
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1999

Cache performance of chronological

garbage collection

Ding, Yuping

http://knowledgecommons.lakeheadu.ca/handle/2453/3128

Downloaded from Lakehead University, KnowledgeCommons

INFORMATION TO USERS

This manuscript has baan raproducad from the microfilm mastar. UMI films
the text diracdy from tha original or copy submitted. Thus, soma thasis and
dissartation copias ara in typawritar face, whila othars may ba from any typa of
computer printar.

Tha quality of this reproduction la dependant upon tha quality of tha
copy submlttad. Broken or indistinct print, colored or poor quality illustrations
and photographs, print blaadthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In tha unlikely event that tha author did not sand UMI a complete manuscript
and there are missing pages, ttiase will ba noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and Write
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeab Road, Ann Arbor, Ml 48106-1346 USA

600-521-0600

UMT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cache Performance of
Chronological Garbage Collection

by

Yuping Ding

A thesis submitted to
the Faculty of Research and Graduate Studies

in partial fulfillment o f the requirement for the degree of

Master of Science
in Computer Science

Department of Computer Science
School of Mathematical Sciences

Lakehead University
Thunder Bay, Ontario

October 8,1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ ♦I National Library
of Canada

Acquisitions and
Bibliographic Services
385W«WnglonStr«M
(MmnON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
sen/ices bibliographiques
385. rue WeHinglon
OnawaON KIAOtM
Canada

rourM Vomrélénne»

OurKt NomréMnnct

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-52048-X

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&

ABSTRACT

This thesis presents cache performance analysis of the Chronological Garbage Collection

Algorithm used in LVM system. LVM is a new Logic Virtual Machine for Prolog. It

adopts one stack policy for all dynamic memory requirements and cooperates with an

efficient garbage collection algorithm, the Chronological Garbage Collection, to recycle

space, not as a deliberate garbage collection operation, but as a natural activity of the

LVM engine to gather useful objects. This algorithm combines the advantages of the

traditional copying, mark-compact, generational, and incremental garbage collection

schemes.

In order to determine the improvement of cache performance under our garbage*

collection algorithm, we developed a simulator to do trace-driven cache simulation.

Direct-mapped cache and set-associative cache with different cache sizes, write policies,

block sizes and set associativities are simulated and measured. A comparison of LVM

and SICStus 3.1 for the same benchmarks was performed.

From the simulation results, we found important factors influencing the

performance of the CGC algorithm. Meanwhile, the results from the cache simulator fully

support the experimental results gathered from the LVM system: the cost of CGC Is

almost paid by the improved cache performance. Further, we found that the memory

reference patterns of our benchmarks share the same properties: most writes are for

allocation and most reads are to recently written objects. In addition, the results also

showed that the write-miss policy can have a dramatic effect on the cache performance of

the benchmarks and a write-validate policy gives the best performance. The comparison

shows that when the input size of benchmarks is small, SICStus is about 3-8 times faster

than LVM. This is an acceptable range of performance ratio for comparing a binary-code

engine against a byte-code emulator. When we increase the input sizes, some benchmarks

maintain this performance ratio, whereas others greatly narrow the performance gap and

at certain breakthrough points perform better than their counterparts under SICStus.

Ill

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Xining Li, not only for his help during this

research, but also for his support during the years I spent at Lakehead University.

I am indebted to Yin Li for accepting to be a reader on short notice, and for many

suggestions to improve the quality of this thesis. Thanks also to Yifei Wang for his help

during this work.

I am grateful to the National Science and Engineering Council of Canada for its

financial support.

I would like also to think my wife for her support and encouragement.

Finally, I would like to thank my external examiner Dr. Yao and Internal

examiner Prof. Black for their comments.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures and Tables

Figure 3.1 Term Representation of Structure Copying... 22

Figure 3.2 Term Representation of Structure Sharing.. 23

Figure 3.3 Term Representation of Program Sharing... 26

Figure 3.4 The LVM Memory Architecture.. 29

Figure 3.5 A Possible Snapshot of the Stack Layout.. 32

Figure 3.6 Memory Layout during Garbage Collection.. 37

Figure 4.1 Typical Cache-Memory Architecture.. 39

Figure 4.2 Architecture of N-way Associative Cache... 41

Figure 6.1 Memory References of tsp(30) without Garbage Collection................................63

Figure 6.2 Memory References of tsp(30) with Garbage Collection....................................64

Figure 6.3 Memory References of the Collector...65

Figure 6.4 Write and Read Miss Ratios of the Mutator of tak22..66

Figure 6.5 Write and Read Miss Ratios of the Collector of tak22......................................67

Figure 6.6 Write and Read Miss Ratios on Fetch-on-write Caches....................................71

Figure 6.7 Write and Read Miss Ratios of tak with and without G C72

Figure 6.8 Miss Ratios on Fetch-on-write Caches with Different Block Sizes.................... 72

Table 2.1 Comparing Non-tracing Algorithms and Basic Tracing Algorithms.....................14

Table 4.1 Common Cache Organizations...49

Table 6.1 Benchmark Statistics... 68

Table 6.2 Memory References.. 69

Table 6.3 Cache Misses... 70

Table 6.4 Miss Ratios for Write-validate, Write-around, and Fetch-on-write Caches 73

Table 6.5 DNA Matching - Comparison with SICStus 3.1..75

Table 6.6 Travelling Salesman - Comparison with SICStus 3.1..75

Table 6.7 Quick sort and Naive Reverse - Comparison with SICStus 3.1........................... 76

Table 6.8 Boyer-Moore - Comparison with SICStus 3.1... 76

Table 6.9 Browse - Comparison with SICStus 3.1...76

Table 6.10 Tak - Comparison with SICStus 3.1...77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Acceptance Sheet.. H

ABSTRACT... iü

ACKNOWLEDGMENTS.. iv

List of Figures and Tables... v

Chapter 1. Introduction...1

LI Motivation... 1

1.2 Overview...2

Chapter 2. A Survey of Garbage Collection Algorithms...S

2.1 Storage Allocation... 5

2.2 Garbage Collection.. 5

2.3 Garbage Collection Algorithms..7

2.3.1 The Reference Counting Algorithm... 8

2.3.2 The Mark-Sweep Algorithm...10

2.3.3 The Mark-Compact Algorithm..11

2.3.4 The Copying Algorithm... 12

2.3.5 Comparing the Basic Garbage Collection Algorithms......................... 14

2.3.6 Generational Garbage Scheme..15

2.4 Garbage Collection in Prolog.. 17

Chapter 3. The LVM and CG C... 20

3.1 W AM vsLV M ...20

3.2 Term Representation in the LVM...21

3.2.1 Structure Copying vs. Structure Sharing..21

3.2.2 Program Sharing...24

3.2.3 Shared Instance and Copied Instance...28

3.3 Memory Organization...28

3.4 Chronological Garbage Collection..30

3.4.1 C-line and C-reachable...31

3.4.2 The ‘cgc’ Instruction and the Root Set...34

3.4.3 The CGC Algorithm...36

VI

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Cache Architectures... 38

4.1 The principle of caches...38

4.2 Cache Architectures.. 40

4.3 Important Parameters in Cache Design...42

4.4 Write Strategy... 45

4.4.1 Write Hit Policies...45

4.4.2 Write Miss Policies..46

4.4.3 Fetch-on-write, Write-validate and Write-around Caches...................47

4.5 Cache Architecture of Current Machines..49

Chapter 5. Simulators and Simulation Algorithms..50

5.1 Cache Parameters.. 50

5.2 Cache Simulation.. 51

5.3 The Modified Emulator...53

5.4 The Cache Simulator... 56

Chapter 6. Performance Analysis..61

6.1 Benchmarks... 61

6.2 Discussion of Memory References...62

6.3 Discussion of Cache-limit...66

6.4 Cache Performance Analysis..68

6.5 Discussion of Cache Parameters... 7 1

6.6 Comparison of LVM and SICStus 3.1.. 74

Chapter 7. Conclusion.. 79

7.1 Conclusions... 79

7.2 Future Work.. 80

Appendix A. Cache-limit Figures...81

Appendix B. CGC Benchmarks Statistics...84

Bibliography..89

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction

1.1 Motivation

As the speed gap between processor and main memory chips is widening, cache

performance is becoming more important in implementing programming languages and

designing garbage collection algorithms. In addition, logic and functional programming

languages, such as Prolog and Lisp, typically manipulate large data structures with

complex inter-dependencies. Thus automatic storage reclamation is essential for practical

implementations. The Logic-inference Virtual Machine (LVM) is our newly designed

execution model for Prolog. It abandons the heap/stack memory architecture used in the

traditional Prolog implementations. Instead it adopts a single stack policy and embeds an

efficient garbage collector. Chronological Garbage Collection (CGC), as a part of its

engine.

We have implemented an experimental LVM emulator that includes the CGC

algorithm (about 300 lines of C-code) as a core part of the virtual machine engine. Our

benchmarks show that the LVM has low run-time overhead, good virtual memory and

cache performance, and very short, evenly distributed pause times. Some benchmarks

even revealed that the CGC improves the program’s cache performance by more than

enough to pay off its own cost.

Related problems of cache performance have been widely studied by other

researchers. From their measurements of four Scheme programs, Wilson et al. [I] first

suggested that garbage collectors could be applied to improve the performance of caches.

Zorn [2] measured the cache performance of four large Lisp programs running with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

noncompacting mark-and-sweep collector and a more traditional copying collector in

various configurations, and showed that the data-cache miss ratios of the programs were

improved by the collectors. Reinhold [3] measured the cache performance of five large

Scheme programs, and concluded that garbage-collected programs written in a mostly-

fUnctional style should perform well with simple linear storage allocation and an

infiequently-run generational compacting collector. He showed that, as long as allocation

misses are not a problem, the use of large memory areas could actually be good for cache

performance on direct-mapped caches, because the references tend to be spread evenly

between cache blocks, thus minimizing conflict misses. Jouppi [S] classified cache

architectures into four classes: fetch-on-write, write-validate, write-around and write-

invalidate. Goncalves [4] studied the cache performance of a set of ML programs in

SML/NJ, and reported measurements of miss ratios with varying cache sizes, block sizes,

associativities and write miss policies.

This thesis seeks to verify and validate our experimental results, and to find

important factors influencing the performance of the CGC algorithm.

1.2 Overview

This thesis presents the cache performance analysis of the CGC algorithm used in LVM.

In order to verify and validate our experimental results, and find important factors

influencing the performance of the CGC algorithm, we developed a trace-driven cache

simulator. In this work, direct-mapped cache and set-associative cache are simulated and

measured. To determine the extent to which the cache performance of the test programs

has been improved under the CGC algorithm, we have simulated benchmarks with

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different cache sizes, write policies, block sizes, and set associativities. As to cache write

policies, we consider only three architectures, fetch-on-write, write-validate and write-

around in our simulation.

The organization of the thesis is; Chapter 2 makes a survey of garbage collection

algorithms. Section 2.1 introduces three ways of storage allocation. Section 2.2 explains

what garbage collection is and why we need it. Section 2.3 presents and compares the

basic algorithms. Section 2.4 discusses generational garbage scheme and its advantages.

Section 2.S summarizes garbage collection algorithms used in typical Prolog

implementations.

Chapter 3 discusses the LVM system and the Chronological Garbage Collection

(CGC) algorithm. After summarizing the major differences between the Warren Abstract

Machine (WAM) and our LVM system in section 3.1, the representation of logic terms in

the LVM system is discussed by comparing Program Sharing (PS), Structure Sharing

(SS) and Structure Copying (SC) in section 3.2. Then section 3.3 sketches the memory

organization of the LVM. Section 3.4 presents the CGC algorithm and analyses several of

its important aspects.

Chapter 4 presents cache architectures. It begins with the principle of caches, in

section 4.1. Section 4.2 describes cache architectures and introduces related terms and

concepts. Section 4.3 studies important parameters in cache design. Section 4.4 focuses

on the write strategy, which greatly affects the cache behavior. Finally, section 4.5

presents a table to show common cache organizations of some popular architectures.

Chapter 5 describes the design of our trace-driven cache simulator. Section 5.1

presents design parameters. Direct-mapped cache and set-associative cache are simulated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section S.2 introduces the trace-driven cache simulation. Section 5.3 discusses how to

modify the LVM emulator to include the cache simulator. Finally, section 5.4 shows the

simulation algorithms.

Chapter 6 analyzes the experimental results revealing the cache performance of

CGC algorithm. Section 6.1 introduces benchmarks and experimental environments used

in this study. Section 6.2 shows the memory references of a user program with and

without garbage collection, as well as that of the collector. Section 6.3 discusses a proper

range for selecting a cache-limit. Section 6.4 analyzes the experimental results and finds

evidence to support the conclusion that the CGC improves program cache performance

by enough to pay off its own cost. Section 6.5 considers how different cache parameters

affect cache performance and shows memory reference patterns of the benchmarks.

Section 6.6 gives a comparison of the LVM system and the SICStus system.

Finally, Chapter 7 summarizes the main results and concludes this study.

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. A Survey of Garbage Collection Algorithms

2.1 Storage Allocation

In the history of storage management implementation, there have been three storage

management schemes; static allocation, stack allocation and heap allocation.

Static allocation is the simplest policy. Under this policy, all names in the

program are bound to storage locations at compile-time; and thus all the bindings do not

change at run-time. With stack allocation policy, an activation record or frame is pushed

onto the system stack when a procedure is called, and popped when the procedure

returns. Since different activations of a procedure do not share the same bindings for

local variables, recursive calls become possible. Heap allocation introduces more

flexibility. Unlike the last-in, first-out rule of a stack, heap allocation allows data

structures to be allocated and deallocated in any order. Therefore, it is possible for

activation records and dynamic data structures to outlive the procedure that created them.

2.2 Garbage Collection

In modem storage management, stack allocation takes care of dynamic memory

requirements related to procedure calls and returns, while heap allocation is responsible

for all other dynamic memory requirements. Garbage collection (GC) is the automatic

management o f dynamic storage.

A program can directly manipulate values held in processor registers, on the

program stack and in global variables. Such locations holding references to heap data

form the roots o f the computation [6]. The user program should access the dynamically

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allocated data through the roots directly or by following chains of pointers from the roots.

An individually-allocated piece of data in the heap will be called a cell (or an object). A

cell is live if its address is held in a root, or there is a pointer to it held in another live cell.

More formally, define -> as the ’points-to’ relation; for any cell or root M and any cell N,

M -> N if and only if M holds a reference to N. The set of live cells is the transitive

referential closure of the set of roots under this relation [6],

live = (v e Cells | (3r e Roots. r - > N) v (3M ^live.M -> N)

The rule above implies that the storage mechanism’s view of the liveness of the

graph of objects in the heap is defined by pointer reachability. Dynamically allocated

storage may become unreachable. Objects which are neither live nor free are called

garbage. Algorithms for freeing up dynamic memory automatically are called garbage

collection.

Why do we need garbage collection? First of all, explicit storage allocation

creates unnecessary complications and subtle interactions. Explicitly deallocating a cell

may render some cells inaccessible. These inaccessible cells are called space leaks. A

pointer referring to memory that has been deallocated is called a dangling pointer. Failing

to reclaim memory at the proper point may lead to slow memory leaks, with unreclaimed

memory gradually increasing until the process terminates or swap space is exhausted. On

the other hand, reclaiming memory too soon can lead to very strange behavior, because

an object’s space may be reused to store a completely different object while it still can be

reached by existing pointers. The same memory may therefore be interpreted as two

different objects simultaneously and updates to one cause unpredictable mutations of the

other.

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

Next, garbage collection is necessary for modular programming to avoid

introducing unnecessary intermodule dependencies. For example, in object oriented

languages, garbage collection uncouples the problem of memory management from class

interfaces, rather than dispersing it throughout the code.

Furthermore, garbage collection may be a language requirement. Programs

written in Prolog or Lisp typically manipulate large data structures with complex inter

dependencies, so it is essential to collect garbage in these languages.

Some works have suggested that a considerable proportion of program

development time may be spent on fixing memory management bugs. Effective garbage

collection as a software tool is certainly necessary, because it can relieve the programmer

of the burden of discovering memory management errors by preventing the occurrence of

this type of errors.

Of course, garbage collection has it own costs in both time and space. Also,

although garbage collection removes the two classic bugs of explicit storage

management, dangling pointers and space leaks, it still might suffer from its own errors.

2.3 Garbage Collection Algorithms

Garbage collection automatically reclaims the space occupied by data objects that the

running program can never access again. The work a garbage collector does can be

divided into two phases;

1. Garbage detection; distinguish the live objects from the garbage in some way, and

2. Garbage reclamation; reclaim the garbage objects’ storage, so that the running

program can reuse it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These two phases may be functionally or temporally interleaved, and the reclamation

technique is strongly dependent on the garbage detection technique.

Given the basic two-phase operation of a garbage collector, many variations are

possible. The first phase, distinguishing live objects from garbage, may be done in two

ways: reference counting or tracing. Reference counting garbage collectors maintain

counts o f the number of pointers to each object. The count is used as a local

approximation of determining true liveness. Tracing collectors determine liveness more

directly, by actually traversing the pointers that the program could traverse to find all of

the objects the program might reach. There are many varieties of tracing algorithms:

mark-sweep, mark-compact, copying, and non-copying implicit algorithms, etc.

We shall need to distinguish between the garbage collector and the part of the

program that does “useful” work. Following Dijkstra’s terminology [7], we will call the

user program mutator in the following discussion.

2.3.1 The Reference Counting Algorithm

In a reference counting algorithm, each cell has an additional field called the reference

count. The storage manager must maintain the reference count of each cell equal to the

number of pointers to that cell from roots or heap cells.

In the beginning, all cells have a reference count of zero and are placed in a pool

of free cells. When a new cell is allocated from the pool, its reference count is set to one.

Once a pointer is set to refer to this cell, the value of the cell’s counter is increased by

one. When a reference to the cell is removed, the counter is decreased by one. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reference count drops to zero, it means that there is no remaining pointer to this cell and it

can be returned to the list of free cells to be reused.

In terms of the abstract two-phase garbage collection, adjustment and checking of

reference counts implement the detection phase, and reclamation occurs when reference

counts hit zero. These operations are interleaved with the natural execution of the

program.

Advantages of the reference counting tdgorithm:

• Its memory management overheads are distributed throughout the execution of the

mutator.

• It is unlikely to damage the spatial locality of the mutator.

• Its performance does not degrade with heap residency.

• Immediate reuse of cells generates fewer page faults in a virtual memory system, and

possibly better cache behavior.

Some Msadvantages o f this algorithm:

• A simple reference counting algorithm can not reclaim cyclic structures.

• Extra space in each cell is needed to store the reference count, and there are high

processing costs to update counters.

• Tight coupling to the mutator makes the collector hard to maintain.

There are some modified algorithms for overcoming or at least ameliorating each

of these shortcomings. For example, Weizenbaum’s algorithm [6] (non-recursive freeing)

removes the uneven delay of simple recursive freeing to smooth the reclamation

overhead. A deferred reference counting algorithm [8] is used to reduce the cost of

pointer writes. Limited-field reference counting algorithms, such as the one-bit reference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

counts algorithm [9], use a smaller count field to save space at the cost of having to

handle overflow. In addition, there are several algorithms, such as Bobrow’s algorithm,

weak-pointer algorithm, and partial mark-sweep algorithm [6], used to deal with the

problem of cyclic data structures.

2.3.2 The MarkSweep Algorithm

Under this scheme, cells are not reclaimed as soon as they become garbage, but remain

unreachable and undetected until all available storage is exhausted. If a request is made

for a new cell when all available storage is exhausted, “useful” processing is temporarily

suspended and the garbage collector routine begins to work.

Mark-sweep collection is performed in two phases. The first phase is known as

marking, distinguishing live objects fi*om garbage. Based on the root set, the objects are

traced and marked in some way. Any cell that is left unmarked could not be reached

from roots, and hence must be garbage. The second phase is sweeping. It sweeps the heap

linearly fi-om bottom to top, returning unmarked cells to the fi’ee pool and clearing the

mark-bits of active cells in preparation for the next garbage collection cycle. If the

garbage collector is successful in reclaiming sufficient memory, the mutator request is

satisfied and computation can be resumed. A bit associated with each cell, the mark-bit,

is reserved by the garbage collector to determine whether the cell is reachable from the

roots

Comparing to reference counting, mark-sweep has three advantages:

• Cyclic structures are handled quite naturally with no special precautions needed.

• There is no overhead for pointer manipulation.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The interface between the mutator and the collector is much simpler.

On the other hand, it has its own disadvantages:

• It is a stop-and-start algorithm: computation stops while the garbage collector runs,

and the pause may be substantial.

• The complexity of this algorithm is proportional to the size of the entire heap rather

than, say, just the number of live cells.

• It tends to fragment memory, scatter cells across the heap and leads to loss of locality.

• It runs become more frequently as the heap occupancy or residency of a program

increases, and so the mutator’s share of the processor will be reduced.

There are several ways improving the performance of this algorithm:

• An iterative marking algorithm [6] with an auxiliary marking stack can replace the

recursive one to speed up the marking algorithm.

• Bitmap marking [10] uses a separate bitmap table to store mark-bits which may avoid

wasting space and reduce the frequency of page faults and cache write misses in the

marking phase.

• Lazy sweeping, such as the Boehm-Demers-Weiser sweeper [6] or Zorn’s lazy

sweeper [11], reduces garbage collection pause time by transferring the cost of the

sweep phase to allocation.

2.3.3 The Mark-Compact Algorithm

Mark-compact collectors remedy the fragmentation and allocation problems of mark-

sweep collectors. In general, compacting collectors have three phases:

1. Traversing and marking the reachable objects;

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Compacting the graph by relocating cells; and

3. Updating the values of pointers that referred to moved cells.

Mark-compact algorithms can be categorized into three classes according to the

relative position in which cells are left after compaction; arbitrary, linearising and sliding.

In sliding algorithms, such as Lisp 2 algorithm. Table-based methods and Threaded

methods [6], compacting is done by a linear scan through memory, finding live objects

and “sliding” them down adjacent to the previous object. In linearising algorithms, such

as Fenichel-Yochelson collector [12], cells that originally pointed to one another are

moved into adjacent positions. On the other hand, in arbitrary algorithms, such as Two-

Finger algorithm [6], cells are moved without regard for their original order, or whether

they point to one another.

Because of the several scans over the live objects in compaction phrase, the mark-

compact is undoubtedly expensive. However there are several reasons to use it;

• It can reduce the cost of allocation because the free area of the heap is continuous.

• It preserves the initial layout of data in the heap (only for sliding algorithm).

• Long-lived data are unlikely to be moved again once compacted.

2.3.4 The Qtpying Algorithm

Like the mark-compact algorithm, copying garbage collection does not really “collect”

garbage. Rather, it moves all of the live objects into one area, and the rest of the heap is

then known to be available because it contains only garbage. Unlike mark-compacting

collectors who use a separate marking phase that traverses the live data, copying

12

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collectors integrate the traversal o f the data and the copying process, so most objects need

only be traversed once.

A very common kind of copying garbage collector is the semi-space collector. It

divides the heap equally into two spaces, one containing current data, and the other

obsolete data. Copying garbage collection starts by flipping the roles of the two spaces.

Then the collector traverses active data structures in the old semi-space (Fromspace) and

copies each live cell into the new semi-space (Tospace) when the cell is first visited.

After all active cells in Fromspace have been traced, a replica of the active data structures

has been created in Tospace and the mutator is restarted. A natural and beneficial side

effect of copying garbage collection is that the active data structure is compacted into the

bottom of Tospace. The Cheney’s non-recursive copying algorithm [13] is one of the

most popular algorithms.

Advantages of this algorithm:

• Allocation costs are low because the heap is compacted.

• Work done at each collection is proportional to the amount of live data at the time of

garbage collection.

Disadvantages of the copying algorithm:

• Requiring two semi-spaces, it needs double address spaces compared with non

copying collectors.

• Its locality might be worse than mark-sweep because of flipping between two semi

spaces.

• Performance degrades as the residency of a program increases.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So far, we have discussed some basic garbage collection algorithms: reference

counting, mark-sweep, mark-compact and copying algorithms. There are others, such as

the non-copying implicit algorithm [14], which uses two pointers to link free space and

live objects in order to avoid copying objects. In the next section, we give brief

comparisons of these basic algorithms.

2.3.5 Comparing the Basic Garitage Collection Algorithms

It is difficult to compare garbage collection algorithms either in principle or in practice.

The following comparisons are informal and simplified.

In Table 2.1, we compare the reference counting and the tracing algorithm. The

tracing algorithms include mark-sweep, mark compact, and copying algorithms.

Standards Reference Counting Tracing

Cyclic data structures Need special action No special action

Pause or not Instant and evenly distributed Stop and collect

Overhead on pointer update Considerable No

Relation between the
collector and the mutator

Complex Simple

Space overhead Reference counter bits Mark bits

Affected by high heap
residency

No degradation Degradation

Table 2.1. Comparing Non-tracing Algorithms and Basic Tracing Algorithms

Comparisons among the tracing algorithms (mark-sweep, mark compact, and

copying algorithms) are more subtle. We compare them further in two aspects.

/. Space and locality

• Mark-sweep and mark-compact collectors require less address space than semi-space

copying collectors.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Sophisticated mark-sweep collection, using a stack and a mark bitmap, only modifies

heap memory at allocation time. On the other hand, copying collectors must write

forwarding address into live objects in Fromspace and update pointers in Tospace

data. Therefore, mark-sweep may have better locality than copying.

• Sliding compactors preserve the initial layout of data in the heap, while copy

collectors do not. So, mark-compact may also have better locality than copying.

2. Time compladty

• The complexity of copying algorithm is proportional to the size of live data. On the

other hand, that of simple mark-sweep is proportional to the size of heap. However,

when a lazy sweeper is used, sweeping can be done lazily by the allocator, so

complexity is not so high. As to mark-compact, the two or three more scans of live

data in the compacting phrase make this algorithm more expensive.

• Marking any but very small objects will be less expensive than copying them.

• Copying and mark-compact collector’s cost of allocation will be less than that of

mark-sweep collector.

From the discussion above, if allocation rates are very high, or the lifetimes of most

objects are very short, copying collector should be a better choice.

2.3.6 Generational Garbage Scheme

The generational strategy is to segregate objects by age into two or more regions of the

heap called generations. Different generations can then be collected at different

frequencies, with the youngest generation being collected frequently and older generation

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

much less often or possibly not at all. Objects are first allocated in the youngest

generation, and promoted into older generations when they survive long enough.

This scheme is based on considerable evidence supporting the weak generational

hypothesis - most objects die young [6]. The insight behind the generational garbage

collection is that storage reclamation can be made more efficient and less obstructive by

concentrating on those objects most likely to be garbage, i.e., young objects.

Several attractive advantages of this strategy:

• By collecting only a part of the heap, pause time can be diminished.

• By avoiding repeated processing objects that remain active, the overall effort of

garbage collection measured over the entire program may be reduced.

• By concentrating allocation and collection effort on a smaller region of the heap,

paging and cache behavior of both the mutator and the collector can often be

improved.

However, there is a big price to pay: the system must be able to distinguish older

objects ftom younger ones. Garbage collection starts by tracing from a known root set.

Unfortunately, determining the roots of a generation is more difficult than determining

the roots of the entire heap. A generational collector must check whether any pointers to

objects in one generation are stored in objects of other generation. Any such pointers

must be treated as roots of that generation.

Restricting the size of the young generation will reduce pause time. However, a

small generation will increase the rate of promotion, so tenured garbage (objects that

would have died in a younger generation if the promotion rate was low) will be copied

into an older generation and then die in a less frequently collected generation. We can use

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

multiple generations to get smaller youngest generation, or use an adaptive tenuring

algorithm. Ungar-Jackson’s feedback mediation [IS] adapts the threshold dynamically to

avoid premature promotion, and Barrett-Zom’s dynamic threatening boundary technique

[16] can further reduce the amount of tenured garbage.

Generational garbage collection techniques have proven to be very successful,

and are now in widespread use. In addition, to reduce the pause time of tracing garbage

collection, we can adopt not only a generational scheme but also a technique called

incremental technique [6][14].

2.4 Garbage Collection in Prolog

The first Prolog interpreter was designed with no real concern for memory efficiency.

Memory allocated during a procedure call was not reclaimed before backtracking. The

Edinburgh implementation is the first to benefit from memory management efforts. The

memory space is divided into two spaces, the local stack and the global stack (heap). The

local stack can be deallocated on the return of procedure calls. Hence, some memory can

be reclaimed before backtracking, which is an improvement over previous systems.

Despite the improvement, the heap is not garbage collected and it generally grows

indefinitely as processing continues.

In an earlier paper written by Bruynooghe [17], he proposed to implement a

conservative traversal of all goal statements found in the backtrack stack, which consists

of choice points. A choice point holds a goal statement plus a reference to alternate

clauses for that goal. Huitouze [18] studied the properties of variables, and presented a

new data structure, attributed variable, combined with a memory management machine,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MALI, which encapsulated a garbage collector. Touati and Hama [19] developed a

generational copying garbage collector. Their algorithm uses copying when the new

generation consists of the top most heap segment. For the older generation they use a

mark-compact algorithm. While Touati and Hama still wish to retain properties such as

memory recovery on backtracking, Bevemyr and Lindgren [20] took a more radical

approach. They tried to ease garbage collection by giving up some backtracking. Theirs is

a copying algorithm, and requires the existence of two tag bits for each cell on the heap.

Tarau [21] proposed that an ideal memory manager is ecological and he wants the

collector to have a “self-purifying” engine that recuperates space not as deliberate

“garbage-collection” but as a natural way of life.

In Bekkers et al. [22], they proposed three principles used to determine which

run-time objects in logic programming are useful.

1. All accesses to useful objects come from active goal statements. This suggests a

marking procedure executing a traversal of goal statements in the backtrack stack.

2. A variable reachable only from terms earlier than its binding renders this binding

useless. A technique to reset the variable and discard its trail is called “early reset”.

3. Some variables may become irreversibly substituted. The technique to replace an

occurrence of a variable with its binding value has been named “variable shunting”.

With regard to the implementation of Prolog, there are several typical problems in

previous GC algorithms;

Copying GO

A frequent claim among implementers is that backtracking is incompatible with

copying collection. The reason given is that copying GC usually move objects regardless

of the heap structure. Hence, instant reclaiming by backtracking becomes impossible.
18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mark and Compact GC:

SICStus Prolog uses a mark-compact algorithm to collect garbage. This method

preserves chronological order of heap and stack segments as required for backtracking.

However, two or three more scans in the compacting phrase make it expensive.

Generational GC:

The two generations are delimited by choice points. As usual, when references are

created from an old generation to the new one, these references have to be considered as

roots. By chance, a Prolog run-time system records such reference creations in the trail,

and the collector simply has to scan the trail to find them. One drawback of this scheme is

that the generation delimiter may be left in such a state that old segment is empty (or

almost empty). For example, deterministic programs would never be in a position to

benefit from the advantage of generation collection. One solution is to create artificial

choice points.

In this chapter, we have argued that garbage collection is essential for fully

modular programming to allow reusable code and to eliminate a large class of extremely

dangerous coding errors. Recent advances in garbage collection technology make

automatic storage reclamation affordable for high-performance systems. Even relatively

simple garbage collectors’ performance is often competitive with conventional explicit

storage management. Furthermore, generational techniques reduce the basic costs and

disruptiveness of collection by exploiting the empirically observed tendency of objects to

die young. Incremental techniques may even make garbage collection relatively attractive

for real-time systems.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. The LVM and CGC

3.1. W AM VS.LVM

The Warren Abstract Machine (WAM) [23] is an efficient Prolog execution

model consisting of a set of high-level instructions and a memory architecture for

handling control and unification. It has been accepted as the standard basis for

implementing Prolog for more than ten years.

The WAM simulates the conventional procedure call to control Prolog program

execution. It adopts Structure Copying (SC) [24] to represent Prolog terms and defines a

set of operations to deal with special cases of the general unification. Parameter passing

in a procedure call consists of two phases: the put-phase and the get-phase. During the

put-phase the arguments of the caller are loaded into argument registers; and during the

get-phase the values in the argument registers are unified with the arguments of the head

of the callee.

The LVM is a new Prolog execution model. The difference between the WAM

and LVM is that the LVM blends a new method - Program Sharing (PS) [25] with SC to

represent and handle logic terms. Generally, a Prolog program is translated into LVM

code specifying the control and unification. The control instructions are similar to the

WAM’s counterpart, however, unification instructions are defined and implemented in a

totally different way. All terms are compiled into and handled as executable instructions.

Unification is purely pair-wise instruction driven. Objects stored in execution

environment are no longer tagged data but rather directly executable unification

instructions or code-segment entries.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another major difference is that LVM adopts a single stack scheme to manipulate

memory, while traditional Prolog implementations are based on stack/heap memory

architecture. In the stack/heap architecture, the stack is responsible for dynamic memory

requirements related to procedure call and return. The heap takes care of all other

dynamical memory needs. For example, WAM stores execution environment and choice-

points in the stack and saves all dynamically created data objects in the heap. In LVM, we

explore a single stack paradigm for all dynamical memory allocations and embed an

efficient garbage collection algorithm, the Chronological Garbage Collection (CGC), to

reclaim useless memory cells.

3.2. Term Representation in the LVM

Prolog is a dynamic typing language in the sense that variables may hold

dynamically created data objects of any type. Creation and manipulation of dynamic data

objects cost both time and space. Therefore, the performance and memory utilization of a

Prolog system are greatly influenced by how logic terms are represented.

3.2.1 Structure Copying vs. Structure Sharing

For more than twenty years, two very different methods. Structure Sharing (SS)

and Structure Copying (SC), have been used to implement term unification in various

Prolog systems.

The fundamental distinction of SS and SC is their way of representing structures.

SS represents a structure instance by a two-pointer molecule with one pointer to the

structure skeleton and the other pointer to a variable binding environment. On the other

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hand, SC makes a concrete copy of a structure in the heap for each instance. SS was used

widely in earlier Prolog implementations. However, SC has been accepted as the de facto

standard in modem Prolog implementations.

The following is a simple Prolog program. The execution of the query will create

two structure instances carried by variables A and B, and unify A and B afterwards.

Figure 3.1 [25] illustrates term representation of SC before and after A=B.

?-p(A),q(B),A=B.

p(t(X,q(X,Y,a),Y)).

q(t(r(Z), W. f(a,b,c))).

STO

STO

B

before A=B

FUN 1/3
REF X
STR
REF Y
FUN q/3
REF
REF
CON a
FUN 1/3
STR
REF W
STR
FUN r/1
REF Z
FUN f/3
CON a
CON b

CON c

SIR

SIR

B

after A=B

FUN

sm .
STR
SIR
FUN
REF

BEE.
CON
FUN
STR
STR

m .
HÜL
REF
FUN
CON
CON

CON

Æ .

1/3

jiL

m

Figure 3.1. Term Representation o f Structure Copying

In Figure 3.1, two structure instances are copied into heap as flattened records.

Each record starts with a main functor followed by an array of cells identifying its

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arguments. Multiple occurrences of a shared variable are equated by pointers to a self-

referential cell representing a single occurrence. For example, the second occurrence of

variable X in q/3 (5th cell) is pointed to the self-referential cell (2nd cell). Nested

structure, such q/3 and r/7, are represented by tagged data {STR) with pointers to their

corresponding records. When the structiue is unified with a free variable, SC changes the

variable’s tag REF to STR, and adds a pointer to the record. For example, the 2nd cell

REFX is changed to STR with a pointer to FUN r/1.

?- p(A), q(B), A=B.

p(t(X,q(X, Y,a), Y)).

q(t(r(Z), W,f(a, b,c))).

Before A=B

MRP

MRP SKE
ENV
REP

SKE
REP

REP
REP

KO

K0:t/3

off:0 Kl:q/3 off:l

ofTtO off: I a

R0:t/3

\
Rl:r/l off:l R2:CG

i / U
off:0 a

After A=B

MRP

MRP SKE
ENV

SKE
ENV

MRP
MRP

MRP
REP

SKE
ENV
_SJŒ.
ENV

KO

RO

R2

Figure 3.2. Term Representation o f Structure Sharing

Figure 3.2 gives the SS term representation adopted by MProlog. A molecule is

represented in two successive machine words delimited by a dotted line. One word

pointes to the structure skeleton, and the other to a variable binding environment. When a

structure becomes the binding of a variable, a molecule may be created on the heap. For

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, variable X should be bound with stnicture rfZ). Then a molecule with skeleton

pointer to Rl and an environment pointer to Z is created on the heap. The symbol off:i

shown in Figure 3.2 indicates the offset of the ith variable in its environment. In SS,

variable indices in the same environment are calculated against their fixed frame base.

Comparison of SC with SS is not simple, and no quick answer can be given as to

which is better. In the SC system, copying a complex structure consumes not only time,

but also space because superfluous memory cells must be allocated to constants and

pointers to share variables and nested structures. On the other hand, the molecule in SS

system consists of two components, which may increase the heap space or result in

address accessing limitation. Because SS takes advantage of the fact that different

instances of the same term could share a single prototype and differ only in their variable

bindings, it is faster to create terms in a SS system. However, since SS does not show

nested structures in the heap, it has to create extra heap cells to unify the variables and

nested structures. On the other hand, SC does not need extra heap cells when unifying.

Therefore, it is slower to unify terms in a SS system than in a SC system.

3.2.2 Program Sharing

Recently, Li [25] proposed a new Prolog term representation method - Program

Sharing (PS). The idea of PS originated in SS. It tries to extract static information from a

structure during compilation, which static information could be shared by all dynamic

instances of the structure, if care is taken to let them have different environments for

holding variables. The major difference between them is how PS handles the information

held by a molecule in SS. More importantly, the shared static information can be seen as

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

executable bytecodes for the structure unification in the PS system, but not the only

structure skeletons in the SS system.

The reason for using two-cell molecules in SS is that we do need a skeleton

pointer and an environment pointer for a dynamic structure instance; such an instance

might be carried by a variable to an arbitrary place, and delayed execution of the stmcture

code needs to access variables or nested structure instances which were created in some

environment different from the current one. How does PS handle these two pieces of

information.without using a molecule? A so-called code stub mechanism is introduced to

solve this two-pointer problem. When a procedure is called, the heap frame is allocated to

hold not only variables but also the code entries of the structures (including nested

structures). The heap cell holding a structure code entry is called the code stub.

To compare the PS with SC and SS, we use the same Prolog program as before.

Figure 3.3 shows the term representation and executable code in the PS system.

As shown in Figure 3.3, when procedure p/1 is called by goal p(A), four stack

cells are allocated as an integral frame to hold stack variables and stubs occurred in p/L

At the same time, the address of stub PCO plus an opcode DSI is assigned to variable A.

The first two cells are initialized by stubs {PCO and PCI), and the next two cells are

unbound variables (% and F). A stub serves two purposes: its address is the environment

base for accessing nested components; and its content, which is PCO in this case, gives

the structure code entry. A similar action occurs for the call of q(B). The last goal o f A -B

thus involves four basic pair-wise operations: a functor matching and three assignments.

The assignments are:

• an opcode DSI with pointer to stub QCl is assigned to X;

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• an opcode DSI with pointer to stub PCI is assigned to Y\ and

• an opcode DCl with code entry QC2 to Y.

The symbol Vi in Figure 3.3 is variable offset too, but not the exact same as off:i

in SS. In SS, off:0 refers to the same variable X in both skeletons of KO and K1 in Figure

3.2, while in Figure3.3, the V2 in PCO segment refers to X and the V2 in PCI segment

refers to Y. This is because in PS the offset of variables and stubs is computed according

to their own segment bases.

?-p(A),q(B),A=B.

p(t(X,q(X, Y,a), Y)).

q(t(r(Z), W ,f(a,b,c))).

DSI

DSI

before A=B

PCO: FUN 1/3 QCO : FUN 1/3
VAL V2 (X) SSI VI
SSI VI VAL V3 (W)
VAL V3 00 DCI QC2

PCI : FUN q/3 QCl : FUN r/I
VAL VI (X) VAL VI (Z)
VAL V2 (Y) QC2:FUN f/3
CON a CON a

CON b
CON c

--------- * PCO DSI " PCO
PCI A PCI

REF X DSI
REF Y DCI QC2

H— » QCO D S I --------- » QCO
QCl B QCl

REF Z REF Z
REF w DSI

after A=B

Figure 3.3 Term Representation o f Program Sharing

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because the stubs of all structures are allocated in the stack, we do not need extra

cells during unification. In addition, PS does not flatten whole terms in the stack as SC

does, so its stack consumption is not so high as in SC. Therefore, when handling complex

shared structures, PS has better space performance than SC, and better time performance

than SS.

Although PS can efficiently handle structures, it is not convenient for

manipulating lists. This is the first reason we combine SC and PS to handle lists in the

LVM system. When there are shared variables in the lists, the initializations equate them.

The second reason that we combine SC with PS in LVM comes from considerations of

garbage collection. It is impossible to compact the heap properly in a sharing-based

system such as SS and PS, because a dynamic shared instance is accessed by offsets from

a certain heap base, which will be damaged by compacting.

In order to take advantage of SC and solve the above mentioned garbage

collection problem, LVM is designed as follows:

• It uses a single stack to replace the traditional environment stack and heap;

• It adopts a hybrid of PS and SC to represent Prolog terms; and

• It cooperates with CGC that carries out “PS to SC" transformation during garbage

collection.

Meanwhile, two supplementary stacks, the trail and the pushdown list, remain

unchanged.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 Shared Instance and Copied Instance

The LVM defines two types of structure instance: shared instance and copied

instance.

A shared instance needs to consult a changing environment. It carries an

environment pointer to a stub of code entry. By accessing the stub we have the entry to

the code segment that defines the necessary instructions for structure unification, and by

the stub address we get the environment which will be consulted for visiting nested

components..A shared instance may be a static one that is represented in the code area by

SSI bycode, or a dynamic one created in the stack with DSI tag.

A copied instance does not involve offset-addressable variables. If there are

shared variables in a copied instance, these variables are equated in the same way as in

SC. A copied instance represents a concrete copy of a structure dynamically created on

the LVM stack.

During compilation, lists and static ground structures are processed as copied

instances. Since a static ground stmcture is completely environment-independent, a single

copy of its LVM code can be Aeely accessed during execution. Other compound terms

will be handled as shared stmctures. If the compiler incorporates mode analysis, further

optimizations can be applied.

3.3 Memory Organization

LVM divides the main memory into segments of various sizes. The memory

architecture is similar to the WAM memory confîguration. Figure 3.4 gives the layout of

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory architecture. A major difference from the WAM memory layout is that LVM

uses one stack for holding dynamic objects as well as control information.

Registers: high

TT

ST

AF-

BB_

CP-
p p .

Trail

T "
Aee

Î

DC Frame
Stack

B Frame

Code Area

DC Frame

CF ancestor’s continuation frame
CP ancestor continuation point

CT current stack top used for GC
CVO the first dynamic object

1
CVN ■thenth dynamic object---------------

B Frame

low

BBB pointer to preyious choice frame
BCF pointer to ancestor’s c-frame
■ffCP pointer to ancestor's c-point

BRO copy of magic register
BGF pointer to caller’s unification frame
BGP pointer to caller’s unification code
BTT pointer to top of trail stack
BNT pointer to next altematiye

Figure 3.4. The LVM Memory Architecture

LVM does not classify local variable and global variables. All variables, code

stubs, and copied instances are called dynamic objects. For a given clause, the total

number of its dynamic objects is completely determined during compilation. When a

procedure is called, an integral stack frame is allocated for the matching clause.

Procedure invocation and backtracking are implemented using different chains of

information frames allocated in the stack. There are three types of stack frames. D-frame,

DC-frame and B-frame. A D-frame is used for facts and chain-call clauses. It has only

cells for dynamic objects without control information. A DC-frame is allocated when a

matching clause has more than one goal in its body. It consists of three cells for control

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information and cells for dynamic objects, such as variables, copied instances and stubs.

Control information includes:

• continuation point CP,

• continuation frame pointer CF, and

• current stack top CT.

A B-frame is allocated when a choice point is met. It contains a fixed number of cells

representing the execution state.

Stack allocation is simple and straightforward, and it does not even check stack

overflow. The whole stack is divided by a stack top register ST: the space above ST is the

free area and below is the occupied area. The LVM does not deallocate stack frames, nor

does it do last call optimization. This paradigm assumes that we have an infinite memory

to use. This is clearly beneficial for the LVM implementation. There is no need to verify

binding direction of two variables. There are no unsafe variables. The trail operation can

also be simplified by comparing the variable address with the latest choice pointer only

(WAM requires one more condition to discard local variables). Furthermore, passing

arguments from a caller to a callee can be done from stack to stack and therefore

eliminates the bottleneck of soft-registers introduced by WAM.

3.4 Chronological Garbage Collection

Apparently, the assumption of infinite memory is not feasible in the real world. Garbage

collection is mandatory for LVM to be a practical system.

Memory can never be unlimited. Because application programs have grown

enormously in size and complexity, especially programs written in Prolog or Lisp that

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

typically manipulate large data structures with complex inter dependencies, automatic

storage reclamation is essential for practical implementations. Moreover, the single stack

paradigm used in LVM makes the memory consumption faster. Therefore, a high-

efficiency, relatively frequently-run garbage collector is the key to the LVM model.

Based on the study of garbage collection algorithms discussed in Chapter 2, we

developed a new algorithm: Chronological Garbage Collection. It is a tracing collector,

combining the advantages of several garbage collection algorithms. Like copying

collector, CGC traverses from a small set of roots and copies live objects onto a free

space. From mark-compact, CGC borrows the idea that at the end of collection, the stack

will be compacted into two continuous areas: one for active objects and the other for free

cells. Based on the weak generational hypothesis, CGC introduces a concept of

chronological generation - a dynamical and “natural” way to divide generations. Finally,

CGC controls the frequency of collector invocations by a factor of cache size, and collects

garbage incrementally with a trivial pause time.

3.4.1 C-Une and C-nachable

In LVM, a single stack is used to contain the invocation frames. New fhunes

being allocated are piled on top of what already exist on the stack. Frame allocation

follows the chronological order of procedure calls. When a procedure returns, it leaves its

frame undeallocated. A possible snapshot of the stack layout is given in Figure 3.5, where

AF indicates the current active DC-frame and BB points to the latest B-frame.

The current active DC-frame is called c-frame, in which CT contains the base-

address of stack top saved when this frame was allocated. This base-address is called c-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

line. However, another possible stack layout is with the c-frame below the latest choice

frame. If this occurs, the c-line is determined by BB (then we do not need to worry about

any effect on backtracking and trailing).

high

low

free

involving
garbage

c-frame
CP I CF CT -

ST

c-line

AF

BB

young area

old area

Figure 3.5 A Possible Snapshot o f the Stack Layout

The most important address in both layouts is the c-line. It is a divider of two

generations. The area above the c-line is the young generation, where stack frames were

used by terminated procedures. The area below is the old generation, where stack frames

are either still active or being frozen by choice points. A c-variable is a variable that

resides in the c-frame. A location that can be reached by accessing a c-variable (through

dereferencing and recursively visiting every argument if the variable is bound to a

compound term) is called c-reachable. An old-young reference is a reference that resides

at a location in the old generation and points to a location in the young generation.

Based on the above definitions and discussion, we introduce two properties:

• Property 1 : Any old-young reference must be c-reachable.

The proof directly comes from the nature of the LVM single stack architecture and

the way of implementing Prolog procedure calls. First of all, there are no globally scoped

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables in Prolog, i.e., all variables are local to their clauses. Secondly, invocation

frames are strictly allocated in order of procedure calls. Third, execution of a procedure

finds all its needs from the associated frame without any further memory requirement.

With this set up, the only way to pass an old reference to a young procedure is through the

parameter passing mechanism, namely, variables in the c-frame. In other words, the set of

c-variables is the only bridge connecting the old generation to the young generation.

• Property 2: Space above the c-line (young area) can be safely reused if all c-reachable

objects have been collected.

From Property 1, we know that any object above the c-line is not c-reachable is

garbage, because there is no legal sequence of program actions that would allow an old

reference to reach that object. Thus, if we collect concrete copies by traversing all c-

variables and store these copies in a temporary free area, then the young area can be

safely reused.

Now, let us take an overview of the CGC algorithm. At some stage of execution

of a mutator, the collector is invoked. Two dynamic generations are divided by the c-line.

The collection algorithm consists of two phases. The collection phase traverses from an

initial root set (the set of c-variables), and creates copies of all c-reachable objects onto a

free space (the space above ST). During collection, new roots might be added to the root

set. This phase stops when the root set becomes empty. Then the compact phase will

move copied objects back to the young area and the rest of the space in young area will be

returned to the flee pool.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2 The *cgc* Instruction and the Root Set

The idea of CGC looks quite simple. However, several questions remain to be

answered. When and where do we invoke CGC? How do we specify the initial root set?

Do we actually need to collect all c-reachable objects? To answer these questions, let us

first discuss some compilation issues and a special LVM instruction cgc.

Most garbage collections require cooperation from the compiler. For example,

object formats must be recognizable by the GC algorithm. Since CGC is tightly coupled

to the LVM execution engine, two jobs must be carried out by the LVM compiler:

inserting cgc instructions into proper code positions and generating the initial root set

associated with each cgc instruction. To invoke CGC, there must exist some garbage.

Clearly, it is impossible to do quantitative analysis of garbage during compilation.

However, it is possible to have a qualitative estimation. By examining different types of

clause definitions, it is easy to find that only a call to a deterministic, recursively defined

procedure may generate a linear (or higher degree) amount of garbage, i.e., invocation

frames accumulated by executing that procedure.

Hence, for a rule of the form p:-gi, gz, ... gn, the LVM compiler inserts cgc

instructions by the following strategies:

Let flag = false. Scan the goal list gi,g„.

• If gi is the last goal and flag = = true, inserts a cgc instruction before gi;

• If gi matches a nondeterministic mle and flag = = true, inserts a cgc instruction before

gi, and flag = false;

• If gi matches a deterministic, recursively defined rule, flag = true;

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The reason for placing a cgc in front of a nondeterministic goal is straightforward:

garbage should be collected before the stack is frozen by a choice point. Taking away

nondeterministic cases, there exists a resemblance between cgc instructions and WAM

deallocation instructions in that they are placed before the last call. However, if we

invoke the collector every time a cgc instruction is executed, the cost of miming such an

aggressive collector may be significant. Certainly, increasing the size of the region being

collected can always reduce collection frequency. The most important measurements to

determine thp invocation of CGC are generation-gap and cache-limit. Generation-gap is

defined as the distance from the youngest generation to some old generation. In our

current implementation, (ST - AF->CF) is used as an approximate estimation. Cache-

limit is a machine-dependent constant. From our experiments, half to 2/3 of the size of

data cache would be a proper range to select. These measurements serve two purposes.

On one hand, we want to control collection frequency so that the collector is not invoked

unless there is a reasonable amount of accumulated garbage. On the other hand, we want

to collect useful objects more frequently than ordinary generational copying collectors do

so that most working objects are kept in the cache. As it turns out, only a simple

comparison is required by the cgc operation: if the generation-gap is greater than the

cache-limit, it triggers the collector, otherwise, it does nothing.

Next, the LVM compiler ought to generate the initial root sets. An initial root set

defines a list of offsets of variables that should be collected. The safest way to specify the

initial root set is to include all variables occurred in a rule that contains cgc operations. If

so, some of the collection efforts might be wasted because not all the collected objects are

useful in the remaining computation in most cases. Thus, the LVM compiler attaches an

35

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initial root set to each cgc instruction. It includes all variables in the clause head and all

initialized/instantiated variables in the remaining goals. Clearly optimization can be

applied to further reduce the size of initial root set. For example, incorporated with mode

analysis, head variables used as pure selectors could be excluded. Again after an

arithmetic operation “N1 is N-1”, N1 commonly occurs in the last goal. In this case, N1

need not to be collected.

3.4.3 The CGC Algorithm

Here is an outline of the CGC algorithm.

1. Create the root stack; push all initial roots onto the stack.

2. For each root r, we search for binding r':

• if r ’ is atomic, r ’< - r and continue, where < - is assignment operation;

• if r' is an unbound (self-referential),

in old area, continue;

in young area, create a copy.

• if r ’ is a copied instance:

in code area (this instance must be statically ground), continue;

in old area, scan the instance and collect new roots;

in young area, copy the instance.

• if r ’ is a shared instance:

in old area, scan the instance and collect new roots;

in young area, copy the instance.

3. Re-address the old roots.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Move the useful objects back to the space above c-line and change ST.

Figure 3.6 shows the memory layout during garbage collection. The root trail is

used to re-address the old roots. The shade area is the initial target area of copying.

high trail

root trail

delimiter (0)
 ?---------

root stack

low

free area

young area

old area

-ST

■c-line

Figure 3.6 Memory Layout during Garbage Collection

CGC uses a modified version of the Cheney Scan [13] to implement the transitive

closure algorithm. During collection, all shared instances will be transformed to copied

instances. As soon as a young instance has been copied, a forward pointer is set which

will prevent creation of duplicate copies. CGC does not need early reset because the

LVM compiler [27] has already taken uninitialized variables from the initial root set.

Furthermore, CGC implements a cheap variable shunting by simply dropping all

intermediate references above the c-line.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Cache Architectures

4.1 The principle o f caches

In the past decade, peek processor speeds and memory sizes have increased by nearly

three orders of magnitude. However, a trend "portends more difficulty in archieving much

higher application performance in the coming years - the disparity between speed

increases in processors (60% per year) and in DRAM memories (7% per year). This

trend, coupled with physically-distributed memory architectures, is leading to very

nonuniform memory access time, with latencies ranging from a couple of processor

cycles for data in cache to hundreds of thousands of cycles.” [28]

Although faster memory chips are available, it is not economic to use only them

for main memory. Instead, inserting a small cache of fast SRAM memory between the

CPU and the main memory (DRAM), to reduce the average speed of memory access, is

more acceptable. This idea is similar to virtual memory in that an active portion of low-

speed memory is stored in duplicate in a higher-speed cache memory.

The cache contains a subset of the words in the address space of a program,

which is defined as the set of memory words that can be addressed by a program.

Generally, the memory hierarchy of a computer system is organized so that the higher

levels contain a subset of the words of the lower levels. The cache is the highest level of

the memory hierarchy, closest to the CPU. The virtual memory (or swap disk) is the

lowest level, while the main memory is between the cache and the virtual memory. Figure

4.1 shows typical cache-memory architectures - MIPS R44(X) and HP NetServer 5/166. It

shows ratios of access-time for various levels of memory hierarchy.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lOms64ns 1150ns

First
Cache

Main
Memory

Second
Cache

Swap
Disk

CPU

I : 8 :144 : 1,250,000

MIPSR4400

lOms100ns 500ns6ns

First
Caehe

CPU

Second
Cache

Main
Memory

Swap
Disk

I : 16 : 83 :1,670,000

HP NetServer 5/166

Figure 4.1 Typical Cache-Memory Architecture

When the CPU generates a memory request, it is first presented to the cache. If the

cache cannot respond, the request is passed on to the lower level memory. Caches are

effective in improving performance only if programs have good locality properties, that

is, either the same locations are used many times (temporal locality) or adjacent locations

are used within a short time interval (spatial locality).

If the mutator accesses a memory block that is held in the cache, i.e., a cache hit

occurs, the datum is immediately available. If not. Le., a cache miss occurs and the

processor may have to stall for several clock cycles until the block is retrieved from

lower-level memory. The ratio of missed references to the total memory references is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called cache miss rate. The time to fetch a word from the cache is called hit time. The

cost of cache misses, cache penalty, is architecture dependent, varying also between read

misses and write misses.

With cache penalty becoming higher, caches are increasingly important in

implementing programming languages and designing garbage collection algorithms. So

the cache performance of the Chronological Garbage Collection and its improvement (or

degradation) of the cache performance of mutators are important factors in evaluating this

algorithm.

In our experiments, benchmarks show that this algorithm not only safely collects

garbage, but also improves the program’s cache performance by more than enough to pay

its own overhead. In order to determine the improvement of cache performance and find

the best configuration for this algorithm, we developed an emulator to do the trace-driven

cache simulation.

4.2 Cache Architectures

A cache consists of an array of fixed-size blocks (or lines) that can keep the contents of

one memory block. An auxiliary array of tags contains a directory of memory blocks

stored in each cache block. Apart from the tag, the directory contains control bits that

keep status information on each cache block. Valid bit indicates whether the block

contains valid data, and dirty bit indicates whether its contents have been modified. Each

block can be further divided into several sub-blocks. A sub-block is the smallest part of a

cache with which a valid bit is associated.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The architecture of n-way set associative cache without sub-blocks is shown in

Figure 4.2. There are s sets in the cache and n blocks are grouped into each set. A cache is

called n-way set associative (or n-way associative) if each set contains n blocks. A direct-

mapped cache is a particular case of an n-way associative cache where n=I, while a fully

associative cache has only one set containing all the cache blocks. In a fully associative

cache, a memory block can be placed in any block in the cache, and all entries in the tag

array must be searched in parallel to find where the desired block is. In a direct-mapped

cache, a memory block can be found in exactly one cache block. Some mathematical

functions of the memory block address (usually the modulus number of cache blocks) are

used to compute the entry that can contain a block. In short, a memory block can be

located in exactly one set, but anywhere within a set depending on the replacement

policy, which we will discuss later.

block address
index block onset

tag 0 block 0 tag / block n

n-way
associative

ssets

set[0]
set[l]

set[s-l]

J

Figure 4.2. Architecture o f N-way Associative Cache
Figure 4.2 shows searching method for a memory reference as well. A memory

address may be divided into three parts, the tag, the index, and the block offset. The high-

order bits are compared with the cache block's tag to ensure that it does indeed store the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contents of the memory block referenced. The index is used to select the set. Note that

this is a many-to-one mapping: different blocks in main memory will map to the same set

in the cache. The block offset selects a word within a block.

When the mutator issues a memory read reference, the memory location must be

mapped to a set according to its index segment. Then the tag array and valid bits in this

set are searched and checked to find whether the block that contains the address is present

in the set. If the block is in the set, the word is selected from this cache block by the offset

segment. Otherwise, the missing block is copied from main memory to the cache. The

ways by which write references are handled depends on the write policies, which will be

discussed later.

4.3 Important Parameters in Cache Design

The goal of cache design is to balance cost and performance. Cache design

involves selecting a number of different parameters, such as cache size, block size, and

set associativity. Usually, there are trade-offs to be made in these selections.

• Split/unified caches

A cache is unified if the same cache is used for both instructions and data. Having

separate caches for instructions and data allows instruction fetching, data reads and

writes to be processed in parallel. In our study, we only discuss split caches and

concentrate on data caches.

• Cache size

The size of the cache varies between implementations. Typical cache sizes range

from a few kilobytes to a few megabytes. Large caches have lower miss rates, but may

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have higher access time. In general, small on-chip caches are common on current

processors, while larger caches are common for second-level or single-level off-chip

caches.

• Block size

Block sizes typically range between 4 and 256 bytes. Large blocks may make

better use of spatial locality and thus reduce miss rates, because it is more likely that

the following references will address the same block. However, if the block size

becomes -too large in comparison with overall cache size, and thus the number of

blocks in the cache becomes too small, cache miss rates may again rise. Large blocks

can also have higher miss penalties, because there are more words to be transferred

from memory to cache. Therefore, there is a performance trade-off to be made

between reducing miss ratios by increasing block size, and increasing penalty when a

miss does occur.

• Associativity

Most caches today are direct-mapped. Le., each block of main memory is mapped

to a single position in the caches. Although direct-mapped caches are simpler to build

and faster to search, they may be more prone to conflicts as frequently used blocks of

memory map to the same line in the cache.

Usually, increasing associativity tends to decrease miss rates, but the need to

compare many tags in parallel can increase the hit time and parallel hardware, and

thus cause a negative impact on performance and cost. Therefore, direct-mapped

caches and low degree (from two- to eight-way) associative caches are the most

conunon ones.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Fetch size

The fetch size determines how many blocks to fetch on a miss. Usually only one

block is fetched. Some policies may fetch more than one block or only part of a

block, and have different fetch sizes for read and write misses. When less than one

full block can be fetched, the fetched unit is called a sub-block, and there is usually

one valid (and possibly a dirty) bit associated with each sub-block.

• Replacement policy

For set-associative caches, a memory block can be located anywhere within a set

if without further limit. The replacement policy determines which block in a set is

replaced when a new block must be fetched into the cache. The least recently used

(LRU) policy usually approximates optimal replacement and is the most common

replacement policy used in set-associative caches. Other possible replacement policies

are random and FIFO.

• Write buffers

A write buffer can store a word or a dirty block temporarily. Writes that miss the

cache can be sent to a write buffer and do not need to cause the processor to stall. The

processor must stall if the buffer is full. Usually the depth of the write buffer, which is

the number of blocks it can hold, varies between four and eight.

It can happen that the write buffer contains the most recent copy of a block, and a

word in that block is read, causing a cache miss. Then there are two alternatives: flush

the buffer back to the cache before the block can be read, or fetch the block from the

buffer directly. The first choice may increase the miss penalty, while the second one

may increase the complexity of the buffer hardware.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4,4 Write Strategy

Write issues are in many ways more complicated than read issues, because writes

require additional work beyond that for a cache hit, e.g., writing the data back to the

memory system. Write strategies can be classed as: write hit policies and write miss

policies.

4.4.1 Write Hit Poiieies

When a write hit occurs, there are two policies to be chosen: write-through and

write-back.

• In a write-through cache, the data are written to the block both in the cache and in the

lower level (either a further level of cache or the main memory). A write buffer can be

used in a write-through cache to improve its performance by avoiding stalling the

CPU.

• In a write-back cache, data are written to the cache, and they eventually go to the next

level when removed ffom the cache because of the replacement caused by a cache

miss. On a miss it is not necessary to write a block to the next level if it has not been

altered. So, a dirty bit associated with each cache block indicates whether the block

has been modified or not.

Write-back caches reduce the write traffic since multiple writes to a single block

require only the last write to be transferred to the lower level, but might cause a delay in

the fetch of a new block. On the other hand, for a write-through cache, misses do not

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cause a block to be displaced so no delay occurs. Note that read misses do not cause data

to be written back to the next level when the block is replaced in the cache.

Both high performance write-back and write-through caches require some

additional support hardware and complexity: write-through caches require a write buffer,

while write-back caches require a dirty bit on every cache block. Since the reduction in

write traffic provided by a write-back cache increases as its size increases, for very large

on-chip caches write-back caches become more attractive compared to write-through

caches with write buffer.

4.4.2 Write Miss Policies

Unlike read misses, where the usual action is to fetch the block containing the

addressed word, there are many alternative actions on write misses. For example, it is

possible to fetch a block, just as on a read miss, or to bypass the cache and place the word

directly in memory.

We study two important write miss policies: write-allocate/no-write-ailocate and

fetch-on-write/no-fetch-on-write.

• Write*allocate vs. no-write*allocate

Writes that miss in the cache may or may not have a block allocated there. On a

write-allocate cache, a block in the cache is allocated and placed for the word being

written, and the word is written to the next level, i.e., the main memory, as well. On the

other hand, on a no-write-allocate (write-around) cache, the word is written only to the

main memory and no block is allocated in the cache. So, for a no-write-allocate cache.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when reads occur to recently written data, they must wait for the data to be fetched from

the main memory.

• Fetch*on*write vs. no-fetch*on-write

These two choices determine whether writes that miss in the cache fetch the block

being written. If the block size is one word, there is no need to fetch, because the word is

going to be overwritten anyway. However, if the block size is greater than one word,

fetch-on-write and no-fetch-on-write will make difference. If the decision is no-fetch-on-

write, then the words remaining in the block must be invalidated. If the decision is the

fetch-on-write, the block containing the word being written should be fetched from the

main memory first. Then all the words in the block will be valid after write.

4.4.3 Fetch-on-write, WrUe-validate and Write-around Caches

There are four kinds of caches by meaningful combinations of these write

policies. In our work, three of them are considered, fetch-on-write, write-vaiidate and

write-around caches.

• Fetch*on-write: A cache is fetch-on-write if it uses write-allocate and fetch-on-write

policies.

• Write-vaiidate: A cache is write-validate if it uses write-allocate and no-fetch-on-

write policies.

• Write-around: A cache is write-around if it uses no-write-allocate and no-fetch-on-

write policies.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fetch-on-write and write-validate caches can be combined with either write-

through or write-back policy. However, write-around caches can only be combined

meaningfully with write-through.

Fetch-on-write caches must fetch a block from the memory before writing it, and

thus may cause a pipeline stall. Write-validate caches do not cause a stall, since they do

not fetch the block at all. Like write-validate cache, write-around caches fetch nothing

from memory, but must wait for data to be fetched back when reads occur to recently

written data. To avoid processor stalls, write-around caches usually write the word into a

write buffer. Unless the buffer is full, it should not cause any delay. Therefore, write-

validate and write-around caches eliminate write misses, because their penalties are

eliminated.

However, write-validate and write-around caches may increase read misses. On

write-validate caches, an extra read miss occurs only if an invalidated word in the block

not fetched on the write miss is read before being written. On write-around caches, an

extra read miss occurs if word (the word written and all the other invalidated words) in

the block that was not fetched on the write miss is read before being written. Write-

around caches tend to add more read misses than write-validate caches, because the word

written is more likely to be read again soon than the other words in the block.

b) general, write-validate caches perform better than write-around caches, and

write-around caches perform better than fetch-on-write caches.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.S Cache Architecture of Current Machines

The following table [6] shows the common cache organizations of some popular

architectures:

ArcMtccturc SpUt
cache

9

Write hit
policy

Write miss
policy

Asso
ciativity

Block size
(words)

Cache size
(kilobytes)

DEC DS3100 yes through allocate I 4 64

DECDS5000/200 yes through allocate 1 16 64

DEC DS3000/500 yes no-alloc/alloc 1 32 8/512

DEC Alpha21164 yes/no no-allocate 1/3 32/64 8/96

MIPSR4400 yes Back 1 16/32 16

MIPS R5000 yes through/back 2 32 32

HP 9000 yes back allocate 1 32 64-2K

SPARCStatlon 2 no through no-allocate 1 32 64

UltraSPARC yes through no-allocate I 32 16

PowerPC 604 yes back 4 32 16

PowerPC 620 yes through/back 8 64 32

Intel Pentinum Pro yes/no back 2/4 32 8/256

Intel Pontlnum yes back 2 32 8

IBMRS6000 yes allocate 2/4 32 8/64

Table 4.1. Common Cache Organisions

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Simulators and Simulation Algorithms

In the last chapter, we discussed cache architecture and parameters at the conceptual

level. In this chapter, we present values of these parameters. Then, we treat simulators

and simulation algorithms in greater detail.

5.1 Cache Parameters

To cover typical cache implementations, large ranges of cache parameters are considered.

First of all, not only direct-mapped but also set associative caches are simulated.

Direct-mapped caches are simplest to implement, and have faster access times than other

types. These are most common in current high-performance computers. Therefore, they

are the main subjects considered. Since set-associative caches tend to reduce miss rates by

reducing conflict misses, they will be studied as well. However, as shown in Table 4.1,

only the lower associativities are implemented in current computer systems. So, only

associativities of two, four and eight will be covered by our simulations. In the next

chapter, we will see that higher associativities (greater than four) would not reduce cache

misses much.

A wide range of cache sizes is studied, from 8KB to 1MB. This covers typical

sizes for single-level off-chip caches (32KB - 64KB) and for second- or third-level

caches in multi-level systems (1MB) as currently used.

The cache block size ranges from 16 bytes to 256 bytes by powers of two. Main

memory will be discussed in terms of memory blocks, assumed to be the same size as the

cache blocks. The fetch size may be equal to or less than the block size.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although multi-level caches are becoming conunon, only single level caching is

considered in our study. The results reported here are expected to extend to two- and even

three-level caches. Since accurate analysis of multi-level cache performance requires a

more sophisticated memory system simulator, it is left for later.

Three kinds of caches are discussed according to the different write miss policies:

• fetch-on-write caches,

• write-validate caches and

• write-around caches.

Fetch-on-write caches are the most common ones. Write-validate caches can yield

significant performance improvement, while the performance of write-around caches lies

between those of fetch-on-write and write-validate caches.

The write-hit policies, write-through and write-back, are discussed briefly. Fetch-

on-write and write-validate caches can be used with either write through or write back

policies, while write-around can only be used meaningfully with write through.

Here only data cache performance is considered. Instruction cache performance is

left for later.

5.2 Cache Simulation

Studies of cache performance traditionally use computer simulation, analytical models, or

a combination of both. Our method of examining the cache performance of CGC

algorithm is trace-driven simulation.

Trace-driven simulation uses one or more address traces and a cache simulator. A

trace is the log of a dynamic series of memory references, recorded during the execution

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a program [29]. The information recorded for each reference may include its address,

its type such as instruction fetch, data read or data write, its length, and other information.

A trace generally contains extremely lengthy address references sequences. A simulator is

a program which accepts a trace and parameters describing one or more caches, then

simulates the behavior of those caches in response to the trace, and computes

performance metrics (such as miss ratio) for each cache.

There are several ways to obtain traces, the fastest being through special hardware

attached to ap operational machine [30]. The special hardware monitors memory requests

and logs each individual reference on tape or disk. Obviously, this method is expensive.

So far, the most popular method for generating a trace for studying cache performance is

the machine simulator. It is a program that simulates the instruction execution of a

computer under study. The input of the simulator is a typical workload. As each

instruction is executed, the simulator writes a sequence of address references generated

during the simulation to an external file. In our study, the machine to be analyzed is the

LVM emulator embedded with the CGC algorithm, which is a “virtual machine”

implemented completely in software. Thus, in our case, the machine simulator is almost

ready. What we need to do is to modify the emulator to record the references.

To avoid occupying a large amount of disk space, our cache simulations are done

“on the fly”, which means that there is no explicit generation of address traces. Instead,

calls to the cache simulator are inserted directly into the source code of the LVM

emulator. The address and type of each reference are carried to the cache simulator as

parameters of the call. Here we have mentioned two simulators. One is the cache

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulator, which simulates the behavior of caches and evaluates metrics. The other is the

machine simulator, which is a modified LVM emulator.

S.3 The Modified Emulator

First of all, let us discuss the machine simulator. Since we only study data-cache

performance, we focus on data accesses to memory. The inserted function call to the

cache simulator is as follows:

in t CaGhe_Sim ulation(int owner, in t typ e , unsigned a d d re ss);

There are three parameters defined in this function: ‘owner’ is a flag to indicate who

performs this memory access: the garbage collector is indicated by 1 and the mutator is

indicated by 0; ‘type’ indicates the reference’s type, 0 for read and 1 for write; and finally,

‘address’ stores the address of the reference.

According to their function, instructions in LVM can generally be classified as:

• control instructions,

• initialization instructions,

• load/store instructions,

• arithmetic instructions,

• branching instructions,

• dispatching instructions,

• built-in instructions,

• unification instruction pairs, and

• CGC collection related instructions.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Not all of these types of instruction access data in the memory directly, since some of

them are handled through registers only. Passing a call to the cache simulator in the

proper position of code requires understanding the behavior of LVM instructions clearly.

Unfortunately, there are many instructions tending to access memory, it is impossible to

analyze all of them in this thesis. Therefore, several typical instructions are discussed to

show how the interface between the LVM emulator and the cache simulator is designed.

Let us take ALC, a very basic control instruction, as our first example.

Mnemonic: . ALCn

Operation: allocate a c-frame with n cells

Bytecode: alcodl

Function: allocate a n-cell frame hem the stack, link this new frame with the

ancestor’s frame to form a call-chain

The following is the segment of LVM implementation (without the cache

simulator part):

c a s e a l e : a f = s t ;

S t = S t + OPDl;
* a f = c f /

* (a f + 1) = c p ;

* (a f + 2) = S t ;

c f = a f ;

NEXT (2);

where a f is the current active frame register pointing to the base address of the current

active frame, s c is the stack top register pointing to the top of the stack, and OPDl is a

macro that gets the value of n in the ALC instruction. The first two lines of code allocate

n cells from the stack top to form the current active frame. The next three assignments

store three important values in the first three cells of this frame. The cell at the address

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a f holds the last active frame base address linking this new frame with the ancestor’s

frame to form a call-chain. The next cell (a f + 1) stores the continuation point

(c p) . The third one (a f + 2) is the new top of the stack. From this description, we

can see that there are three memory cell writes, so a call to the cache simulator is inserted

following each write. The modified code is as follows:

case a le : a f = s t ;
S t = S t + OPDl;
*a f = c f;
Cache_Sim ulation (0 ,1 , (u n s ig n e d)a f) ;
* (a f + 1) = cp;
C ache_S im ula tion (0 ,1, (unsigned) (a f+ 1));
* (a f + 2) = s t ;
Cache_Sim ulation (0 ,1 , (unsigned) (af+2)) ;
c f = a f;
NEXT (2);

Besides the mutator’s instructions, CGC makes a lot of memory data references as

well. GC-compact is straightforward to analyze.

As we mentioned in the previous chapter, GC compact is a process that moves a

temporary copy of collected results from the free area to the area just above the c-line.

The following is a segment of source code for moving the collected data.

f o r d = 0/ i < ep; i++) (
h p [i] = s t [i] ;

}

where ep stores the total number of collected results, hp, the so-called c-line, divides the

old and young areas, and sb is the stack top, i.e. the base line of the free area. Since each

movement of a cell causes a read and a write to that cell, this block movement yields

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

many reads and writes if the number of collected results is large. The code is modified as

follows.

f o r (i = 0; i < ep; i++) {
h p [i] = s t [i] ;
C ache_S im u la tion (l, 0, (u n s ig n e d ; (s t + i)) ;
Cache__Simulation(l, 1, (unsigned) (hp + i)) ;

}

5.4 The Cache Simulator

So far, we have had several examples describing how to insert the calls to the LVM

emulator. Now, let us discuss the algorithms of the cache simulator.

According to the cache architecture presented in chapter 4, we define a structure

for caches as follows,

typ ed e f s t r u c t {
unsigned Tag;
i n t *Valid, *D irty;

}Cache_Line;

The field Tag indicates whether a memory block is stored in cache. The fields V a lid

and D i r t y are valid bit and dirty bit. Since a cache block can be further divided into

several sub-blocks, these two fields are defined as integer pointers allocated with several

cells representing the valid bit and dirty bit for each sub-block. Although these three

fields are defined in this structure, they are not used in all three cache caches. For

example. D i r t y will not be used in write-around caches.

Caches are initialized when LVM virtual machine is started up. Parameters, such

as associativity, cache size and cache type, have to be provided. During the execution of

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each instruction, calls to the cache simulator are made. The behavior of the caches is

simulated along the execution of the program. After the execution, statistical results, such

as miss ratio, are evaluated. At the same time, the results of the program are displayed.

Let us examine the algorithms to simulate write_validate, write_around, and

fetch_on_write caches.

void W rite_ V a lid a te (in t owner, i n t type , unsigned address)

s w i tc h (t y p e) {
case 0:

case 1:

d e fa u l t :

i f (! Read(owner, a d d re s s))
Load(owner, address, 0); /*read m iss* /
break;
i f (.'Write (owner, address))
Loadfowner, address, 1); /* w r i te m iss* /
break;
d i s p la y e r ro r messages;

void Write_Around(int owner, in t type , unsigned address)
{

swi t c h (t y p e) (
case 0:

case 1:
d e fa u lt :

i f ('.Read (owner, address))
Load(owner, address, 0);
break;
i f (! W r i t e (owner, a d d r e s s))
d i s p la y e r ro r messages;

void Fetch_on_W rite(int owner, i n t typ e , unsigned address)
{

s w i tc h (t y p e) {
case 0:

case 1:

d e fa u lt :

i f a Read(owner, a d d re s s))
Load^Fetch(owner, address , 0);
break;
i f (! Write(owner, a d d re s s))
Load^Fetch(owner, address , 1);
break;
d i s p la y e rro r messages;

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For write.valîdate caches, no matter whether read or write misses occur, the missed block

will be loaded into cache. For write_around caches, however, only read misses result in

loading a block. The missing blocks of write misses will be loaded into memory directly,

bypassing the cache itself. For fetch_on_write caches, loading will be executed when read

or write misses occur, but the loading is different from the one for write_validate caches.

In general, the misses (read or write) have to occur before loading.

i n t R ea d (in t owner, unsigned address)
{

• S p l i t th e address o f th e blocJc and search th e word in the
cache b y i t s tag.

• I f th e tag matches and th e correspond ing v a l id b i t i s on,
i . e . , read h i t occurs, do th e fo llo w in g ,
1. LRU u p d a te /

2. R eturn 1 to in d ic a te read h i t ;

• I f V a lid == 0, re tu rn 0;

i n t W r i te (in t owner, unsigned address)
{

• S p l i t th e address o f th e blocJz and search th e word in the
cache b y i t s tag .

• I f t h e t a g matches and th e correspond ing v a l id b i t i s on, do
th e fo llo w in g ,
1. S e t the corresponding d i r t y b i t on to in d ic a te the

corresponding sub blocJc i s w r it te n . T h is i s n o t
a p p lic a b le fo r w rite_around caches.

2 . LRU update;
3. R eturn 1 to in d ic a te w r i te h i t ;

• I f V a lid == 0, re tu rn 0;

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v o id Load (in t owner, u n sign ed a d d ress , i n t in W rite)

(

S p l i t the address o f th e b lo ck ;

I f th e ta g m atches, i . e . , the m isse s occur because o f the
v a l id b i t i s o f f .
1. S e t th e v a l id b i t on to in d ic a te w r i t in g th e b lo c k in to

th e corresponding sub_block in th e cache;
2. S e t th e correspond ing d i r t y b i t to " in W rite* .

I f th e tag does n o t match,
1. F ind & a l lo c a te th e l e a s t re c e n t used b lo c k in th e cache;
2 . W rite th e word to th e corresponding sub b lo ck in cache,

in c lu d in g s e t Tag f i e l d and tu rn V a lid f i e l d on;
3. S e t th e d i r t y b i t to 'in W r ite ';
4. In v a lid a te the rem ain ing sub b lo c k w ith in the b lo ck ;

Do LRU update;

vo id Load_Fetch(i n t owner, unsigned address, i n t inW rite)

{

S p l i t th e address o f the b lock;

I f th e ta g m atches, i . e . , the m isses a re caused b y v a l id b i t
b e in g ' o f f ' .
1. S e t th e v a lid b i t on to in d ic a te w r i t in g th e b lo c k in to

th e corresponding sub b lo ck in th e cache;
2 . S e t th e d i r t y b i t to "inW rite*, which m eans d i r t y b i t i s

on fo r w r ite s , o f f f o r read;

I f th e tag does n o t m atch,
1. F ind & a l lo c a te th e l e a s t re c e n t used b lo ck ;
2 . F etch and load th e whole l in e , (no t o n ly the sub b lo ck

i t s e l f) , i . e . , s e t t i n g tag f i l e d , s e t t i n g each v a l id b i t
to on and s e t t i n g each d i r t y b i t to 'in W r i te ';

3 . S e t the 'D ir ty ' f i e l d to 'in W r i te ';

Do LRU update;

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the cache uses write-back as write hit policy, the dirty sub block should be

written to the memory. It is called “cast-out” (from the cache point of view) or “write

back” (from the main memory point of view). If the cache write hit policy is write-

through, invalidating is still applicable, but there is no need to write the block back to

memory because write through guarantees the consistency of memory and cache.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Performance Analysis

6.1 Benchmarks

Six benchmarks tested under the LVM system are;

• Traveling Salesman Problem {tsp),

• DNA matching (match),

• Recursive integer arithmetic (tak),

• Quick sort and naïve reverse (qsnv),

• Boyer-Moore Theorem prover (boyer), and

• Build and query a database (browse).

Traveling Salesman Problem (tsp) and DNA matching (match) come from [20].

For the tsp program, tours of 30, 50, 70 and 100 were computed. The match program

implements a dynamic algorithm for comparing DNA sequences. One sequence of length

32 was compared with others of length 20, 100, 500 and 1000. Another two programs are

part of the Berkley Benchmark suite. Benchmark tak implements a recursive arithmetic

computation. It was tested with input (x, 16, 8), where x was chosen from 22, 24, 26 to

28. The reason for choosing this benchmark is to test LVM performance in case no long-

lived (heap) objects are involved in execution. Benchmark qsnv is a quick sort followed

by naïve reverse, and has been tested with lists of 500, 1000, 2000 and 5000 integers.

This benchmark is particularly interesting because some collected objects may survive

through many collections. Boyer-Moore Theorem Prover (boyer) is a prover for quantifier

free logic for recursive functions over the integers and other finitely generated structures.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is classic Lisp program since it recursively examines and constructs lists at a great rate.

Inputs to boyer are made up by the previous tautology in conjunction with a truth value in

each subsequent test. The other one is Build and Query a Database (browse), tested with

input sizes 100, 500, 1000 and 2000.

Benchmarks were run under two different hardware environments:

• SPARC IPC workstation with an 8MB memory and a 64KB cache,

• Sun Enterprise 4000 running SunOS 5.6, with 16K D-cache, 1MB E-cache, 256MB

main meinory, dual sun4u CPU, and 168MHz clock.

We identify the hardware environment when we present our data.

6.2 Discussion o f Memory References

During a program run, a garbage collector imposes both direct and indirect costs.

Directly, the collector itself executes some instructions and causes some cache misses.

The number of misses depends upon the collector’s own memory reference patterns.

Indirectly, there are two ways in which the collector affects the number of cache misses.

Each time the collector is invoked, its memory references remove some, or possibly all,

of the program’s state from the cache and when the program resumes, more cache misses

occur as that state is restored. On the other hand, the collector can also move data objects

in memory, which improves the objects’ reference locality, thereby decreasing the

program’s miss count. [1]

Therefore, memory references with and without garbage collection are compared

in this section to show how the collector improves mutator locality. Further, the

collector’s memory references are presented and studied. These figures allow us to

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

visualize their memory reference patterns, and support the statistical results presented

later in this chapter.

First of all, let us look at Figure 6.1, which shows memory references of rsp(30)

without garbage collection. In the figure, the x-axis stands for the sequence of memory

references; the y-axis represents the addresses in the stack. Data are presented every 1,024

memory references, some of which are extracted and shown because the memory

references log is extremely long. Some memory references in the trail area (the “pulse” at

the right of the figure) are scaled manually to fit into the figure (for example, the

maximum point was 3999934, but it is scaled to 99934 in the figure).

90000

70000
60000
50000

30000
20000

101 151 201 251

Memory Rtfortncos (x1024)

Figure 6.1 Memory References of tsp(30) without Garbage Collection

As we mentioned before, the LVM system adopts single stack policy. So, during

execution of the program, the stack is occupied in a linearly increasing pattern if no

garbage collector is employed to free up memory.

Figure 6.2 shows data of /rp(30) with garbage collection. The size of cache

simulated is 64K and the cache-limit is 40K.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When memory requirements accumulate enough to meet the garbage collection

condition, the collector begins to work and releases some space for reuse. Between two

garbage collections, the stack is still occupied in a linear pattern. However, because the

collector collects garbage and releases memory periodically, the program can reuse the

stack space again and again. This is why we can see a lot of “saw teeth" in the figure.

Therefore, with garbage collection, the program requires much less memory. The stack

space is no longer occupied in a linearly increasing pattern, but in a constant pattern. This

feature makes it possible for a cache to contain most working memory reference spaces,

thus reducing misses and resulting in good cache performance.

Memory Riwrence (x1024)

Figure 6.2 Memory References of rsp(30) with Garbage Collection

Theoretically, we should see some memory references to the trail area (the

“pulse”) during garbage collections. But since garbage collections do not issue many

memory references, they are not sampled and shown in the figure. This is a good sign,

because it means that the number of instructions that our collector executes is small, and

thus our garbage collection cost is low.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have shown the memory references of the tsp(30) mutator. Now let us look at

the memory references of the collector.

aoooo

25000

20000

15000

101 151 201

Memory Ritaroneos

Figure 6.3 Memory References of the Collector

From Figure 6.3, we can see collector activity very clearly. At the beginning, the

collector creates new roots based on the initial roots. Then it tries to trace the live objects

and write them to the free area. During tracing stage, the references may cluster at the

young and the old areas. Finally, the collector moves live objects down to the c-line,

which is shown as waves at the right of the figure.

The collector only issues 296 memory references during this garbage collection. It

is very small compare to the mutator. In addition, the references mostly focus around the

c-line, the top of the young area and the trail area. They should be contained within a

cache with reasonable size. Therefore, the miss ratio will not be high.

From the figures and discussion above, we see that the collector drastically

decreases memory requirements of a mutator, making it possible to run a larger program

in a system with a limited memory. Further, the collector improves the space locality of a

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mutator, resulting in better cache performance. In addition, the collector itself issues very

few references and has good space locality too.

6.3 Discussion ofCache-limit

Cache-limit controls the collection frequency, and is very important for the performance

of the CGC algorithm. For a given cache, if the cache-limit is too high, the collector will

be activated more frequently. This affects performance because frequent collections could

add more overhead, maybe offsetting the improvement to mutators. On the other hand, if

the cache-limit is too large, collections are not frequent enough to minimize cache misses.

Now, we analyze how to decide a reasonable cache-limit.

16K(W)

16K(R)

— — — — 32K (W)

 32K(R)

64K(W)

64K(m

128K(W

* • “ • * 128K (R)

256K(W
64K 128K

CaetM_NmMs
2S6K(R)

Figure 6.4 Write and Read Miss Ratios of the Mutator of tak22

Figure 6.4 and Figure 6.5 show data of the benchmark tak{22). The x-axis of each

figure represents cache-limit, and the y-axis miss-ratios. Five direct-mapped fetch-on-

write caches are considered here, with cache sizes 16K, 32K, 64K, 128K, and 256K (In

the rest of this chapter, if not specified, caches are direct-mapped fetch-on-write data

caches of size 64K, block size 32 bytes, no sub-block and cache-limit 40K if with garbage

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collection). We separate read and write misses, mutator and collector as well. Figure 6.4

shows read and write miss ratios of the mutator, while Figure 6.5 shows those of the

collector.

16K{W)

16K(R)

---------- 32K(W)

-32K(R)

64K(W

64K(R)

128K(W)

128K(R)

1M - 2S6K(W)

2S6K(R)

64K 128K

CaehtJImM*

Figure 6.5 Write and Read Miss Ratios of the Collector of tak22

Figure 6.4 and Figure 6.5 show that when cache-limit is larger than the

corresponding cache size, the miss rates of both mutator and collector are high and

eventually have prominent plateaus. The values of the plateaus in Figure 6.4 approach the

miss ratios without garbage collection. In order to keep cache misses low, we should

choose cache-limit no more than the cache size. Does this imply we should choose a

cache-limit as small as possible? No. If the cache-limit is too small, collector is activated

more aggressively. This will increase garbage collection costs with consequent

degeneration of the overall execution performance. In Figure 6.4 and Figure 6.5, when

cache-limit is from 16 to 1 of the cache size, cache misses of both mutator and collector

become higher and higher. During this stage, the misses are low compared to these when

cache-limit is greater than cache size. At the same time, collection is not too frequent

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because the cache-limit is comparably large. From our experimental results, half to 2/3 of

the size of the cache would be a proper range for the cache-limit.

Appendix A gives the corresponding figures for benchmarks çsnv(lOOO), tsp(30)

and matchOO).

6.4 Cache Performance Analysis

Table 6.1 gives statistics of four benchmarks, run on the SPARC IPC workstation. All

times are measured in seconds by the Unix timing facility that returns usr/sys elapsed

time, and all memory related figures are in byte.

Test cgc/size stack memory time(E) time(D) E/D

TspOO) 720/12K 82K 8.36M 9.35/0.01 10.63/1.76 76%

Match(20) 600/12K lOlK 8.12M 7.23/0.01 7.45/1.62 80%

Tak{22) 412/28K 272K 11.76M 22.1/0.01 22.9/3.18 84%

Q5nv(1000) 111/36K 98K 4.14M 5.50/0.10 5.50/0.10 100%

Table 6.1 Benchmark Statistics

Column cgc/size gives the actual counts of CGC invocations and the average size

of garbage collected each time. Column stack gives maximum occupancy of the stack.

Here we point out that the actual memory required in running each benchmark will never

exceed double the corresponding stack size, because a free area of that size is more than

enough to hold temporary copies. Column memory exhibits the summations of dynamic

memory requirements, that is, maximum allocated stack sizes with CGC disabled. Note

that a number in this column is the sum of total stack and heap allocations in traditional

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Prolog implementations. The next two columns show execution times in gc-enabled and

gc-disabled tests. The final column gives the ratios for gc-enabled and gc-disable tests.

The results in Table 6.1 are very promising. For these benchmarks, their

performance with CGC is better than, or at least as good as when executed on a machine

with infinite virtual memory. One reason is that the CGC algorithm is very efficient. It

does not collect garbage, instead, it only collects useful objects (starting from a very small

set of initial roots specified by the LVM compiler) with respect to dynamically partitioned

generations. Another important reason is that the single stack paradigm incorporated with

CGC improves locality. This greatly reduced overhead incurred by the gaps between

cache and main memory, and between main memory and secondary virtual storage.

As we mentioned in section 6.2, the collector issues much fewer memory

references than the mutator. Table 6.2 shows memory references statistics for four

benchmarks (all numbers in millions). Caches simulated here are 64K data caches with

40K cache-limit.

test gc-disabled gc-enabled

mutator mutator collector ratio

tsp{30) 10.93 9.679 0.239 2.4%

match{20) 5.587 5.407 0.601 2.4%

tak(22) 16.76 16.76 0.234 1.4%

qsnv(1000) 1.072 1.072 0.681 39%

Table 6.2 Memory References

From Table 6.2 we observe that benchmarks, except qsnv. only contribute a very

small number of memory references to garbage collection, approximately proportional to

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the garbage collection overhead. We also observe that CGC reduces the number of

memory references in some benchmarks. This is a typical result o f variable-shunting

idopted by the CGC algorithm, Le., intermediate links in young generation are discarded

during collection. However, the qsnv benchmark spends a big chunk of overhead on

CGC. In fact, it is one of the worst cases for the CGC algorithm: successive collections

repeatedly copy results surviving across all earlier collections. Does this mean that CGC

is not suitable for such kind of programs? Further investigation on cache-performance

gives a promising answer.

test gc-disabled gc-enabled reduction

mutator mutator collector

tspiZQ) 347,762 67,414 3,638 80%

match(20) 230,531 9,145 6,192 93.3%

tak{22) 371,893 143,803 602 61%

^s/iv(10(X)) 130,372 2,991 618 97.2%

Table 6.3 Cache Misses

Table 6.3 gives the numbers of cache misses in simulating our benchmarks. The

final column shows the percentage of reduction in gc-enabled and gc-disabled tests. For

example, execution of qsnv yields 130,372 cache misses on a machine with infinite

memory. However, this number was reduced to 3,609 (mutator + collector), a 97.2%

reduction in cooperation with the CGC algorithm. This proves that the CGC improves the

program cache performance by almost or more than enough to pay off its own cost.

Appendix B gives a complete set of benchmark statistics under the Sun Enterprise

4000 environment.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Discussion o f Cache Parameters

Among all cache design parameters, cache size is the most important affecting

performance. Figure 6.6 presents write and read miss ratios of fetch-on-write caches.

>qsnv(1000) -m-(ak(22)
tsp(30) -4(-dna(20)

each* SttM

•qsnv(IOOO) lak(22|

t$p(30) — dn#(20|

OOli

I I K «4K l i l K 2MIC

Cacha Siiaa

Figure 6.6 Write and Read Miss Ratios on Fetch-on-write Caches

Figure 6.6 shows that both write miss ratio and read miss ratio decrease drastically

with increase in cache size. Figure 6.7 presents write and read miss ratios of tak{22) with

and without garbage collection. It shows that the read miss ratio with or without garbage

collection decreases similarly. However, write miss ratio with gc decreases much more

sharply than without gc. This can be explained as follows. Most write misses in the LVM

system are continuous, linear frame allocations. Without gc, each allocation must be a

new address access, and result in a miss independent of cache size. On the other hand,

with gc, since the memory has been reclaimed, some new allocations will reuse old

spaces, resulting in cache hits. The larger the cache, the more cache hits. Therefore, a user

program with our garbage collection will take better advantage of large caches.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- tak without GC- -takwithGC

o.oati
t.OOK

o.gai4
0.0012

0.0000

0.0000

0.0004

0.0002

92K 04K I20K 200K

Cacha SIM*

- tak without GC- -takwithGC

lOK 32K 04K I20K 2S0K

Cacha Sizas

Figure 6.7 Write and Read Miss Ratios of tak with and without GC

Read Mss RatiosWrite MBS Ratios

120 040 1200 2008

Block S iias

-WtKeMBS Ratios -Read Mas Ratios

120 040 1210

Block Ska*
2900

Figure 6.8 Miss Ratios on Fetch-on-write Caches with Different Block Sizes

Figure 6.8 shows miss ratio on caches (64K) with different block sizes. Large

blocks make better use of spatial locality and thus reduce miss rates. They reduced write

misses more because most write misses are allocation misses. However, if the block size

becomes too large in comparison with overall cache size, and thus the number of blocks

in the cache becomes too small, cache miss rates may again rise. This is why the read

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

miss ratios of tak rise a little in Figure 6.8. Large blocks can also have higher miss

penalties, because there are more words to be transferred from memory to cache.

Cache Sizes Fetch-on-write Write-around Write-validate

read misses total misses read misses read misses

4K 101700 235940 223059 117541

16K 11906 50827 49951 12751

64K 1147 21098 21034 1457

128K- 2 1940 1933 3

256K 2 1940 1933 3

Table 6.4 Match(20): Miss Ratios for Write-validate, Write-around. and Fetch-on-write Caches

Table 6.4 shows misses for write-validate, write-around and fetch-on-write

caches. The block sizes are 64 bytes with 2 sub-blocks, and cache-limits are 64K. The

data are collected from benchmark matchflQ). Note that write-validate and write-around

caches have higher read misses than fetch-on-write cache. Since they eliminate the write

misses, they only have read-misses in the table. For fetch-on-write caches the total misses

column are read misses plus write misses. Results show that misses for write-validate and

write-around caches will never be larger than that total misses for fetch-on-write cache.

That write-around caches add much more read misses than write-validate caches proves

that a word written is more likely to be read again soon than other words in the block.

These results show that write-validate caches perform much better than write-around and

fetch-on-write caches, and write-around caches perform a bit better than fetch-on-write

caches.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have discussed the effect of cache size, block size and write policies. These

discussions confirm that the memory reference patterns of benchmarks share the same

properties; most writes are for allocation and most reads are to recently-written words. In

addition, from our experiments, the impact of set associativity is not very great. The

improvement can only be observed from direct-mapped to 2-way associative cache.

6.6 Comparison of LVM and SICStus 3.1

In this section, we compare LVM and SICStus 3.1 for our six benchmarks. SICStus

Prolog 3.1 is an Edinburgh compatible Prolog implementation, owned and maintained by

the Swedish Institute of Computer Science. It is one of the most widely used Prolog

software systems.

The benchmarks were run on a Sun Enterprise 4000 environment. As the CGC

algorithm is an incremental garbage collector invoked more frequently than other gc-

algorithms, it is hard to estimate the actual time spent by the CGC invocations. It will be

estimated by the following method.

In Appendix A, we use P to represent a gc-disabled test, and P ’ a gc-enabled test.

Each table has these rows:

• T(P) - execution time, and

• R(P) - total memory references in execution.

Since P’ involves garbage collection overhead, we have the following formulas:

• TfP V = T(Pgc) + T(GC). and

• R(P) = R(Pgc) + R(GC).

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where Pgc represents the original program P incorporating garbage collection, and GC the

CGC algorithm. As the number of memory references is roughly proportional to

execution time, the time spent by the CGC can be estimated:

7 (G C) = 7 (P ’) x - ^ i ^ ^
P (P ’)

Two execution modes of SICStus were tested, where 5/ is fast-code and Sc

compact-code. In each table, gc-calls gives the actual number of invocations of garbage

collection; garbage gives the total number (in millions) of garbage collected by the

collectors. '

input-size 20 100 500 IK lOK lOOK 500K 600K

S f

T(P') 0.22 1.13 5.99 13.03 207 2694 32505 fail
T(GC) 0.05 0.27 1.87 4.87 124 1881 27772

gc-calls 3 8 41 88 302 470 1241
garbage 6.08 30.45 162.26 344.44

Sc

T(P') 0.63 3.03 15.48 32.26 402 4773 42462 fail
T(GC) 0.05 0.28 1.81 50.4 124 1882 27584

gc-calls 3 8 41 88 302 470 1241
garbage 6.08 30.45 162.26 344.44

LVM
T(P') 1.41 7.16 36.06 72.81 723 7240 33523 39,762

T(GC) 0.01 0.04 0.36 1.46
gc-calls 42 214 1075 2150
garbage 6.94 35.3 177.5 354.9

Table 6.5 DNA Matching - Comparison with SICStus 3.1

input-size 30 50 70 100 200
T(P') 0.18 1.24 4.49 17.91 266

S f T(GC) 0.0 0.02 O.Il 0.40 4.9
gc-calls 0 1 3 10 90
garbage 0 2.02 1012 38.32

T(P') 0.56 3.92 14.48 58.59 899
Sc T(GC) 0.0 0.02 0.11 0.42 4.9

gc-calls 0 1 3 10 90
garbage 0 2.02 10.12 38.32

T(P') 1.75 12.52 48.03 198 3375
LVM T(GC) 0.014 0.13 0.96 8.16

gc-calls 45 331 1178 4026
garbage 8.18 58.47 219.7 894.8

Table 6.6 Travelling Sa esman - Comparison with S[CStus 3.1

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input-size 500 1000 2000 5000

S f

T(P') 0.03 0.17 0.82 5.98
T(GC) 0.0 0.07 0.46 3.78

gc-calls 0 1 3 12
garbage 0 8.16 49.02 392.2

Sc

T(P’) 0.14 0.52 2.03 14.73
T(GC) 0.04 0.12 0.58 4.78

gc-calls 2 4 16 102
garbage 4.05 14.21 62.78 403.3

LVM
T(P’) 0.29 1.18 4.8 30.15

T(GC) 0.01 0.02 0.14 1.81
gc-calls 6 24 102 665
garbage 0.95 3.77 15.8 98

Table 6.7 Quick sort and Naïve Reverse - Comparison with SICStus 3.1

input-size 1 2 3 4 7

5/
T(P') 0.33 2.18 6.66 19.61 fail

T(GC) 0.04 0.48 1.73 5.66
gc-calls I 6 15 33
garbage 1.91 27.49 106.07 419.2

Sc

T(P') 0.7 4.55 13.59 39.39 fail
TiGC) 0.04 0.47 1.71 5.61

gc-calls 1 6 15 33
garbage 1.91 27.49 106.07 419.2

LVM
T(P') 1.41 8.75 25.65 73.87 1.757

T(GC) 0.07 0.52 1.79 7.38
gc-calls 19 138 408 1343
garbage 4.29 29.14 87.97 256.2

Table 6.8 Boyer-Moore - Comparison with SICStus 3.1

input-size 100 500 IK 2K lOK lOOK 200K
T(P') 0.37 1.82 3.81 7.68 42.98 2341 7,996

T(GC) 0.0 0.0 0.1 0.23 2.47 27.85
gc-calls 0 0 1 3 9 19
garbage 0.0 0.0 1.81 8.9 76

Sc

T(P') 0.86 4.59 9.31 19.01 fail fail fail
T(GC) 0.0 0.0 0.1 0.2

gc-calls 0 0 1 3
garbage 0.0 0.0 1.81 8.9

LVM
T(P') 2.9 14.7 29.68 60.53 371 2.996 7,988

T(GC) 0.0 0.001 0.03 0.12
gc-calls 0 2 6 14 74
garbage 0.0 0.32 0.95 2.5 11.8

Table 6.9 Browse - Comparison with SICStus 3.1

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input-size 22 24 26 28

5/
T(P‘) 0.43 1.04 2.17 4.79

T(GC) 0.0 0.0 0.0 0.0
gc-calls 0 0 0 0
garbage 0.0 0.0 0.0 0.0

Sc

T(P') 1.51 4.13 9.93 21.67
T(GC) 0.0 0.0 0.0 0.0

gc-calls 0 0 0 0
garbage 0.0 0.0 0.0 0.0

LVM
T(P') 3.4 9.2 22.1 48.08

T(GC) 0.0 0.0 0.0 0.0
gc-calls 49 137 336 742
garbage 11.3 31.7 76.2 166.4

Table 6.10 Tak - Comparison with SICStus 3.1

When input size is small, SICStus is about 3-8 times faster than LVM. For

arithmetic-intensive benchmarks, such as tak and tsp, LVM is even slower. Nevertheless,

this is an acceptable range of performance ratio for comparing a binary-code engine

against a byte-code emulator. When we increase the input sizes, some benchmarks retain

their performance ratio, whereas others greatly narrow the performance gap and at certain

breakthrough points they perform better than their counterparts under SICStus. How

could this happen? The key is garbage collection. For example, among the 32,505

seconds of the matchiSOOk) benchmark under SICStus, 27,772 seconds are spent on

garbage collection. That is, the performance penalty caused by garbage collection reaches

85 percent for this special case. On the other hand, LVM spent much less time on garbage

collection. From our experiments, time consumed by the CGC algorithm is (linearly)

proportional to input size. Furthermore, the costs of garbage collection are almost paid off

by improvement in cache performance. Note that measurements using a wide range of

applications must be tested. Nevertheless, benchmarks and their performance studied in

this thesis suggest that LVM incorporated with the single stack paradigm and CGC

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm offers a novel, practical technology in the design of high-performance Prolog

systems.

78

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Conclusion

7.1 Conclusions

We have presented a study of cache performance influenced by the CGC algorithm and

found important factors influencing the latter's performance. Simulation results from the

cache simulator fully support the experimental results gathered from the LVM system:

the cost of CGC can be paid by improved cache performance. With small input size,

SICStus is about 3-8 times faster than LVM. This is an acceptable range of performance

ratio in comparing a binary-code engine against a byte-code emulator. With increased

input size, some benchmarks keep the same performance ratio, whereas others greatly

narrow the performance gap and at certain breakthrough points perform better than their

SICStus counterparts.

Further, we found that memory reference patterns of our benchmarks share the

same properties: most writes are for allocation and most reads are to recently-written

objects. In addition, the results provided by this thesis show that the write-miss policy can

have a dramatic effect on cache performance of the benchmarks. A write-validate policy

gives the best performance.

Finally, we point out that the concept of combining CGC and the single stack

paradigm is probably more important than the actual implementation. Results presented

in this study might be useful in related disciplines of functional logic, as well as object-

oriented programming.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work

There are some constraints in our current cache simulation. Firstly, only one level

of caching is considered. A more sophisticated simulator with multiple level caching is

left to future work. Secondly, only data cache performance is studied. It is our intention

to study that both data-cache and instruction-cache to evaluate CGC performance more

completely.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A. Cache-limit Figures

Appendix A shows miss ratios of our benchmarks varying with cache-limits. The x-axis

of each figure represents cache-limits, and the y-axis indicates miss ratios. Five direct-

mapped fetch-on-write caches are considered here, with cache size 16K, 32K, 64K, 128K,

and 2S6K respectively, block size 32 bytes and no sub-block.

Figure A.1 qmvflOOO), Mutator, R/W Mlaa Ratios

64K 128K

CaefiaJimMt

---------- 16K(W)
---------- 16K(R)
— — — — 32K (W)
 32K(R)

 64K(W)
 64K(R)
 128K(W)
---------- 128K(R)
 256K(W)

256K(R)

FIgur# A2 qsnv(1000), Colloctor, R/W Misa Ratios

64K 128K

Caehajifflits

---------- 16K(W)
---------- 16K(R)
 32K(W)
 32K(R)
 64K(W)
— — 64K(R)
 128K(W)
 128K(W)
----------256K(W)

2S6K(R)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figura A.3 t«p(30), Mutator, R/W Mlaa Ratios

64K 12BK

C aehaJhnN s

---------- 16K(W)
---------- 16K(R)
— — — — 32K (W)
 32K (R)
 64K(W)
 64K(R)
 128K(W)
---------- 128K(R)
 256K(W)

256K(R)

Figura A.4 tap(30). Collector, R/W Misa Ratios

16K 64K 128K

CachejhnN a

---------- 16K(W)
 16K(R)

— “ — — 32K (W)
— — — 32K (R)
 64K(W)
 64K(R)
 128K(W)
— • — • — 128K (R)
 256K(W)

256K(R)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A.5 meteh(20), Mutator, R/W Miaa Ratios

K 0.05

16K 32K 64K 128K

C sc h tjim tts

256K

 16K(W)
 16K(R)
 32K(W)
— — — — 32K (PÇ
 64K(W)
— • — • — 64K (R)
-----------128K(W)
 128K(R)
 256K(W)

256K(W)

Figure A.6 mateh(20), Coileetor, R/W Miaa Ratios

16K 32K 64K 128K

Csdisjlm tts
256K 512K

---------- 16K(W)
 16K{R)
— — — —32K (W)
— — — — 32K (R)
 64K(W)
 64K(R)
-----------128K(W)
---------- 128K(R)
 256K(W)

256K(R)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B. CGC Benchmarks Statistics

Appendix B presents benchmark statistics from the LVM emulator. Six benchmarks with

different input size were executed on the Sun Enterprise 4000 environment. The

maximum memory malloc can dynamically allocate is 256MB, so programs whose

memory requirements lie beyond this limit could not be executed without garbage

collection. Direct-mapped, fetch-on-write, 32-words/line cache was simulated. The

Parameters to the simulator were 256KB cache size with 160KB cache-limit.

Each benchmark with the same input size was tested with gc-enabled and gc-

disabled. As a matter of fact, a gc-disabled benchmark has all gc instructions removed. In

each table, P represents gc-disabled test, and P ’ indicates gc-enabled test. The first row

shows the name of the benchmark, and the second row gives the input sizes, and the third

row presents the memory requirements for both test cases.

In column P, we show four rows of data: T(P) - the execution time, S(P) - the

maximum stack used during execution, R(P) - the total memory references in execution,

and M(P) - the cache misses collected in cache simulation. Execution times (in second)

were gathered by the Unix timing facility that returns usr/sys elapsed times, and an

average was taken from a reasonable number of repetitions.

In column P’, more statistics are presented. The first two rows have the same

meaning as in column P. However, as the execution of P’ involves the overhead of

garbage collection, we have the following formulas:

• T(P ')^T (P ^c)-^T (G C),

• R(P ’) = R(Pgc) + R(GC). and

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• M (P ’) = M(Pgc) + M(GC),

where Pgc represents the original program P incorporating garbage collection, and GC the

CGC algorithm.

In general, R(P) > R(P’). This is because R(P’) involves memory references of the

original program P and those of the CGC algorithm. However, some gc-enabled

benchmarks may reduce the total number of memory references, such that R(P) < R(P’).

The reason is that CGC implements variable shunting that discards all intermediate

references residing in young generation. As the CGC algorithm is an incremental garbage

collector invoked more frequently than other gc-algorithms, it is hard to time the actual

costs of the CGC invocations. However, as the number of memory references is roughly

proportional to the execution time, the time spent by the CGC can be estimated by:

R (G C)
T (G C) = ') x

R (P ')

The rest rows in column P' give statistics related to garbage collection. The row

gc-lnstr indicates the number of garbage collection instructions being executed. The

actual number of invocations of garbage collection is given by gc-calls. The next two

rows show the total numbers of garbage and collected useful objects. The ratios of

memory references and cache misses of GC against P’ are given in the following rows.

Finally, for each benchmark we show the ratios of execution times, memory references,

and cache misses of P’s against P.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

match
input-size 20 100 500 1000
memory 8.I2M 40.6M 203.2M

T(P) 1.43/0.01 7.28/0.9 37.33/3.61
P S(P) 7.24M 36.36M 181.6M

R(P) I5.5IM 77.55M 388.22M
MiP) 283895 1425673 7434320
T(P') 1.41/0.0 7.16/0.0 36.06/0.0 72.81/0.0
S(P') 0.34M 0.44M 0.45M 038M
R(P') 15.53M 77.76M 390.97M 786.82M
R(P^) I5.46M 77.29M 386.46M 772.9 IM
R(CC) 0.07M 0.47M 4 3 IM 13.91M
M(P’) 112979 619098 3025097 6401148

P’ M(P^) 110289 582201 2817542 5524466
- mcc) 2690 36897 207555 776682

gc-instr 680 3400 17000 34000
gc-call 42 214 1075 2150

garbage 6.94M 35.3M 177.5M 354.9M
useful-obj 0.04M 0.18M I.03M 2.05M

R(CCVR(P‘) 0.005 0.006 0.01 0.02
M(GCVM(P') 0.02 0.06 0.07 0.12

T(P'VT(P) 0.98 0.88 0.88
R(P'VR(P) 1.00 1.00 1.01
M(P‘)/M(P) 0.40 0.43 0.41

Table B.l DNA Matching

tsp
input-size 30 50 70 100
memory 8.36M 60.2M 224.8M 916M

TiP) 1.78/0.17 13.78/1.13 56.28/4.72
P S(P) 8.36M 60.2M 224.8M

R(P) 20.09M 150.09M 597.14M
MiP) 384579 2662473 10957367
T(P‘) 1.75/0.0 12.52A).0 48.03/0.0 204.2A1.0
S(P') 0.31M 0.43M 033M 0.55M
R(P') 19.78M 144.13M 556.02M 2404M
R(P^) 19.64M 142.0M 542.45M 2315M
R(GC) 0.14M 2.13M 1337M 89M
M(P') 117271 753556 2737599 14814347

P' M(P^) 115699 712690 2423219 11853240
M(GC) 1572 40866 314380 2961107
gc-instr 13980 63800 174020 505100
gc-call 45 331 1178 4026

garbage 8.18M 58.74M 219.7M 894.8M
useful-obj 0.008M 0.1M 03M 2.46M

RIGCVRIP) 0.008 0.1 0.02 0.04
M(GCyM(P') 0.0! 0.05 0.11 0.20

T(P'VT(P) 0.90 0.84 0.78
R(P'VR(P) 0.98 0.96 0.93
M(P'VM(P) 0.30 0.28 0.25

Table B.2 Travelling Salesman

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input-size 500 1000 2000 5000
memory I.07M 4.14M 16.34M 100.8M

TiP) 0.29/0.0 1.18/0.1 4.7/0.3 29.5/1.6
P SiP) 1.07M 4.14M 1634M 100.8M

RiP) 3.1 IM 12.02M 47.26M 290.57M
MiP) 34100 131900 519464 3199804
TiP') 0.29/0.0 1.18/0.0 4.8/0.0 30.15/0.0
SiP') 0.22M 0.30M 0.32M 0.69M
R(P') 3.I3M 12.16M 48.52M 310.76M
RiP^) 3.11M 12.02M 47.26M 29038M
RiGC) 0.02M 0.15M 1.26M 20.17M
M(P') 7350 12407 21824 100404

P' MiP„) 12309 13207 20453 94938
MiGC) 51 98 1389 5446
gc-insir 1000 2000 4000 10000
gc-call 6 24 102 665
garbage 0.95M 3.77M 15.8M 98M

useful-obj 0.02M 0.13M 1.08M 173M
RiGC)/RiP') 0.006 0.01 0.03 0.06
MiGC)/MiP') 0.007 0.01 0.06 0.05

TiPyTiP) 1.00 1.00 0.96 0.97
RlPyRlP) 1.01 1.01 1.03 1.07
M(pyM(P) 0.22 0.09 0.04 0.03

Table B.3 Quick sort and Naïve Reverse

boyer
input-size 1 2 3 4
memory 7.73M 47.96M 137.6M 387.5M

TiP) 1.32/0.02 8.46/0J5 24.46/131
P SiP) 4.87M 30.48M 91.48M

RiP) 16.13M lOlM 288.5M
MiP) 303827 1988545 5904241
TiP') 1.41/0.0 8.75/0.0 25.65/0.06 73.87/0.1
SiP') 137M 238M 3.89M 7.6M
RiP') 17.04M 106.95M 311.87M 8983M
RiP,c) 16.25M 101.06M 289.15M 810.4M
RiGC) 0.79M 5.89M 22.7M 88.1M
MiP') 291058 2086266 6336001 18201513

P' M(P„) 242376 1710270 4736617 11729694
MiGC) 48682 375966 1599384 6471819
gc-instr 38348 243711 687263 1899772
gc-call 19 138 408 1343

garbage 4.29M 29.14M 87.97M 256.2M
useful-obj 0.64M 4.7M 18.05M 70M

RiGC)/RiP') 0.05 0.06 0.07 0.1
M{GC)/MiP') 0.18 0.18 0.25 0.35

T(PyT(P) 1.05 0.99 0.98
R(PyR(P) 1.06 1.06 1.08
M(PyM(P) 0.96 1.05 1.07

Table B.4 Boyer-Moore Theorem Pro ver

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

browse
input-size 100 500 1000 2000
memory II.57M S0.08M 116.3M 232.8M

TiP) 2.9/0.0 14.81/0.02 30.08/0.05 61.25/0.05
P SiP) 0.08M 0.67M 1.46M 3.04M

RiP) 33.9 IM 17133M 343.45M 701.24M
MiP) 149143 758146 1875851 9859692
TiP') 2.9/0.0 14.7/0.0 29.68/0.0 60.53/0.02
SiP') 0.08M 0.34M 035M 0.9M
RiP') 33.9 IM 171.61M 343.62M 697.2M
RiP^) 33.91M 171.53M 343.44M 695.8M
RiGC) OM 0.08M 0.18M 1.4M
MiP') 149149 761063 1875841 9692493

P ’ MiP„) 149149 751356 1841176 9466111
MiGC) 0 9707 34665 226382
gc-instr 200 1000 2000 4000
gc-call 0 2 6 14

garbage OM 0.32M 0.95M 2.5M
useful-obi OK 5K 15K 34K

RiGCVRiP') 0.0 0.0001 0.001 0.002
MiGCVMiP') 0.0 0.004 0.02 0.02

TiP'VTlP) 1.0 0.99 0.99 0.99
R(P’)/R(P) 1.0 1.0 1.0 0.99
M (PyM (P) 1.0 0.99 0.98 0.96

Table B.S Build and Query a Database

tak(x, 16, 8)
input-size 22 24 26 28
memory 11.8M 32.4M 78.0M 170.4M

TiP) 3.35/0.25 9.2/0.65 22.31/1.48 49.23/2.93
P SiP) 11.8M 32.4M 78.0M 170.4M

RiP) 50.72M I39.63M 336.28M 734.33M
MiP) 2643013 7276480 17524191 38269526
TiP') 3.4/0.0 9.2/0.0 22.1/0.0 48.08/0.0
SiP') 0.63M 0.7 IM 0.82M 0.82M
RiP') 50.94M 140.25M 337.78M 737.62M
RiP«) 50.94M 140.25M 337.78M 737.6 IM
RiGC) 882 0.002 0.006 0.013
MiP') 2351838 6489599 15629936 34125057

P ' MiP.r) 2351780 6489462 15629598 34124332
MiGC) 49 137 338 725
gc-instr 226421 623337 1501232 3278264
gc-call 49 137 336 742

garbage 11.3M 31.7M 762M I66.4M
useful-obj 0 0 0 0

RiGCVRiP') 0.00002 0.00002 0.00002 0.00002
MiGCVMiP') 0.00002 0.00002 0.00002 0.00002

T(PyT(P) 0.94 0.93 0.93 0.92
R(PyR(P) 1.00 1.00 1.00 1.00
M (p y m P) 0.89 0.89 0.89 0.89

Table B.6 Recursive Interger Arithmetic

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] p. R. Wilson, M. S. Lam, and T. G. Moher. Caching Considerations for Generational

Garbage Collection. In Proceedings on Lisp and Functional Programming, ACM,

1992, pp. 32-42

[2] B. G. Zom. The Effect o f Garbage Collection on Cache Performance. Technical

Report CU-CS-S28-91, Department of Computer Science, University of Colorado at

Boulder, 1991.

[3] M. B. Reinhold. Cache Performance of Garbage Collected Program, SIGPLAN 94-6,

ACM, 1994, pp. 206-217

[4] M. J. R. Goncalves and A. W. Appel. “Cache performance o f fast-allocating

programs". In Proceedings of the 7th Conference on Functional Programming

Languages and Computer Architecture. ACM Press, June 1995.

[5] N. P. Jouppi. Cache Write Policies and Performance, In 20“* Annual International

Symposium on Computer Architecture. San Diego, CA, May 1993, IEEE Press, pp.

191-201

[6] R. Jones and R. Lins. Garbage Collection - Algorithm for Automatic Dynamic

Memory Management. John Wiley & Sons Press, 1996.

[7] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-

the-fly Garbage Collection: An Exercise in Cooperation. Communications of the

ACM, 21(11), November, 1978, pp. 965-975

[8] L. P. Deutsch and D. G. Bobrow. An Efficient Incremental Automatic Garbage

Collector. Communications of the ACM, 19(7), July 1976, pp. 522-526

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9] D. S. Wise. Stop and one-bit reference counting. Technical Report 360, Indiana

University, Computer Science Department, March 1993.

[10] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative environment.

Software Practice and Experience, 18(9), 1988, pp. 807-820

[11] B. G. Zom. Comparative Performance Evaluation o f Garbage Collection

Algorithms. Ph. D thesis. University of California at Berkeley, March 1989. Technical

report UCB/CSD 89/544.

[12] R. R. Fenichel and J. C. Yochelson. A Lisp Garbage Collector fo r Virtual Memory

Computer Systems. Communications of the ACM, 12(11):611-612, November 1969,

pp. 611-612

[13] C. J. Cheney. A Non-recursive List Compacting Algorithm. Communications of the

ACM, 13(11), November 1970, pp. 677-678

[14] P. R. Wilson. Uniprocessor Garbage Collection Techniques. Technical report.

University of Texas, January 1994. Expanded version of the IWMM92 paper to

appear in Computing Surveys.

[15] D. M. Ungar and F. Jackson. An Adaptive Tenuring Policy for Generation

Scavengers. ACM Transactions on Programming Languages and Systems, 14(1),

1992, pp. 1-17

[16] D. A. Barrett and B. G. Zom. Garbage Collection Using a Dynamic Threatening

Boundary. Computer Science Technical Report CU-CS-659-93, University of

Colorado, July 1993.

[17] M. Bruynooghe. The Memory Management o f Prolog Implementations. Logic

Programming, Academic Press, 1982.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[18] S. Le Huitouze. A New Data Structure for Implementing Extensions to Prolog.

PULP’90, LNCS456, Springer, 1990.

[19] H. Touati and T. Hama. A Light-weight Prolog Garbage Collector. Proceedings of

the International Conference on fîfth Generation Computing Systems, 1988.

[20] J. Bevenmyr and T. Lindgren. Simple and Efficient Copying Garbage Collection for

Prolog. PLILP’94, LNCS 844, Springer, 1994.

[21] P. Tarau. Ecological Memory Management in a Continuation Passing Prolog

Engine, International Workshop IWMM92, LNCS 637, Springer, 1992.

[22] Y. Bekkers, O. Ridoux and L. Ungaro. Dynamic Memory Management for

Sequential Logic Programming Languages. International Workshop IWMM92,

LNCS 637, Springer, 1992.

[23] H. Ait-Kaci. Warren's Abstract Machine: a Tutorial Reconstruction. MIT Press,

1991.

[24] C. S. Mellish. An Alternative to Structure Sharing in the Implementation o f a Prolog

Interpreter, Logic Programming, Academic Press, 1982.

[25] X. Li. A New Term Representation Method fo r Prolog, To appear on J. Logic

Programming, Vol. 34(1), 1998.

[26] X. Li. Exploring Single Stack Architecture for Prolog. Submitted to Journal of

Functional and Logic Programming, 1998.

[27] Y. Wang. Compiling Prolog to Logic-Inference Virtual Machine. Master thesis,

Lakehead University, May 1999.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] P. Messina, D. Culler, W. Pfeiffer, W. Martin, J. Oden and G. Smith, The High-

Performance Computing Continuum: Architecture Communications of ACM.,

41(11), 1998, pp. 36-44

[29] M. D. Hill and A. J. Smith, Evaluating Associativity in CPU Caches, IEEE Trans, on

Computer, Vol. 38, No. 12,1989, pp. 1612-1630

[30] H. S. Stone, High-Performance Computer Architecture, Addison-Wesley Publishing

Company, 1990.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

