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Abstract

In this paper, we study properties of dense schedules for the open-shop problems and their average 

performance ratio. After using two sets of test problems, we show that the average performance ratio 

of dense schedules is actually much better than (2-A ), the worst-case performance ratio in the 

conjecture. The results from randomly generated problems which have large sizes show that when the 

dimension of open-shop problems become larger, the average performance ratio is getting even 

smaller. Twelve heuristic algorithms to generate dense schedules are presented in Chapter 3 and the 

computational results of two sets of test problems are also provided.
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Chapter 1 

Introduction

1.1 Open-Shop Scheduling Problem

The open-shop problem may be stated as follows. There are n jobs J%, Jz,...,!» and m machines Mi, 

M 2 ,...,M„. Every job has m operations, each of which has to be processed on a specified machine for a 

given duration time. The operation can be processed in any sequence, and as long as all the operations 

needed for the job are done, the job is done. We assume that at any time t, at most one job can be 

processed on each machine, and each job can be processed on at most one machine. In this paper, we 

only consider those cases that preemption is not allowed, that is, all operations must be processed 

without interruption. The objective is to find a schedule that minimizes the makespan Cmax, the time 

from the beginning of the first operation to the end of the last operation.

1.2 Computational Complexity

1 2  I f  and

Practical experience tells us that some problems are easier to solve than others. To classify problems 

as "easy" or "hard", we should introduce Complexity Theory.

A computational problem can be viewed as a function h that maps each input x in some given domain 

to an output h{x) in some given range. We consider algorithms that compute h{x) for each input x. One 

of the main issues of complexity theory is to measure the performance of algorithms with respect to
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computational time. To be more precise, for each input x we define the input length |x| as the length of 

some on coding of x. Then we measure the efficiency of an algorithm by an upper bound T(n) on the 

number of steps that the algorithm takes for any input x with |xj = n. Usually, it is difficult to calculate 

the precise form of T. For these reasons we will replace the precise form of T  by its asymptotic order. 

Therefore, we say that T(n) e 0(g(n)) if there exist constants c > 0 and a nonnegative integer no such 

that T{n) < cg(n) for all integers n > no, where g{n) is a function that has the same order as T(n).

A problem is called polynomially solvable if there exists a polynomial p  such that 

T(|x|) e 0(p(|x|)) for all inputs x for the problem, i.e. if there is a k such that T(|x|) g 0(|x|^).

The notion polynomially solvable depends on the encoding. We assume that all numerical data 

describing the problem are binary encoded. An algorithm is called pseudopolynomial if T{n) is 

polynomial where n is the input length with respect to unary encoding. A problem is called 

pseudopoly-nomially solvable if there exists a pseudopolynomial algorithm which solves the 

problem.

A problem is called a decision problem if the output range is {yes, no}. We may associate with each 

scheduling problem a decision problem by defining a threshold k  for the corresponding objective 

function/  This decision problem is: Does there exist a feasible schedule S  such th a t/(^  < A?

The class of all decision problems which are polynomially solvable is denoted by P.

When a optimization problem is formulated as a decision problem there is an important asymmetry 

between those inputs whose output is "yes" and those whose output is "no". A "yes" -answer can be 

certified by a small amount of information: the feasible schedule S  with f{s) < k. Given this certificate, 

the "yes" -answer can be verified in polynomial time. This is not the case for the "no" -answer. In 

general, let NP denote the class of decision problems where each "yes" input x has a certificate y, such 

that \y\ is bounded by a polynomial in |x| and there is a polynomial-time algorithm to verify that y is a 

valid certificate for x. (For detail discussion of complexity theory see [6].)

1 2.2 A/P-complete and AP-hard Problems
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The principal notion in defining NP -completeness is that of a reduction. For two decision problems 

P and Q, we say that P reduces to Q (denoted P x  Q) if  there exists a polynomial-time computable 

function y that transforms inputs for P into inputs for Q such that x is a "yes" -input for P  if and only if 

y(x) is a "yes" -input for Q.

A decision problem Q is called AP-complete if Q e NP and, for all other decision problems 

P G NP, we have P x  Q.

The following lemma provides us a straightforward approach for proving new problems to be 

AP-complete.

Lem m a 1. I f  P  and Q belong to NP, P  is AP-complete, and P  oc g ,  then Q is 

AP-complete.

An optimization problem is called AP-hard if the corresponding decision problem is AP-complete.

For the open-shop problem that is described in Section 1.1, when m = 2, a. polynomial time algorithm 

is proposed by Gonzalez & Sahni [7]. Recently, Pinedo [8] presented another simple dispatching rule: 

Longest Alternate Processing Time first (LAPT) which also solves this problem in polynomial time. 

However, from m > 3, many open shop scheduling problems are AP-complete. (Gonzalez & Sahni 

[7]).

Algorithm designers have developed several approaches to deal with AP-hard problems, such as the 

branch & bound algorithms (Brucker [1]). A branch-and-bound algorithm is based on the idea of 

intelligently enumerating all feasible solutions. Computational results show that these methods find 

optimal solutions in reasonable time for small to medium size problems.

1.3 Performance Ratio

Since most scheduling problems are AP-hard, it is usually difficult to find the optimum. As 

alternatives, in many practical situations, we try to find the approximated solutions that are guaranteed 

to have the objective value within a fixed percentage of optimal value. Algorithms that provide such 

solutions are approximation algorithms. For a scheduling problem that minimizes A(«) > 0, an
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10

algorithm H  is considered an r-approximation algorithm (r > 1) if for all instances I  of this problem, 

F{H(I)) < rF(S*(I)), where H(I) and S*(I) are solutions provided by algorithm H  and the optimum 

of this problem, respectively. The smallest r is called the best worst-case performance ratio of 

algorithm H.
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Chapter 2 
Empirical Study of Dense Schedule 
Performance Ratio

Although the branch and bound method referred to in previous sections is computationally more 

efficient than simple exhaustive enumeration, for a large number of machines and jobs it still requires 

high computational time and effort. Therefore, most of the real-life problems are solved by heuristic 

methods. According to Peter Brucker[6], a heuristic method is an approach without formal guarantee 

of performance. Dense schedules can be used as heuristic solutions to open shop problems. In this 

Chapter we will put our focus on dense schedules and see how good a dense schedule can be.

2.1 Dense Schedule and Its Properties

2 1.1 Dense Schedule

In a schedule A of a open-shop scheduling problem, there might be an idle time interval Q from time 

b to time c (denoted as Q[b,c) ) on machine M,. Q is rational if all jobs, if any, that are needed to be 

processed on machine Mi after time c are being processed on other machines during any time in Q. A 

dense schedule is a schedule S  in which all idle time intervals are rational.

2 1.2 Relationship between Dense Schedule and Optimal Schedule

Let D  be the set of all dense schedules to an open-shop problem, and let O be its optimal schedule 

set. W e would like to see D  fl O ^  0, which would mean that we could concentrate only on studying
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the set of dense schedules D  since we would be able to find optimal schedules to any open-shop 

problem from its dense schedule set D. Unfortunately, this is not necessarily the case. For some 

open-shop problems, D D O = 0. Consider the following example.

Example 1 Consider an open-shop problem with 3 machines and 3 jobs. The processing time of Job 1 

is 6 for all operations, of Job 2 is 3 for all operations, and of Job 3 is 4 for all operations. We may use 

the following matrix P to express this information. Each entry P,y is the processing time of the 

operation of Job j on Machine i.

P =

6 3 4 

6 3 4 

6 3 4

First of all, let us find all the possible dense schedules. Without loss of generality, we assign Job 1 on 

Machine 1, Job 2 on Machine 2 and Job 3 on Machine 3 at time 0. Following the definition of a dense 

schedule, the only schedule is shown in Graph 1 with the makespan of 20. (We could get other dense 

schedules by interchange the time-0 arrangement and their makespans are all 20).

Ml

M2 i

M3
14 20

Ml

M2

M3

J 1

7 12 18

Graph 1 Graph 2

A better schedule can be obtained in Graph 2, which is not dense (Since the idle time interval on M2 

after Job2 is finished is not rational). This proves D fl G = 0 for this problem.

2 1 3  Performance Ratio of Dense Schedule

The concept o f dense schedule was first introduced by Raczmany (see Barany and Fiala [9]), who
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also indicated in 1982 that the makespan of a dense schedule to an open-shop scheduling problem is 

Cmax < 2C*, where C, is the optimum makespan. In other words, the performance ratio of a dense 

schedule is bounded above by 2. Later, Wein[2] and Chen and Strusevich[3] showed by example that 

this ratio could be 2 -  -C. (See Example 2 below.) Chen and Strusevich[3] and Chen[4] have both 

presented this as a conjecture and proved the case when m -  3. This conjectured performance ratio 

has also been proved for m = 5 by Chen & Yu [5].

Example 2 Consider an open-shop problem with 5 machines and 6 jobs. The processing times of 

operations are shown below:

P =

0 1 1 1 1
1 0 1 1 I
1 1 0 1 I
1 1 1 0 1

1 1 1 1 0

It is easy to check that the following schedule is dense, and the makespan Cmax is 9.

M2 [ J3 1 J4 [ J5 I J1

M3 i J4 .[ J5.1..J1 I J2

M4

MS I 31 I J2 [ J3 i J4

iiisi

M

as
4 8 9

Graph 3

Obviously, an optimal schedule can be given by the following and the makespan is 5.
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M2

M3

M4

M5

J5 wmi wmi

J1 J6 J5

J2 J1 JG WMIwmi

J3 J2 J1 liisis iiiiii

J4 J3 J6

Graph 4

This demonstrates that the performance ratio of a certain dense schedule can be y  = 2 -  -j = 2 - - ~  

for m -  5.

22  Average Performance of Dense Schedule

As referred to in Section 2.1.3, (2 -  4r) may be the worst-case performance ratio of a dense 

schedule. In this section, we will show that the average performance ratio of dense schedules is actually 

much better than (2 -  Two sets of test problems are used to study the performance of dense 

schedules. The first set of problems consists of new benchmark problems given by Brucker et al. [1]. 

This set consists of 52 different problems. The second set of problems is randomly generated, which 

consists of 4300 different problems. The scheme of how these problems are generated will be 

explained in Section 2.2.2.1.

2.2.1 Study of New Beuchmark Problems from Brucker
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2 2 11 Introduction to New Benchmark Problems

As pointed out by Brucker et al. [1], those benchmarks from Taillard [10] are not really "hard" 

instances. Some measurements are defined and can be used to measure the "hardness" of instances.

1) LB: the trivial lower bound, i.e.

LB = max{{Pjj\i = 1,. . . ,«} U {PMi\i = 1,• •

Where Pjj denotes the sum of processing times of the operations belonging to job Jj (i.e. 

Pjj = fÿ), 7 = ! , . . . , «  and Pm, denotes the sum of processing times of the operations which 

should be processed on machine M, (i.e. Pm, = P,y), i =

2) MIN:M IN -  min({Pj)|/ = 1,. . . ,«} U {Pm,|« = L • •

3) DIFF: MIN/LB.

4) WORKLOAD: reflects "average" workload on the machines for a schedule divided by lower bound 

LB, I.e.

WORKLOAD = total processmg t o
m • LB

If the WORKLOAD of an instance is close to 1, the processing times {Pjj} and {Pm,} are all close and 

within a small range, and the chance of finding a solution with Cmax-value close to LB will be rather 

small. On the other hand, if the WORKLOAD of an instance is small, there are only a few jobs or 

machines with processing times close to LB and the rest of them have processing times much smaller 

than LB, and one can expect to find a schedule with Cmax-value close or even equal to LB.

The new "hard" problems generated by Brucker et al. [1] are of dimension 3 x 3 ,  4 x 4 ,  5 x 5 ,  6 x 6 ,  

7 X 7 and 8 X 8 withPP = 1000, DIPF e (0 .9 ,1) and IFOPKLOAD e (0. 85,1).

2.2 .1.2 Procedure to Generate a Sample of Dense Schedules

W e use the following procedure to find a sample for dense schedules o f an open-shop problem. At
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time 0, all the machines are free and all the jobs are available. For an open-shop problem with m 

machines and n jobs, there are different ways to assign jobs to machines. From each different way, we 

will sample one dense schedule. After fixing the arrangement at time 0, when one machine becomes 

available again, we randomly select a job from the jobs that need to be processed on this machine and 

are available at that time and assign it to this machine. When all the jobs are completed, we will get a 

dense schedule. Since there are m\ different time-0 arrangements, we could obtain m\ different dense 

schedules and calculate the performance ratio of each dense schedule.

2 2 13 Computational Results

We provide results for new benchmark problems with dimension up to 6 x 6.

Problems: names of new benchmark problems provided by Brucker [1].

DIFF: the DIFF of the problem.

WKLD: the WORKLOAD the problem.

Opt: the optimal makespan provided by Brucker [1].

N.O.Ds: Number of dense schedules generated.

Min-PR: the minimum performance ratio of performance ratios of all sample dense schedules. 

Max-PR: the maximum performance ratio of performance ratios of all sample dense schedules. 

Ave-PR: the average performance ratio of performance ratios of all sample dense schedules. 

Con-PR: the conjectured performance ratio or, the worst case performance ratio (2-^).
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Table 1

Problems DIFF WKLD Opt N.O.Ds Min-PR Max-PR Ave-PR Con-PR

j3-perO-l 1.000 1.000 1127 6 1.05 1.23 1.1470 1.6667

j3-per0-2 1.000 1.000 1084 6 1.00 1.01 1.0043 1.6667
j3-peri 0-0 0.900 0.9617 1131 6 1.01 1.08 1.0426 1.6667
j3-perlO-l 0.900 0.9630 1069 6 1.00 1.24 1.1311 1.6667
j3-peri 0-2 0.900 0.9493 1053 6 1.00 1.20 1.1168 1.6667
j3-per20-0 0.800 0.870 1026 6 1.05 1.27 1.1439 1.6667
j3-per20-l 0.800 0.886 1000 6 1.08 1.26 1.1837 1.6667
j3-per20-2 0.800 0.8997 1000 6 1.03 1.19 1.1098 1.6667

j4-per0-0 1.000 1.000 1055 24 1.00 1.15 1.0828 1.75

j4-per0-l 1.000 1.000 1180 24 1.00 1.27 1.1018 1.75

j4-per0-2 1.000 1.000 1071 24 1.01 1.27 1.1575 1.75

j4-perl0-0 0.900 0.9413 1041 24 1.04 1.30 1.1449 1.75
j4-perl0-l 0.900 0.9683 1019 24 1.01 1.29 1.1361 1.75

j4-perl0-2 0.900 0.9433 1000 24 1.00 1.31 1.1206 1.75

j4-per20-0 0.800 0.8898 1000 24 1.05 1.27 1.1543 1.75

j4-per20-l 0.800 0.9087 1004 24 1.04 1.31 1.1829 1.75

j4-per20-2 0.800 0.9087 1009 24 1.01 1.19 1.1076 1.75
j5-per0-0 1.000 1.000 1042 120 1.01 1,31 1.1705 1.8
j5-perO-l 1.000 1.000 1054 120 1.00 1.35 1.2140 1.8
j5-per0-2 1.000 1.000 1063 120 1.03 1.29 1.1654 1.8
j5-perl0-0 0.900 0.948 1004 120 1.02 1.32 1.1812 1.8

j5-perlO-l 0.900 0.9294 1002 120 1.01 1.29 1.1799 1.8
j 5-peri 0-2 0.900 0.934 1006 120 1.03 1.27 1.1447 1.8
j5-per20-0 0.800 0.895 1000 120 1.02 1.35 1.1356 1.8

j5-per20-l 0.800 0.8844 1000 120 1.00 1.29 1.1593 1.8

j5-per20-2 0.800 0.911 1012 120 1.00 1.25 1.1222 1.8
j6-per0-0 1.000 1.000 1056 720 1.03 1.28 1.1340 1.83
j6-per0-l 1.000 1.000 1045 720 1.02 1.32 1.1642 1.83
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Table 1 (Continued.)

Problems DIFF WKLD Opt N.O.Ds Min-PR Max-PR Ave-PR Con-P
j6-per0-2 1.000 1.000 1063 720 1.02 1.30 1.1429 1.83

j6-perl0-0 0.900 0.944 1005 720 1.02 1.32 1.1494 1.83
j6-perI0-l 0.900 0.9492 1021 720 1.02 1.27 1.1371 1.83
j6-perl0-2 0.900 0.9463 1012 720 1.01 1.35 1.1476 1.83
j6-per20-0 0.800 0.9II 1000 720 1.02 1.27 1.1213 1.83

j6-per20-l 0.800 0.9045 1000 720 1.00 1.26 1.1201 1.83

j6-per20-2 0.800 0.8797 1000 720 1.00 1.30 1.1169 1.83

From Table 1, we can see that for the new benchmark problems, the average performance ratios of 

dense schedules are very close to one, much less than the conjectured performance ratios. In some 

cases, the minimum performance ratios are equal to one, which means the corresponding dense 

schedules are optimal.

2 2.2 Study of Random Generated Problems

The previous section gave us a general idea of the performance of a dense schedule on small size 

problems. In this section, we want to study the performance of dense schedule on problems with larger 

dimension. Section 2.2.2.1 introduce the scheme of generating our problems with larger sizes. The 

results are presented in Section 2.2.2.2.

2.2.2.1 The Scheme of Generating Problems

Our goal is to generate more general problems that not only have large dimension but have various 

DIFF and WORKLOAD levels as well. One approach is assuming Py, the duration of operation is 

normal distributed with various means and variance. The following program is written in Matlab: 

function p=new_generate(m,a,b) 

for i=l :m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

forj=l:m

p(i,j)=normmd(a,b);

ifp(ij)<0

p(ij)=0;

end

end

end

where m (number of machines and jobs), a (mean) and b (variance) are parameters and they can have 

different values in order to obtain different problems. We let m = 5,50,100,150; a -  100; 

b = 10,20,30,40,50,60,70,80,90,100,150,200 and have generated 100 problems for each combination 

(m,a,b) and obtained 4300 different problems in total.

2.2.2.2 Computational Results

We randomly choose only one dense schedule for each problem using the procedure discussed in 

Section 2.2.1.2 without fixing the time-0 arrangement, that is, we randomly select a job to be assigned 

on a free machine from the jobs that need to be processed on this machine and are available at that time 

(each job has the same probability to be selected) from time 0 till all the jobs are completed. The results 

are shown below:

• m: the number of machines and jobs.

• N.O.P: Number of problems with the same number of machines and jobs.

• I. O.DIFF: the interval of DIFF of the corresponding problems.

• I.O.WKLD: the interval of WORKLOAD of the corresponding problems.

• Min-PR: the minimum performance ratio of performance ratios of all (N.O.P.) generated dense 

schedules.

• Max-PR: the maximum performance ratio of performance ratios of all (N.O.P.) generated dense 

schedules.

• Ave-PR: the average performance ratio of performance ratios of all (N.O.P.) generated dense 

schedules.
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Con-PR; the conjectured performance ratio or, the worst case performance ratio (2--A). 

Table 2

m N.O.P. I.O.DIFF 1.0. WKLD Min-PR Max-PR Ave-PR Con-PR

5 1200 0.152--0.940 0.354-0.975 1.0000 1.3425 1.0712 1.8

50 1200 0.140--0.928 0.329-0.971 1.0004 1.0646 1.0161 1.98
100 1200 0.138--0.925 0.318-0.952 1.0008 1.0344 1.0088 1.99
150 700 0.139--0.902 0.208-0.925 1.0018 1.0217 1.0074 1.99

Since the optimal makespans are unknown, we use LB instead of C* while calculating the 

performance ratio. We can see from Table 2 that the performance of a dense schedule is not affected by 

the dimension of problem. It is easy to verify that therefore, the actual performance ratio

could be even better.

Based on the above consideration and computation, we could conclude that the average performance 

ratio of dense schedule is excellent. Therefore, it is reasonable to develop some heuristic approaches to 

generate dense schedule.
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Chapter 3 

Algorithms to Generate Dense Schedules

In this chapter we will develop 12 different heuristic algorithms to generate dense schedules based on 

different criteria to select machines and jobs at each step, and we call them machine-job heuristic 

algorithms (because in these algorithms, we select a machine first, and then assign a job based on the 

selected machine). Some notation will be introduced in Section 3.1.1. Three different criteria to select a 

machine and four criteria to select a job are presented and explained in subsequent Sections 3.1.2 and 

Section 3.1.3. The general procedure of these heuristic algorithms is described in Section 3.1.4.

3.1 Twelve Algorithms to Generate Dense Schedules

3.1.1 Some Important Notations

Jj\ t h e j o b , )  = 1,2, ...,».

M,: the N  machine, i =

makespan-. a variable used to calculate Cmax of a given problem.

P-. the processing time matrix. Each entry P,y is the processing time of the operation of Jj on M,. (See 

Section 2.1.2)

Pn Pn ■ P l r t

p  = Pn P  22  ■ ■ P i n

P m l P  m2
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S: the start time matrix. Each entry Sy is the start time of the operation of Jj on M, . This matrix is the 

solution of our algorithm and we can use this to construct a dense schedule easily. For example, for an 

open shop with

P

we may obtain a solution with;

S

1 2 3

2 3 4
3 4 5

0 3 9 

3 0 5 
9 5 0

then the corresponding dense schedule is as follows;

time 0 time 3 time 5 time 9

Ml start J i start Jz start J3

Mz start Jz start J\ start J3
M] start J3 start Jz startJi

M1 31

M2 B 

M3
| \  ' . S S ' . S  % \  \  \  \  \  ^  j  \  \  S '  N S S \

5 9 12

Graph 5

Also, at any time, the following variables are used to record the intermediate results.

AM: a 1 X w vector, each entry AMj shows the time needed for Mi to be available to process the next 

job;

AJ: similar to AM, is a 1 x » vector. Each entry AJj shows the time needed for Jj to be available to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

processed on another machine;

RPM: a 1 X m vector, each entry PPM, shows the total remaining processing time (workload) of 

machine i. The initial value of RPM i is the work-load for machine M„

RPMi — ^ P  ÿ = Pm,;
/=!

RPJ: a 1 X » vector, each entry PPJ, shows the total remaining processing time of job j. The initial 

value of RPJi is the total processing time for job J),
m

J , = y = ^3,;
/=!

ROM: a 1 X 7M vector, each entry ROMt is the total number of operations on Machine i that have not 

been processed yet;

ROJ: a 1 X » vector, each entry ROJ; is the total number of operations of Job j  that have not been 

processed yet;

total_operation: number of total operations that are not processed yet. Algorithms will stop if 

total_operation = 0.

3 1.2 Criteria to Select a Machine

a) Longest Remaining Processing Time Arrange the machines in the descending order of their 

remaining processing times and select one machine each time in this order.

b) Largest Number of Remaining Operations Arrange the machines in the descending order of their 

remaining numbers of operations that have not been done yet and select one machine each time in this 

order.

c) Natural Order Select one machine each time according to its index.

* When using Criteria a) or b), ties are broken by choosing the machine with the smallest index.

3,1.3 Criteria to Select a Job
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1) Longest Remaining Processing Time Arrange the jobs in the descending order of their remaining 

processing times and select one job each time in this order.

2) Largest Number of Remaining Operations Arrange the jobs in the descending order of their 

remaining numbers of operations that have not been done yet and select one job each time in this order.

3) Shortest Processing Time (SPT) Arrange the jobs in the ascending order of the processing times 

of the operations that will be processed on the selected machine and select one job each time in this 

order.

4) Longest Processing Time (LPT) Arrange the jobs in the descending order of the processing times 

of the operations that will be processed on the selected machine and select one job each time in this 

order.

* Ties are broken by choosing the job with the smallest index.

3 1.4 General Procedure of Machine-Job Heuristic Algorithms

The steps of the machine-job heuristic algorithm are as follows:

Step 1. For a given open-shop problem, P, calculate initial RPM, RPJ, ROM  and R O J , and calculate 

total_operation. Set all entries of AM  and A J  to zero, which means all machines and jobs are available 

at time 0. Set t = 0, makespan = 0 and P = 0.

Step 2. Put all the available machines (AM, = 0) into machine-candidate-pool.

Step 3. Select a machine from the pool based on one of the above criteria introduced in Section 3.2.2. 

Suppose M, has been chosen.

Step 4. Put all the available jobs (AJ) = 0) that still need to be processed on M, (P,y 0) into 

job-candidate-pool and select a job from it based on one of the above criteria introduced in Section 

3.2.3. Suppose Jj has been chosen. If the job-candidate-pool is empty, then goto Step 6.

Step 5. Assign J) on M „ starting at time t and update AM, AJ, RPJ, RPM, ROJ, ROM, P, S  and 

total_operation as follows:
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^ 0 )  =  f  ( ;  j )
J R f L f C O  - - f ( z j )

j t F Y k f O O  ==jR/%Vf(z) --J)(z,;)

RCWkM)) == R(3/k%z) - 1  

f O j )  =  0
s(i,j) = make span 

total_operation = total_operation -  1

Step 6. Remove M, from machine-candidate-pool and repeat Step 3 to Step 5 until 

machine-candidate-pool is empty.

Step 7. Find the time t when at least one of the occupied machines will be available to accommodate 

the next job:

t = min-(^all the non-zero entries oïA M y .

update AJ  and makespan as follows:

AM{i) = AM(i) -  t : i -  I , . . .m,AM(i) ^  0

AJ(j) = AJ(j) - t  : j  = 1,... n,AJ(j) 0

makespan = makespan + t.

Step 8. Repeat steps 3 to 7 until all the operations have been processed (until total_operation = 0).

Step 9. Calculate C^ax as follows:

t = max <[ all the non-zero entries ofv4M^

Cmax = makespan + t.

Machine-job algorithms are briefly presented as follows 

BEGIN

Calculate RPM, RPJ, ROM  and ROJ based on the criteria that 

will be used:
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Calculate total_operation] 

t = 0; makespan = 0;

While total_operation ^  0

Use one of the three criteria to arrange the machine that are 

currently available;

Select one machine each time according to the constructed order, 

DO

Use one of the four criteria to select a job from those jobs 

that are available currently and haven’t been processed on 

the selected machine;

Assign the selected job on the selected machine, and update 

the corresponding variables as specified in Step 5;

END

IF totaljoperation 0

t = min-(^all the non-zero entries of AM y  ;

AM(J) -  AM(i) - t  : i = 1,,.. m,AM(i) ^  0;

AJ(j) = AJ(j) - t  : j  = I, . . .  n,AJ(j) * 0; 

makespan = makespan + t;

ELSE t = max ̂  all the non-zero entries of AM^- ;

Umax = makespan 4- 1 

END 

END

3.2 Computational Results

The two sets of test problems used in Chapter 2 are used again to evaluate the performance of 

machine-job heuristic algorithms.
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3 2.1 Results for New Benchmark Problems from Brucker

• Problems: names of new benchmark problems provided by Brucker [1].

• DIFF: the DIFF of the problem.

• WKLD: the WORKLOAD of certain problem.

• Min-PR: the minimum performance ratio of performance ratios of all 12 generated dense schedules.

• Max-PR: the maximum performance ratio of performance ratios of all 12 generated dense schedules.

• Ave-PR: the average performance ratio of performance ratios of all 12 generated dense schedules.

• Con-PR: the conjectured performance ratio or, the worst case performance ratio (2--g). 

Performance ratios that are in italics are calculated using LB since optimal C*s are unknown.

Table 3

Problems DIFF WKLD Min-PR Max-PR Ave-PR Con-PR

j3-perO-l 1.000 1.000 1.0470 1.2325 1.0934 1.6667
j3-per0-2 1.000 1.000 1.0000 1.0120 1.0035 1.6667
j3-perl0-0 0.900 0.9617 1.0080 1.0849 1.0348 1.6667
j3-perl0-l 0.900 0.9630 1.0000 1.2002 1.0913 1.6667
j3-peri 0-2 0.900 0.9493 1.0066 1.1956 1.1348 1.6667
j3-per20-0 0.800 0.870 1.0478 1.2661 1.1590 1.6667
j3-per20-l 0.800 0.886 1.0760 1.2140 1.1890 1.6667
j3-per20-2 0.800 0.8997 1.0320 1.1880 1.1049 1.6667
j4-per0-0 1.000 1.000 1.0000 1.0123 1.0062 1.75
j4-per0-l 1.000 1.000 1.0169 1.2729 1.1199 1.75
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Table 3 (continued)

Problems DIFF WKLD Min-PR Max-PR Ave-PR Con-PR

j4-per0-2 1.000 1.000 1.0140 1.1858 1.1307 1.75

j4-perl0-0 0.900 0.9413 1.0365 1.2968 1.1150 1.75

j4-perl0-l 0.900 0.9683 1.0854 1.1590 1.1213 1.75

j4-perl0-2 0.900 0.9433 1.0000 1.1290 1.0803 1.75

j4-per20-0 0.800 0.8898 1.0560 1.2730 1.1676 1.75

j4-per20-l 0.800 0.9087 1.0777 1.3078 1.1480 1.75

j4-per20-2 0.800 0.9087 1.0704 1.1298 1.1071 1.75

j5-per0-0 1.000 1.000 1.1190 1.1737 1.1622 1.8
j5-perO-l 1.000 1.000 1.0531 1.1082 1.0594 1.8

j5-per0-2 1.000 1.000 1.1016 1.1571 1.1328 1.8

j5-perl0-0 0.900 0.948 1.0926 1.2849 1.1889 1.8

j5-perlO-l 0.900 0.9294 1.0549 1.1996 1.1415 1.8
j5-perl0-2 0.900 0.934 1.0706 1.1948 1.1483 1.8
j5-per20-0 0.800 0.895 1.0420 1.2620 1.1432 1.8
j5-per20-l 0.800 0.8844 1.0670 1.1870 1.1602 1.8

j5-per20-2 0.800 0.911 1.0000 1.2381 1.1217 1.8
j'6-perO-O 1.000 1.000 1.0777 1.1828 1.1102 1.833
j6-per0-l 1.000 1.000 1.0651 1.2201 1.1384 1.833
j6-per0-2 1.000 1.000 1.1044 1.1750 1.1541 1.833
j6-perl0-0 0.900 0.9440 1.1025 1.2488 1.1488 1.833
j6-perl0-l 0.900 0.9492 1.1107 1.1900 1.1440 1.833
j6-perl0-2 0.900 0.9463 1.0543 1.1877 1.1264 1.833
j6-per20-l 0.800 0.9045 1.0640 1.1540 1.1083 1.833
j6-per20-2 0.800 0.8797 1.0320 1.1500 1.0900 1.833
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Table 3 (continued)

Problems DIFF WKLD Min-PR Max-PR Ave-PR Con-PR
j7-per0-0 1.000 1.000 1.1100 7.2600 7.7973 7.3J7
j7-per0-l 1.000 1.000 1.0749 1.1886 1.1285 1.857

j7-per0-2 1.000 1.000 1.0407 1.1809 1.1516 1.857
j7-perl0-0 0.900 0.9584 L7200 7.2770 7.7739 7.3J7
j7-perl0-l 0.900 0.9440 1.0510 1.2200 1.1303 1.857
j7-perl0-2 0.900 0.9509 1.0708 1.2473 1.1602 1.857

j7-per20-0 0.800 0.8786 1.0290 1.1080 1.0713 1.857
J7-per20-l 0.800 0.9307 1.0547 1.1592 1.1208 1.857

j7-per20-2 0.800 0.9253 1.0578 1.2273 1.1542 1.857
j8-perO-l 1.000 1.000 7.7220 7.2670 7.2793 7.37J
j8-per0-2 1.000 1.000 7.7470 7.3270 7.2226 7.37J
j8-perl0-0 0.900 0.9695 7.0960 7.2JJ0 7.7630 7.37J
j8-perlO-l 0.900 0.9449 7.09 JO 1.1690 7.7223 7.37J
j8-perl0-2 0.900 0.9504 7.0(9(90 7.7390 7.7333 7.37J
j8-per20-0 0.800 0.9050 1.0460 1.2250 1.1103 1.875

j8-per20-l 0.800 0.8801 1.0350 1.1330 1.0744 1.875

J8-per20-2 0.800 0.9130 7.0970 7.2330 7.7346 7.37J

The results from Table 3 show that the average performance ratios of dense schedules generated by 

using the heuristic algorithms are not necessarily better than those in Table 1, since the performance 

ratios in Table 1 are already very close to 1. Following graphs are Flistograms of performance ratios of 

720 random generated dense schedules for Problem j6-perl0-0 and Problem j6-per20-2. They could 

help us learn the general type of the distribution of dense schedules’ performance ratio.
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1.025 1.075 1.125 1.175 1.225 1.275
1.050 1.100 1.150 1.200 1.250 1.300

j6-perl0-0

Graph 6

1.000 1.050 1.100 1.150 1.200 1.250 1.300
1.025 1.075 1.125 1.175 1.225 1.275

j6-per20-2

Graph 7
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3 2 2 Results for Randomly Generated Problems

• m; the number of machines and jobs,

• N.O.P: Number of problems with same number of machines and jobs..

• I.O.DIFF: the interval of DIFF of the corresponding problems.

• 1.0. WKLD: the interval of WORKLOAD of the corresponding problems.

• Min-PR: the minimum performance ratio of performance ratios of all (12 x N.O.P,) generated dense 

schedules.

• Max-PR: the maximum performance ratio of performance ratios of all (12 x N.O.P.) generated dense 

schedules.

• Ave-PR: the average performance ratio of performance ratios of all (12 x N.O.P.) generated dense 

schedules.

• Con-PR: the conjectured performance ratio or, the worst case performance ratio (2--^).

Table 4

m N.O.P. 1.0.D1FF 1.0. WKLD Min-PR Max-PR Ave-PR Con-PR
5 1200 0.152--0.940 0.354--0.975 1.0000 1.1567 1.0698 1.8

50 1200 0.140--0.928 0.329--0.971 1.0016 1.0458 1.0132 1.98
100 1200 0.138--0.925 0.318--0.952 1.0024 1.0322 1.0092 1.99
150 700 0.139--0.902 0.208--0.925 1.0067 1.0144 1.0067 1.99

In this table the average performance ratios have been improved a little compared to those in Table 2.
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Conclusion

We have studied the average performance ratio of dense schedules for open-shop problems. The 

computational experiments show that the average performance of dense schedules as the solutions of 

open-shop problems is much better than we expected. We have presented 12 heuristic algorithms to 

generate dense schedules. We will work on open-shop problems with job release time and study the 

average performance of dense schedules for open-shop problems with random processing time as 

further research.
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Appendix

All the computations in this thesis are done by MATLAB for windows, Version 6.5.0 Release 13 on 

Intel Pentium Processor 1600MHz. Followings are all the Matlab codes used.

1 Generate m! Random Dense Schedules for a Benchmark Problem  
(Used in Section 2.2.1.2)

1.1 Main Function

function [makespan_n,s_n,PR]==RandomGenerate_SAMPLEl (p,optimal) 

% given the operation matrix p, output the starting time matrix s_n 

% and makespan.

LB=max(max(sum(p),max(sum(p,2)))); 

MIN=mm(min(sum(p),min(sum(p ,2))));

DIFF=MIN/LB;

[m,n]=size(p); % m is the # of machines, n is the # of jobs.

WORKLOAD=(sum(sum(p)))/(m*LB);

s_norepeat=[];

makespan_n=0;

number=l;
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PR=0; 

for i l =1:6 

for i2=l:6 

for i3=l:6 

for i4=l:6 

for i5=l:6 

for i6=l:6 

job_pooU[il,i2,i3,i4,i5,i6]; 

if nosame(job_pool)==l 

temp=p;

s-[];
convert;

totaI_operation=sum(sum(operation, 1 )) ; 

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

makespan=0; 

for xl=l:6 

m_to_be_assigned=xl ; 

job_to_be_assigned=job_pool(l ,xl ); 

random_assign; 

end

t=min(nonzeros (AM)) ; 

makespan=makespan+t; 

while total_operation~=0 

AM=time_lapse(AM,t); 

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

m candidates=zeros AM;
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for i=l ;size(zeros_AM,2) 

new_m_candidates=eliminate_zeros(m_candidates); 

m_candidates=new_m_candidates; 

random_no=floor(r and( 1 ) * size(m_candidates ,2)+1 ) ; 

m_to_be_assigned=m_candidates(random_no); 

m_candidates(random_no)=0; 

zeros_AJ=find_zero(AJ); 

nonzeros_pij==find(p(m_to_be_assigned,:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

sameJob=find_same(zeros_AJ,nonzeros_pij); 

if samejob~=0 

j ob_candidates=s ame J  ob ; 

job_to_be_assigned=job_candidates 

(floor(rand(l)*size(job_candidates,2)+l));

random_assign;

end

end

if all_zero(AM)==0 

t=min(nonzeros(AM)); 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

samejob=0;
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makesp an=makesp an+t; 

end

s_norep eat( :, : ,number)=s ; 

if optimal~=0

PR(number, 1 )=makesp an/optimal; 

else PR(number,l)=makespan/LB; 

end

number=number+l ;

makesp an_norepeat(number, 1 )=makespan; 

end

s=[];
p=temp;

Cmax(times)=makespan;

end

end

end

end

end

end

Cmax;

LB;

MIN;

DIFF;

WORKLOAD;

MaxCmax=max(Cmax) ;

MinCmax=min(Cmax) ;
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1.2. Subfunctions Used in the above Main Function

1.2.1 Function to Caculate AM and AJ When Time t Flas Lapsed 

timelapse:

function b=time_lapse(a,t)

% this function is used to caculate AM and AJ when time t has lapsed 

m_tl=size(a,2); 

for i_ tl-l :m_tl 

if a(i_tl)~=0 

b(i_tl)=a(ijl)-t; 

else b(i_tl)=0; 

end 

end

1.2.2 Function to Check Whether There Are Same Entries in Vector p 

nosame:

function ans=nosame(p)

% if there are no similar entry in vector p, returns 1 

ans=l;

for i_ns=l:size(p,2) 

for j_ns=(i_ns+l):size(p,2) 

if p(i_ns)==p(j_ns) 

ans=0; 

break 

end 

end 

end
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1.2.3 Function to Convert Matrix p into An 0-1 Matrix 

convert:

%covert matrix p to an 0-1 matrix 

for i=l:m 

for j=l:n 

if p(ij)==0 
operation(i,j)=0; 

s(ij)=-l; 

else operation(ij)=l; 

end 

end 

end

1.2.4 Codes to Assign Job j on Machine i 

random_assign:

% this m-file is to assign job j on machine i.It will do the following

% calculations:

i=m_to_be_assigned;

j=job_to_be_assigned;

AM(i)=p(i,j);

AJ(i)=p(ij);
opration(ij)=0;

s(i,j)=makespan;

total_operation=total_operation-1 ;

p(ij)=0;

1.2.5 Function to Find Same Entries in Matrix a and b
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find_same:

function same=find_same(a,b)

%this function is to find same entries in 2 matrix a and b.(each entry 

%in a or b appears only once) a and b are both row matrixes. 

m_fs=size(a,2); 

n_fs=size(b,2); 

i_fs-l; 

same(l)=0; 

forx_fs=l:m_fs 

for y_fs=l :n_fs 

if a(x_fs)==b(y_fs) 

same(i_fs)=a(x_fs); 

i_fs=i_fs+l; 

end 

end 

end

1.2.6 Function to Return the Index of Non-zero Entries in Matrix a 

find_zero:

function x=find_zero(a)

%this function will return the index of non-zero entries in matrix a. here

%a is an n*m matrix

[m_fz,n_fz]=size(a) ;

i_fz=l;

x=l;

for x_fz=l :m_fz 

for y_fz=l :n_fz 

if a(x_fz,y_fz)==0
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x(i_fz)=(x_fz-1 )*n_fz+y_fz; 

i_fz=i_fz+l ; 

end 

end 

end

1,2.7 Function to Check If All Entries in a is 0 

all_zero:

function result=all_zero(a)

%this function is to check if all entries in a is 0, if yes, return 

%1,otherwise return 0 

x_az=size(a,2); 

result=l; 

for i_az=l :x_az 

if a(i_az)~=0 

result=0; 

break 

end 

end

2. Randomly Generate an Open-shop Problem (Used in Section 2.2.2 1)

function p=new_generate(m,mean,var)

% p=new_generate(m,mean) 

for i=l ;m 

for j=l:m  

p(i,j)=normmd(mean,var);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

ifp(ij)<0
p(ij)=o;

end

end

end

LB=max(max(sum(p),max(sum(p,2))))

MIN=min(min(sum(p),min(sum(p,2))))

DIFF=M[N/LB

WORKLOAD=(sum(sum(p)))/(m*LB)

3. Randomly Generate One Dense Schedule for an Open-shop Problem  
(Used in Section 2.2.2.2)

3.1 Main Function

function [makespan_one,PR]=RandomGenerateone(p)

% given the operation matrix p, output the starting time matrix s_one and 

% makespan. 

s_one=[]; 

makesp an_one=0 ;

PR=0;

LB=max(max(sum(p),max(sum(p,2))));

MIN-min(min(sum(p) ,min(sum(p, 2)))) ;

DIFF=MIN/LB;

[m,n]=size(p);

W ORICLOAD=(sum(sum(p)))/ (m*LB);
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S=[];

convert;

total_op er ation=sum(sum(op er ation, 1 ));

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

makespan=0; 

while total_operation~=0 

AM=time_laps e(AM,t) ;

A J=time_lap s e(A J,t) ; 

zeros_AM=find_zero(AM); 

m_candidates=zeros_AM; 

for i=l:size(zeros_AM,2) 

new_m_candidates=eliminate_zeros(m_candidates); 

m_candidates=new_m_candidates; 

random_no=floor(rand(l)*size(m_candidates,2)4-l); 

m_to_be_assigned=m_candidates(random_no); 

m_candidates (random_no)=0; 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p(m_to_be_assigned,:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

sameJob=find_same(zeros_AJ,nonzeros_pij); 

if samejob~=0 

j ob_candidates=s ame J  ob ;

job_to_be_assigned=job_candidates(floor(rand(l)*size(job_candidates,2)-i-l));

randomassign;

end
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end

if all_zero(AM)==0 

t=min(nonzeros (AM)) ; 

end

if total_operation==0 

t=max(nonzeros (AM)) ; 

end

zeros_AJ=0; 

zeros_AM=0; 

nonzeros_pij=0; 

samejob=0; 

makesp an=makesp an+t; 

end

PR=makesp an/LB ; 

s_one=s

makespan_one=makespan;

3.2 Subfunction Used in the above Main Function

3.2.1 Function to Eliminate Zero Entries in Coloum Vector a

eliminate_zeros:

function f=eliminate_zeros(a)

% this function is to eliminate zero entries in coloum vector a 

nonzeros_a=find(a) ; 

n_ez=size(nonzeros_a,2); 

for i_ez=l :n_ez 

f(i_ez)=a(nonzeros_a(i_ez)) ;
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end

4 Codes for 12 Heuristic Algorithms ( Used in Chapter 3)

4.1 Criteria a) to Select a Machine + Criteria 1) to Select a job

4.1.1 Main Function 

function makespan=Al(p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];
convert;

total_operation=sum(sum(operation, 1 ));

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

RPJ=zeros(l,n);

RPM=zeros(l,m); 

makespan=0; 

for i=l :n 

for j=l:m

RPJ(i)=RPJ(i)+p(j,i);

end

end

for i=l ;m 

for j= l:n  

RPM(i)=RPM(i)+p(ij);
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end

end

maxRP J=max(RP J) ; 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

RPM_order=sortdescending(RPM,zeros_AM); 

for x_mj=l :size(RPM_order,2) 

zeros_A J=find_zero(A J) ; 

nonzeros_pij=find(p (RPM_or der (x_mj ), : )) ; 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

same J  ob=find_s ame(zeros_AJ,nonzeros_pij ) ; 

if samejob~=0

j o b t o b  e_assigned=fmd_max(RP J, s ame J  ob) ; 

assign_Al ; 

end 

end 

AM; 

s;

AJ;

if all_zero(AM)==0 

t=min(nonzeros(AM)) ; 

end

if totalop eration==0 

t=max(nonzeros(AM));
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end

zeros_AJ=0; 

zeros_AM=0; 

nonzeros_pij=0; 

same Jo b -0 ;

RPM_order=0;

makespan=makespan+t;

end

p=templ;

makespan;

maxRPJ;

maxRPM;

4.1.2 Subfunctions Used in the above Function

a) Function to Sort the Entries According the Ascending Order 

sortdescending:

function order=sortascending(a,b)

% given any 1 *q matrixa,and an index set b, return the 

% order of the values from the smallest to the largest in b. 

q=size(b,2); 

order=b; 

for y l= l:(q-l) 

for xl= l:q-yl 

if a(b(xl))>a(b(xl+l)); 

temp=a(b(xl)); 

a(b(xl))=a(b(xl+l)); 

a(b(xl+l))=temp;
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temp=order(xl); 

order(xl )=order(xl+1 ); 

order(xl+1 )=temp ; 

end 

end 

end

b) Function to Find the Maximum Entry of a Given Matrix 

find_max:

function max_index=find_max(a_fm,b_fm)

%this function is to return the index of the maximum entry of matrix a(b) 

n_fm=size(b_fm,2); 

max_index=b_fm( 1 ) ; 

for x_fm=l :n_fm-l 

if a_fm(b_fm(x_fm))<a_fm(b_fm(x_fm+l )) 

max_index=b_fm(x_fm+l ) ; 

else

temp=a_fm(b_fm(x_fm+l )); 

a_fm(b_fm(x_fm+1 ))=a_fm(b_fm(x_fm)) ; 

a_fm(b_fm(x_fm))=temp ; 

end 

end

C) Codes to Assign Job j on Machine i 

assign_Al :

% this m-file is to assign job j on machine i.It will do the following 

% calculations: 

i=RPM_or der(x_mj ) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

j - j  ob_to_b e_assigned; 

AM(i)=p(ij);

AJ(j)=p(ij);
RPJ(j)=RPJ(j)-p(ij)i
RPM(i)=RPM(i).p(ij);

opration(i,j)=0;

s(i,j)=makespan;

totalop er ation=total_op er ation-1 ; 

p(ij)=0;

4.2 Criteria a) to Select a Machine + Criteria 2) to Select a Job

4.2.1 Main Function 

function makesp an=A2(p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];

convert;

total_operation=sum(sum(oper ation, 1 ));

AM=zeros(l,m);
AJ=zeros(l,n);

t=0; % t is the current time

RPJ=zeros(l,n);

RPM=zeros(l,m);
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ROJ=zeros(l,n); 

for i=l :n 

for j=l:m  

ROJ(i)=ROJ(i)+operation(i,j); 

end 

end

makespan-0; 

for i=l:n 

for j=l:m

RPJ(i)=RPJ(i)4f(j,i);
end

end

for i=l:m 

for j=l:n 

RPM(i)=RPM(i)+p(ij); 

end 

end

maxRPJ=max(RPJ); 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM) ; 

RPM_order=sortdescending(RPM,zeros_AM); 

for x_mj=l :size(RPM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p(RPM_order(x_mj),:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0;
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end

s ame J  ob=find_s ame(zeros_A J,nonzeros_pij) ; 

if samejob~=0

j ob_to_b e_assigned=find_max(RO J, s ame J  ob); 

assign_A2; 

end 

end 

AM; 

s;
AJ;

if all_zero(AM)==0 

t=min(nonzeros (AM)) ; 

end

if total_operation==0 

t=max(nonzeros (AM)) ; 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

sameJob-O;

RPM_order=0; 

makesp an=makesp an+t; 

end

p=templ; 

makesp an; 

maxRPJ; 

maxRPM; 

assign_A2:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

4.2.2 Subfunction Used in the above Main Function 

a) Codes to Assign Job j on Machine i

% this m-file is to assign job j on machine i.It will do the following

% calculations:

i=RPM_order(x_mj);

j=job_to_be_assigned;

AM(i)=p(i,j);

AJ(j)=p(ij); 
ROJ(j)=ROJ(j)-l;
RPM(i)=RPM(i)-p(ij);

opration(i,j)-0;

s(ij)=makespan;

total_op er ation=total_operation-1 ;

p(ij)=o;

4.3 Criteria a) to Select a Machine + Criteria 3) to Select a Job

4.3.1 Main Function 

function makesp an=A3 (p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];

convert;

total_op er ation=sum(sum(op er ation, 1 ));

AM-zeros(l,m);

AJ=zeros(l,n);
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t=0;

RPJ=zeros(l,n);

RPM=zeros(l ,m); 

makespan=0; 

for i=l :n 

for j=l:m

RPJ(i)=RPJ(i)+p(j,i);
end

end

for i=l :m 

for j=l:n 

RPM(i)=RPM(i)+p(ij); 

end 

end

maxRP J=max(RP J) ; 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_laps e(AM,t) ;

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

RPM_order=sortdescending(RPM,zeros_AM); 

for x_mj=l :size(RPM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p (RPM_order (x_mj ),:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

sameJob=fmd_same(zeros_AJ,nonzeros_pij); 

if samejob~=0
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job_to_be_assigned=find_min(p(RPM_order(x_mj),:),sameJob);

assign_A3,

end

end

AM;

s;

AJ;

if all_zero(AM)==0 

t=min(nonzeros (AM)) ; 

end

if total_operation--0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

samejob=0;

RPM_order=0; 

makesp an-makesp an+t; 

end

p=templ;

makespan

maxRPJ

maxRPM

4.3.2 Subfunctions Used in the Above Main Function

a) Function to Find the Index of the Minimum Entry in Matrix a
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find_min:

function min_index=fmd_min(a_fm,b_fm)

%this function is to return the index of the minimum entry of matrix a(b) 

n_fm=size(b_fm,2); 

min_index=b_fm( 1 ) ; 

for x_fm=l :n_fm-l 

if a_fm(b_fm(x_fm))>a_fm(b_fm(x_fm+l )) 

min_index=b_fm(x_fm+l); 

else

temp-a_fm(b_fm(x_fm+l )); 

a_fm(b_fm(x_fm+l ))=a_fm(b_fm(x_fm)) ; 

a_fm(b_fm(x_fm))=temp ; 

end 

end

b) Codes to Assign Job j on Machine i 

assign_A3:

% this m-file is to assign job j on machine i.It will do the following 

% calculations: 

i=RPM_order(x_mj); 

j =j o b t o b  e_assigned;

AM(i)=p(ij);

AJG)=p(ij)i
RPM(i)=RPM(i)-p(ij);

opration(ij)-0;

s(i,j)=makespan;

to talop eration=total_op er ation-1 ;

P ( i j ) = 0 ;
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4.4 Criteria a) to Select a Machine + Criteria 4) to Select a Joh

4.4.1 Main Function 

function makesp an=A4 (p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];
convert;

totalop eration=sum(sum(op er ation, 1 )) ;

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

RPJ=zeros(l,n);

RPM=zeros(l,m); 

makesp an=0; 

for i=l:m 

for j= l:n  

RPM(i)=RPM(i)+p(i,j); 

end 

end

for i=l :n 

for j=l:m

RPJ(i)=RPJ(i)+p(i,i);

end

end

maxRPJ=max(RPJ);
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maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero (AM) ; 

RPM_order=sortdescending(RPM,zeros_AM); 

for x n i j - l  :size(RPM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=fmd(p(RPM_order(x_mj),:)); 

if is empty (nonzeros jpij )==1 

nonzeros_pij=0; 

end

same J  ob=find_s ame(zeros_A J,nonzeros_pij ) ; 

if samejob~=0

job_to_be_assigned=find_max(p(RPM_order(x_mj),:),sameJob);

assign_A4;

end

end

if all_zero(AM)==0 

t=min(nonzeros(AM)); 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ-0;

zeros_AM-0;

nonzeros_pij=0;

samejob=0;

RPM order=0;
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makesp an=makesp an+t; 

end

p=templ;

makespan

maxRPJ

maxRPM

4.4.2 Subfunction Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign_A4:

% this m-file is to assign job j on machine i.It will do the following

% calculations:

i=RPM_order(x_mj);

j=job_to_be_assigned;

AM(i)=p(ij);

AJ0=p(i,j);

RPM(i)=RPM(i)-p(ij);

opration(i,j)=0;

s(i,j)=makespan;

total_operation=total_operation-1 ;

p(iJ)=o;

4.5 Criteria b) to Select a Machine + Criteria 1) to Select a Joh

4.5.1 Main Function 

function makesp an=B 1 (p)

% given the operation matrix p, output the makespan 

templ=p;
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[m,n]=size(p);

s=[];
convert;

total_operation=sum(sum(operation, 1 )); 

AM=zeros(l ,m);

AJ=zeros(l,n);

t=0; % t is the current time

RPJ=zeros(l,n);

ROM=zeros(l,m);

RPM=zeros(l ,m); 

makespan=0; 

for i=l :n 

for j=l:m  

RPJ(i)=RPJ(i)+P0i);
end

end

for i=l ;m 

for j=l:n 

ROM(i)=ROM(i)+operation(i,j); 

end 

end

while total_operation~=0 

AM=time_lap se( AM,t) ;

AJ=time_lapse(AJ,t); 

eros_AM=find_zero(AM); 

ROM_order=sortdescending(ROM,zeros_AM); 

for x_mj=l :size(ROM_order,2) 

zeros_AJ=find_zero(AJ) ; 

nonzeros_pij=find(p(ROM_order(x_mj),:));
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if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

s ame J  ob=find_s ame(zeros_A J,nonzeros_pij ) ; 

if samejob~=0

job_to_b e_assigned=find_max(RP J, s ame J  ob) ; 

assign_Bl; 

end 

end 

AM; 

s;

AJ;

if allzero(AM)— 0 

t=min(nonzeros (AM)) ; 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij-0;

samejob=0;

ROM_order=0; 

makesp an=makesp an+t; 

end

p=templ;

makespan;

RPJ=zeros(n);

RPM=zeros(m);
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for 1=1 :n 

for j=l:m  

RPJ(i)=RPJ(i)+p(j,i);

end

end

for i=l:m 

for j=l:n 

RPM(i)=RPM(i)+p(ij); 

end 

end

maxRPJ=max(max(RPJ)); 

maxRPM=max(max(RPM)) ;

4.5.2 Subfunction Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assignB l:

% this m-file is to assign job j on machine i.It will do the following

% calculations:

i=ROM_order(x_mj);

j=job_to_be_assigned;

AM(i)=p(i,j);

AJ(j)=p(ij);
RPJ(])=RPJ0-1;

ROM(i)=ROM(i)-l;

opration(ij)=0;

s(i,j)=makespan;

total_operation=total_operation-l;
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4.6 Criteria b) to Select a Machine + Criteria 2) to Select a Job

4.6.1 Main Function 

function makespan=B2(p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];
convert;

total_operation=sum(sum(operation, 1 ));

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

ROJ=zeros(l,n);

ROM=zeros(l,m); 

makesp an=0; 

for i=l:n 

for j=l:m  

RO J(i)=RO J (i)+operation(i,j) ; 

end 

end

for i=l:m 

for j=l:n 

ROM(i)=ROM(i)+op eration(i,j ) ; 

end
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end

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=fmd_zero(AM); 

ROM_order=sortdescending(ROM,zeros_AM); 

for x_mj=l ;size(ROM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p (ROM_order(x_mj ), ; )) ; 

if is empty (nonzeros_pij)==l 

nonzerosjpij=0; 

end

sameJob=find_same(zeros_AJ,nonzeros_pij); 

if samejob~=0

j ob_to_be_assigned=find_max(RO J, s ame J  ob) ; 

assign_B2; 

end 

end 

AM; 

s;

AJ;

if all_zero(AM)==0 

t=min(nonzeros(AM)); 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AIVI=0;
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nonzeros_pij=0;

samejob=0;

ROM_order=0; 

makesp an=makesp an+t; 

end

p=templ;

makespan;

RPJ=zeros(n);

RPM=zeros(m); 

for i=l :n 

for j=l:m  

RPJ(i)=RPJ(i)+pû,i); 

end 

end

for i=l :m 

for j=l;n 

RPM (i)=RPM (i)+p(ij); 

end 

end

maxRP J=max(max(RP J)) ; 

maxRPM=max(max(RPM)) ;

4.6.2 Subfunction Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign_B2:

% this m-file is to assign job j on machine i.It will do the following 

% calculations:
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i=ROM_order(x_mj);

j=job_to_be_assigned;

AM(i)=p(i,j);

AJ0=p(i,j);

ROJ0=ROJO)-1;

ROM(i)=ROM(i)-l;

opration(ij)=0;

s(ij)=makespan;

total_op er ation=total_op er ation-1 ;

P(i,j)=0;

4.7 Criteria b) to Select a Machine + Criteria 3) to Select a Job

4.7.1 Main Function 

function makespan=B3(p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];
convert;

total_operation=sum(sum(operation, 1 ));

AM=zeros(l,m);

AJ=zeros(l,n);

t=0; % t is the current time

RPJ=zeros(l,n);

RPM=zeros(l,m);

ROM=zeros(l ,m); 

makesp an=0; 

for i=l:n
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for j=l:m  

RPJ(i)=RPJ(i)+p(i,i);

end

end

for i=l :m 

for j= l:n  

RPM(i)=RPM(i)+p(ij); 

end 

end

for i=l:m 

for j=l:n 

ROM(i)=ROM(i)+op eration(i,j ) ; 

end 

end

maxRPJ=max(RP J) ; 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

ROM_order=sortdescending(ROM,zeros_AM); 

for x_mj=l ;size(ROM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p(ROM_order(x_mj),:)); 

if isempty(nonzeros_jpij)==l 

nonzeros_pij=0; 

end

s ame J  ob=find_s ame(zeros_A J,nonzeros_pij ) ; 

if samejob~=0
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j ob_to_b e_assigned=find_min(p (ROM_order(x_mj), : ), s ame J  ob) ; 

assign_B3; 

end 

end

if all_zero(AM)==0 

t=min(nonzeros (AM)) ; 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

samejob=0;

RPM_order=0;

makespan=makespan+t;

end

p=templ;

makespan;

maxRPJ;

maxRPM;

4.7.2 Subfunctions Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign_B3:

% this m-file is to assign job j on machine i.It will do the following

% calculations:

i=ROM_order(x_mj);
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j=job_to_be_assigned;

AM(i)=p(i,j);

A J0= p (ij);

R O M 0= R O M 0-1;

opration(i,j)=0;

s(ij)=makespan;

total_op eration=total_op er ation-1 ;

p(iJ)=o;

4.8 Criteria b) to Select a Machine + Criteria 4) to Select a Joh

4.8.1 Main Function 

function makesp an=B 4 (p)

% given the operation matrix p, output the makespan. 

templ=p;

[m,n]=size(p);

s=[];
convert;

to talop eration=sum(sum(oper ation, 1 )) ;

AM=zeros(l,m);

AJ=zeros(l,n);

t=0; % t is the current time

RPJ=zeros(l,n);

RPM=zeros(l,m);

ROM=zeros(l,m); 

makespan=0; 

for i=l :n 

for j= l:m

RPJ0=RPJ0+p(j.i);
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end

end

for i=l:m 

for j= l:n  

RPM(i)=RPM(i)+p(ij); 

end 

end

for i=l:m 

for j= l:n  

ROM(i)=ROM(i)+operation(ij); 

end 

end

maxRPJ=max(RPJ); 

maxRPM=max(RPM); 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

ROM_order=sortdescending(ROM,zeros_AM); 

for x_mj=l :size(ROM_order,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p(ROM_order(x_mj),:)); 

if is empty (nonzeros_pij)==1 

nonzeros_pij=0; 

end

s ame J  ob=find_s ame(zeros_A J,nonzeros_pij) ; 

if samejob~=0

j ob_to_be_assigned=find_max(p (ROM_order (x_mj), : ), s ame J  ob); 

assign_B4;
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end

end

AM;

s;

AJ;

if all_zero(AM)==0 

t=min(nonzeros(AM)); 

end

if total_operation==0 

t=max(nonzeros (AM)) ; 

end

zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

samejob=0;

RPM_order=0;

makespan=makespan+t;

end

p=templ;

makespan;

maxRPJ;

maxRPM;

4.8.2 Subfunctions Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign_B4:

% this m-file is to assign job j on machine i.It will do the following
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% calculations: 

i=ROM_or der(x_mj ) ; 

j =j ob_to_b e_assigned;

AM(i)=p(i,j);

AJ(j)=p(iJ);

ROM(i)=ROM(i)-l;

opration(ij)=0;

s(i,j)=makespan;

total_op er ation=total_op eration-1 ; 

p(ij)=0;

4.9 Criteria c) to Select a Machine + Criteria 1) to Select a Joh

4.9.1 Mian F unction 

function makespan=Cl (p)

% given the operation matrix p, output the makespan 

templ=p;

[m,n]=size(p);

s=[];

convert;

totalop eration=sum(sum(op eration, 1 )) ;

AM=zeros(l,m);

AJ=zeros(l,n);

t=0; % t is the current time

RPJ=zeros(l,n);

RPM=zeros(l,m); 

makespan=0; 

for i=l:n 

for j=l:m
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RPJ(i)=RPJ(i)+p(i,i);
end

end

for i=l;m 

for j=l:n 

RPM(i)=RPM(i)+p(ij); 

end 

end

maxRPJ=max(RPJ); 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

for x_mj=l :size(zeros_AM,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=find(p(zeros_AM(x_mj),:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

same J  ob=find_s ame(zeros_A J,nonzeros_pij ); 

if samejob~=0

j o b t o b  e_assigned==find_max(RP J, s ame J  ob) ; 

a ssig n C l;  

end 

end

if all_zero(AM)==0 

t=min(nonzeros (AM)); 

end
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if total_operation==0 

t=max(nonzeros(AM)); 

end

zeros_AJ=0;

zeros_AM=0;

nonzerosjpij=0;

samejob=0;

RPM_order=0; 

makesp an=makesp an+t; 

end

p=templ;

makespan;

maxRPJ;

maxRPM;

4.9.2 Subfunctions Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign Cl :

% this m-file is to assign job j on machine i.It will do the

% following calculations:

i=zeros_AM(x_mj);

j=job_to_be_assigned;

AM(i)=p(ij);

AJ(j)=p(ij);

RPJ(j)=RPJ0-p(ij);
opration(i,j)=0;

s(i,j)=makespan;
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total_operation=total_op eration-1 ;

p(ÿ)=o;

4.10 Criteria c) to Select a Machine + Criteria 2) to Select a Joh

4.10.1 Main Function 

function makespan=C2(p)

% given the operation matrix p, output the makespan 

templ=p;

[m,n]=size(p);

s=[];
convert;

total_operation==sum(sum(operation, 1 ));

AJ=zeros(l,n);

t=0;

RPJ=zeros(l,n);

RPM=zeros(l ,m);

ROJ=zeros(l,n); 

for i=l :n 

for j=l:m  

ROJ(i)=ROJ(i)+operation(i,j); 

end 

end

makespan=0; 

for i=l:n 

for j=l:m

RPJ(i)=RPJ(i)+pG,i);
end

end
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fori=l:m  

for j= l:n  

RPM(i)-RPM(i)+p(ij);

end

end

maxRP J=max(RP J) ; 

maxRPM=max(RPM) ; 

while total_operation~=0 

AM=time_lapse(AM,t);

AJ=time_lapse(AJ,t); 

zeros_AM=find_zero(AM); 

for x_mj=l :size(zeros_AM,2) 

zeros_AJ=find_zero(AJ); 

nonzeros_pij=fmd(p(zeros_AM(x_mj),:)); 

if isempty(nonzeros_pij)==l 

nonzeros_pij=0; 

end

sameJob=find_same(zeros_AJ,nonzeros_pij); 

if samejob~=0

job_to_be_assigned=find_max(ROJ,sameJob);

assignez;
end

end

if all_zero(AM)==0 

t=min(nonzero s (AM)) ; 

end

if total_operation==0 

t=max(nonzeros(AM)); 

end
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zeros_AJ=0;

zeros_AM=0;

nonzeros_pij=0;

samejob=0;

RPM_order==0; 

makesp an=makesp an+t; 

end

p=templ; 

makesp an; 

maxRPJ; 

maxRPM;

4.10.2 Subfunctions Used in the above Main Function

a) Codes to Assign Job j on Machine i 

assign_C2;

% this m-file is to assign job j on machine i.It will do the following 

% calculations: 

i=zeros_AM(x_mj ) ; 

j =j o b t o b  e_as signed;

AM(i)=p(iJ);

A J0=p(iJ);

ROJ(i)=ROJ(i)-l;

opration(i,j)=0;

s(i,j)=makespan;

total_operation=total_operation-1 ;

p(ij)=o;
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4.11 Criteria c) to Select a Machine + Criteria 3) to Select a Job

4.11.1 Main Function 

function makesp an=C3(p)

%C3 M(nature)-J(SPT)

LB=max(max(sum(p),max(sum(p ,2)))) ; 

MIN=min(min(sum(p),min(sum(p,2))));

DIFF=MINfLB;

[m,n]=size(p);

W  ORKLO AD=(sum(sum(p)))/ (m*LB); 

s=[]; % preassign space for s. 

convert; % generate the 0-1 matrix 

total_operation=sum(sum(operation, 1 ));

AM=zeros(l,m);

AJ=zeros(l,n);

t=0; % t is the current time

makespan-0;

RPJ=zeros(n);

RPM=zeros(m); 

for i=l :n 

for j= l:m

RPJ(i)=RPJ(i)+p(j,i); % calculate RPJ 
end 

end

for i=l :m 

for j= l:n

RPM(i)=RPM(i)+p(i,j); % calculate RPM 

end
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end

maxRPJ=max(max(RPJ)); 

maxRPM=max(max(RPM)); 

for i=l :m 

for j=l:n 

operation_pool((i-1 ) *n+j )=p 

end 

end

a=[l;m*n];

operation_order=sortascending(operationjpool,a); 

while total_operation~=0 

AM=time_lapse(AM,t);

A J=time_lapse(AJ,t) ;

zeros_AM=find_zero(AM);

zeros_AJ=fmd_zero(AJ);

times=size(zeros_AM,2);

j= i;
while j<=times 

find=0;

1= 1;

while find==0&&i<=m*n

j ob_no=mod(op eration_order(i),n) ; 

if job_no— 0 

job_no=n;

machine_no=operation_order(i)/n;

else

machine_no=floor(operation_order(i)/n)4-l;

end

if operation(machine_nojob_no)~=0
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&&all_zero(machine_no==zeros_AM)==0&&all_zero(job_no==zeros_AJ)==0

AM(machine_no)=p(machine_nojob_no);

A J (j ob_no) =p (machine_no,j ob_no) ; 

operation(machine_nojob_no)=0; 

s (machine_no,j ob_no)=makespan; 

total_operation=total_operation-1 ; 

fmd=l; 

else 1=1+1; 

end 

end

if find— 0; 

break 

end 

1=1+1;

zeros_AM=find_zero(AM); 

zerosAJ=find_zero( A J) ; 

end

if all_zero(AM)— 0 

t=min(nonzeros(AM)) ; 

end

if total_operation==0 

t=max(nonzeros (AM)) ; 

end

zeros_AJ=0;

zeros_AM=0; 

makesp an=makesp an+t; 

end

makespan;

maxRPJ;
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maxRPM;

4.12 Criteria c) to Select a Machine + Criteria 4) to Select a Job

4.12.1 Main Function 

function makespan=C4(p)

%C4 M(nature)-J(LPT)

LB=max(max(sum(p),max(sum(p,2))));

MIN=min(min(sum(p),min(sum(p,2))));

DIFF=MIN/LB;

[m,n]=size(p);

WORKLOAD=(sum(sum(p)))/(m*LB);

H];
convert;

totalop er ation=sum(sum(op er ation, 1 )) ;

AM=zeros(l,m);

AJ=zeros(l,n);

t=0;

makespan=0;

RPJ=zeros(n);

RPM=zeros(m); 

for i=l :n 

for j=l;m

RPJ(i)=RPJ(i)+p(j,i); % calculate RPJ 

end 

end

for i=l :m 

for j=l:n

RPM(i)=RPM(i)+p(ij); % calculate RPM
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end

end

maxRP J=max(max(RP J)) ; 

maxRPM=max(max(RPM)) ; 

for i=l :m 

for j=l:n 

operation_pool((i-l)*n+j)=p(ij); 

end 

end

a==[l:m*n];

op eration_order=sortdes cending(op er ation_pool, a) ; 

while total_operation~=0 

AM=time_laps e(AM,t) ;

AJ=time_lapse(AJ,t);

zeros_AM=fmd_zero(AM);

zeros_AJ=fmd_zero(AJ);

times=size(zeros_AM,2);

1= 1;

while j<=times 

find=0;

1= 1;

while find==0&&i<=m*n

j ob_no=mod(op eration_order(i),n) ; 

if job_no==0 

job_no=n;

machine_no=operation_order(i)/n;

else

machine_no=floor(operation_order(i)/n)+l;

end
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if op eration(machine_noJ ob_no)~=0 

&&all_zero(machine_no==zeros_AM)==0&&all_zero(job_no==zeros_AJ)==0 

AM(machine_no)=p(machine_nojob_no);

A J (j ob_no)=p (machine_no j  ob_no) ; 

operation(machine_nojob_no)=0; 

s (machine_no J ob_no)=makesp an; 

total_operation=total_operation-1 ; 

find=l; 

else i=i+l ; 

end 

end

if find==0 

break 

end 

j= j+ i;

zeros_AM==fmd_zero(AM);

zeros_AJ=find_zero(AJ);

end

if all_zero(AM)==0 

t=min(nonzeros (AM)) ; 

end

if total_operation==0 

t=max(nonzeros(AM)) ; 

end

zeros_AJ=0; 

zeros_AM=0; 

makesp an=makesp an+t; 

end

makespan;
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maxRPJ;

maxRPM;

4.12.2 Sub function Used in the above Main Function

a) Function to Sort the Entries in Matrix a According to the Descending Order 

function order=sortdescending(a,b)

% given any 1 *q matrix a,and an index set b, return the order of the values from the largest to 

% the smallest in b. 

q=size(b,2); 

order=b; 

same=0; 

for y l= l:(q-l) 

for xl= l:q-yl 

if a(b(xl))==a(b(xl+l))&a(b(xl))~=0 

same=same+l; 

end

if a(b(xl))<a(b(xl+l)); 

temp=a(b(xl)); 

a(b(xl))=a(b(xl+l)); 

a(b(xl+l))=temp; 

temp=order(xl); 

order(xl )=order(xl+1 ); 

or der(xl+1 )=temp ; 

end 

end 

end

if  same~=0
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same;

end
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