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Abstract of Thesis 

A total of 194 bacteria were isolated from pulp and paper biofilms from a mill in 

Thunder Bay, Canada. Diversity of the 194 bacteria indicated that the amounts of bacteria 

found in these biofilms may be influenced by seasonal factors. From this stock of 194 

bacteria, 55 isolates were preliminarily screened for their carbohydrate quantity and 

flocculation ability with hopes of identifying isolates that may be capable of producing an 

extracellular polymeric substance that could be used as a novel encapsulation material. 

Four isolates, 1, 2, 8, and 34 were selected from the carbohydrate screening and they 

were identified as a Flavobacterium sp. (isolate 1), Pseudomonas sp. (isolate 2), and a 

Sphingomonas sp. (isolate 34). Unfortunately, isolate 8 identity could not be confirmed 

using 16s rDNA sequencing and biochemical testing. Isolates 1 and 34 carbohydrate was 

harvested and lyophilized in attempts to create gels. Following gelation experiments 

using different concentrations of bacterial carbohydrate along with cation addition to the 

solution, it was observed that isolate 1 carbohydrate produced semi-solid gels at 2.0 and 

1.0% w/v concentrations when FeCb was added. Both isolate 1 and 34 carbohydrates 

appeared to enhance gelation of non-gelling concentrations of the known polysaccharides 

Gellan and Xanthan when mixed gel experiments were conducted. 
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Chapter 1: Literature Revievv 

1.1.1 Biofilm Formation 

Biofilms can be defined as communities of microbes associated with a surface, 

typically encapsulated in an extracellular matrix (Costerton et al, 1987). Microbes attach 

to abiotic surfaces and begin to secrete extracellular polymeric substance (EPS) creating a 

biofilm. EPS is mainly composed of polysaccharides, nucleic acids, and proteins and, 

depending on the species biofilms consist of 10-25% cells and 75-90% EPS matrix 

(Costerton, 1999). There is debate driving the research as to why bacteria form biofilms, 

however many speculations have been suggested. For example, Jefferson (2004) 

proposed the following four reasons for biofilm formation; defense as a stress response, 

favourable niche formation, community formation of multispecies and division of labour, 

and fmally biofilm formation as a default state for microorganisms. 

Under conditions of stress, bacteria may produce a biofilm as a defense 

mechanism. Once protected by a biofilm, organisms can withstand changes in pH, 

nutrient deprivation, and even exposure to antimicrobial agents such as antibiotics better 

than planktonic cells (Jefferson, 2004, Czechowski and Stoodley, 2002, Stewart and 

Costerton, 2001 ). Studies have shown that Staphylococcus epidermidis and Pseudomonas 

aeruginosa cells in biofilms have a greater survivability than planktonic cells when 

exposed to the antimicrobial agents rifampin, glutaraldehyde and tobramycin (Zheng and 

Stewart, 2002, Grobe et al., 2002, Walters et al, 2003). If the bacteria are not destroyed 
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by antimicrobials, they will continue EPS production and colonization of surfaces. It has 

also been suggested that some cells in biofilms can sense stress and actively change their 

physiology in order to cope with this stress (Szomolay et al., 2005). For instance, P. 

aeruginosa biofilm cells actively produced ~-lactamase enzyme to deactivate imipenem 

and could neutralize monochloroamine after multiple exposures to the chemical 

(Giwercman et al., 1991, Sanderson and Stewart, 1997). It has also been discovered that 

some ~-lactarns induce the production of polysaccharide produced by Escherichia coli 

which may also increase resistance to antimicrobials in such a way that the antimicrobial 

may not diffuse through the entire biofilm (Sailor et al., 2003). These studies all reported 

increased resistance and defense to antimicrobials when cells are in biofi1ms as opposed 

to the planktonic form. 

Although the mechanisms behind antimicrobial resistance is not fully understood, 

five possible principles have been proposed; "(i) depletion of the antimicrobial agent in 

the bulk fluid bathing the biofilm, (ii) slow penetration of the antimicrobial agent into the 

biofilm, (iii) an altered chemical microenvironment within the biofilm leading to zones of 

slow or no growth, (iv) adaptive stress responses, and (v) persister cells" (Ghannoum and 

O'Tool, 2004). 

Biofilrns provide a favorable niche for the specific microorganisms present within 

the protective structure itself and might form as a result of this opportunity for a group of 

bacteria. A biofilrn may consist of aerobic and anaerobic regions that can support the 

growth of multiple species ofbacteria within the single structure (Borenstein, 1994). 

According to Borenstein, secondary colonizers may also get trapped in the original 

matrix while passing through the bulk fluid around the biofilm. A particular anaerobic 
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bacterium in a persister state may not be able to colonize a surface until it has been 

trapped in a biofilm. 

Microorganisms have also shown to evolve adaptations which allow for 

colonization of a favorable niche. For instance, some opportunistic pathogens including 

Staphylococcus aureus have developed surface binding proteins that have an affinity for 

host proteins such as fibronectin, fibrinogen, vitronection, and elastin (Patti et al., 1994 ). 

Bacteria such as Vibrio choloerae, E. coli, P. aeruginosa, and Salmonella enterica have 

shown to adhere using flagella, pili and fimbriae (Jefferson, 2004). Similar mechanisms 

may be found in strains of environmental bacteria which allow for attachment to abiotic 

surfaces. 

Another possibility that biofilms are formed may be to develop a communal 

biofilm with shared labor. Bacteria in nature are generally found in a biofilm state rather 

than in a planktonic, free-living state (Costerton et al., 1978). Due to the fact that a 

biofilm is a heterogeneous environment, bacteria must communicate in order for each 

species in the biofilm to survive. These bacteria communicate with each other via small 

signaling molecules using a process known as quorum sensing (Ghannoum and O'Tool, 

2004). In a study conducted by Nielsen et al. in 2000, a mixed species biofilm composed 

of Burkholderia xenovoran LB400 and Pseudomonas sp. B13 displayed commensual 

behavior. These bacteria together will convert 3-chlorobiophenyl into carbon dioxide and 

water. Pseudomonas sp. B13 will degrade chlorobiophenyl to chlorinated benzoate and B. 

xenovoran LB400 will then utilize this compound to form carbon dioxide and water. 

However, Pseudomonas sp. B 13 will not grow on its own and will only grow in the 

presence of B. xenovoran LB400 indicating the dependence of Pseudomonas sp. B13 on 

8 



the latter. This example illustrates one example of bacterial cooperation by means of 

providing energy sources. As more species of bacteria are added to a biofilm, each with 

their own exclusive behavior, the ability for the community to benefit might increase. 

Finally, the existence of planktonic cells in nature is not normally found and 

generally cells are found in a biofilm state. Free-floating cells come to colonize a surface 

and begin to form a biofilm. In some cases, remaining in planktonic form may provide to 

be disadvantageous as with the case of oral streptococci which are exclusively found in 

biofilm form due to the fact that if they were not, they would be washed away or 

destroyed in their niche (Burne et al., 2003). Environmental biofilms are generally of 

multispecies composition and pure culture biofilms are mainly found in laboratories. 

1.1.2 EPS Composition and Paper Mill Bacteria 

Following attachment of a bacterium to a surface, extracellular polymeric 

substance (EPS) is secreted and a biofilm begins to form. EPS is the key component of 

any biofilm as it provides structure, a protective covering from antimicrobials and can act 

as an energy source (Liu and Fang, 2002). Polysaccharides and proteins make up the 

greatest portion of EPS in a biofilm and there can also be dead cells and nucleic acids 

present (Sutherland, 2001, Christensen, 1989, Whitchurch et al., 2002). EPS 

polysaccharides tend to be comprised of larger molecular weight polymers of 10-30 kDa. 

Most bacterial polysaccharides average 80-100 carbohydrate monomers per molecule 

(Ghannoum and O'Tool, 2004). They are mainly found in two forms, (i) capsular such as 

capsular polysaccharides (CPS) and K -antigens associated with cell surfaces and (ii) in 
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slimy polysaccharides which are superficially bound to the cell surface (Kumar et al., 

2007). 

Each polysaccharide svcreted by an individual bacterium has a unique structure 

pertaining to that specific bacterium and can in some cases be used to identify the 

species. Commonly found carbohydrate monomers in EPS include, galactose, glucose, 

mannose, rhamnose, fructose, glucuronic acid (Ishida et al., 2003, Ratto et al., 2005, 

Lindberg et al., 2001). There are also discrepancies between the number of glycosidic 

linkages and the types of functional groups found on a polysaccharide in EPS 

(Ghannoum and O'Tool, 2004). The many different combinations of these factors allow 

for bacterial attachment to surfaces by means of van der Waals interactions, hydrogen 

bonding, and hydrophobic interactions (Ghannoum and O'Tool, 2004). 

One such area that has been shown to be a promising environment for biofilms 

and EPS production is pulp and paper mill machines. The machine's operating 

temperatures of 30-50°C, white water availability, a pH of 5-8 and the presence of many 

nutrients all create favorable growth conditions for biofilm producing bacteria 

(Desjardins and Beaulieu, 2003). A typical paper machine uses 10-100 m3 of water per 

tonne of paper produced and there is ample medium for bacteria to rely on for growth and 

circulation (V aisanen et ~1., 1998). Due to the fact that most trees are shipped to mills 

straight from the forest, the number of microbial species found on machines can vary 

significantly. Anaerobic and aerobic species such as the Bacillus, Sphaerotilus, 

Klebsiella, Achromobacter, Pseudomonas, Paenibacillus, Enterobacter, Cytophaga and 

many more have been isolated in paper mill studies (Ratto et al., 2005, Lahtinen et al., 
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2006). Some of these bacteria such as Pseudomonas sp. are known biofilm producers and 

have been the focus of many biofilm studies. 

Although there are attempts to control the spread of biofilms in pulp and paper 

mills they have proven futile. The presence of biofilms on machines can contaminate 

paper, causing product loss, and affect the operation of paper machines themselves 

(Kolari et al., 2001). Problems that can occur during paper production include plugging 

of the screens used for primary filtering of pulp, corrosion induced by microbes, additive 

spoilage, and machine fouling. Problems involving product include holes/spots in paper 

and sheet breaks caused by biofilm growth on large sheets of paper (Evans, 2000). In 

order to control this loss of product, biocides are periodically added to the white water 

with the expectation that the chemicals will aid in the removal of contaminants 

(Desjardins and Beaulieu, 2003). 

Traditionally biofilms are removed from paper machines by mechanical and/or 

chemical methods. A 'boil-out' may be done where the paper making process is stopped 

and biofilms are removed by flushing all systems with high alkaline solution. However, 

this method is expensive as it requires a shutdown of the mill (Evans, 2000). Another 

method used to remove biofilms is the application of biocides which are added to the 

white water in the mill. These chemicals can be divided into two groups; oxidizing and 

non-oxidizing biocides. Oxidizing biocides degrade cell walls and disrupt cell metabolic 

processes. Commonly used oxidizing biocides are hypohalous acids, chlorine dioxide and 

peracids (Evans, 2000). Non-oxidizing biocides are believed to be metabolic inhibitors 

and commonly used chemicals include bromonitropropanediol, carbamates, 

chlorosulfone, and glutaraldehyde (Evans, 2000). However, biocides have had limited 
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success in controlling mill slimes (Lassen et al., 2001). No one biocide works best at 

removing all biofilms because the structure of each biofilm is different. Biofilms continue 

to grow on paper machines regardless of the amount of control. 

1.1.3 Encapsulation of Bacteria 

Encapsulation of chemicals is not a new process, however encapsulating bacteria 

for food purposes and bioremediation is being explored. Encapsulation of probiotics such 

as Lactobacillus reuteri with alginate, K-carrageenan, gellan and Xanthan has been used 

to increase survivability in gastrointestinal environments (Muthukumarasamy et al., 

2006). Bifidobacteria sp. have been encapsulated with alginate to improve their viability 

in mayonnaise (Khalil and Mansour, 1998). Survival of encapsulated Bifidobacteria spp. 

in milk has also been studied (Hansen et al., 2002). There has also been investigation into 

the encapsulation of pollution degrading micro-organisms with Gellan gum which has 

been shown to increase degradation ability of activated sludge compared to that of non-

encapsulated activated sludge (Moslemy et al., 2004). Creating a protective coating 

around a bacterium may create a time-released action and increase the survivability of the 

bacterium being encapsulated. Commonly used encapsulation materials include Gellan 

gum derived from Sphingomonas elodea, Xanthan gum derived from Xanthomonas 

campestris, alginate derived from brown algae, and agar derived from red algae. These 

materials are long chained polysaccharides and have been successfully applied for 

encapsulation studies. The two major areas discussed will be encapsulation of pro biotic 

bacteria and encapsulation of environmental remediation bacteria in different materials. 
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It is necessary for probiotic bacteria to survive shelf-life storage as well as pass 

through the stomach in order to reach the intestinal environment where colonization will 

occur. The acidity level of the stomach is very high with pH levels ranging from 1.0-3.0, 

depending on the presence of food. The main components of gastric juice which pro biotic 

bacteria must endure are pepsin, rennin, mucus, and hydrochloric acid. One way that 

probiotics may pass through this climate relatively unharmed is with the aid of an 

encapsulation material. The bacterium is encapsulated in a material that is not fully 

digested by the gastric juices of the stomach, thus enabling delivery to the intestine. 

According to the International Dairy Federation, probiotic bacteria should be present at 

10 7 CFU/g minimally in a food product for proper inoculation of an individual 

(Ouwehand & Salminen, 1998). Rao et al. (1989) concluded that Bijidobacterium 

pseudolongum encapsulated with cellulose acetate phthalate (CAP) increased the survival 

of bacteria under simulated gastric acid conditions compared to the non-encapsulated 

bacteria (Sultana et al., 2000). This is just one study that highlights the importance of 

encapsulation materials for the delivery of pro biotic bacteria to the intestine. 

Calcium alginate has been shown to be a useful encapsulation material for aiding 

in the survival of pro biotic bacteria. Alginate is a linear copolymer derived from brown 

algae. When alginate beads are coated with polycations, their chemical and mechanical 

stability is improved and encapsulation effectiveness increases (Krasaekoopt et al. 2004). 

This substance has been used due to its non-toxicity to humans and low cost. In 

Krasaekoopt's study, the rate at which probiotic induced acidification of yogurt occurred 

was lower when the probiotics were encapsulated with calcium alginate compared to the 

rate of free, non-encapsulated bacteria incubated at the same temperature. A different 
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study concluded that it took 6 hours for free, non-encapsulated cells to change a solution 

of reconstituted skim milk to a pH of 5.0, while it took close to 30 hours for encapsulated 

cells to change the pH of the solution to 5.0 (Sultana et al., 2000). 

It was also concluded that the encapsulated probiotics Lactobacillus acidophilus, 

B. infantis and Lactobacillus casei had a significant decrease in cell death compared to 

free cells when exposed to 1% bile after a 2 hour interval. This result depended on the 

size of the microcapsule (Sultana et al., 2000). 

Chitosan-coated alginate microcapsules have also been used to coat probiotic 

bacteria with hopes of increasing their viability further as it has been demonstrated that 

alginate alone has limited success due to its poor stability when chelating agents are 

present (Smidsrod and Skjak-Braek, 1990). Degradation of alginate by chelating agents 

may increase the release rate of encapsulated materials. Chitosan is a linear 

polysaccharide derived from chitin. Probiotic bacteria were encapsulated in alginate and 

then secondarily immersed in a chitosan solution to produce a double encapsulation 

effect. Microencapsulated cells of B. bifidum survived better than free, non-encapsulated 

cells in yogurt during storage, with an increased survivability of around 1 log cycle when 

encapsulated with chitosan-coated alginate. There was a decline of about 1 log cycle over 

a period of 4 weeks for encapsulated cells and 2 log cycles for free, non-encapsulated 

cells in both yogurts from UHT (milk) and conventionally treated milk (Krasaekoopt et 

al., 2006). L. casei in chitosan-coated alginate capsules showed similar results. 

Encapsulated cells survived better than free, non-encapsulated cells in both UHT and 

conventionally prepared yogurt with a difference of 1 log cycle (Krasaekoopt et al., 

2006). This method of encapsulation could demonstrate to be an effective means to 
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extending shelf-life viability of probiotics. However, no simulated gastric juice test was 

performed to determine whether Chitosan coated alginate microcapsules can indeed resist 

an acidic environment. 

Another study did evaluate the 6.0% bile salt (pH 8.25) tolerance of chitosan 

coated alginate microcapsules. This study concluded that probiotic bacteriaL. 

acidophilus, B. bifidum, and L. casei were more likely to survive when coated with a 

chitosan-alginate mixture in a pH level of 8.25 (Krasaekoopt et al., 2004 ). Once again, 

survival in low pH environment could not be conclusively proven, and there was no 

survival of B. bifidum in the presence of gastric juice due to its low acid resistance 

(Krasaekoopt et al., 2004). 

Picot and Lacroix (2003) investigated the effects of whey-protein encapsulation 

on two Bifidobacteria species. Whey protein is a globular protein derived from whey. 

Survival of the bacteria was tested in yogurt and exposed to a gastrointestinal simulation. 

Encapsulated Bifidobacterium breve cells exhibited a better survival rate after a 28 day 

storage period in low pH yogurt (104 cfu/g) compared to non-encapsulated cells (103 

cfu/g). There was also an increase in viability (+2.6log cycles) during simulated 

gastrointestinal conditions when these bacteria were encapsulated with whey protein 

(Picot and Lacroix, 2003). Whey protein encapsulation could be one method for 

improving pro biotic delivery, however, the recommended dosage of pro biotic bacteria is 

106 cfu/g for therapeutic benefits and further investigation into increasing survivability is 

needed. 

Gum arabic has also been used as an encapsulation material for the probiotic 

Bifidobacterium spp. This material is a mixture of saccharides and glycoprotein derived 
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from acacia trees. In one study, B. longum and B. infantis were encapsulated with gum 

arabic and exposed to simulated gastric juice environments of pH 2.0 for a period of 4 

hours. B. longum encapsulated with gum arabic remained relatively stable during the 

entire exposure period. The survival of microencapsulated B. infantis was also found to 

be higher than that of the free, non-encapsulated cells in the presence of the simulated 

gastric juice (pH 2.0) (Lian et al., 2002). The two bacteria were also exposed to 0.5% and 

2.0% bile solutions for 12 hours. Encapsulated B. longum or B. infantis did not 

significantly differ from non-encapsulated bacteria with respect to survival after the 12 

hour time period in 0.5% bile, but they did show significantly improved survival when 

exposed to 2.0% bile (Lian et al., 2002). According to this study, gum arabic could prove 

to be an effective encapsulation material for Bifidobacterium spp. 

A more recent addition to encapsulation materials is the gelling agent Gellan. The 

primary structure of Gellan gum has been confirmed as a linear anionic hetero-

polysaccharide consisting of D-glucose, D-glucuronic acid, D-glucose and L-rharnnose 

(Moritaka et al., 2003). Gellan is a linear bacterial exopolysaccharide derived from the 

Gram-negative bacterium Sphingomonas elodea. It forms transparent, elastic-like gels 

when acetylated. However once de-acetylated with cations such as Ca2+, K+, Na+, a rigid 

brittle gel is formed. Cation-induced gelation involves the formation of a double helical 

junction zone followed by aggregation of these double helices to form three dimensional 

complexes of cation and hydrogen bonds with water (Banik et al., 2000). 

Miyazaki et al. (1999) concluded that rheological properties of a Gellan gel 

changed when calcium chloride (0.016% w/v) was added to different concentrations of 

Gellan 0.25%, 0.50%, 1.00% (w/v) and allowed to cool at 20°C. As concentration of 
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Gellan increased, so did the strength of the gel formed (measured in kN/m2). The same 

study observed the release time for a given drug (1% w/v theophylline) when 

encapsulated with different concentrations of Gellan and cation. At simulated 

gastrointestinal pH of 1.2, the encapsulated material began to release drug at 

approximately 2.5 hours after "ingestion" and there was no significant difference in 

release rate between the different concentrations of Gellan. 

A mixture ofGellan and drug were combined with sodium citrate (0.175% w/v) 

and administered orally to rats and rabbits. Sodium citrate prevented gelling from 

occurring until the Gellan reached an acidic environment as the Ca ++ ions get bound at 

high pH and will only release at low pH (Miyazaki et al., 1999). Once the mixture 

reached the stomach, gelation occurred within 15 minutes, as determined by visually 

observing the stomach contents of the animals. Sustained release of the drug from Gellan 

and sodium citrate capsules compared to that of intravenous injection in vivo showed 

significantly higher levels of drug in the blood stream when encapsulation of drug was 

used compared to that of the intravenous injection after 6 hours (Miyazaki et al., 1999). 

This study concluded that an in situ gel could be formed from the encapsulation of drug 

with Gellan. 

Kedzierewicz et al. (1999) discovered that a model drug (Propranolol 

hydrochloride) could be stored up to 3 weeks in wet or dry conditions with no change in 

the release of the encapsulated substance when Gellan was used. Calcium chloride was 

used to induce gelation and form a gel matrix around the proposed drug. The study also 

found that gelation would be affected by adjusting the pH of the Gellan or by adding 

calcium chloride to increase the gel strength. By increasing the pH of the Gellan gum to 
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one unit above the pKa of the drug, precipitation of the drug inside the microcapsule 

increased causing insoluble drug to be entrapped in the gel's matrix (Kedzierewicz et al., 

1999). The beads were then freeze-dried or oven-dried for 24 hours at 3 rc. The drug 

was released slower from oven-dried than from wet or freeze-dried gels. The beads were 

then placed in solutions differing in acidity (pH 5.3 and 12.0) and stored at room 

temperature for a period of 3 weeks. After the 3 weeks, the beads were submersed in a 

pH solution of 6.8 to dissolve the gel and no significant difference in drug release was 

observed in either solution (Kedzierewicz et al., 1999). Once again, Gellan has proven to 

be a successful encapsulating material by increasing viability of a product. 

Gellan has also shown promise when used as an encapsulation material for 

gasoline-degrading bacteria. Encapsulated cells showed degradation of hydrocarbons 

immediately after inoculation at different gasoline concentration levels (50, 100, 200, 

400, and 600 mg!L) and there also appeared to be a reduced adaptation time required by 

cells when exposed to gasoline hydrocarbons (Moslemy et al., 2002). Although free, non-

encapsulated cells did degrade the hydrocarbons, they did so at a lower rate than the 

encapsulated bacteria because of the lag period expressed during initial inoculation. The 

formation of a protective gel matrix around gasoline-degrading bacteria aided 

tremendously with their ability to perform. Moslemy et al. (2002) concluded that when 

gasoline degrading microorganisms (2.6-1.0 mgcens per bead) were encapsulated with 

Gellan gum, it took approximately 5-10 days at l0°C to degrade over 90% ofthe gasoline 

(50-600 mg L-1
) while degradation of equivalent levels of gasoline by free, non-

encapsulated cells required more than 30 days (Moslemy et al., 2002). Again, this 

indicates that cells may stay viable longer when encapsulated with a polysaccharide. 
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Another useful encapsulating material which has shown significant value is K-

carrageenan. Fluorescently (green fluorescent protein) labeled Moraxella sp. G21 was 

encapsulated with K-carrageenan and inoculated into autoclaved and non-autoclaved soil 

contaminated withp-nitophenol (720 f.!M). Results indicated that after 30 days, 

encapsulated Moraxella sp. G21 had higher survival rates compared to that of non-

encapsulated cells in autoclaved soil and non-sterile soil. It was also observed that 

encapsulated Moraxella sp. G21 increased in number in non-sterile soil, suggesting that 

encapsulation may have provided a protective environment for the bacterium to 

reproduce (Errampalli et al., 1999). 

Many encapsulating materials have been described, and each has benefits 

depending on the conditions used. Alginate, whey-protein, gum arabic have all shown 

potential for encapsulating probiotics. Alginate and whey-protein may prove to be 

successful with extending shelf-life of a product, but the benefits of pro biotic 

encapsulation on survival in high acidic environments has not been fully explored. 

Alginate has been shown to be useful in encapsulating bacteria however, the best results 

occurred once a secondary coat of an encapsulation material was applied. On large-scale 

industrial production, secondarily coating an encapsulation material may increase cost of 

the final product for the consumer. Although whey has shown success in extending shelf 

life of food products, it is a milk product and may cause problems for people who are 

lactose intolerant. Gum Arabic demonstrated potential as an encapsulation material, 

however mainly studies on the Bifidobacterium spp. were found in the literature. Gum 

Arabic is also mainly used in the food industry as a stabilizer. K-carrageenan has also 

shown intriguing ability when used as an encapsulation material. Of the encapsulation 
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materials discussed, Gellan gum has shown to be most versatile with respect to resisting 

low pH levels and extending shelf-life of bacteria and drugs. When different cations are 

added to induce gel formation, Gellan has proven to successfully resist high acidic 

environments (pH 1.2). Shelf-life has been extended with the use of Gellan as an 

encapsulation material. Gasoline-degrading bacteria have shown to survive at higher 

levels when encapsulated with Gellan gum. Gellan gum has shown to increase 

survivability of encapsulated bacteria in milk products however its application in other 

food products still needs to be investigated. Viability of product was increased up to 4 

weeks when using gellan but most milk-based products can expire long before this. Long 

term encapsulation studies should be conducted on food products that stay on the shelf 

for greater than 4 weeks if Gellan is used. The identification of novel encapsulation 

materials is an ongoing research effort and the need for such materials is even greater to 

improve food quality and bioremediation efforts. An encapsulation material that can be 

applied in a single coating and last greater than 4 weeks would benefit the food industry 

and bioremediation industry. 

1.1.4 Study Objectives 

This study aims to characterize the extrapolymeric substance from paper mill 

bacterial isolates in search of isolates capable of producing novel carbohydrate materials 

for encapsulation of pro biotic and pollution degrading microorganisms. Crude bacterial 

carbohydrates will be tested for their ability to form cation induced gels which may be 

used for encapsulation purposes. 
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Chapter 2: Isolation and Screening of Pulp and Paper 

Mill Biofilm Isolates 

2.1.0 Introduction 

Biofilms can develop in a range of different environments as a result of high 

nutrient availability. As nutrients are depleted, planktonic cells may colonize another 

abiotic surface starting a new biofilm (O'Toole et al., 2000). Pulp and paper mill 

machines can offer optimum growth conditions for bacteria and thus biofilms have been 

reported to form on them. Micro-organisms can colonize paper machines as they are 

introduced through wood, water, raw materials and chemicals (Vaisanen et al., 1998). 

In response to biocides used to control growth and spread of biofilms, the bacteria 

form resistance to the chemicals and continue to colonize the paper machines (Szomolay 

et al., 2005). This resistance may be due to the large amount of extracellular polymeric 

substances found in biofilms which restrict the total exposure to biocides. Approximately 

90% of pulp and paper mill exopolymeric substances (EPS) has been found to be 

polysaccharides (Allison, 1993). Based on this assumption, we hypothesized that pulp 

and paper mill biofilms would offer bacteria producing polysaccharides useful for novel 

encapsulation materials. 

Polysaccharides consist of monosaccharides connected by glycosidic linkages. 

The structure of polysaccharides may also include many hydroxyl, hydrogen, and 

carboxyl substituents which offer regions for bonding with cations, anions and other 
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polysaccharides. One such polysaccharide, Gellan, derived from the bacterium 

Sphingomonas elodea has been shown to bind with cations (Nickerson et al., 2003). Due 

to the chemical nature of these bacterial polysaccharides, researchers have conducted 

experiments regarding "flocculation", a term used to define the aggregation of a material 

into clumps with or without ion/substituent interactions (Evans, 2000). 

Microbial polysaccharides are widely used as stabilizers, suspending agents, 

dispersants, and thickeners in the food industry (Sandford, 1979). Industrially, microbial 

polysaccharides are used as detergents, for cosmetics, and pharmaceuticals (Sandford, 

1979). Bacterial polysaccharides and other biosynthesized materials have been shown to 

flocculate in particular materials and precipitate out in solution over time (Kurane et al., 

1986, Kurane et al., 1994). Using modified methods developed by Kurane et al. (1986), 

researchers have used flocculation activity of bacterial polysaccharides in a kaolin clay 

solution as a means of screening carbohydrates produced by bacteria to predict whether a 

polysaccharide may have high functional-group composition such as hydroxyl, hydrogen, 

carboxyl groups, sulphate, phosphoryl, and more complex groups such as carboxylate 

groups similar to other polysaccharides currently used in the food industry such as 

Xanthan gum, Gellan gum, alginates, and bacterial cellulose (Prasertsan et al., 2006, 

Kumar et al., 2004). When purified bacterial polysaccharide is added to a kaolin clay 

suspension along with cations, the polysaccharide will precipitate out at a particular rate 

(Kurane et al., 1994). Tills rate is then used to calculate the polysaccharide's flocculation 

ability. Polysaccharides are also used in the food industry as 'flocculants' which aid in 

the removal of microbial cells from fermentation processes (Toeda and Kurane, 1991 ). 

Flocculation ability may be an indication as to whether a polysaccharide is useful as a 
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food additive for emulsification, gel-forming, absorption, film forming, and protection 

purposes (Kumar et al., 2004). Some identified bacterial polysaccharides used in the food 

industry include Gellan gum derived from Sphingomonas elodea and Xanthan gum 

derived from Xanthomonas campestris. 

Our study investigated the flocculation ability and carbohydrate quantity of pulp 

and paper mill bacterial polysaccharides using methods that have been developed over 

many years. Investigation of the bacterial diversity found in pulp and paper mill biofilms 

was also observed based on individual colony morphology. The objective of this portion 

of the study was to identify microbial isolates from pulp and paper biofilms that produce 

polysaccharides which may be used as encapsulation materials. This data may be used to 

further add to the knowledge base of polysaccharide flocculation and serve as a selection 

method for further isolates of interest. 

2.2.0 Methods and materials 

2.2.1 Raw Biofilm Sample Collection 

Biofilm samples were collected at a pulp and paper mill located in Thunder Bay, 

Ontario, Canada. Sampling was conducted by mill employees during routine maintenance 

shut downs of the paper machine on three separate occasions: January 2006, March 2006, 

and May 2006. Each time, biofilms were sampled at the following four sites on paper 

machines: inside paper press (PI), outside paper press (PO), inside paper former (FI) and 

outside paper former (FO). Raw biofilm samples were placed in sterile Fisherbrand 50 ml 
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disposable plastic screw capped centrifuge tubes and transferred from the paper mill to 

the Lakehead University Microbiology Laboratory in a cooler box maintained at 

approximately 4°C using refrigeration ice packs. 

2.2.2 Enumeration of Bacteria 

Raw biofilms samples were serially diluted by adding 0.5 mL of sample to 0.5 mL 

sterile distilled water followed by vortexing (Koneman, 1997). Using this initial dilution, 

a ten-fold serial dilution series was prepared with sterile distilled water and samples were 

inoculated onto BD Difco™ R2A Agar using triplicate plates. Inoculation was conducted 

mechanically with a Spiral Biotech Autoplate 4000 Spiral Plater or by spread plating 

using a sterile glass rod. R2A plates were incubated at 30°C and 50°C for 24 hours and 

for 48 hours at a 20°C. Total colony numbers were counted and the plates were used to 

select isolates for further study as described below. 

2.2.3 Selection, Characterization, and Purification of Isolates 

Once total colony counts on R2A media plates were completed, selection of 

isolates for screening proceeded. For each sampling date (January, March, May), sample 

site (PI, PO, FI, FO) and incubation temperature (20°C, 30°C, 50°C), up to eight unknown 

isolates were chosen resulting in a total of 194 unknown isolates. Isolates were 

categorized based on colour and size. From this initial selection of 194 bacteria, 55 

isolates producing mucoid, ropy colonies were randomly chosen for further study. The 
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preference for this colony morphology \Vas based on the assumption that these particular 

isolates would produce large amounts of extracellular polysaccharides (EPS) and thus be 

good candidates for isolation of novel carbohydrate encapsulation materials. 

The 55 isolates selected from R2A media were purified by sub-culturing twice on 

R2A agar, incubated for 24 hours at 30°C. Pure cultures were inoculated into a 100 mL 

glass Erlenmeyer flask containing 25 mL of R2A broth and incubated for 24 hours at 

30°C while shaking at 30 rpm on a New Brunswick Scientific C 1 Platform Shaker. Each 

culture (0.8 mL) was mixed with 0.8 mL of sterile 50% w/v Fisherbrand glycerol and 

stored at -80°C. 

2.2.4 Inoculum Preparation 

A single colony of each purified isolate was inoculated into a 100 mL glass 

Erlenmeyer flask containing 25 mL ofR2A broth and incubated for 24 hours at 30°C 

while rotating at 30 rpm on a New Brunswick Scientific Cl Platform Shaker. Following 

incubation, the culture was centrifuged at 3200 x g for 10 minutes in Thermo IEC Centra 

CL3R centrifuge at 4°C. The culture was then washed three times by adding 10 mL of 

phosphate buffered saline (PBS) and centrifuging for 10 minutes at 3200 x gat 4°C. PBS 

was composed of 0.13M NaCl, 2. 7mM KCl, SmM NazHP04 and 1.8mM KHzP04 at pH 

of7.4. 

Following the wash with PBS, the cell density of the culture was adjusted to 

OD6oo = 0.06 using a Biochrom Nova Spec Visible Spectrophotometer. Cultures were 

adjusted to 0.06 because this value was expected to correspond to approximately 107 

30 



CFU/mL. Cell inoculum quantities were confirmed by drop plating (Hoben, 1982) on 

R2A media. Then 0.5 mL of density adjusted culture was inoculated into two centrifuge 

tubes, each containing 225 mL of sterile R2A broth supplemented with dextrose at 1 Og/L 

and incubated for 24 hours at 30°C while rotating at 30 rpm. This culture was used to 

prepare extracellular polysaccharides. 

2.2.5 Preparation of Extracellular Polysaccharides (EPS) 

EPS was prepared following a protocol adapted from Kurane et al. (1994), 

Prasertsan et al. (2006), and Kumar et al. (2004). The 24 hour cultures described above 

were centrifuged initially at 3200 x g for 10 minutes at 4°C in order to combine the two 

225 mL cultures into one centrifuge tube before washing. The pellets from both tubes 

were combined and the culture was washed twice by mixing with approximately 10 mL 

of sterile distilled water and centrifugation at 3200 x g for 10 minutes at 4°C. Following 

the second wash, 10 mL of sterile distilled water was added and the culture was vortexed 

for 3 minutes to mechanically shear EPS from the cells. The preparation was then 

centrifuged for 35 minutes at 14,460 x gat 4°C in a Sorvall RC-5B Refrigerated 

Superspeed Centrifuge. Crude EPS was present in the supernatant, and cells that collected 

in the pellet were discarded (Kurane et al., 1994 and Prasertsan et al., 2006 and Kumar et 

al., 2004). 
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2.2.6 Carbohydrate Quantification 

Crude EPS was assayed for its carbohydrate content using the Phenol-Sulfuric 

Acid Assay (Dubois et al., 1956). This assay estimates simple sugars by measuring colour 

change of furfural and hydroxymethy'Ifurfural compounds produced by sulfuric acid after 

phenol is added to the sample. EPS supernatant (0.5 mL) was added to 0.5 mL of reagent 

grade 5% (w/v) Phenol and vortexed in a Fisherbrand Disposable 16x125mrn Glass 

Culture Tube. Then, 2.5 mL of reagent grade concentrated sulfuric acid was added to the 

solution and vortexed lightly. The mixture was incubated at room temperature for 10 

minutes and then incubated for 15 minutes at 25°C in a Fisher Scientific Isotemp 228 

water bath. Samples were read against a blank prepared without glucose using a 

Biochrom Nova Spec Visible Spectrophotometer set at a wavelength of 488 nm. A 

glucose standard solution was prepared by adding 50 mg of glucose to 50 mL of 0.15% 

(wt/vol) benzoic acid solution. This solution could be stored at 5°C for several months. 

To prepare a standard curve, the glucose solution was diluted 1:10 in distilled water 

resulting in a solution containing 100 J.Lg/ml glucose. Using this stock solution of 100 

J.Lg/rnl glucose, solutions ofO, 5, 10, 20, 30, 70, and 100 J.Lg/ml were created and assayed 

as described above. Concentration of carbohydrate in isolate samples could then be 

calculated by comparing the absorbance of the samples to the absorbance of the plotted 

glucose standard curve. 
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2.2. 7 Carbohydrate Flocculation 

Crude carbohydrate, commercial grade Keltrol® Xanthan (CPKelco) and 

commercial grade Kelcogel® Gellan gum (CPKelco) were assayed for their ability to 

flocculate in a kaolin clay solution. It has been reported that there is a correlation between 

the amount of bacterial carbohydrate and the ability for this carbohydrate to form 

aggregates in solution (Kurane et al., 1994 and Prasertsan et al., 2006). Carbohydrate will 

bind to kaolin clay particles and precipitate over a given time interval (Kurane et al., 

1994). A suspension of Fisherbrand Kaolin Clay USP (Aluminum silicate, 

AhSiz05(0H)4) was prepared by mixing 5.5g Kaolin with 1000 mL of sterile distilled 

water. One mL of crude carbohydrate sample and 0.9 mL of 0.5 M CaClz were added in 

order to create a cross-bridging effect between kaolin and carbohydrate molecules. This 

mixture was vortexed for 1 minute and then left to stand at room temperature. The 

turbidity of the solution was recorded every 15 minutes for 1 hour using a Biochrom 

Nova Spec Visible Spectrophotometer set at a wavelength of 550 nm. At each time point 

(15, 30, 45, and 60 minutes), 1.0 rnl of the sample was transferred to a Fisherbrand 1.5 

milliliter disposable plastic curvette and absorbance was recorded. 

Flocculation ability was calculated using the formula: 

(1/Sampleonsso) - (1/ControloDSso) 
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2.3.0 Results 

The total number of aerobic bacteria found at each sampling site, namely press 

outside, press inside, former outside and former inside (PO, PI, FO, and FI), and is shown 

in Figure 2.1. Overall, January had the lowest number of positive sites, only sites PO, FO, 

and FI at 30°C yielded countable plates. For several sampling sites only a few colonies 

grew on the plates incubated at 20°C and 50°C. These were reported as <1 00 CFU/mL. 

The highest CFU/mL counts were obtained from plates incubated at 30°C. 

As seen in Figure 2.1, for the sampling in March all sites were positive for 

bacterial growth. Bacteria counts on plates incubated at 20°C and 30°C were 

approximately 104 CFU/mL, while counts on plates incubated at 50 °C were much higher, 

106 CFU/mL. 

The May sampling also was positive for growth at all sites (Figure 2.1 ). There 

appeared to be a shift in bacteria contributing to the highest counts during this month, as 

30°C plates showed approximately 105 CFU/mL and 50°C sites showed only 104 

CFU/mL. The lowest counts were observed on 20°C plates (103 CFU/mL). 

The diversity of the 194 isolates was assessed based on colour and size for each 

sampling month (Figure 2.2). The few colonies collected in January were predominantly 

coloured. The March sampling produced all three colour types with white colonies 

predominating mainly on 20°C and 30°C plates. The 50°C plates produced a similar 

amount of all three colour types during March. In May, coloured colonies predominated 

on 20°C plates, while white and clear colonies were found in higher numbers on 30°C and 
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50°C plates. Overall, 19.07% ofthe isolates collected were clear, 45.36% were white and 

35.56% were coloured (Figure 2.4). 

With respect to size, colonies were predominantly <1 to 2mm in diameter and 

very few isolate colonies were >5mm in diameter (Figure 2.3). January and May 

collection dates provided isolates that were mainly <1 to 2mm with very few isolates 

>3mm. The March samples were more diverse with respect to size as there was a mixture 

of isolates ranging from <1 to 2mm, 3 to 5mm and even some 6 to 10 mm (Figure 2.3). 

The May sampling had the largest colonies, 6 to 10 mm in diameter. Overall, 65.46% of 

the isolates were <1 to 2mm in diameter, 28.35% were 3 to 5mm, and 6.18% were 6 to 10 

mm in diameter (Figure 2.5). 

A total of 55 isolates were selected randomly from this 194 isolate stock, but 

preference was given to isolates that produced mucoid, ropy colonies. Morphology 

observations based on colony colour and size for these 55 isolates are shown in Figures 

2.4 and 2.5. A majority of the 55 isolates were white (43.6%), while clear (30.9%) and 

coloured (25.4%) were also selected (Figure 2.4). With respect to size, 94.5% of the 55 

isolates were <1 to 2mm in diameter, 5.4% were 3 to 5mm, and 0% were 6 to 10 mm in 

diameter (Figure 2.5). 

To assess carbohydrate and flocculation ability, each culture was adjusted to an 

OD6oo = 0.06 because it was expected that this value would correspond to approximately 

10 7 CFU/mL (log10 7.00 CFU/mL ). This inoculum quantity was verified using drop 

plating and the range of inocula values (CFU/mL) for the isolates are shown in Figure 

2.6. Inocula ranged from log10 3. 75 to 8.16 CFU/mL while the average inoculum for all 

55 isolates was log10 6.34±1.00 CFU/mL. 
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The amount of carbohydrate produced by the 55 isolates was determined by using 

the Phenol/Sulfuric Acid Assay as described in Section 2.2.6. These initial carbohydrate 

quantities measured were used as one selection methods of isolates producing potential 

encapsulation materials. Carbohydrate quantities varied greatly between the isolates with 

0.13 Jlg/ml being the lowest and 2076.87 jlg/ml being the highest measured value (Figure 

2.7). 

Along with carbohydrate quantification, carbohydrate flocculation was evaluated. 

Carbohydrate produced by the 55 mill isolates was tested for their ability to flocculate in 

a Kaolin Clay Solution and a wide range of flocculation ability values was calculated 

(Figures 2.9 & 2.1 0). 

Total average flocculation ability for the 55 isolate carbohydrates increased up to 

45 minutes, however began to decrease after this point (Figure 2.8). Total average 

flocculation ability was low for all the carbohydrates as the highest average flocculation 

ability was calculated to be 1.25 at 45 minutes. In comparison, flocculation ofXanthan 

and Gellan in similar concentrations of 45 minutes was 20-60 (Figure 2.13 ). The variance 

between flocculation ability at each time interval increased over time for all of the 

carbohydrates as seen in Figure 2.8. All carbohydrates showed different flocculation 

abilities from one another at 30 and 45 minutes as seen in Figures 2.9 and 2.1 0. 

Upon completion of carbohydrate quantification and carbohydrate flocculation 

ability assays, the coefficient of correlation (R2) was calculated at both 30 and 45 minutes 

using the line of best fit for the data. 

Figure 2.11 depicts no correlation between carbohydrate flocculation ability at 3 0 

minutes and carbohydrate quantity. The correlation of flocculation ability and 

36 



carbohydrate quantity (R 2) was calculated to be 0.0027 and increased to 0.1952 once 

outlier isolates 1 and 34 were removed. All isolates except isolate 34 produced 

carbohydrate quantity less than 200 )lg/ml. All isolates except isolate 1 had a calculated 

flocculation ability ofless than 4. Flocculation abilities ranged from -0.361 to 25.49, 

while carbohydrate quantities ranged from 0.13 )lg/ml to 2076.87 )lg/ml. 

Figure 2.12 depicts similar results with respect to flocculation ability of 

carbohydrate at 45 minutes and carbohydrate quantity. The correlation of flocculation 

ability of carbohydrate and quantity of carbohydrate (R2) was calculated to be 0.0004 and 

increased to 0.1867 once outlier isolates 1 and 34 were removed. Approximately 98.18% 

of the 55 isolates screened had carbohydrate quantities measured of less than 200 J.lg/ml 

and 90.90% of isolates screened had flocculation abilities less than 4 after 45 minutes. 

Isolates 1, 3, 13, 20, and 47 all had flocculation abilities greater than 4 at 45 minutes. 

Flocculation abilities ranged from -1.87 to 27.84, while carbohydrate quantities ranged 

from 0.13 J.lg/ml to 2076.87 J.lg/ml. 

Commercially available Xanthan and Gellan gum were also assessed for their 

flocculation ability at 250 and 500 J.lg/mL concentrations (Figure 2.13). Xanthan had 

higher flocculation ability at 250 J.lg/mL concentrations while Gellan had higher 

flocculation at 500 J.lg/mL concentrations. 
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2.4.0 Discussion 

The total number of aerobic bacteria found at each sampling site, press outside, 

press inside, former outside, and former inside (PO, PI, FO, and FI), are shown in Figure 

2.1. For each sampling date of January, March and May, there was a shift in microbial 

flora, as illustrated by the shift in highest log10CFU/mL counts obtained, which depended 

on the incubation temperature of the plates. January was the coldest sampling month 

while May was the warmest for our study. The seasonal temperature may have had an 

influence on the counts of bacteria found in each month. Bacteria concentrations found in 

each site will differ depending on the optimal growth temperature for the organism. As 

the seasonal temperature increased, one may see an increase or decrease in the number of 

bacteria per site as it was observed in Figure 2.1. Canada's climate is cooler so it may be 

expected to find more psychrophile (growth at -1 0°C-20°C) and mesophile (growth at 

1 0°C-50°C) bacteria in the pulp and paper mills rather than thermophiles (growth at 

40°C-70°C) (Pikuta and Hoover, 2007). For our study incubation temperatures of20, 30 

and 50°C were selected which may have been the optimal growth temperatures for some 

pulp and paper mill bacteria. However, a greater selection of temperatures should be 

tested for future studies. The optimal temperature for isolates found in January may have 

been 30°C, March 50°C and 30°C for May as these were the highest CFU/rnL count 

temperatures. The optimal growth temperature may have changed for the microorganisms 

because the specific species of microorganisms may have changed themselves. 

The 194 isolates screened initially were categorized based on colour and size. For 

the January sampling, several areas had <1 00 CFU/rnL colonies recorded which resulted 

38 



in a small number of colonies, which were predominantly coloured. White coloured 

colonies were present in all three sampling months. White colonies predominated in 

March and May. Most clear colonies were observed in March. 

Most of the isolates collected on all sample dates were < 1 to 2 mrn in diameter. 

When colour (Figure 2.2) and size (Figure 2.3) were compared for March and May, it can 

be seen that sites containing colonies <1 to 2 mm were also sites that contained many 

colonies that were white and coloured. 

The diversity of bacteria found in the mill may be explained as a result of the time 

of year depending on where the pulp and paper mill received wood from. January and 

March are colder months compared to May and this may have influenced the types of 

bacteria found in the soil and on the trees if the bacteria are not psychrophilic. Kubartova 

et al. (2007) observed a shift in microbial decomposers found around different forest tree 

stands depending on the season. It was also observed that fungal colonies reached a peak 

during summer months and rare or infrequent species were also found during this time of 

the year. Community composition was highly dependent on environmental conditions 

such as temperature (Kubartova et al., 2007). 

Another reason for diversity of bacteria on paper machines may be attributed to 

the use of river water for paper making processes. Late winter and early spring snow 

melts can cause flooding of streams and disturbance of benthos materials which may 

influence bacterial populations. It has been shown that the input of allochothonous cells 

from the surrounding landscape and the re-suspension of sediment from benthic zones 

can influence riverine bacterial flora during snow melt periods (Liu and Leff, 2002). Our 
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study found similar results as we saw an increase in the amount of bacteria during the 

months of March and May compared to that of January. 

From the 194 isolates initially selected, a group of 55 isolates was chosen for 

screening of carbohydrate. These isolates were selected based on their ability to produce 

mucoid colonies under the assumption that these particular isolates would produce large 

amounts of extracellular polysaccharides and thus be good candidates for isolation of 

novel carbohydrate encapsulation materials. The 55 isolates selected seemed an accurate 

representation of the colour diversity for the 194 isolates (Figure 2.4 ). The selection 

seemed however biased with respect to colony size since most (94.5%) of the 55 isolates 

formed colonies <1.0 to 2mm in diameter (Figure 2.5). This may not fully represent the 

colony size of the 194 isolates, where only (65.5%) were <1-2 mm in diameter. 

The 55 bacterial isolates were screened for their ability to produce carbohydrate 

and flocculate in kaolin clay solution. These two approaches were used as a means of 

selecting isolates capable of producing novel encapsulation materials. Previous studies 

have investigated wastewater sites (Gao et al., 2006), mudflats (Kwnar et al., 2004), 

seafood sludge from processing plants (Prasertsan et al., 2006) as sources which can offer 

useful microbial exopolysaccharides. Using flocculation ability and carbohydrate content 

as screening methods, the above studies identified the bacteria Vagococcus sp. W31, 

Bacillus sp. I-450, and Enterobacter cloacae WD7 respectively. Based on these previous 

studies, we considered pulp and paper mill machines may also offer industrially 

significant polysaccharides as there is significant biofilm growth on paper machines. 

Carbohydrate concentrations were measured for all 55 isolates as seen in Figure 

2. 7. A wide range in carbohydrate production was seen for the 55 isolates which may be a 
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result of the multiple bacterial species found in pulp and paper biofilms. Selection of 

these isolates was based on mucoid, ropy colonies, which were thought to be potential 

sources of high extracellular carbohydrate. However, this assumption was not entirely 

true as carbohydrate production varied substantially between isolates (Figure 2. 7). 

Variation in EPS production may be explained by the growth conditions that were 

applied to the isolates. The 55 unknown isolates were selected for study, but their optimal 

growth conditions were unknown. An incubation temperature of 30°C was selected and 

R2A media supplemented with dextrose was used as the growth medium assuming that 

these conditions would be sufficient enough for all 55 bacteria. As seen in Figure 2.7, for 

some isolates these growth conditions may be optimal, but for others it was not, as 

carbohydrate production varied. Other growth temperatures, growth media, and 

supplements may affect EPS production and should be examined; this could include 

using growth conditions similar to the conditions found on the collection site of the paper 

machines where the biofilm samples were taken from. 

By calculating how well a polysaccharide flocculates, we could possibly identify 

novel polysaccharides for encapsulation use because a correlation between extracellular 

bioflocculant and cell aggregation has been reported (Tenny and Verhoff, 1973 ). We 

hoped to use this correlation to identify novel polysaccharides as some microbial 

polysaccharides such as Gellan may have flocculation abilities due to the molecule's 

functional group interactions. Our study hypothesizes that some paper mill isolate 

polysaccharides will have high flocculation ability and we use this to indicate gelation 

activity of a paper mill polysaccharide. 
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As seen in Figure 2.8, the average total flocculation for the 55 isolates began to 

decrease after 45 minutes. It was also observed that as time increased, so did the variance 

in flocculation abilities between the 55 isolate flocculations at all time intervals. Only 

measurements at 30 minutes (Figure 2.9) and 45 minutes (Figure 2.10) were graphically 

shown due to the fact that at these intervals the least amount of variance in flocculation 

abilities was observed for the triplicate experiments (Figure 2.8). Measurements at 15 

minutes were not used because mixtures of kaolin and carbohydrate may not yet have 

fully settled and this may influence the readings. 

Carbohydrate flocculation ability and carbohydrate concentrations did not 

correlate with most of the 55 bacteria in this study at 30 and 45 minutes. This may be a 

result of the different species of bacteria that were isolated which in turn produced 

different types of polysaccharides. A certain bacterium may produce large quantities of a 

polysaccharide, however, the polysaccharide may not have had the appropriate binding 

sites for our CaCh cation which was used to create cross-bridges with kaolin particles. 

This may insinuate that the bacteria which produced large amounts of carbohydrate and 

had low flocculation abilities should have their flocculation tested with other flocculating 

media and ions. 

Although flocculation did not correlate with carbohydrate concentration of the 55 

isolates, it did correlate for isolate 1, which was chosen for further study because it had a 

high carbohydrate concentration (174.07 f.Lg/m) and high flocculation ability at 45 

minutes (27.84). Three other isolates (2, 8 and 34) were selected for further study as well. 

Isolate 2 and 8 were selected because their carbohydrate concentration and flocculation 

ability were similar to the rest of the 55 isolates as seen in Figures 2.11 and 2.12; they 
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may thus accurately represent the population of bacteria screened. Isolate 34 was selected 

because it produced a large amount of carbohydrate (2076.87 f.,!g/mL) but it had a low 

flocculation ability. 

Polysaccharides are complex molecules with many physio-chemical properties. 

Simple substituents such as hydroxyl, hydrogen, carboxyl groups, sulphate, phosphoryl, 

and more complex groups such as carboxylate groups which offer binding sites for 

cations and anions may be present in these bacterial polysaccharides (Sutherland, 1994). 

Cations such as Na+, K+, Ca++, and Mg++ have been shown to bind to polysaccharides 

such as the Gellan molecule and induce rigid gels (Huang et al, 2004 ). In order for 

carbohydrate flocculation to occur in a kaolin clay suspension, a cation must be 

introduced into the system, similar to the requirement for gelation of certain 

polysaccharides. Gellan gum, Xanthan gum, chitosan, agarose, and guar gum are 

different polysaccharides and each has different combinations of functional groups and in 

different quantities. lfthe flocculation of these polysaccharides were tested, it may be 

high as these polysaccharides do form gels. Thus, the flocculation ability of Xanthan and 

Gellan gum was examined at 250 and 500 J.lg/mL concentrations (Figure 2.13). At low 

concentrations Xanthan and Gellan gum had very high flocculation abilities which 

supported our hypothesis that these known gelling agents should have high flocculation 

abilities. 

Polysaccharides from different pulp and paper mill bacterial isolates may have 

varying compositions and thus might display different flocculation abilities as shown in 

our study. Using the carbohydrate quantity and flocculation data, isolates 1, 2, 8 and 34 
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were selected for further study as they may be producers of a novel encapsulation 

material. 
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2.5.0 Figures 
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Figure 2.1: Average Logro CFU/mL of aerobic colonies found at each sample site and temperatures for sampling months of January, 
March, and May 2006. 

FO =Former Outside, FI =Former Inside, PO= Press Outside, PI= Press Inside 
*For January samples, plates incubated at 20°C and 50°C had <1 00 CFU/mL at most locations. 
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20°C and 30°C samples sites offered more coloured and clear isolate colonies. 

FO =Former Outside, FI =Former Inside, PO= Press Outside, PI= Press Inside 
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FO =Former Outside, FI =Former Inside, PO= Press Outside, PI= Press Inside 
*For January, samples collected at the PI site did not yield any isolates. 
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Figure 2.9: Initial paper mill isolate carbohydrate flocculation at 30 minutes as determined by Kaolin Clay Flocculation Assay. 
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Figure 2.10: Initial paper mill isolate carbohydrate flocculation at 45 minutes as determined by Kaolin Clay Flocculation Assay. 
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Figure 2.11: Average flocculation ability at 30 minutes of isolate carbohydrate versus 
isolate carbohydrate quantity displayed no correlation when plotted against one another 

indicating that carbohydrate quantity may not influence flocculation ability at 30 minutes. 
Insert Graph: No correlation was observed when outlier isolates 1 and 34 were removed. 
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isolate carbohydrate quantity displayed no significant correlation when plotted against 

one another indicating that carbohydrate quantity may not influence flocculation ability at 
45 minutes. 

Insert Graph: No correlation was observed when outlier isolates 1 and 34 were removed. 
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Chapter 3: Identification of Carbohydrate Producing 

Bacteria and Harvesting ofEPS 

3.0.0 Introduction 

Biofilms produced by bacteria are formed in many different environments. Paper 

machines can offer optimal growth conditions, nutrients, temperatures, and pH for 

bacteria which can in turn produce biofilms (Desjardin and Beaulieu, 2003 & Ratto et al., 

2005). Extracellular polymeric substances (EPS) are the main structural component in a 

biofilm and aid in the adhesion of bacteria to surfaces (Liu and Fang, 2002). Non-

covalent interactions such as London (dispersion) forces, electrostatic interactions and 

hydrogen bonds all contribute to EPS adhesion forces (Flemming et al., 1998). 

Several studies regarding bacterial composition and polysaccharide composition 

have been conducted using paper mill bacteria because these environments offer optimum 

growth conditions for specific species of organisms. The operating temperatures of 

machines ranging from 30-50°C, white water pH 5-8, and the presence of plenty of 

nutrients create a stable growth region for bacteria (Desjardins and Beaulieu, 2003, 

Lahtinen et al., 2006, Lindberg et al., 2001, Verhoef et al., 2005). 

Identifying bacteria located in paper mills accurately and with confidence has 

improved with the use of 16S ribosomal DNA sequencing. This portion of the ribosomal 

subunit is highly conserved between species and can be used to accurately identify 

prokaryotic organisms (Koneman, 1997). Many studies have successfully identified 
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aerobic and anaerobic paper mill, sludge, and waste water bacteria using 16S ribosomal 

sequencing (Yu and Mohn, 2001. Desjardins and Beaulieu, 2003, Chandra et al., 2007, & 

Roest et al., 2005). 

Species diversity is high in mixed culture biofilms formed on pulp and paper 

machines. Some aerobic and anaerobic species identified in paper mills using 16S 

ribosomal DNA sequencing include; Bacillus, Brevundimonas, Cytophaga, Enterobacter, 

Klebsiella, Paenibacillus, Pseudomonas, Pseudoxanthomanas, and Flavobacters (Ratto 

et al, 2005, Desjardin and Beaulieu, 2003). Many of these bacteria are commonly found 

environmental species and can be opportunistic pathogens to many organisms. 

Our study investigated the bacteria found in pulp and paper mill machines in 

hopes of discovering a novel encapsulation material which can be produced from EPS. 

As a result of screening described in Chapter 2, four likely isolate candidates were 

selected for 16S ribosomal DNA identification and carbohydrate analysis. 

3.1.0 Methods and materials 

3.1.1 Preparation of Pure Culture 

Pure cultures of isolates 1, 2, 8 and 34 were inoculated onto R2A agar which was 

incubated at 30°C for 24 hours. Following this initial incubation period, a single colony 

of each species was inoculated into 5 mL ofR2A broth and incubated at 30°C for 24 

hours while shaking at 30 rpm. Pure bacterial isolates (0.8 mL) were mixed with 0.8 mL 

of 50% w/v Fisherbrand glycerol and stored at -80°C for later use. For each molecular 
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experiment, biochemical experiment or EPS batching experiment, a new freezer culture 

was used. 

3.1.2 Chromosome Extraction 

Using the procedure for isolating Gram-negative genomic DNA outlined in the 

Promega Wizard Genomic DNA Purification Kit, genomic DNA was extracted from 

bacterial isolates 1, 2, 8 and 34. Following this procedure, DNA extracts were 

electrophoresed in tris-borate buffer in a 1.0% w/v agarose gel, containing ethidium 

bromide (1 0 mg/mL) used to fluoresce the DNA. Fermentas Lambda Hindiii molecular 

ladder (5~g/~L) was used as a standard. Gels were visualized with UV light using 

Syngene Chemi Genius Bio Imaging System illuminator and Genesnap© version 7.01 

software. 

3.1.3 Primer Sets 1.5 kb and 600 bp 

Once chromosome extraction was successful and verified by electrophoresis, 16s 

rDNA was amplified using polymerase chain reaction. Two DNA fragment sizes were 

desired, a larger 1.5 kb fragment and a smaller 600 base pair fragment as seen in Figure 

3.1. The primers 1492-R and 27-F were used for the 1.5 kb reaction as they would yield 

the maximum amount of sequence information for analysis, however larger fragments are 

harder to amplify because yields are lower (Trevors and van Elsas, 1995). The 16s 

universal primers 907-R and 341-F were used for the 600 bp reaction (Muyze et al., 
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1998). The two reactions were used in order to completely sequence the l.Skb DNA 

fragment as using the 1.5 kb reaction alone might not produce the best quality of data for 

sequence analysis. Including the 600 bp sequence produced by 16s universal primers 907-

R and 341-F for sequencing created a more robust l.Skb DNA sequence (Figure 3.1). 

3.1.4 Calculating Annealing Temperatures for Primers (Farell, 2005) 

Using the equation, 

Tanneal = 4 (Guanine+ Cyosine) + 2 (Adenine+ Thymine) (Equation 3.1) 

annealing temperature for 1492-R was calculated as 64°C and for 27-F, it was 62°C. To 

find the Total Annealing Temperature (Tan) for the two primers Equation 3.2 was used. 

Tan [(T anneal 1 + T anneal 2)/2]- 5 

Where, 

T anneal 1 represents the temperature calculated for primer 1 

T anneal 2 represents temperature calculated for primer 2 

(Equation 3.2) 

The Total Annealing Temperature for 1.5kb primer set was calculated to be Tan (64°C + 

62°C /2)- 5 = 58°C. 
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Using Equation 3.1 annealing temperature for 16s 907-R was calculated as 56°C 

and 16s 341-F, it was 58°C. To find the Total Annealing Temperature (Tan) for the two 

primers Equation 3.2 was used. The Total Annealing Temperature for 600bp primer set 

was calculated to be Tan (56°C + 58°C /2)- 5 = 52°C. 

3.1.5 Polymerase Chain Reaction Amplification 

Chromosomal DNA that was highly concentrated after extraction, was diluted 1 Ox 

in sterile ddH20. PCR reactions were performed in a total volume of 50 Jll containing 1x 

PCR buffer without MgCh, 2.5mM MgCh, I 11M of each PCR primer, 0.2mM dNTPs, 

1 U Taq DNA polymerase and 1 Jll of isolate genomic DNA. PCR reagents were 

purchased from Fermentas, Burlington, Ontario. PCR conditions were set as follows, 

after initial denaturation for 5 minutes at 94°C, 30 cycles of amplification consisting of 

denaturation for 1.5 minutes at 94°C, annealing for 1 minute at 55°C, and extension for 

1.5 minutes at 72°C were performed. The procedure was then followed by a final 

extension for 10 minutes at 72°C and then a holding temperature of 4°C completed the 

program. Following amplification, 5 uL ofPCRproducts were electrophoresed in a 0.8% 

agarose gel containing ethidium bromide (lOmg/mL) and eletrophoresed at 120 volts for 

30 minutes. Fermentas GeneRuler™ lkb DNA Ladder Plus (O.SJ.lg/Jll) was used as a 

standard. Gels were visualized with UV light using Syngene Chemi Genius Bio Imaging 

System illuminator and Genesnap© version 7.01 software. 
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3.1.6 Purification of PCR Products 

To purify PCR products, 45 f.LL of product was electrophoresed in a 1.0% w/v 

agarose gel containing ethidium bromide (1 Omg/mL). Fennentas GeneRuler™ lkb DNA 

Ladder Plus molecular ladder (O.Sflg/f-11) was used as a standard. The products were run at 

110 volts for 40 minutes to ensure greater separation of bands. Once separated, DNA 

bands of the desired size were manually cut from the agarose gel and purified using 

Wizard SV Gel and PCR Clean-Up System. The concentration of DNA was measured 

using a UV spectrophotometer by comparing the ratios of absorbance at OD260:0D280 of 

the purified product (Sambrook & Russell, 2001). Purified DNA was stored at -20°C until 

shipped for sequencing by Mobix Laboratory at McMaster University. 

3.1. 7 Sequence Analysis 

Once complete, the DNA sequences for both the 1.5kb fragment and 600bp 

fragment were combined using DNAMan for Windows (Lynnon Corporation, Quebec, 

Canada). The complete sequence ofthe 1.5kb fragment was matched using the Basic 

Local Alignment Search Tool (BLAST) available online at 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi. 
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3.1.8 Biochemical Tests 

All isolates were characterized with Gram stain, oxidase and catalase tests. 

Glucose fermentation and ONGP tests were conducted on isolate 1 to further aid in 

identification while nitrogen gas production, hydrogen sulfide production, ornithine 

decarboxylase, and urea hydrolysis were conducted to identify isolate 8. Overnight 

cultures taken from R2A agar were used for all biochemical testing. 

3.1.9 Carbohydrate Lyophilization 

Isolates 1, 2, 8, 34 were selected for further analysis and carbohydrate 

lyophilization. Isolate 1 was selected because it had high carbohydrate production and 

high flocculation, isolates 2 and 8 because they had similar carbohydrate quantities and 

flocculation abilities to the entire 55 isolate group, and isolate 34 was selected because it 

produced a large amount of carbohydrate. Several batches of each isolate culture was 

grown and prepared in order to produce enough carbohydrate for gelation tests. Isolates 

were inoculated onto R2A media and incubated overnight at 30°C. A single colony was 

then inoculated into 500 mL ofR2A broth and incubated for 24 hours at 30°C while 

rotated at 30 rpm. Carbohydrate was prepared as described in Chapter 2: Sections 2.2.4 

and 2.2.5. Initial inocula were adjusted to OD6oo = 0.06 using a Biochrom Nova Spec 

Visible Spectrophotometer. Some carbohydrate batches were mechanically filtered using 

a Fisherbrand 0.22 !liD plastic disposable filter and BD Brand Disposable Syringe to 

remove cells, while other batches were not filtered (Ishida et al., 2003, Hernandez-Mena 
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and Friend, 1993). For each batch of carbohydrate preparation, 1 mL of sample was put 

aside and assayed using the Phenol-Sulfuric Acid Assay to confirm carbohydrate 

quantity. The remaining 9 mL of carbohydrate was then placed into two 10 milliliter glass 

bottles and sealed with a plastic stopper and placed in a -80°C freezer over night before 

lyophilization to ensure homogeneous freezing of the carbohydrate. Substances to be 

lyophilized must be frozen to eutectic temperature before proper freeze-drying can occur. 

Frozen samples were placed in Labconco Freezezone 12 Vacuum Freeze Drying System 

set to a temperature of -30°C. Lyophilization occurred over a 3-5 day period until samples 

were dry. Lyophilized samples were stored in a dessicator at 4°C to prevent re-hydration 

due to atmospheric moisture. 

3.2.0 Results and Discussion 

Studies have been conducted in Europe to characterize the types of bacteria found 

on pulp and paper machines (Lahtinen et al, 2006 & Linberg et al, 2001). However, to 

our knowledge, only two previous studies (Desjardins and Beaulieu, 2003, Evenleigh and 

Brewer, 1964) have attempted to characterize aerobic bacteria on Canadian pulp and 

paper machines. It has also been established that bacterial species isolated are highly 

dependant on the paper machine environment (Harju-Jeanty and Vaatanen, 1984, 

Hughes-van, 1988, Oppong et al, 2000, Vaisanen et al, 1998). Many different genera, 

such as Bacillus, Brevundimonas, Cytophaga, Enterobacter, Klebsiella, Paenibacillus, 

Pseudomonas, Pseudoxanthomanas, and Flavobacters have been isolated from pulp and 

paper machines around the world (Ratto et al, 2005, Desjardin and Beaulieu, 2003). This 
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study isolated bacteria from a Canadian pulp and paper mill in Thunder Bay, Ontario and 

identified four isolates of interest with respect to production of EPS. 

3.2.1 Identification of Isolates 1, 2, 8 & 34 using Molecular Techniques and 

Biochemical Tests 

As seen in Figure 3.2, DNA bands were visible at the 1500bp marker region using 

primers 27-F and 1492-R for all four isolates. In addition, bands were visible at the 600bp 

region after gel electrophoreses verification of PCR products obtained with primers 341-F 

and 907 -R was conducted. Once sequences were obtained and combined, a nucleotide 

analysis was conducted using the Basic Local Alignment Search Tool (BLAST). Total 

results for all isolate sequences are outlined in Table 3.2. The maximum identity for 

Isolate 1 was Epilithonimonas tenax (98% identification), isolate 2 as Pseudomonas sp. 

(99% identification), isolate 8 as Bacterium N25 (99% identity), and isolate 34 as 

Sphingomonas sp. (99% identity) based on a maximum identity score calculated by the 

BLAST search engine that incorporates the percent of the query length that is included in 

the aligned sequences. Only organisms with at least 96% maximum identification were 

considered and the five most similar identifications arranged in decreasing maximum 

identity scores are listed in Table 3.2. 

In addition to molecular techniques, biochemical tests were conducted on each 

isolate. Following an incubation period for each isolate on R2A media, Gram staining, 

oxidase, and catalase tests were conducted on fresh isolates. The biochemical test results 

for isolates 1, 2, 8, and 34 are listed in Table 3.3 and reported biochemical reactions for 
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the closest related genera of bacteria are listed in Table 3 .4. All isolates were Gram 

negative. Isolate 1 was oxidase positive, catalase positive, ONPG negative, and did not 

produce acid from glucose utilization. Isolate 2 was oxidase positive and catalase 

positive. Isolate 8 was oxidase negative, catalase negative, did not produce N2 gas, did 

not produce hydrogen sulfide, and did not hydrolyze ONPG or urea. Isolate 34 was 

oxidase positive and catalase negative (Table 3.3). 

Isolate 1 was identified as Epilithonimonas tenax (98%), Flavobacteriaceae 

bacteria (98% identification), or Chryseobacterium lactis (97% identification). 

Epilithonimonas tenax is a newly described bacterium isolated from river water that is 

found in the Flavobacteriaceae family. However, very little information has been 

published about it (O'Sullivan et al., 2006). The Chryseobacteria are a recent addition to 

the Flavobacteria genus as Vanamme et al. (1994) reported that some of the Flavobacteria 

were not related to F. aquatile and should be a separate grouping. Generally 

Chryseobacterium spp. are ONPG positive and do produce acid from glucose utilization 

while Flavobacteria spp. are ONPG negative and do not produce acid from glucose nor 

was a colony bright orange. Epilithonimonas tenax has been described to be cytochrome 

oxidase positive, catalase positive and bright orange. Acid is not produced from glucose 

(O'Sullivan et al., 2006). Both Epilithonimonas tenax and Chryseobacterium lactis can 

be found in the Flavobacteriaceae family so that may be why these species were 

suggested by the 16s rDNA sequences. Using these biochemical tests along with 16s 

rDNA results, isolate 1 can be successfully identified as a Flavobacterium sp. 

Isolate 2 was identified as a Pseudomonas sp. clone (99%) and Pseudomonas 

mendocina (99%) using 16s rDNA sequencing results (Table 3.2). The oxidase positive 
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and catalase positive results (Table 3.3) along \Vith the molecular identification support 

the identification that isolate 2 is a Pseudomonas spp. 

Isolate 8 was identified as Bacterium N25 (99%), lvfangroveibacter plantisponsor 

(99% ), Salmonella enterica (96% ), or Enterobacter sp. (96% ). A sequence of 96% or less 

similarity may not be high enough to be considered a match for species identification. 

Table 3.3 indicates that isolate 8 was oxidase negative, catalase negative, did not produce 

hydrogen sulfide, did not produce nitrogen gas, did not decarboxylate ornithine, nor 

hydrolyze urea. Bacterium N25 was described by a Chinese group (Zhang et al., 

Diversity ofbacteria isolated from mangrove system, Feb 2007, unpublished); however, 

no other data have been published on the bacterium aside from its identity (NCBI, 2008). 

Very few data were found on Mangroveibacter plantisponsor, however the species has 

been placed in the order Enterobacteriales (NCBI, 2008). Not producing H2S also rules 

out Salmonella enterica as this species produces hydrogen sulfide (Table 3.4). 

Enterobacter spp. are oxidase negative, catalase positive, do produce nitrogen gas, do 

decarboxylate ornithine, and do hydrolyze urea. Isolate 8 was found to be catalase 

negative, did not produce nitrogen gas, and did not decarboxylate ornithine or hydrolyze 

urea. None of the biochemical tests support the 16s rDNA results and identification of 

isolate 8 is inconclusive based on our data. However Mangroveibacter plantisponsor, 

Salmonella enterica, Enterobacter sp., are all found in the same order of 

Enterobacteriales which may explain the variance between the 16s rDNA results. 

Isolate 34 was identified as Sphingomonas sp. ATCC 53159 (99%) and 

Sphingomonas elodea (99%) (Table 3.2). The isolate was oxidase positive and catalase 

negative. Generally Sphingomonas spp. are catalase positive. This discrepancy may be 
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explained by the fact that species name was not identified and not every species found in 

a particular genus or species may abide by biochemical classification. There is also the 

possibility that isolate 34 was weakly catalase positive, although it was not observed 

macroscopically when the test was done. Isolate 34 was previously identified using 16s 

rDNA as a Sphingomonas sp. (data not shown) and this identification was confirmed in 

this study. 

The isolates reflect the types of bacteria found in other pulp and paper miiis in 

Canada and around the world (Ratto et al, 2005, Desjardin and Beaulieu, 2003). 

Desjardins and Beaulieu (2003) reported large amounts of Pseudomonas, but they did not 

detect any Flavobacteria. Sphingomonas spp. have also been identified in paper mill 

effluent systems (Mohn and Stewart, 1997). Bacterium N25 and Mangroveibacter 

plantisponsor are two bacteria that have been isolated from environmental water areas 

and are placed in the same Flavobacteriaceae family. There is a possibility that these 

bacteria may have been positively identified in our study, but this could not be confirmed 

as very little data has been published about them. 

Sphingomonads, Pseudomonads and Flavobacters are all environmental bacteria 

found in soils and water as Bacterium N25 and Mangroveibacter plantisponsor have been 

located in as well. Our study did positively identified Pseudomonads, Sphingomonads 

and reported a Flavobacterium spp. and an unknown isolate and these particular bacteria 

are regularly found in freshwater. The pulp and paper mill biofilm samples were collected 

from a mill located on the Kaministiquia River in Thunder Bay and it may use river water 

to process its materials. Thus, these bacteria may have been introduced into the mill from 

the river water. 
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3.2.2 Carbohydrate Analysis 

As a result of carbohydrate screening in Chapter 2, isolates 1, 2, 8, and 34 were 

selected for carbohydrate harvesting. Inocula preparation for EPS lyophilization was 

conducted as outlined in Chapter 2 section 2.2.4 and 2.2.5. Average inocula for isolates 1, 

2, 8, and 34 are outlined in Table 3.5 for unfiltered and filtered batching after cell density 

of the culture was adjusted to OD6oo = 0.06 using Biochrom Nova Spec Visible 

Spectrophotometer. Cultures were adjusted to 0.06 because this value was expected to 

correspond to approximately 107 CFU/mL. Adjusting initial inocula to OD600 = 0.06 did 

not appear to result in 107 CFU/mL for each isolate (Table. 3.4). Isolates 1 and 34 had 

lower CFU/mL inocula than expected, while isolates 2 and 8 had expected inoculum 

concentration of 107 CFU/mL. The variance in inoculum values may be explained by 

clumping of bacteria during the washing process which would have an influence on the 

calculated CFU/mL. Also, if the bacteria are not fully separated from EPS, the optical 

density of the culture would be affected. 

The carbohydrate from each isolate was harvested in several batches and 

carbohydrate yield was recorded for each batching session. The data show that isolates 1, 

2, and 8 produced consistent amounts of carbohydrate with very little variance between 

the different batches of carbohydrate preparation (Figure 3.3). Since additional 

experiments would be required to determine growth conditions resulting in higher EPS 

yields, isolates 2 and 8 were not further investigated. Interestingly, for isolate 34 a large 

variation of the average amounts of carbohydrate produced was observed. 
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Carbohydrate quantity for the batches that were filtered and those that were not 

filtered were measured before lyophilization. Filtering the carbohydrate preparations was 

assumed to aid in the removal of any bacterial cells that remained suspended following 

high speed centrifugation (Ishida et al., 2003 ). As most carbohydrates are soluble in 

water, the 0.22 11m filter should have let carbohydrate pass and restrict bacteria. Although 

no direct comparison of the filtration effect was made, it appeared that filtering 

carbohydrate to remove cells prior to lyophilization may not have had an effect on the 

concentration of the carbohydrate for isolates 1, 2 and 8 (Figure 3.3). For isolate 34 

however, the carbohydrate yield for filtered batches seemed to be higher than the yield 

for unfiltered batches, although the difference was not statistically significant by the 

variation of the inoculum used for the different batches. 

When average unfiltered carbohydrate yields and inoculum concentration were 

compared, it was determined that a relationship between the two existed (R2 = 0.89) for 

all isolates. A similar relationship was seen when filtered carbohydrate was plotted 

·against inoculum concentration (R2 = 0.90). As inoculum concentration decreased, 

carbohydrate concentration increased for all isolates whether filtered or not. This 

relationship may be explained by nutrient availability. As fewer cells are present in the 

culture, there are more nutrients for those cells to produce more EPS where increased 

competition for nutrients may occur with increased cells present in a culture. 

The inocula for carbohydrate hatching was compared using a T -test and it was 

concluded that there was no significant difference between the unfiltered and filtered 

inoculums with respect to carbohydrate production (p = 0.38). 
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The average inoculum concentration for isolate 1 was lower than isolates 2 and 8, 

yet higher than that of isolate 34 and it produced the second highest amount of 

carbohydrate (Figure 3.3 ). Average inocula for isolates 2 and 8 were approximately log 10 

7.00 CFU/mL, the highest inoculum concentrations, and these bacteria produced the least 

amount of carbohydrate. The variance in the inoculum concentration for isolate 34 was 

large as seen in Table 3.5. For the unfiltered trials with isolate 34, the average inoculum 

was higher (log10 5.81 ± 0.64 CFU/mL) than the average inoculum for filtered trials 

(log1 o 5.29 ± 0. 58 CFU/mL) and largest quantity of carbohydrate was recorded for the 

filtered trials (Table 3.4). This variance may be explained by the nature of the bacterium 

itself as it may have clumped when optical density was adjusted causing a miss 

calculation in the actual inoculum value. If inoculum concentration was reduced or 

increased from the expected 10 7 CFU/mL, this may have caused the increase or decrease 

in carbohydrate production. This might be explained by considering that isolate 34 was a 

slow growing bacterium. If carbohydrate was harvested before 24 hours, reduced 

carbohydrate concentrations would be recorded. It might also be a possibility that isolate 

34 does not store well in freezer cultures at -80°C and revival might have been affected. 

The bacteria may have become lab adapted and less carbohydrate may have been 

produced. 

Isolates 1, 2, 8 and 34 were selected based on screening results from Chapter 2 to 

be identified using 16s rDNA sequencing and to have their carbohydrate batched for 

gelation experiments. Isolates 1, 2, and 34 were successfully identified as a 

Flavobacterium sp., Pseudomonas spp., and Sphingomonas sp. respectively. Isolate 8 was 

identified as Bacterium N25 or Mangroveibacter plantisponsor however, true identity 
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could not be confirmed as molecular sequencing and biochemical tests could not be found 

for these bacteria. These bacteria are all found in the same order of Enterobacteriales 

which may explain the variance between the 16s rDNA results. 

The carbohydrate from each of the isolates was harvested in several batches. 

Isolates 1 and 34 carbohydrates were mainly investigated as isolates 2 and 8 would 

require additional experiments in order to optimize growth conditions for EPS yield. 

Adjusting initial inocula to OD600 = 0.06 did not appear to result in 107 CFU/mL for each 

isolate. Isolates 1, 2, and 8 produced consistent amounts of carbohydrate even though 

inocula varied while isolate 34 had a large variance in the amount of carbohydrate it 

produced. A relationship was observed between inoculum concentration and 

carbohydrate production. As inocula concentration decreased, carbohydrate concentration 

increased for all isolates whether filtered or not. Isolates 1 and 34 may be successful in 

produced a novel encapsulation material as Sphingomonas elodea is currently used to 

produce Gellan gum. Further investigation into the gel producing ability for 

Flavobacterium sp. and Sphingomonas sp. will be examined in the following chapter. 
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3.5.0 Tables and Figures 

Table 3.1: Primer Sets used for Amplification of Each Isolates 1.5 kb Sequence 

Primer Primer Sequence Primer Position on Reference 
5'-3' Length E. coli 16s 

rDNA 

1492-R CACGGATCCTACGGGTACCTTG 31-mer 1492 (Trevors 
TTACGACTT and Elsas, 

1995) 

27-F GTGCTGCAGAGAGTTTGATCCT 29-mer 27 

GGCTCAG 

16s- CCGTCAATTCCTTTGAGTTT 20-mer 907 (Muyzer et 
907R al., 1998) 

16s- CCTACGGGAGGCAGCAG 17-mer 341 
341F 
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Table 3.2: BLAST Results for Mill Isolates 

Isolate 1 Isolate 2 
Max Max 

BLAST Description Identity BLAST Description Identity 
Epilithonimonas tenax Uncultured Pseudomonas 

strain EP105 16S sp. clone DGG 18 16S 

ribosomal RNA gene, ribosomal RNA gene, partial 

partial sequence 98% sequence 99% 
Flavobacteriaceae 

bacterium TS8Y-57 16S 

ribosomal RNA gene, Pseudomonas mendocina 

partial sequence 98% ymp, complete genome 99% 
F/avobacteriaceae 

bacterium TS8Y-39 16S Pseudomonas sp. SMCC 

ribosomal RNA gene, 80259 16S ribosomal RNA 

partial sequence 98% gene, partial sequence 99% 

Unidentified bacterium 

clone ME8004 16S Pseudomonas sp. SMCC 

ribosomal RNA gene, 80310 16S ribosomal RNA 

partial sequence 98% gene, partial sequence 99% 

Chryseobacterium /actis 

isolate H 1 16S ribosomal Pseudomonas sp. SMCC 

RNA gene, partial 80280 16S ribosomal RNA 

sequence 97% gene, partial sequence 99% 
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Table 3.2 Continued: BLAST Results for Mill Isolates 

Isolate 8 Isolate 34 
BLAST Max Max 

Description Identity BLAST Description Identity 

Bacterium N25 Sphingomonas sp. 

16S ribosomal ATCC 53159 16S 

RNA gene, partial ribosomal RNA gene, 

sequence 99% partial sequence 99% 
Mangroveibacter 

plantisponsor 

strain MSSRF40 Sphingomonas sp. 

16S ribosomal ATCC 31853 16S 

RNA gene, partial ribosomal RNA gene, 

sequence 99% partial sequence 99% 

Salmonella 

enterica subsp. 

salamae strain 

DSM 9220 16S Sphingomonas sp. 

ribosomal RNA ATCC 31554168 

gene, partial ribosomal RNA gene, 

sequence 96% partial sequence 99% 
Enterobactersp. 

mcp11 b 16S 

ribosomal RNA Sphingomonas elodea 

gene, partial 16S ribosomal RNA gene, 

sequence 96% partial sequence 99% 
Enterobacter sp. Sphingomonas sp. 

WAB1938 partial BR12199 16S ribosomal 

16S rRNA gene, RNA gene, partial 

strain WAB1938 96% sequence 99% 
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Table 3.3: Biochemical Test Results of Isolate 1, 2, 8, and 34 

Gas 
Acid from Production Ornithine Urea 

Isolate Oxidase Catalase ONPG Glucose H2S (N2) Decarboxylase H_ydrolysis 
1 (+) (+) ( -) ( -) NO NO NO NO 
2 (+) (+) NO NO NO NO NO NO 
8 (-) (-} NO NO (-) (-) (-) (-) 

34 (+) (-) NO NO NO NO NO NO 
(+)=positive result,(-)= negative result, (ND) =test Not Done 

Table 3.4: Reported Biochemical Reactions for the Closest Related Genera of the Four Isolates (Koneman, 1997) 

Gas 
Acid from Production Ornithine Urea 

Bacterium Oxidase Catalase ONPG Glucose H2S (N2) Decarboxylase Hydrolysis 
Flavobacteriaceae (+) (+) (-) (-) NO NO NO NO 
Chryseobacterium 

spp. (+) (+) (+) (+) NO NO NO NO 
Pseudomonas 

spp. (+) (+) (+/-) (+/-) (-) (-) NO NO 
Salmonella spp. (-) _(+) (-} NO (+) (+) (+) (-) 

Enterobacter spp. (-) (+) (+) NO (-) (+) (+/-) (+) 
Sphingomonas 

spp. (+) (+) (+/-) (+) ( -) NO NO (+) .. (+)=positive result,(-)= negative result, (ND) =test Not Done 
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Table 3.5: Inoculum Quantities of Isolates 1, 2, 8 and 34 Used for EPS Hatching 

Average Cell Counts of 
Inoculum (Log 10CFU/ml) 
Unfiltered Filtered 

Carbohydrate Carbohydrate 
Isolate Production Production 

1 6.5 ± 0.35 6.45 ± 0.61 
2 7.31 ± 0.04 7.15±0.11 
8 7.06 ± 0.28 7.11±0.36 
34 5.81 ± 0.64 5.29 ± 0.58 
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Figure 3.1: Schematic of the 16s rDNA gene from Escherichia coil and the position of 
PCR primers used in this study. Two DNA fragments were necessary in order to 

completely sequence the 16s rDNA 1.5 kb fragment. Using only 1492-R and 27-F 
primers for sequencing may result in poor sequencing data for the middle section of the 

1.5kb fragment, as a standard sequencing reaction normally covers approximately 700 bp 
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Figure 3.2: 1.5kb and 600bp Isolate PCR products obtained for isolates 1, 2, 8, and 34, 
eletrophoresed on agarose gels to verify amplification. 
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Figure 3.3: Carbohydrate concentrations in filtered and unfiltered batches of the four 
pulp and paper mill isolates. 
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Chapter 4: Gelation of Mill Isolate Carbohydrate 

4.0.0 Introduction 

Some bacteria produce polysaccharides as a strategy to enhance adhesion to 

abiotic surfaces and over time this will create a biofilm. Pulp and paper machines act as 

sites where multi-species biofilms are produced. These biofilms contain extracellular 

polymeric substances (EPS) which are composed of polysaccharides, living and dead 

cells, nucleic acids, and proteins. Polysaccharides are long monosaccharides joined 

together by glycosidic linkages. They also have many different functional groups which 

may include hydroxyl, hydrogen, and carboxyl groups. These functional groups offer 

sites where substances can attach to the existing polysaccharide matrix and create physio-

chemical reactions. 

The food industry currently uses polysaccharides for encapsulation purposes, as 

thickeners, gelling agents, and stabilizers (Khan et al., 2007). Encapsulation of such 

materials as probiotics, vitamins, fatty acids, and antioxidants has improved the delivery 

of bioactive compounds into food for consumption (Champagne and Fustier, 2007). 

Polysaccharides are also used as encapsulation materials for degradative microorganisms 

for degradation of pollutants such as gasoline (Moslemy et al., 2004). Encapsulation with 

polysaccharides has been shown to increase the effectiveness of microbial survival and 

tolerance to environmental stresses (Goel et al., 2006, Zache and Rehrn, 1989, Moslemy 

et al., 2004). Identifying novel polysaccharides that can be applied industrially can 

dramatically improve the quality of foods and bioremediation causes. 
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This study used two bacteria from pulp and paper machines as possible candidates 

for novel encapsulation materials. For each isolate carbohydrate was harvested and 

lyophilized as described in Chapter 3. Carbohydrate solutions were prepared and tested 

for their ability to gelate using CaCb and FeCb at different concentrations. The objective 

of this portion of the study was to identify a suitable concentration of carbohydrate and 

cation mixture that can successfully induce gelation of novel carbohydrates. 

4.1.0 Methods and materials 

4.1.1 Polysaccharides 

Commercial grade Keltrol® Xanthan (CPKelco) and Kelcogel® Gellan gum 

(CPKelco) were used for preliminary cation gelation, water content, PCR tube, and glass 

microscope slide experiments. For gelation experiments with isolate 1 and 34 

carbohydrate only filtered preparations were used. 

4.1.2 Preparation of Polysaccharide and Cation Solutions 

All carbohydrate solutions were prepared using percent weight per volume 

(grams/100 ml) calculations. Solutions were made with sterile ddH20. A 2.0% w/v stock 

of Gellan, Xanthan, isolate 1 carbohydrate and isolate 34 carbohydrate was prepared and 

diluted to concentrations required for the experiments (0.025%- 2.0%). 
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Cation stock solutions were prepared in ddH20 and appropriate amounts were 

used to achieve final experimental concentrations of 5.4 mM, 10 mM, 15 mM, 20 mM 

calcium chloride (CaCh), 8.04 mM potassium chloride (KCl), 10.2 mM sodium chloride 

(NaCl), 14.1 mM lithium chloride (LiCl), and 0.25M iron(III)chloride (FeC13). 

4.1.3 Preliminary Gelation Experiments 

Using commercially available CPKelcogel ®CG Gellan Gum, preliminary 

gelation experiments were conducted. The effect of four cations (CaC12, KCl, NaCl and 

LiCl) on gel firmness was tested. Gellan stock solutions were diluted to 1.0% (w/v), 

0.75% (w/v), 0.50% (w/v) and 0.25% (w/v) and heated to approximately 100°C while on 

a stir plate in order to completely dissolve it in water. Once completely dissolved, 1.0 mL 

of Gellan at a desired concentration was dispensed into 1.5 mL plastic centrifuge tubes 

and 5 1-11 of the desired cation solution was added. Final cation concentrations were 5.4 

mM CaC12, 8.0 mM KCl, 10.2 mM NaCl, and 14.1 mM LiCl. These concentrations of 

cations were based on 0.06% w/v cation solutions which were then converted to molar 

concentrations. Gellan mixed with cation solution was vortexed for 30 seconds and then 

allowed to cool on ice at 4 °C for 15 minutes to induce gelation (Figure 4.1 ). 

Using commercially available CPKelcogel ®CG Gellan Gum, preliminary water 

content experiments were conducted to further quantify gel firmness. Gellan solutions 

(1.0 and 0.75% w/v) along with 5.4 mM CaCh and 8.0 mM KCl were used because these 

cations produced firm Gellan gels. The gel solutions were prepared as described above 

and cooled either on ice (4°C) or in a freezer (-20°C) for 15 minutes. Tubes were then 
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placed in a Fisher Scientific Isotemp Incubator at 50°C with their lids open for 2-3 days 

to evaporate moisture. The gels were weighed daily until a plateau was reached. Weights 

on day 0 and after a plateau was reached were used to calculate the percent water for each 

gel. 

4.1.4 Mill Isolate Carbohydrate Gelation with CaCh in PCR Tubes 

Stock solutions of isolate 1 and 34 carbohydrates were diluted to 2.0, 1.5, and 

1.0% w/v final concentrations and mixed with CaClzto final concentration of5.4 mM, 10 

mM, 15 mM, and 20 mM (Huang et al., 2004) by mixing 0.1 mL of carbohydrate with 

0.005 mL of CaClz at the appropriate concentration. Before mixing, carbohydrate and 

CaCb solutions were heated separately to 98.0-99.9°C in a Hybaid PCR Sprint Thermal 

Cycler for 15 minutes. The mixture was kept at room temperature for 30 minutes to 

induce gelation. After placing the solutions at 4°C for 24 hours, the mixtures were probed 

with a pipette tip and rated as (-) = no gel, ( +) = viscous, ( +t) = semi solid, and ( +t+) 

solid gel formation. 

4.1.5 Gelation Using on Glass Microscope Slides 

Isolate 1 and 34 carbohydrate along with commercial grade Gellan and Xanthan 

gum were mixed with CaClz and FeCh and tested for their ability to form gels on glass 

microscope slides. Stock solutions of Gellan and Xanthan were diluted to final 

concentrations of 2.0, 1.5, 1.0, 0.5, 0.25, 0.1 0, 0.05, or 0.025% w/v and cations were 
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added to final concentration of 5.4 mM CaClz and 0.25 M FeCb. Carbohydrate and cation 

solutions were heated to 90°C before carbohydrate (0.1 mL) and cation (0.01 mL) were 

mixed by pipetting on a glass microscope slide. The slides with the gel solution were 

incubated at 40°C for 30 minutes to induce gelation (Iijima et al., 2007). After holding at 

4°C for 24 hours, the gels were rated using the scale described above. 

4.1.5.1 Effect of Mixed Cation Species on Gelation 

Solutions of commercial grade Gellan and Xanthan as well as isolate 1 and 34 

carbohydrates were prepared as described above and mixed with cations. Instead of using 

a single cation, the two cations were combined to achieve final concentrations of 0.25 M 

FeCi) and 5.4 mM CaCh. This cation combination was then added to carbohydrate 

solutions and gelation experiments were performed on glass microscope slides as 

described above. 

4.1.5.2 Mixed Carbohydrate Gels 

Upon determining concentrations of carbohydrate that did not form gels using 

Gellan Gum (0.05%) and Xanthan Gum (0.025%), mixed carbohydrate gels were created 

to evaluate whether gelation may be enhanced in mixed gels. The addition of known 

gelling agents at non-gelling concentrations has been shown to enhance gelation when 

mixed together (Pongjanuakul and Puttipipatakhachorn, 2007). Stock solutions of Gellan 

and Xanthan were diluted such that when mixed with isolate 1 or 34 carbohydrate (2.0, 
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1.0, or 0.5% vv/v) or Xanthan (2.0% to 0.025%), the final concentrations would be 0.05% 

w/v Gellan and 0.025% w/v Xanthan. Gelation experiments for these mixtures were 

performed on glass microscope slides as describe above. 

4.2.0 Results & Discussion 

Bacterial polysaccharides have demonstrated rudimentary gelation after cation 

introduction (Huang et al., 2004 & Pongjanyak:ul and Puttipipatakhachorn, 2007, Sandolo 

et al., 2007). Some of the more common bacterial polysaccharides currently used in the 

food industry include Gellan derived from Sphingomonas elodea and Xanthan derived 

fromXanthomonas campestris. This study isolated and identified two pulp and paper mill 

bacteria which produce carbohydrates that may have potential for use as encapsulation or 

thickening agents. 

Gelation experiments were conducted with Gellan, a common additive used in 

food products as a thickener, emulsifier or stabilizer. It was observed that no gelation 

occurred at carbohydrate concentrations less than 0.50% w/v and that CaCh produced the 

most rigid gel with 1.0% w/v Gellan although KCl and NaCl did produce semi-solid gels 

with 0. 7 5% w/v Gellan as seen in Figure 4.1. 

The strength of gels formed by Gellan was estimated by determining the water 

content of gels. Two cations, CaCh (5.4 mM) and KCl (8.0 mM) were added to 1.0 or 

0.75% w/v Gellan because these cations performed best at producing rigid gels (Figure 

4.1). The gels were cooled at 4°C (on ice) or at -20°C (freezer) to observe if cooling 

temperature would affect gelation. There was no significant difference in gelation 
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depending on which cation was used, however there was a difference between the 

concentrations of carbohydrate used. Figure 4.2 indicates that 1.0% w/v Gellan produced 

the most rigid gel with CaC12 based on the fact that these gels contained the least water. 

The gelation temperature ( 4 °C or -20°C) did not appear to affect gelation. 

In agreement with other studies, CaClz produced the best results as seen in the 

literature when tested for its ability to increase the viscosity of Gellan. These studies also 

reported that CaClz contributes to increasing gelling temperature of gellan, and increasing 

the critical shear value of gellan (Nickerson and Paulson, 2003, Nickerson et al., 2004 & 

Huang et al., 2004). A semi-solid gel was produced when 0.75% w/v Gellan along with 

CaCh, NaCl, KCl, or LiCl was used. Thus, the valency (monovalent or divalent) of the 

cation did not appear to affect gelation at this concentration. Huang et al. (2007) also 

observed that divalent cations and monovalent cations did not have a different effect on 

the gelation of Gellan. 

Once this data was gathered, the quantity of carbohydrate was reduced to mimic 

the amount of carbohydrate that could be obtained with the mill isolates. Experiments 

were conducted in 0.2 mL PCR tubes. Gellan appeared to produce semi-solid gels at 

1.0% w/v concentration when no cation was present, however no gelation occurred at 

lower concentrations (Table 4.1). Earlier Gellan results were confirmed and 1.0% Gellan 

with 5.4 mM CaCh produced the best gelation as a solid gel was formed. Also, Gellan 

appeared to increase in viscosity at 0.5% w/v, even without cation (Table 4.1). No solid 

gel was produced using any of the other cations (KCl, NaCl, or LiCl). 

Carbohydrate from isolates 1 and 34 was tested for gelation in a PCR tube using 

10 mM, 15 mM and 20 mM CaCh as divalent cations at 2-80 mM have been shown in 
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previous studies to create gels (Huang et al., 2004). As seen in Table 4.1, no 

concentration of carbohydrate or CaCl2 produced a solid gel with either isolate 

carbohydrates, however viscosity of isolate 1 carbohydrate at 2.0% did increase when 

CaCb was present in concentrations of 10 mM or higher. 

Following these experiments, there was a need to further reduce the volume of 

carbohydrate mixtures as future experiments were conducted on glass microscope slides. 

Glass microscope slides were used for subsequent experiments because they were easier 

to manage and use at the 40°C incubation temperature. This temperature was selected as 

gels would have to be cool enough as to not kill any bacteria once culture was added and 

because cooling temperatures from 40-45°C have shown to produce the most rigid gels 

when using Xanthan (Pongjanuakul and Puttipipatakhachom, 2007). 

Using then known carbohydrates Gellan and Xanthan as models, a series of 

gelation experiments were designed. Gellan gum and Xanthan gum are anionic 

polysaccharides that contain many carboxyl groups which can interact with cations added 

to induce gelation (Kani et al., 2005, Mohammed et al., 2007). FeCh was selected to use 

because Fe3+ has shown to produce solid gels with Xanthan (Mohammed et al., 2007, 

Muthukrunarasamy et al., 2006, Ma and Barbosa-Canovas, 1997). Trivalent cations such 

as the ones found in FeCh, AlCh and CrCh have shown best results forming Xanthan 

gels. However, FeCh was chosen because Cr3+ and Al3+ are not fit for hrunan 

consumption (Ma and Barbosa-Canovas, 1997, Gioia and Ciriello, 2006, Marudova-

Zsivanovits et al., 2006). The concentration at which Xanthan and Gellan form gels and 

with which cations was determined. In addition, cation concentrations required for 
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gelation were evaluated using mixtures of CaClz and FeC13. Xanthan and Gellan acted as 

controls and bases for comparison to our unknown carbohydrates. 

Gellan did not have any solid gel production when no cation was present and solid 

gel production did not occur with individual cation introduction at carbohydrate 

concentrations of0.75% or less (Table 4.2). Gellan produced solid gels at 1.0% w/v after 

CaClz or FeCi) was added. Only FeCi), but not CaCh, produced semi-solid gels at 0.50 

and 0.25% w/v concentrations indicating that FeCi) may be the better cation to induce 

gelation at lower carbohydrate concentrations. Once mixed cation solutions were used, 

Gellan formed a solid gel at concentrations of 0.5% w/v or higher (Table 4.2). Gelation 

activity also increased in all carbohydrate categories except at 0.025% w/v concentration 

when a combination of both cations was used. This amplifying effect may be explained 

by the fact that Gellan gum produces a gel matrix once a divalent cation is added to it and 

further adding FeCi), a trivalent cation, may increase the gel matrix binding. 

Xanthan did not form solid or semi-solid gels when cations were absent (Table 

4.2) nor with CaCh. Xanthan did not produce gels at any concentration tested; yet, it 

produced solid gels at concentrations greater than 0.5% w/v when FeCh was introduced. 

Viscosity ofXanthan solutions was increased at 0.25% w/v and 0.1% w/v. Enhanced 

gelation was observed when a mixed cation solution containing FeCi) plus CaCh was 

used. A semi-solid gel formed at carbohydrate concentrations at 0.25% w/v, and between 

0.025% to 0.1% w/v the viscosity of the solution did increase slightly. This may indicate 

that a combination of cations amplifies gelation activity better than using FeCi) alone. 

Again, this could be a result of introducing more binding sites for negatively charged 

carbohydrates to form gel matrices. 
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The effect of mixed carbohydrate solutions was evaluated by varying the 

concentration ofXanthan and keeping the Gellan concentration at the non-gelling level of 

0.05% w/v. No solid gels were produced when only CaCb was added. Solid gel formation 

occurred with Xanthan concentrations of0.5% w/v and higher when FeCh was used. 

Interestingly, no gelation activity was found at 0.1 and 0.05% w/v concentrations when 

FeCh was used, but viscosity was increased at 0.25% and 0.025% w/v. This may indicate 

that FeCl3 has an antagonistic affect on mixed gel solutions at lower carbohydrate 

concentrations. It is also possible that a homogeneous mixture of the carbohydrates was 

not present as such small quantities of carbohydrate were used. If this was the case, 

gelation activity would be influenced. This might also explain why at 0.025% w/v 

viscosity of the mixture increased, while at 0.1 and 0.05% w/v concentration gelation 

activity was absent (Table 4.2). 

When a mixture of both cations was used with mixed carbohydrate solutions, 

solid gel formation occurred at concentrations of 0.25% w/v and above (Table 4.2). An 

increase in gelation activity was observed at 0.1% w/v as a semi-solid gel was produced. 

Using mixed cation solutions may increase the production of solid gels as more potential 

cation binding sites were present in solution. There may have been a new compound 

formed when Xanthan and Gellan were combined, and using mixed cation solutions 

could aid in binding and this may explain why a solid gel was formed at the 0.25% w/v 

Xanthan concentration (Table 4.2). 

To allow for comparisons, the same conditions used with Gellan and Xanthan 

were applied to the mill isolate carbohydrates at 2.0, 1.0, or 0.5% w/v concentrations. 

With isolate 1 carbohydrate, no gel production was observed when CaCh was added 
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although isolate 1 carbohydrate was viscous when no cation was present (Table 4.3). This 

may indicate that CaCh reduces the thickening ability of isolate 1 carbohydrate and is not 

the optimum cation of choice. Semi-solid gel production was observed at carbohydrate 

concentrations of 1.0 and 2.0% w/v when 0.25 M FeCi) was added suggesting that FeCi) 

is the cation of choice to induce gelation of isolate 1 carbohydrate. No gelation occurred 

with FeCh at 0.5% w/v concentration. This suggests that gelation of isolate 1 

carbohydrate may be dependent on cation species and carbohydrate concentration. It may 

also indicate that the structure of isolate 1 carbohydrate is more similar to Xanthan than 

to Gellan, as Xanthan gelation was also enhanced by FeCh. 

When a mixture of both cations was added to isolate 1 carbohydrate, the viscosity 

of the solution did increase; however, the gelling activity was not as strong as when FeCh 

was used alone. In fact, it appeared that gelation activity was similar to not using any 

cation. Compared to adding CaCh alone, the gel activity was increased when a mixture of 

cations (CaCh and FeCh) was used. This may indicate that CaCh may be a poor cation 

choice for gelation of isolate 1 carbohydrate. Further gelation activity of isolate 1 

carbohydrate should be investigated using higher concentrations, as 5.4 mM CaClz was 

the used cation concentration. Gel activity may possibly increase at higher CaCh 

concentrations similar to affect that was observed when 0.25 M FeCh was used. 

Mixed carbohydrate and mixed cation solution experiments were conducted with 

isolate 1 carbohydrate. Non-gelling concentrations of0.025% w/v Xanthan and 0.05% 

w/v Gellan were added to isolate 1 carbohydrate along with mixed cation solutions. 

When either Xanthan or Gellan along with mixed cation species were added to 2.0% and 

1.0% w/v solutions of isolate 1 carbohydrate, gelation activity was increased and a semi-
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solid gel was formed (Table 4.3). A viscosity increase was observed when 0.5% w/v 

carbohydrate solutions of isolate 1 was mixed with 0.025% w/v Xanthan or 0.05% w/v 

Gellan when both cations were present. However, at these concentrations Xanthan and 

Gellan alone showed an increase in viscosity (Table 4.2). This suggests that the viscosity 

increase with 0.5% w/v isolate 1 carbohydrate was due to Xanthan and Gellan alone and 

not to isolate 1 carbohydrate. A semi-solid gel was formed with isolate 1 carbohydrate at 

0.5% w/v when both Xanthan and Gellan along with mixed cation species were present 

(Table 4.3). This increase in gelation indicates that gelation was enhanced and a new 

carbohydrate structure may have formed when all three carbohydrates were combined. 

The same experiments were conducted with carbohydrate of isolate 34. No 

gelation activity was recorded with isolate 34 carbohydrates at the concentrations tested 

(Table 4.3). This indicates that isolate 34 carbohydrate does not gel on its own, or in the 

presence of CaCh and/or FeCb. 

Isolate 34 carbohydrate was then mixed with non-gelling concentrations of 

Xanthan and/or Gellan along with a mixed cation solution. As seen in Table 4.3, gelation 

activity was increased slightly when 0.025% w/v Xanthan was added to 2.0% and 1.0% 

w/v solutions of isolate 34 carbohydrate, but no gel activity was recorded for 0.5% w/v 

solution. Xanthan on its own at 0.025% w/v had increased viscosity when both cations 

were present (Table 4.2) and this may explain the viscosity increase of isolate 34 

carbohydrate at 2.0 and 1.0% w/v. This trend should have continued at the 0.5% w/v 

concentration ifXanthan alone influenced the gelation. Since no viscosity change was 

observed at the lowest concentrations, it is possible that isolate 34 carbohydrate at 0.5% 

w/v inhibited gel activity. When isolate 34 carbohydrate was mixed with 0.05% w/v 
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Gellan, a semi-solid gel was formed at 2.0 and 1.0% w/v concentrations (Table 4.3). 

Gellan alone at this concentration did not produce semi-solid gels when both cations were 

present (Table 4.2), suggesting that a nevv compound may have been produced when 

Gellan was added to isolate 34 carbohydrate and a mixture of cations was needed to 

induce gelation (Table 4.3). 

Mixed carbohydrate and mixed cation solution experiments were conducted with 

isolate 34 carbohydrate. Non-gelling concentrations of 0.025% w/v Xanthan and 0.05% 

w/v Gellan were added to isolate 34 carbohydrate along with mixed cation solutions. 

Semi-solid gels were produced at all isolate 34 carbohydrate concentrations (Table 4.3). 

This increase in gel activity suggests that gelation was amplified when non-gelling 

concentrations ofXanthan and Gellan were added to isolate 34 carbohydrate. As seen in 

Table 4.3, gelation of a 0.5% w/v solution of isolate 34 carbohydrate increased as the 

carbohydrate solution became more complex starting a no gelation, increasing viscosity 

to semi-solid gel production. 

The addition of cation is necessary for rigid rudimentary gel formation of 

polysaccharides as it has been demonstrated in other studies (Mohammed et al., 2007, 

Prasertsan et al., 2006, Kani et al., 2005). Cations are also a necessary component when 

forming gels with isolate 1 and isolate 34 carbohydrates 

The data collected suggest that the structure of gels formed by isolate 1 and 34 

carbohydrate became more complex as more carbohydrates were present in solution. 

There may also be the possibility that isolate 1 and 34 carbohydrates enhanced gelation of 

non-gelling concentrations of the known carbohydrates Gellan and Xanthan. The 

structure ofXanthan is based on a P-1,4-D-glucan(cellulose) backbone, substituted on 0-
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3 with alternate backbone residues and side chains of~-D-Man p-1,4- ~-D-GlcAp-1,2-a­

D-Man-p to create a branched pentasaccharide (Jansson et al., 1975, Melon et al., 1976). 

Similar to Xanthan, isolate 1 carbohydrate showed gelation with iron suggesting that its 

structure may be more similar to Xanthan than Gellan. The structure of Gellan is [3 )- ~­

D-Glucose-(14 )- ~-D-Glucuronic acid-( 14)- P-D-Glucose-(14 )- a-L-Rhamnose-(1 ]n and 

Gellan gelates with CaCh (Nickerson et al., 2003), while isolate 1 carbohydrate did not 

gelate with CaClz. 

In this study, isolate 1 and isolate 34 carbohydrates were tested for their ability to 

form gels alone, with addition of cations, and as mixed gel systems. Amplification of 

gelation for non-gelling concentrations of isolate 1 and 34 carbohydrates, Xanthan and 

Gellan gum did occur once both FeCb and CaCh were added to the solution (Table 4.3). 

Isolate 1 carbohydrate may be suitable for encapsulation as it has shown gelation activity 

using FeCb. However, further investigation into its gelation properties should be done. 

Isolate 34 may also be suitable to amplify gelling activity of other non-gelling 

carbohydrates. 
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4.4.0 Tables and Figures 

Table 4.1: Preliminary Gelation Experiments Conducted in 0.2 mL PCR Tubes 

Polysaccharide 
Concentration (% w/v 

Gelation 
Cation Temp 

Polysaccharide Type Concentration Container Initial Temp (OC) 2 1.5 1 0.75 0.5 0.25 

Gellan none PCR tube 90 4 NO NO ++ + + -

Gellan 5.4 mM CaCI2 PCR tube 90 4 NO NO +++ ++ ++ + 
Gellan 8.04 mM KCI PCR tube 90 4 NO NO ++ ++ + -
Gellan 10.2 mM NaCI PCR tube 90 4 NO NO ++ ++ + -
Gellan 14.1 mM UCI PCR tube 90 4 NO NO + + + -

Isolate 1 5.4mM CaCI2 PCR tube 90 4 - - - NO NO NO 
Isolate 1 10mM CaCI2 PCR tube 90 4 + - - NO NO NO 
Isolate 1 15mM CaCI2 PCR tube 90 4 + - - NO NO NO 
Isolate 1 20 mM CaCI2 PCR tube 90 4 + - - NO NO NO 

Isolate 34 5.4mM CaCI2 PCR tube 90 4 - - - NO NO NO 
Isolate 34 10mM CaCI2 PCR tube 90 4 - - - NO NO NO 
Isolate 34 15mM CaCI2 PCR tube 90 4 - - - NO NO NO 
Isolate 34 20 mM CaCI2 PCR tube 90 4 - - - NO NO NO 

ND =Not Done,(-)= no gel,(+)= viscous,(++)= semi-solid,(+++)= solid 
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Table 4.2: Xanthan and Gellan Gelation Conducted on Glass Microscope Slides 

Polysaccharide Concentration (% w/v) 

Cation Initial Gelation Temp 
Polysaccharide Type Concentration Container Temp tc) 2 1.5 1 0.75 0.5 0.25 0.1 0.05 0.025 

Glass 
Gellan none Slide 90 40 ++ ++ ++ + + - - - -

Glass 
Gellan 0.25 M FeCb Slide 90 40 +++ +++ +++ ++ ++ ++ - - -

Glass 
Gellan 5.4mM CaCiz Slide 90 40 +++ +++ +++ ++ + - - - -

0.25 M FeCb& Glass 
Gellan 5.4mM CaCiz Slide 90 40 +++ +++ +++ +++ +++ ++ + + -

Glass 
Xanthan none Slide 90 40 + + + - - - - - -

Glass 
Xanthan 0.25 M FeCI3 Slide 90 40 +++ +++ +++ +++ +++ + + - -

Glass 
Xanthan 5.4mM CaCb Slide 90 40 + + + - - - - - -

0.25 M FeCh& Glass 
Xanthan 5.4mM CaCI2 Slide 90 40 +++ +++ +++ +++ +++ ++ + + + 

Glass 
Xanthan + Gellan 0.05% 5.4mM CaCI2 Slide 90 40 ++ ++ ++ ++ ++ ++ + ++ ++ 

Glass 
Xanthan + Gellan 0.05% 0.25 M FeCI3 Slide 90 40 +++ +++ +++ +++ +++ + - - + 

0.25 M FeCI3 & Glass 
Xanthan + Gellan 0.05% 5.4mM CaCiz Slide 90 40 +++ +++ +++ +++ +++ +++ ++ + + 

ND =Not Done,(-)= no gel,(+)= vtscous, (++) = semt-sohd, (+++) = sohd 
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Table 4.3: Gelation of Polysaccharide from Isolate 1 and Isolate 34 Examined on Glass Microscope Slides 

Polysaccharide 
Concentration 

(%w/v 

Gelation 
Temp 

Polysaccharide Type Cation Type Container Initial Temp (oC) 2 1 0.5 
Isolate 1 none Glass Slide 90 40 + + + 

Isolate 1 0.25 M FeCI3 Glass Slide 90 40 ++ ++ -

Isolate 1 5.4mM CaCI2 Glass Slide 90 40 - - -
0.25 M FeCI3 & 

Isolate 1 5.4mM CaCI2 Glass Slide 90 40 + + + 
0.25 M FeCI3 & 

Isolate 1 + Xanthan 0.025% 5.4mM CaCI2 Glass Slide 90 40 ++ ++ + 
0.25 M FeCI3 & 

Isolate 1 + Gellan 0.05% 5.4mM CaCI2 Glass Slide 90 40 ++ ++ + 
Isolate 1 + Xanthan 0.025% + Gellan 0.25 M FeCh& 

0.05% 5.4mM CaCI2 Glass Slide 90 40 ++ ++ ++ 

Isolate 34 none Glass Slide 90 40 - - -

Isolate 34 0.25 M FeCI3 Glass Slide 90 40 - - -
Isolate 34 5.4mM CaCI2 Glass Slide 90 40 - - -

0.25 M FeCh& 
Isolate 34 5.4mM CaCI2 Glass Slide 90 40 - - -

0.25 M FeCh& 
Isolate 34 + Xanthan 0.025% 5.4mM CaCI2 Glass Slide 90 40 + + -

0.25 M FeCI3 & 
Isolate 34 + Gellan 0.05% 5.4mM CaCI2 Glass Slide 90 40 ++ ++ + 

Isolate 34 + Xanthan 0.025% + Gellan 0.25 M FeCI3 & 
0.05% 5.4mM CaCI2 Glass Slide 90 40 ++ ++ ++ 

ND =Not Done,(-)= no gel,(+)= vtscous, (++) = semt-sohd, (+++) = sohd 
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Figure 4.1: Preliminary experiments conducted with Kelcogel® Gellan Gum display at 
what carbohydrate concentrations gelation occurs in an eppendorf tube when left at 4°C 
for 15 minutes. Gel firmness was rated as 1-no gel, 2-viscous, 3-semi solid, 4-solid. No 
rigid gel formation occurred at carbohydrate concentrations less than 0.50% (w/v). This 

data was used to develop a standard gelation procedure used with mill isolate 
carbohydrates. 
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Figure 4.2: Further experiments conducted using Kelcogel® Gellan Gum along with 
cations CaCb and KCl concluded that 1.00% (w/v) carbohydrate gels contained less 

water and thus formed a more rigid gel. This data was also used to develop a standard 
gelation procedure used with mill isolate carbohydrates. 
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Chapter 5: Summary and Recommendations 

Bacteria were isolated from pulp and paper mill biofilms and screened to find 

isolates capable of producing carbohydrate materials potentially useful for encapsulation. 

Diversity of bacteria indicated that amounts of bacteria found in these biofilms may be 

influenced by the seasonal factors. A total of 55 isolates were preliminarily screened 

based on quantity and flocculation ability of the carbohydrate that they produced because 

it has been reported that there is a correlation between the amount of bacterial 

carbohydrate and the ability for this carbohydrate to fonn aggregates in solution (Tenny, 

1973 ). Flocculation ability of two known bacterial polysaccharides, Xanthan and Gellan 

gum, was also tested and compared to the carbohydrates produced by the 55 isolates. 

Xanthan and Gellan had high flocculation abilities at low carbohydrate concentrations. A 

range of different carbohydrate quantities and flocculation abilities were observed for the 

55 isolates. Our study suggests that the average flocculation ability of the 55 isolates did 

not correlate with the carbohydrate quantity produced by these 55 isolates. 

There were however some isolates that acted as outliers and they were isolates 1 

and 34 which were included in the selection for further study. A total of four isolates 

were chosen for investigation of their carbohydrate gelation. Isolate 1 was selected 

because it had high carbohydrate production and high flocculation ability, isolates 2 and 8 

were selected because they represented the average of the 55 isolates with respect to 

carbohydrate production and flocculation ability, and isolate 34 was selected because it 
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produced very large amounts of carbohydrate in a short period of time, but had a low 

flocculation ability. 

Isolates 1, 2, 8, and 34 were identified using 16s rONA sequencing along with 

biochemical tests. Isolate 1 was identified as a Flavobacteria spp. (98% identification), 

isolate 2 as a Pseudomonas spp. (99% identification), and isolate 34 as a Sphingomonas 

spp. (99% identification). Unfortunately, isolate 8 could not be conclusively identified. 

Using 16s rDNA, isolate 8 was identified as Bacterium N25 (99% identification) or 

Mangroveibacter plantisponsor (99% identification). Since biochemical information is 

lacking for these species, the molecular identification could not be confirmed with 

biochemical tests. 

Several batches of carbohydrate were harvested for each of the four isolates for 

gelation experiments. The isolates had their inocula (OD6oo) adjusted to 0.06 in PBS 

before carbohydrate was batched because this value that was expected to correspond to 

approximately 107 CFU/mL. Adjusting initial inocula to OD600 = 0.06 did not appear to 

result in 10 7 CFU/mL for each of our isolates. Isolate 1 and 34 had lower CFU/mL 

inocula than expected, while isolates 2 and 8 had expected inoculum concentration of 107 

CFU/mL. Isolates 1, 2, and 8 all showed very little between batch variance of 

carbohydrate production. Interestingly however, the amount of carbohydrate produced by 

isolate 34 varied considerably between batches. For all isolates, it appeared that a 

relationship existed between inoculum concentration and carbohydrate production. As 

inoculum concentration decreased, carbohydrate concentration increased, thus variance of 

isolate 34 inocula may be the reason for the variance in its carbohydrate production. Once 

enough carbohydrate was harvested, gelation experiments were performed. 

110 



A range of gelation experiments were conducted using carbohydrates harvested 

from isolates 1 and 34. Xanthan and Gellan gum vvere included as controls and used to 

compare to our mill isolate carbohydrates. Gelation experiments were conducted only 

with isolate 1 and 34 carbohydrate because these particular isolates showed thickening 

properties at room temperature when creating stock solutions of carbohydrate. Isolate 1 

carbohydrate produced a semi-solid gel at carbohydrate concentrations of2.0 and 1.0% 

w/v when 0.25 M FeCh was used as a cation source, while 5.4 mM CaC[z appeared to 

inhibit gel activity. When isolate 1 carbohydrate was mixed with non-gelling 

concentrations of the known gelling agents Xanthan (0.025% w/v) or Gellan (0.05% w/v) 

semi-solid gels were produced at isolate 1 carbohydrate concentrations of 2.0 and 1.0% 

w/v. When a combination of all three carbohydrates along with the addition of 5.4 mM 

CaC[z plus 0.25 M FeCh was tested, semi-solid gels were produced at even lower isolate 

1 carbohydrate concentrations (0.5% w/v), suggesting that isolate 1 carbohydrate may be 

useful in enhancing non-gelling concentrations of other carbohydrates. 

Isolate 34 carbohydrate was then exposed to the same gelling conditions as isolate 

I. No gelling activity was recorded for isolate 34 carbohydrate at 0.5-2.0% w/v even 

when CaC[z, and FeCh were present. There was an increase in gelling activity when non-

gelling concentrations of Xanthan, Gellan, and a mixture of the two were added to our 

isolate 34 carbohydrate (2.0, 1.0, and 0.5% w/v) and semi-solid gels were produced. 

Again this may suggest that isolate 34 carbohydrate may amplify gelling activity of other 

non-gelling carbohydrates. 

This study successfully isolated and identified two bacteria from pulp and paper 

mill biofilms which may be potential sources of novel encapsulation materials. Both 
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isolates produce carbohydrates that may be useful for encapsulation purposes, although 

further investigation is needed. First and foremost, optimization of growth conditions and 

optimal carbohydrate production should be examined for isolate 1 and isolate 34 in order 

to produce maximum amounts of carbohydrate. Carbohydrate structure should also be 

examined using analytical methods such as gas chromatography/mass spectrometry as the 

structures of the carbohydrates produced by the two isolates are unknown. Finally, 

additional encapsulation experiments should be conducted to investigate the usefulness of 

these carbohydrates. 
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