
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1993

Object-oriented implementation of Prolog

Fan, Wei

http://knowledgecommons.lakeheadu.ca/handle/2453/2195

Downloaded from Lakehead University, KnowledgeCommons

LAKEHEAD UNIVERSITY

OBJECT-ORIENTED IMPLEMENTATION OF

PROLOG

BY

Wei Fan (g)

A THESIS SUBMITTED TO

LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICAL SCIENCES

THUNDER BAY, ONTARIO

MAY, 1993

@ Wei Fan 1993

ProQuest Number: 10611855

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest 10611855

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106 - 1346

Bibliotheque nationale
du Canada M National Library

of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A0N4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A0N4

Your tile Votre reference

Our tile Notre reference

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-315-86175-4

Canada

ABSTRACT

Logic programming is a discipline of describing problems in high-level abstraction

by separating logic from control. Conventional Prolog interpretation or compilation

models take a procedural view of Prolog programs. A description of interpretation

models was summarized by Bruynooghe[Bru82] and a well-known compilation model

was introduced by Warren[War83].

The goal of this study is to present an alternative approach to construct Prolog

execution model to tackle the complexities caused by conventional Prolog execution

models. By taking the advantage of object-oriented techniques, a new model - object-

oriented model is proposed. Instead of decomposing a given Prolog program into a

set of procedures, the model translates it into a collection of coordinated objects

which simulate components of the problem to be solved.

First, the object-oriented model is described in terms of the object base and

inference engine. The object base represents the components of Prolog programs

naturally with corresponding objects in terms of AND/OR network. The inference

engine, which specifies the operational behaviour of the objects, is embedded in the

object base and independent of any specific Prolog program.

Secondly, implementation issues of a Prolog system based on the object-oriented

model are presented. A transformation program is developed to translate any given

Prolog program into a set of objects and assign the corresponding relations among

them. The implementation of the inference engine adopts Robinson’s resolution

[Rob79] which consists of two major algorithms; unification and backtracking.

Finally, the first parameter hashing optimization and a uniform interface to adopt

iii

new built-in predicates are addressed to show the extensibility of proposed Prolog

system.

An experimental object-oriented Prolog system, LU-Prolog, has been developed

based on the proposed model. An evaluation of the performance of LU-Prolog and

its future directions are also presented in this thesis.

IV

ACKNOWLEDGEMENTS

I heartily thank, first of all, my supervisor, Dr. Xining Li, for his continued guidance,

inspiration and patience which made this thesis possible. His interest and excitement

over the topics were often stimulating in the course of this study. His editorial

suggestions led to substantial elaboration of this thesis.

I would like to express my gratitude for my parents and sisters. Although I have

not seen them for two years, I could still feel their encouragement and love over the

miles.

I am indebted to many friends of mine who support me, directly or indirectly,

over the long time of this study.

I would like to thank Ms. Hedi Kogel for her comprehensive comments on the

literacy contents of this thesis.

Finally, special appreciation is heartily extended to my external examiner Dr.

John Cleary and internal examiner Dr. Yiyu Yao.

V

Contents

Approval Page ii

ABSTRACT iii

ACKNOWLEDGEMENTS v

List of Figures viii

1 INTRODUCTION 1
1.1 Logic Programming 1
1.2 Related Work 8
1.3 Motivation and Thesis Outline 17

2 OBJECT-ORIENTED PROLOG EXECUTION MODEL 20
2.1 The Comparison of Prolog Execution Models 20
2.2 The Object Concepts 23
2.3 Term Object Representation 25
2.4 Horn Object Representation - AND/OR Network 29

3 GENERATING THE OBJECT BASE 35
3.1 Structure of the Transformation Program 35
3.2 Object-oriented Approach of the Transformation Program 37
3.3 Creating Internal Term Objects 40
3.4 Creating Internal Horn Objects 42
3.5 Output Object Base 47

4 THE INFERENCE ENGINE 50
4.1 Term Object Sharing 50
4.2 Variable Object Manipulation 52
4.3 Term Object Unification 54
4.4 AND/OR Network Search Strategy 58

5 OPTIMIZATION AND BUILT-IN PREDICATES 64
5.1 First Parameter Hashing Optimization 65
5.2 Implementing Built-in Predicates 72

6 CONCLUSION 77

VI

Bibliography 82

List of Figures

1.1 An example of AND/OR graph 7
1.2 The simplified AND/OR graph 7
1.3 The transformation process of Aquarius Prolog 14

2.1 Prolog interpretation model 21
2.2 Prolog compilation model 22
2.3 The object-oriented Prolog model 24
2.4 The structure of term 26
2.5 Example: graphic representation of a term 27
2.6 Example: graphic representation of a term object 29
2.7 The hierarchy structure of HON 30
2.8 A horn object 31
2.9 AND/OR network of the program 33

3.1 The structure of transformation program 36
3.2 A skeleton of internal function object 39
3.3 The tree representation of a term 42
3.4 Internal goal objects 46
3.5 Example: internal Horn objects 48

4.1 A snapshot of term objects in execution 53

5.1 An original OR chain and the hash table 67
5.2 An example of first-parameter hashing optimization 71

6.1 General architecture of object-oriented Prolog machine 80

viii

Chapter 1

INTRODUCTION

Logic programming is a discipline of describing problems in high-level abstraction

by separating logic and control aspects of an algorithm. Programmers only declare

relationships among values rather than how programs will be executed by a machine.

Prolog, a logic programming language based on first order logic, was founded by Alain

Colmerauer and his colleagues [SS86]. Conventional Prolog execution models, either

in interpretation or in compilation, take a procedural view of Prolog programs. The

aim of this study is to explore an alternative approach of modeling and implementing

Prolog by using object-oriented techniques to achieve efficiency, extensibility and

flexibility. This chapter begins with a discussion of some key concepts and issues

on logic programming, followed by a review of related work. Finally, the motivation

and objectives of this thesis are presented.

1.1 Logic Programming

The often-cited equation;

Algorithm = Logic + Control

was first introduced by Kowalski [Kow79]. It has been observed that significant man-

power is used in handling control details in the course of designing algorithms and

describing them by conventional procedural languages [SS86]. This phenomenon

originates from von Neumann architecture which is composed of CPU, registers,

1

memory and input/output devices. The operations in a von Neumann computer fall

into the following categories:

1. load data from memory to a register;

2. carry out arithmetic operation in the registers;

3. store data from registers to memory;

4. input/output operations.

It is critical in von Neumann computers that the execution sequence of instructions

has to be specified in order to obtain the desired results. Although the development of

high-level procedural programming languages provides more and more abstractions,

control specifications are still necessary to make programs run correctly under the

von Neumann architecture.

On the other hand, logic programming separates the logic and control aspects of

an algorithm, hides control details from programming, and allows a very high-level

description of relationships among values. The declarative aspect of logic program-

ming is ideal, enabling programmers to concentrate on their goals rather than the

ways how to achieve these goals.

In Prolog programs, term, is the only data structure. A term can be a constant,

a logical variable, or a function (structure) with terms as its arguments. For exam-

ple, 123 and ahc are constant terms, f(a, 1) is a. function term with two constant

arguments.

A logical variable, usually denoted by a character string starting with a capital

letter, is a term whose value is determined dynamically in the course of execution.

2

For example, in a function: fatherfX, Y), X and Y are both logical variables. A

free variable is one that has an unknown value. As a computation proceeds, a free

variable may be instantiated (or bound) to another term which is called the binding

of the variable. An instantiated variable is identical with its binding (the term it

is bound to) and maintains the same binding throughout the computation. This

property of the logical variable is known as single-assignment.

A Prolog program consists of a set of Horn clauses. A Horn clause is an implica-

tion of the form

A <— Hi,..., Bn-

where A represents the conclusion of the implication and is called the head, and

Hi,.. .,Bn indicates the conjunction of conditions of the implication and is called

the body of the clause. The clause is a query when A is absent, a fact when n = 0,

or a rule otherwise. Clauses with the same name and arity define a predicate.

For example, the following clauses define the predicate append:

append([], L, L).

append([X|Ll], L2, [X|L3]):-
append(Ll, L2, L3).

An informal reading of a Horn clause is “for each assignment of each variable, if

Hi,.. ., Bn are all true, then A is true”. It can also be interpreted as: to prove A,

prove Hi,..., Bn-

Prolog computation is initiated by a query in which conditions in conjunction

are called goals. The computation of a Prolog program proceeds through a series of

reductions, that is, a Prolog execution system tries to solve a given query by selecting

3

a goal from left to right and following a depth first search through its program looking

for a matching clause, backtracking when it encounters a failure. The computation

may terminate by answering “yes”, which means the query is satisfied by the Prolog

program, or “no” otherwise.

Theoretically, a logic programming language based on Horn clauses should be

nondeterministic. The choice of goals to solve (AND-decision) is arbitrary. Success

of the computation does not depend on the choice of goal. The choice of matching

clauses (OR-decision) is also arbitrary provided it leads to a successful computation.

Prolog mimics the nondeterministic feature by imposing a fixed execution order

plus backtracking on conventional machines. The imposed execution order makes

Prolog an efficient logic programming language. However, such imposition incurs a

penalty - any correct Horn clause program is a correct Prolog prograrn, but not vice

versa.

Prolog computation is based on unification among terms. Unification is a pro-

cess to check whether two terms arfe unifiable with each other. Basically, unification

is done through string matching and substitution. For example, we say that the

unification between (X,Y)., and (bob,tom) succeeds, in the sense that, with the sub-

stitution {X=bob, Y=tom], (X,Y) and (bob, tom) shall become identical. Such a

substitution is called the most general unifier (MGU) of these terms. In the case

that no variables occur in two terms to be unified, the result of unification depends

on their syntactic identity.

4

A resolvent is a set of conjunctive goals obtained by one step of computation.

For example, consider the following goal list and Horn clause:

• Ax , A25 • ■ •) Aj, . . . , Airi •

Ai : — J5i,..., Bk-

Suppose Ai is the current goal to be computed. If goal A, and clause A, are unifi-

able and the MGU of the unification is 9, then the resolvent of this computation is

obtained by applying 9 to the new goal list Ai, A2,..., Ai-i,Bi,... ,Bk, A^+i,..., A„.

In general, a standard Prolog computation model, called the abstract interpreter

[SS86], can be described as follows:

Input:
A query Ai,..., A„ and a program P;

Output:
yes if a proof of Ai,..., A„ from P is found; no otherwise;

Algorithm:
begin

T: resolvent
9: MGU
Initialize T to Ax,..., A„
while T is not empty

begin
choose a goal A from T, and a clause A' i— B\,, Bk, from P

such that A' and A are unifiable (if no such clause exists,
exit the while loop);

9 = unify {A, A');
remove A from T and add Bi,..., Bk to T\
apply 9 to r, i.e.. Ax,..., A^_x, 5x,..., A,+x,. -., A„

end
If T is empty, output yes\ otherwise output no.

end.

5

Semantically, the relationship among components of Prolog program can also be

viewed in terms of an AND/OR graph. The definition of an AND/OR graph can be

defined recursively [Nil71] as follows:

1. The terminal nodes are solved nodes (since they are associated with primitive

problems);

2. If a nonterminal node has OR successors, then it is a solved node if and only

if at lease one of its successors is solved;

3. if a nonterminal node has AND successors, then it is a solved node if and only

if all of its successors are solved.

For example, with a Prolog program:

a :- b,c,d.
a :- e,f,g.
c :- h,i.
c :- j.
f :- 1. .
f :- m.
f :- n.

Its AND/OR graph is illustrated in Figure 1.1 and Figure 1.2, where Figure 1.1

shows both AND nodes and OR nodes. The AND/OR graph can be simplified by

combining AND- and OR-nodes and lining up AND branch as shown in Figure 1.2

[USL93].

It is clear, from the view point of an AND/OR graph, that a Prolog program is

simply an AND/OR network connecting all Horn clauses. When a query is given, a

6

Figure 1.1; An example of AND/OR graph

Figure 1.2: The simplified AND/OR graph

7

search space which provides all possible computation paths with respect to the given

query is then formed.

Prolog, with its both solid theoretical foundation on logic and expressive power,

has been used in a wide spectrum of applications, such as symbolic processing, arti-

ficial intelligence, expert systems, simulation, planning and deductive databases.

1.2 Related Work

The development of Prolog system has been driven by both improving the running

efhciency [RD92, Con87, Mel85, HS84, TW84] and achieving the best use of memory

[Mel82, Bru82]. Since the nondeterministic feature is simulated or approximated

in terms of depth-first search and backtracking in most Prolog systems, it results

in much more time and space overhead than those in conventional programming

systems.

Although term is the only data structure in Prolog programs, this simple data

structure is made complicated by logical variable binding. Consider the following

example:

?- the_first(X).

theJirst(Y) :-
try_first(Y).

try_first(Z) :-
same(Z, f(A,g(B))),
try_other(A,B).

same(X,X).

8

In the course of execution, variable X is bound to another variable Y, and Y is bound

to Z, then Z is bound to a function f(A,g(B)), where A and B can again be bound

to any term. This unrestricted binding feature provides Prolog programmers with

the great power to describe desired relationship. However, it also leads to a great

difficulty in handling these variables. For example, it is often the case that a variable

has to be dereferenced, that is, to follow its binding chain for its value. Moreover, the

binding value of a variable can be a function term in which one or more parameter

variables can again be bound to some other terms, ... and so on. It is necessary that

a Prolog system maintains all of previous bindings for further reference and updates

them during backtracking. Backtracking is the operation of a goal to undo the

current unification and try another alternative clause if it fails to match a current

clause, or to undo the current unification and go back to the previous goal when

the failure goal has no alternative to try. Since binding chains and structures of

binding values are determined at runtime according to different programs involved,

to maintain and update these bindings can be complicated and expensive. Extensive

researches have been done trying to find a proper term representation so that terms

can be managed efficiently.

There are two commonly used term representations in Prolog implementation:

Structure Sharing (SS) and Non-Structure Sharing (NSS). SS was first introduced

by Boyer and Moore [BM72] and was used in earlier Prolog implementations, such as

Marseilles interpreter and DEC-10 Prolog. The idea of NSS came from Bruynooghe

[Bru76] and was adopted by several later Prolog interpreters and compilers. Com-

parisons of SS vs. NSS can be found in [Mel82] and [Bru82].

In a SS system, aU terms are represented by molecules. A molecule consists

9

of two pointers to a skeleton and an environment respectively. A skeleton is the

internal representation of a term description in which variables are referenced by their

locations in environment - a chunk of m'emory holding the values of these variables.

Inside a clause, all occurrences of a variable, no matter whether they appear in one

term or in multiple terms, are designated by a single location in the environment.

The idea of the SS scheme is that different instances of the same term share a single

skeleton and differ only in their environments. Therefore, the cost of constructing

a new term instance is quite low: it only needs an environment allocation plus two

pointer assignments. On the other hand, to construct a new term instance in a

NSS system, a concrete copy of the term must be created. The construction process

needs to copy the ground description of the term and to allocate a location for every

occurrence of a variable in the term. Newly created terms are retained in a memory

area called global stack and variables in the global stack are called global variables.

The NSS approach seems to require more time and space for constructing complex

structures.

The SS scheme tends to be faster. However, a disadvantage is that all terms

(molecules) must be retained in the forward execution of a Prolog program. It has

no knowledge of whether a term is used as a selector (local instance) or a constructor

(global instance). On the other hand, the NSS scheme only creates new terms when

they become variable instantiations and may deallocate local variables - variables

which do not carry information outside of their clauses - upon the termination of

the clause’s activations. Properly speaking, variables are all local to the clauses

in which they appear. The terminology here is to denote that a global variable

represents a long-lived object, while the life cycle of a local variable is determined

10

by the invocation of its clause - it may be discarded if the execution of the clause

succeeds deterministically, or be frozen when goals in the clause body have more

choices to be tried. Since terms often behave as selectors rather than constructors

and the majority of predicates (clauses with the same name and arity) are mostly

deterministic, the global space used by the NSS scheme is usually smaller than that

used by the SS approach. Even though applying mode declaration [War77] or global

flow analysis [MelSl] can reduce the amount of global variables in a SS system, it is

still hard to compare the memory utilization of these two approaches since programs

can be written such that any one method is worse than the other. Mellish [Mel82]

comments that neither of the approaches is optimal in its use of the local and global

stacks, and new methods are expected which have the advantages of both.

Another problem with respect to the operational behaviour of terms during unifi-

cation is called occur-check - a time-consuming operation which tries to avoid unifying

a variable with a term in which it occurs. Efficient solutions of the occur-check prob-

lem were studied in [Pla84, Bee88, Apt92] etc. The general idea of these solutions is

to detect places where occur-check may be safely omitted and where it must be made.

However, these proposals involve problems such as complicated global analysis, so-

phisticated mode declaration, and unnecessary occur-checks. On the other hand,

Colmerauer[Col82] proposed a novel model of Prolog which does not perform occur-

check in execution. He claimed that the unification overhead for handling cyclic

structures (called rational trees in his paper) is less than that required by occur-

check, and more important, cyclic structures may become very useful in representing

static inter-linked data, such as graphs, grammar, and flow-charts.

Prolog execution models usually involve a kind of transformation program. Trans-

it

formation is a process of converting one program into another equivalent program

in a different language. The scheme to make a Prolog program run under a com-

puter system is to transform the Prolog program (referred as source code) to another

equivalent set of internal representations or abstract instructions (called target code)

which can be interpreted or compiled. The number of passes of transformation de-

pends on the overall arrangement as well as the complexity of the task, such as

the degree of difference between source code and target code and whether or not

optimization is involved during the transformation. If more than one pass of trans-

formation is required, the output of transformation before target code are referred

to as intermediate programs.

From the procedural point of view, a Horn clause A <— J5i, ^2,..., is trans-

lated to [SS86]:

procedure A
call Si,
call B21

call S„,
end.

This attractive concise translation has inspired many dreams about the implemen-

tation of Prolog system. Unfortunately, it is not that simple. A Prolog system has

to maintain and update all of necessary values bound by logical variables and other

calling environment information in order to do backtracking once a goal encoun-

ters failure. Therefore, it is usually impossible to use the conventional subroutine

call-return mechanism [Mel85].

To make Prolog more practical, Warren developed an execution model, the War-

ren Abstract Machine (WAM), for running Prolog efficiently on conventional hard-

12

ware [War83], The abstract instructions of WAM can be classified into the following

categories:

1. register manipulation;

2. stack operations;

3. execution control instructions;

4. unification and backtracking operations;

5. special instructions for maintaining calling environment and global variables.

The abstract instructions are machine independent. They can be implemented by

assembly language on target machines or directly by hardware. The idea of WAM

is to translate a Prolog program to a set of sequential WAM’s abstract instructions

which can be implemented and executed particularly efficiently by using machine

code, trading speed for memory and performing special case analysis to simplify

recursion and unification operations. It is obvious that the abstract instruction set

is the one which closely depends on von Neumann architecture, in other words,

Prolog is viewed by WAM mainly from conventional von Neumann machine, rather

than its original logic foundation.

The first Prolog interpreter was developed in the early 70’s by Colmeraurer

and his colleagues [SS86]. Other better known variations include DEC-10 Prolog,

Micro-Prolog and IC-Prolog. Following Warren’s first Prolog compiler, more effi-

cient compiling systems have been developed, such as BIM Prolog, Quintus Prolog

and Aquarius Prolog. Most existing Prolog compilation models are based on WAM

with extensions on instruction granularity, global analysis, extracting determinism,

etc. For example, the Aquarius Prolog [RD92] is based on the Berkeley Abstract

13

Source
Program

generating a uniform representation Kernel
Prolog 1 ♦-

Kernel
Prolog 1

carrying out global analysis, etc. Kernel

Prolog 2

Kernel mapping Kernel Prolog 2 to BAM code BAM
Prolog 2 ^ Code

Figure 1.3: The transformation process of Aquarius Prolog

Machine (BAM) which extends WAM by adding more instructions to handle special

operations, such as dereferencing operation. The transformation scheme adopted by

Aquarius Prolog is shown in Figure 1.3.

It is perhaps the most complex part in the whole compilation to perform trans-

formation from Horn clauses into BAM code. For example, it takes 36 minutes for

Aquarius Prolog to compile a 1,138-line Prolog program [RD92]. To do this kind of

compilation can be a painful experience. Tick and Warren [TW84] went further by

employing a pipeline Prolog processor to speed up the execution of WAM’s instruc-

tion set. However, it did not reduce the complexity of the transformation process.

The main reason for such a complicated transformation from a Prolog program into

a target code is that WAM and its variants mix-up the logic and control aspects of
%

target code to which a declarative Prolog program is supposed to separate.

Prolog could still be impractical without efficient implementation of Prolog sys-

tem by means of optimization [SS86]. Much of recent research on the implementa-

14

tion of Prolog system focus on various schemes of optimization to achieve efficiency.

However, it is realized that to generate efficient code requires a more sophisticated in-

struction set which makes a further complication of the already complex instructions

and run-time data structures.

As researchers face with increasing complexity in an attempt to bind more op-

timization schemes into a Prolog system to improve its efficiency, Mellish argues

that it seems unlikely that conventional machines can be efficiently used by Prolog

programs without the use of a complicated compiler [Mel85]. This situation remains

unchanged by applying WAM since WAM itself is strongly characterized by von

Neumann architecture.

Since the terms and clauses are not self-maintained objects in WAM, any opera-

tion associated with an optimization has to be arranged by the system. The complex

states, behaviour of terms and clauses make it a difficult task to add various opti-

mization features into such a mixed-up system. Even though the set of abstract

instructions of WAM are subsequently augmented in order to support PROLOG

[Mel85], the result is still unsatisfactory. For example, with the following program;

nrev((X|Y],Z)
!
• ?

nrev(Y,Zl),
append(Zl,[X],Z).

nrev([],0).

append([X|Y],Z,[X|Yl]) :-

append(Y,Z,Yl).
append([],X,X).

A part of its generated target code under WAM [Mel85] is shown in the following;

15

procedure nrev/2

label_27:
pop loci
push loci
ispair
ifnot label_24
push loci
back
call nrev/2
pop loc2
push loc2
push loci

label_24:

label_29:

endprocedure

procedure append/3
deref
pop loc2
deref
pop loci
push loci
ispair
ifnot label_33
push loci
back

label_33:

label_38:
endprocedure

16

where the meaning of some abstract instructions [Mel85] are explained as follows:

call < name >

deref

endprocedure

ifnot < label >

ispair

pop < name >

procedure < name >

push < name >

Call the named procedure.

Dereferences a Prolog term.

Return.

Transfer control to < label > if the top

item on the user stack is non-FALSE.

Test whether an item is a list pair.

Pop the top element of execution into named variable.

Mark the start for the named procedure.

Push the value of named variable onto

the execution stack.

Such a target code is far beyond the declarative semantics of Prolog programs. This

results in complex schemes to perform the transformation. Furthermore, as other

new optimization schemes are introduced, they usually heavily influence the built-up

system. The man-power to modify such a system would be expensive.

1.3 Motivation and Thesis Outline

Conventional Prolog execution models are characterized by their procedural view

of Prolog programs. One shortcoming of the standard interpretation model is that

the components of Prolog programs are treated as passive data. The logic relations

among these components are explored in runtime only. On the other hand, the con-

17

ventional compilation models are realized in the manner away from the spirit of logic

programming for separating logic from control to achieve higher abstraction. Specif-

ically, the target code is generated by abstract instructions which mix-up control

details and logic relations with respect to the corresponding Prolog program.

The main objective of this study is to present an alternative approach to construct

Prolog execution model to tackle the complexities caused by conventional Prolog

execution models. Instead of being taken from a procedural point of view, as in the

standard interpreter and WAM, Prolog programs are modelled and implemented in

terms of a collection of collaborated objects. By taking the advantage of object-

oriented techniques, a new model - Object-Oriented Model (OOM), is proposed.

With OOM, an object base is constructed which reflects the components and the

relationships among them with respect to the corresponding Prolog program. The

inference engine is embedded in each object to simulate the operational behaviour of

Horn clauses and is independent of any specific Prolog program. Such an approach of

the Prolog execution model provides the framework with extensibility and flexibility

to implement and improve a Prolog system.

Reaching our objectives involves two major steps: constructing a Prolog execution

model and translating any given Prolog program into a corresponding object base.

Chapter 2 compares conventional models with our proposal. From this investigation

and discussion, we conclude that, by viewing components of a Prolog program as a

set of collaborated objects, object-oriented Prolog execution model offers a greater

potential to achieve our goals than conventional procedural models.

Chapter 3 discusses the issues of generating the object base, which particularly

concerns with representing the components of a given Prolog program in terms of

18

objects and assigning the corresponding relationships to them. A practical transfor-

mation program to generate the object base is addressed.

Chapter 4 describes the inference engine which is embedded in the object base.

The inference engine facilitates objects in the object base with operational behaviour

based on the standard Prolog semantics. Most importantly, with the logic relations

specified in the object base with respect to a given Prolog program, the inference

engine only describes the control aspects of Prolog and is independent of any specific

Prolog program.

The purpose of Chapter 5 is to show the extensibility of our model to adopt new

schemes. The first parameter hashing optimization, which is the scheme to avoid

unnecessary backtracking by looking at the hash value of the first parameters of

current goal and Horn clause, is described. Other extensions such as the uniform

interface to introduce new built-in predicates are also covered.

The framework described in the previous chapters provide great scope for further

investigation such as the possibility to develop parallel mechanisms or object-oriented

hardware. Concluding remarks and possibilities for future research are presented in

Chapter 6.

19

Chapter 2

OBJECT-ORIENTED PROLOG EXECUTION

MODEL

2.1 The Comparison of Prolog Execution Models

Although Prolog execution models may vary more or less in their details, the present

concern will focus on their fundamental features. Prolog models are used to imple-

ment Prolog systems either by interpretation or by compilation. A typical Prolog

interpretation model is shown in Figure 2.1.

The characteristics of the interpretation model is that it treats a Prolog program

as a set of passive data. A Prolog interpreter is designed to perform all operations

on these data. This approach results in considerable difficulties in manipulating

terms and Horn clauses in the Prolog program, especially those which are required

by backtracking. As a result, great efforts have to be made to keep track of these

passive data.

The compilation system generates a target code which is composed of abstract

instructions, and which is then compiled by the existing system to produce final

executable code. The structure of a Prolog compilation model is depicted in Fig-

ure 2.2. The strategy is adopted by most conventional compilers. However, since

Prolog differs from any procedural programming language by its separation of logic

from control, the traditional approach to Prolog compilers enforces procedural view

20

goal answer

Figure 2.1: Prolog interpretation model

21

goal answer

Figure 2.2: Prolog compilation model

22

on Prolog programs. This is contrary to the primary feature of Prolog, and leads to

a complicated compilation process. On the other hand, the object-oriented Prolog

model represents the components of Prolog programs naturally with corresponding

objects. Figure 2.3 shows the structure of object-oriented Prolog model.

The object base is organized in the form of AND/OR network, where each node

is represented by the corresponding Horn object. The advantages of this approach

are that the target code, which is generated by a transformation program, only

represents the relationships assigned by the Prolog program, whereas the inference

engine, which provides the mechanisms for the objects to facilitate their behaviours,

is embedded in each object. One important property of the inference engine is that

it is predefined and independent of any specific Prolog program.

2.2 The Object Concepts

Since object-oriented techniques play a critical role in our model, we shall first to

discuss some of concepts and features of object-oriented paradigms.

An object is a run-time entity encapsulating both state and behaviour. Each

object has a name as its identity. Objects with similar characteristics are grouped

into a class which specifies the state as an abstract data structure and the behaviour

as a set of services. The services are appropriate computations applied thereto. An

object may issue requests for services performed by other objects. A request is a

message to the object which provides the service. Performing a request involves

executing some code (a method or a member function) on the associated data. The

definition and implementation of one class can be inherited by other newly defined

23

goal answer

Figure 2.3: The object-oriented Prolog model

24

classes. The inheritance relation facilitates reusability and extensibility of software

systems. An object reference is polymorphic if it refers to objects of more than one

class over time. Dynamic binding provides a powerful tool for associating code with

a given request at runtime.

The object-oriented paradigm takes a modelling point of view of a complex sys-

tem. It specifies collections of coordinated entities to simulate components of the

problems to be solved. This paradigm offers a way to analyze Horn clauses, by de-

composing them as a set of interacting objects. The object-oriented programming is

somewhat like the conventional procedural one, except that concepts such as object,

class, polymorphism, inheritance, and dynamic binding make it more powerful and

flexible.

The object base reflects the relationships among values specified by a Prolog

program. In order that a Prolog program can be expressed in terms of objects,

the hierarchical structures among different kinds of terms and Horn clauses have

been developed according to their degree of similarities. The object base is then

constituted by allied representation of term objects and Horn objects with respect

to a Prolog program.

2.3 Term Object Representation

The basic data structure in Prolog programming language is called term, represented

by several concrete forms such as atom, integer, variable and function. Accordingly,

the hierarchy structure of term objects is organized in their natural way such that

atom, integer, variable and function are classes derived from a same common base

25

Figure 2.4: The structure of term

class - term, as shown in Figure 2.4.

In the following discussion, we introduce a notation: obj : P\,P2, ... to represent

the initiahzation of obj by Pi,P2, ■ ■ ■■ Thus, the term objects in an object base look

like as follows:

integer objects: {
int_obj_l: integer_l;
int_obj_2: integer_2;

...};

atom objects: {
atom_obj_l: symbolic_name_l;
atom_obj_2: symbolic_name_2;
...};

variable objects: {
var_obj_l: symbolic_name_l;
var_obj_2: symbolic_name_2;

argument list objects: {
arg_obj_l: term-.obj_ll, term_obj_12,...;
arg_obj_2; term_obj_21, term_obj_22,...;
...};

function objects: {

26

Figure 2.5; Example: graphic representation of a term

func_obj_l: functor_l, argumentJist_obj_l;
func_obj_2: functor_2, argumentJist_obj_2;

Each term object is attached by one or more parameters which represent the corre-

sponding relationships defined by a Prolog program. The definitions of objects with

respect to integer, atom and variable, are straightforward. The class of argument

list objects, is introduced to form the argument lists of function term (refer to page

28). For example, suppose that we have the following term:

show{relation{X^ Y)^say{to(X, Z), hello))

The implied relationship among the inner terms can be illustrated graphically in

Figure 2.5.

The corresponding term objects can be described as follows:

atom objects: {

27

atom_obj_l: “hello”

};

variable objects: {
var_obj_l: “X”;
var_obj_2: “Y”
var_obj_3: “Z”

// in the following, the argument list objects specified
// are corresponding to:

// (X, Y);
// (X, Z);
// (to(X, Z), “hello”);
// (relation(X, Y), to(X,Z), “hello”))
/ / respectively.

Argument list objects: {
arg_obj_l: var_obj_l, var_obj_2;
arg_obj_2: var_obj_l, var_obj_3;
arg_obj_3: func_obj_2, atom_obj_l;
arg_obj_4: func_obj_l, func_obj_3

};

function objects: {
func_obj_l: “relation”, arg_obj_l;
func_obj_2: “to”, arg_obj_2;
func_obj_3: “say”, arg_obj_3;
func_obj_4: “show”, arg_obj_4

It should be noted that the two occurrences of X are represented by a single object

var.objectA. The relationships among the above objects can be shown graphically

in Figure 2.6. It is obvious by comparing Figure 2.5 with Figure 2.6 that each term

has been represented by its corresponding object.

28

Figure 2.6: Example: graphic representation of a term object

2.4 Horn Object Representation — AND/OR Network

Essentially, we view a Prolog program as an AND/OR network in terms of Horn

objects. Having analyzed the degree of similarity among different kinds of clauses,

we introduce a hierarchy structure in Figure 2.7.

The inheritance relation in the object-oriented paradigm is often called the “is

a” relation. From Figure 2.7, it is easy to see that a rule is a clause, and in turn a

clause is a horn. Two classes, root and stub, are used for optimization and will be

discussed later. The body of a Horn clause is a sequence of goals. Correspondingly,

a goal class is defined in our model for creating goal objects. Horn objects can be

specified as follows:

29

Figure 2.7: The hierarchy structure of HON

fact objects: {
ft_obj_l: functor_1, arg_list_l, next.l;
ft_obj_2: functor_2, arg_hst_2, next_2;

goal objects: {
gl_obj_l: functor_1, horn_l, argJist.l, pre.^Ll,nt_gLl;
gl_obj_2: functor_2, horn_2, argJist_2, pre_gl_2,nt_gl_2;

rule objects: {
rl_obj_l: functor_l, argJist.l, next_l,gl_l;
rl_obj_2: functor_2, argJist_2, next_2,gl_2;

It is imperative that Horn objects are connected with each other to represent the

AND/OR network. This is achieved by the appropriate specification of parameters

for each object. Goal objects which are embedded in a rule object are double-linked

30

myJiorn myJiorn

Figure 2.8: A horn object

by the pointers pre^gLi and nt_gLi in the same order assigned by the Prolog program

to form AND successors of the rule object. Furthermore, fact or rule objects with the

same predicates are linked by the pointer next-i to construct OR successors, where

the chain of OR successors can be accessed by the goal object in a depth-first manner.

The OR successors are organized in the same sequence as their corresponding Horn

clauses in the Prolog program.

A graphic representation of a Horn object is shown in Figure 2.8. It should note

that Horn objects which define a same predicate are linked together by the pointer

next in their original program context order to form OR-chain. If there is no more

Horn object to be linked, the next will be assigned as NULL. Further, two special goal

pointers, GFAIL and GSUCC, are used to be the sentinels of the goal list: GFAIL is

assigned to the pre^gLi pointer of the first goal and GSUCC is assigned to the nt^gLi

pointer of the last goal in the list.

To illustrate the AND/OR network established in the object base, we consider

the following example.

31

nrev([X|Y],Z) :■
nrev(Y,Zl),
append(Zl,[X],Z).

nre''(D.D)-

append([X|Y],Z,[X|Yl])
append(Y,Z,Yl).

append([],X,X).

The objects is then described in the following form:

... I* definitions of the term objects */

argument list objects: {
arg_obj_l:
arg_obj_2:
arg_obj_3:
arg_obj_4:
arg_obj_5:
arg_obj_6:
arg_obj_7:
arg_obj_8:
arg_obj_9:
arg_obj_10:
arg_obj_ll:

/ / specify [X|Y]
// specify ([X|Y],Z)
// specify (Y,Z1)
// specify [X]
// specify (Z1,[X],Z)
// specify (0,0)
// specify [X|Y]
// specify [X|Y1]
// specify ([X|Y],Z,[X|Y1])
// specify (Y,Z,Y1)
// specify ([],X,X)

fact objects: {
ft_obj_l: “nrev”, arg_obj_5, NULL;
ft_obj_2: “append”,arg_obj_ll, NULL

goal objects: {
gl_obj_l: “nrev”, rLobj.l, arg_obj_3, GFAIL, gl_obj_2;
gl_obj_2: “append”, rl_obj_2, arg_obj_5, gl_obj_l, GSUCC;
gl_obj_3: “append”, rl_obj_2, arg_obj_10, GFAIL, GSUCC

32

Figure 2.9: AND/OR network of the program

rule objects: {
rl_obj_l: “nrev”, arg_obj_2, ft_obj_l, gl_obj_l;
rl_obj_2: “append”, arg_obj_9, ft_obj_2, gl_obj_3

The representation of the corresponding AND/OR network is shown in Figure 2.9.

Finally, it should be emphasized that this network only presents the data and their

relationships, and no execution instructions are involved in the generated object

33

base.

34

Chapter 3

GENERATING THE OBJECT BASE

This chapter focuses on the object-oriented approach of the transformation program,

which translates a given Prolog program into an object base. To form the object

base, the particular concern is the way of various objects, i.e., term objects and

Horn objects being represented, and the way the relationships among them being

set up properly with respect to the Prolog program. A set of objects, referred

to as internal objects, are created by the transformation program according to the

components of the Prolog program. With the coordination of the object generator,

the object base is obtained through the corresponding output of internal objects.

Such a transformation approach, by taking advantage of object-oriented techniques,

provides the transformation program with flexibility to make further extension.

3.1 Structure of the T>ansformation Program

The structure of the transformation program, as shown in Figure 3.1, is constituted

by the lexical analyzer, parser, table handler and object generator.

The lexical analyzer decoxaposes a Prolog program into lexical elements, i.e. basic

syntactic units, such as atoms, functions, predicates, etc. The lexical elements are

represented by corresponding tokens which consist of keywords, identifiers and sym-

bols found in the program [TS82]. The parser then carries out syntactic analysis of

the tokens produced by the lexical analyzer. In the course of parsing, the information

35

Figure 3.1: The structure of transformation program

36

which will be used at final phase to generate the object base, is stored in tables. The

object generator, with the information in the tables, is to form the object base by

specifying corresponding objects and by imposing proper relationships among them.

The traditional way of implementing transformation process, either in interpreter

or compiler, is through a group of subroutines which are activated by a main routine.

However, our transformation program is characterized by its object-oriented manner.

The transformation program creates a collection of objects, referred to as internal

objects, to represent the corresponding components of the Prolog program. The

internal objects are characterized by their one-to-one mapping relationship with the

objects in the object base. Thus, the internal objects serve as a bridge between

the source program and the object base. By incorporating the features of an object-

oriented paradigm such as abstraction, inheritance, etc., the object-oriented approach

provides a different and, to some extent, a more powerful way to implement the

transformation process.

The transformation program was originally developed, as discussed in this chap-

ter, without involving any optimization scheme. However, the extensibility of the

transformation program makes it possible to be easily upgraded when optimization

schemes are considered. This will be discussed later.

3.2 Object-oriented Approach of the Transformation Pro-

gram

Conventional implementation takes a procedural view of the transformation process

by decomposing the task into a collection of procedures or functions. In the course of

37

transformation, symbolic tables are used to maintain the results of parsing. Finally,

the object base is produced by using the information in the symbolic tables.

Instead of dealing with passive symbolic strings, the object-oriented paradigms

provides a means to represent the results of parsing by a set of active objects, i.e.,

the internal objects. The term internal objects is used to indicate the objects em-

ployed by the transformation program, and to distinguish them from objects in the

object base. The transformation program is developed to allow the use of the same

hierarchical structures of term objects and Horn objects as described earlier. Two

classes of internal objects, i.e., internal term objects and internal Horn objects, are

created by the transformation program to represent the components in the Prolog

program. Accordingly, tables are used to maintain various objects as well as other

information. It should be clear that the internal objects are intended to form the

object base, rather than to perform a Prolog computation.

The object-oriented paradigm makes it possible to decentralize the task among

related objects. For example, assuming that all objects have been created and other

necessary information has been obtained, each internal object will output its specific

format to the object base, which is under the coordination of the object generator.

An internal objects is created according to its specific type, such as atom, func-

tion, fact, etc. In order to generate the appropriate objects in the object base, the key

point is that each internal object obtains sufficient information such as its symbolic

name and its relationship with other objects. For example, a function object should

know which term objects serve as its parameters. To provide a concrete picture of

the internal objects, we consider one of internal objects - internal function objects.

The skeleton of an internal function object is shown in Figure 3.2, which includes

38

internal func objecct

data:

int id;

charM< nm;

argJist* al;

member functions:

constructor();

destructor();

void output();

Figure 3.2: A skeleton of internal function object

39

an identification number, id; a symbolic name of functor, nm; and an argument

list, al. These data items are used to record the information necessary to specify

corresponding function objects in the object base. In the course of parsing, a global

counter gjid is used to keep the sequence number of the internal function objects.

The value of gfid is attached to the internal function object being created, and then

gfid is increased by 1. The member function output(), which is specified as a virtual

function in the internal term class, i.e., its base class, is defined here to meet the

specific requirement to format the corresponding function object in the object base.

The advantage of this decentralized approach is that it allows for the design of

the transformation process in the natural way with respect to the Prolog program

and object base. It makes easier to modify some parts of the transformation pro-

gram when optimization schemes are introduced, to add new term structures to an

extended Prolog, and to enhance better maintainability and understandability of the

transformation program.

3.3 Creating Internal Term Objects

Prolog adopts a unique name, i.e., term, for representing values involved in a com-

putation. A term can be specified recursively as:

• term *— integer, atom, or variable;

• term <— functor + parameter (one or more terms).

Two important issues need to be addressed in dealing with terms. The first issue

concerns the object sharing:

40

1. atoms with the same symbolic name in a Prolog program are represented by a

single internal atom object;

2. variables with the same symbolic name share one internal variable object only

when they occur in the same Horn clause.

For example, consider the following two predicates:

share_l(X,X,foo).
share_2(X,X,foo).

Although all of variables have the same symbolic name X, they are two different

variables local to their clauses. Therefore, both X’s in share.l are represented by

one variable object, whereas both X’s in share_2 are represented by another variable

object. On the other hand, only one internal atom object is created with respect to

two occurrence of foo, no matter in which Horn clauses they appear.

The second issue deals with the criterion to determine the sequence of term

objects to be generated. This specifically concerns with function terms, where other

terms are embedded as parameters. It is noted that the structure of any function

term is simply a tree, which can be specified recursively:

• the root of a tree represents the functor of the term;

• the children of the root correspond to the parameters of the term respectively;

• a leaf node may represent an atom, integer, or a variable.

41

Figure 3.3: The tree representation of a term

For example, the tree representation of the function term: relation(parent(tom,X), Y)

is shown in Figure 3.3.

With this observation, the transformation program generates the term objects in

the sequence according to the postorder traversal. The reason is that, whenever a

function is created its parameters can always be referred to, so that the relationship

between the function and its parameters can be set up properly.

3.4 Creating Internal Horn Objects

A Prolog program is represented by an AND/OR network. In the course of parsing,

a set of objects are generated to represent the components of a Prolog program.

These objects also reflect the same relationships specified by the Prolog program.

The major procedures to form an AND/OR graph among internal Horn objects are

42

shown in the following code, where h^str and gstr represent a goal and a Horn in

symbolic form respectively; accordingly, h^obj and g~ohj represent their corresponding

internal objects.

Part I:

input:
a list of goals in symbohc form which embedded in a rule;

output:
an AND chain;

algorithm:
begin

glid = 1;
while (g_str)

begin
g_str = g_str-^next;
/+ processing the argument of the goal +/
g_obj = create(g_str,...);
!*■ link with the previous goal objects *J
table_handler = g-obj;
glid = glid + 1

end
end. { Part I }

Part II:

input:
a Prolog program;

output:
OR chains;

algorithm:
begin

ftid — 1; rlid = 1;
while (h_str)

begin
/+ processing the argument of the Horn */
switch:

43

case FACT:
h_obj = create(h_str,...);
ftid = ftid + 1;

case RULE:
/* generate AND chain: AND_chain +/;
h_obj = create(AND_chain,h_str,...);
rlid = rlid + 1;

end { while }
table-handler = h_obj;
/* link h_obj with other internal Horn objects
with the same predicate */

end. { Part II }

Part III:

input:
table handler;

output:
AND/OR graph;

algorithm:
begin
while (g_obj)

begin
The_OR_chain = table_handler(g_obj);
g_obj .get (The_OR_chain);
g-obj = g_obj-^next;

end
end. { Part III }

The procedure in Part I assumes that the input, i.e., the set of goals embedded in

a rule clause, have been converted into the uniform format by previous processing.

Arithmetic expressions are all represented by prefix notation. For instance, X is

(3+5)=t'4 has been changed into is(X,=»=(+(3,5),4)). In a clause, AND is the only

relation among goals. The clause, such as,

a :- (b,c); (d,e); (f,g,h).

44

has been changed equivalently into the following clauses:

a b,c.
a d,e.
a f,g,h.

The procedure in Part I creates a set of internal goal objects attached to an internal

Horn object, and each internal goal object is identified by a unique ID number. By

means of message passing, each internal goal object also obtains the ID numbers of

its connected neighbours. For example, with respect to the Horn clause H = A,B,C.,

its internal goal objects are created as shown in Figure 3.4. The internal goal object

B knows that the ID numbers of its previous and next neighbours are 10 and 12

respectively; the internal goal object A knows it only has a next neighbour with ID

number 11; and so on.

Part II is used to construct OR chains connecting internal Horn objects. An OR

chain links all Horn objects with the same predicate and arity. As the matter of

fact, an OR chain is not linked by pointers, but through the ID numbers assigned

to the internal Horn objects. Therefore, an internal Horn object recognizes its next

OR candidate by its ID number. After being created, all internal Horn objects are

stored in a table to be manipulated by the table handler.

The last step is to link each internal goal object to its OR chain, as described in

Part III. The corresponding OR chain is obtained through looking up tables. The

table handler first directs the internal goal objects to search the built-in predicate

table. The table which contains OR chains from the Prolog program, is searched

only when the internal goal object encounters failure in an attempt to find a match

among built-in predicates.

45

goal_ID=ll

pre_goaLID=10

next_goal_ID=12

B

Figure 3.4; Internal goal objects

To illustrate, we assume that the following program quicksort is processed:

goal_ID=10

pre_goaLID=null

next _goaUD=11

A

goal_ID=12

pre_goal_ID=11

next -goal JD=null

C

(Qi) quicksort([X|Xs],Ys)
{QG\) partition(Xs,X,Littles,Bigs),
{QG2) quicksort(Littles,Ls),
{QGz) quicksort(Bigs,Bs),
{QG4) append(Ls,[X|Bs],Ys).
(Q2) quicksort ([],[]).

(Pj) partition([X|Xs],Y,[X|Ls],Bs)
{PGr) X =< Y,
{PG2) partition(Xs,Y,Ls,Bs).
(P2) ^ partition([X|Xs],Y,Ls,[X|Bs])
(PC's) X > Y,
(PG'4) partition(Xs,Y,Ls,Bs).
(P3) partition(0,Y,0,0).

(Aj) append([],Ys,Ys).
(A2) append([X|Xs],Ys,[X|Zs])

46

(AG,) append(Xs,Ys,Zs).

Figure 3.5 illustrates the relationships among the Horn Objects in terms of ID num-

bers, which are indicated by dotted arrow lines. However, when mapped into the

object base, the corresponding relationships are represented by actual pointers in the

object base. Figure 3.5 also shows one related table which maintains the necessary

information.

3.5 Output Object Base

After all objects have been created and the necessary information has been obtained,

the object generator is used to produce the object base. The table handler groups

internal objects created into corresponding internal object lists:

1. internal atom object list;

2. internal variable object list;

3. internal function object list;

4. internal argument object list;

5. internal fact object list;

6. internal goal object list;

7. internal rule object list.

Note that, an abstract list which defines the common states and operations of lists is

used in the implementation and all other concrete lists are the classes derived from

the abstract list class. As soon as an internal object is created, it is appended to the

appropriate hst with the same type. After all internal objects have been created, the

47

Figure 3.5: Example: internal Horn objects

48

object base is constructed by the output of these internal objects, which define and

initialize horn and term objects in the object base.

49

Chapter 4

THE INFERENCE ENGINE

The standard Prolog inference engine is based on Robinson’s resolution [Rob79]. It

consists of two major algorithms: unification and control. The same strategy is used

in our implementation. However, instead of separating the inference engine from

the logic base, an object-oriented inference engine is embedded in every object in

the object base. The control aspects of Horn and term objects are implemented by

member functions,

4.1 Term Object Sharing

Term representation is the fundamental concern for constructing the object base.

Here, we present a new term representation method - Term Object Sharing (TOS).

In TOS, all terms are represented in their natural way, that is, they are objects from

a common base class - term.

TOS takes an object-oriented view of logic terms. It closely resembles the SS

scheme in the sense that different instances of the same term share a single term

description and differ only in their variable bindings. However, the most important

difference is that TOS classifies variables as local or global dynamically and achieves

optimal use of memory. This means that TOS tends to have the advantages of both

SS and NSS without any extra cost such as mode declaration [War77] or global flow

analysis [MelSl].

50

With TOS, all variable objects are local initially. Some variable objects will be

classified as global in the run time. In order to construct or select term instances

correctly, special care should be taken in handling Ivar and func terms. First, it is

possible that a variable value is bound to another variable value in unification. If this

happens, we just let the younger value point to the older one rather than the other

way round. Thus, there is no danger of leaving dangling pointers when the values

of local variables are deallocated upon the callee’s completion. In practice, an age

is attached to every newly created value and an age counter is increased whenever a

caller invokes its callee. Let A and B be two values, we say that A is younger than

B if A—>age is greater than B—>age. Needless to say, if two ages are equal, A and B

must be created by a single callee to which they belong.

Secondly, when a func term is instantiated to a variable, we have to decide

whether the instantiation is served as a selector or a constructor. If the instanti-

ation is a constructor, aU variables in the func term must be set to global. A simple

rule used in TOS is that a func term is classified as a constructor if it becomes a

binding of an older value (here, the age of the func is determined by choosing any

variable inside the func and returning the age of the referred value).

For example, suppose the caller’s argument is X and the callee’s argument is f(Y),

if the value dereferenced from X is free, then we simply bind the value to term f and

set variable Y global. From the discussion of value-value binding, it is certain that

the dereferenced value from X must be older than term f(Y). Therefore, f(Y) is a

constructor and Y must be global. Now, exchange caller and callee’s arguments and

assume that the dereferenced value from X is still free, then a comparison has to be

made between the age of the dereferenced value and f(Y). In most cases, this value

51

is younger than f(Y), so we just let it point to f and leave Y’s state unchanged, i.e.,

X serves as a selector. However, it is also possible that such a value is older than

f(Y). For example, consider the following program:

?- p(C)

p(A) q(A, f(Y)).
q(X, X).

Suppose that we have deduced the query p(C) to the current goal q(A, f(Y)), the final

pair of terms to be unified in solving the goal is the pair of f(Y) (caller’s argument)

and X (callee’s argument). Although X looks younger than f(Y), yet the actual

dereferenced value from X is a free value in C which is carried down by A and X,

and was created before f(Y). Thus, Y must be global. In this example, variable X

seems like a bridge to direct a constructor to a free value.

4.2 Variable Object Manipulation

The key issue in dealing with term objects is how to manipulate variable objects.

The strategy adopted in the inference engine is to let each variable object keep track

of its bindings and discard partial binding records as soon as they become useless.

To achieve this, each variable object must maintain a stack to store its own updating

records. In our implementation, fixed-size blocks of memory are allocated randomly

from a pool and linked together to form a cactus stack for a logical variable, and the

binding records stored in the stack are called values of the variable. In addition to

the normal push and pop operations, the stack provides a value accessing function

which returns a referred value in constant time.

52

1' &foo,0' I i _i

Legend:

atom func Ivar

I I

i I

I I

I I

Figure 4.1: A snapshot of term objects in execution

53

A variable value is defined by a triple: int gref, int Iref, and term* bnd, where

bnd is a pointer to the binding term, Iref and gref are integers for dereferencing

variables occurred inside the binding term. A value is a free value, if its bnd is a

null pointer. In fact, a value represents a term instance created in execution. As

the term instance may be a structure which involves other variables, these variables

must be further dereferenced by either Iref or gref according to the status of these

variables. For example. Figure 4.1 shows a possible snapshot of term objects in an

execution. Suppose that pg is a term pointer to function g, and we only use one

integer to dereference variables. We have the following term instances when different

dereferencing integers are passed to function print:

pg-^print(l): g(f(foo), bar);
pg-^print(2): g(f(foo), foo);
pg^print(3): g(f(g(f(foo), _Y)), f(foo));

where _Y stands for a free value of variable Y.

4.3 Term Object Unification

Unification plays a central role during the computation as far as term objects are

concerned. Term object unification is defined as public member functions in the

following classes. Note that the other two operations of dereference and binding are

also put in the term class and defined as virtual, so that all kinds of term objects are

processed uniformly;

54

term object

data:

int tag;

char+ name;

member functions:

constructor();

destructor();

virtual int unification(...);

virtual term* dereference(...);

virtual void binding(...);

argJist object

data:

link* last;

member functions:

constructor();

destructor();

int unification(...);

55

func object

data:

int vl, vr;

argJist +arglist;

member functions:

constructor();

destructor();

int unification(...);

Ivar object

data:

stack s;

/* auxiliary data */

member functions:

constructor();

destructor();

int unification(...);

term* dereference(...);

void binding(...);

/* stack operations */

56

In order to continue our discussion without too many control details, we assume

that both caller and callee have their own arguments objects created from the class

argJist A caller passes three parameters, ler, ger and arguments to invoke its callee,

where ler and ger are used for accessing terms in the caller’s arguments. On the

other side, the callee maintains two integer variables lee and gee for dereferencing its

own arguments. Both lee and gee are increased when the callee is invoked, however,

lee is decreased at the callee’s completion while gee is decreased upon backtracking.

The unification process starts by the statement:

callee —> arguments unify (lee, gee, ler, ger, caller arguments);

which will unify in turn each pair of terms in caller and callee’s arguments. The

function will return 1 if the unification succeeds, 0 otherwise.

Note that, in class term, the member functions for unification, dereference and

binding are declared as virtual functions. A virtual function passes through the

actual execution to its derived class at runtime, whereas an object of the derived class

invokes the operation. For example, whenever an atom object invokes unification,

then the actual code to be executed is described as follows:

enum {ATOM, INT, FUNG, VAR, SUCCESS, FAIL};

input:
int lee, int ger, int ler, int ger, term* ter;

output:

SUCCESS/FAIL;
algorithm:

begin
ter = ter—>^def(&ler,&ger);
if (this == ter)

return SUCCESS;

57

else if (ter—J'tag —= VAR)
begin

ter—>binding(lee, gee, 1);
return SUCCESS;

end
else

return FAIL;
end.

The last parameter in function binding indicates that the fer’s value should be

trailed. Trail is used to undo variable bindings on backtracking [War83].

In the case that a variable object invokes the unification, the operation is accom-

plished as follows:

• first, dereference the variable object; and deference the callee term object;

• if the variable object has no binding value, assign the callee term object to it;

otherwise, activate its binding object to invoke further unification.

4.4 AND/OR Network Search Strategy

Since the definition of the Horn class directly mirrors that of the Horn clause, the

control aspect is designed according to the operational semantics of Horn clauses and

does not rely on any specific Prolog program. The skeleton of some typical objects

are described as follows:

58

horn object

data:

/ + none * /

member functions:

virtual horn* try(...);

clause object (derived from horn)

data:

char* name;

horn* next;

argl+ arg;

member functions:

constructor();

destructor();

virtual horn+ try(...);

59

rule object (derived from clause)

data:

goal* first;

goal=t= last;

member functions:

constructor();

destructor();

horn* try(...);

goal object

data:

char* name;

horn* my_horn;

goal* next;

goal* prev;

argl* arg;

member functions:

constructor();

destructor();

goal* prove(...);

60

The major part of the inference engine consists of two member functions, try(...)

and prove(...)^ declared in the Horn class and the goal class, respectively. The core

code of these functions is shown below. Note that function try() is a virtual function

which can be invoked through the Horn pointer and is bound dynamically at runtime.

enum {FORWARD, BACKWARD}

/* to try if a Horn object can satisfy the goal */

Part I:

input:
goal* cler, ...

output:
HSUCC if succeed; return next choice or null if fails

algorithm:
begin

if (calLmode == FORWARD)
begin

if (arg && !arg—*unify(cler—>arg, ...)
return next;

g = first;
end

else
g = last;

/* exhaust and chain */
while (g != GSUCC && g != GFAIL) g = g^prove(...);

if (g == GSUCC)
begin

/* push a choice into choice_stack if */
/* necessary, possible a NULL */
return HSUCC;

end
else

begin

61

if (Inext) return 0;
call_mode = FORWARD;
return next;

end
end. { Part I }

/* to prove that a goal object succeeds */

Part II:

input:

• * • ?

output
next goal if current goal succeeds; otherwise previous goal;

algorithm:
begin

if (call_mode -= FORWARD)
h = myJiorn;

else
h = /* popped choice */

/* exhaust or chain */
while (h && h != HSUCC) h = h-^try(this, ...);

if (!h)
begin

callanode == BACKWARD;
return prev;

end
else

return next;
end. { Part II }

The search of an AND/OR graph is performed by the inference engine. A Horn

■ object succeeds if all its goal objects are proved. A goal object succeeds if one of

62

its matching Horn objects is successful. A global variable call-mode indicates the

execution state. It can be either FORWARD (computation) or BACKWARD (back-

tracking). A special Horn pointer, HSUCC, is returned when a call to a Horn object

succeeds. In forward execution, a choicestack must be maintained in case of failure.

A choice is a data object that saves information for possible backtracking. Differ-

ent from WAM and other conventional models, where a choice is pushed upon a

procedure call if the procedure has untried alternatives, a Horn object constructs a

choice based upon its successful completion as well as other factors collected in its

execution. Typical factors influencing the construction of a choice are the involve-

ment of cut, nondeterministic goals, and global variables in the course of execution.

Discussion of implementation details is beyond the scope of this thesis.

63

Chapter 5

OPTIMIZATION AND BUILT-IN

PREDICATES

The ef&ciency of a Prolog system can be greatly improved by applying different

optimization schemes. For example, in order to reduce the cost of backtracking,

more sophisticated strategies, such as “intelligent backtracking” [Bru78], “selective

backtracking” [PP82], have been proposed. The intelligent backtracking scheme

attempts to retain partial computations to avoid recomputing them in repetition.

The selective backtracking approach tries to analyze the cause of the failure and

backtracks directly to the nearest point where the computation would take a new

evaluation path. Sometimes it is possible to improve the performance when goals are

executed in generator-tester manner, such as the naive sort problem. A coroutining

optimization can be used in this situation: switching control between several active

objects. Another commonly used optimization is to remove tail recursion. It is a

technique of replacing the last recursive call with iteration. The purpose of this

chapter, however, is not intended to cover all of them, but to illustrate the potential

extensibility of our model to implement these schemes. One typical optimization,

the first parameter hashing method, will be discussed in detail.

Another subject concerned in this chapter is the method of implementing built-in

predicates. To achieve the expressive power of Prolog, some predicates, such as meta-

logical predicate, extra-logical predicates and system predicates [SS86] are usually

64

implemented in Prolog systems, even though they are out of the scope of first order

logic. Rather than performing unification, the meta-logical predicates check the

states of terms. One example of meta-logical predicates is var(Term) which tests if

Term is a free variable. The extra- logical predicates, such as read(...), write{...), etc.,

involve in I/O operations whose side effects can not be recovered by backtracking.

The system predicate is usually referred to cut which is used to reduce the searching

space in order to improve the efficiency of a program. Our model provides a uniform

interface to allow most of these built-in predicates to be implemented.

5.1 First Parameter Hashing Optimization

The proposed system provides the facilities to perform fundamental computation of

Horn clauses in terms of depth first search without screening unnecessary choices,

which tend to result in inefficiency. One way to improve the efficiency of the our

system is to eliminate those alternatives which can be checked out to be ununifiable

before runtime to form optimized OR-chains. This method is called the first param-

eter hashing optimization. The first-parameter hashing optimization is achieved by

looking at the type or the value of the first parameter of the current goal object and

hashing its call to a (partially) deterministic Horn object so that useless backtracking

is reduced.

A hash table is created for each optimized predicate, in which each slot maintains

one entry to a shortened OR chain. Some slots may be empty, and any goal which

is hashed into these slots for its OR chain knows that it has no choice to try and it

returns a failure immediately. Figure 5.1 illustrates one possible hash table for the

65

predicate position/2.

It is possible that several different first parameters are hashed onto the same value,

the situation known as hash collision. If a hash collision occurs, the Horn object

involved is appended into the corresponding OR chain, that is, collision resolution

by chaining. Sometimes, the first parameter of a Horn clause may be a variable.

It implies that the corresponding Horn object should be fit into each optimized

OR chain involved. Even though the optimized OR chains are created and can be

accessed through the hash tables, the original OR chain is still necessary when the

first parameter of the current goal is a variable.

The mechanism described above is implemented by introducing some new objects

in the object base and by defining the behaviours of these objects in the inference

engine accordingly, as shown in the Part I and Part II:

Part I:

/* introducing new objects in the object base */

stub objects: {
sb_obj_l: horn_l, next_l;
sb_obj_2: horn_2, next_2;
...}

hash table 1: {
entry_l: sb_obj_l;
entry _2: sb_obj_2;
...}

hash table 2: {
...}

66

Figure 5.1: An original OR chain and the hash table

67

root objects: {
rt_obj_l: hash_table_l, horn_l;
rt_obj_2: hash_table_2, horn_2;

Part II:

/* the definition of root object and stub object */

Root Object: (derived from horn)

date:

horn** hash-table;

horn* var.branch;

int hash-size;

member functions:

horn* try(goal*, ...);

68

Stub Object (derived from horn)

data:

horn+ my_clause;

horn* next;

member functions:

horn* try (goal*, ...);

/* specification for try{...) in stub object */

Input:
goal* cler, ... ;

Output:
/♦ return either an entry of the hash^table or the var_branch with respect
to the type or the value of the caller’s first parameter; */

algorithm:
begin

/* hash table operations */
end.

/* specification for in root object */

Input:
goal* cler, ... ;

Output:
HSUCC, or next choice;

algorithm:
begin

horn* h = my_clause—»try(cler,...);
if (h != HSUCC)

return next;

69

/+ modify the top choice if necessary */
return HSUCC;

end.

Two classes, root and stub, both derived from Horn, are used to form new objects

in the object base. A root object will be created if the first-parameter hashing method

is applied to a predicate - a set of Horn objects with the same head and arity. Entries

to these objects are attached to a set of stub objects whose entries are subsequently

attached to the root object as a hash table. The root object then serves as the

invocation point of the predicate, that is, it branches a call according to the type or

value of the first argument of the caller (goal). As a result, the OR chain pointer in

a goal object is replaced by the pointer to its root in such an optimization. The stub

class is used to form a shortened or-chain in which all attached Horn object entries

are hashed into the same slot of the hash table. Obviously, if the first argument of

the current goal is an unbound logic variable, then the var_branch will be used and

the execution thread is the same as without the optimization.

For example. Figure 5.2 shows the various objects and their linkage with respect

to the program:

parent (adam,pet).
parent (bob ,tim).
parent (bob ,mary).

The steps to execute the sample program with first-parameter hashing optimiza-

tion are summarized as follows:

1. goal issues a call to its root,

70

root

goal

d)

legend:

execution thread

link

Figure 5.2: An example of first-parameter hashing optimization

71

2. root returns a stub pointer found by hashing the first argument of goal,

3. goal thus invokes a call by referencing the returned pointer;

4. stub carries out a real invocation on behalf of goal,

5. horn returns the execution result;

6. stub returns a link leading to another (partially) deterministic branch when

the invocation fails or HSUCC if the invocation succeeds. In the latter case

stub object will modify the top choice on the choice-stack for indicating which

branch to try on backtracking.

5.2 Implementing Built-in Predicates

Most built-in predicates are treated as Horn objects in our model, even though they

are beyond the scope of the Horn clause. Although built-in predicates differ in their

functions, they are implemented through a uniform interface as follows:

• a data file, referred as a built-in predicate file, which provides information to

specify each built-in predicate, such as its name, arity and its corresponding

class name;

• the member function try(...), which defines the behaviour of individual built-in

predicate object.

Suppose that we are to implement meta-predicates, such as var, nonvar, integer,

etc. These predicates can be grouped into a single class _meta. The implementation

72

is achieved by two steps. First, for each of built-in predicates to be implemented,

it is necessary to put into the built-in predicate file a corresponding triple, z.e., the

name of built-in predicate, the number of its parameters and the class name in which

it will be defined, so that it can be recognized and processed appropriately by the

transformation program. For var, nonvar, integer,...^ the triples to be inserted can

be described in Table 5.1.

built-in predicate name number of parameter class name

var
nonvar
integer

_meta
_meta
_meta

Table 5.1: A Built-in Predicate File

The second step is to redefine the function with respect to the functionality

of predicates. For example:

_meta Object (derived from horn)

data:

member functions:

horn* try(goal*, ...);

/* specification for try{...) in _meta object */

73

Input:
goal* cler, ...

Output:

HSUCC if succeeds; otherwise return 0;
Algorithm:

begin
switch (*(cler—>name))

begin
case ’v’: /* return HSUCC if cler—>arg is an unbound var */
case ’n’: /* return HSUCC if cler—>arg is a ground term */
case ’i’: /* return HSUCC if cler—>arg is an integer */

default: return 0;

end
end.

After all procedures described above are done, a Prolog program with new built-in

predicates can now be executed under the Prolog system. As far as the transforma-

tion program is concerned, it read the built-in predicate file into a corresponding

built-in predicate table so that the new built-in predicates can be processed. The

built-in predicate table with above newly implemented predicates is shown in Ta-

ble 5.2.

74

Table 5.2; The Built-in Predicate Table

With the class names of new built-in predicates, the transformation program also

constitutes following code in the object base so that built-in objects can be referenced

and linked by corresponding goals.

_meta _p_meta;

-bp[] = {
&_pJs,
&_p_cut,
&_p_comp,
&_p_meta,

}; ”

A goal which is found to have a match in the built-in predicate table is processed

in the same way as other goals, except that it links to a built-in Horn object. For

example, in program:

75

relation(X,Y)
friend (X,Y),
var(X),

the goal object corresponding to var(X) has a linkage to -bp[2] which acts as its

matching Horn object.

With the interface, even some other special built-in predicates can also be put into

our proposed system in the same way. For example, the graphic-oriented debugging

operations can be implemented as a set of built-in predicates to provide a useful tool

for users.

76

Chapter 6

CONCLUSION

This thesis reveals a fairly origmal view of modelling Prolog which is suitable as

the framework to design and implement a large variety of optimization schemes and

other extensions. It differs from conventional models by simulating Horn clauses as

collaborating objects instead of mapping them into passive procedures. In particular,

the object-oriented model is integrated by the object base and inference engine. The

object base represents the components and logic relationships of a Prolog program

in terms of AND/OR graph. The transformation program has been developed to

generate the object base. The transformation program decomposes a Prolog pro-

gram into lexical elements such as atoms, functions, predicates, etc., which are then

represented by internal objects. The most important feature of this approach is that

the object base is generated only according to the relationships specified by the Pro-

log program. The inference engine, which is embedded in the object base, provides

the control details to make objects act in the same way as their corresponding com-

ponents in the Prolog program. It enables objects to perform unification and to do

backtracking as a computation encounters failure. One of the advantages is that the

inference engine classify local/global variables dynamically to achieve optimal use of

memory. The scheme of first parameter optimization is also discussed to show the

extensibility of the proposed system. Furthermore, an interface is implemented to

allow the proposed system to introduce new built-in predicates in a uniform manner.

An experimental object-oriented Prolog system, LU-Prolog, has been developed.

77

LU-Prolog consists of a transformation program and an executive system (inference

engine). The transformation program (about 2,000 lines of C++ code) converts a

given Prolog program into the object base, and the executive system (about 1,000

lines of C++ code) makes objects collaborate on a query and implements term

unification.

Several typical programs, such as queen_8, nrev_30, qsort_50, etc., were tested

under LU-Prolog system and some measurements are shown in Table 6.1. Times was

measured on a Sparcstation IPC without either counting system time or applying

optimization, such as tail recursion optimization or the first parameter hashing. LU-

Prolog runs twice as fast as C-Prolog for the same test programs.

Program Time(in sec.) variables Global var’s values

qsort_50 0.05 23 2036

queens _8 0.43 26 114

hanoi_12 0.91 0

nrev_30 0.08 10 1861

nrev_30 0.1 10 900

Table 6.1; Some measurements for TOS

In Table 6.1, the third column indicates the number of variables in each program,

the forth column shows the number of global variables recognized dynamically and

the final column gives the total number of values remained in stacks when the first

solution is found. The statistics show that the scheme has a significant effect on

the optimized use of memory by collecting the memory of local variables promptly.

For example, in Table 6.1, the difference between two nrev_30 programs is that the

78

second one has a in the program, therefore, more local variable values might

be discarded in execution.

The term object sharing (TOS) in our model tends to combine the advantages of

SS and NSS without any extra cost such as mode declaration or global flow analysis,

and it can be used in either compiler or interpreter implementations. Another ad-

vantage of TOS (not discussed in this thesis) is that infinite structures [Col82] can

be handled efficiently.

Although TOS reveals a promising term representation method, some aspects re-

quiring further discussion. For example, TOS treats lists as normal nested functions.

If a list involves N elements, then roughly 3N objects will be created (N element ob-

jects, N function objects and N argument list objects). Since list is a common and

frequently used data structure in Prolog programs, a special design of list class might

be necessary. Another problem deals with dynamic data - term objects created from

I/O. The unification process should be expanded to handle term object arrays and

dynamic term objects consistently. More programs need to be tested to compare the

memory utilization issue between LU-Prolog and the conventional Prolog programs.

Obviously, under the current running environment, the future work of this project

is to improve LU-Prolog with more optimization mechanisms, and to make further

comparison of the performance between LU-Prolog and other Prolog systems. Since

optimization schemes can usually have a dramatic impact on the efficiency of a Prolog

system, it is expected that LU-Prolog will be more competent in terms of its running

speed.

The object-oriented Prolog model broaches more topics for further investigation.

First, the transformation program can be implemented by Prolog itself, and thus it

79

goal answer

Figure 6.1; General architecture of object-oriented Prolog machine

can be integrated as the part of the Prolog system, known as meta-Prolog. Secondly,

the executive system should be extended to cope with dynamic objects created during

execution. Thirdly, as the inference engine constructs a choice upon completion

instead of invocation of a Horn object, we need more tests to see how such strategy

influences the execution performance. The next area of our research is to explore

the possibility of implementing the inference engine in an object-oriented hardware

framework. Figure 6.1 shows imaginary architecture of such a logic machine.

80

Another area worth further investigation is the development of a parallel Prolog

system based on the model presented in this study. Since components of Prolog

programs are all represented by self-contained objects, it tends to be much easier for

LU-Prolog to explore parallelism than any conventional Prolog system.

The work described here is still in its infancy. At present, LU-Prolog is not

efficient enough to compete with current commercial Prolog compilers, however, it

does provide a new and comprehensive methodology which may lead to the design of

a very efficient logic machine. The simplicity of the inference engine, as well as the

object approach to represent the components of Prolog programs, forms a substantial

basis to develop an object-oriented hardware which could finally dispel all the claim

to the inefficiency of Prolog systems. Moreover, the object-oriented hardware allows

the system to be driven solely by the logic relations with respect to the Prolog

programs involved, rather than driven by the flow of conventional instructions. This

may lead to a breakthrough away from reliance on a Von Neumann architecture.

81

Bibliography

[Apt92]

[Bee88]

[BM72]

[Bru76]

[Bru78]

[Bru82]

[Col82]

K. R. Apt. Why the occur-check is not a problem. In Proceedings of

Programming Language Implementation and Logic Programming, pages 69-

86. Springer-Verlag, 1992.

J. Beer. The occur-check problem revisited. The Journal of Logic Program-

ming, 5:243-261, 1988.

R. S. Boyer and J. S. Moore. The sharing of structure in theorem proving

programs. In Machine Intelligence 7 (B. Meltzer and D. Miche, eds.), pages

101-116. Edinburgh University Press, 1972.

M. Bruynooghe. An interpreter for predicate programs: Part 1. Technique

Report CW 16, Katholieke Universiteit Leuven, 1976.

M. Bruynooghe. Intelligent backtracking for an interpreter of horn clause

logic programs. In Mathematical Logic in Computer Science (Domolki, B.

and Gergely, T. eds.), pages 215-258. North-Holland, Amsterdam, 1978.

M. Bruynooghe. The memory management of prolog implementation. In

Logic Programming (Clark K. L. and Tarnlund S-A. eds.), pages 83-98.

Academic Press, 1982.

A. Cohnerauer. Prolog and infinite trees. In Logic Programming (Clark K.

L. and Tarnlund S-A. eds.), pages 45-66. Academic Press, 1982.

82

[Con87] J. S. Conery. Parallel execution of logic programs. KLUWER ACADEMIC

PUBLISHERS, 1987.

[HS84] S. Haridi and D. Sahlin. Efficient implementation of unification of cyclic

structures. In Implementations of Prolog (Campbell, J. A. ed.), pages 234-

249. Ellis Horwood Ltd., 1984.

[Kow79] R. Kowalski. Logic for Problem Solving. Elsevier North-Holland, Armster-

dam, 1979.

[Mel81] C. S. Mellish. Automatica generation of mode declarations in prolog pro-

grams. In Paper presented at Workshop on Logic Programming. Long

Beach, Los Angeles, 1981.

[Mel82] C. S. Mellish. An alternative to structure sharing in the implementation

of a prolog interpreter. In Logic Programming (Clark K. L. and Tarnlund

S-A. eds.), pages 99-106. Academic Press, 1982.

[Mel85] C.S. Mellish. Some global optimizations for a prolog compiler. Logic Pro-

gramming, 1:43-66, 1985.

[Nil71] N.J. Nilson. Problem-solving methods in AI. Standford Research Ins. Menlo

Park, California, 1971.

[Pla84] A. D. Plaisted. The occur-check problem in prolog. New Generation Com-

puting, 2:309-322, 1984.

[PP82] L. M. Pereira and A. Porto. Selective backtracking. In Logic Programming

(Clark K. L. and Tarnlund S-A. eds.), pages 107-114. Academic Press,

83

1982.

[RD92]

[Rob79]

[SS86]

[TS82]

[TW84]

[USL93]

[War77]

[War83]

P. V. Roy and A. M. Despain. High-performance logic programming with

the aquarius prolog compiler. IEEE Computer, 25(1), January 1992.

J. A. Robinson. Logic: Form and Function - the Mechanization of Deductive

Reasoning. North-Holland, Amsterdam, 1979.

L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

J.P. Tremblay and P.G. Sorenson. An implementation guide to compiler

writing. McGRAW-HILL BOOK COMPANY, 1982.

E. Tick and D.H.D. Warren. Towards pipeline prolog processor. New Gen-

eration Computer, 1984.

A. Keune U. Schreiweis and H. Langendorfer. A intergated prolog pro-

gramming environment. ACM SIGPLAN Notices, 28, 1993.

D. H. D. Warren. Logic programming and compiler writing. Technique

Report DAI 44, University of Edinburgh, 1977.

D. H. D. Warren. An abstract prolog instruction set. Technique report,

SRI International, AI Center, 1983.

84

