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Abstract

Flavopiridol reduces cyclin-dependent kinase activity by competitive inhibition 

with ATP by binding to the ATP-binding pocket o f these cell cycle regulators, thus 

competing with ATP binding and subsequent kinase activity. Flavopiridol also changes 

the expression levels of a wide array o f other proteins, and binds to DNA and acts to 

inhibit transcription at therapeutically relevant concentrations. Because it was initially 

thought to specifically inhibit cdks, it was thought that flavopiridol would be an excellent 

inhibitor o f cell proliferation and effective tumor suppressor. However, clinical trials 

have been notably disappointing as a single chemotherapeutic agent. In previous studies 

in this lab, we found that the proliferation inhibition of primary tumor cells treated with 

flavopiridol was independent o f any decrease in cdk2 activity. Cdk2 phosphorylates its 

target proteins during Gi and S phase transition, leading to initiation DNA replication. In 

this study, we examined the effects of flavopiridol on the cdk2 activity of cultured cell 

lines; MCF7, HeLa, DU145, Saos2 and HSF55. We found an upregulation of the cdk 

inhibitor p21^^ '̂'^^^^^ in flavopirido 1-treated MCF7, HeLa and HSF55 cells. This 

upregulation caused cdk2 kinase inhibition in flavopiridol-treated cell lines. Partial cdk2 

activity at the same concentrations was found in HeLa, DU145, HSF55 and Saos2 cell 

lines, while complete inhibition was found in MCF7 cells. Although apoptosis was not 

observed after a 24hr incubation period, the antiapoptotic protein Bcl-2 was 

downregulated. Our findings illustrate an alternate mechanism o f cdk2 inhibition in 

vitro, through upregulation, showing that drugs that were shown to have

specific activities when assayed using purified systems may have multiple in vivo
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activities and these activities may differ depending on the cells used. These different 

effects may contribute to the variable results seen in clinical trials.

Thesis Abbreviations

ALDH-l - Aldehyde dehydrogenase class 1
A rf - ADP-ribosylation factor
ATP - Adenosine triphosphate
B-CLL - Chronic B-cell leukemia
Bak - Bcl2-associated killer protein
Bax - Bcl2-antagonist x protein (proapoptotic)
Bcl-2 - B cell lymphoma leukemia 2 protein (antiapoptotic)
B c1-Xl - Bcl-2 family member X-large segment (antiapoptotic)
BSA - Bovine serum albumin
c-Abl - Abelson murine leukemia viral oncogene homolog
c-Myc - Oncogene of the MC29 avian myelocytomatosis virus
Caspase - Cysteinyl aspartate-specific protease
CAK - Cyclin-dependent kinase activating kinase
Cdc - Cell division cycle
Cdk - Cyclin-dependent kinase
Cipl - Cyclin-dependent kinase inhibiting/interacting proteinl
Cki - Cyclin-dependent kinase inhibitor
CTD - Carboxy-terminal domain
DDW - Double distilled water
DLT - Dose limiting toxicity
DMEM - Dulbecco’s modified Eagle’s medium
DMSO - Dimethyl sulfoxide
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DU145 - Prostate carcinoma cell line (isolated from brain metastasis)
E2F - Elongation factor 2
ECL - Enhanced chemiluminescence
EGFR - Epidermal growth factor receptor
erbB-2 - v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
ERK - Extracellular signal-regulated kinase
et al - And associates
Fas - Fas receptor (transmembrane protein)
FBS - Fetal bovine serum
Gi phase - Growth phase 1
Gi phase - Growth phase 2
HeLa - Henrietta Lacks -  Cervical cancer cell line
HIV - Human immunodeficiency virus
HMR - Hoechst Marion Roussel
HRP - Horseradish peroxidase
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- Insulin-like growth factor
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- Kinase inhibiting proteinl
- Mitotic phase (Mitosis)
- Mitogen-activated protein kinase
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- Myelin transcription factor 1
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- Protein kinase A
- Protein kinase C
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- Retinoblastoma susceptibility protein
- Positive transcription elongation factor b
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- RNA polymerase 11
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- Sodium dodecyl sulfate
- Tris buffered saline
- Tris buffered saline + tween20
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TNF - Tumor necrosis factor
TNFR - Tumor necrosis factor receptor
Tyr(Y) - Tyrosine
UBC - Ubiquitin carrier
VEGF - Vascular endothelial growth factor
W afl - Wild-type p53 activating fragment 1
wt - Wild-type
XIAP - X-linked inhibitor

Introduction

1. The Cell Cycle

Progression through the cell cycle involves a vast array o f proteins. When these 

proteins are working harmoniously, they facilitate the successful replication of a single 

cell into two daughter cells. As one can imagine, it takes an enormous amount of 

coordination to make sure all proliferation processes go smoothly and malfunctions are 

corrected in a timely manner.

1.1. Phases of the cell cycle

Due to the complexity o f the cell cycle, it has been broken down into separate 

phases, in order to methodize the numerous processes. There is a specific progression to 

these phases. Each phase contains a set o f events that needs to be completed before the 

succeeding one can be initiated. Typically, the cycle is presented as beginning upon the 

completion o f mitosis and the formation of new daughter cells. At Gi or the first growth 

phase, the cell begins the accumulation of material for cellular growth. In this stage, a 

multitude o f signalling pathways is activated to initiate the transcription factors and 

regulatory proteins necessary to promote cellular growth. DNA synthesis begins during
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s  phase upon accumulation o f enough cellular material in Gi. Once the genome has 

successfully been replicated, a second growth phase (G2) must be completed to amass the 

cellular content (ie organelles, proteins etc) necessary for two daughter cells before the 

onset of cell division. M phase (mitosis) then occurs and the cellular components are 

divided amongst the two new daughter cells that then begin the cycle anew (Figure 1).

Figure 1 - The cell cycle.
A representation showing the sequential progression of phases of a typical mammalian 
cell: first growth phase Gi following cytokinesis; DNA replication phase (S phase); 
second growth phase G2 ; Mitosis (M phase). Cytokinesis follows and Gi begins again.

The cell cycle processes are carried out in an orderly fashion. Specific 

mechanisms and checkpoints exist to ensure that each phase is completed before the 

subsequent one is initiated. One o f the principal regulators o f the cell cycle is the cyclin- 

dependent kinases (cdks). Cdks phosphorylate a variety of substrates to facilitate cell

10
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cycle progression. Leland Hartwell, Paul Nurse and Timothy Hunt share the 2001 Nobel 

Prize in Physiology or Medicine for their discovery o f these key cell cycle regulators in 

the 1980s, based on work that originated in the early 1970s. The genetics o f cell cycle 

regulation were initially done in two different strains of yeasts, the fission yeast 

Schizosaccharomyces pombe by Paul Nurse and the budding yeast Saccharomyces 

cerevisiae by Leland Hartwell, from which a number temperature-sensitive cell cycle 

mutants were isolated. These were referred to as cell division cycle (cdc) mutants and 

were given numbers to distinguish between the genes that were expected to have been 

affected (1). Paul Nurse's group transferred a human cDNA yeast expression library into 

one of these mutants, the S. pombe cdc2, and was able to rescue the defect. This human 

cDNA that complemented the cdc2 mutation was then identified to be a key kinase that 

functions in the G2 to M phase transition in mammalian cells. This work was followed 

closely by David Beach's group who used similar the Saccharomyces cerevisiae cell 

cycle mutant, cdc28, to identify the human homolog. Since the gene from the S. pombe 

was the first to be published, the mammalian homolog was referred to as the cdc2. This 

was the beginning of the explosion in research on cell cycle regulation. In both strains of 

yeasts, the cdc2/cdc28 functions at the G l/S  and the G2/M boundaries. In mammalian 

cells, this gene was first found to function only at the G2/M phase when microinjection of 

antibody to cdc2 arrested cells at the G2/M boundary (2). When the temperature-sensitive 

mutation in the mouse FT210 cell line was identified to be in the cdc2 gene product, it 

was used to demonstrate a sole function at G2/M (3). At that time, there was biochemical 

evidence that other cdc2-like kinases were present in mammalian cells and they may 

function at other phases of the cell cycle (4). Soon after, it was revealed by Hunt that

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



these molecules require binding by other proteins known as cyclins to become active.

The discovery o f related protein kinases with similar attributes and functions, all with a 

dependence on cyclin binding to become active, led to this family o f kinases to be aptly 

named cyclin-dependent kinases. The second mammalian cyclin-dependent kinase was 

later identified that have similarities to the cdc2, and this was named cdk2. Since then 

the cdk family has grown, with functions cell cycle progression to transcriptional control. 

Cdc2 has since been renamed cdkl, signifying its discovery as the initial cdk protein 

studied.

1.2 Cell cycle regulatory proteins -  The cdk/cyclin com plex

Cdk protein expression is constant throughout the cell cycle; however it is the 

cyclin proteins which fluctuate in concentration (5). Different cyclins bind specifically to 

certain cdks to initiate activation of kinase activity. The cdk/cyclin complex is also 

modified by other kinases and phosphatases and can be bound in an inhibitory manner by 

other molecules to prevent premature cdk activity. Phosphorylation is thought to cause 

physical changes in cdk protein structure to prevent the access o f ATP to the ATP 

binding site and facilitate access of substrates to the cdk substrate-binding site. Inhibitory 

molecules bind to the cdk/cyclin complex and physically block the substrate binding site 

or displace the cyclin, thus decreasing phosphorylating activity. When the inhibitory 

phosphate groups are removed by the corresponding phosphatases, the activated cdks are 

then able to phosphorylate their substrates to facilitate cell cycle progression. The 

cdk/cyclin pairing, and thus the targets of the complex, depends on the phase of the cycle 

that the cell is in (Figure 2)

12
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C d k l/C y c lin  A \  

C dk1/C yclin

C dk2/C yclin  A -

C d k 4 /C yclin  D 

C d k 6/C yclin  D

C d k 2/C yclin  E

Figure 2 - Cdk regulation of the cell cycle.
Cyclins become available to their perpetually present cdk counterparts during specific 
phases. Once the cdk activity is no longer required, the cyclins are targeted for 
degradation until that phase o f the cell cycle comes around again. Cdk2 is active for 
most of the cell cycle while bound to cyclin A or cyclin B.

Gi progression is controlled by the pairings o f cdk4/cyclin D1 and cdk6/cyclin 

D1. They work cooperatively to phosphorylate and subsequently activate the 

transcription factor family E2F (6). The E2F proteins then proceed to transcribe S phase 

genes (7-9). Cdk6/cyclin D1 contributes by activating the proliferating cell nuclear 

antigen (PCNA), which is required for DNA replication (6; 10). The cyclin D-associated 

cdks indirectly assist in Gi/S phase transition by sequestering cdk inhibitors, such as 

p27* îpi and p21^^^'''"'P\ preventing binding o f these molecules to the complex consisting 

of cdk2/cyclin E (11).

13
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The cdk2/cyclin E complex is essential to the GfrS phase transition (6; 11). As 

is the case with all cdks, cdk2 is phosphorylated at threonine 160 to activate and at 

threonine 14 and tyro sine 15 to inhibit its activity. Cdk2 is bound by cyclin and is 

phosphorylated in an inhibitory manner by the kinase W eel in a sequence independent 

manner (12). This inactivation occurs at mitosis and is maintained into early Gi. Cyclin 

E binds to cdk2 and as the cell progresses through mid-Gi and nears the conclusion o f Gi, 

the complex is activated through phosphorylation by the cdk-activating kinase (cak) 

complex, consisting of cdk? and cyclin H and by dephosphorylation, phosphatases 

cdc25A and cdc25B remove the phosphates added by W eel (Figure 3) (6). Cdk2/cyclin 

E serves to phosphorylate DNA polymerase a , the retinoblastoma susceptibility protein 

(Rb), RNA reductase (responsible for DNA synthesis and repair) and activates PCNA (6). 

These processes enable the cell to enter S phase and begin DNA replication. Cdk2/cyclin 

E also phosphorylates and subsequently causes the ubiquitin-mediated degradation o f cdk 

inhibitors, such as p27 (13;14). A decrease in p27^'^* levels facilitates cdk activity.

  1   e.M .> _____ __

P.Y15 I fryclîiî

lodkẑ
p .v is  P.Y15 M 1 6 0  p - t ie o

Figure 3 - Cdk2 activation pathway.
Cyclin binding promotes a conformational change in the cdk2 structure to initiate 
activation. Inhibitory phosphorylation o f the Tyr'^ residue by weel prevents activation. 
This phosphate group is later cleaved by the phosphatase cdc25 to initiate cdk2 activity. 
The cak molecule phosphorylates cdk2 at the Thr’ ®̂ residue to promote its activation 
(12).

14
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s  phase progression is facilitated by cdk2/cyclin A. Cyclin A is upregulated 

shortly after the upregulation o f cyclin E. Once cyclin A associates with cdk2, the 

cdk2/cyclin A complex is activated through phosphorylation by cak and 

dephosphorylation by cdc25A and cdc25B, the active complex then begins to 

phosphorylate its specific substrates (8; 15). One such substrate is the 34 kDa subunit o f 

replication protein A (REA p34) responsible for binding to single stranded DNA to 

prevent DNA replication (6; 16). Rb-related proteins (p i07 and p i 30) are also targets for 

cdk2/cyclin A (10;17). P107 and p l30  bind to and inhibit the E2F family o f transcription 

factors (17). Following the phosphorylation of these proteins by cdk2/cyclin A, their 

dissociation from E2F allows direct phosphorylation of E2F proteins by cdk2/cyclin A to 

occur (7; 18). This modification results in the prevention of DNA binding and 

transcription by the E2F family proteins, consequently instigating the termination of S 

phase (Figure 4). Through late GI and into S phase, the cdk2 kinase also phosphorylates 

histone HI (19-21). This phosphorylation increases in the amount of histone H I that gets 

phosphorylated, and also in the number o f phosphates added to each molecule o f histone 

H I.

15
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Exit S Phase

Figure 4 - Cdk2 activity in phase transition.
Cdk2/cyclin E hyperphosphorylates pRb, which releases the E2F transcription factors to 
initiate transcription o f S phase genes. Cyclin A is upregulated and after binding to cdk2 
and becoming activated in S phase, this complex phosphorylates its target proteins. E2F 
proteins are a target o f cdk2/cyclin A to begin the termination o f DNA replication and S 
phase.

The second growth phase, G2, follows the completion of DNA replication. In 

Gi the cell must become substantial enough to support the processes o f the potential two 

daughter cells. When enough material (e.g. organelles, proteins etc.) has accumulated to 

support viability of both daughter cells, cdkl is activated in much the same way as cdk2 

and mitosis begins. Cdkl/cyclin A triggers the degradation o f the nuclear membrane by 

phosphorylation o f the nuclear lamins (22). Soon after the upregulation o f cyclin A, 

cyclin B levels are upregulated to bind with cdkl and assist in the progression of mitosis.

16
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Cdkl/cyclin B is responsible for the direct hyperphosphorylation of histone HI and the 

activation of topoisomerase II which are required for chromosome condensation during 

prophase and segregation (6;10;23;24). Finally, cdkl activity stabilizes microtubule 

formation and facilitates the segregation o f chromosomes during early anaphase (10;25- 

27). After the completion o f telophase and the degradation o f G2/M phase cyclins, 

phosphatase activity promotes the formation o f two nuclei around the chromosomes. The 

binucleated cell can then undergo cytokinesis and the daughter cells enter the subsequent 

Gi to wait for the signal to initiate the cell cycle once again.

Other members o f the family of cdks (cdk 5, 7, 8, 9) are not involved in cell 

cycle progression directly, but serve to regulate the activity o f other cdks and also act as 

transcription regulators (28-30). The cdk2 was initially identified by the PSTAIR motif 

that is shared with cdkl and later members were identified by their association with 

cyclins. Cdk5 is activated by associating with p35 as cells exit the cell cycle and 

differentiate into neurons (31). Cdk7 and cyclin H form the cdk-activating kinase (cak) 

complex which phosphorylates other cdks. Cdk9 binds with cyclin T to form the positive 

transcription elongation factor b (P-TEFb), which is responsible for phosphorylating a 

number of targets, including the C-terminal domain (CTD) of RNA polymerase II (pol II) 

(29;30). Cdk8/cyclin C also phosphorylates RNA pol II. Without this modification, it is 

observed that RNA pol II cannot polyadenylate mRNA tails properly after transcription 

leading to instability and subsequent degradation (29).

17
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1.3 Regulation o f cdk activity by proteins

1.3.1 By cyclin availability

Cdk molecules are found at constant levels throughout the cell cycle, so it is the 

oscillating nature of the cyclin proteins that dictates when each cdk/cyclin complex will 

become active and carry out its respective responsibilities. The production of each cyclin 

protein is controlled by numerous transcriptional regulators to ensure that they are only 

available to their complimentary cdks at the appropriate times. The downregulation of 

cyclins is initiated by phosphorylation and ultimately caused by ubiquitin-mediated 

proteolysis and the cyclin molecules are tagged for degradation by a variety of regulatory 

proteins depending on the cyclin to be degraded (27;32). The degradation of cyclin B at 

the end of mitosis is guided by the ubiquitin carrier protein (UBC) E2-C (33). E2-C 

facilitates the ubiquitination of cyclin B by the cyclin-specific ubiquitin ligase E3-C 

which is part of the larger cyclosome protein that is activated by cdc2 kinase.

Degradation of cyclin B is then carried out by the 26S proteasome complex. Cyclin E 

degradation is mediated through cdk2 and glycogen synthase kinase 3 phosphorylation of 

the cyclins’ serine72, threonine372, threonine380 and serine384 residues which 

facilitates binding of the ubiquitin ligase, (34). When cyclin E is not bound to

cdk2, target residues are accessible for ubiquitination by the Cullin-3 (Cul-3) ubiquitin 

ligase.

1.3.2 By protein inhibitors

The KIP/CIP family of ckis mainly inhibit cdk2/cyclin complexes by physically 

binding to the entire complex, preventing its activity (8; 10; 11 ;35). These proteins can 

also inhibit cdkl complexes, but to a lesser extent (8;10). The proteins in this family are
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p21 W AFl/CIPl _ n n K I P l,p27^"'^ andp57'^P^. p21 W AFl/CIPl is a transcriptional product of p53 and has

been found to not only inhibit cdk2, but also PCNA which halts DNA replication. In 

contrast, p27^^^ prevents cak-activation o f cdk2 (10). O f all the ckis, p57^'^^ is the only 

one required for embryonic development (36). Loss of p57^'^^ function results in the 

abnormal development o f several tissues within the embryo. These inhibitory proteins 

also promote cyclin D-associated cdk (cdk4 and cdk6) activity, presumably to ensure Gi 

phase completion before the phase transition can commence (Figure 5) (11).

Figure 5 -  Crystalline structure of p27 binding to the cdk2/cyclin A complex.
p 2 ]̂ wan/cipi p27’‘'P’ bind both cyclin and cdk molecules. Inhibition is due to the 
prohibition of ATP binding in the catalytic cleft o f the cdk2 enzyme (37).
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The INK family, p i p l 5 ' " ' " ^ \  plS'"""^', p l9 ’"‘̂ ‘̂̂ and pl4"^, inhibit cyclin D- 

associated cdks by competing with cyclin D for binding with the cdk (10;11). 

was the first of this family to be examined and due to its effects on cdk4/cdk6. Rb is no 

longer phosphorylated and subsequently sequesters E2F transcription factors once again 

to provide Gi arrest (10).

1.3.3 Summary

The elaborate mechanisms required to regulate the cell cycle are central to 

maintaining timely cell cycle progression. Many safety features are present to keep these 

cell cycle regulators active or inactive throughout each phase. Cyclins are tightly 

regulated by transcription and degradation factors. Cdks are controlled by a multitude o f 

activating and deactivating phosphorylation and dephosphorylation steps. Ckis are 

present to prevent inopportune cdk activation. Other measures are in place to counter any 

aberrant protein function. However, even with all o f these cellular safeguards, things can 

still go awry. When this occurs, cells can begin to divide faster with an abbreviated Gi, 

enter mitosis without adequate DNA replication, or cause superfluous DNA replication 

leading to polyploidy, among a host of other possibilities, which may lead to tumor 

development.

1.4 Apoptosis

Apoptosis is the cellular process o f undergoing programmed cell death. 

Apoptosis is initiated when a cell cannot effectively and efficiently repair a malfunction 

in the cellular machinery. The main tumor suppressor gene o f mammalian cells is the 

transcription factor p53. It is responsible for promoting cell cycle arrest or, if  the
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deviation cannot be remedied, instigating apoptosis. Cell cycle arrest and apoptosis is 

performed through numerous pathways. The activation o f p53 is a part of many of these 

pathways. In a normal cell, p53 mRNA is always present with a very long half-life and a 

high turnover of translated p53 protein, keeping it at a very low intracellular level 

(28;38). P53 is prevented from becoming activated by Mdm-2, which binds to its acidic 

domain, translocates it from the nucleus and tags it for ubiquitin-mediated degradation 

(39;40). Upregulation, stabilization and activation o f p53 is carried out by a variety of 

proteins, the majority of which are activated by DNA damage or malady. For example, 

the proliferation-promoting protein c-Myc upregulates transcription and enhances 

stabilization of p53, while c-Abl binds to, and enhances the transcriptional ability of p53 

(40).

Activation of p53 leads to the upregulation o f other proteins that promote a 

number of outcomes, including cell cycle arrest, apoptosis and autoregulation ofp53.

The latter of these outcomes is realized in the upregulation of Mdm-2 by p53 for the 

function of inhibiting its own actions as it becomes no longer required (40). Cell cycle 

arrest can occur by the p53-mediated upregulation of ckis such as p21^^^^^^^^^ and 

p2 7 KiPî  the transcription factor inhibitor Rb, 14-3-3o which serves to inhibit the cdkl 

phosphatase activator cdc25C and the inhibitory kinase W eel. Downregulation o f PCNA 

by p53, through which DNA polymerase 5 and cyclin D1 production is are reduced, as 

well as an increase in the growth suppressor gene Gadd45, along with a host o f other 

mechanisms will also lead to cell cycle arrest (40).

Finally, if  the repair mechanisms cannot adequately mend the DNA, apoptosis 

can be initiated by p53. The Bcl-2 apoptosis regulatory family form heterodimers to
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create aproapoptotic/antiapoptotic equilibrium in normally functioning cells (Bcl-2 and 

M cl-l are antiapoptotic, while Bax is proapoptotic). This equilibrium is influenced in 

favor of apoptotic protein expression in response to p53 activity (40). For apoptosis to 

occur, an upregulation of proapoptotic genes, combined with a downregulation o f 

antiapoptotic genes initiates cell death. This imbalance in Bcl-2 family proteins results in 

cytochrome c release, which in turn activates the caspase-mediated apoptosis cascade. 

Various stimuli have been found to prevent apoptosis in favor o f cell cycle arrest, such as 

the X-linked inhibitor of apoptosis (XIAP), which serves to inhibit caspase activity to 

abort apoptosis (Figure 6) (41).
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Figure 6 -  p53 activity cascade.
Activation o f the transcription factor p53 is caused by DNA damage, which initiates 
mdm2 degradation. Activation of p53 leads to a variety of cell cycle arrest pathways, 
transcriptional inhibition and even apoptosis. The KfP/ClP family o f ckis are 
upregulated in an attempt to cease activation of DNA replicating genes and facilitate 
inhibition of cdk function. The E2F family o f transcription factors are inhibited by the 
newly formed functional pRb. Apoptosis is initiated through the upregulation of 
proapoptotic factors such as Bax.

1.5 D evelopm ent o f cancer

The manifestation o f a tumorigenic cell can be described using the analogy of 

an out of control automobile. Loss o f cell cycle regulation, combined with the inability 

to promote apoptosis is similar to a car without brakes that has also lost the ability to 

steer, so not only is the car unable to stop but it cannot steer to avoid injuring surrounding 

motorists. Such is the case with a tumorigenic cell. The cell has lost the ability to
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maintain control o f cellular proliferation as well as the capacity to avoid overall damage 

to the host organism by inducing apoptosis.

A potential tumor begins with the loss o f cell cycle regulatory protein function 

within a single cell. An exceptionally large number o f stimuli are able to initiate cancer 

growth, from the foods we eat, to the molecules in the air we breathe, to the sunlight that 

shines on our faces. If the stimulus has the ability to damage DNA, it has the potential to 

mutate key cell growth regulatory genes such as p53, or pRb and thus

initiate the first step in promoting unchecked cell proliferation. The p53 protein was one 

of the first tumor suppressors identified, and has been referred to as the “Cellular 

Gatekeeper” and “Guardian of the Genome” (42). The majority o f human cancers are 

found to be p53-deficient and it is the mutations to this crucial safeguard protein, or 

induced irregularities that enhance degradation o f p53 that can prove to be consequential 

to the host cell as it continues to proliferate without its safety net. In the majority of 

instances, cells are successful in arresting growth and repairing damaged DNA, but only 

one unsuccessful repair o f a critical gene is required to initiate the process of 

tumorigenesis. This can then lead to other mutations within the cell that promotes 

proliferation, eventually resulting in a mature cancer. If DNA cannot be repaired, the cell 

commits apoptosis in order to protect the host organism (42). Loss of p53 function can 

have grave repercussions to an organism due to the inability of a cell to effectively 

initiate apoptosis if  the need arises. Once these mutations are established and goes 

unrepaired, the cell is able to proliferate and form a tumor. Other mutations during this 

growth can occur due to loss of fidelity in DNA replication, truncated or superfluous 

genome duplication. Any cell in the body, which is capable o f replicating, is capable of
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becoming a tumor as long as the unrepaired mutations prevent cell cycle arrest and 

apoptosis.

The novel unchecked cell now quickly divides and forms a tumor in the case of 

tissues, as opposed to hematopoietic cells that float freely in the blood or collect in the 

bone marrow. The cells within the tumor are also subjected to various mutational stimuli 

by outside sources and by internal errors caused by incorrect DNA duplication. Once 

again, a lot of these mutations are effectively corrected, although to a lesser extent than in 

cells with growth arresting capabilities. The tumor will continue to grow until other 

mutations occur that enables cells to degrade the basement membrane which acts as a 

barrier to its growth (43). One such mutation includes an increased ability to secrete 

matrix metalloproteinases (MMPs). Metastasis is the newfound ability o f tumor cells to 

spread throughout the body. During metastasis, cells will become lodged in capillaries in 

various parts of the body. Once the cells adhere to their new location, they begin to break 

down the basement membrane of the surrounding tissue and initiate invasion o f that 

tissue.

There are many different types o f cancers. The cell type dictates what type of 

cancer will result. Hematopoietic cells lead to development o f lymphomas and leukemia, 

while epithelial cells result in carcinomas and sarcomas. Nerve cells and other terminally 

differentiated cells (meaning they no longer proliferate) rarely become cancerous, 

although they can undergo dysfunctional apoptotic pathways that result in an increase in 

apoptosis. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, 

and dementia with Lewy bodies are a result of increased caspase-mediated apoptosis in
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nerve cells (44). The number o f diseases o f this nature is small, relative to the number of 

cases of cancer found each year.

Although cancers arise as a result of mutations in genes that lead to the loss of 

regulation of cell growth, these mutations have to occur in particular parts o f a large 

genomic sequence (45). Most mutations in the body are inconsequential to the organism 

since about 90% of the human genome does not have any known functions and other 

mutations are silent. It should also be emphasized that mutations are a normal process of 

nature and are essential for human evolution when coupled with natural selection.

2. Chem otherapy

2.1 Development of modern chemotherapeuties

Chemotherapeutics have been used for thousands o f years in an effort to inhibit 

the spread of cancer. All of the earlier agents were plant-derived, as are a substantial 

number of modem medicines. Certain types of ginseng (Alpinia officinarum) and red 

clover {Trifolium pratense) were among the earliest plants used to treat various types of 

cancers (46). It was during the 1960's that nitrogen mustards, derivatives of the active 

agent of mustard gas used in WWI, became the first modem day cancer therapeutics due 

to their gene expression inhibition properties (47). Many of today’s chemotherapeutics, 

such as taxol and etoposide are semisynthetic agents isolated from plant products. Some 

plants use poisons to deter animals and insects from eating them and it is these agents that 

scientists isolate and use to poison cancer cells. Modifications to these drugs are made to 

make them more soluble, less readily metabolized or adopt other features that increase 

their efficacy to cancers.
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2.2 Flavopiridol

2.2.1 History of Flavopiridol

In the early-mid 1980s, a group of chemicals known as flavonoids was 

investigated for their kinase inhibitory activity. The bioflavonoid quercetin was studied 

by Graziani et al in 1983 to determine the mechanism of its kinase inhibition (48). In an 

effort to treat rheumatic diseases, Naik et al o f the Centre for Basic Research o f Hoechst 

India Limited attempted to isolate natural compounds from Dysoxylum binectariferum, a 

plant indigenous to India (49). The compound being analyzed was an alkaloid called (+)- 

cfr-5,7-dihydroxy-2-methyl-8-[4-(3-hydroxy-l-methyl)-piperidinyl]-4H-l-benzopyran-4- 

one that was isolated from the stem bark o f Dysoxylum binectariferum via methanol 

extraction and was discovered to make up 0.9% of the dry weight o f the plant (6;49). 

Upon isolation and analysis o f the extraction product, it was found that it is structurally 

related to Rohitukine, an alkaloid found in another species, Amoora rohituka (Figure 7) 

(6;49). Rohitukine and a variety of related compounds were screened for epidermal 

growth factor receptor (EGFR) kinase and protein kinase A (PKA) inhibition as well as 

cytotoxicity in certain tumor cell lines by Sedlacek et al of Hoechst Marion Roussel 

(HMR) in Germany in 1989 (6;50;51). As a result o f these trials, a compound was 

discovered that had high cytotoxicity in relation to its low IC50 on xenografted human 

tumors onto nu/nu mice (6 ). This compound was (-)-cA-2-(2-chlorophenyl-5,7- 

dihydroxy-8-[4-(3-hydroxy-l-methyl)-piperidinyl]-4H-l-benzopyran-4-one 

hydrochloride (flavopiridol, L8 6  8275, HL275, NSC 649890) and was targeted for further 

testing (Figure 7)
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Figure 7 -  The structure of chemotherapeutic agents rohitukine and flavopiridol.
Large similarities exist between the two chemicals as flavopiridol is a derivative of 
rohitukine. A methyl group o f rohitukine is replaced by the chlorinated benzene ring of 
flavopiridiol.

Testing involved its kinase inhibitory effects compared to other flavonoids 

(quercetin and genistein) as carried out by Kaur and his associates at the National Cancer 

Institute (NCI) in Bethesda, Maryland in collaboration with HMR in Germany and 

Hoescht India Limited in 1992 (52). The results showed that flavopiridol inhibits cell 

growth of the breast carcinoma cell line MDA-MB-468 by a factor o f 60 and 400 times 

more than quercetin and genistein respectively, as measured via the colorimetric MTT 

cell viability assay (6;52). These results were verified by Czech et al in 1995 (53). In 

1993 and 1994, Worland and Losiewicz, respectively, measured flavopiridol’s effects on 

cdkl activity in MDA-MB-468 cells. They found that flavopiridol’s inhibition o f this 

chief cdk was more than 250 times more effective than quercetin or genistein and 

interferes with the activating phosphorylation o f cdkl (54;55). These experiments 

stimulated interest in flavopiridol’s cell cycle influence. Further work over the past
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decade has attempted to unravel the details of the mechanisms of action of flavopiridol. 

These effects range from binding to DNA (56), various cdks (8;15;57-61), cyclin 

regulation (15;62;63) and apoptotic regulatory protein expression (7;15;64-69).

2.2.2 Structure of Flavopiridol

Flavopiridol directly competes with ATP for its binding site o f the cdks 

(6;58;62;70-73). In its natural state, cdk2 possesses a structure known as the t-loop that 

physically impedes ATP binding to its catalytic cleft (74). Conformational changes in 

response to cyclin binding causes the t-loop to move away from the catalytic cleft and the 

phosphorylated tyrosine 15 residue moves to take its place and block access to the ATP- 

binding site. The phosphatase cdc25 then dephosphorylates this residue, exposing a site 

suitable for ATP binding (74). Binding of cyclin to cdk2 also causes the threonine 160 

residue to extend out, presumably for easier access by cak (74).

Sedlacek’s and his associates’ screening of a number of derivatives of 

Rohitukine resulted in the consensus that flavopiridol is the most active in inducing 

cytotoxicity and inhibiting protein kinases of murine and human tumor cell lines (6). 

Other derivatives with slightly altered chemical structures show nearly the same activity. 

A substitution o f the chlorophenyl group with an ethyl or propyl group displays a 36-fold 

decrease in kinase inhibition (58). Removal o f the chlorine from the phenyl group 

(compound L868276), results in a 10-fold decrease in potency (6). Also, it is the (-)cis 

isomer that proves to be the most potent enantiomer of flavopiridol (6).

To determine how flavopiridol binds to cdk2, de Azevedo Jr. et al (1996) at the 

University o f California, Berkeley, determined the x-ray structure o f its deschlorophenyl
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derivative L868276 in complex with cdk2 and compared it to the binding of ATP to cdk2 

as determined by De Bondt et al (58;75). The results concluded that L868276 orients 

itself to cdk2 in the catalytic cleft in a manner similar to ATP binding (58). The binding 

o f L868276 to cdk2 consists o f hydrophobic interactions, hydrogen bonding and van der 

Waals forces and the average difference in distance between the cdk2/ATP complex’s C“ 

atoms in comparison to cdk2/L868276’s C“ atoms is 0.46Â (not including the most 

highly flexible regions, residues 36-47 and 150-164) (58). The benzopyran ring of 

L868276 was found to occupy essentially the same space in the catalytic cleft as the 

purine ring of ATP, although there is a slight rotational difference in the same plane (60°) 

(58). De Azevedo Jr. et al discovered that L868276 possesses 56 contact points with 

cdk2 compared to ATP’s 79 contacts although L868276 makes more hydrophobic and 

van der Waals contacts with its benzopyran ring (34 contacts) than ATP does with its 

adenine ring (26 contacts) (58). L868276 displays 5 of the hydrogen bonds identified in 

the ATP interaction with cdk2 (58). Seven van der Waals interactions were between the 

piperidinyl ring o f L868276 and cdk2 in addition to the 10 van der Waals contacts with 

the phenyl ring (58).

It is these 10 van der Waals contacts by the phenyl ring that are hypothesized to 

make L868276 (and thus flavopiridol) specific to cdks, as these interactions take place 

just outside of the ATP binding pocket and although these residues are conserved across 

cdks, they are not found in other kinases such as PKA (58). These contacts outside the 

pocket are due to the 60° rotation of the inhibitory molecule (58). The difference 

between L868276 and L868275 (flavopiridol) lies in the chlorinated phenyl ring of 

flavopiridol, which increases the inhibition of cdks by a factor o f  6-10 (15;58). This is
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assumed to be due to the additional contacts made by the chlorine atom (58). These 

additional contacts made outside the ATP binding pocket may increase flavopiridol’s 

specificity to cdks compared to L868276 (Figures 8,9).

0 5

Figure 8 -  Flavopiridol’s structural similarity to ATP.
Flavopiridol is outlined in black. ATP is outlined in grey. Flavopiridol and ATP posses 
similar ring structures with a positional rotation o f 60° (58).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aLl2

a L I 4

Figure 9 - Crystallography of cdk2 binding by flavopiridol.
Flavopiridol takes the position inside the ATP binding pocket of cdk2, preventing cdk2 
from carrying out its kinase activities (58).

2.2.3 Action of Flavopiridol in vitro

Flavopiridol’s effects on cell cycle components have been extensively studied 

over the past decade and a half. Initially identified as an inhibitor o f the protein kinases 

EGFR and PKA, many other functions have since been revealed, most notably its 

propensity to inhibit the critical cell cycle protein family of cdks. The cytotoxicity of
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flavopiridol has also been an early distinction o f this chemotherapeutic drug. Since then, 

flavopiridol has been identified as affecting cyclin regulation, Bcl-2 family proteins, 

DNA, transcription regulation and a variety o f other kinases.

The 1990s - One of the initial experiments performed on flavopiridol was by 

Kaur et al o f the NCI. From their experiments they concluded that flavopiridol reversibly 

inhibits cell growth at multiple stages o f the cell cycle. Flavopiridol’s cdk inhibition was 

found to be far greater than that o f fellow cdk inhibitors, quercetin or genistein (52). 

Kaur’s associate at the NCI, Worland et al, published an article a year later in 1993 on 

the effect of flavopiridol on the phosphorylation of c d k l. They theorized that 

flavopiridol interferes with the phosphorylation o f cdkl and thus inhibits its activity and 

subsequently arrests cellular activity in G] (55).

The following year (1994), another member of the NCI team in Bethesda, 

Losiewicz published a paper with other main contributors on the direct effect of 

flavopiridol on cd k l. The main contribution o f this article was the observation that 

flavopiridol directly competes with ATP for cdkl binding at the concentration range of 

100-400nM (54). The NCI soon after began phase I clinical trials, headed up by 

Senderowicz.

Meanwhile in Germany in 1995, the associates of the original founders of 

flavopiridol, Czech and Sedlacek o f the Research Laboratories o f Behringwerke AG were 

continued their studies and published a report detailing the effects of flavopiridol on 

tumor growth, LGFR tyrosine kinase and PKA in various xenografted tumors (53). 

Flavopiridol was found to be a potent inhibitor o f both LGFR tyrosine kinase and PKA in 

the micromolar range, while displaying a high antiproliferative effect in vivo.
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Xenografted tumors o f the lung, colon, breast and ovary were xenotransplanted onto 

nu/nu CDl mice and results showed that the growth of these tumors was significantly 

inhibited by flavopiridol treatment.

In 1996, de Azevedo Jr. et al illustrated the precise orientation of flavopiridol 

binding to cdk2 via x-ray crystallography and discovered that it is very similar to ATP 

binding (58). This same year saw Bible and Kaufmann o f the Mayo Medical School in 

Minnesota describe flavopiridol’s ability to induce apoptosis in noncycling cells (76). 

They also suggested that RNA and protein synthesis is the main causes o f its cytotoxicity 

(76). Back at the NCI, Carlson et al were studying the Gi arresting abilities of 

flavopiridol. They observed the inhibition of cdk4 and cdk2 as well as a decrease in Rb 

phosphorylation prior to G% arrest (57). They also noted the significant decrease in cyclin 

D1 levels, the gradual decrease in cyclin E and A and the lack o f change in cdk2 or cdk4 

levels in MCF7 and MDA-MB-468 breast carcinoma cells in response to flavopiridol 

(57).

Konig et al o f the Memorial Sloan-Kettering Cancer Center (MS-KCC) in New 

York City were the first researchers to suggest that flavopiridol contributes to 

downregulation in protein and mRNA levels o f the antiapoptotic protein Bcl-2 in chronic 

B-cell leukemia cells (B-CLL) (67). The level o f Bcl-2 protein in B-CLL cells is 

typically relatively high (67). In contrast Byrd et al o f the Walter Reed Army Medical 

Center in Washington DC and Parker at the NCI found that flavopiridol induces caspase- 

mediated apoptosis in chronic lymphocytic leukemia cells without affecting Bcl-2 levels 

(65;72). Byrd et al also determined that apoptosis is induced independently o f p53 (65).
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More research out of the NCI showed a decline in cyclin D l, Rb and p i 07 in esophageal 

cancer cells treated with flavopiridol (63).

University o f Chicago-based Chien et al determined the effects o f flavopiridol 

on urothelial cell lines with defective p53, Rb and pl6 . He found that after 24 hours o f 

treatment, all cells arrested at the Ga/M phase transition (77). Motwani et al o f the MS- 

KCC demonstrated a synergistic effect o f flavopiridol when co-administered with 

paclitaxel, a drug that induces mitotic arrest, with respect to induction of apoptosis 

(59;78). These results also suggested that these synergistic effects only occur if 

flavopiridol is utilised for treatment after paclitaxel, to treat the cells and not given for 

treatment before paclitaxel (59;78). An interesting observation by Schnier et al of the 

University of California, Davis, showed that flavopiridol bound well to aldehyde 

dehydrogenase class I (ALDH-1) molecules and thus cells with high ALDH-I may show 

increased resistance to flavopiridol cytotoxicity (79). Verification of Carlson’s 

observation that flavopiridol decreases the amount of cyclin D l in MCF7 cells was made 

in 1999. He supplemented this data with observations that cyclin D l protein and mRNA 

levels decrease within 6 hours of initial treatment (using 300nM flavopiridol) followed by 

a decline in cyclin D3 levels but no change in cyclin D2 levels (62). Shapiro et al of the 

Dana-Farber Cancer Institute at Harvard Medical School found that flavopiridol causes 

an increase in p53 protein levels in A549 cells although the apoptosis that is induced, is 

p53-independent, as A549 cells possess mutated p53 (80).

2000 - A molecule implicated in the metastasis of breast cancer is c-erbB-2, has 

been found to be significantly downregulated in flavopiridol-treated breast cancer cell 

lines by Li et al o f the Wayne State University School of Medicine in Detroit (81). It was
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also found that flavopiridol modestly reduces the levels of Bcl-2 and increases the levels 

o f Bax in the same cells (81). O f note in this paper, it was suggested that flavopiridol 

inhibits the secretion of MMPs, subsequent metastatic invasion and therefore may inhibit 

metastasis of breast cancer cells (81). Later in 2000, Li et al demonstrated the 

downregulation o f Bcl-2 in prostate cancer cells by flavopiridol and it was suggested that 

this may be the mechanism for flavopiridol-induced apoptosis (82). However,

Achenbach et al of the Institute o f Molecular Biology and Tumor Research in Marburg, 

Germany showed that apoptosis is independent o f Bcl-2 downregulation. Their paper 

proposed that there are multiple flavopiridol-induced mechanisms to promote caspase- 

mediated apoptosis through caspase 8 activation, and that this apoptotic pathway is 

largely independent o f Bcl-2 presence in human lung carcinoma cells (64). Kitada et al 

o f the M.D. Anderson Cancer Center in Houston discussed the effects o f flavopiridol on 

B-CLL samples. They found that flavopiridol decreases levels o f antiapoptotic factors 

M cl-l and XIAP in nearly all samples and Bcl-2 in approximately half of the 49 B-CLL 

samples analyzed (66). LlavopiridoTs cdk inhibiting effects were being explored in 

neurodegenerative research. Its cdk inhibiting properties were being tested in murine 

nerve cells for the prevention of apoptosis in stroke victims, thereby reducing the damage 

done during the stroke (83;84). They proposed that overactive cdk kinases are at least 

partially responsible for neuronal cell death during a stroke and this damage was reduced 

upon treatment with flavopiridol 24hr after reperfusion (resumption of blood flow). 

Motwani et al demonstrated the formation of chromosome abnormalities as the result of 

flavopiridol treatment of MDA-MB-468 cells treated with the microtubule inhibitor 

paclitaxel. Their results illustrated a preferential initiation of apoptosis in these polyploid

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cells as a result o f flavopiridol treatment and also prevents further reduplication of 

cellular DNA (59). It was proposed by Bible et al that flavopiridol’s cytotoxicity in 

noncycling cells is due to its ability to bind to DNA in A549 human lung cancer cells 

(56).

Figure 10 - Flavopiridol binding to DNA - Expanded view.
Flavopiridol takes up residence in the minor groove of double stranded DNA (56).
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Figure 11 - Flavopiridol binding of DNA - Hydrogen bonding.
A closer view o f flavopiridol forming hydrogen bonds with DNA bases (56).

2001 - Using DNA microarrays, Lam and associates from the NCI in 2001 

found that flavopiridol inhibits the expression of a broad range o f genes, similar to those 

obtained with some transcription inhibitors (85). This was verified by the work of Price 

at the University o f Iowa, who found that 3nM of flavopiridol inhibits the activity of P- 

TLFb. This level o f flavopiridol is a lower concentration than is necessary to inhibit most 

other cdks, other than cdk9/cyclin T and implies some role for flavopiridol in 

transcription inhibition (86). A link between transcriptional inhibition and HIV 

proliferation was made as well. The HIV protein Tat requires P-TLFb to increase the 

activity of RNA pol II in order for the virus to transcribe its viral mRNAs (86). Li et al 

o f the MS-KCC in New York City observed in an experiment with the Rb deficient cell
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line Saos2 that flavopiridol (lOOnM) induces expression of and inhibition of

cdk2, but was not observed in Rb-restored Saos2 transformed cell lines (70). They found 

that the levels o f Bc1-Xl, Bax, cyclin D l, cyclin A, and cdk2 are not affected by 

flavopiridol in either Rb-deficient or -restored cell lines (70). Li et al also demonstrated 

the synergistic effect of flavopiridol and doxorubicin (70). Pepper o f Llandough Hospital 

in Birmingham in the UK illustrated the effects o f flavopiridol on some Bcl-2 family 

proteins in B-CLL. Pepper et al observed that flavopiridol (5-lOOnM) decreased the 

expression of Bcl-2 and M cl-l while there was no change in Bax expression (68).

2002 - In 2002, Matranga and Shapiro o f the Harvard Medical School analyzed 

the enhanced flavopiridol-induced apoptosis of NCI-H661 non-small cell lung cancer 

cells arrested in early S phase by hydroxyurea (71). In addition, they illustrated the 

synergistic cytotoxic effects o f pretreatment with gemcitabine or cisplatin (71). Gojo et 

al of the University o f Maryland demonstrated that flavopiridol decreased the levels of 

M cl-l protein and mRNA and increased inhibition of RNA polymerase phosphorylation 

(87). They also showed that M cl-l played an important role in flavopiridol-induced 

apoptosis o f multiple myeloma cells (87). During this time, caspase-mediated apoptosis 

o f human leukemia cells via the synergistic effects o f treatment with flavopiridol and the 

histone deacetylase inhibitor, suberoylanilide hydroxamic acid were researched by 

Almenara et al of the Virginia Commonwealth University in Richmond (69). 

Blagosklonny, at the Brander Cancer Research Institute at the New York Medical 

College discovered an interesting paradox regarding an increase in p53 accompanied by a 

decrease in upon flavopiridol treatment (88). It was this downregulation that
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he purported was the reason for flavopiridol’s protection of p21-sensitive cells from 

paclitaxel (88).

2003 - In January 2003, M a et al o f the H. Lee Moffitt Cancer Center and 

Research Institute in Tampa, Florida detailed the apoptotic effects o f flavopiridol on 

H1299 lung carcinoma cells with respect to L2F1 and M cl-l levels. They discovered that 

in these cells, apoptosis was mainly, but not entirely, reliant on an increase in L2FI and a 

decrease in M cl-l proteins observed after treatment with 200nM flavopiridol for 12 hours 

(7). Pepper et al illustrated their results demonstrating a relationship between the 

apoptotic cell death o f B-CLL and activation o f p38 MAP kinase and partial inhibition of 

LRK activity (89). Litz et al, colleagues o f Almenara, at the Virginia Commonwealth 

University, found flavopiridol induces mitosis preferentially in small cell lung cancer 

cells that are pretreated with aphidicolin and consequently these cells were arrested in 

Gi/S transition (90). They also suggested a connection between flavopiridol treatment 

and mitochondrial dysfunction (90). Jiang et al o f the Harvard Medical School echoed 

the observation that flavopiridol preferentially caused apoptosis in cells during S phase 

(18). They suggested that this was a direct result o f flavopiridol’s inhibition of 

cdk2/cyclin A and the resultant inability to phosphorylate L2F1 in an inhibitory manner 

in late S phase (18). Without a downregulation of L2F1 activity, M cl-l transcription 

continued to be inhibited thus decreasing the overall concentration o f antiapoptotic 

proteins (18).

2004 - Lntering the year 2004, researchers had begun to broaden the scope of 

research examined with flavopiridol. Due to flavopiridol’s apparent downregulation of 

antiapoptotic proteins such as M cl-l, Bcl-2, cyclin D l and vascular endothelial growth
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factor (VEGF), Takada and Aggarwal o f The University of Texas in Houston examined 

flavopiridoFs effect on NF-kB, a nuclear transcription factor that regulates these proteins 

(91). They found that flavopiridol suppressed the ability o f tumor necrosis factor (TNF) 

to activate NF-kB in under 6 hours at a lOOnM concentration (91). They suggested it was 

this effect that contributed to flavopiridoFs anti-inflammatory effect and its ability to 

alter the immune response and affect cellular growth (91). Another colleague of 

Almenara at the Virginia Commonwealth University, Rosato, illustrated the effects of 

flavopiridol in conjunction with sodium butyrate. Rosato et al reported that flavopiridol 

countered the upregulation of by sodium butyrate (92). In 2004, they

published a paper further examining this phenomenon. This effect was demonstrated in 

Jurkat cells and it was suggested that this interference of p21 '̂^^^ '̂^^^ upregulation led to 

mitochondrial damage and caspase-mediated apoptosis (93). Sato et al from the Juntendo 

University School of Medicine in Tokyo, Japan provided data supporting the use of 

flavopiridol, in low doses (<lnM ), as a radiation sensitizer and showed a modest decrease 

in Bcl-2 levels in an esophageal squamous cell carcinoma cell line (KE4) at the 

surprisingly low concentration o f 50pM (94).

Recent Developments - In the most recent months, the emphasis of study on 

flavopiridol has shifted to transcription inhibition. Because so many cell cycle proteins 

and mRNAs have been found to be downregulated upon flavopiridol treatment, a closer 

look at its effect on transcription factors was being elucidated. Blagosklonny, who had 

previously observed the unexpected inverse regulation of p53 and with

flavopiridol treatment, attributed it to a global transcriptional inhibition (28). In a review 

article published in December of 2004, he proposed that the potency of flavopiridoFs
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transcriptional inhibition was a major component o f its influence on cellular processes. It 

is through Mdm2 transcription inhibition that p53 was activated, which in turn, 

upregulated p21^^^'''^^\ However at 200-400nM flavopiridol, transcription

was inhibited as well, causing the contrasting results in protein levels (28). At lower 

doses (50nM-100nM), was upregulated (95), which may have been due to

p53 activation having a stronger influence than the inhibition of transcription

by flavopiridol (28;95).

Other fields have also found uses for flavopiridol. Virologists have suggested 

that flavopiridol may play a role in viral replication inhibition due to some viruses’ 

reliance on cdk activity (96-98). Flavopiridol is being researched as a plausible treatment 

for viruses like HIV-1, HSV-1, adenoviruses, papillomaviruses and any other virus that 

rely on cdks or cellular division (97). In a recent publication (2005), flavopiridol was 

been implicated in a possible treatment for Alzheimer’s and Parkinson’s diseases, and 

amyotrophic lateral sclerosis due to the diseases’ reliance on cdk activity resulting in 

nerve cell apoptosis (99). Even though the original and still centrally intended 

application o f flavopiridol is cancer, its pleiotropic effects are being evaluated for 

treatment in other diseases.

2.2.4 Predinical Trials

The majority o f predinical trials consist of treatments o f xenografted tumors on 

murine animals and beagle dogs. Infusional and bolus treatments o f flavopiridol showed 

promising results. Flavopiridol is effectively glucuronidated in the liver and efficiently 

excreted (100). The mean total body plasma clearance of murine animals is
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approximately 22.6 mL/min/kg (100). In beagle dogs that received 72 hour continuous 

infusion of flavopiridol, it was shown that the dose-limiting toxicity (DLT) is diarrhea 

with a maximally tolerated dose (MTD) of 26 mg/m^/day (100). Pharmacokinetic studies 

on humans showed that the plasma serum level could be maintained at concentrations o f 

300-400nM, but its clearance can vary by up to 10-fold between individuals (101). 

Predinical trials also demonstrated flavopiridol’s efficacy in prostate cell xenografts 

(102).

2.2.5 Clinical Trials

The study of chemotherapeutic agents in clinical trials is imperative to the 

advancement o f knowledge o f a potential cancer therapy. A novel therapeutic agent is 

ready for clinical trials once it has demonstrated promise in combating tumor 

development and shows an acceptable toxicity in animals. The initial stage of clinical 

trials is phase I. These studies consist o f a small number of patients being treated with 

the experimental drug to determine any side effects, to identify a safe dosage range and 

an effective delivery method. Phase II differs from phase I trials in that a larger and 

homogeneous group of patients is used to further evaluate side effects of the drug and to 

determine the safe dosing. Finally, phase III studies are then developed to verify the 

agent’s effectiveness compared to other establised chemotherapeutic agents and to collect 

data from the larger group size to identify the proper doses to be used, as well as the 

avoidance, or treatments, o f potential side effects.

Flavopiridol was introduced into phase I clinical trials in 1997 by the NCI. As 

expected, the DLT in humans who are given a 72 hour continuous infusion of
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flavopiridol is diarrhea (103;104). Chloride secretion induced by flavopiridol was 

observed to occur in epithelial cells in vitro and this was suggested to be the cause o f the 

gastrointestinal side effect (100). It was determined using human liver microsomes that 

flavopiridol could be metabolized into glucuronides and that this metabolism was 

inversely proportional to the incidence o f diarrhea, thus inferring that breakdown of 

flavopiridol in the liver prevents increased toxicity in the intestines (104). Anti diuretics 

(cholestyramine and loperamide) were given prophylactically to patients receiving 

infusional flavopiridol and the MTD increases from 62.5 to 78mg/m^/day x 3 (103). 

Cholestyramine has been found to bind to flavopiridol, preventing toxic action in the 

intestines (103; 104). This association was a possible explanation for the increased 

clearance o f flavopiridol with use o f diarrhetics (101). A wide range o f clearance rates 

was found in patients treated with flavopiridol, from 50mL/min to 3000mL/min (101). 

The precise mechanism responsible for diarrhea may involve flavopiridol’s interactions 

with various endogenous secretagogues (e.g. acetylcholine or bile acids) (105). Some 

other side effects which occurred with flavopiridol treatment were neutropenia (decrease 

in white blood cells), nausea, vomiting, hypotension (low blood pressure) and 

proinflammatory syndrome (fatigue, fever, and localized tumor pain) (100;106). The 

proinflammatory syndrome may be explained by the induction o f the cytokine IL-6 by 

flavopiridol (100; 107).

Plasma concentrations observed in patients treated with 50mg/m^/day x3 or 

higher were in the 300-500nM range, which is well within the range of flavopiridol 

activity (100). Attempts to recover flavopiridol from human plasma within 48 hours 

occurred with a success rate of 85-87% (108).
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Phase II trials were begun in 1999 with similar results. One study involving 

metastatic gastric cancer showed that patients treated with 50 mg/m^/day for 72 hours o f 

continuous infusion every 2 weeks develop an unexpected high incidence o f vascular 

thrombosis (blot clotting in blood vessels) and fatigue with little inhibitory action on the 

primary tumor (109). An additional study with metastatic hormone-refractory prostate 

cancer concluded that flavopiridol had little effect at the schedule o f 60 mg/m^/day in a 

72 hour continuous infusion every 14 days (110). These disappointing results led to the 

attempts of combining flavopiridol with other chemotherapeutic agents during treatment. 

This combination therapy has proven to be fruitful, as synergistic effects between 

flavopiridol and paclifaxel and various signal transducfion inhibitors were observed (111- 

113). Combined therapy with flavopiridol also has the potential advantage of 

overcoming resistance o f some cell lines to flavopiridol (107; 114-116).

2.3 Other chem otherapeutics used in these experim ents

The two drugs used in these experiments to give contrasting effects to flavopiridol 

were staurosporine and sodium bufyrate. Staurosporine and its analog UCN-OI (7 

hydroxystaurosporine) are small molecule, general protein kinase inhibitors that act 

directly on protein kinase C (PKC) as well as cdks and other kinases (68;88;95;117). It 

has also been illustrated that staurosporine upregulates p27^^', while UCN-01 

upregulates and p27™ \ which is necessary for cell cycle arrest in some

tissue cultured cells (67). The upregulation of p21^'^^'^'^^^ in these cells is regulated by 

the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 

pathway (67). Staurosporine was reported to selectively arrest normal cells at Gi
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(118;119). This arrest was not seen in transformed cells, indicating an alteration in a Gi 

checkpoint. Early trials o f staurosporine in cancer treatments were not successful when it 

was shown to depress blood pressure.

Sodium butyrate is a short chain fatty acid, histone deacetylase (HDAC) inhibitor, 

known to promote apoptosis and cellular differentiation (120). The precise mechanism of 

apoptosis initiated by butyrate treatment is yet unknown, but has been shown to alter the 

expression levels of apoptotic genes. Butyrate also upregulates viap53

independent means (121). This is the mechanism in which we are most interested in as 

the mechanism of upregulation has not been fully elucidated. Butyrate is a

short-chain fatty acid that is produced in the colon as a natural fermentation product of a 

high-fibre diet and has been suggested to be protective against colorectal cancers (122- 

124). Variations of butyrate with a longer half-life in the body are being tested for its use 

as anticancer agent. There was one report that phenylbutyrate successfully treated a 

patient with leukemia that was resistant to conventional chemotherapy (125). Currently, 

several novel HDAC-inhibitors are undergoing clinical trials.

Inhibitors of cdk molecules have been found to be proficient at inducing cell cycle 

arrest due to the integral roles of their kinase activities in cell cycle checkpoint regulation 

and this is why researchers have attempted to isolate and modify cdk-inhibitory 

compounds in a search for novel cancer treatments. Scientists have found a promising 

target in cdks and hope to manufacture a drug which inhibits cells undergoing 

unregulated growth and induces apoptosis in tumor cells. Drugs that promote cell cycle 

arrest and apoptosis through inhibition of kinase molecules in general promise to be a 

good place to start enhancing our knowledge of what would make an ideal cancer
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therapeutic agent. A kinase-inhibiting drug which also induces apoptosis has been found 

in flavopiridol, but it also has many other observed effects. Currently, its various 

mechanisms of action continue to be extensively researched in an effort to determine how 

to effectively use flavopiridol and to utilize the information for future potential 

chemotherapeutic agents.

3. Summary

Flavopiridol is a novel cdk inhibitor currently participating in phase III clinical 

trials. Flavopiridol has been found to be an inhibitor of many kinases but preferentially 

inhibits cdks at lower concentrations due to the partial binding outside o f the ATP 

binding pocket of cdks. Binding inside this catalytic cleft is remarkably similar to the 

hydrogen bonds and van der Waals forces exhibited by ATP binding. Cdk inhibition is 

mainly responsible for the caspase-mediated apoptosis and cell cycle arrest of cells 

treated with flavopiridol although it is noted that its broad activity makes this drug a 

broad-spectrum chemotherapeutic agent.

Flavopiridol has been observed to promote apoptosis in treated cells. This 

could be a result of a variety o f pathways. The change in the ratio o f expression of 

multiple proteins o f the Bcl-2 family such as a decrease in anti-apoptotic proteins M cl-l, 

BcI-Xl and Bcl-2 and an increase in the pro-apoptotic protein Bax, may be one such 

pathway, thus promoting apoptosis. There has been some controversy regarding the 

apparent downregulation of Bcl-2 in cells treated with flavopiridol. There have been a 

number of studies that illustrate no change in Bcl-2 protein levels in some B-CLL 

samples while most transformed cell lines show a dramatic decrease in Bcl-2. Another
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antiapoptotic protein, XIAP, has been found to be downregulated in a number o f cell 

lines. It has been suggested that apoptosis is a result o f an extended activation period o f 

E2F1 as a result of the inhibition o f cdk2/cyclin A. DNA is also a target of flavopiridol 

and although no direct damage or topoisomerase upregulation has been observed. In 

contrast, it has been observed in recent studies that this pathway is not vital for 

flavopiridol-mediated apoptosis.

Transcription factors other than the E2F family have been demonstrated as a 

target for flavopiridol. The activation of NF-kB, the nuclear transcription factor that 

regulates M cl-l, Bcl-2, cyclin D l and VEGF has been found to be suppressed, so it is no 

surprise that a downregulation of these downstream proteins has been observed. Also, 

the inhibition of P-TEFb by flavopiridol has been shown to hinder the transcription 

process. A decrease in VEGF could be a reason for the antiangiogenic effect o f 

flavopiridol.

Flavopiridol may also contribute to the prevention of metastatic activity. 

Flavopiridol has been shown to significantly decrease the expression o f MMPs and c- 

erbB-2, which are proteins implicated in breast cancer metastasis.

The effects o f flavopiridol have not been as promising after analysis as a single 

agent in clinical trials. It has been suggested that flavopiridol would be more beneficial 

as a supplementary chemotherapeutic agent, used as a treatment after another agent, 

specifically a signal transduction inhibitor or a Gi/S transition inhibitor. Achievable 

concentrations in vivo are more than adequate for the activity of flavopiridol and levels in 

plasma can be accurately measured above lOnM. The DLT has been found to be diarrhea
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but can be alleviated with antidiuretics. Other side effects include fatigue, neutropenia, 

nausea, hypotension and fever.

It is all these factors that make flavopiridol a promising drug for use as a 

chemotherapeutic agent. Further research is needed to elucidate additional mechanisms 

of action and to clarify mechanisms already discovered. The research community needs 

to determine the exact method of growth inhibition in m ammalian cells as a result of 

flavopiridol and whether it is through cdk inhibition or an alternate pathway.

4. Objectives

Previous experiments in our lab showed primary cancer cells that had 

undergone cell cycle arrest with flavopiridol, did not demonstrate inhibition of cdk2 

activity. Other labs showed flavopiridol induced apoptosis in noncycling cells. 

Flavopiridol also has been observed to upregulate Flavopiridol clearly

elicits effects other than cdk inhibition and so the exact mechanism of cell cycle arrest in 

vitro and in vivo remains unclear and led to this study. The purpose of this study is to 

determine if cdk2 inhibition in cultured cell lines via flavopiridol is through direct kinase 

inhibition, or through inhibition at clinically achievable concentrations.

Cdk2 is being studied due to the strong inhibitory effect o f on this particular

kinase. Presence of bound to the cdk2/cyclin complex was analyzed to

determine if  this could be the means o f cdk2 inhibition in the cultured cells. The level o f 

p 2 l''^AFi/ciPi tben compared to the level o f cdk2 activity to determine if  there may be 

a link between the two upon treatment with flavopiridol. Cdk2 activity was examined in 

cells versus immunoprecipitated cdk2, both treated with flavopiridol. By contrasting
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these kinase activities, the role o fp 2 1 ^AFi/ciPi flavopiridol-mediated cdk2 inhibition in 

these tissue cultured cell lines was analyzed.

5. Hypothesis

Our hypothesis is that flavopiridol’s primary mechanism of action to promote 

cell cycle arrest is not through direct inhibition of the cdks governing cell cycle 

progression but through other means, such as upregulation of the cdk inhibitor

p21 W A Fl/C IPl

Materials & Methods

Buffers & Solutions

Various

ATV(10X)(1L)

ATV (IX) (IL)

MTT (5mg/mL) (40mL)

SOgNaCl
4.0g KCl 
1 Og Glucose 
S.SgNaHCOs
2g Na2EDTA
Fill up to IL  with Double Distilled Water (DDW) 
Autoclave

lOOmL ATV lOX 
900mL DDW 
Autoclave

0.2g MTT 
40mL DDW 
Syringe Filter
Store at 4°C and protected from light
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Nuclei Buffer (NB) (lOOmL)
8.6g Sucrose (0.25M)
I.16gNaCl (0.2M)
ImL IM  Tris-HCl pH 8.0 (lOmM) 
0.2mL lM M gCl2(2m M )
O.lmL IM  CaCl2 (ImM)
4mL 25% TritonX-lOO (1%)
Fill up to lOOmL with DDW 
Store at 4°C

Phosphate Buffered Saline (PBS) (lOX) pH 7.4 (IL)
SOgNaCl 
2gKCl 
2g KH2PO4

II .5 g N a 2 H P 0 4 -2 H 2 0  
Fill up to IL with DDW

PBS (IX) (IL) lOOmL lOX PBS
900mL DDW

Kinase Buffer (ImL) SOmM Tris (pH 7.4)
2mM MgCli
ImM DTT (dithiothreitol) 
lOOmMNaCl 
O.OSmM ATP 
395pL DDW

Kinase Reaction Buffer (ImL)
SOmM Tris (pH 7.4)
2mM MgCh
ImM DTT (dithiothreitol) 
lOOmM NaCl 
O.OSmM ATP 
lOOnM calyculin A 
O.lpg/pL HI histone 
O.OSpCi/pL ofy-32p_ATP 
360pL DDW

Propidium Iodide (PI) (SOmL)
SOmL IX PBS
SOpg/mL RNAse
SOpL o f Smg/mL stock PI
Makes Spg/mL solution
Keep at 4°C and protected from light
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W estern Blotting

10% Ammonium Persulfate (APS) (ImL)
lOOmg Ammonium Persulfate 
ImL DDW

Coomassie Blue Stain (IL) 0.3g Coomassie Blue
lOOmL Glacial Acetic Acid 
500mL 95% Ethanol 
400mL DDW
Stir for about 30 minutes and filter with filter paper

Coumeric Acid (90mM) (lOmL)
0.15g Coumeric Acid 
lOmL Dimethylsulfoxide 
Store at -80°C

Destain (IE) lOOmL Glacial Acetic Acid
200mL 95% Ethanol 
700mL DDW

Enhanced Chemiluminescence Solutions
Solution #1 (20mL) 2mL l.OM pH 8.5 Tris-HCl

12pL 30% H2O2

Fill up to 20mL with DDW

Solution #2 (20mL) 2mL l.OM pH 8.5 Tris-HCl
88pL 90mM Coumeric Acid 
200pL 250mM Luminol 
Fill up to 20mL with DDW

Luminol (3-aminophthalydrazide) (250mM) (lOmL)
0.44g Luminol
ImL Dimethylsulfoxide
Store at -80°C

Running Buffer (lOX) (IL) 144g Glycine
30.3g Tris Base 
50mL 10% SDS 
Fill up to IL  with DDW

Running Buffer (IX) (IL) 1 OOmL 1 OX Running Buffer
900mL DDW
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Separating Gel (12% acrylamide) (-lOniL)
4.35mL DDW
2.5mL 1.5M pH 8.8 Tris-HCl 
3mL 40% Acrylamide 
lOOpL 10% SDS 
5pL TEMED
50pL 10% Ammonium Persulfate

Stacking Gel (4% acrylamide) (~5mL)
3.18mL DDW
1.26mL 0.5M pH 6.8 Tris-HCl 
0.5mL 40% Acrylamide 
50pL 10% SDS 
5pL TEMED
25 pL 10% Ammonium Persulfate

10% Sodium Dodecyl Sulfate (SDS) (IL)
lOOg Sodium Dodecyl Sulfate 
Fill up to IL  with DDW

2X SDS Sample Buffer (50mL)
1.2mg Bromophenol Blue 
8mL IM  Tris-HCl pH 6.8 
5mL Glycerol 
20mL 10% SDS 
ImL P-mercaptoethanol 
16mL DDW

IX SDS Sample Buffer (50mL)
25mL 2X SDS Sample Buffer 
25mL DDW

Transfer Buffer (lOX) (IL) 144g Glycine
30.3g Tris Base
Fill up to IL  with DDW
Store at 4°C

Transfer Buffer (IX) (IL) 1 OOmL 1 OX Transfer Buffer
200mL Methanol 
VOOmL DDW 
Store at 4°C

Tris Buffered Saline (TBS) (lOX) pH 7.5 (IL)
30.3g Tris Base 
87.6gNaCl
Fill up to IL with DDW
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IX Tris Buffered Saline with Tween 20 (TBST) (IL)
lOOmL lOX TBS 
900mL DDW
ImL Polyoxyethylene sorbitan monolaurate (Tween 20)

Tris Buffered Saline with Tween 20 and 5% Milk (TBSTM) (40mL)
40mL 0.1% TBST 
2.0g Condensed Milk

Tris Buffered Saline with Tween 20 and 8% Milk (TBSTM) (40mL)
40mL 0.1% TBST 
3.2g Condensed Milk

Tris-HCl Buffers 1.5M pH 8.8
l.OM pH 8.5
0.5M pH 6.8
Mix Tris Base in DDW and pH with HCl

Cultured Cell Lines

Many malfunctions can occur in the machinery o f the cell cycle and these 

aberrations can lead to tumorigenesis. Inhibition of p53 magnifies the consequences of 

abnormalities in cell cycle regulatory proteins such as the cyclins, cdks and their 

inhibitors. Mutations in p53 are very common in tumor development. This is apparent in 

irt vivo tumors as well as the tissue cultured cell lines used in research laboratories. 

Although in vitro cells do not display the exact characteristics as in vivo, analyses of 

these cell lines are the most convenient way to determine cell cycle processes in 

abnormal cells as well as assessing methods of treatment with various chemotherapeutic 

agents. In these experiments, we use a variety of cell lines with different cell cycle 

protein deficiencies.
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The MCF7 cell line is an adenocarcinoma isolated from the breast of a 69yr old 

Caucasian female. MCF7 cells have a doubling time o f 29hrs as listed by the American 

Type Culture Collection (ATCC). MCF7 cells are known to have functional p53, 

p2 iWAFi/ciPî  Bc1-2, Bax, XIAP cyclin E, cdk2 and pRb (57;126-128). They also possess 

a hypertriploid to hypotetraploid genome with approximately 82 chromosomes.

HeLa cells were derived from an aggressive adenocarcinoma o f the cervix 

isolated from a 31yr old black woman more than 50yrs ago. This cell line was the first 

continuous cancer cell line available for research. HeLa cells contain functional 

pTl’̂ AFi/ciPi  ̂cyclin A, cyclin E, pRb and p53, however an overexpressed E6 protein 

causes rapid inhibition and degradation o f p53, allowing damage to DNA to go 

unchecked (129).

The metastatic prostate carcinoma cell line, DU145, was isolated from the brain 

metastasis of a 69yr old Caucasian male. This hypotriploid (almost 3 full sets of 

chromosomes) cell line has wild-type XIAP and E2FI. The tumor

suppressor gene p53 is functional but suppressed by overexpression o f mdm2 (130).

The Saos2 osteosarcoma cell line was isolated from an l ly r  old Caucasian 

female. These cells are also hypotriploid, and has over 2/3 of chromosomes structurally 

rearranged. Saos2 cells contain no viable p53 gene and also have a defective pRb 

(17;129).

Normal human skin fibroblasts (HSF55) were used as a control cell line. These 

cells were isolated from the foreskin o f a fetus and have a limited life span after the onset 

of senescence. As the cells progress during this life span, a retardation o f growth rate 

begins at higher passage numbers (number o f times in which the cells pass through the
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cell cycle) which is a sign o f the initiation o f senescence. These cells possess normal cell 

cycle protein expression and function. These cells also possess the distinct characteristic 

of contact inhibition, which most immortal cell lines do not possess. The cancer cell 

lines in this study do not possess this trait. Normal fihrohlast cells receive signalling 

stimuli to promote growth arrest upon sensing physical contact from neighboring cells. 

Cancer cells often lack this inhibition and some cell lines display altered protein 

expression upon contluency o f a culture dish.

We used the differences in protein function o f these cell lines as a focus in our 

attempt to elucidate the mechanism of cdk2 inhibition by flavopiridol. To assist us in 

determining these effects, other chemotherapeutics with known mechanisms were used as 

a comparison. These drugs enable us to get a clearer picture as to the overall effect of 

flavopiridol in our tissue cultured cell lines.

Cell Culture

A variety of human cultured cell lines from different tissues were used in these 

experiments. HSF55 cells, human skin fibroblasts, were used as a control. HeLa 

(cervical cancer), MCF7 (breast cancer), Saos2 (osteosarcoma) and DU145 (prostate 

cancer) cell lines were used for their differences in cell cycle protein expression (HSF55, 

HeLa and MCF7 cell lines were generously donated by Dr. John Th’ng and Saos2 and 

DU145 cell lines were generously donated by Dr. Helga Duivenvoorden). HSF55, HeLa, 

MCF7 and Saos2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

with 4500mg/L glucose (Sigma), while DU145 cells were cultured in minimum essential 

medium with Eagle’s salts (MEM) (Sigma). All media was supplemented with 10% fetal
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bovine serum (FBS) (Flyclone), lOOunits/mL penicillin G sodium, lOOpg/mL 

streptomycin sulfate and 0.25pg/mL amphotericin B (Gibco). In addition, MEM was 

supplemented with O.lmM MEM non-essential amino acid solution and l.OmM sodium 

pyruvate (Sigma). All cell lines were maintained in cell culture flasks (Coming) in fully 

humidified incubators (Sanyo & Fisher Scientific) at 37°C and 5% CO2 . All cell lines 

were treated with Mycoplasma Removal Agent (1:100 dilution) (ICN Biomedicals) for 2 

weeks after thawing from their cryogenically frozen state to inhibit mycoplasma 

infection.

Cells were subcultured twice per week using 0.05% trypsin (+EDTA) (Gibco) 

to detach the cells from the flask surface. The separation process o f the cells by trypsin 

was promoted by rinsing cells with ATV prior to trypsinization.

Treatm ent o f Cells

Treatment of cultured cells was consistent throughout all experiments. Cells 

were seeded on day 0  and on the next day, after the cells adhered to the surface o f the 

well, the media was aspirated and replaced with either fresh media as a control or media 

with 40-70nM flavopiridol (IC50) (Aventis Pharmaceuticals Inc) or 5mM sodium butyrate 

(Sigma). The cells were then incubated for 24, 72 or 96hrs, depending on the 

experiment.
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Doubling Tim e Analysis

The rate of proliferation of each cell line was experimentally determined for the 

cell cultures utilized in these experiments using the Coulter Particle Counter Z1 

(Beckman Coulter). Cells were trypsinized with 0.05% trypsin (+EDTA) and 

resuspended in medium (~5mL). One-hundred microlitres of each cell solution was put 

into lOmL o f isoton II (Beckman Coulter) in a cuvette (Beckman Coulter), mixed and 

read with the particle counter. The number of particles enumerated by the counter was 

multiplied by the dilution factor 100 to calculate the number o f cells per milliliter.

Specific numbers o f cells from each cell line were seeded in each well of 

duplicate 6 well plates (Coming). The density of HSF55 cells seeded was 1.5 x 10"* cells 

per well and the rest of the cell lines were seeded at a density of 2.0 x 10“̂ cells per well. 

All wells were filled with 3mL of media. Each day for 6 days after initial plating o f cells, 

one well o f each plate (2 wells total for each cell line) was trypsinized and cells were 

counted as previously described. Two samples were taken from each well for a total o f 4 

samples for each cell line per day from a total of 2 wells per cell line. Each sample was 

read four times and then averaged. The average growth rate over the 6 days was 

calculated and the douhling time was approximated for each cell line.

This technique was used to determine the growth rate of cells treated with 

flavopiridol. Cells were plated out as previously described for each cell line into all wells 

o f 2 six-well plates. On the following day, the media was aspirated from 2 wells o f each 

plate and the attached cells in these wells were trypsinized and counted as previously 

described with the Coulter Counter to establish a reference of cell number at that point in 

time. Half of the remaining 4 wells on each plate were treated with flavopiridol (IC50)
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and half were left as controls. All media was replaced with fresh media. Three days 

later, the media was recovered and the cell number was calculated for both the cells 

suspended in the media and the cells still attached to the plate. These numbers were then 

used to provide a comparison between cell growth with flavopiridol and the untreated 

controls.

Flavopiridol IC 50  Analysis

Standardization of MTT Assay

Cells were seeded in a 96 well cell plate (Coming) in an ascending manner, 

relative to cell number. The first column of wells was left empty and in each subsequent 

column, 500 more cells per well were seeded, with the 12̂  ̂column containing 5.5x10^ 

cells per well. Each well contained a final media volume o f lOOpL.

The cells were then incubated at 37°C for 5 days and MTT assays were 

performed. Ten micro litres o f the total media volume o f MTT solution (Sigma) was 

added to each well and the cells were incubated for an additional 4 hours at 37°C. The 

media was then aspirated and lOOpL of dimethyl sulfoxide (DMSO) (Fisher) was added 

to each well. The plates were left at room temperature for 10 minutes before being 

analysed with the Kinetic Microplate Reader (Molecular Devices). These readings were 

used to determine the number o f cells to seed in each well o f the 96 well plates used for 

IC50 analysis. The number o f cells which produced an absorbance reading on the curve 

below the maximum absorbance obtained was used as the standard number of cells to be 

seeded. This was done to avoid confluency during the IC50 MTT assays.
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utilizing the MTT Assay

The IC50 of each cell line treated with flavopiridol was determined via MTT 

assay. Flavopiridol was dissolved in 100% DMSO. One to two thousand cells were 

seeded into all o f the wells in a 96 well plate except the first 4 wells o f the first column, 

which were left vacant as a blank control to hold only media. Total media volume in 

every well was lOOpL. This was carried out for each o f the cell lines. After a 24 hour 

incubation period at 37°C, the cells were treated with a variety of flavopiridol 

concentrations. Stock solutions of flavopiridol, diluted in media, were made at 

concentrations three times that of the desired final concentration. The final 

concentrations of stock solutions ranged from 15nM to 300nM. Fifty micro litres of each 

stock solution was then aliquotted into predetermined wells. The last column of each 

plate was reserved for an untreated control. Fifty microlitres o f media was added to the 

blank and control wells. Aliquots of 50pL of each stock solution were dispensed into 

each column, corresponding to a particular concentration. The final concentrations 

ranged from 5nM to lOOnM. The cells were then incubated for 4 additional days and the 

MTT assay was performed as previously described. The absorbencies were read by the 

Kinetic Microplate Reader at a wavelength of 490nM minus 650nM. This wavelength 

was used to accurately detect the color o f the dissolved formazan crystals. The IC50 o f 

flavopiridol for each cell line was determined by observing at which concentration, 

growth was inhibited to 50% of the untreated control.
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Protein Determination

Harvesting Cell Proteins

Cells from each cell line were trypsinized from their stock culture flasks and put 

into 15mL tubes to be counted by the particle counter. Using the determined 

concentrations of these stock cell solutions, specific numbers of each cell line were plated 

into 100mm cell culture dishes (Coming). Two dishes were used for each cell line. For 

the HSF55 cell line, 3.0 x 10  ̂cells were plated into each dish, while 4.0 x 10  ̂cells of 

HeLa and DU 145 were plated into each o f their respective dishes. MCF7 and Saos2 cells 

were plated onto the cell culture dishes at a density o f 5.0 x 10  ̂cells per dish. The total 

volume was then made up to lOmL with the corresponding media and the cells were 

incubated for 24 hours at 37°C. The cells were treated as previously described and the 

dishes were then incubated for another 24 hours and cell protein was harvested. This was 

done by trypsinization of the cells from the surface o f the dishes and placement o f these 

cells into 15mL tubes. The cells were centrifuged for 7 minutes at 1200rpm to pellet the 

cells and the media was then aspirated. The pellets were washed with 3mL of phosphate 

buffered saline (IX  PBS) and centrifuged for another 7 minutes at 1200rpm. This 

washing step was performed twice (for each pellet o f cells). The PBS was aspirated from 

the tubes and lOOpL of cold nuclei buffer (NB) with ImM PMSF was added to lyse the 

cells in each pellet. The solutions of lysed cells were then put into 1.5mL 

microcentrifuge tubes and placed on ice. The tubes were centrifuged in a microcentrifuge 

(Beckman) for 30s at 14000xg.
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Protein assay

Protein Assay Dye Reagent Concentrate from BioRad Labs was used in the 

determination of sample protein concentration. Five microlitres o f each sample was 

added to SOOpL of double distilled water in a spectrophotometer cuvette. Two-hundred 

microlitres of assay reagent was then added to each cuvette and mixed. A 5 minute 

waiting period was then observed. After the spectrophotometer (Milton Roy) had been 

standardized at 595nm with a blank of 800pL of double distilled water, 5pL of NB and 

200pL of assay reagent, each sample was read and absorbencies documented. A standard 

curve was made using samples of bovine serum albumin (BSA) in NB. Normalization of 

protein concentrations to 2pg/pL was done by adding additional NB. An equal volume 

of 2X SDS sample buffer was added to each sample to bring the concentration to 1 pg/pL. 

Samples were then boiled for 2 minutes and placed in a -20°C freezer for storage. Before 

beginning the western blot procedure, samples were removed from the freezer and boiled 

again for 2 minutes and centrifuged for 30s at 14000xg in a microcentrifuge before 

aliquotting to the acrylamide gel wells.

Sodium D odecyl Sulfate - Polyacrylam ide Gel E lectrophoresis (SDS- 

PAGE)

The Mini-PROTEAN® II Cell gel apparatus from BioRad was used to perform 

these western blot procedures. A 12% separating gel and 4% stacking gel were prepared 

according to the BioRad instruction manual. All wells were filled with IX running buffer 

before samples were loaded. Ten to sixty micrograms of each protein sample were
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loaded into each lane. One lane was reserved for a protein standard (low range, 

prestained SDS-PAGE standard from BioRad). The apparatus was filled with IX 

running buffer and the gel was run at lOOV until the sample dye front ran off the gel.

The gels were removed from the electrophoresis apparatus and cut to eliminate 

excess gel before placing in IX transfer buffer for 5-10 minutes. Polyvinylidene 

difluoride (PVDF) membrane (Pierce) was soaked for 15-20 minutes in 100% methanol 

prior to transfer. Transfer proteins were transferred to the PVDF membrane by 

electrophoresis at lOOV for 1 hour. Upon completion o f the transfer process, the 

membrane was removed from the transfer apparatus and soaked in TBST buffer for 10 

minutes. The membrane was then placed in a solution o f TBST-8%M to block overnight 

at 4°C with agitation.

W estern Blot Analysis

The membrane was incubated in a primary antibody solution in a 50mL tube on 

a rotator for 1.5-2.0 hours at room temperature. The primary antibody solution was made 

in TBST-5%M. The antibodies used were specific for; cdk2, cyclin E, p21, XIAP, Bcl-2, 

Bax or cyclin A (Table 1). The membrane was subsequently washed with 0.1% TBST 

buffer for 1 hour with gentle agitation. A secondary horseradish peroxidase-conjugated 

antibody solution at a concentration o f 1:2000 in TBST-5%M was used appropriate to the 

species of the primary antibody. This incubation period was carried out in a range o f 45 

minutes to 1 hour with gentle agitation. Excess secondary antibody solution was then 

washed off using 0.1% TBST buffer solution for 1 hour.
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Table 1 - Experimental antibodies.
Antibodies used to detect cell cycle and apoptotic proteins during western blot analysis.
Antibody Designation Type Concentration used Source

p21 (Ab-3) Mouse monoclonal 2pg/mL Calbiochem
Cyclin A Rabbit polyclonal 1:1000 Dr. M Bradbury
Cyclin E (C-19) Rabbit polyclonal 2pg/mL Santa Cruz

cdk2 Rabbit polyclonal 1:8000 Dr. M Bradbury
Bcl-2 (N-19) Rabbit polyclonal Ipg/m L Santa Cruz
Bax (B-9) Mouse monoclonal Ipg/m L Santa Cruz

XIAP (2320-PC-050) Rabbit polyclonal Ipg/m L Trevlgen
Rabbit 2° Goat a Rabbit HRP conjugate 1:2000 Santa Cruz
Mouse 2° Rabbit a Mouse HRP conjugate 1:2000 Pierce

Enhanced Chem ilum inescence (ECL)

An enhanced chemiluminescence process was used for detection of the desired 

bands on each membrane. ECL solutions 1 and 2 were prepared and mixed. Excess 

washing solution was removed from the membranes by gently blotting the surface with 

kimwipes. The membranes were then placed in the combined ECL solutions for 1 minute 

before they were removed and the excess solution was removed with kimwipes. The 

membrane was placed protein side down on a sheet of plastic wrap and wrapped inside 

with all excess plastic wrap folded towards the side opposite o f the protein. The wrapped 

membrane was then taped into an autoradiography cassette (Fisher Biotech) and was 

exposed to various areas o f the Kodak Scientific Imaging Fihn - BioMax MS Film for I, 

2, 5 and 10 minute intervals. Development o f the film was done in a M35A X-OMAT 

Processor (Kodak). The bands present on the film were compared and evaluated.
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Im m unoprécipitation

Cells were seeded and treated with flavopiridol as previously described. 

Twenty-four hours after treatment, the cells were removed from the surface of each dish 

via trypsinization and lysed in cold NB containing ImM PMSF and kept on ice. NB was 

used in the ratio of 300pL NB per 1.0 x 10® cells. The lysed cell solutions were kept on 

ice for 20 minutes in microcentrifuge tubes and then centrifuged for 15 minutes at 

14000xg at 4°C. The supernatants were transferred to new tubes without disturbing the 

pellets and kept on ice. Protein assays were then performed to determine protein 

concentrations. The protein samples were diluted to a final concentration o f 1 pg/pL in 

500pL.

Protein A sepharose (Amersham Biosciences) was pre-rinsed in NB 4 times just 

prior to use. Each solution was pre-cleared for non-specific sepharose bead binding by 

incubating the solutions with 30pL of 50% protein A sepharose slurry for 1 hour at 4°C 

on a rotator. The samples were then centrifuged for 5 minutes at 14000xg at 4°C and the 

supernatants were transferred to new microcentrifuge tubes and kept at 4°C. The samples 

were then incubated on a rotator at 4°C for 2 hours with 1 pL of cdk2 antibody. 

Subsequently, 50pL of protein A sepharose was added to the samples and incubated for 

another 1 hour at 4°C on a rotator. The samples were pelleted via centrifugation for 5 s 

and the supernatant was discarded. The pellets were washed twice with 300pL of NB 

buffer and the pellets were dissolved in 2X SDS sample buffer. The samples were boiled 

for 5 minutes to release the proteins back into solution. The samples were centrifuged for 

1 minute and the supernatants removed for analysis by western blot analysis.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K inase A ssay

Cells used for kinase assays were plated, treated with flavopiridol or sodium 

butyrate and lysed as previously described in the immunoprécipitation section. Once the 

sepharose heads with attached antibody/protein complexes were washed with NB buffer 

4 times, the NB buffer was discarded, lOOpL o f kinase buffer was added to the beads, the 

contents were mixed and allowed to sit on ice for 10 minutes. The supernatants were 

then removed and replaced with 50pL of the kinase reaction buffer.

The slurries were mixed and incuhated in a rotating 30°C water hath for 10 

minutes. Forty-five microlitres of the supernatants were removed and put in new tubes 

containing 405 pL of cold acetone, while the heads were saved in the original 

microcentrifuge tuhes. All samples were then left overnight in a -20°C freezer. The 

samples in acetone were centrifuged and the supernatant removed and discarded. The 

pellets were then left to air dry at which point, 20pL of SDS sample buffer was added to 

resuspend the pellets. The samples were boiled for 5 minutes and the contents were run 

on polyacrylamide gels. The gels were stained with coomassie hlue, destained with a 

destain solution and dried on a gel dryer (BioRad) to pieces o f chromatography paper. 

The gels were then exposed to film in an autoradiography cassette for 6hrs, 12hrs, 24hrs 

and 48hrs.

After exposing the dried PAGE gel containing phosphorylated histone to film, 

the bands were individually cut out and activity was measured on a scintillation 

counter (Beckman LS6500). Scintillation vials (Skatron) were filled with Ready Safe 

liquid scintillation cocktail (Beckman) and a band was inserted into the solution. The 

vials were capped and the radioactivity was read. The radioactivity o f the histones
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phosphorylated hy the treated samples was compared to the control samples. A 

background reading was taken using a piece o f the filter paper used to dry the gels on 

instead of a cut out band. The sample readings were then adjusted accordingly, by 

removing the background reading from the sample reading.

The remaining kinase reaction buffer with the sepharose beads was removed 

and 2X SDS sample buffer was added to each o f the pellets and the slurries were mixed 

and hoiled for 5 minutes. The supernatant was transferred to new tubes and the beads 

were discarded. These parts o f the samples were subjected to western blotting procedures 

with p21, cdk2 and cyclin E antibodies as previously described.

To provide samples o f direct cdk2 inhibition by flavopiridol, 3 samples of 

500pg of protein were used from each cell line to isolate cdk2 via immunoprécipitation. 

These samples were prepared for kinase activity analysis as previously described up until 

the addition of the HI kinase reaction buffer. One of each set of three samples was 

treated with 50pM flavopiridol, one sample was used as a negative inhibition control and 

one was treated with lOOng/mL staurosporine as a positive control for kinase activity 

inhibition. The samples were incubated at 30°C for 10 minutes as before and continued 

to be treated as previous kinase assays.

Flow Cytom etry

Cells were plated in 100mm dishes and treated with flavopiridol as previously 

described for 24 hours. The media was removed and kept in a 15mL tube. Cells were 

trypsinized and added to the previously removed media. The cells were then pelleted via 

centrifugation, the supernatant removed and the pellet was washed twice with IX  PBS

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and resuspended in ImL IX PBS. 3mL of 95% cold ethanol was then added, dropwise 

while vortexing to fix the cells. The samples were then kept at 4°C overnight. The 

samples were then centrifuged and the supernatant was aspirated. The pellets were 

resuspended in a solution of the intercalating dye, propidium iodide (PI) (5pg/mL) in IX  

PBS, with the volume relative to pellet size (300-1000pL). Cell cycle profile (DNA 

content) analyses were carried out on a FACSCalibur flow cytometer (Becton 

Dickinson).

Results

M easurem ent o f growth rates o f cells

Cellular proliferation rates measured for each o f the cell lines used in this study 

were different. Thus, this experiment was necessary to optimize the conditions for MTT 

assay measurement, as the cells are incuhated for 4 days. Confluency during the 

incubation period of the MTT assay is undesirable and will affect the data. Also, the 

effects of cytotoxic agents, such as flavopiridol, that affect cell cycle proteins may be 

influenced by cellular growth rates. Cell counts using the Coulter Counter showed that 

the MCF7, HeLa and DU 145 cells lines have douhling times o f roughly 24 hours, while 

the Saos2 cells exhibited a doubling time o f approximately 44 hours. At a low passage 

number, the normal skin fibroblast HSF55 cell line demonstrated a doubling time of 38 

hours. Growth curves presented as semilogarithmic plots are illustrated in Figure 12, and 

are consistent with those reported in literature.
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Contact inhibition is the process in which normal cells will cease to proliferate 

upon coming into physical contact with neighboring cells. Although the cancer cell lines 

used in these experiments do not experience contact inhibition, confluency of these cell 

lines may also affect growth in some cells and influence flavopiridol’s effects.

1000000

0)o

L. 100000 - Q)
E3

10000

T

♦ MCF7 

■ HeLa 

DU145 

> Saos2 

* HSF55

0 1
Day

Figure 12 - Normal cell growth of tissue cultured cells.
MCF7, HeLa, DU145, Saos2 and HSF55 cell lines were plated in duplicate into 6-well 
plates. The cell numbers for each day were averaged from four cell counts for each of 
two samples from each of 2 wells for a total o f sixteen counts per point on the graph. 
Slope of the curve indicates rate o f growth (steeper slope=faster growth).

Table 2 - Cell line doubling times.
The slope of the growth curves o f Figure 12 were measured and used to 
determine the doubling time of each cell line.

Cell Line Doubling Time (hrs)
MGF7 27.54 +/- 1.44
HeLa 26.00 +/- 0.30

DU145 26.26 +/- 0.84
Saos2 43.94 +/- 0.82
HSF55 38.23 +/- 1.27
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Flavopiridol induces cell cycle arrest

MTT assays were performed to analyze growth inhibition by flavopiridol and to 

measure the IC50 values for each cell line after 4 days o f growth. The IC50 values 

correspond to the necessary concentration o f flavopiridol to reduce cell growth to 50% of 

normal. Before these measurements could be done, standardizations o f cell numbers 

were performed to account for different growth rates. This was also done to determine 

the growth of each cell line during the 5 days after seeding, with the goal o f achieving 

subconfluency during IC50 measurements. An example using HeLa cells is shown in 

Figure 13 and Table 3 summarizes the optimal cell numbers o f each cell line. It was 

determined that 1000-2000 cells per well o f the 96 well plate was sufficient to produce 

the optimal readings and avoid saturation o f the wells by the end of the incubation period.

Flavopiridol treatment showed a significant decrease in cell numbers o f MCF7, 

HeLa and Saos2 cells at lOnM (20nM for DU 145 & HSF55) (Student’s one-tailed t test, 

P<0.05). The cell population o f all cell lines decreased to less than 20% o f the untreated 

control with a treatment of 120nM. MTT assays showed the IC50 values to be similar 

with all the cell lines, ranging from 40-70nM (Figure 14, Table 3).
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Figure 13 - Standardization of MTT assays (HeLa).
HeLa cells were plated in a 96-well plate and were incubated for 4 days before being 
subject to MTT assay analysis. It is determined here that the optimal density at which to 
plate HeLa cells for MTT assay analysis is lOOOcells/well with a maximum of 
2000cells/well.
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Figure 14 - Flavopiridol inhibition curves of cell line growth.
Cells for each cell line were plated at the predetermined standard number (1000-2000 
cells/well) into 96-well plates. All cell lines were subjected to a range of flavopiridol 
concentrations (10nM-120nM) and incubated for 4 days before MTT assay analysis. 
There was a significant decrease in cell growth with lOnM flavopiridol for MCF7, HeLa 
and Saos2 cell lines and after 20nM for DU145 and HSF55 cells. Student’s one-tailed t 
test (P<0.05).

Table 3 - MTT assay results - IC50 values.
Determination o f IC50 values for each cell line upon flavopiridol treatment using the 
MTT assay. Included are the numbers o f cells plated in each well o f the 96-well plates,

Cell Line
Original Number of 

Cells Plated (Cells/Well) ICso (nM)
MCF7 1000 50.6 +1-1A
HeLa 1000 56.5 +/- 12.0

DU145 1000 56.2 +/- 13.8
Saos2 2000 64.1 +/-23.0
HSF55 1000 45.5 +/- 11.6
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Induction of cell cycle arrest by flavopiridol

Cell counts showed the inhibition o f proliferation that was observed during 

MTT assays. Panels A and B of Figure 15 show a lack o f proliferation after 3 days of 

flavopiridol treatment in all cell lines. Normal cell proliferation is shown as a 

comparison after the same time period. To determine if  the lack o f proliferation with 

flavopiridol treatment was due to cell death, floating cells were counted. Cells that have 

undergone apoptosis would detach from the culture dish (all cell lines used in these 

experiments were adherent). The difference between the inherent number o f floating 

cells in the controls and the number o f floating cells in the treated samples can be 

attributed to apoptosis. As shown in Panel C of Figure 15, no significant difference was 

found between the numbers o f floating cells in flavopiridol-treated cells versus the 

untreated controls. It is typical for cell cultures to have a baseline level o f apoptotic cells, 

and this proportion o f spontaneous apoptosis varied with each cell line. This number 

varied from about 10,000 for Saos2 and HSF55 to about 50,000 for DU145, and they 

represent about 25% of the total population. There was no significant difference between 

the proportions o f detached cells in the untreated controls versus flavopiridol-treated 

cells. This showed an absence of an increase in apoptotic cells and suggested that 

flavopiridol may have reduced cell growth.

Cell cycle arrest was further verified by cell cycle analysis in a flow cytometer. 

The relative DNA content in each cell was measured after staining with propidium 

iodide, and a typical untreated control cell cycle profile is shown in Panel A o f Figure 17. 

The presence of a sub-Gl peak, as shown in Panel C, indicates the presence o f apoptotic 

cells. A decrease in S phase cells was observed in all cell lines that were treated with
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flavopiridol, accompanied by an increase in proportion of cells in Gi and G2/M, 

indieating cell cycle arrest in these phases (Figure 16). Panel B shows a representative 

profile o f this arrest. The lack o f a sub-Gi peak, in the cell cycle profiles verified the 

absenee of apoptosis associated with the 24hr ineubation period used in these tests 

(Figure 17 - Panel C).
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Figure 15 - Analysis of cellular growth after 4 days of flavopiridol treatment vs 
control.
Panels A and B show the number of cells counted 1 day after seeding, and the number o f 
cells after 3 days incubation with and without flavopiridol. The concentrations of 
flavopiridol used corresponded to the IC50 values determined from Figure 4. Panel C 
shows the number of cells that were detached after the 3 day incubation period.
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Figure 16 -  Analysis of percentage of cells in S phase using flow cytometry.
Decreasing percentages indicate cell cyele arrest in Gi and G2/M phases. The normal 
HSF55 skin cells show a dramatic decrease in S phase cells with flavopiridol.

Table 4 - Cell cycle profiling data using flow cytometry.
A decrease in S phase eells is observed in all cell lines with 
flavopiridol treatment. Gi and G2/M peaks also fluctuate with 
flavopiridol treatment.

Sample
Gi {%)

Cell Cycle Phase 
S (%) G2/M (%)

MCF7
Control 63.51 21.58 14.9

24 hours 58.49 18.5 23.01
HeLa

Control 55.22 18.2 26.58
24 hours 45.69 15.26 39.04
DU 145
Control 47.64 20.78 31.58

24 hours 62.15 17.98 19.87
Saos2
Control 51.18 20.84 27.98

24 hours 50.1 19.4 30.51
HSF55
Control 44.25 23.04 32.71

24 hours 32 8.4 59.6
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Figure 17 -  Flow cytometry profiles of the cell cycle of HSF55 cells.
A. Cycling HSF55 cells demonstrating the distribution o f DNA content in eells through 
each of the phases o f the cell cycle. B. Cell cycle profile o f HSF55 cells treated with 
flavopiridol for 24hrs. C. A typieal cell eyele profile of cells that undergo apoptosis, 
showing the apoptotic sub-Gi peak.

Expression o f apoptotic proteins

The Bcl-2 family of proteins is the quintessential apoptotic trigger of apoptosis. 

While anti-apoptotie family members Bel-2, Bel-Xt, Boo and Mel-1 are more abundant 

than pro-apoptotic proteins (when the cell is functioning normally) when these proteins 

are downregulated, programmed cell death is favored. In addition to this downregulation, 

the pro-apoptotic Bcl-2 proteins, Bax, Bak, Bad and Bel-Xg are upregulated. Upon 24hr 

treatment with flavopiridol, we found Bcl-2 levels deereased in all eell lines versus 

untreated cells. No change was observed in Bax protein levels with the same treatment
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(Figure 18). Bax was not expressed in either DU 145 or Saos2 cell lines. DU145 contains 

mutated Bax genes on both alleles and subsequently is unable to express the protein 

(131). Saos2 cells are p53-null and therefore are missing a key regulator o f  Bax 

expression (132).

M GF7 

C o n tre  I F lav o

H eL a 

C o n tro l F la v o

0 0 1 :4 5  

C o n tro l F la v o

5 a o s 2  

C o n tro l F la v o

H S F 5 5  

C o n tro l F la v o

B c l-2

B a x

Figure 18 -  Western blot analysis of apoptotic proteins from cell lysates.
After flavopiridol (Flavo) treatment at IC50 concentrations anti-apoptotie protein, Bcl-2, 
deereased in all cell lines. There was no apparent change in pro-apoptotic Bax protein 
levels.

Expression o f cell cycle proteins

As shown by flow cytometry, incubation of cells with 50-70 nM flavopiridol 

induced cell cycle arrest. We found upregulation of (Figure 19). This

upregulation of has been reported by others (28;88;95).

There was no discernible difference in expression o f cdk2 in any of the cell 

lines examined. Similarly, cyclin E showed little difference in any cell line (Figure 20). 

These results showed that flavopiridol does not induce cell cycle arrest through a 

reduction in the proteins forming the edk2 complex. The inhibitory effects could be 

through direct inhibition of the enzyme, or by changing expression levels o f inhibitory

proteins such as p2 1
W A Fl/CIPl
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Figure 19 -  Western blot analysis of the cdk inhibitor p21
After flavopiridol (Flavo) treatment there was an upregulation o f p21 
FleLa and HSF55 cell lines, relative to the untreated controls. DU 145 and Saos2 cells 
showed no increase of

inM CF7,

M CF7 H eL a O U I 4 5  S a o s 2  H S F 5 5

C o n tro l F lav o  C o n tro l F la v o  C o n tro l F la v o  C o n tro l  F la v o  C o n tro l F la v o

cdk2.

C yclin E

Figure 20 -  Western blot analysis of Gi/S transition proteins in cells lysates.
After flavopiridol (Flavo) treatment there was no change in the levels o f cdk2 or 
associated protein cyclin E in MCF7, HeLa and DU145. Saos2 and HSF55 cells 
demonstrated a slight decrease in cyclin E protein levels.

Inhibition of cdk2 in cells

Determination of protein levels o f cdk2 by western blot showed no differences 

in levels of expression from treatment with flavopiridol, and little differences in 

expressions of cyclin E in some o f the cell lines examined. However, was

found to be upregulated in all except the Saos2 and DU145 cells. To determine if the 

enzymatic activity of cdk2 was inhibited, as flavopiridol was hypothesized to do, enzyme 

complexes were immunoprecipitated from the various cell lines and assayed for kinase 

activities. As a control for indirect inhibition by the cdk2 enzyme activities

were measured from cells treated with sodium butyrate. Sodium butyrate upregulates 

p2 ^WAFi/ciPî  independently of p53, to inhibit cdk2 kinase which induces cell eyele arrest
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(133;134). Autoradiography o f the histone HI substrate following in vitro 

immunoprécipitation kinase assays showed there were noticeable declines in cdk2 

activity that were immunoprecipitated after 24hr treatment with flavopiridol (Figure 21). 

Quantitation of the phosphorylated histone HI by scintillation counting is shown in Table 

5. Cdk2 kinase immunoprecipitated from MCF7 cells showed the highest degree of 

inhibition when incubated with flavopiridol. The HeLa, DU 145 and HSF55 cells showed 

partial inhibition and the cdk2 kinase from Saos2 cells did not show any inhibition by 

flavopiridol. When the levels o f phosphorylation were quantitated, the cdk2 from MCF7 

showed the highest level of inhibition by flavopiridol and by sodium butyrate, with a 

reduction of about 95%. However, flavopiridol treatment o f the HeLa, DU145 and 

HSF55 cells only reduced the cdk2 activities by half, and the cdk2 from Saos2 was not 

inhibited. No was observed in the cdk2 samples immunoprecipitated from

DU145 or Saos2 cells. In HeLa cells, the induction of was greater with

flavopiridol treatment than with sodium butyrate, yet 5mM sodium butyrate caused a 

greater reduction of cdk2 activity, by about 80%, compared to the 50% induced by 50nM 

flavopiridol. This could be due to other cell cycle effects o f sodium butyrate. The results 

showed that although flavopiridol had similar growth arresting effects on the cells 

examined, the levels of induction of were different between cells, resulting

in different degrees o f inhibition of cdk2.

Western blotting for the edk2 and cyclin E proteins after immunoprécipitation 

showed similar or higher levels o f proteins with flavopiridol treatment, ensuring that any 

differences in enzymatic activities were not due to fluctuations in protein levels, 

hnmunoblots for p21^'^^'^^^^' showed that this inhibitor was associated with the cdk2
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complexes in cells that were treated with flavopiridol, and could be the basis behind the 

inhibition of cdk2 kinase, as was seen in the cells treated with sodium butyrate. In the 

Saos2 eells, was not detected and there was a corresponding absence of

inhibition.

MCF7
Co&trot Fiavc

HeLa DU145 Saos2 HSF55 
CoDtrol Flavo Control Flavo Coatrol Flavo

Cdk2 Activity

H is to n e  H I

Cyclin E

C d k 2

AF1/C3P1p2lW

Figure 21 -  Kinase assays of cdk2 activity in cells.
Untreated or flavopiridol-treated cells were lysed and the cdk2 kinase complexes were 
immunoprecipitated and assayed for enzymatic activities. Five millimolar sodium 
Butyrate (SB) was used as a positive control for cdk2 inhibition. Top row shows the 
autoradiogram of phosphorylated histone H I, indicating the relative levels of cdk2 
activities. Second row represents coomassie-stained gels o f phosphorylated histone HI 
substrates that were used for autoradiogram. Bottom three rows show immunoblots of 
cdk2 and cyclin E of the kinase complexes that were used for the kinase assays, and the

I W A Flp21 that associated with the complexes.
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Table 5 - Quantitation of histone HI phosphorylation by cdk2 
immunoprecipitated from cells treated with inhibitors.
Cdk2 activities were measured in eounts per million. Background 
activity was removed and percent activities relative to the control for 
each cell line was calculated.

Sample cpm Incorporated % Activity of Control
MCF7

Control 3391.89 100
Flavo 212.38 5.65

Butyrate 198.37 5.23
HeLa

Control 1091.08 100
Flavo 595.17 53.61

Butyrate 238.48 20.25
DU145
Control 311.13 100
Flavo 167.08 50.18

Saos2
Control 109.06 100
Flavo 106.06 96.55

HSF55
Control 450.03 100
Flavo 240.56 50.02

Inhibition of isolated cdk2 kinase

To determine the direct inhibitory effects of flavopiridol without any 

contribution o f or other inhibitory proteins, the cdk2 enzyme complexes

were immunoprecipitated from eaeh o f the cell lines used in the study and flavopiridol 

was added to the kinase reaetion buffer. To provide a positive control for direct kinase 

inhibition, lOOng/mL of the general kinase inhibitor staurosporine was used in the kinase 

reaction buffer and a decline in cdk2 activity was observed relative to the untreated 

control (135). The autoradiogram of histone HI showed that the edk2 

immunoprecipitated from each cell line was more sensitive to direet inhibition of activity 

by 50nM of flavopiridol than staurosporine. Quantitation by seintillation eounting
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showed that 50nM flavopiridol induced an 80% decline in the cdk2 activity from MCF7 

cells and lOOng/mL staurosporine reduced the activity by 70%. The cdk2 from HeLa 

cells showed the next highest degree of sensitivity to flavopiridol with a reduction by 

about 65%. In the normal human HSF55 eells, flavopiridol treatment also showed a 

higher degree o f inhibition, with a reduction by 50% for flavopiridol compared to 40% 

for staurosporine. The 60% reduction in enzymatic activities caused by both inhibitors 

was similar in DU 145 cells. With Saos2 cells, the cdk2 showed the least amount of 

inhibition by flavopiridol, with a reduetion by about 30%.

To verify that the relative amounts o f proteins were equal, western blots were 

performed on the kinase complexes that were immunoprecipitated following enzymatic 

assays. As shown in the lower lanes of Figure 22, the relative levels o f cdk2 and cyclin E 

were comparable. In the flavopiridol-treated HeLa cells, isolated cdk2 complexes 

showed slightly elevated levels of cyclin E and proteins. Since the cdk2

used here was immunoprecipitated from cyeling cells, the levels were low in

all o f these samples as expeeted.

Because all o f the samples were identieal before kinase reaction buffer 

treatment, cyclin E and cdk2 protein levels remained unchanged within cell line samples. 

HeLa cells showed an inhibition o f cdk2 activity in spite o f the slightly higher levels o f 

cyclin E. Scintillation counts from these samples were compared to histone protein 

amounts as were the in vitro samples (Table 6).
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Figure 22 - Direct inhibition of cdk2 by flavopiridol.
Cdk2 kinase complexes were immunoprecipitated from cycling cells and tested for 
enzymatic activities in the absence of inhibitors, in 50 nM flavopiridol, and 100 ng/ml o f 
staurosporine. Top lane shows the autoradiogram of the histones that were ineubated with 
the edk2 kinase, and the second lane shows the coomassie-stained histone H I. Bottom 
three rows show the presenee o f cdk2, cyelin E and p2l''^^^' that were 
immunoprecipitated and determined by western blot following kinase assays.

Table 6 - Quantitation of histone HI phosphorylation by cdk2 
immunoprecipitated from cells and treated with kinase inhibitors.
Cdk2 activities were measured in counts per million. Background 
activity was removed and percent activities relative to the control for 
each cell line was calculated.

Sample cpm Incorporated % Activity of Control
MCF7
Control 889.67 100
Flavo 163.15 18.34
Stsp 263.24 29.59
HeLa

Control 2984.9 100
Flavo 1030.48 34.52

DU145
Control 115.15 100
Flavo 48.08 41.75
Stsp 43.08 37.41

Saos2
Control 68.12 100
Flavo 47.1 69.14
Stsp 64.13 94.14

HSF55
Control 87.17 100
Flavo 42.1 48.30
Stsp 54.12 62.09
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Discussion

Inhibition of cellular proliferation

Cellular proliferation inhibition is a known effect o f flavopiridol treatment. The 

eell lines in these experiments demonstrated similar growth curves and IC 50 values 

despite their different basal cdk2 activities. Despite the similar inhibition of growth, they 

did not show equivalent cell cycle arrest. Normal fibroblasts exhibited a significant 

decrease in S phase cells after flavopiridol treatment that coincided with an increase in 

G2/M phase cells. In these eells, flavopiridol likely deereases cdk2 activity such that the 

cells were unable to continue past G2/M and arrested after incubation with flavopiridol.

In contrast, the immortal cell lines showed differences in cell cyele arrest at I C 5 0  

concentrations although proliferation was retarded in all cell lines examined.

Flavopiridol induced a decrease in the S phase populations in all cell lines but to various 

degrees. I found accumulations in G2/M in MCF7 and HeLa cells, similar to HSF55 

cells, although these normal cells showed a more dramatic accumulation. Flavopiridol 

induced a different effect in DU 145 cells by causing an accumulation in Gi phase cells. 

Saos2 cells showed no discernible accumulation in any specific phase, suggesting that the 

inhibition of growth may affect all phases equally. These differences may be a result o f 

different cell cyele checkpoints in these transformed cells. Although flavopiridol has 

shown speeifieity to eyclin-dependent kinases, it has been found to inhibit other kinases 

in cells, some of which remain unidentified. In addition, some of these alternate effects 

include transcription factor inhibition other than that of P-TEFb, DNA binding and even
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increases in IL-6 which results in proinflammatory syndrome, a side effect of infusional 

flavopiridol (15;28;56;107).

Induction of apoptosis

The flavopiridol concentrations used in this study (40-70nM) were suffieient to 

inhibit growth by 50% and the cells were not undergoing apoptosis during the 24-72hr 

incubation periods. Lack of apoptosis was observed by eell counts, flow cytometry and 

verified by microscopy. Previous studies showed that induction o f apoptosis required 

eoncentrations exceeding 200nM over 24 hours in H I299 lung carcinoma, 200nM over 3 

days in A549 non-small eell lung cancer (NSCLC) and 300nM over 5 days in esophageal 

eareinoma (7;63;80). At the IC50 concentrations used in this study, it is possible that 

incubation periods longer than 72hr could have resulted in more apoptosis with the eell 

lines used. In studies previously done in this lab, it was found that primary cancer cells 

with very low replieation rates, have reduced cell numbers to less than 10% of untreated 

eells over a 4-5 day period (136). Sinee these cells require at least 2 these cells require at 

least 2 weeks for one cell division, this decline in cell number is likely a result of cell 

death induced by flavopiridol. This suggests that in primary eancer cells another mode o f 

action other than edk inhibition is important in death.

A basal level of apoptosis was observed during cell growth analyses. Typieally, 

the proportion o f cells that undergo apoptosis spontaneously under regular growth 

conditions is under 5% (137). In my studies, the floating cells that aeeumulated in the 

culture medium over the 3-day incubation period in both flavopiridol-treated and 

untreated controls were counted with the Coulter Counter. The relatively high numbers
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of floating cells counted is due to the accumulation of cells that underwent spontaneous 

apoptosis over the 4-day ineubation period without any changes o f growth medium. 

Although the numbers o f floating cells were similar in the treated and untreated samples, 

the proportion of floating to attached cells is strikingly higher for the treated cells. This 

is due to the fact that the untreated cells continued to grow, while the flavopiridol 

treatment inhibited eell growth, resulting in significantly fewer eells that remained 

adhered. This suggests that some apoptosis occurred as a result o f treatment with this 

relatively low concentration o f flavopiridol over a 3 day incubation period. Also, in the 

later stages of apoptosis, the cellular remnants would break up into multiple apoptotic 

bodies (138) which could increase the number o f particles counted by the Coulter 

Counter.

In our experiments, we see that at 50nM, flavopiridol inhibited cdk2 activity, 

retarded cell growth, induced expression and downregulated Bcl-2 protein

levels. Bcl-2 forms a heterodimer with pro-apoptotic proteins o f the same family (eg 

Bax, Bad, Bak ete). Bel-2/Bax heterodimers prevent the assembly of pro-apoptotic 

homodimers. Proapoptotic homodimers form pores in the mitoehondria membranes 

triggering the signals initiating the apoptosis cascade. A downregulation of Bcl-2 as a 

result o f flavopiridol treatment has been widely observed in a number o f studies (67;68). 

For example, a 50pM dose of flavopiridol was sufficient to lead to Bel-2 downregulation 

in the KE4 esophageal squamous cell eareinoma eell line (94). With the reduction o f 

Bcl-2, a vital anti-apoptotie protein is lost; leading to the induction o f apoptosis. Since 

apoptosis is programmed, requiring the induction of multiple genes, a longer incubation 

period would likely be sufficient to induce the physical manifestations o f apoptosis.
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Downregulation o f Bcl-2 at cytostatic concentrations implies that even as cell cycle arrest 

is occurring, apoptotic signalling is commencing.

Because subeytotoxic concentrations o f flavopiridol initiate Bel-2 

downregulation, apoptosis eould be triggered in noncyeling cells. Flavopiridol eauses 

inhibition of Bcl-2 transcription at concentrations as low as 50pM in some cell lines (94). 

If apoptotie pathways are initiated through inhibition o f transeription o f some genes, this 

could explain the increase o f apoptosis in resting cells as well as cycling cells. This 

downregulation of Bcl-2 has been reported to be the case in cultured cell lines (28) as 

well as primary eancer cells (136). A reduction in Mdm2 mRNA production by 

flavopiridol, induced p53 upregulation to initiate apoptotie pathways in addition to 

inducing cell cycle arrest (88). However, this only funetions in cells with normal p53, 

such as the HSF55 and the MCF7 eells. Thus we suspect it is via multiple pathways that 

flavopiridol can cause apoptosis in noncycling cells through inhibition o f transcription.

Inhibition o f cdk2

Cdk binding by flavopiridol and the inhibition of cdk activity have been studied 

and have been well documented over the last decade (15). However, flavopiridol has also 

been shown to affect multiple pathways in cells to inhibit cell cycle progression and these 

pathways have yet to be fully elucidated. In this study, I asked the question, “Is 

flavopiridol’s main mechanism of cdk2 inhibition due to its physieal binding to cdk2 or is 

it through other means?” I demonstrated that a 50nM dose will cause upregulation of 

2 WAFl/CIPl jj^ost of the cell lines used, and this could inhibit cdk2 kinase. Thus, 

although it is clear that flavopiridol can inhibit cdk2 activity at a cytostatic concentration.
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it is unclear whether it does solely by direct binding, as demonstrated by X-ray 

crystallography studies, or also through the upregulation o f that inhibits

cdk2.

Since it has been reported that flavopiridol can alter gene expression, I 

examined its effects on the expression levels o f some proteins that regulate the eell cycle 

to identify additional ways in which cdk2 activity may be redueed. Cyclin E expression 

was not changed in any o f the cell lines by flavopiridol treatment, indicating that a lack of 

available regulatory cofactor is not relevant. Cdk2 levels themselves were not affected 

by flavopiridol treatment, indieating that flavopiridol causes a deerease in aetivity and not 

a decrease in protein level.

The assays o f the cdk2 kinase activities suggest that the inhibition could be 

through p2 iWAFi/ciPi upregulation or direct cdk2 binding, but this inhibition was 

dependent on the cell lines used. The molecular reasons behind this cell-specific effect 

will require further studies. It is possible that other yet unknown protein subunits may 

have differential effects on flavopiridol. To address this, one would have to label the 

proteins in the cdk2 kinase eomplex with ^^S-amino acids in each of the cell lines and 

then isolate them by immunoprécipitation. The proteins would then be separated in an 

SDS-PAGE and the radiolabelled proteins that form the complex can be revealed by 

fluorography. A comparison between the bands would show if  there are any subtle 

differences between the complexes.

An alternate hypothesis for the inhibition is that cdk2 kinase is inhibited 

preferentially through flavopiridol inhibition o f the eak activation of cdk2. A decrease in 

aetivity o f the cdk? subunit in the eak complex would directly cause a decrease in cdk2
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activity. This could be determined by immunopreeipitating both the cdk2 and cdk? 

enzymes of cells treated with varying concentrations of flavopiridol to determine the 

degree of inhibition of each enzyme. This would determine if  cdk? inhibition is required 

for cdk2 inhibition. Addition o f flavopiridol directly to the immunoprecipitated cdk? will 

show a direct inhibition. However, absence o f effects on cdk? would suggest that 

flavopiridol acts on cdk2, either directly or through upregulation o f p21^^^^^^^\

Measurements o f cdk2 activity showed lower activity present in DU145, Saos2 

and HSF55 cells and a higher activity in MCF? and HeLa cells. There were different 

levels of immunoprecipitated cdk2 proteins and this may be a reflection o f the cell cycle 

rates of the cells. In the slower growing cells, the cdk2 activities were lower, yielding 

counts of less that SOOcpm. This was especially true with Saos2 cells. With readings this 

low, any inhibition o f activity would be muted. These low activities lead to lower and 

less precise activity readings, but can be overcome by harvesting more cells to yield 

higher cdk2 protein. However, we found a consistent decrease in cdk2 activity in all 

these samples with flavopiridol treatment, except in Saos2 cells. More studies will need 

to be done on the Saos2 cells to determine if the cdk2 kinase complex is resistant or if  the 

absence o f inhibition is due to the lack o f sensitivity of the assays done in this study. 

Should the cdk2 from Saos2 eells show resistance, it may be due to a mutation in the 

enzyme that renders it unable to bind to flavopiridol. Cloning and sequencing o f the edk2 

gene would then reveal any variation in the sequence.

The effects o f flavopiridol on cdk2 can be examined in MCF? and HeLa cells as 

the kinase assays yielded high activities. Treatment of these cells with flavopiridol 

showed a distinct difference in the responses o f the cdk2 kinases from MCF? and HeLa
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cells. Flavopiridol suppressed enzymatic activity by about 95% in MCF7 cells, and this 

was as effective as the inhibition produced by sodium butyrate through upregulation of 

p2 ^WAFi/cipi 5). This suggested that the mechanism of inhibition may be through

this eki. Ftowever, it is possible that flavopiridol can directly inhibit cdk2, as was shown 

by an 80% decline in activity (Table 6). Since the concentration o f flavopiridol used in 

both experiments was the same (50nM), the inhibition was expected to be more effective 

when added directly to the kinase. When added to cells, flavopiridol would bind to other 

molecules in the cells such as lipids, RNA and DNA and to other cdks, thus limiting the 

amounts available to inhibit edk2. When added directly to isolated cdk2, the inhibitor 

would not be diluted out by other molecules and should have a direct inhibitory effect on 

the cdk2 kinases. With cdk2 isolated from HeLa cells, flavopiridol was not as effective 

an inhibitor. When cdk2 was immunoprecipitated from cells that were incubated with 

flavopiridol, the reduetion in aetivity was only by about 50%, even though there was an 

upregulation of Although a greater level of inhibition was seen when added

directly to cdk2, there was only a 65% reduction in activity. It is not clear why the cdk2 

kinase has such different response between the 2 cell lines. It is possible that some 

differences in the amino acid sequence of the enzymes may contribute to their differences 

in response to inhibition by flavopiridol.

Synergistic effects o f flavopiridol

In the grand scheme of medical applications, why does it even matter how cdk2 

is inhibited, as long as it inhibits cell growth, which was the initial goal o f developing 

flavopiridol as an antieaneer agent? The mechanisms of a drug’s activity and not just its
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results are the erucial elements in understanding how to use it effectively and to 

determine if it has potential unexpected side effects. If  flavopiridol were most effective 

when binding to cdk2 directly as it was originally intended, then the large array of other 

mechanisms of this cdk inhibitor in a tumor would hinder flavopiridol’s potency, and the 

rate at which the body clears the drug would also affect its anticancer effects. 

Pharmacokinetic studies showed a variation o f up to 10-fold can exist between different 

individuals (101). A high clearance rate would reduce its ability to inhibit the cdk2 in the 

tumors. Being familiar with a chemical’s mode of action enables us to apply it in 

situations where it is most likely to be effective, for instance in conjunction with a 

particular drug.

It has been shown that flavopiridol has synergistic effects with a wide variety of 

other chemotherapeutic agents when used in a sequence-dependent manner. It has been 

suggested that either paclitaxel, topotecan, doxorubicin and etoposide should be given as 

the initial treatment preceding flavopiridol (15;I39). After damage to the cell has 

occurred with the primary agent, flavopiridol could then inhibit the transcription of repair 

enzymes, causing the cells to initiate apoptosis. 5-FU, trastuzumab and cisplatin are 

some drugs that do not require this sequence-dependeney with flavopiridol 

(15;6I;139;I40). The precise reason why these compounds are not sequence-dependent 

with flavopiridol is not yet known. Currently flavopiridol is co-administered with other 

chemotherapy agents in clinical trials. It has been reported that flavopiridol could be 

used as a radio-sensitizer in radiation therapy (94).
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Conclusions

The concentrations o f flavopiridol found to reduce proliferation o f each cell line 

to 50% of the untreated control were not eytotoxic over the ineubation periods used in 

this study (1-3 days). It was my intention to avoid inducing apoptosis in order to isolate 

flavopiridol’s effects on edk2  inhibition and cell cycle arrest without the interference o f 

other pathways. I believe this was achieved because even over a 3 day ineubation period, 

apoptosis was not detected. Bcl-2 protein levels did deerease after 24hrs o f flavopiridol 

treatment but apoptosis was still not induced after 72hrs at the I C 5 0  concentrations (40- 

70nM).

One o f the goals of this study was to determine whether the primary mechanism 

of flavopiridol’s action to induce cell cyele arrest was through inhibition o f cdk2  or 

through some other mechanism. It is clear that flavopiridol does not fully inhibit edk2 

activity in most of these tissue cultured eell lines at IC50 concentrations with the 

exception o f the MCF7 cell line. Even when immunoprecipitated cdk2 was treated 

directly with flavopiridol, cdk2 was not fully inhibited in all cell lines. Therefore, the 

main mechanism o f flavopiridol-indueed eell cycle arrest is not through cdk2  inhibition 

in most cell lines.

It is still unclear as to whether the inhibition of cdk2 by flavopiridol is only 

through direct binding to the kinase’s ATP pocket. Upregulation of in

MCF7, HeLa and HSF55 cells suggests that inhibition of edk2 aetivity may not be reliant 

solely on direct inhibition by flavopiridol, but also through indirect means. The absenee 

o f in vitro inhibition of cdk2 and lack of upregulation of in p53-null Saos2

cells, combined with the incomplete inhibition of the kinase in p53 mutant DU145 and
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HeLa cells suggests that is at least partially responsible for flavopiridol-

indueed cdk2 inhibition and that the upregulation o f is p53-dependent in

flavopiridol-treated eells.
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