchy and implementing a common security class shared amongst the
administrators for accessing the database (Figure 5.4). Now, the number of
sub-keys drops from 49000 to 7. Unfortunately, in this instance, our changes
will not improve the magnitude of the public parameters within the dinect
methods.

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 5.3: A hierarchy of a university student record database.

Figure 5.4: A hierarchy of a university student record database where an
addition of a common security class allows us to apply indirect methods
more efficiently.

Thus, the role connectivity plays within a hierarchy is also important.
There may be instances, such as the student database, where understanding
the nature and intention of the relationships may allow us to manage con­
nectivity better and improve the applicability of key management methods
we have available.

5.2.2 K ey Sizes and K ey U pdates
No encryption key should be used for an indefinite period of time [37]. The
longer a key is used, the greater the chances of the key being lost, compro­
mised, or stolen, and the greater the chances the data protected by the key
becomes cryptanalyzed [37]. Thus, key updates should occur within any key
management method. However, the size and type of key, and how and when

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

we update keys can bring forth interesting questions regarding the applica­
bility of one method over another.

The size and type of key is dffierent between indirect and direct ap-
prcaches. Within Yang’s approach and ours, the keys used are generated
from hash functions with digest spaces of 2^, where m is the digest size.
Thus, for an attacker to recover a key, he must exhaustively search all 2"*
possible combinations of keys. For digest sizes of 160-bits or more, this pro­
vides a sufficiently strong key for most encryption/ decryption of data with a
symmetric cryptosystem [37]. With direct approaches using full RSA imple­
mentations (Hwang-Yiang, Ham-Lin, Ray et oZ.), this is not always the case.
The weakness in RSA keys is their weakness to factorization [25] (Sec. 2.2).
The consequence is that in order for RSA keys to provide a key strength sim­
ilar to a hash function’s symmetric key, RSA keys must be longer - typically
512-bits or more [25].

These dffierences in key length may not be important for some application
of keys. For example, if keys are used only to authenticate users to services
or to authenticate their identity, the length and type of key is unimportant,
but if the intention is to use the keys within symmetric cryptosystems, then
key type and key size becomes a consideration.

Because most symmetric cryptosystems have key sizes fixed between 64
and 256 bits [37] [38], the much larger 512-bit RSA key will need to be trun­
cated. How truncation will affect the key’s security is difficult to determine
[36]. The solution may be to use smaller RSA keys and simply have more
key updates, but if information is stolen between key updates and the mod­
ulus within the smaller RSA key is known, then factorization of the key and
recovery of the data is possible. In this respect, the more appropriate sym­
metric keys that Yang’s method and our HMAC-method produce would be
more suitable for use with symmetric cryptosystems.

As for key updates, the social organization of the hierarchy can have
an effect on the suitabifity of a key management method. For example,
in some organizations members near the bottom of the hierarchy are the
most transient. In corporations, these may represent the workers or contract
employees.

There may be situations where, for cost or convenience, an organization
decides to have monthly key updates, but workers are added and removed to
the hierarchy throughout the month. With direct approaches, the addition
of a new user to the hierarchy requires that all classes principal to the sub­
ordinate must have their public parameters updated and keys re-calculated.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

With our HMAC-method, Yang's method, and Ray et oZ.'s method this does
not occur because key updates occur from principal to subordinate. Thus, in
the situation we propose with the contract employees and the corporation,
we may add new security classes to the bottom of the hierarchy without
initiating key updates to principal classes before they should occur.

An additional benefit that our HMAC-method brings to key updates is
the fiexibility for a principal to initiate a key update on just its portion of the
hierarchy. Because we calculate keys for subordinates through a combination
of the principal's key and the subordinate's unique number, if we need to
refresh the keys for a particular part of the hierarchy, we may assign new
unique numbers to the direct subordinates, update their paths, and calculate
new keys and paths for the remaining subordinates. In situations where we
would like to update keys to a specific area of the hierarchy, we are free to
do this before a scheduled key update without affecting classes principal to
us. Another method that can do this is Ray et oZ.'s where a subordinate's
key can be re-calculated with a new modulus and composing it with the
moduli from its principals (Sec. 2.2). Other methods cannot do this. Keys
must either be re-calculated for the entire hierarchy (Akl-Taylor, Yang) or
for affected sub-portions of the hierarchy (Harn-Lin, Hwang-Yang).

5.2.3 Role and Design o f the Central Authority
The central authority (CA) has appeared throughout most of the literature
[3], [10], [18], [20], [36], [42], yet very little discussion goes into the design
and implementation of it.

For example, in our HMAC-method and Yang’s method we call upon the
CA to cache the sub-keys produced for shared subordinates. One concern
with this approach is that the sub-keys, if combined together, can produce
a valid key for a shared security class. In an implementation, the pragmatic
issue would be how to securely transfer the sub-keys to just the intended
recipients.

One solution would secure communication channel between the requester
and the CA with encrypted connections (SSL), then use a challenge/response
system between the requester and the CA. Here, the requester generates his
sub-key for a shared subordinate and sends it to the CA. The CA then verifies
the received sub-key against the set it stores for the intended subordinate.
If the requester's sub-key matches one of the cached keys stored for the
subordinate, the CA replies to the requester and transfers the remaining

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sub-keys for the subordinate back to the requester. Once the sub-keys are
assembled, the requester can produce the key for the shared subordinate.
The issue that remains is in securing the CA from attacks such that sub-keys
are not stolen or replaced with frauds.

Other pragmatic issues surrounding the central authority center around
its role with public parameters used in both the dinsct approaches and our
HMAC-method.

For example, in the HMAC-method we store path addresses as arrays
of integers. Thus, a 16-bit integer array could allow us to address up to
2̂ 6 security classes. How we store and distribute this array is a pragmatic
issue. For example, we may store the address arrays using a database, such
as Oracle or PostgreSQL, that supports the variable array type, or we may
store the addresses as a simple Java dictionary where the key is the security
class name and the value is an address object or vector array. Similarly, as
public parameters within the direct approaches grow beyond the 2 2̂ Eind 2̂ 4
bit integer capacity of many computers, special large integer hbraries are
required to store and manipulate these numbers. Which libraries are used
and how they implement large integer support can affect the performance of
direct approaches.

Common to both approaches is the issue of the central authority’s avail­
ability. If we consohdate the hierarchy, public parameters, and requests to
one central authority, we must ensure that the CA is reliable and secure. If
the central authority is prone to failure or susceptible to attack, we may want
to rephcate the CA across a network. If so, we must ensure consistency such
that changes to the hierarchy are replicated in a timely manner.

5.3 Summary
In this chapter we raised some pragmatic issues surrounding the implemen­
tation and apphcability of key management methods.

Implementing the Hwang-Yang approach from chapter three, we found
that while their approach uses fewer prime numbers, the success of reducing
the public parameters is dependent on solving the problem of selecting and
assigning the appropriate composed prime sets to the proper leaf security
classes. For larger and deeper hierarchies, judging the performance of a key
management method becomes difficult without some form of metric or results
collected from experimentation.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Further, we discussed and illustrated the importance of connectedness
within the hierarchy. Our HMAC-method and Yang's method must cache
sub-keys in order to address security classes with two or more direct principal
classes. In some respects, this may be a limitation of the indirect approach.
However with the example of the university student database, we demon-
strated that by changing the structure of the hierarchy without affecting the
nature of the relationships between the security classes, we produce a hierar­
chy that still maintains its purpose and intent, but can allow more than one
key management method to apply.

In the remaining sections, we raised some pragmatic issues surrounding
the keys, key updates, and central authority. If the intent of the access hi-
erarchy is to provide support for encryption and decryption of information
there are some considerations that must be taken into account when select­
ing the appropriate keys and the corresponding key management method.
In updating the hierarchy, the nature of the organization being represented
may have certain business operations that favour the use of one key manage­
ment method and its key update flexibility over another. Finally, the central
authority which is present in many methods is addressed. We discuss some
factors affecting the design of the CA with respect to the cached sub-keys of
the indirect approaches, reliability, security, and replication.

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusions and Future
Research

In this thesis, we studied the problem of key management within an ac-
cess hierarchy. Our contribution to the key management problem is an in­
direct key derivation approach called the HMAC-method. It is called the
HMAC-method, because it is based on hashed message authentication codes
(HMACs) built from a single, fast, dedicated hash function (SHA-1). It is
intended to provide a more efficient indirect key management method for
large access hierarchies resembling tree structures. We are able to achieve
better tree traversals using a technique we created called path addressing.
Our path addressing scheme allows us to more efficiently calculate relation­
ships between security classes, determine traversal paths, and improve the
performance of the indirect key derivation method. We also presented our
cached key update scheme which is meant to improve the indirect key deriva­
tion schemes by delaying key updates when changes to the structure of the
access hierarchy are necessary, but the re-calculation and re-assignment of
keys would either be costly or inconvenient.

For access hierarchies represented as a weakly/strongly connected di­
rected acyclic graph (DAG), we suggested modifications to our path address­
ing and key derivation scheme which could allow our HMAC-method to be
applied to these types of hierarchies; however our solution was not optimal.

Finally, we raised some pragmatic issues surrounding the implementation
and applicability of key management methods. By implementing the Harn-
Lin and Hwang-Yang approach, we found that the Hwang-Yang approach
does produce fewer primes, but requires the solution to an optimization prob-

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

lem in order for small public parameters to result. We also demonstrated that
in certain applications of key management, there may be changes to the hier­
archy we can perform that allows us to apply more than one key management
method without affecting the nature of the relationships. Other issues we
raised discussed the type, size, and apphcation of keys, key updates and the
role emd implementation of the central authority.

Future research into key management should include the design and im­
plementation of a ffamework that allows the testing of key management
methods. Much of the work in the research held thus far has been theo-
retical and results from design and implementation could be of benefit to
understanding the performance and applicability of key management meth­
ods. Problems left open from this thesis are the optimal addressing of shared
security classes within the HMAC-method and the optimal assignment of
composed prime sets to leaf classes in the Hwang-Yang method.

Further, an interesting research direction into key management may be
in combining direct and indirect approaches. An idea to explore would be
dividing the hierarchy into sub-hierarchies each placed under a different CA.
We could use the Ham-Lin direct approach to generate and assign each CA
a master key, which we then use with indirect approaches to generate keys
for classes within the sub-hierarchy. Thus, we move around large portions
of the hierarchy using direct methods, but traverse the smaller pathed sub­
hierarchies with indirect methods. This may yield a method of average per­
formance, yet a system that may be apphcable to distributed key manage­
ment methods.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

Selim G. Akl and Stephen MacKinnon. New key generation algorithms
for multilevel security. In IEEE Symposium on Eecnrify ond Eriuocy,
pages 72-79, Oakland, CA, April 1983. IEEE, IEEE.

Selim C. Akl and Peter D. Taylor. Cryptographic solution to a multilevel
security problem. In Aduonces in CrpptoZogy - Proceedings 0/ Crgpto
pages 237-250, Santa Barbara, August 1982. Springer-Verlag.

Selim C. Akl and Peter D. Taylor. Cryptographic solution to a problem
of access control in a hierarchy. ACM Trans. Comput. Syst, 1(3):239-
248, 1983.

S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash
functions: A survey, 1995.

Paulo S. L. M. Barreto. The hashing function lounge. Internet, De­
cember 2003. http://planeta.terra.com.br/ informatics/ paulobarreto/
hflounge.html.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. Ẑ cZnne Aotes in Computer 5'cience, 1109:1-
15, 1996.

T. A. Berson. Differential cryptanalysis mod 2^ with apphcations to
MD5. In R. A. Rueppel, editor, Adt;onces in CrgptoZogp — Eurocrppt
’92, Berlin, 1992. Springer-Verlag.

Eh Biham and Adi Shamir. Differential cryptanalysis of Snefru, Khafre,
REDOC-II, LOKI and Lucifer (extended abstract). Tecture Aotes in
Computer 5"cience, 576:156-171, 1991.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://planeta.terra.com.br/

[9] Peter Camion and Jaques Patarin. The knapsack hash function proposed
at crypto'89 can be broken. In D.W. Davies, editor, Aduoncea in
toZogg - Ef/EOCRyPT ITorts/iop on t/ie Pkeorg and Application
of Cryptographic Techniques, volume 547 of Lecture Notes in Computer
Science, pages 39-53, Brighton, UK, Jauary 1991. Springer-Verlag.

[10] Gerald C. Chick and Stafford E. Tavares. Flexible access control with
master keys. In Proceedinga on Aduancea in crgptoZogg, pages 316-322.
Springer-Verlag New York, Inc., 1989.

[11] Daemen, Covaerts, and Vandewaile. A framework for the design of
one-way hash functions including cryptanalysis of damgard’s one-way
function based on a cellular automaton. In ASIACRYPT: Advances in
Cryptology - ASIACRYPT: International Conference on the Theory and
Application of Cryptology. LNCS, Springer-Verlag, 1991.

[12] Ivan Bjerre Damgârd. A design principle for hash functions. In Pro-
cecdinga on Aduancca in cf%)toZpgg, pages 416-427. Springer-Verlag New
York, Inc., 1989.

[13] Bert den Boer and Antoon Bosselaers. Collisions for the compression
function of MD-5. Lecture Notes in Computer Science, 765:293-304,
1994.

[14] H. Dobbertin. Cryptanalysis of md5 compress, 1996.

[15] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-160: A
strengthened version of ripemd. In Proceedings of the Third Interna­
tional Workshop on Fast Software Encryption, pages 71-82. Springer-
Verlag, 1996.

[16] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-
NCSC National Computer Security Conference, pages 554-563, 1992.

[17] S Harari. Non-linear, non-commutative functions for data integrity. In
Proc. of the EUROCRYPT 84 workshop on Advances in cryptology: the-
org and application o/ crgptogmphic techniguea, pages 25-32. Springer-
Verlag New York, Inc., 1985.

[18] L. Ham and H.-Y. Lin. A cryptographic key generation scheme for
multilevel data security. Computer Security, 9(6):539-546, 1990.

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[19] Min-Shiang Hwang. A new dynamic key generation scheme for access
control in a hierarchy. Nordic J. 0/ Computing, 6(4):363-371, 1999.

[20] Min-Shiang Hwang and Wei-Pang Yang. Controlling access in large
partially ordered hierarchies using cryptographic keys. J. 5gst. go/tw.,
67(2):99-107, 2003.

[21] National Ins. Secure hash standard. Technical Report PIPS PUB 180,
National Institute of Standards and Technology, April 1995.

[22] Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on fast double
block length hash functions. JoumaZ 0/ CrgptoZogg, ll(l):59-72, January
1998.

[23] Lars Ramkilde Knudsen and Xuejia Lai. New attacks on all double block
length hash functions of hash rate 1, including the parallel-DM. ZLecture
Notes in Computer 5"cieuce, 950:410-418, 1995.

[24] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art
of Computer Programming. Addison-Wesley, Reading, Massachusetts,
third edition, March 2000.

[25] RSA Laboratories. Frequently asked questions about today’s cryptog­
raphy. http://www.rsaseciuity.com/rsalabs/faq/, May 2000.

[26] Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim C.
Akl. An optimal algorithm for assigning cryptographic keys to control
access in a hierarchy. IEEE Trans. Comput, 34(9):797-802, 1985.

[27] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Hand-
6 0 0 A; 0/ AppZied CYgptogrophg. CRC Press, Inc., 1996.

[28] Ralph C. Merkle. One way hash functions and des. In Proceedings on
Aduouces in crgptoZpgg, pages 428-446. Springer-Verlag New York, Inc.,
1989.

[29] F. Mirza and S. Murphy. An observation on the key schedule of twofish,
1999.

[30] Bart Preneel, Rene Covaerts, and Joos Vandewaile. Differential crypt­
analysis of hash functions based on block ciphers. In Proceedmgs 0/ the

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.rsaseciuity.com/rsalabs/faq/

1st ACM cof^ensnce on Computer oud commuuicotious securitg, pages
183-188. ACM Press, 1993.

[31] Bart Preneel, Rene Covaerts, and Joos Vandewaile. Hash functions
based on block ciphers: a synthetic approach. In Advances in Cryptology
- Proceedmgs o/ CYgpto '9 ,̂ pages 368-378. Springer-Verlag Heidelberg,
August 1993.

[32] Bart Preneel, Vincent Rijmen, and Antoon Bosselaers. Recent develop­
ments in the design of conventional cryptographic algorithms. Lecture
Notes iu Computer 5 ĉieuce, 1528:105-130, 1998.

[33] Bart Prenel and Paul C. van Oorschot. Mdx-mac and building fast macs
from hash functions. In Proceedings of the 15th Annual International
Cryptology Conference on Advances in Cryptology, pages 1-14. Springer-
Verlag, 1995.

[34] Indrakshi Ray, Indra jit Ray, and Natu Narasimhamurthi. A crypto­
graphic solution to implement access control in a hierarchy and more.
In Proceedings of the seventh ACM symposium on Access control models
and technologies, pages 65-73. ACM Press, 2002.

[35] Michael Roe. Performance of block ciphers and hash functions - one
year later. In Bart Preneel, editor. Fast Software Encryption: Sec­
ond International Workshop. Leuven, Belgium, 14-16 December 1994,
Proceedings, volume 1008 of Lecture Notes in Computer Science, pages
359-362. Springer, 1995.

[36] Ravinderpal S. Sandhu. Cryptographic implementation of a tree hierar-
chy for access control. 1%̂. Procesa. Lett., 27(2):95-98, 1988.

[37] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms,
and source code in C. John Wiley & Sons, Inc., 1995.

[38] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. Performance comparison of the aes submissions.
Technical report, CounterPane Inc., 1999.

[39] Douglas Stinson. Crgptogmphg; Lheorg and Pmctice, First Edition.
CRC/C&H, 1996.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[40] Tom Van Vïeck. Mnltics software features. Webpage, December 2003.

[41] Hongjun Wu, Feng Bao, and Robert H. Deng. Cryptanalysis of some
hash functions based on block ciphers and codes. Zn/ormatica, 26(3),
2002.

[42] Cungang Yang. A 5'ecure Oriented RoZe-Eased Access OontroZ
ModeZ/or Distributed Systems. PhD thesis. University of Regina, Regina,
Saskatchewan, August 2003.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

