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Abstract 
11 

Carr, A.E 2000. Lightning occurrence in pukaskwa national park and surrounding area. 
Masters of Forestry Report: Faculty of Forestry, Lakehead University. 75 pp. 

Keywords: lightning, fire occurrence, kernel analysis, Pukaskwa National Park, fire weather. 

Pukaskwa National Park has implemented a natural fire regime emulation program. 
One component of the natural fire regime is the pattern of ignitions, primarily from 
lightning. There were three ways in which patterns of lightning strikes were investigated: a 
geographical analysis, a fire weather analysis, and an ignition analysis. The analysis for the 
first two components was carried out using a kernel analysis, which is a non-parametric 
probability density estimation technique. In the geographic analysis, probability of lightning 
strikes was tabulated by characteristics of the landscape- vegetation, topography, ecodistrict, 
and proximity to Lake Superior. It was shown that there was a strong effect of the proximity 
to Lake Superior- areas near the lake have a higher probability of lightning strikes than 
areas inland. The topographic component showed that high points on the landscape were 
more likely to get struck than the rest of the landscape. Other effects were masked by the 
effect of proximity to Lake Superior. In the fire weather analysis, probability density 
surfaces were prepared from the daily weather and from the weather on the day of lightning 
strikes. Strikes are most frequent at values of the Fine Fuel Moisture Code (FFMC) and Duff 
Moisture Code (DMC) that are not conducive to the ignition and survival of fire. The 
exception to this was a storm in June, 1995 which happened at a high value of FFMC and 
DMC. This storm presumably lit Fire Wawa 41/95. The ignition analysis was carried out as 
an anecdotal discussion of conditions at the time of ignition of the two fires that were ignited 
in the three years under study (1994-1996). The conditions surrounding these two ignitions, 
both in June of 1995, were consistent with other descriptions of fire weather in the 
Pukaskwa area. Warm and dry weather with a high barometric pressure preceded a 
lightning storm. The geographic analysis suggested that there might be relatively little 
reason to modify fire policy based on lightning density within the park. The weather analysis 
suggested that it is rare to have the right combination of events that might ignite fires- dry 
fuel and lightning. 
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Introduction 
1 

Pukaskwa National Park has a mandate to manage the Park to preserve ecosystem 

integrity. In the boreal forest of Northwestern Ontario, fire is a dominant agent of change. 

The primary natural cause of forest fire ignitions in natural areas is lightning. An 

understanding of lightning patterns and the pattern of natural ignitions in the Park area is 

essential to the management of a natural area subject to natural disturbance. 

The Pukaskwa National Park management team is planning to reintroduce fire 

disturbance to the land (Geomatics, 1996; Heathcott and Crofts, 1997). A spatial and 

temporal description of lightning strikes would aid in planning this reintroduction. 

There are two major questions to be asked. Is there a distinguishable spatial pattern in 

lightning strikes? Are there any temporal patterns in weather that have influences on 

lightning ignitions? 
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The goal of the study is to describe lightning strike patterns within Pukaskwa National 

Park and the surrounding area. The objectives can be identified by the following questions: 

I. Where does lightning strike in Pukaskwa National Park? 

A. Is the probability of a strike affected by landscape characteristics? 

1. Topography 

2. Land Cover 

3. Ecodistrict 

4. Distance from Lake Superior 

II. When does lightning strike in Pukaskwa National Park? Is there a pattern with respect 

to Fire Weather Index values? 

III. Which weather characteristics and lightning characteristics lead to lightning-caused 

fires? 



Literature Review 
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There are several major topics that lead to an understanding of lightning ignitions of 

fire on forested land. Lightning is a variable phenomenon which routinely occurs in 

Northwestern Ontario. A detector network routinely records lightning flashes. The manner 

in which lightning strikes forested land and the probability of ignition of forest fuels is not 

completely understood. 

Lightning 

Lightning is a naturally-occurring arc of electricity caused by a difference in charge 

between two points within the cloud layer, or between a point in the cloud layer and a point 

on the ground. Lightning in the boreal forest occasionally lights forest fires. The detection of 

cloud-ground (CG) flashes can help predict forest fire ignitions. 

CG flashes can lower positive or negative charge to ground. The majority (90%) lower 

negative charge. The processes of positive and negative polarity flashes are different, and 

will be described seperately. The following description of lightning is largely derived from 

Uman and Krider (1989). 

Negative CG lightning 

The process of a negative cloud-ground flash has several stages. A flash is the total 

discharge, lowering tens of coulombs (C) of charge to Earth. The typical duration of a flash is 

up to half a second. A flash has a leader, and one or more high-current pulses called return 

strokes. The strokes may last 1 milliseconds (ms), seperated by several tens of ms. 

The first stage in a lightning flash is the development of a stepped leader. The stepped 

leader is a luminous small body of charge progressing towards the ground in steps of several 

lO’s of meters, at speeds of 2x10^ m/s. Each step takes 1 microsecond (ps) to be completed, 

and the pauses between steps are typically 20-50 ps. The stepped leader might be carr}ring 

10 C of charge, and have peak currents of 1 kiloampere (kA). The steps of the stepped leader 

produce forking in the lightning channel. 

The potential difference between the stepped leader and the ground is on the order of 
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10’ volts (v). As the leader gets close to the ground, a strong electric field is generated at 

ground level. The electric field is strongest at high points and irregularities on the ground 

surface. At some point, typically only lO’s of metres above the ground, the resistance of the 

air breaks down, and a discharge moves up from the surface, making contact with the 

stepped leader. A channel of low electrical resistance between the cloud and the ground is 

now established, called the lightning channel. Once the channel is established, a return 

stroke moves up towards the cloud. 

The first return stroke typically produces a peak current of 30 kA at the ground, and 

takes about 100 ps to reach the cloud. The first return stroke is moving at about 1/3 - 1/2 the 

speed of light, slowing down as it ascends. The return stroke current drops rapidly to about 

half of peak value in about 50 ps. As part of the return stroke, a phase of continued current 

flow may last into the hundreds of ms. If the return stroke current phase lasts more than 40 

ms, then it is termed a long continuing current phase (Icc). It is this first return stroke that 

is usually detected by the lightning detector system. 

A lightning flash may be over after one return stroke, or it may have multiple return 

strokes. A second stroke may be initiated by a second leader, known as a dart leader, which 

progresses down the channel opened by the first return stroke towards ground, at about 

3x10® m/s, lowering perhaps 1 C of charge. If the dart leader jumps out of the channel of the 

first return stroke, it will become a stepped dart leader. The stepped dart leader is similar to 

the stepped leader, in that it progresses more slowly, and may branch the channel. 

Unstepped dart leaders and return strokes after the first return stroke tend not to branch. 

Positive CG lightning 

Positive flashes generally have the same progression of events as negative lightning 

flashes, with some notable differences. Positive strikes come from a different layer of the 

cloud, and represent between 1 and 15% of the total number of strikes in a typical summer 

thunderstorm (Uman and Krider, 1989). 

A positive return stroke typically has a leader which branches less and has much less 

luminosity. A positive return stroke is more likely to have a long (greater than 40 ms) 

continuing current phase. A positive flash is less likely to have multiple return strokes. 

A positive flash tends to have higher peak currents than a negative flash. Almost all of 
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the very high-current strikes recorded to structures in several studies were positive strokes 

(Lopez et al., 1991). Because the positive return stroke may travel at half the speed of the 

negative return stroke, the strength of a positive return stroke may be underdetected (Mach 

and Rust, 1993). 

Positive return strokes are more likely to have Icc phases than negative return strokes. 

Between 50 and 100% of positive return strokes have been shown by various authors to have 

Icc phases (Flannigan and Wotton, 1991), whereas only 25 to 50% of negative return strokes 

have Icc phases (Uman and Krider, 1989). 

Other processes in lightning flashes 

Rakov, et al. (1994) documented flashes with multiple ground strike points. They 

determined that about half of the strikes they studied had multiple strike points. Distances 

between ground positions of the strikes varied between 0.3 and 7.3 km, with a mean of 1.7 

km. To measure this, they used a high-speed video camera pointed at a parabolic mirror. 

It has been generally accepted that the first return stroke generates the highest 

currents of the return strokes. This is why lightning detector systems only record the 

strength of the first return stroke. It has, however, been shown that up to 1/3 of flashes have 

subsequent return strokes with a higher initial electric field than the first return stroke 

(Rakov, et al., 1994). 

Rakov, et al. (1994) also found that Ice’s are more likely in susequent strokes than first 

return strokes or single stroke strikes. The Icc stroke is often be preceeded by a high-field 

stroke and a short inter-stroke interval. 

Shindo and Uman (1989) studied a set of 90 strikes near Florida and found that 1 out of 

19 of the single stroke CG flashes had an Icc phase, whereas 22 out of 71 of the multiple 

stroke flashes had Icc phases. They determined that the likelihood of a Icc phase was directly 

tied to the multiplicity of the strokes. 
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CG lightning flashes can be of positive or negative polarity. They are initiated by a 

difference of charge between clouds and the ground. 

First, a stepped leader descends. When the stepped leader is close to the ground, charge 

rises up from the ground. When the two charges meet, a channel of low resistance is formed 

between the cloud and the ground. 

Once the channel is formed, a return stroke goes up the lightning channel. A return 

stroke typically lasts less than 40 ms. If the stroke lasts longer, it is deemed to have a long 

continuing current phase (Icc phase). 

After the first return stroke, there may be one or more return strokes, initiated by a 

dart leader. They may also have Icc phases. These subsequent return strokes may or may not 

follow the same channel as the first. 

Lightning-Caused Fire Ignition 

The flashes most likely to ignite the forest fuel are those which have a Icc phase (Kourtz 

and Todd, 1992). Because the lightning detection system in use does not detect Icc phase 

return strokes, the presence of an Icc phase must be partially inferred from polarity and 

multiplicity. Flannigan and Wotton (1991) found a link between multiplicity and ignition 

probability. 

The mechanism of lightning-caused forest fire ignition is not known. The presumption 

has been made that the lightning strikes a particular target because of its conductivity 

(Kourtz and Todd, 1992). The target conductivity might be affected by moisture content. 

Short strikes with no continuous current phase do not have enough time to ignite the fuel, 

although the strike may explode the fuel particle due to steam expansion. The lower, but 

longer duration, current of the continuous current phase has the time to heat and dry the 

conductive channel, which increases resistance. The increased resistance increases the 

amount of heat produced by the electricity passing through, which might then ignite the fuel 

particle (Kourtz and Todd, 1992). 
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Every flash of lightning produces a burst of electromagnetic energy. This can be 

observed by turning on a radio during a thunderstorm. Lightning detection systems (LDS’s) 

register the burst of electromagnetic energy and classify it as a CG strike or some other 

discharge. Lightning detection is a necessary part of fire protection planning. It is to this end 

that LDS’s have been designed. Ontario has a system of detectors across the province, 

designed by Lightning Location Prediction Incorporated (LLP). Other provinces in Canada 

and organizations in the United States operate similar systems (Gilbert, et al., 1987; 

Nimchuk, 1990). 

The system in Ontario consists of a network of detectors. The detectors are capable of 

detecting the electromagnetic burst of a lightning flash. For each flash, the direction can be 

determined with a precision of approximately 1° (Nimchuk, 1990). The directions and times 

of flashes are compared by a central computer which calculates a position using 

triangulation. The system returns a time, position, polarity, strength and multiplicity for 

each flash. (Noggle, et al., 1976). 

In the case of the Ontario network, there are direction finders scattered across the 

province. The four detectors nearest Pukaskwa National Park are in Geraldton, Hearst, 

Nipigon and Chapleau (Herodotou, 1990). There are no detectors to the south, which might 

increase the risk of triangulation errors. 

The detector itself consists of a pair of radio antennae capable of detecting 

electromagnetic bursts from the lightning strike. The centre of the band of detection is near 

10 kHz. The burst strength and polarity is detected by an electric field antenna. The azimuth 

is calculated from a crossed-loop magnetic field antenna (Gilbert, et al., 1987). 

The detector is capable of distinguishing between cloud-cloud lightning and cloud- 

ground lightning. The cloud-ground strike has a large single polarity pulse, while the cloud- 

cloud flash has a smaller pulse of one polarity followed by the other polarity. Within each 

cloud-ground flash, there is also a smaller blip in the electromagnetic wave for each return 

stroke. The detector can detect the return stroke blips and identify return stroke lightning 

multiplicity (Noggle, et al., 1976). 

The detector is limited in range. In British Columbia, lightning events were detected by 

individual detectors up to 93% of the time at ranges up to 80 km from the detector. The 
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likelihood of detection was as low as 33%, but was typically between 70% and 80% at this 

distance, depending on the detector. Low detection probabilities indicated a problem in the 

system, either in detector location or malfunction. At greater ranges, between 400 and 480 

km from the detector, the detection probability dropped to 15%-30%. At the distance range 

relevant for Pukaskwa National Park, 160 km-240 km, the detector efficiency ranged from 

13% to 90%, with a mean of 60% and a standard deviation of 18%. Weak strikes and distant 

strikes were the least likely to be detected (Gilbert, et al., 1987). An overall detection rate of 

70% is typically assumed (Orville and Silver, 1997). 

The detection rate of positive polarity strokes may be lower than the rate of negative 

polarity strokes. Hojo et al. (1989) found that 76% of negative hrst return strokes over the 

Sea of Japan in summer were detected, while only 69% of positive hrst-return strokes were 

detected. The detection efficiency rates are lower in winter. 

In Alberta, Nimchuk (1990) found that the precision of the detector system was between 

4 and 8 km, but that it went as low as 16 km in the far north of the province. This was 

attributed to a sparse network of detectors, and an inaccurately reporting detector in the 

Lesser Slave Lake area. Flannigan and Wotton (1991) assert a similar level of accuracy for 

the Ontario system, based on the Nimchuk (1990) study. 

Passi and Lopez (1989) estimated the errors in direction hnder reports caused by 

features near a direction finder (site errors). After correcting for site errors (up to 9°) using a 

two-cycle sinusoidal function, they found a randomly distributed error with a mean of 0° and 

a standard deviation ranging from 0.3° to 0.7°. 

The strength report from an individual detector is measured in what are commonly 

described as “LLP units”. This is an arbitrary scale generated by the detection system, which 

can be related back to peak currents in amps. The strength reports are then normalized to a 

range of 100 km. Idone et al. (1993) discuss the relationship of these units to the peak 

current of the individual strokes, under several models of signal attenuation by distance. 

The most common model is the transmission line model, which estimates signal attenuation 

based on the assumption that the electrical signals from lightning propogate the way 

electrical signals propogate down high-voltage transmission lines (Herodotou, 1990). 

The reports from the OMNR (1996) report strength on another scale, ranging from 14 to 

-14. This represents the polarity and relative strength of the signal in a single number. 

The polarity of the lightning return stroke may have an effect on the detected strength 
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of the signal. Mach and Rust (1993) have determined that a positive return stroke carries 

more current than a negative stroke, by a factor of about four. They comment that values of 

peak current calculated from the detector network and reported in the literature may be low. 

This agrees with Lopez, et al. (1991), who found reports from a variety of sources regarding 

strikes to structures and the relative frequency of strong positive strokes. 

Herodotou (1990) reports that the strength of strikes in Ontario was being under- 

predicted by the lightning detection network. The purpose of the study was to estimate the 

performance of overhead transmission lines in Ontario. The peak stroke current distribution 

was investigated. The main factors modifying transmission of the signal from source to the 

lightning detector include signal attenuation over the finitely conducting planetery surface, 

lightning channel tortuosity (degree of crookedness), and interference from other 

intermediate electric fields and the ionosphere. The calculations for location and electric 

field transmissions were also examined. The conclusion that strike strengths are under- 

reported was based on the transmission line model in use in Ontario and on the lack of 

certain adjustments in the Ontario system. 

Lightning Ignition Prediction 

Fire Weather (FWI) 

The Canadian Forest Fire Weather Index (FWI) System is the standard system in 

Canada for measuring the effect of weather on the flammability of forest fuels. It uses 

weather data to predict the moisture content of several different sizes of wood, and from 

those moisture content figures, several predictive indices can be generated (Van Wagner, 

1987). 

The inputs to the FWI system are temperature, relative humidity, wind speed, and 24- 

hour rainfall. These numbers are measured at noon to predict the fire fuel parameters at 

4pm. 4pm is the approximate time on most days when the fuel is going to be at its driest and 

most flammable. (Van Wagner, 1987) 

The Fine Fuel Moisture Code (FFMC) describes the moisture content of the finest fuel 
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class. These fuels are the litter and other cured fine fuels, generally less than 7 mm in 

diameter, weighing about 0.25 kg/m^, dry weight. This fuel has a time lag to equilibrium 

moisture content of 2-3 days (Van Wagner, 1987). FFMC is the index that is important to 

ignition probability (Kourtz and Todd, 1992). 

The Duff Moisture code (DMC) describes the moisture content of bulkier fuels - loosely 

compacted, decomposing organic matter, weighing about 5 kg/m^ when dry. The size class of 

twigs used for this index are the sticks between 7 mm and 50 mm. The DMC responds to 

changes in weather with a 12 day time lag to equilibrium (Van Wagner, 1987). The DMC can 

be used to predict fire survival and spread characteristics (Kourtz and Todd, 1992). 

The Drought Code (DC) represents the moisture of the deep organic layers and coarse 

wood with a diameter greater than 50mm, weighing perhaps 25 kg/m^ when dry. The time 

lag to equilibrium moisture content for this fuel type is 52 days (Van Wagner, 1987). The DC 

is associated with intensity of burn and residence time characteristics of the fire. 

The three fuel moisture codes can be combined to produce the Initial Spread Index (ISI), 

Buildup Index (BUI), and the Fire Weather Index (FWI). These predict, respectively, the 

rates of fire spread, the amount of fuel available for consumption, and the intensity of the 

fire (Van Wagner, 1987). 

The FWI System has some limitations when used for modelling beyond the original 

intention of the indices. The indices were originally intended for assessing fire ignition and 

spread characteristics on a daily basis by using a noon measurement of weather conditions 

and correlating that with the moisture content conditions at the peak of dryness in the day, 

typically around 4pm. It does not necesssarily follow that the system predicts fuel conditions 

at any other time of day, or that it takes into account changes in the day’s weather that 

might affect the moisture content of fuels. Heuristic tools have been developed to predict the 

FFMC variation through the day in fine, settled weather (Lawson, et ah, 1996). When the 

weather changes, as one would expect in weather that produces lightning, the heuristic tools 

are no longer valid. 

The FWI System’s applicability to the weather is hampered by the sparse network of 

weather stations that are the source of weather data. Local point samples of weather 

conditions may not accurately reflect conditions across broad areas (Kourtz and Todd, 1992). 

The effect on local weather of individual storm events may be missed by a network of remote 

weather stations. 
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The two factors that affect the likelihood of ignition and likelihood of continued 

combustion are moisture content of the organic material and the quantity of flammable 

material at the site of ignition. 

The Duff Moisture Code (DMC) and Fine Fuel Moisture Code (FFMC) have both been 

found to be significant in the likelihood of ignition of fires from lightning. In Ontario in 1988, 

Flannigan and Wotton (1991) found the DMC to be the most significant weather variable for 

prediction of ignition and survival to discovery. Nash and Johnson (1996) found FFMC to be 

more significant in Alberta and British Columbia over four fire seasons. 

The character of fuels at the site of ignition affects the flammability of the site. The 

vegetation complex at a site has a very strong effect on fire ignition and behaviour. The 

structure of the stand, the surface fuel type, forest floor type and ladder fuel quantity all 

affect fires. These are variable at a local scale, but can be represented by an idealized fuel 

array, such as that used by Forestry Canada (1992) in the Fire Behaviour Prediction (FBP) 

system. 

The organic content of the soil, specifically the duff layer, is a significant factor in the 

soil flammability. Soils with a low organic content are less flammable than soils with a high 

organic content (Frandsen, 1987). This can affect the survival of fires to detection. 

Lightning Weather Patterns 

The large-scale weather patterns associated with dry fuels and high likelihood of 

lightning are high pressure systems, especially those systems that are persistent for long 

periods of time. A high pressure system brings warm, dry, clear weather to an area. This 

results in the drying of the fuel matrix. Street and Alexander (1980) have shown that all five 

of the large fires in the Pukaskwa area from 1931 to 1956 were preceded by high-pressure 

systems. This is in agreement with other studies: “high pressure systems result in the co- 

occurrence of drier fuels and higher strike densities than during other synoptic weather 

conditions” (Nash and Johnson, 1996, p.l860). 

Atmospheric instability can also be associated with higher lightning densities. 

Turbulence associated with atmospheric mixing leads to the development of thunderstorms 
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and their associated lightning. A typical pattern is that the ground-level air layer is heated 

by the sun during the afternoons of hot, sunny summer days. The instability of cool, dense 

air above warm, light air causes convective cells, which can generate the tall cumulo-nimbus 

clouds of local thunderstorms. The lightning strike density varies with the number of these 

convective cells and the height of the tops of the clouds (Nash and Johnson, 1996). 

Within the Pukaskwa National Park area, there is a local factor that affects 

thunderstorm activity patterns. Lake Superior has an influence on the frequency of clear 

weather, and on the convective activity that causes storm development and therefore 

lightning activity (Pers. Comm., Crofts, 1998). 

Analysis of Lightning Data 

Analysis of lightning data can be classified into two major groups: probability of strike 

analysis, and analysis of weather conditions that lead to ignitions from lightning. 

Van Wagtendonk (1991) analysed the spatial distribution of lightning strikes at 

Yosemite National Park in Wj^oming and found that topography, especially elevation, has a 

substantial effect on lightning strike distribution. Strikes are more likely at higher 

elevations, but aspect and slope are not significant. Because vegetation in Yosemite is 

primarily controlled by elevation, the differentiation of lightning strikes by vegetation type 

was similar to the differentiation by elevation. 

Nash and Johnson (1996) considered fire ignitions in Alberta and British Columbia and 

found that the probability of ignition was very low for any given lightning strike. Strikes 

that ignited a fire could be differentiated by vegetation cover type, and by atmospheric 

pressure at the time of the strike. High atmospheric stability decreased the likelihood of 

precipitation and the likelihood of high ISI values. The important FWI components for 

ignition and detection of a fire were FFMC and to a lesser extent DMC. 

Flannigan and Wotton (1991) studied ignitions in 1988 in the western part of 

Northwestern Ontario, in UTM zone 15, roughly west of Upsala. They found that stroke 

multiplicity and DMC were the most important factors in ignitions, although they could only 

explain 47% of the variance of ignition probability per day. 
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Since the development of the lightning strike detection system, there have been several 

studies of the distribution of strikes, both spatial and by strike characteristics. Strike 

density has been studied in the United States (Orville, 1994; Orville and Silver, 1997), the 

Sea of Japan (Hojo, et al., 1989), Australia (Petersen and Rutledge, 1992), and Norway (Huse 

and Olsen, 1984). 

Orville and Silver (1997) describe lightning strike density in the contiguous United 

States from 1992-95, and Orville (1994) describes the same for the years 1989-91. They 

found a range of strike densities from 0 to 13 CG flashes per square kilometer. Notably, the 

south shore of Lake Superior is in an area of low CG strike density, in all years. The rate of 

CG strikes along the south shore is consistently below 1.0 strike/km^. The range of CG strike 

numbers across the country ranges from below 0.5 strikes/km^ to 13 strikes/km^ per year, 

assuming that 70% of strikes were detected. 

Probability Density Estimation 

The kernel technique is a non-parametric approach to estimating the density of a 

population of locations from a sample of the locations. This method was summarized and 

described effectively by Silverman (1986; Worton, 1989; Wand and Jones, 1995). The kernel 

method involves summing a “kernel” function applied to all point locations from the sample. 

A typical kernel function is a normal curve, but other functions can be used where 

appropriate. A smoothing factor is usually applied to make the resulting density estimations 

more closely resemble the presumed population from which the sample is derived. The 

smoothing factor is either chosen from a subjective examination, or from an automatic error- 

minimization technique. 

Kernel estimators have well-understood properties that have been investigated 

extensively in the statistical literature (Worton, 1989). They were initially described by 

Rosenblatt (1956). Epanechnikov (1969) described an alternate kernel function to the 

gaussian normal function in order to speed up calculations. 
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A kernel estimator can be described as a sum of “bumps”. The multivariate kernel 

density estimator is defined at any point x as 

Equation 1 

where K is the kernel function, h is the smoothing factor, d is the dimensionality, and X is 

the location of any of the sample points that represent the function. The function is 

evaluated for a point x. The calculation is usually performed repeatedly for multiple points 

in a regular sequence to represent a curve or surface (Silverman, 1986). 

The kernel function X is a radially symmetric unimodal probability density function, 

like the standard multivariate normal density function: 

x'^x in Equation 2 is the matrix transpose of the point x, multipled by the point x. The 

product of X and the matrix transpose of x, in the two-dimensional case, is 

or the squared euclidean distance, x in the Equation 2 is equal to the contents of the curly 

braces in the Equation 1 (Silverman, 1986). This particular kernel function is also called the 

gaussian kernel. Other kernel functions can be used. 

To visualize a kernel estimator, imagine a univariate case, with 7 data points (x), as in 

Figure 1(a). A standard normal curve for the kernel function and a smoothing parameter {h) 

of 0.4 units is shown in Figure 1(b). Figure 1(c) shows kernel functions superimposed over 

each of the data points. Figure 1(d) shows f(x), the kernel estimate of the distribution from 

which the seven points were drawn. The estimate suggests that the density is higher in the 

middle, with one main peak, but that there are relatively wide “shoulders” to the curve 

(Silverman, 1986). 

The smoothing parameter iji) is the most significant parameter to the estimation of 

densities using the kernel method. The smoothing parameter could be described as the width 

of the individual kernels. The appropriate choice of smoothing parameter can show the 

maximum amount of information available without introducing too much spurious detail to 

the estimate. Figure 2 shows three choices of smoothing parameter applied to the data from 

Figure 1. Figure 2(a) shows an oversmoothed estimate, with all detail smoothed away. 

K(x) = {2n) ‘‘^^exp{ Equation 2 

x'^x = xl * xl x2 * x2, Equation 3 
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Data Points Kernel Function 

(d) Density Estimate 

Figure 1 - Schematic diagram of kernel estimator process. In step (a), data points are 
gathered. In step (b), the kernel function and smoothing parameter (h) are chosen. 
In this case, the kernel function is the normal curve, and the smoothing parameter 
is 0.4 units. In (c), the kernel function has been calculated for each data point. In 
(d) the individual point kernels from step (c), here in grey, have been summed to 
produce an estimate of the density of data points (black). 
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Figure 2 - The effect of smoothing parameter choice on density estimates. The data in 
each example are the data from Figure 1. Density estimate (a) is likely 
oversmoothed, as it is showing the data to be fairly unimodal, and has smoothed 
away all the detail within the data, (b) is probably adequately smoothed and shows 
some detail in the distribution. The “shoulder” in the left side of (b) suggests a 
slight multimodality in the data, (c) shows a jagged, dramatically undersmoothed 
estimate of density. 
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Figure 2(b) shows an adequately smoothed estimate, with some of the detail internal to the 

data visible- it has “shoulders”. Figure 2(c) shows spurious detail, and is undersmoothed. 

The same can be seen with many more samples. Figure 3 shows three estimates of a 

known distribution, each derived from a set of points. In this case, the original distribution is 

expressed by the equation 

fi{^) — 4^{^) + 401/3(2: — |). Equation 4 

1000 samples were taken from the distribution, and used to estimate that distribution. The 

dashed line indicates the original distribution, while the solid line indicates an estimate of 

the distribution. Kernel estimator (a) is undersmoothed, and is showing spurious detail. 

Estimator (b) is oversmoothed, showing a lack of detail by ignoring the thin peak to the 

right. Estimator (c) shows a much closer estimate of the original distribution (Wand and 

Jones, 1995). 

The smoothing factor in a two-dimensional case is properly expressed with two separate 

smoothing factors, one in each of the axes. This makes cross-comparison of analyses difficult. 

Instead, what is commonly done is a transformation of the data to an arbitrary coordinate 

system by dividing each coordinate by a vector made up of the standard deviations of the 

axes (Seaman and Powell, 1997), or transforming one axis to have the same variance as the 

other (Kenward and Hodder, 1996). This allows a single smoothing parameter to be chosen 

that reflects reasonably closely the separate smoothing factors for each axis. 

Smoothing factors are typically expressed either as a raw number from the coordinate 

axes of the system, or as a fraction of (Kenward and Hodder, 1996; Seaman and Powell, 

1997). is derived from the equation 

= n yJ(ol+ o"J/2 , Equation 5 

in the two-dimensional case, where s^ is the sample variance in either of the two 

dimensions. The use o^h ,is useful when the coordinate axes are to be transformed, and 

when attempting to use a similar smoothing factor with different point distributions. 

In some cases, it may be appropriate to apply a variable smoothing factor to the kernel 

function. This can be done to weight the tails of the distribution, or to weight the cores of the 

distribution (Kenward and Hodder, 1996; Silverman, 1986). In the analyses where a variable 

smoothing factor is applied, it is termed an “adaptive” approach to smoothing, as opposed to 

a “fixed” approach. The adaptive approach smoothes the function more in areas of lower 

density, and smoothes less in areas of higher density. This can lead to fewer extraneous 
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Figure 3 - Three kernel estimators of a known distribution, using 1000 samples from the 
distribution described in the text (Equation 4). The dashed line shows the original 
distribution. The solid line indicates an estimate. The smoothing parameters are (a) 
h=0.06, (b) h=0.54, and (c) h=0.18. In the center bottom of each diagram is a 
depiction of the kernel function being used for the estimate, (a) is undersmoothed, 
and shows spurious detail, (b) is oversmoothed, and has ignored real detail, (c) is 
properly smoothed. Diagram from Wand and Jones (1995). 
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Figure 4 - Simulated bivariate probability density field, in two dimensions. The 
probability field is derived from a sum of two normal curves, (a) shows a 
orthographic (map) view, using brightness to indicate increasing density, (b) shows 
a simulated perspective view of the same field. 
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“bumps” in the tails of the distribution, while preserving interesting structure in the core of 

the distribution. 

A density estimation procedure produces an empirical estimate in the form of a list of 

probabilities for each coordinate in the sample space. In one dimension, a line is produced, as 

in Figures 1, 2, and 3. In two dimensions, a raster cell map of the sample coordinate space is 

typically produced. Each square in the “graph paper” represents a probability. Figure 4 

shows an example of this, represented in two ways. The field shown in Figure 4 is derived 

from the sum of two bivariate normal curves. Figure 4 (a) shows a orthographic view - a 

sheet of graph paper - with shades of grey representing the density. Figure 4 (b) shows a 

perspective view of the same simulated density field. 

The result of the point density estimation is typically a raster cell map containing 

probabilities that a new point would be in that cell. This method of expressing the densities 

produces the volume under the surface at any given point for a cell of a specific size. The sum 

of all the cells should be precisely one (1). If it is not one, then there is a substantial 

systematic error. 

The areas of current research concerning kernel methods are clustered into two main 

groups- applications of kernel methods, and automatic smoothing parameter choice 

procedures. 

The kernel method of density estimation is used widely. It can be used for curve-fitting 

in situations where a parametric solution is inappropriate, particularly due to multimodality 

or discontinuity in the distribution. It is used in wildlife research for habitat utilization and 

home range studies (Lawson and Rodgers, 1997), where the animals use many small areas, 

progressing across the landscape. It has been used for estimating probabilities for a 

discriminant analysis, for estimating hazard rates, non-linear data dimensionality reduction, 

and in cluster analysis (Silverman, 1986). 

The smoothing parameter can be chosen manually, from knowledge of the system being 

investigated and from experience with the data. This can be time-consuming and is 

inappropriate for large data sets, or for large collections of data sets. Manual selection of 

smoothing parameter is also not very reproducible, especially not by people inexperienced in 

the technique. For these reasons, automatic smoothing parameter selection techniques are 

being developed. These methods use the data to estimate a pilot estimate, from which an 

estimate of error can be derived. The most appropriate smoothing parameter is that which 
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minimizes the error function. The most common method of automatic smoothing parameter 

choice is a least-squares cross-validation. Newer methods include “solve-the-equation plug- 

in” methods and smoothed bootstrap methods (Jones, et al., 1996). 



Setting 
22 

Pukaskwa National Park is located on the north shore of Lake Superior, in Ontario, 

Canada. Figure 5 shows the Park in relation to the surrounding area. It also shows the 

location of notable places within the Park. 

Marathon is the nearest town to the Park, located to the north of the park. Other 

relatively large towns nearby are White River, to the northeast and Wawa, to the southeast. 

All of these towns are on or near Highway 17. The Park can be reached from Highway 17 

using Highway 627 from the north. This is the only highway access to the Park. 

The Park Office is located at Hattie Cove, at the north of the Park. Immediately near 

the office is a weather station. There are two other weather stations, at Soldier Mountain 

and at Otter Cove. 

Two other locations which are used in this study are the mouth of the Pukaskwa River 

and Widgeon Lake. These two locations, with Hattie Cove are used as an expression of the 

spatial extent of the Park. 
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Figure 5 - Local Setting of Pukaskwa National Park. The Park is located on the North 
Shore of Lake Superior. 
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Pukaskwa National Park has provided data on climate, ignitions, and vegetation. The 

Ontario Ministry of Natural Resources (OMNR) has provided the lightning strike data. 

Barometric pressure data were obtained from the United States National Oceanographic and 

Aeronautics Administration (NOAA). 

Data were collected and processed using a geographic information system (GIS), and a 

database program. The vegetation, ecodistrict, topographical and proximity to Lake Superior 

data were all maintained in a raster format. This format can be likened to a piece of graph 

paper, with a value for each square. The individual squares are known as pixels, which have 

a resolution (linear dimension of a side) and an area. All other data were maintained as 

discrete locations or records in a database. 

Lightning Detection System Data 

The information from the lightning detection system (LDS) consists of records of each 

CG flash, or strike. For each strike, the time and date, latitude, longitude, polarity and 

strength of strike are recorded. The multiplicity, or number of return strokes, is not reported, 

although the system is capable of reporting it (Noggle, et al., 1976). 

Information for the greater Pukaskwa area was made available by the OMNR for the 

last three years. Data were requested for the area between 47° and 49°N and 84.5° and 

86.5°W, which covers the Park and the area between Highway 17 and Lake Superior from 

Marathon to Wawa. 

The locations of the LDS direction finders is published, for example, in Herodotou 

(1990). The geographic locations of the towns in which the direction finders are located and 

distances from chosen locations was determined from the Natural Resources Canada (1998) 

Geographic Names Database. 
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Weather 

Weather information obtained from Pukaskwa National Park consists of the records 

from stations within the Park. The information for 1994-1996 is being used because the 

automated weather stations inside the Park were set up in 1994. The hourly temperature, 

relative humidity and precipitation are recorded at these stations. The stations are 

distributed around the park, at Hattie Cove, Soldier Mountain, and Otter Cove (Figure 5). 

Weather data was present for all three stations, but there were some periods where 

data was not collected, or was unusable. The entire season’s weather records for 1994 at 

Hattie Cove was not available because of problems associated with the data. At Hattie Cove, 

the fire seasons started on May 5, 1995 and April 1, 1996. At Otter Cove, the seasons started 

June 3, 1994, May 11, 1995, and June 6, 1996. Data collection for the 1995 season at Otter 

Cove was cut short July 26. At Soldier Mountain, the season start dates were June 3, 1994, 

May 5, 1995, and June 6, 1996. The fire season extends into October. 

Barometric pressure data have been obtained for Wawa airport from the National 

Climatic Data Center (NCDC) in the United States. The “Pukaskwa” weather station listed 

in the station listings was not reporting for part of the period of interest, so Wawa Airport 

data were used. The data were provided to the NCDC by the Atmospheric Environment 

Service, Environment Canada. 

Ignition Locations and Times 

Forest fire ignitions within the Park are routinely recorded by the Park. Only two fires 

have occurred in the three years under consideration. The fire reports were made available 

by Pukaskwa National Park (OMNR, 1995a and OMNR, 1995b). 

Vegetation Coverage 

Vegetation coverage for this study will be derived from previously classified satellite 

imagery captured in 1994 and in 1991 (Pukaskwa National Park, 1995). Land cover classes 

in this study are derived from that classification. The classes are described in Table 1. The 

vegetation coverage is at a resolution of 18 m, for a pixel area of 325 m^. 
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Table 1; Vegetation classification system from a classification of satellite imagery of 

Pukaskwa National Park and area. Satellite imagery was from the Landsat 
Thematic Mapper in 1991 and 1994. 

Class Description Abbreviation 
1 Conifer > 80%, 76-100% Crown Closure Con8>76C 
2 Conifer > 80%, 51-75% Crown Closure Con8>51C 
3 Conifer > 70%, 25-50% Crown Closure Con8>25C 
4 Deciduous > 80%, 51-100% Crown Closure Dec8>51C 
5 Mixed Conifer >50%, 25-50% Crown Closure Mcon525C 
6 Mixed Deciduous >50%, 25-50% Crown Closure Mdec525C 
7 Non-Productive Nonprod 
8 Inert; rock, poorly vegetated Inert 
9 Water water 
10 Depleted Lands, <4 years old dep<4 
11 Depleted Lands, >4 years old dep>4 
12 Roads, <4 years old roads<4 
13 Roads, >4 years old roads>4 
14 Railway Line railline 
15 Ontario Hydro Transmission Line hydro 
16 Urban urban 
17 Cloud cloud 
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Topography was derived from Ontario Base Map (OBM) data for the area. A raster 

surface interpolated from the point data from the OBM series was processed to provide 

elevation values, and peak elevation values. Both elevation and topographic position have 

been suggested as reasonable factors to investigate for influence on lightning strike density. 

The raster surface was previously prepared with a square resolution of 100 m, using inverse 

distance weighting of 12 points per pixel with the GRASS 4.15 program r.surf.idw (USA- 

CERL, 1995). Each pixel in the topographical coverage is 1 ha. 

Ecodistrict Information 

Ecodistricts are complexes of relatively homogeneous topography and vegetation. An 

ecodistrict coverage was supplied by Pukaskwa National Park. There are five ecodistricts 

within the Park. This information was supplied at a resolution of 288 m, with a cell area of 

8.3 ha. A map of the 5 ecodistricts is shown in Figure 6. 

Distance from Lake Superior Data 

The data describing the distance of each pixel from the shoreline of Lake Superior were 

prepared from the the vegetation coverage. A contiguity analysis was performed on the 

water component of the vegetationdata. Lake Superior was identified as the biggest 

contiguous piece of water, and was extracted as a new data layer. The new Lake Superior 

coverage was buffered by twenty kilometer intervals. There were six classes of distance 

within the extents of the vegetation data layer. This data layer was prepared at a resolution 

of 407 m, or 16.6 ha/pixel. 

Data Coverage 

The areas of coverage of the various sets of data in this project are shown in Figure 7. 

The geographic extents of the individual data layers do not match. The analyses were 

performed using the smallest relevant areal extent from the data. Results were adjusted 

accordingly. 
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Figure 6 - The five ecodistricts of Pukaskwa National Park, supplied by the Park. An 
ecodistrict represents a landscape-level homogenous collection of topography, 
landform and vegetation types. 
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Figure 7 - Areal extents of individual data sets used in this project. 
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This study consists of three major components, related to the three identified objectives. 

The first section is an analysis of lightning probability density cross-tabulated with 

landscape characteristics. The second section is a probability density analysis of the weather 

measurements at the time of a strike record. The third section is a summary of conditions at 

the time of fire ignitions in the Park. 

The data were viewed in a variety of ways to look for interesting patterns in the data. 

Histograms were used as a viewing tool, where appropriate, and simple database queries 

were used to increase personal familiarity with the data. Overlay of the data layers in a GIS 

showed the location of data in relation to other data. 

Section 1 - Where? 

Lightning strike probability was predicted for all parts of the Park from three years of 

lightning strike records. The average probability generated from that procedure was 

calculated for each class of vegetation, each class of topography, each class of ecodistrict, and 

each of several bands of distance from Lake Superior. The statistical significance of each 

mean was then calculated. 

Data Preparation 

Two probability density maps were generated, one using only the positive polarity 

strikes, and the other using all strike records. The positive polarity strikes are assumed to be 

more significant, because they may have a higher likelihood of igniting fires. 

The probability density maps were generated using a fixed kernel method, with a 

gaussian kernel. The smoothing factor was calculated from the specification of 1° error at the 

direction finders (DF’s), and the approximate distance from the three nearest DF’s to three 

corners of the Park, at Hattie Cove, Pukaskwa River mouth, and Widgeon Lake. 
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The smoothing factor was chosen to be equal to 

ij 
Equation 6 

where i is the number of DF’s being considered (three) and j is the number of points for 

which this calculation is being performed. The distances (D.p were calculated at the three 

corners of the Park, at Hattie Cove, Pukaskwa River mouth, and Widgeon Lake to the 

nearest three detectors to those points. The smoothing factor was rounded to the nearest 500 

m. A simplified diagram of this calculation is shown in Figure 8. 

Two topographic class maps were generated from the topography map provided by the 

Park. The first map was a level slice of the continuous topography into 7 equal elevation 

divisions, ranging from 183-642 m. The second topographic map was a map of local high 

points. This map was generated by applying a round maximum filter with a radius of 1 km. 

Points that were the same height as the product of the maximum filter were identified using 

map algebra. These points were the highest point within a kilometer. 

Analysis 

The probability density maps were cross-tabulated with the vegetation classification, 

the ecodistrict map, the topographic class maps, and the distance from Lake Superior map. 

The resolution of the analysis was set to be that of the class map, with the probability 

density map resampled to match it. The mean of the probability density map within each 

class was calculated. 

Because the spatial extents of the various class maps were different from each other, 

the probability density maps had to be adjusted to represent the restricted area of the class 

map. Probability density was summed over the area of the class map. The probability density 

maps were multiplied by the reciprocal of this sum. After this procedure, the restricted area 

probability density maps retained the characteristics of probability density maps, in that the 

volume under the surface was one. 

The probability density means are not specifically informative without an idea of the 

statistical significance of the mean. Each class probability density (PD) mean was compared 

against the range of variabilty in values calculated in the same way, but derived from 

random sets of points, instead of points selected by a factor of interest (like ecodistrict). 



(a) All Direction Finders and Park Corners 
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Nipigon 

Hearst 

Geraldton 

Hattie Cove*\ 

\ X Widgeon Lake 

Pukaskwa R/ Chapleau 

(b) An Example: Hattie Cove Corner of Park, Nipigon Direction Finder 

Nipigon 

Using Trigonometry: 
Baseline Distance = tan(a) * D 

Figure 8 - Simplified description of how the smoothing factor was calculated for the 
preparation of the lightning density maps. This is a schematic only, (a) There are 
four Direction Finders (DFs) near Pukaskwa National Park, (b) For each 
combination of DF and corner of the Park, there is a Baseline Distance, which is a 
description of the specifications of error of the DFs at that distance. The example 
shown is the Baseline Distance for the Nipigon DF and Hattie Cove, (c) The 
calculation of the Baseline Distance involves trigonometry. In the example, Nipigon 
is 227 km from Hattie Cove, so D=227 km. The error specification for the DFs is 1°, 
so the angle a=l°. Calculating through the formula in (c), the Baseline Distance is 
4.0 km. The smoothing factor for the kernel analysis is the mean of the nine 
Baseline Distances (Only considering the three nearest any Park corner), rounded 
to the nearest 500 m. 
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The range of variability in PD means was calculated for a class by calculating PD means 

for each of 500 random sets of points. The random sets each had as many pixels as the class 

of interest. From the 500 random-set PD means, a general mean was calculated. The 

deviations of the random-set PD means from this general mean describe the range of 

variability that we can expect from a random selection of points. The percentage of 

random-set PD mean deviates that are greater than the class-of-interest PD mean deviate 

(p value) describes the probability that the class of interest is not a statistically significant 

factor. The p value answers the question “Did this factor affect the probability density 

surface?” 

A class mean was considered to be statistically significant if less than 5% of the random 

sets of points had a probability density mean with a deviation from the overall mean greater 

than the class of interest deviation. This can be expressed as a p value less than 0.05. This 

follows the logic of the analysis of variance (ANOVA), as discussed by Brown (1995). 

Section 2 - When? 

Weather measurements were compared with lightning strike times to give a picture of 

when lightning strikes. Daily Fire Weather Index (FWI) values were used as the coordinate 

system assigned to each lightning strike record. A probability density map was developed, 

based on the FWI coordinate system. 

Daily FWI values were calculated using methods from Van Wagner (1987), for each of 

the three weather stations at the Park- Hattie Cove, Soldier Mountain, and Otter Cove. The 

start dates of the fire season were derived from snow depth data, according to Van Wagner 

(1987). Starting values for the FWI calculations were drawn from the data files provided by 

the Park. These calculations were done at the Park using WeatherPro (Remsoft, 1996). 

The probability density surfaces for this section of the analysis were prepared in a 

coordinate system using Fine Fuel Moisture Code (FFMC) and Duff Moisture Code (DMC) 

values as the axes. Of FWI indices, these two indices are the most closely associated with fire 

ignition. 

Probability density surfaces in the FFMC-DMC coordinate system were developed from 

the lightning strike records and the daily weather records from all three weather stations. 
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Surfaces were calculated from the daily weather at all stations of each year, at each weather 

station for all years, and from the weather on the day of each lightning strike. 

The adaptive kernel method was used to calculate the probability density surfaces. A 

smoothing factor was chosen by subjective evaluation, after standardizing the coordinates to 

make the variance in the two axes identical. The subjective evaluation was performed by 

repeatedly calculating probability density surfaces with a range of smoothing factors. The 

probability density surface with the best compromise between spurious detail 

(undersmoothing) and lack of detail (oversmoothing) was selected. 

The weather on the day of a lightning strike was determined by matching the dates in 

the lightning and weather files. Only lightning strike records for days with valid FWI codes 

were included in this analysis. The lightning strike records could then be plotted in the 

FFMC-DMC coordinate system instead of in a geographic coordinate system. 

Section 3 - Fires 

Each of the two fires that occurred in the study period has been described by tabulating 

the fire report data, the vegetation and topography data for the immediate vicinity, and the 

weather conditions at the time of the fire and for some time before and after. All of the data 

that were made available have been included. 

Software 

The software used for these analyses was from one of two sources, either from the 

GRASS GIS, version 4.2 (Baylor University, 1997), or written expressly for the purpose. 

GRASS was used to coordinate the data, project the data into a common coordinate system, 

provide storage, compare the data, and display data. 

The kernel procedures used for this analysis are derived from Tufto (1994). He follows 

the methods of Worton (1989), which are based on Silverman (1986). The code provided was 

originally used to discuss the effect of “discretization”- the innacuracy of measurement - on 

the estimates of sizes of animal home ranges. The source code provided by Tufto was limited 

to 300 observations, so it was necessary to modify it. Extensive tests were made to ensure 
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that the results produced by this program were correct. Modifications were necessary to 

allow a link to GRASS data structures, and to allow certain improvements to be made, 

including the coordinate transformation process. The program was compiled under GNU C, 

v.2.7.2.2 (FSF, 1997). 
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The lightning strike information consists of a point location, a time, and a strength/ 

polarity rating for each ground strike. Notably, none of the strike records indicated return 

strokes. The strikes are mainly negative polarity- seven percent of the strikes records were 

positive polarity. There were 8666 strikes recorded in locations not in Lake Superior and 

within the area under study in the years 1994-1996. 

There were 1248 stikes recorded within the Park boundaries in the three-year period. 

The mean number of strikes per square km is 0.38, assuming a 60% detector efficiency. This 

is consistent with Orville (1994) and Orville and Silver (1997) on the south shore of Lake 

Superior. This represents 14% of the strikes in about 20% of the area. The study area as a 

whole had 0.58 strikes/km^, assuming the same 60% detector efficiency. 

The majority of strikes records were between -4 and -10 strength. There was a mirror- 

image distribution of positive and negative polarity strikes, except for the difference of the 

number of strikes. The distribution of strikes is shown in Figure 9. 

There was a significant difference between the number of strikes with a numerically 

even score and the number of strikes with a numerically odd score. A test comparing the 

count of odd strikes and even strikes against half the count of strikes shows (X^=113, df=l, 

p=0.000) that the even and odd counts are not the same. There were significantly more odd 

strikes than even strikes. 

Section 1 - Where? 

Probability Density Maps 

The lightning strike probability maps were calculated using a fixed kernel method from 

the lightning strike record locations. Two maps were prepared, one for the positive strikes 

only, and one for all strikes. These two maps are presented in Figures 10 and 11. The 

distribution of values in the probability density maps is non-normal, and resembles a 

Poisson distribution. 

Some variation in the density of strikes can be seen even in Figures 10 and 11. A visual 

comparison between the area north of the Park and the centre of the Park reveals that there 

is a higher density of strikes north of the Park than in the Park. The same can be seen 
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Figure 9 - Distribution of strikes by strength and polarity scores 
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Figure 10 - Probability density map of all lightning strikes. The values in the map 
represent the relative likelihood of a strike having happening in that area in the 
study period. Increasing probability is indicated by an increased intensity of black. 

Figure 11 - Probability density map of positive polarity lightning strikes. The values in 
the map represent the relative likelihood of a strike having happening in that area 
in the study period. Increasing probability is indicated by an increased intensity of 
black. 
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southeast of the Park. Within the Park, there is still some variability. The centre of the Park 

can be seen as an area of lower strike density than the north or south extremes of the Park. 

The smoothing factor was calculated to be 3.5 km. This was calculated based on the 

distances presented in Table 2. The mean baseline distance, rounded to the nearest 500 m, is 

3.5 km. 

Throughout this section, in the text and in tables, mean probabilities are stated. These 

probabilities are stated in probability per pixel. The size of the pixels varies with each 

analysis. 

Topographic Class Maps 

The level-slice of the elevation map was prepared by dividing the range of elevations 

into 7, and calculating the new class of each pixel by which range of elevation it fell into. The 

results of this calculation are shown in Figure 12. 

The map of local peaks was prepared by applying a round maximum filter to the 

elevation map to make a map of the height of the highest point v/ithin tv/o km, then using 

map algebra to identify locations whose elevation was the same as in the resultant map. The 

results of this are shown in Figure 13. 

Crosstabulations 

The crosstabulations of the probability density maps with topographic class produced 

two tables of mean probabilities, and their standard deviations. These are shown in Table 3. 

It can be seen from Table 3 that lower elevation locations seem to be more likely to get 

struck by lightning than higher elevations, contrary to intuition. This is not a consequence of 

there being more low elevation locations than high elevation locations. A location in the 

lowest elevation class is 2.9 times more likely to get struck by lightning than a location in 

the highest elevation range, at least for all strikes. All of the means for all strikes were 

significantly deviant from random. 

For positive strikes, a similar pattern can be seen, although the highest probabilities 

seem to lie in the middle elevations, with lower elevations not far behind. A location in the 
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Table 2 - Table of distances to lightning detection system direction finders (DFs) to the 

three corners of Pukaskwa National Park, at Hattie Cove, Widgeon Lake, and 
Pukaskwa River mouth. DFs are at Geraldton, Hearst, Nipigon and Chapleau. The 
tangent of 1° multiplied by the distances are also shown. 

Distances (km) Baseline Distance (km) 
Name Hattie Cove Pukaskwa R Widgeon L Hattie Cove [Pukaskwa R| Widgeon L 
Chapleau 
Geraldton 
Hearst 
Nipigon 

226 
136 
157 
227 

247 
207 
212 
183 

209 
192 
220 
165 

3.9 
2.4 
2.7 
4.0 

4.3 
3.6 
3.7 
3.2 

3.6 
3.4 
3.8 
2.9 
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Scale 1:1,000,000 Legend 

Elevation (m) 

□ 183-221 

□ 222-2^7 

□ 298-373 □ 374 - 449 

□ 450 - 525 

□ 526-601 

■ 602-640 

Figure 12 - Elevation map converted into 7 elevation classes of equal width. 
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Peak Locations 

Figure 13 - Peak elevation map derived from the elevation map using a maximum filter 
and map algebra. 
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Table 3 - Crosstabulation of the probability density maps with topographic class maps 

for both all strikes and positive strikes. 

Elevation Category 
 All Strikes -- 
Mean p 

-Positive Strikes 
Mean p 

183 thru 221 
222 thru 297 
298 thru 373 
374 thru 449 
450 thru 525 
526 thru 601 
602 thru 640 

1.88E-06 
1.84E-06 
1.72E-06 
1.48E-06 
1.49E-06 
1.17E-06 
6.53E-07 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 

1.72E-06 
1.76E-06 
1.83E-06 
1.39E-06 
1.49E-06 
1.19E-06 
1.13E-08 

0.00 
0.00 
0.00 
0.00 
0.06 
0.00 
0.11 
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298-373 m class is 160 times more likely to get struck by a positive strike than a location in 

the top elevation class. The highest elevation class did not have a statistically significant 

mean, however. The greatest difference between significant means was between the same 

middle class and the second-highest elevation class, 526-601 m, where there was a factor of 

1.5 difference. 

Locations in the top elevation class (602-640 m) are much less likely to get struck by 

positive polarity strikes than locations in all the other elevation classes. The class stands 

alone, at less than 1% of the probability of the class next below it. This is probably an 

artifact of the process, given the number of positive strikes, and the significance of the 

results. It should be presumed that this effect does exist, given that the same effect (at a 

lower level) can be seen in the analysis of all the strikes. 

The general pattern that can be observed in both the all-strike analysis and the positive 

strike analysis is that the mean probability of strikes drops from a high at the lowest 

elevations to a low at the highest elevations. There is deviation from this pattern in the all- 

strike analysis, but it is not a large deviation. The deviation that can be seen in the positive 

strike analysis is larger, and can be seen to be marginally within the range of random 

variability. This pattern is highly counter-intuitive, as we generally expect higher elevations 

to be areas of higher lightning activity. 

The crosstabulations of the probability density maps with peak class produced two sets 

of mean probabilities, and their statistical significances. These are shown in Table 4. 

The results reported in Table 4 support the intuitively reasonable suggestion that peaks 

get hit by lightning more than other areas. The probability of a peak location getting struck 

by lightning is 1.2 times higher than the rest of the population of locations in the area for 

which topography is available. The probability of a peak location getting struck by a positive 

strike is 2.0 times higher than that of a non-peak location. These results are all significantly 

different from random. 

The crosstabulation of vegetation class by probability density values (Table 5) showed 

that a typical location has a probability of between 3.2x10 ® and 3.5x10 ® of being struck by 

lightning. Exceptions to this are the Inert class (Rock, poorly Vegetated), recently depleted 

lands, the rail line and urban areas, all of which show a higher probability of being struck. 

The Inert class is obviously higher, at 6.3x10 ®. The Inert class shows an opposite response 

for positive strikes, with a much lower probability of being struck than the common 
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Table 4 - Crosstabulation of the probability density maps with peak class maps for both 

all strikes and positive strikes. 

Elevation Category 
Peak 
Not Peak 

 All Strikes Positive Strikes — 
Mean p Mean p 

1.83E-06 0.03 3.06E-06 0.00 
1.55E-06 0.03 1.54E-06 0.01 

Table 5 - Crosstabulation of the probability density maps with the vegetation class map 
for both all strikes and positive strikes. 

Category 
— All Strikes -- 
Mean p 

- Positive 
Mean 

Strikes — 
P 

Conifer>80% 76-100% Crwn Clos. 3.31 E-08 0.02 3.29E-08 0.02 
Conifer>80% 51-75% Crwn Clos. 3.36E-08 0.02 3.62E-08 0.00 
Conifer>70% 25-50% Crwn Clos. 3.52E-08 0.00 3.96E-08 0.00 
Decid>80% 51-100% Crwn Clos. 3.08E-08 0.00 3.04E-08 0.00 
MixedConifer>50% 25-50% Crown 3.28E-08 0.57 3.1 IE-08 0.00 
MixDecid>50% 25-50% Crown Clos 3.18E-08 0.00 3.46E-08 0.00 
Non-Productive 3.36E-08 0.02 2.97E-08 0.00 
Inert: rock poorly vegetated 6.28E-08 0.00 1.52E-09 0.00 
Depleted Lands <4 years old 4.05E-08 0.00 3.06E-08 0.00 
Depleted Lands >4 years old 2.99E-08 0.00 2.08E-08 0.00 
Roads <4 years old 3.91 E-08 0.00 4.28E-08 0.00 
Roads >4 years old 3.42E-08 0.12 3.44E-08 0.13 
Railway line 4.24E-08 0.00 2.1 IE-08 0.00 
Hydro 3.87E-08 0.00 3.92E-08 0.00 
Urban 5.05E-08 0.00 3.50E-08 0.24 
Cloud 3.90E-08 0.00 2.88E-08 0.00 
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probability range of other classes. Almost all of these results must be assumed to be 

statistically significant from random, with the exception of a mixed woods class with greater 

than 50% Conifer, and older roads for the all-strike analysis and older roads and urban 

classes for the positive-strike analysis. 

It is notable that the conifer classes all have a higher probability of getting struck by 

any strike than the deciduous classes. The same can be said for the positive strike analysis 

when only the unmixed stands are considered. 

Another set of classes that shows an interesting high probability of strikes is the 

human-dominated classes, which mostly show a high probability. This can be seen in the 

recent depleted lands, recent roads, railway, hydro corridor, and urban classes for the all- 

strike analysis. This same picture is not as clear for the positive strike analysis, but the 

trend is there. The reason for this is not immediately clear. 

Ecodistricts near the Lake Superior coastline have a higher mean probabilty of getting 

struck by lightning than interior ecodistricts (Table 6). The largest significant difference was 

between the Pukaskwa River Plain, at 5.92x10'^ and the Interior Uplands, at 4.15x10'®. The 

Coastal Hills were more likely to be hit by a positive strike than other ecodistricts, especially 

the Bremner Uplands, although all of the positive results are within the bounds of random 

variation. 

The combination of elevation results and ecodistrict results suggest that the most 

noticable effect on lightning density was one of distance from Lake Superior. The analysis of 

distance from Lake Superior showed a pattern where the likelihood of a strike was higher at 

the shoreline and lower inland, until 80 km from the shore, at which point, the values rose 

again (Table 7). This area is to the Northeast of Pukaskwa National Park, past the town of 

White River. 

The results of the positive strike analysis show different zones of high activity than the 

analysis for all strikes. There is a higher probability at the shoreline and an even higher 

probability just inland (21-40 km). Between 41 and 100km, there is a lower probability of a 

strike, with another high at the extreme distance. Presumably the increased probability of 

strikes at such distance from Lake Superior is not associated with Lake Superior directly, 

but rather some other local factor. 



47 
Table 6 - Crosstabulation of the probability density maps with the ecodistrict class map 

for both all strikes and positive strikes. 

Category 
— All Strikes Positive Strikes -— 
Mean p Mean p 

Coastal Hills 
Interior Uplands 
Coastal Plain 
Pukaskwa River Plain 
Bremner Uplands 

4.72E-05 
4.15E-05 
5.33E-05 
5.92E-05 
3.99E-05 

0.59 
0.00 
0.00 
0.00 
0.29 

5.71 E-05 
4.48E-05 
4.99E-05 
3.28E-05 
1.91 E-05 

0.88 
0.15 
0.25 
0.09 
0.83 

Table 7 - Crosstabulation of the probability density maps with the map of distance from 
Lake Superior for both all strikes and positive strikes. 

Distance  All Strikes Positive Strikes — 
(km) Mean p Mean p 
0-20 1.57E-05 0.01 1.59E-05 0.01 
21-40 1.54E-05 0.01 1.78E-05 0.01 
41-60 1.60E-05 0.01 1.31 E-05 0.01 
61-80 1.43E-05 0.01 1.52E-05 0.01 
81-100 1.81E-05 0.01 1.33E-05 0.01 
100+ 2.63E-05 0.01 3.93E-05 0.01 
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Section 2 - When? 

The data for this analysis were the weather observations and the lightning strike dates. 

Density estimates of weather during lightning and of daily weather conditions were 

generated for comparison. The results of the analysis can suggest how patterns of weather 

and patterns of lightning coincide. 

Daily Weather Probability Density 

A density surface describing the patterns of weather through the season was derived for 

each year at all weather stations, and for each weather stations in all years. These density 

surfaces are in a coordinate system using the FFMC and DMC as axes. 

The smoothing factor for this procedure was chosen to show reasonable detail, while not 

providing too much detail. A range of smoothing factors was tested, from 0.1 1 This 

range showed undersmoothed surfaces and oversmoothed surfaces. A reasonable compromise 

seemed to be 0.3 The same smoothing factor was used throughout all the analyses to 

simplify calculation and improve comparability for similar diagrams. 

Days By Year 

The analysis of daily weather in each of the three years showed that the three years had 

different weather, but that there was some commonality in the shape of the distributions. 

The pattern that can be seen in Figure 14 (a), (b), and (c) is an “L” shaped distribution. There 

are many days with a low DMC and a range of FFMC. There are some days with a high 

FFMC and a range of DMC. In (b), there are many days with a high FFMC and a medium- 

high DMC. The results suggest that there are many days that are effectively unsuitable for 

fire survival, but that there are some days that have high index values. 

In some years, there is a higher proportion of high-risk fire weather than other years. 

The order of “seasonal severity” is 1995, 1996, 1994. The fire season in 1995 was the most 

fire-prone, at least with respect to weather, of the three. The 1994 distribution of days is 

weighted to moderate FFMC and low DMC values (Figure 14 (a)). The 1995 season has a 

significant weighting of high FFMC and high DMC days (Figure 14 (b)). The 1996 season 

was intermediate (Figure 14 (c)). 

The similarity of pattern between years is not surprising. The weather in the Pukaskwa 
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Days by year, All weather stations 

1994 1995 1996 

(a) 

Days by weather station, All Years 

Hattie 

(b) 

Otter 

(c) 

Soldier 

J—^ 

(d) (e) (f) 

Lightning strikes by nearest weather station. All Years 

Hattie Otter Soldier 

(g) (h) 

Figure 14 - Probability density surfaces in the FFMC- 
DMC coordinate system. Graphs (a) to (f) are derived 
from the weather on individual days through three 
seasons at three weather stations. Graphs (g) to (i) 
are derived from the weather codes on the day of 
individual lightning strikes, by closest weather 
station, (j) shows the axes for all graphs. Each square in all the graphs represents 
10 units of the axis. Fire risk increases non-linearly with the arrow in (j). 

U) 
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area is generally considered to be cool and wet compared to other areas away from Lake 

Superior. This would suggest that we should expect mainly cool, wet weather, with 

occasional sunny breaks. The difference in weighting of the pattern between years is also not 

surprising. Fire seasons are expected to vary in severity. 

Days By Station 

The pattern of weather that can be observed at the three weather stations over the 

three year period is essentially similar to the pattern observed in the year-specific analysis. 

The same days, split up in a different way, show a similar general pattern. In this analysis, 

the three stations can be rated for severity of fire weather. The Hattie weather station shows 

the least fire-inducing weather (Figure 14 (d)), while Otter Cove weather station shows the 

hishest DMC codes at the top end of FFMC (Figure 14 (e)). Soldier Mountain falls between 

them (Figure 14 (f)). This pattern of “station severity” is somewhat surprising, given that the 

Soldier Mountain station is significantly inland from the Lake, while the other two are 

coastal. The dissimilarity between Hattie Cove and Otter Cove weather stations is 

interesting. 

Lightning Weather Density 

Each stike record was matched to the FWI codes for that day at the nearest station 

using the date. Density surfaces were calculated for the three weather stations using the 

FFMC-DMC coordinate space. The smoothing factor was chosen in the same way as it was in 

the daily weather analysis, and 0.3 h^^^was chosen. 

The common pattern shown between the stations is that most strikes happen at low 

values of DMC (Figure 14 (g), (h) and (i)). The range of FFMC at which lightning occurs 

varies between stations. This fits a picture of most storms having significant rainfall, or 

happening as part of a system of cloudy, cool weather. Each storm event seems to cause its 

own node of density in the surface. 

There is a significant group of lightning strikes near Soldier Mountain weather station. 

This particular set of strikes happenned on June 24, 1995, with FFMC values of 89.6 and 

DMC values of 72.0. The storm happened after 10pm. The following day, the indices were 
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62.2 and 50.9, respectively. By then, the storm was over. This was the only large, 

concentrated group of strikes that happenned at high values of DMC and FFMC. This storm 

event stands alone as the only significant group of strikes in highly flammable fuel 

conditions. 
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Section 3 - Fires 

In the three-year period under examination, there were two fires ignited by lightning in 

the Park. They are reported as Fire 33/95 and Fire 41/95. Both fires were detected in the 

north part of the Park, on June 24*^^ and 25^’^, 1995. They were both extinguished in short 

order, at small sizes. 

In the days leading up to the fire ignitions, the weather was warm with a consistently 

high barometric pressure. On the 25th of June the wind was high and from the east, the 

temperature was near 20°C and the relative humidity was high. 4.2 mm of rain fell in the 24 

hours up to noon on June 25*^^. Over the next few days, during the fire-fighting effort, the 

temperature remained moderate and the relative humidity rose (Table 8). On the 27th of 

June, another 26.2 mm of rain fell. There was a weak high pressure system in the area for 

the entire period of both fires, until the fires were under control, after which the pressure 

dropped (NCDC, 1997). 

The locations of the two fires are shown on a map in Figure 15. This map shows the fires 

in relation to the Park boundary. 

Fire 41 

Fire 41 was near UTM coordinates 590500, 5365500. It was first reported June 25 at 

14:30. By the time it was first attacked at 15:40 the same day, it was half a hectare in size. 

By 13:00 on the 27th of June, it was under control. Fire 41 was declared out at 12:00 on the 

28th. The final size of the fire was three hectares (OMNR, 1995a). 

The fire was presumed to have been ignited at a scarred tree on the hillside. It burned 

in mature timber (Conifer greater than 80%, 76-100% crown closure) and on the edge of a 

Non-Productive area. The fire was presumably ignited at the edge of a sparsely vegetated 

rock outcrop. The wind was out of the southwest, which would likely have pushed the fire up 

the hill through the relatively poor fuel of the hillside. The ground slopes gently east- 

northeast upward away from the conifers (OMNR, 1983). Table 9 shows the relative 

frequency of the fuels in the immediate vicinity, and Figure 16 shows the arrangement of the 

forest in the area. 
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Scale Approximately 1:1,000,000 

Figure 15 - The locations of the two fires discussed in the text in relation to the Park 
boundary. The fires were fire 33 and fire 41. They were both reported in June, 
1995. 
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Table 8 - Soldier Mountain weather station daily data at noon for the period from June 

15 to June 30, 1995. FFMC is Fine Fuel Moisture Code. DMC is Drought Moisture 
Code. SLP is Sea Level Pressure measured at Wawa Airport. 101.3 is the nominal 
“normal” pressure. 

Date Temperature Relative Wind Wind 
Humidity Azimuth Speed 

 (° C) (%) (km/h) 

Rain FFMC DMC SLP 

(mm) (kPa) 
June-15 
June-16 
June-17 
June-18 
June-19 
June-20 
June-21 
June-22 
June-23 
June-24^ 
June-25* 
June-26 
June-27 
June-28 
June-29 
June-30 

22.6 
25.0 
26.6 
30.0 
31.8 
20.7 
24.2 
26.7 
27.1 
28.7 
18.1 
22.1 
21.2 
18.7 
17.7 
15.7 

45.2 
40.6 
55.8 
47.4 
33.5 
47.7 
35.4 
43.0 
54.7 
46.1 
77.3 
52.7 
75.9 
89.6 
94.6 
97.7 

207 
229 
225 
272 
298 
85 

211 
214 
220 
202 
81 
83 
146 
151 
165 
169 

12.3 
16.5 
16.6 
9.3 
5.9 
13.5 
7.2 
10.4 
11.5 

7 
18.7 

8 
15.8 
13 
9 

11.4 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
4.2 
0.0 

26.2 
0.0 
1.2 
0.3 

88.3 
89.7 
89.2 
89.5 
92.1 
90.3 
90.7 
90.7 
89.6 
89.6 
62.2 
80.4 
48.6 
59.9 
55.4 
57.4 

35.5 
39.6 
42.8 
47.1 
52.9 
55.9 
60.2 
64.4 
67.8 
72.0 
50.9 
53.8 
22.5 
23.0 
23.3 
23.4 

102.2 
102.3 
102.2 
101.8 
101.6 
101.8 
102.0 
102.0 
101.7 
101.3 
101.6 
101.8 
101.6 
101.3 
101.1 
101.0 

t Fire 33 start 
i Fire 41 start 

Table 9- Fuel types in a 400 ha square around the reported location of Fire 41. Data was 
derived from classified satellite imagery (Pukaskwa National Park, 1995). 

Fuel Type  
Conifer>80%,76-100% Crwn Clos. 
Conifer>80%,51-75% Crwn Clos. 
Conifer>70%,25-50% Crwn Clos. 
MixedConifer>50%,25-50% Crown 
MixDecid>50%,25-50% Crown Clos 
Non-Productive 
Water 

Hectares Percent 
71 15% 
60 12% 

68.1 14% 
24.1 5% 
0.5 0% 

217.1 44% 
47.5 10% 
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I Conifer>80%,76-100% Crwn Clos. Con8>76C 
H Conifer>80%,51-75% Crwn Clos. Con8>51C 
H Conifer>70%,25-50% Crwn Clos. Con8>25C 
H Decid>80%,51-100% Crwn Clos. Dec8>51C 
□ MixedConifer>50%,25-50% Crown MCon525C 
□ MixDecid>50%,25-50% Crown Clos Mdec525C 
□ Non-Productive Nonprod 
EH Inert: rock,poorly vegetated Inert 
H Water water 

Figure 16 - The arrangement of forest types and topography near Fire 41. The forest 
fuel types are shown to the top left, the topography to the lower left, and a 
perspective view of the area to the lower right. The area shown is a 4km^ square 
around the location of the reported fire. The circles represents the estimated area 
the fire attained. The circles do not represent the fire perimeter, but do represent 
the area as a circle. The outermost circle shows the final size. The innermost shows 
size at report. The middle circle shows the size at Initial Attack. The diamond 
shows the reported location. 
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The area burned by Fire 41 was most recently burned in the Oiseau Bay fire of 1936 

(Street and Alexander, 1980). That fire was the largest in Ontario that year, stretching from 

outside the Park to the east nearly to Lake Superior. It was 47,206 hectares in area. It, too 

was presumed to have been started by lightning. In the 1950 Forest Resource Inventory, the 

area was described as “Recently Burned” (Abitibi Power and Paper Company, 1950). 

There were 12 lightning strike records within 5 km of Fire 41 in the month preceding 

Fire 41, all the night before. These strikes are consistent with the statement on the fire 

report that a lightning storm had passed through the area the night before. Given the 

accuracy expected of the lightning detector system, no specific strike record can be presumed 

to have been the one that ignited this fire. 

The strikes near Fire 41 ranged in strength from 4 to 8, with a mean of 5.2. All the 

strikes were of negative polarity. The strongest strike was recorded 2.8 km away. There were 

three closer strike records, at strengths of 5, 5, and 6. The closest was 400 m away. 

Fire 33 

Fire 33 was near UTM coordinates 578500, 5361500. It was first reported June 24 at 

17:01. By the time it was first attacked at 17:45 the same day, it was 0.1 hectare in size. By 

08:00 on the 25th of June, it was under control. Fire 33 was declared out at 09:00 on the 1st 

of July. The final size of the fire was 0.1 hectares (OMNR, 1995b). 

The fuel complex of Fire 33 was described in the fire report as “non-forested” (OMNR, 

1995b). In the area of the fire were non-productive area, areas that were primarily 

coniferous, and areas that were mainly deciduous (Table 10). The arrangement of different 

fuels can be seen in Figure 17. 

The fuel in the immediate vicinity of Fire 33 was not burned in any of the recorded fires 

in the last 70 years. It was on the periphery of the Oiseau Bay Fire of 1936. The 1950 FRI 

(Abitibi Power and Paper Co., 1950) describes the fuels as Aspen, Birch, Spruce, and some 

Balsam Fir. The age class was IV, representing 60-80 years old. The area to the North and 

East of the fire report, which is now primarily coniferous, was described as recently burned. 

There were no lightning strike records within 10 km of this fire in the month before this 

fire. There is a possibility that the strike was undetected. If there were no strikes in the area 

for a month, then the possibility must be raised that a fire smouldered undetected for that 

month. 
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Table 10- Fuel types in a 400 ha square around the reported location of Fire 33. Data 

was derived from classified satellite imagery (Pukaskwa National Park, 1995). 

Fuel Type  
Conifer>80%,76-100% Crwn Clos. 
Conifer>80%,51-75% Crwn Clos. 
Conifer>70%,25-50% Crwn Clos. 
Decid>80%,51-100% Crwn Clos. 
MixedConifer>50%,25-50% Crown Clos 
MixDecid>50%,25-50% Crown Clos. 
Non-Productive 
Water 

hectares percent 
7.04 2% 

92.32 23% 
43.92 11% 
111.72 28% 
29.36 7% 
47.36 12% 
32.16 8% 
36.12 9% 
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♦ Reported Location of Fire 33 250 o 250 500 750 looom 

Q) Estimated Size of Fire 33 

H Conifer>80%,76-100% Crwn Clos. Con8>76C 
H Conifer>80%,51-75% Crwn Clos. Con8>51C 
H Conifer>70%,25-50% Crwn Clos. Con8>25C 
H Decid>80%,51-100% Crwn Clos. Dec8>51C 
B MixedConifer>50%,25-50% Crown MCon525C 
□ MixDecid>50%,25-50% Crown Clos Mdec525C 
Q Non-Productive Nonprod 
□ Inert: rock,poorly vegetated Inert 
H Water water 

Figure 17 - The arrangement of forest types and topography near Fire 33. The forest 
fuel types are shown to the top left, the topography to the lower left, and a 
perspective view of the area to the lower right. The area shown is a 4km^ square 
around the location of the reported fire. The circles represents the estimated area 
the fire attained. The circles do not represent the fire perimeter, but do represent 
the area as a circle. The outermost circle shows the final size and size at report. The 
diamond shows the reported location. 
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Discussion and Conclusions 

Informal Examination 

The informal examination exposed a minor discrepancy in the data concerning the 

frequency of even strength scores and odd strength scores for the lightning strikes. There 

was a significant difference between the number of even- and odd-strength strikes. There is 

no reason to expect that there should be more odd-strength strikes than even-strength 

strikes. This is presumably an artifact of the LDS network as implemented in Ontario. This 

matter probably does not materially affect the use of lightning strike data in further work, 

but it is something that should be accounted for in a modelling environment. 

The accuracy level of the LDS system warrants some critical examination. There has 

been no published accuracy assessment of the Ontario system. Based on the published 

experience in other provinces in Canada, and other jurisdictions worldwide, between 60% 

and 70% of lightning strikes are detected. The range of detector system efficiency can be 

quite wide. Within the scope of fire detection, this relatively low rate of detection is 

acceptable, because the likelihood of fire is so low, and lightning detection is used to direct 

spotting aircraft, which then detect the fire. 

The detector efficiency has been assumed to be uniform across the landscape within this 

study. That suggests that the detected strikes represent an unbiased sample of the strike 

population. This is a reasonable assumption given that the range of distances from LDS 

system detectors to points in the Park is reasonably uniform. At a geographic extent an order 

of magnitude higher, this assumption may not hold. If this type of examination were to 

conducted at, for example, a provincial scale, a variability on detector efficiency should be 

expected, and calculated. 

Section 1 - Where? 

There is an effect of landscape characteristics on the probability of lightning strikes. 

The presence of Lake Superior has a significant effect, which confounds the analysis for 

certain other analyses. 
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The fact that there is a higher probability of lightning strikes close to Lake Superior 

seems intuitively reasonable. There is a change in the surface over which the air is moving, 

both in temperature and in texture. Some turbulence might reasonably be expected. This 

could cause a greater likelihood of thunder clouds, which could result in lightning strikes. 

The effect of this will inevitably confound analysis with the ecodistricts or the topography. 

An effect of elevation is apparent, but is confounded by the effect of the proximity of 

Lake Superior. The elevation shows a non-intuitive negative relationship with the 

probability of lightning strike. This is probably caused by the negative correlation of 

elevation and proximity to Lake Superior. The elevation effect could, presumably, be 

separated from the effect of the lake’s proximity. This would require the assumption of a 

model that included an effect of each landscape characteristic in some mathematical 

relationship. Whether it would be a multiplicative effect or an additive effect, or some other 

is not obvious from the system in question. 

There is some effect on lightning probability by ecodistrict. The ecodistricts are quite 

strongly associated with the proximity of Lake Superior. The distribution of ecodistricts 

cannot be separated from their proximity to the lake. 

The peak topography analysis shows a pattern that is intuitively reasonable. The peaks 

seem to get hit more than other areas. The peaks do not seem to be correlated with the 

distance from Lake Superior, and this is probably an indicator that this measurement is not 

affected by the dominating effect of the distance from Lake Superior. The strong difference 

between this result and the result for elevation suggest that the elevation analysis is 

confounded. 

The vegetation analysis shows an effect of vegetation on strike probability. Certain 

vegetation types were more likely to be hit than others. The primarily coniferous areas have 

a higher probability of being struck by lightning than primarily deciduous areas. This may 

be related to the dominance of conifers in areas of high lightning activity, or it may be a real 

effect. Van Wagtendonk (1991) found an effect of vegetation in a similar study, but discarded 

it because of the effect of mountain topography on the vegetation. He determined that the 

vegetation was not a causative agent, but was highly correlated with the causative agent 

elevation. 
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The difference in spatial precision levels between the lightning and the vegetation 

datasets might suggest that the vegetation analysis may not be appropriate. The errors in 

the lightning data are enormous compared to the scale at which the vegetation layer 

changes. The link shown here between vegetation and lightning strike probability is not to 

be given too much weight without substantial further work to confirm that there is a real 

correlation. The same might be said for the elevation analyses, but at a lower level of 

caution, given the much smoother pattern in the elevation map than in the vegetation map. 

Human-dominated areas also show a higher probability of being struck than other 

areas. This might be related to the electrical equipment maintained in human-dominated 

areas. 

With respect to planning a fire program for Pukaskwa National Park, these effects 

should be considered, at least to a degree. The higher likelihood of strikes in conifers, and 

near Lake Superior should inform the decisions to light prescribed burns, and plan “Natural 

Prescribed Fire Zones”. This knowledge should be balanced by the knowledge of higher 

rainfall near the lake. 

The very low frequency of fire ignition reported by others (Kourtz and Todd, 1992) 

should also inform decision-making. The likelihood of any individual strike igniting anything 

is quite low. The selection of individual prescribed-burn sites should probably not be affected 

by any consideration of matching to the individual strikes recorded by the lightning 

detection system. 

Section 2 - When? 

These analyses of the concurrence of lightning with weather indices shows that there is 

a low-moderate frequency of days where a fire is likely to be able to be ignited and then 

survive to detection. Lightning seems to happen almost entirely at low values of the indices. 

The one storm that did happen at high values of the two indices probably caused a fire. 

The weather probability density graphs in Figure 14 show a pattern of weather that is 

frequently not conducive to fire. The fine fuels may frequently be dry enough, as shown by 

the range of FFMC that the probability density clouds occupy. The coarser fuels take longer 

to dry, and so are more frequently too wet. 

The lightning probability density graphs in Figure 14 show that lightning happens in 
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low-DMC weather. The single spot and slight cloud visible in Figure 14 (i) show that 

lightning inland occasionally happens at higher values of the DMC. This may be due to a 

difference in the pattern of storms between inland and coastal areas. 

The storm event that is visible as a dense blob at high index values in Figure 14 (i) is 

presumably the storm that ignited Fire 41. The fact that this storm happened at high index 

values allowed lightning from that storm to ignite fires. The fact that the other two weather 

stations did not show a group of lightning strikes at these values suggests the degree to 

which a storm can be localized. It also suggests that the network of weather stations should 

include inland points like Soldier Mountain, and that reliance on coastal weather stations 

for analysis of weather and lightning patterns in the vicinity may not be appropriate. This 

might be an issue for the investigation of fire frequency and weather patterns in the period 

before the Park’s weather stations were set up. 

Section 3 - Fires 

The investigations of these two fires points out two significant issues with respect to 

using LDS data for fire prediction. The first issue is the precision of fire location data 

reported by the fire crews. The second issue is the performance of the LDS system at 

detecting the strikes that lit the fires. 

The fire reports for Fire 33 and Fire 41 both contain a coordinate at which the fire was 

located. The coordinates of both fires have been estimated to be within one kilometer of the 

actual site of the fire. In both cases, the Easting and the Northing end in 500. A look through 

other fire reports suggests this is the level of accuracy expected of the fire crews. To be able 

to use inventory data to predict likelihood of ignition in a location in the forest, more precise 

location of fires is required to use as check data for the model. These data are also too 

imprecise to do fire spread modelling properly, since the initial condition of the fuel 

immediately surrounding the fire cannot be determined easily. 

To give a sense of scale for the imprecision of the fire location data, refer to Figures 16 

and 17. The squares in Figures 16 and 17 are 2x2 km, centred on the fire locations reported 

in the fire report. The middles of the sides of the square are 1 km away from the centre of the 

square. The level of precision in the fire reports is 1km. In both cases, the forest condition at 

the actual location of the fire is very difficult to determine, given the variability of the 
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vegetation complex at a scale of 1 km. 

The low level of precision cannot be changed for historical data, but future fire reports 

could be reported with greater precision. A Global Positioning System (GPS) receiver might 

be available for mapping the fire. The estimated ignition location would be relatively easily 

located if it can be identified. In the case of the two fires here, which were much smaller than 

a hectare at initial attack, a good guess (within lO’s of meters) can be made of the ignition 

location. 

The LDS did not detect a lightning strike in the area of Fire 33 in a reasonable time 

before the fire became visible, even though the fire report mentions a lightning storm moving 

through the area the night before. This suggests that either the LDS network is too sparse 

for this sort of work, or that the LDS computer miscalibrated, and is rejecting many more 

strikes than it should. Further investigation is needed, however. It is also possible that a 

single direction finder in the LDS network is not operating correctly, which is causing the 

incorrect rejection of some strikes, or the incorrect location of some strikes. This effect was 

documented in Alberta by Nimchuk (1990). 

Before modelling the fire ignition probabilities from the existing lightning data, an 

accuracy assessment needs to be performed on the lightning location data. The two fires 

considered here were ignited (presumably) by lightning strikes. The fire for which potential 

strikes could be identified had 12 strikes within 5 km. Although there is a significant 

expectation of missed strikes, about 40%, there is an unknown level of spatial accuracy of the 

data. The data are sufficiently accurate for the original purpose of the detector network, but 

may not be sufficiently accurate for the purposes of comparison with elevation or vegetation 

patterns. 

The data, with these two issues, are available for modelling the conditions under which 

fires are ignited. All that is required is a larger number of fires. This could be achieved by 

using a larger geographic extent, or by increasing the number of years in which fires have 

happened. 
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Probability of Fire Ignition 

To further examine the effect of lightning density on fire ignitions, more fire ignitions 

must be examined. To do that, a larger temporal or geographical context is required. More 

ignitions could lead to a statistical procedure that might bring a significant pattern to light. 

The investigation of what conditions are good predictors of fire ignition from lightning 

in Pukaskwa could be developed further. The LDS data from as early as it was available 

until the present could be compared with fire ignitions in some statistical way. Flannigan 

and Wotton (1991) did something similar, only with a larger geographic area, and for one 

year. For the Pukaskwa area, this could be performed over multiple years for which there is 

lightning data. This would probably yield a limited number of fire ignitions within the Park, 

as lightning data is only available since about 1987. 

Another study might be undertaken similar to that of Flannigan and Wotton (1991) 

using a larger geographic area than just the Park. This proposed study would examine fire 

ignition patterns from lightning for a geographic region including Pukaskwa National Park. 

Kernel methods could be used for the classification of the fire ignitions, so that multivariate 

normalcy of all the input data need not be assumed. Input data might include topography, 

lightning occurence, fire history and reports, vegetation information and weather. 

Strikes on Exposed Ledges 

One of the questions discussed during the formation of ideas for this report was whether 

lightning hits exposed ledges more frequently than the valley below or the upland behind. 

This discussion was motivated by the observation of charred wood on these exposed ledges, 

but not in the forest behind the ledges.There is some basis in the lightning literature to 

believe it is possible that there is a locally increased likelihood of strikes on these exposed 

corners. This is derived from the idea that the process of attachment of the leader to the 

ground happens at a scale of lO’s of metres. A 100m cliff could influence the process of 



65 

lightning attachnment to the ground enough to significantly increase the probability of 

lightning strikes on the ledge, and cause a “lightning shadow” below. To investigate this 

further, lightning detection needs to happen with a much higher positional accuracy than 

was available for this study. A higher-density network of direction hnders, of whatever type, 

would allow higher accuracy of lightning location. A class map could be developed from the 

elevation data showing these ledges, and then an analysis similar to the one in this report 

could take place. This would require significant resources to create a high-density lightning 

detection network, and would probably not yield much better information than the 

observations available now from personal examination of these exposed ridge corners. 
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