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SEARCHING FOR INCOMPLETE SELF 
ORTHOGONAL LATIN SQUARES

— A TARGETED AND PARALLEL APPROACH
Mike Fenton, Msc.

Lakehead University, 2002-2003

Advisor: Ruizhong Wei

The primary purpose of this dissertation is in the search for new methods 

in which to search for Incomplete Self Orthogonal Latin Squares. As such 

a full understanding of the structures involved must be examined, starting 

from basic Latin Squares. The structures will be explained and built upon in 

order to cover Mutually Orthogonal Latin Squares, Frame Latin Squares and 

Self Orthogonal Latin Squares. In addition the related structure Orthogonal 

Arrays, will be explained as they relate to Incomplete Self Orthogonal Latin 

Squares.

This paper also dedicates time to explaining basic search methods and 

optimizations that can be done. The two search methods of focus are the 

backtracking algorithm and heuristic searches. In our 6nal method the two 

will work together to achieve an improved result. The methods currently 

being used to search in parallel are also provided, along with the necessary 

backup to there structure.
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The main research of this paper is focused on the search for Incomplete 

Self Orthogonal Squares. This is done by breaking down the problem into 

four separate areas of the square. By separating the blocks it enables us to 

work on a smaller problem while eliminating many incorrect solutions. The 

solution methodology is broken up into three steps and systematically solving 

the individual areas of the square.

By taking advantage of the properties of squares to constrain our search as 

much as possible we succeeded in reducing the total search time signihcantly. 

Unfortunately, even with our improvement in the overall search time, no open 

incomplete self orthogonal latin square problems could be solved. Full results 

and comparisons to existing methods are provided.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

I must thank Dr. Ruizhong Wei who helped me tremendously through 

all stages of my graduate work and worked as my advisor to ensure the

completion of this work.

I would also like to thank Dr. Maurice Benson and the Computer Science 

Department of Lakehead University who provided me support whenever it 

was needed throughout my time as a graduate student.

Personally I must thank everyone in my life for their continuing support, 

regardless of circumstances they have always provided me with all the support 

I need to accomplish my taaks in life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 History of Latin S q u a re s ................................................................  3

1.2 Basic Properties of Latin S q u a re s ................................................ 4

1.2.1 Operations on Latin Squares............................................... 5

1.2.2 Standardized Latin S q u a re s ............................................... 6

1.3 Orthogonal Latin Squares ............................................................. 7

1.3.1 Transversals...........................................................................  10

1.3.2 Diagonal Latin Squares........................................................  10

2 Mutually Orthogonal Latin Squares 13

2.1 Existence Bounds on M O L S .........................................................  14

2.1.1 Finding N(n) for MOLS .....................................................  15

2.1.2 Minimum Bounds on M O L S ............................................... 18

3 SOLS and Orthogonal Arrays 21

3.1 Properties of S O L S .........................................................................  22

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viü CONTENTS

3.2 Basic Facts about S O L S .................................................................  24

3.3 Orthogonal A r r a y s ...........................................................................  25

3.3.1 Application of Orthogonal A rra y s ........................................29

4 Frame SOLS and Incomplete SOLS 31

4.1 Redefining Latin S quares.................................................................  31

4.1.1 SubSquares of Latin Squares.............................................  32

4.1.2 Partitioned Incomplete Latin S quares............................. 33

4.2 Incomplete M OLS..............................................................................  35

4.3 Frame Self Orthogonal Latin S q u a res ........................................... 36

4.4 Incomplete Self Orthogonal Latin Squares ..................................... 40

5 Search Algorithms 43

5.1 Basic Search Background.................................................................  44

5.2 Backtracking ..................................................................................... 45

5.2.1 Backtracking A lg o r ith m ....................................................... 46

5.2.2 Special types of B ack track ing .......................................... 48

5.3 Ideuristic Searcli.................................................................................  51

5.3.1 Heuristic Search Methods ................................................  55

6 Parallel Algorithms 59

6.1 Basic Design and Structure  i . . . 60

6.1.1 Constraints on Parallel A lg o rith m s ......................  61

6.2 Parallel L ib ra r ie s .............................................................................. 64

6.2.1 Fine and Coarse G r a in ......................................................  64

6.2.2 Message Passing In te r fa c e ....................................................65

6.2.3 (IfierfMI)................................................................................  (15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONTENTS ix

6.2.4 D eadlocking..........................................................................  66

6.3 Backtreicking ........................................................................................67

6.3.1 Branch and Bounding ........................................................... 67

6.4 H e u ris tic s ..........................................................................................  70

7 General Problem Solvers and SATO 73

7.1 B a s ic s ................................................................................................  74

7.2 Problem Specification......................................................................  75

7.3 Example of SATO for Holey Latin S q u ares .................................... 76

7.4 Other Optimization T echniques...................................................  77

7.4.1 Conjugate-orthogonalities.................................................  78

7.4.2 Isomorphism elim ination ....................................................  78

8 Searching for ISOLS 81

8.1 Dividing and Conquering the problem .......................................... 82

8.1.1 Building Sections B and C ..................................................... 83

8.1.2 Placing the Missing Pairs .................................................  84

8.1.3 Finishing the S q u a re ........................................................... 84

8.2 Building Sections B and C .................................................................85

8.2.1 Parallel Building of B and C .................................................. 87

8.2.2 Random Trials ........................................................................ 94

8.3 Placing the Missing P a irs ....................................................................94

8.3.1 Parallel Placing the Missing P a i r s ........................................ 97

8.4 Finishing the S q u a r e .......................................................................... 97

8.4.1 CompleteSquare...................................................................... 101

8.4.2 Parallel Finishing the Square .............................................103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X CONTENTS

9 Summary 105

9.1 Speed Com parisons.............................................................................106

9.2 Searching for IS O L S (20 ,6)............................................................... 110

9.3 Searching for IS0LS(26, 8), (32, 1 0 ) ............................................... I l l

Bibliography 113

Index 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

The study of mathematics and combinatorial theory has existed for thou

sands of years. From the first time a secret message was created, there has 

been an interest in deciphering it. The relatively recent advent of computers 

created an increased growth within the field through necessity. Codes and 

secrets are a prevalent part of the electronic society and will continue to be 

for the forseeable future.

Computers have also provided mathematicians greater ability to solve 

complex problems that would have been previously impossible. As the search 

for larger and more complex problems continues, optimization and new 

methods for the computations come from necessity. Parallel computers are 

widely available in research conditions and are quickly becoming required 

tools.

Latin Squares are a long standing favorite game of mathematicians, which 

also hold interesting properties for those in the combinatorics field. The main 

purpose of this dissertation is to investigate a specific type of Latin Square 

known as Incomplete Self Orthogonal Latin Squares (ISOLS). The majority

1
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2 CHAPTER 1 EVTRODUCTfON

of existence problems have been solved, as such, a direct approach is taken 

in an attem pt to solve the remaining open problems.

When solving such a large problem, many related methods must be em

ployed together in order to solve the problem. Backtracking through the 

search space greatly saves time, while using recursive methodology reduces 

memory usage. Adaptations of many existing algorithms and techniques 

need to be combined in order to efficiently search the problem space.

The problem space itself is sufficiently large that an exhaustive search 

without optimizations would not be realistic. Employing the specific algo

rithms improves the situation, however, a primary key is the use of the par

allel architecture available. The widely available parallel libraries provides 

the necessary tools, however, the algorithms require very careful planning to 

ensure the desired results are achieved.

In the rest of this chapter, we briefly discuss the basic concepts of Latin 

Squares. In the coming chapters we will go into more detail regarding the 

specifics of Incomplete Self Orthogonal Latin Squares (ISOLS) as well as the 

necessary algorithms used in searching for them.

In Chapters 2, 3 and 4, the MOLS, SOLS as well as Frame SOLS and 

ISOLS will be explained in detail. While many theorems exist, we will focus 

specifically on those related to identity and existence properties. Apphcation 

of the structures used can be found immediately following there definitions. 

In Chapters 5 and 6, we discuss the backtracking and searching algorithms 

in relation to large search space problems and parallel computer structures. 

In Chapter 7, we contrast other methods that are currently being employed 

to solve the problem and their basis of study. In Chapter 8 we will delve 

into the specific algorithms used in searching for the open cases from a basic
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j .]. mSTORY OF LATEV SQUARES 3

standard point and from enhancing the program through parallel computing. 

Finally in Chapter 9, we give a brief conclusion to the results of the testing.

1.1 History of Latin Squares

Latin Squares have been an area of interest to mathematicians. Both the 

standard Latin Square and the Magic Square are common puzzles that are 

considered pleasurable pastimes of the mathematically inclined. Latin Squares 

have a great deal more applications than that of simple puzzles. The concept 

itself was first started and named by Leonhard Euler in a paper written in 

1782. [Euler]

Euler’s interest is said to have started from a problem known as the thirty 

six o&cers. Is it possible to arrange thirty six officers, each having one of six 

different ranks and belonging to one of six different regiments, in a square 

matrix formation six by six, so that each row and each column shall contain 

just one oScer of each rank and just one from each regiment?

This problem intrigued Euler for many years, and in the end he did not 

find a solution to the problem. He did surmise that there was no solution to 

Squares of size two and six but was never able to prove it. In fact, the problem 

remained unsolved until over one hundred years later in 1900 when G. Tarry 

proved it to be impossible. [Tarry] This, however, was not done using an 

acceptable proof of the reasoning but instead by exhaustively searching every 

possibility.

During his original definition of the Latin Square, Euler defined each 

officer as belonging to two distinct groups. One which represented the rank 

and one to represent the regiment. Originally, he used Latin and Greek
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4 CHAPTER T INTRODUCTION

characters to represent each group and individual. In this system, every row 

and column needed to have all the Latin and the Greek symbols once. This 

system was referred to as a "Graeco-Latin Square". Euler realized that the 

first step in creating the Square was to place one set of the systems. He 

started with the Latin symbols, and the first step became a Latin Square. 

To further sim pli^ the search, using the same symbols for both the rank and 

the regiment reduces the problem into a construction of orthogonal Latin 

Square pairs of side six.

This problem created the field of study on Latin Squares. While many of 

their applications apply to load balancing, communications networking and 

experimental design, i t’s origin lies in a recreational hobby for mathemati- 

cians.

1.2 Basic Properties of Latin Squares

The most direct definition of a Latin Square is the following

D efin ition  1.2.1. A Uafm square o/ side n %s on n x n, orroi/ in which eoch 

ccE conioins o single e/emeni /rom o sei N o/ size n, such ihoi eoch eiemeni 

occnrs e%oc% once in eoch row ond eroc%  once in eoch coinmn

Construction of a Latin Square with the above conditions is a relatively 

easy task. In relation to the thirty six officer problem this type of Latin 

Square is the correct solution to the first half of the problem.

E xam ple 1.2.1 L a tin  Square of Side tw o

A simple square of side two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i.2. BASIC PROPERTIES OF LATIN SQUARES

1 2

2 1

Example 1.2.2 Latin Square of Side six

A more complex Latin Square of side six similar to the thirty six officer 

problem

1 3 6 4 5 2

2 1 3 5 4 6

4 6 2 3 1 5

3 5 1 2 6 4

5 2 4 6 3 1

6 4 5 1 2 3

1.2.1 Operations on Latin Squares

A very important property of Latin Squares is that given a Square the rows 

and columns can be permutated to create new Squares. This property allows 

for the same data to be represented in new ways, yet, still retain the same 

properties. This will be shown to be to be very significant to solving problen^s 

in this paper.

Example 1.2.3 Properties of a Latin Square

1 2 3

3 1 2

2 3 1
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6 CHAPTER i. INTRODHCTIOA^

This Square can be permutated into the following squares, however they 

remain isomorphic as the data in relation to all other data in the square 

remains unchanged.

Square 1 Square 2

1 2 3

2 3 1

3 1 2

2 1 3

3 2 1

1 3 2

Square 3

2 1 3

1 3 2

2 3 1

Square one shows an exchange of the second and third rows. Square two 

shows an exchange of the first and second columns while Square three shows 

an exchange of the symbol for one and the symbol for two. Any of the these

methods create a new square and do not invalidate the Square.

The original square from Example 1.2.3 holds an important property in 

the definition of a Latin Square problem.

1.2.2 Standardized Latin Squares

Definition 1.2.2. A EoEn Fguore o/ side n (he sgmhoZ ae( I, 2, ..., 

nj is reduced or is in Standard fbrm i/  in hoth the jirst row ond the /irst 

cokmn the elements occur in their noturoZ order. 2, L - ^tcj

By realizing that even while maintaining a standard form for the Latin 

Square it in no way reduces the generality of the solution, it can be employed 

to greatly reduce the search space when searching for a Latin Square.
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1.3. ORTHOGONAL LATIN SQUARES 7

Example 1.2.4 36 Officers Standardized

Returning to the thirty six officer problem the above Latin Square of side six 

can be Standardized to the following square

1 2 3 4 5 6

2 6 1 5 4 3

3 4 5 2 6 1

4 5 6 3 1 2

5 1 2 6 3 4

6 3 4 1 2 5

1.3 Orthogonal Latin Squares

Euler’s primary focus was on that of the Orthogonal Latin Square. When 

the concept of Latin Squares was primarily a game for mathematicians, it 

was commonly referred to as a Magic Square. A Magic Square’s primary 

principle is to have every row and every column add up to the same number. 

This is a necessary property for the existence of any Latin Square. Building 

upon the existence of a single Latin Square, it is a common situation in which 

two conditions apply.

In order to have a two conditional Latin Square, such as in the thirty 

six o&cer problem, we must be able to overlay the two Latin Squares such 

that the new Square satisfies a new property. No pairing of numbers can be 

repeated in the Square, and every pair of numbers must occur exactly once, 

leading to the definition.
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8 CHAPTER 1  INTRODUCTION

Definition 1.3.1. A pozr o/ Lafm sguores A = (oî ) and H = ore 

OTdbogonoZ onZg under the condZZton tboZ oZZ Zbe ordered pozrs (oij,bij) ore 

dzstzncZ /o r oZZ % ond /

In order to help Asualize the overlaying of the two squares, we look at a 

simple example of a square of side 3.

Square 1 Square 2

1 2 3

2 3 1

3 1 2

2 1 3

3 2 1

1 3 2

Square 1 and 2 Overlayed

1 2 2 1 3 3

2 3 3 2 1 1

3 1 1 3 2 2

As can be clearly seen, when the two orthogonal squares are pW:ed on top 

of one another there are no duplicated pairs. When searching for Orthogonal 

Latin Squares this is a vital property which must be taken into account.

Theorem 1.3.2. /CoZboumy DrZbogonoZZZg is sgmmeZric. 1/ a Latin Fguare 

Li is ortZiogonaZ to L2 , t/ien Lg ia ortbogonoZ to L%.

Proo/. (Theorem 1.3.2) Suppose Li and Lg are of side A; and Li is orthogonal 

to Lg. Select /  in the range 1 < /  <  b. The positions where Li contains 

1 include precisely one position in which L2 contains / .  Similarly there is 

precisely one position where Li contains 2 and Lg contains / . Proceeding in 

this way we find all A; positions in which Lg contains / .  Li contains 1, 2, ..., 

k in those positions, once each. As this is true for every j, Lg is orthogonal 

to Li. D
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13. ORTHOGONAL LATIN SQUARES 9

Finding Orthogonal Latin Squares can be a very daunting task. It is 

evident that with a Square of side two, it is impossible to find Orthogonal 

Latin Squares. In Euler’s time, he was able to find a solution for a Square 

of side four as well as a large number of the odd numbers. Orthogonal Latin 

Squares with an odd side appear far less difficult to discover. Euler’s inability 

to find a solution to the side six problem as well as ten and fourteen which 

he also investigated let to his famous conjecture.

C o n jec tu re  1.3.3. /EuZer/ No OrfbogonaZ LoZm Fguores ezZsZ o/side N wbem 

N  =  2 (mod 4)

Euler’s conjecture would be proven correct in 1900 by Tarry for side 

six, however, mathematicians were unsatisfied with his hand enumeration of 

the problem, and almost fifty years later in 1949, Bruck and Ryser found a 

solution to the problem by focusing on the existence of the projective plane.

T h eo rem  1.3.4. /Hrucb/ ('Rrucb-Rgser^ If N  =  1 ,2(mod 4), Zben o neces- 

son/ condZZZon /or Zbe erZsZence o/ o finZZe pro/ecZZue pZone o/ order n Zs ZboZ 

ZnZegers z, g ezZsZ soZZs/gZng n =  +  g^.

From theorem 1.3.4, it can be observed seen that side six cannot exist as 

there is no way to square two integers to equal six. However, this did open up 

other solutions to exist, for instance side ten, can exist as its non-existence is 

not supported by theorem 1.3.4. Proof of the theorem is relatively complex 

but can be found in [Bruck]

In 1960 Bose, Shrikhande, and Parker were able to prove tha t except for 

the case of side six, Euler’s original Theorem was incorrect and solutions 

found for side ten. With this discovery, research shifted from that of find
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10 CHAPTER 1. INTRODUCTION

ing the existence of Orthogonal Squares, to finding the number of Mutually 

Orthogonal Squares.

1.3.1 Transversals

A transversal in a Latin Square is a complete path through every row and 

column which only contains each of the symbols once. A partial transversal 

of length k is of the same concept yet is only of a portion k of the entire side.

It has been demonstrated that some Latin Squares have no transversals while 

others have millions.

While a transversal may appear to be a simple concept i t ’s application 

to more complex types of Latin Squares is important. Having a transversal

can also provide information about related Squares.

Theorem 1.3.5. fCoZboum/ If a LoZZn Fguare L bos a ZransuerjoZ, Zben ong 

LaZZn Fguore ZsoZopZc Zo L ako bus a ZmnsuersoZ.

The number of transversals that exist can also play an important role 

of the existence of Orthogonal Latin Squares. This leads to two important 

Theorem’s.

Theorem 1.3.6. fCoZboum/ Euerg LaZZn Fguare o/ euen order bos an euen 

number o/ Zransuersak. Euer-g LoZZn 5"guare o/ odd order baa o ZronsuersaZ.

Theorem 1.3.7. fCoZboum/ For o LoZZn Fguare L o/ side n Zo baue an or- 

ZbogonaZ LaZZn Fguare ZZ musZ possess a seZ o/ n parZZaZ ZransuersaZs.

1.3.2 Diagonal Latin Squares

An important case of transversals occurs when considering Diagonal Latin 

Squares. In order for a diagonal Latin Square to exist it must contain com-
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1.3. ORTHOGONAL LATIN SQUARES 11

plete transversals along the diagonal.

Theorem 1.3.8. /OoZboum/ LeZ L be o LaZZn 6"guare o/sZde n. The Fguore 

L Zs o DZagonoZ LoZZn 6'guare Z/ boZ/i ZZ's OZb rZgbZ and fn-I l̂sZ Ze/Z dZagonaZs 

are ZronsuersaZs.

Theorem 1.3.9. fOoZboumy A DZagonaZ LoZZn Fguare o/sZde n ezZsZs Z/ and 

onZg Z/n > 3

Example 1.3.1 Diagonal Latin Squares

[Colbourn] Squares of Side 4, 5, and 6.

0 2 3 1

1 3 2 0

2 0 1 3

3 1 0 2

1 3 4 0 2

3 2 0 1 4

0 4 3 2 1

2 0 1 4 3

4 1 2 3 0

1 2 3 4 5 0

0 5 4 3 2 1

2 4 0 1 3 5

3 1 5 2 0 4

5 3 1 0 4 2

4 0 2 5 1 3

Shifting back to the focus of this paper, the orthogonality of the Latin 

Squares, there exist some special cases where it is not possible to find an 

orthogonal square to a diagonal latin square.

Theorem 1.3.10. /HaZZ/ A paZr o/orZbogonaZ dZagonaZ LaZZn Fguares o/sZde 

n ezZsZ Z/ and onZg Z/ s ^  2, 3, or d.

Theorem 1.3.11. /HaZZ/ A seZ o/Zbree orZbogonaZ dZagonaZ LaZZn Fguares o/ 

sZde n ezZsZ ezcepZ wben

n e  {2,3,4,5,6}
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12 CHAPTER 1. INTRODUCTION

and possZbZg wben

n e  (10,14,15,18,21,22,26,30,33,34,46}
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Chapter 2 

M utually Orthogonal Latin 

Squares

Building upon the concept of the Orthogonal Latin Squares, Mutually Or

thogonal Latin Squares refer to groups in which all squares are orthogonal 

to one another.

Definition 2.0.12. A seZ 0/ LoZZn Fguares L i,..., muZuaZZg orZbogonaZ, 

or a seZ o /M O L F , Z f/o r  euerg 1 <  Z <  /  <  m  are oTfbogonaZ.

Existence of MOLS has been well researched and the following Theorem 

by Bose et al. stands true.

Theorem 2.0.13. /H rouwe?/ There ezZsZ an MOLFfu/ /o r  ang posZZZue ZnZe- 

g er u, u ^  2 , 6 .

13
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14 CHAPTER 2  MHTHAEEY ORTHOGONAL LATIN SQUARES

2.1 Existence Bounds on MOLS

The maximum number of Mutually Orthogonal Latin Squares for each case 

size has been researched thoroughly. In fact, full chapters of books have been 

dedicated to detmling the Squares, as well Eis the methods used to hnd some 

of the larger ones, see [Colbourn], [Abel], [Brouwer] . Focusing on strictly 

the maximum number of mutually orthogonal Latin Squares, the following 

theorem applies.

Theorem 2.1.1. /Rrouwer/ A o/A;—1 MutWZÿ Lutm Sguores

o/sWe N 25 a compfek o/MCLS. As such (he mozrimum number o/MCLS 

o /  s id e  N  25 A; — 1.

Proof. (Theorem 2.1.1) Proof based upon non-existence of k MOLS. Suppose 

Li ,  L 2 , ■■■, Lk are pairwise orthogonal Latin Squares of side N, where k is equal 

to N. Suppose they are all standardized. Write di for the (2, 1) entry of L .̂ 

If Ai =  1 then Li has two entries equal to 1 in its hrst column, which is 

impossible. So the k numbers oi, o g , a r e  chosen from the k-1 numbers 

2, 3, ..., k. By the pigeonhole principle Oi =  dj for some i and j, 2 j .  This 

means that Li has entry di in cells (1,di) and (2, 1), and so does L^. But 

orthogonahty implies that, if Li has the same entry in two given" positions, 

then Lj  has distinct entries in those two positions. A contradiction. D

Example 2.1.1 MOLS of Side 4

[Brouwer] A complete set of Mutually Orthogonal Latin Squares of side four.
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21. EXISTENCE BOUNDS ON MOLS 15

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

2.1.1 Finding N(n) for MOLS

Focusing on the maximum number of MOLS that can exist there are a num

ber of Theorem's which define value for N(n) as it applies to the side of the 

square.

T h eo rem  2.1.2. /Brouwer;/ Using (/le phncip/es o/ bZocA; design, ^  Biere is 

0  (A;̂ , A;̂  +  A;, A: +  1, A;, 1) — design, Bien N(A;) =  A: — 1.

Proof. Suppose a block design with the stated parameters exists. From Block 

Design, the set of blocks of the design can be partitioned into A; +  1 parallel 

classes of A; blocks each; blocks in the same parallel class have no common 

element, while two blocks in di&rent classes have one element in common. 

Suppose the parallel classes have been numbered 0, 1, ..., A; in some order, 

and the blocks in class i also have been labelled B ,i,B i2 , .,B ,t. Select two 

parallel classes for reference purposes, say class 0 and class A:. Construct a 

square array from the i*̂  class, where l < i < A :  — l , a s  follows. Find the 

point of intersection of Boz with B^y. The point will lie on precisely one line 

of class i. If it lies in B{r, put r in position (x, y) of the array. Column y of 

the array will contain all the numbers of the lines in class i which contain a 

point of Bt^. Since the points of B^y lie on one each of the lines in class f, 

the column will contain (1, 2, ..., k) in some order. A similar system applies 

to rows. Thus, the array is a Latin Square.
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16 CHAPTER 2. MUTHALLy ORTHOGONAL LATIN SQUARES

Write Li and Lj for the Latin Squares obtained from parallel cleisses i and 

j respectively, where % Those cells where L, has entry r all come from 

points on block Hir- The elements of Hi  ̂ consist of one element of Rji, one 

from Hj2 , --, and one from Hjt- So the cells contain 1, 2, k once each. 

So Li is orthogonal to Lj. 0

T h eo rem  2.1.3. /Ho/Z/ Por A: > 3 ond A; =  wAere p is a prime number 

and a  is 0  posiiiue inieger, (Aere arisis o se( o/A; — 1 or(/zogonoZ Luiin Bguares 

o/ order N, /lence N(A:) =  A: — 1

Proo/. We prove the theorem by showing a construction procedure for a set of 

k - 1  orthogonal Latin Squares. Let bi, 6 3 , 6 3 , ..., denote the elements in the 

Galois held GF(p°'). We construct a set of A: — 1, A: x A: squares Ai, A2 , ..., A^-i 

with entries

o|j^ =  be * bi 4- bj 

i,g = 1 , 2 ,..., n — l ,n  

e =  1, 2,..., n — 1

We now notice that each of Ai, A2 , ..., A^-i is a Latin Square. Suppose 

that there are two entries in the ith row of Ag which are the same; that is, 

ajj) =  for some j and k. This means that

be * bi -I- bj =  be * bi 4- b̂  

bj =  bt

g =  A:
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2.i. EXISTENCE BOUNDS ON MOLS 17

Suppose that there are two entries in the ith column of Ag which are the 
Je) ^same; that is, =  di':̂  for some j and k. This means that

bg * bj + bi — bg * bk + bi

b e  *  b j  =  b e  *  b k

Taking the multiplicative inverse of be

bj — b/;

g =  A:

We also notice tha t the set A i,A 2 , ...,An-i is a set of orthogonal Latin 

Squares. Suppose that in the Latin Squares Ag and Ag, for some i, j, k,

and 1

«if =  «if

«If =  «i;^

Then

and

be*b^ +  bj =  be*bt +  b; (2 .1 )

bf * bi bj — bj =5= bfc +  b; (2.2)

Subtracting Equation 2.2 from Equation 2.1, we obtain.

be * bi -  bj * b( =  bg * bt =  bj * bt (2.3)

Then

(bg =  bj) * bi =  (bg — bj) * b* (2.4)
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18 CHAPTER 2. MUTUAELy ORTHOCONAE EATRV SQUARES

Since bg by means that bg — by b^. There is a multiplicative inverse o f 

bg — bj in the held. It follows that

bi =  bt

i — k

Equation 2.1 becomes

bg * bi -I- bj =  bg * bi +  bf

bj =  bi

J =  I

Theorem’s 2.1.2 and 2.1.3 focus on isolating the complete MOLS, however, 

there are many cases where it is not possible to hnd the complete set. While 

there is currently no steadfast rule for calculating the number of MOLS that 

exist for a given side k, there are two theorems to assist in hnding the bounds.

2.1.2 Minimum Bounds on MOLS

T h eo rem  2.1.4. /Brouwer/ I/(bere e%%s( n MuZuoZZg CrZAogonoZ Eoÿm Bguores 

o/ side and n MuiuuZZg Cr(/iogonoZ Eo(in Bguores o/ side Acs, (Aere 

erisi n MuiuuZZy CrZAogoncZ EoZin Bguures o/side A1 AC2 . Hence,

N(/ciA;2 ) > 7nin(N(A:i),N(A:2))-
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2.1 EXISTENCE BOUNDS ON MOLS 19

Proo/. (Theorem 2.1.4) We take as the symbol set the ordered pairs of sym

bols. We form the order mn squares as m by m block structure matrices 

with each a block having size n by n. If the k^h square of the order n square 

contains the symbol a in location (R,C) and the Ac*h square of the order m 

square contains the symbol b in location (r,c), then the Aĉ h square of the 

order mn square will contain the symbol ab in location (Pr, Cc). 0

Theorem 2.1.5. /HaZZ/ Le( be (he prime power decomposi(ion o/

(he posi(iue in(eger n, where (he pi represen(s o posi(iue in(eger. Le( r  deno(e 

(he smdZZes( o/ (he ( guan(i(ies (p^  ̂ — 1), (Pz  ̂ " 1 ) ,  " 1 ) -  Then (here

eais(s a se( o/ r  Mu(uaZZp orihogonnZ La(in Sgunres o/ order n.

Proof. By Theorem 2.1.3 there exists a set of p“  ̂— 1 orthogonal Latin Squares 

of order p ° \  a set of pg'' — 1 orthogonal Latin Squares of order pg'', ..., and a 

set of p"‘ — 1 orthogonal Latin Squares of order p p . Let us arbitrarily select 

r orthogonal Latin Squares from each of these sets. According to Theorem 

2.1.4 they can be composed to yield a set of r orthogonal Latin Squares or 

order n. D

The creation of Mutually Orthogonal Latin Squares is an important en

deavor in the held of combinatorics. It is a starting point in the understand

ing of building the more complex varieties of Latin Squares as well as other 

related structures. A more complex variety will be covered in chapter 4 and 

is the primary focus of this dissertation.
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Chapter 3

SOLS and Orthogonal Arrays

Self Orthogonal Latin Squares is an important area of research which builds 

upon the basic concepts of Latin Squares as well the orthogonal principles. 

In order for a Latin Square to be Self Orthogonal it must be Orthogonal to 

its own transpose.

Self Orthogonal Latin Squares can be viewed as a a combination of the 

previous information regarding the Latin Squares. It must hold the basic 

properties of a Latin Square, while also adding at least one Mutually Orthog

onal Mate. Once you combine all these related sets of properties together 

the constraints placed upon the existence become much more specific, as will 

be seen in Section 3.1.

As we move closer to the focus of this paper, the requirements on the 

existence of the square become increasingly specific. By understanding all 

conditions; both ensuing valid results as well as reducing the search space is 

possible.

21
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22 CHAPTER 3. SOLS AND ORTHOGONAL ARRAYS

3.1 Properties of SOLS

Deûnition 3.1.1. A seZ/-or(AogonaZ Lo(m Sgtmre o/ order n, or SOLS/nj, 

a Lo(m Sguore o/ order n whfcb (a ordAogonoZ (o (mmpose.

Due to the specihc nature of the relation of the square to itself, many 

of the previously covered topics hold specihc application to SOLS. Referring

back to Section 1.3.1, having a transversal is a necessary condition for an 

orthogonal mate to exist. The same is true for a self orthogonal Latin Square. 

The Square must contain at least one transversal. However in this case, that 

transversal must be it's main diagonal (right diagonal). A standardized SOLS 

has the numbers logically ordered along that transversal.

This fact also adds the interesting property that any self-orthogonal Latin

Square can be changed to an idempotent latin square simply by renaming 

the symbols.

Theorem 3.1.2. /Z/m/ BeZZ-DrZ/iogonoZ LaZZn Bguores ezisZ /or oZZ orders o/ 

n when n 2 ,3 , 6 .

Due to the wide acceptance and available of proof for theorem 3.1.2 it 

will not be provided here but can be located in [Brayton].

Example 3.1.1 SOLS

[Zhu] Self Orthogonal Latin Squares of side 4, 5, 7, 8 , and 9.
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3.1. PROPERTIES OF SOLS 23

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 5 4 3 2

3 2 1 5 4

5 4 3 2 1

2 1 5 4 3

4 3 2 1 5

1 7 6 5 4 3 2

3 2 1 7 6 5 4

5 4 3 2 1 7 6

7 6 5 4 3 2 1

2 1 7 6 5 4 3

4 3 2 1 7 6 5

6 5 4 3 2 1 7

1 4 7 6 3 5 8 2

7 2 1 3 6 8 5 4

6 8 3 1 7 2 4 5

8 6 5 4 2 7 1 3

4 1 2 8 5 3 6 7

2 7 4 5 8 6 3 1

5 3 8 2 4 1 7 6

3 5 6 7 1 4 2 8

1 5 9 6 2 4 8 7 3

8 2 6 9 7 3 5 1 4

2 1 3 7 9 8 4 6 5

7 3 2 4 8 9 1 5 6

6 8 4 3 5 1 9 2 7

3 7 1 5 4 6 2 9 8

9 4 8 2 6 5 7 3 1

4 9 5 1 3 7 6 8 2

5 6 7 8 1 2 3 4 9

While the Self Orthogonal Latin Square holds many features unique to 

itself, it can also be shown to have equivalent features to other problems. 

Understanding the relation to the other structures aids in the understanding 

of, and the search for SOLS.

Theorem 3.1.3. /Zhu/ A seZf orZhogonoZ Zo(in sgunre o/ order n /SOLS/n/j 

w eguiuoZenZ (o.
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24 CHAPTER 3. SOLS AND ORTHOGONAL ARRAYS

1 . An orZhogonaZ nrrag o / 5 (reng(h (wo ond znder one, OA/., ,̂ n/, whfchjg 

(nmnonZ under (he row permuo(ion

;9. A /;g, 1 , 3/-congugo(e or(hogonoZ Lo(m Sguore /or guosfgronp/ or order 

n, (e. 0  Lo(in Sguore which is or(hogonoZ (o i(s /.2, 1 , 3/-congugo(e.

3. A spouse ouoiding mized doubZes round robin (oumomen( /SAMDRR/ 

wi(h n coupZes.

Deûnition 3.1.4. A spouse ouoiding mized doubZes round robin (oumomen( 

is 0  scheduZe o/ mu(ches /o r n coupZes in (ennis, such (ho(

L Husband ond wi/e neuer oppeor in (he some mo(ch ei(her os por(ners 

or opponen(s.

Eoch poir o/ pZopers o/ (he some sea; oppose eoch o(her ea;oc(Zp once.

3. Eoch poir o/ pZopers o/ (he opposi(e sea;, no( husbond ond w^e pZop in 

ea;oc(Zp one mo(ch os por(ners ond in ea;oc(Zp one mo(ch os opponen(s.

An idempo(en( SDLS /A,j/ o/ order n con be used (o scheduZe (he n(N  — 

l)/2  mo(ches in (he spouse ouoid mia;ed doubZes round robin (oumomen( os 

/oZZows; In (he unigue mo(ch in which Mr. i opposes Mr. g /i (he

por(ner o/M r. i is Mrs. o ĵ /ond (he por(ner o/M r. g is Mrs. og,/.

3.2 Basic Facts about SOLS

Having covered both the basic definition and the equivalence features of 

SOLS, we will now focus our attention on the properties of the Self-orthogonal 

Latin Squares themselves.
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Deûnition 3.2.1. /Zhu/ Two seZ/-or(hogonoZ Latin Sguores L and L' o/ order 

n ore isotopic i/ there ore bisections i/i, a  /rom rows, coZumns and spmboZs 

o/ L to the rows, coZumns, ond spmboZs, respectineZp, o/ L' that map L or its 

transpose to L'.

Looking back to example 3.1.1 any SOLS of side four or Eve is isotopic 

to the squares presented.

Theorem 3.2.2. /Zhu/ I /o  SOLS/m/ ond o SOLS/n/ ezist, then o SOLS/mn/ 

oZso ea;ists.

Proof of Theorem 3.2.2 can be obtained directly from the MOLS equiva- 

lent of the theorem, see Theorem 2.1.4 and Proof 2.1.2.

3.3 Orthogonal Arrays

Before moving on to the concept of partial Latin Squares, some time must be 

spent explaining a highly related concept which will aid us in our understand- 

ing of the algorithm used as the basis of this dissertation. We have already 

thoroughly explained the concept of Mutually Orthogonal Latin Squares in 

Chapter 2 . A structure that holds the same properties as a set of MOLS is 

an Orthogonal Array. An Orthogonal Array is defined as:

Deûnition 3.3.1. An orthogonoZ orrog GA/n, s, t/ o/ order n ond dep(h 

6  wft/i strength t is o motrzT with s rows ond n^ coZumns with entries the 

numbers I, ..., .n. The structure must hoZd the propeTig thot in euerg t x n 

submotrûr, euerg t x 1 coZumn uectors oppeors the some number o/ times.

Relating the OA structure to a Mutually Orthogonal Latin Square, if we 

aasociate each row of the OA(n, s) with the n^ cells of an n x n  MOLS and
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26 CHAPTER 3. SOLS AND ORTHOGONAL ARRAYS

construct s matrices Ai, A g , A g ,  using the ith row of OA(n, s) to Ell in t]ie 

cells of A; in the order given by the association of column with cells. The 

orthogonality of any two matrices is precisely equivalent to the orthogonahty 

of the rows. The same process can be reversed to create an Orthogonal Array 

from a set of MOLS.

The beisic properties that hold true for a MOLS also hold true for an 

Orthogonal Array.

Theorem 3.3.2. /Rierbrouer/ Properties o/ on GrthogonoZ Array

I. Permutotion o/the rows or coZumns o /on  GA/n, s/ produces on GA/n,

s/.

.9. Substitution o/ the sgmboZs or numbers in on GA/n, s/ produces on 

GA/n, s/.

3. Two orthogonoZ orrogs that mag be obtained /rom each other are caZZed 

eguiuoZent.

I /o  row is remoued/rom on GA/n, s/, the remaining orrag is an GA/n,

s-1).

Theorem 3.3.3. /HoZZ/ 1/there is on GA(ni, s) ond on GA(nz, s), then there 

is on GA(nin2 , s).

Proo/. (Theorem 3.3.3)

Let OA(ni, s) be the matrix

A =  (Ajj), i =  l , . . . , s , /  — 1 ,..., Til,

and 0 A(n2 , s) be the matrix

B  — {pij) ,i =  l ,. . . ,s ,g  = 1 , n^,
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3.3. ORTHOGONAL ARR.4YS 27

Form a new matrix

D  — (djj), i =  l , . . . , s , g  =  1,.. .,  TiiTii

by replacing Oig in A by the row vector

(bu +TTrig,bi2 +  +  =  (oij -  Ijng /o reuerg i,/

As the numbers Ojg run from 1  to rii and the numbers b j  from 1  to ng, the 

numbers ba + mij  run from 1  to ni?T,2 , whence every d,g is one of the numbers 

1 , ..., Ml M2 . Consider the hth row and the ith row of D and let u, v be any 

two numbers in the range 1, ..., n in 2 - Then we may write

It =  « 1  +  (U2 -  l )n 2 , u =  +  (U2  -  l)n 2 ,

with 1 < u i , v i  < n.2 , 1 < U2 ,V2 < rii uniquely. In A, let us determine j as 

that column in which ahj = ug, a%g =  In B, let us determine t  as that 

column in which bht =  Uiandbu =  Vi- Then in D ,  in column g =  f +  72,2 ( 1  — 1), 

we have

d h g  =  b h t  +  {<^hj — 1 ) ^ 2  =  "Wl +  («2 — 1 ) ^ 2  =

and

dig = bit +  (%g — l)n .2 =  +  {v2 — 1 ) ^ 2  —

This yields the orthogonality of the and rows of D and so proves that 

D is an orthogonal array. 0

Theorem 3.3.4. /Liu/ Suppose g is a prime power ond 2 < k < g. Then 

ihere eadsis on GA/h, g/.

Rroo/. Let o i , ..., ot be k distinct elements in T^. DeEne two vectors in (T )̂*' 

as follows:

ui =  (1,.., l)ond
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V2 — (Ol, dk}-

Now, deEne an array A, having rows indexed by where row (i, j) is

the k-tuple iui Ygug.

We prove that A is an OA(k,q). Let 1 < c < d < h and let E E .̂ We 

want to End the unique row (i, j) of A such that A((i, j), c) =  x and A((i, 

j), d) =  y. This gives us the following system of two equations in P^, in the 

two unknowns i and j:

i +  gog =  z, 

i +  ydd =  !/.

Subtracting the second equation from the Erst, we obtain

g(og -  Od) =  a; -  g

Since Og — Oj 0, there exists a multiplicative inverse (og — E P^. Then 

we have the following:

g =  (o g -O j)-X a :-! /) .

Back substituting, we can solve for i:

i =  a; — gog =  a; — Og(og — "  Î/)-

Hence, A is an OA(k, q) » 0

T h eo rem  3.3.5. /Liu/ Suppose g is o prime power. Then ihere eadsis on 

OA/g f  I, g/.

Proof for theorem 3.3.5 is omitted as it widely available and can be found 

in [HaH].
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3.3.1 Application of Orthogonal Arrays

Orthogonal Arrays are a highly useful structure with many security appli

cations within computers. We will brieûy explain three cases where this 

structure can be of use. This material is presented as in the problem of fo

cus, the creation of two orthogonal arrays is a necessary byproduct. This sub 

step of the problem we are solving has its own useful features.

Authentication Codes

Orthogonal Arrays are very closely related to Authentication codes as they 

hold an equality property between them. This equality can occur if, and only 

if, the authentication matrix is the transpose of an orthogonal array 0A(2, k, 

1) and the authentication rules are employed using equal probability. Doing 

the same procedure in the reverse also results in the desired effect.

Orthogonal Arrays have a significant use in preventing spoofing attacks 

during authentication, however, the OA must be equivalent to the code as 

described above. Please see [Gopalakrishnan] for more information.

Equidistant Codes

Equidistant code is a special case of the standard code in which the dis

tance between the keywords is equal and defined by the code.

The structure of the above code will form a natural OA of the same 

pattern. As well should it be an optimal equidistant(n, M, d;q) code corre

sponding to an a&ne resolvable 2-design, the columns will form an OA of 

order 2. For greater details on equidistant codes please see [Colbourn].
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Constructions using packing designs

Packing designs are a combinatorial design used to construct frameproof 

codes and traceability schemes. Obtaining a packing structure from an or

thogonal array is quite easy.

L em m a 3.3.6. /lYez/ 1/ ZAere is an OA/Z, A;, s/ iben (here is a (-/A%s, A;, 

pac/nng design conioining s* bZocA;s.

L em m a 3.3.7. /kPei/ 1/ g is o prime power and ( <  g, (hen (here eris(s an 

0A/(, g -t-1, g/ and oZso a (-(g^ -f g, g -F 1 ,1) pocA;ing design wi(h g* bZocA;s.

The direct application to both frameproof codes and traceability schemes 

are large. For full details on both subjects see [Wei].

These brief explanations of the applications are intended to provide some 

insight into the application. An interested reader should refer to the sources 

mentioned in order to gain a full understanding.

With the basics of Self-orthogonal Latin Squares and Orthogonal Arrays 

presented, our attention turns to the more complicated m atter of Frame 

SOLS and Incomplete SOLS. The material presented in this chapter provides 

the required background to understand the specihc problem that this paper 

is focusing on.
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Chapter 4 

Frame SOLS and Incom plete  

SOLS

The overall purpose in this paper is to provide a new method in the search for 

Incomplete Self-orthogonal Latin Squares (ISOLS). The ISOLS is actually a 

special case of Frame Self Orthogonal Latin Square. This special subcategory 

of SOLS has an interesting property. They all contain a hole set. The hole 

set represents cells within the Latin Square which contain no value.

In order to work with a Latin Square which has holes, or is incomplete, 

we must update our dehnitions of Latin Squares to allow for these new types 

of Latin Squares.

4.1 Redefining Latin Squares

Our previous dehnition of a Latin Square from 1.2.1 states that every element 

in a set X must appear in each row and column. Obviously, if we add an 

empty space in a row or column, it is no longer possible to have every element

31
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32 CHAPTER 4. FRAME SOLS AND INCOMPLETE SOLS

appear. We update the dehuition of a Latin Square by defining both, a 

subsquare and a Holey Latin Square.

4.1.1 SubSquares of Latin Squares

Deûnition 4.1.1. 1/ in o LoBn Sguore L o/ side n (be ceZZs de/zned bg A; 

rows ond A; coZumns /orm o Lo(Zn Sgnore o/ sZde A; Z( is o Lo(Zn Subsguore o/

L.

For a portion of the square itself to be a subsquare it must, if viewed as a 

separate Square, be a proper Latin Square. It is important here, as well, to 

remember that the symbols from the Square do not necessarily need to be of 

a sequential order. The symbols themselves can always be interchanged to 

the appropriate values without changing the properties of the Square.

Theorem 4.1.2. /AbeZ/ A Lo(fn Fgnore o/ side n wf(b o proper subsguore o/

side A; ejns( f/ ond onZg A; <

Theorem 4.1.3. /AbeZ/ There e%is(s o Zo(fn sguore o/sfde n which con(oins 

Lo(in Fnbsgnores o/ euerg side A:, A; <  i/ and onZg i / l < n < 7  o r n  =  9 

or 13

Dehnition 4.1.4. Le( F be o se( ond H =  Bi, Eg, Bk be o se( o/ non- 

emp(g subse(s o/ B. A hoZeg or incompZe(e Lo(in sguore honing hoZe se( H is 

0  |E| X |B| orrog, L, indexed bg F, which hoZds (he /oZZowing propgr(ies.'

I. Euerg ceZZ o /L  is ei(her emp(g or con(oins o sgmboZ o/F.

:9. Euerg sgmboZ o/ B occurs o( mos( once in ong row or coZumn o/ L.

3. The sub-orrogs F, x ore emp(g /o r 1 <  i < A: /(hese sub-orrogs ore 

re/erred (o os hoZes/.
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BgmboZ 3 ; E B occurs in row or coZumn g i/ ond onZg i/ (z,g) E (B x

The most obvious change to the Dehnition occur in property one where 

each cell can now be an empty hole. Properties three and four simply dehne 

the holes themselves and the properties under which they occur.

4.1.2 Partitioned Incomplete Latin Squares

D eû n itio n  4.1.5. A cose 0 /  (he IncompZe(e Lo(in Bguore in which muZ(ipZe 

hoZes eris( is re/erred ( 0  os 0  por(i(ioned incompZe(e Zo(in sguore /FILB/ ond

follows the pattern

FILB(n; hi, 62,..., ht)wherehi +  62 +  - + ht =  n

E xam ple 4.1.1 P a r tia lly  In co m p le te  L a tin  Squares

A PILS(7; 1, 1, 1, 2, 2).

4 5 6 7 2 3

3 6 7 1 5 4

2 7 1 6 4 5

7 6 2 3 1

6 3 7 1 2

4 5 1 2 3

5 1 4 3 2

If there exists a valid ILB(n; 6 1 , 6 2 ,..., 6 t) it is always possible to complete 

the square by Elling in the hole of size 6 ,̂ 1  < i <  h, with a latin square of side 

6 ; (on the symbols E*)- The existence of a Latin Square of side n containing 

a Latin Subsquare of side k is equivalent to an ILS(n;k).
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Theorem 4.1.6. /Rrogfon/ A P IL S (n ; hi, 63,63) ea;zs(s */ ond onZg ÿ  61 .= 

62 =  63. As weZZ, 0 P IL S (n ; 61,62, 63,64) eans(s and onZg (/h i =  62 =  63 

ond 1 <  64 < 26i .

While it is possible to End many Latin Squares with proper Subsquares, 

it is also important to realize that there are also many cases when it is not 

possible to create a Latin Square in which a proper Subsquare exists. If a 

proper Subsquare cannot be found in a particular Latin Square that square 

cannot be part of an Incomplete Latin Square.

Theorem 4.1.7. /AheZ/ There ezwZs 0 Lo(:n Sguore 0/  side n with no proper 

snhsguores Z/n ^  2°3^ or Z/n =  3, P, 1.9, IP, 13, f7, 31, or .9.̂ 3.

Example 4.1.2 Latin Square without a Subsquare

A Subsquare of side one is by definition always possible. Latin Squares 

without a Subsquare of side two become a more important focus.

A Latin Square of order 8  with no subsquares of side 2.

1 2 3 4 5 6 7 8

2 3 1 5 6 7 8 4

3 1 4 6 7 8 2 5

4 6 8 2 1 3 5 7

5 8 2 7 3 4 6 1

6 5 7 1 8 2 4 3

7 4 5 8 2 1 3 6

8 7 6 3 4 5 1 2
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4.2 Incomplete MOLS

Our definition for an Incomplete Mutually Orthogonal Latin Square builds 

directly from our previous definitions of both Incomplete Latin Squares and

Mutually Orthogonal Latin Squares.

D eû n itio n  4.2.1. Two incompZete Latin Sguares /ILS/n;hi,6 2 , - , are 

orthogonal i/ upon superZmposition oZZ ordered pairs in /B x B j (B* x Bg) 

result. Two such sguares are denoted IMGLS/n;6 i,h 2 ,...,ha/

T h eo rem  4.2.2. /Ahel/ Existence 0 /  IMGLS; For h > 1, N(n; h) > 2 i/ and 

onlg Z/n > 3h, and /n, h/ /P, I/.

The concept of IMOLS is a relatively simple as it builds from other basic 

principles. The concept will be concluded with a simple example.

E xam ple  4.2.1 IM O LS of side 6

A pair of Incomplete Mutually Orthogonal Latin Squares of side 6 .

The Missing Subsquare is on the symbols 5 and 6 .

5 6 3 4 1 2

2 1 6 5 3 4

6 5 1 2 4 3

4 3 5 6 2 1

1 4 2 3

3 2 4 1

1 2 5 6 3 4

6 5 1 2 4 3

4 3 6 5 1 2

5 6 4 3 2 1

2 4 3 1

3 1 2 4

It is important to note that the missing square which would contain only 

the symbols 5 and 6  can be placed into either Square in the pattern.
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5 6

6 5

6 5

5 6

However it is not possible to complete both squares and have them main- 

tain their orthogonality to each other.

For detailed information on the current status on known Incomplete 

Squares and the current bounds of the problem please see [Abel] II. Chapter 

3 which includes all current information in remarkable detail.

4.3 Frame Self Orthogonal Latin Squares

We now start to combine the previous concepts into the area of focus for this 

paper. We begin with a definition of a Frame SOLS.

D eû n itio n  4.3.1. A /fume SDLS /or holeg SDLS/ Zs a sel/-orthogonal LotZn 

Sguare o/ order n wZfh yig mZssZng Su6 Sguores /or SOLS/ o/ order hg(l < Z < 

h), whZch ore dZsgoZnZ ond sponnZng. /Ze. =  n/. IZ Zs denoted 6 g

FSDLS/h"\..h^*’/, where h"h..h^* Zs the Zgpe o/ the FSDLS.

Frame Self Orthogonal Latin Squares become clear with an example.

E xam ple 4.3.1 F ram e SOLS

[Colbourn] Frame Self Orthogonal Latin Squares. FS0LS(2") for n =  4 and

5.
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7 6 8 4 3 5

5 7 3 8 4 6

6 8 7 1 5 2

8 5 2 7 6 1

3 7 1 8 2 4

7 4 8 2 1 3

5 6 2 1 4 3

4 3 6 5 1 2

5 9 8 6 4 3 2 7

8 4 7 9 2 5 6 3

9 5 6 1 0 8 7 4

4 8 0 7 9 1 5 6

7 9 1 6 8 2 3 0

8 6 7 0 3 9 1 2

3 4 9 1 2 8 0 5

5 2 0 8 9 3 4 1

6 3 4 7 1 2 5 0

2 7 6 5 3 0 1 4

Example 4.3.2 Advanced Frames SOLS

[Zhu] Two more examples of Frame SOLS with slightly more complex pat- 

terns.

FS0LS(2"U) for n =  4

6 8 9 7 3 5 4

7 5 8 9 6 4 3

8 6 7 1 9 2 5

5 7 2 8 1 9 6

4 9 1 7 2 3 8

9 3 8 2 4 1 7

6 4 5 9 3 2 1

3 5 9 6 1 4 2

7 8 2 1 4 3 5 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38 CHAPTER 4. FRAME SOLS AND INCOMPLETE SOLS

FS0LS(lG3^2^)

7 5 2 a 9 4 h 3 6 8

6 8 7 3 a 1 5 h 4 9

9 4 a 8 1 h 2 6 5 7

5 b 9 7 2 6 a 1 8 3

7 6 h 3 8 2 4 a 9 1

b 8 4 9 1 a 3 5 7 2

3 a 6 1 h 5 2 4

4 1 a 6 2 h 3 5

a 5 2 b 4 3 1 6

8 9 7 5 6 4 3 1 2

2 3 1 8 9 7 5 6 4

The symbols a and b are used to represent the numbers 10 and 11. 

FS0LS(2^1^) Holds a different type of structure

8 9 3 2 7 6 5 4

9 6 7 8 0 5 4 2

7 4 5 6 9 8 1 3

4 8 0 2 5 9 7 6

6 2 1 7 9 8 3 0 5

7 6 4 8 2 3 1 9 0

8 9 5 0 1 4 2 3 7

5 4 3 6 9 0 1 2 8

3 0 9 5 6 7 2 4 1

1 5 7 2 8 3 4 0 6
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As demonstrated in the last example, the diversity of the Squares is quite

Many complex patterns can be created using the pattern in the Frame 

SOLS dehnition. An important point, which we have already referred to, 

is that each missing Subsquare, or hole, is a Self-Orthogonal Latin Square. 

As such looking at Example 4.3.1 and 4.3.2. It can clearly be seen that 

a matching pair of symbols are missing from rows and columns where the 

Square has been removed. In the first three squares, the symbols 1 and 2 

have been removed.

This property of Incomplete SOLS leads us to a direct link to Orthogonal 

Arrays. While the Orthogonal Array can be used to have a look at entire sets 

of MOLS at a time, the same principles apply on the smaller scale. Each set 

of rows which are missing a subsquare in a SOLS must be orthogonal to its 

matching columns. The two sets of data are linked at a fundamental level. 

This connection will be covered in greater detail during the presentation of 

the algorithm used in this paper.

The concept of Frames can also be applied to the previously covered 

MOLS. A frame MOLS is a more complex structure than the previously 

mentioned IMOLS, and the application to our problem is that it relates 

directly to ISOLS. If Ei and Eg form an FMOLS, such that Eg is the transpose 

of Eg then E  ̂ is a FSOLS. No further details will be provided on FMOLS as 

they do not aid us further in our understanding of the problem at hand.

Theorem 4.3.2. /Zfiuy Ezw(ence Froperfzes o/ Frome Or'tfiogonuZ Eofm 

Fguores.

E (fiere o FFOEF^'^b^^, (Aen n > 1 -4- 26/o.
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jg. jy o ^  6 GTid fAere eris(s on FECEE(a"6^ ,̂ fAen n, > 4.

3. A FEDEFy2 "_̂  eris&s %/ and onZp t / n  > 4.

A FECEEy2"Uj erisfs */ and on/ÿ %/n > 4.

J. For 6  >  0 ond 6  2, (Aere ea;isk an FECEEy2"6^y (/ and on/p %/n >  4.

For anp n > 3, o FEDEE(^2"'a^y ean's/s and on/p %/n > n +  1.

4.4 Incomplete Self Orthogonal Latin Squares

The Incomplete Self Orthogonal Latin Square is the primary focus of this 

paper. The square itself is relatively simple to define however less difficult 

to discover.

DeSnition 4.4.1. An fncomp/g/e ECEE is a 5 e//-or/Aopona/ Ea/m Egnare o/ 

order n, m/ss/np a Ea6 Egnore EDEE o/ order A, deno/ed /)p /ECEE/^n, A/

The ISOLS has a direct equivalent definition to the Frame SOLS.

7ECEE(n, A) =  FEOEE(r-*=A^).

And the two cases of ISOLS(n, 1) and ISOLS(n, 0) are equivalent to 

SOLS(n).

Example 4.4.1 IS0LS(7, 2)

[Zhu] Incomplete Self-orthogonal Latin Square of side (7, 2)
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0 2 4 X y 1 3

y 1 3 0 X 2 4

X y 2 4 1 3 0

2 X y 3 0 4 1

1 3 X y 4 0 2

3 4 0 1 2

4 0 1 2 3

In this case the symbols x and y are used to comprise the SubSquare’s 

missing symbols.

The largest possible missing block is defined as

If lSOLS(n, k) exists then n >  3k + l

There cannot be a block missing larger than the above rational and still have 

a valid ISOLS.

Theorem 4.4.2. /ZAu/ TAere erw/a on ISOLE^n, /o r o// ro/nes o/ n ond 

A so/ù/pmp n > 3A +  1, /o r n =  6 ond (n, A) =  (8,2), ond possiWp

ezccepE'np n =  3A + 2, A E {4,6,8,10,14,16,18,20,22,26,28, 32,34,46}.

One update must be made to the above Theorem 4.4.2 recent research 

has provided a valid solution for n =  3A +  2 where A =  4 using an exhaustive 

search method, yielding ISOLS(14, 4). Building upon that solution it was 

found in [Bennett] that special constructions using Frame Self Orthogonal 

Latin Squares could be used to solve an additional 10 of the open cases using 

the new IS0LS(14,4) solution.

As a result of this recent research Theorem 4.4.2 can now be updated.
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Theorem 4.4.3. /R ennet// TAere ezista on lEOLE/r, A/ /o r  o// ro/nea o^ u 

ond A aotia/pinp r  >  3A 4-1 , except /o r  /ii, A/ =  I / ,  .9/ ond poaazb/p

/o r  2; =  3A +  2, A E {d, 3, 40}.

By finding IS0LS(14,4), researchers also provided us with a new Theorem 

regarding ISOLS and FSOLS.

Theorem 4.4.4. /ZAu/ TAere eafiata on FE0LE('H°4^/ uA/A o apm metric Ao- 

/ep tronauerao/ w/A o Ao/e o / aüe /onr.

Proof. Given a valid ISOLS(14,4), the ISOLS(14,4) will have a symmetric 

holey transversal consisting of cells (1, 6), (6, 1), (2, 7), (7, 2), (3, 5), (5, 3), 

(4, 8), (8, 4), (9, 10), (10, 9). 0

In fact, the ISOLS(14,4) will serve as our basis of comparison in this 

paper in regards to the total search time and speed of the algorithms used.
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Chapter 5

Search Algorithm s

Finding a solution to a problem requires that a set of possible solutions be 

investigated. There are many unique ways to investigate a set of possible 

solutions, however the method used becomes increasingly important as the 

size of the possible solution set, or search space, grows. Optimization of the 

search becomes a key factor, as doing a full search of the space may not be 

practical.

There is a fundamental property required of any algorithm meant to inves

tigate a search space, it must be exhaustive. Exhaustive, or exhaustiveness 

refers to the thoroughness of the search, if there is a solution, then the al

gorithm must find it. A simple method to accomplish this is to try every 

possible solution. This method works in a very simple problem, but is not 

feasible in a large scale problem.

Once the algorithm is assured of it's exhaustiveness, it's optimization 

comes into question. We want the problem to be solved as fast as possible, or 

to check the least number of invalid solutions. There are many methods which 

aid us in reducing the search space as we progress to eliminate unnecessary

43
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44 CHAPTER 5. SEARCH ALGORITHMS

calculations.

This chapter will focus our attention on two specific types of searches 

which were employed in the search for the missing ISOLS. The first is back- 

tracking which both reduces our search space and guarantees our exhaus- 

tiveness. The second is heuristic which allows the use of intuitive control to 

sample the data and help to generate a solution.

5.1 Basic Search Background

This section will provide us with a comparison point by explaining a very 

simple search algorithm problem which will be used for the remainder of this 

chapter as an example.

Probably the most common problem in search algorithms is that of the 

knapsack problem. Essentially the goal is to place a number of items in a 

knapsack in an optimal way. The optimal way can be defined by the problem, 

whether it be, items worth the most, or the most items, or so on. Relating 

this to mathematics, we define a capacity for the knapsack and use relational 

values for the data involved.

For example, if you wanted to create an array of numbers so that adding 

exactly five numbers they equal a set value of one hundred, you would place 

a number in the solution set and then test to see if it helps, if it doesn't you 

move onto the next possible solution. It is important to realize that every 

possible solution is tried for the given set of data.

The problem space is defined as

DeSnition 5.1.1. EnupsncA pmWem set 

Rro/lts.- Po, Pi, P2, .. - , P n - l  ;
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PFeigAts." tuo,wi,W2,...,iUn_i,'

Gopocztp." M

Target o/EeorcA.- an  n-twp/e [lo, - G {0,1}" sucA tAat

n —1

F  =  ^ P j Z i
i - O

zs masAmzzed

Is optzmzzed to some condztzon zuAetAer zt 5e a target z;a/zze, or optzma/ 

so/zztzoTzs.

A simple search for the knapsack problem would be a looping structure, 

which tries every possible solution and saves only the most successful. Run

ning this however would take alot of time, and in many of the branches an 

invalid solution would still be searched through, as there is no compensation 

included for a bad path.

A bad path defines a branch of a search tree in which no valid solution can 

exist. In an ideal situation these branches will not be searched any further 

than is needed to determine that it is not a valid path.

5.2 Backtracking

Backtracking, as mentioned previously, is an effective method for performing 

an exhaustive search of a problem space. Rather than operate as a simple 

loop, backtracking is done using recursive methods. This allows the problem 

to be built logically one step at a time trying all feasible solutions. As such.
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all feasible solutions are considered and the optimal solution will always Le 

found, or the solution if only one exists.

Going back to the knapsack problem defined in Definition 5.1.1, it is

easy to see that in order to try all possibilities, 2" possible solutions must 

be considered. Generation of all the possibilities alone could take a long 

time. Using backtracking, it is easy to pick just the first and then the second 

possible choices. As it backtracks, it guarantees exhaustiveness. The only 

addition is a control value to monitor the overall status when looking for 

a specific or optimal solution. The control value is updated as improved 

solutions are located.

The addition of this control value allows for virtually any problem to be 

adapted to a backtracking search. Additional optimizations in the algorithm 

cem be reached by a method called "pruning". This refers to reducing the 

total search space by ceasing to search a branch of the tree when the solution 

can not be advanced on that path. For instance, when attempting to place 

five numbers that add to one hundred, if ninety-nine is placed first and the 

smallest number is fifty, it must backtrack after trying all combinations for 

the second location. The third location will never be tried without a valid 

solution at the second location, and so on.

Improvements upon these simple concepts will be looked at for the re

mainder of this section.

5.2.1 Backtracking Algorithm

In the majority of optimization problems the solution can be seen as an array 

X, chosen from a finite possibility set, P. In the backtracking methodology, 

the values in x are defined one at a time as the search progresses. The
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maximum depth of the tree will always be the total number of items in the 

array X.

At any given step we will have a partial solution stored in the array X. 

This is a constraint on the solutions remaining in this path of the problem 

space. Based upon these restrictions, the values that can be added to X, can 

be further subdivided from P, to a subset of P, we will refer to as a choice 

set C. It is in the creation of the choice set that pruning occurs. If C is the 

empty set then all subtrees that begin with that value starting at the current 

location will be pruned from consideration.

Algorithm 5.2.1: BACKTRACK(z)

global A, Ci

if X is a feasible solution 

th e n  do any necessary computations 

Compute Ci 

for every z E C;

Append a;i to X
do

Backtrack(i4-1)

Checking for a successful path, or solution, is done at the beginning of the 

algorithm and the algorithm continues ensuring that it will find the optimal 

solution. The computations may be saving the data or comparing it to the 

previously found results in the optimal solution search. The remainder of 

the algorithm is relatively straight forward as the computing of C varies on 

the problem definition as the recursion occurs.

Advanced methods for finding optimized data can be used to further
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reduce the search space, however, in the program of existence we are dealipg 

with, these methods are highly specific and will be discussed in detail when 

discussing the specifics of this application.

5.2.2 Special types of Backtracking

In this section we will briefiy discuss numerous other special cases of back-

tracking applications which help in the understanding of the overall concept 

as well as in implementing minor optimizations used in our application.

Generating Cliques

Generating Cliques refers to the process of building smaller subsets within 

the larger set. The primary area of research is that of generating all cliques 

and maximal cliques. All cliques represents all subsets that exist without 

any repetition, while maximal cliques are the largest set that is possible. 

The longest, of course, being either the correct solution or the closest solu- 

tion to the correct one. Naturally, the existence of the maximal clique will 

provide us with the solution to the existence problem itself, and is thus a 

highly useful search parameter.

The primary usage of cliques is in graph theory, however cliques are also 

useful for bounding purposes and analysis in other search problends.

Bounding Functions

Bounding functions are a simple idea from a theoretical viewpoint, how

ever they can become very complex in application. It relies on the setting of
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bounds upon the results at specific points within the search.

For example, if you are trying to find ten values that add to a specific 

number, if at location five, you are either too high or to low the problem 

discards this path.

A lg o rith m  5.2.2: BouNDiNG(z)

ex te rn a l R ro/zt(), Bozznd() 

global A, GptR, Gpf A, G 

if X is a feasible solution 

f  ^  R ro/zI(A ) 

if  B > OplR

Gp/R 4- R
th e n  <

th e n
GptA 4- A

Compute C 

B 4- Bcmnd(A) 

for EveryA E G

do <

if B < Gp/R 

th e n  re tu rn

Append x to X 

BG UNDING (z + 1 )

The concept of an optimal value can be altered for use in other types 

of searches, in an existence search, it may be dependent on some specific 

pattern in the data which leads to the belief that it is not possible to find a 

solution. As the partial solution grows, the bounding functions parameters
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as well as the target value must all change in order to make the best decisions 

regarding the pruning of the tree.

The concept of bounding is a relatively complex one, which requires care

ful planning to achieve the desired results. As such, a great deal of research 

has been done on the subject and many diSerent algorithms exist based upon 

different principles, such as Greedy algorithms. Maximal trials. Clique Test

ing, and Sampling.

Branch and Bounding Functions

Branch and Bounding is primarily a new application of a bounding function. 

As can be seen in algorithm 5.2.3 it is built from a similar approach.

While the bounding function itself is used to prune the tree, this alters the 

order it is processed. Typically the recursive calls for the search are done in 

some predetermined order, whether it be numerically or some other method. 

Branch and Bounding instead makes decisions at each step to choose the 

solution most likely to yield the desired result aud processes that solution 

path first.

This can be done for two difierent reasons. The first is to aid in finding 

the desired solution, if looking for a minimum or maximum bound, possible 

solutions can be discarded at a quicker rate with a tighter bound. Trying 

the one most likely to provide a new optimal value first can result in a lower 

average time on the search. The second is for cases where finding any solution 

is the key, and trying the best option should result in finding the final solution 

in minimal time.

This simple concept can be used for the majority of the search problems.
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then <

then

Algorithm 5.2.3: BRANCHBoUND(z)

external Rro/zl(),Bozzn.d()

global C

if X is a solution

if R > CpiP

C piP  <— P  

Cp/A < - A 

Compute C 

COZZMt 4— 0 

for EveryA E C

Append x to X 

nezfcAozce[cozzn(] 4— a; 

nea;/5ozzTnI[cozz7zl] f -  Bmznd(A)

Advance count 

Sort 7zea;IcAozce and vzerlbozzW such that zzeTtbozznd 

is in descending order 

for j  4- 0 to  cozznf — 1

if n,ea:l5ozz?zd < CpiP  

then return 

Append nextchoice to X 

BrandBound{i + 1)
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The only downfall is the increase in processing time if the problem cannot 

be accurately analyzed to find an optimal path from the current state.

The next section focuses on a difierent nature of search which plays an 

important role in a finding a single solution to a problem. While the back- 

tracking algorithm alone could find it, the time to process may be very large. 

This new type of search uses a decidedly diSerent approach.

5.3 Heuristic Search

While the backtracking algorithm is an exhaustive search, the Heuristic 

search focus instead on finding a solution close to the optimal solution as 

quickly at possible. In a large problem, even finding one solution could re

quire a great deal of time using the backtracking method to search the tree. 

Sometimes it is better just to find a solution.

Heuristic algorithms are usually a somewhat randomized algorithm that 

uses a method similar to trial and error in order to find a desired result. The 

search tries a pattern than then updates it as a whole attempting to reach 

the desired result. Updates are done through what is called a neighbourhood 

function. The search calls this function to update based upon the design 

strategy.

The neighbourhood of a value are the items in the solution that are either 

similar or close to the item in question. The use of a neighbourhood function 

allows for changes to be made across the set of data in order to achieve results 

faster than by using an exhaustive search.
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A lg o rith m  5.3.1: HEURlSTiC(Cmoz)

e x te rn a l IV, H», RChoose a feasible solution X 

Set OptX to X

w h i l e  (C <  Crnoz)

y  =  H ,(A ) 

if  y  ^  EazZ

do <

th e n  <

A = y

if R(A) > p(CptA) 

th e n  CpfA =  A

Advance c 

re tu rn  (CpiA)

The following are search methods for use in a heuristic search

1. Find a feasible solution y  E IV(A) such that P(Y) is maximized (return 

Fail if there are no feasible solutions in N(X)/X).

2. Find a feasible solution y  E IV(A) such that P(Y) is maximized. If 

R(y) > F (A ), then return Y, otherwise return Fail. (Steepest Ascent)

3. Find any feasible solution in Y E IV(A).

4. Find any feasible solution in Y E IV(A). If H(Y) > H(A), then return 

Y, otherwise return Fail.

The first two methods would be primarily used in an exhaustive search, 

while last two are primarily used in a random search.
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There are many different methods used in the neighbourhood functions 

to reduce the times involved in search as well as the accuracy of the search, 

which will be examined in brief.

5.3.1 Heuristic Search Methods

There are many effective methods for building a design strategy. This section 

will provide a brief look at some of the methods that exist. The methods 

are presented as a way to provide a basis for comparison to the methods 

employed in our search strategy.

Hill Climbing

Hill climbing is very direct method. If the new set is not better than the last, 

it fails. This method relies on the gradual improvement of the set. When 

doing an exhaustive style search using Hill Climbing, the focus is primarily 

on looking for the steepest ascent that is possible.

The Hill climbing method, unfortunately, is prone to becoming caught in 

a local maximum that it cannot get out of. If it takes a wrong path, there is 

no method to backtrack out of it using Heuristics alone.

Simulated annealing

Simulated Annealing provides us a method to escape from the local max

imum nientioned above. This method relies on a new variable referred to as 

temperature, which allows for a replacement of the key variable given specific
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condition and probability.

FYom a base point of view, it allows for jumps back through the choice 

of a randomized neighbourhood search. This method is able to avoid most 

local maximums.

Tabu Search

Tabu search provides another method of avoiding the local maximum. This 

time it is done by only concerning the decision of the next value by the best 

of the feasible solutions. This allows for a backtrack if there are no better 

moves to advance but there is no current solution.

The obvious problem with this method is avoiding the looping that would 

occur in such a system. The key is the control list TabuList. It is used to track 

the changes and any change that exists within the Tabu List is forbidden to 

be repeated for the a specified time frame.

Controlling the time does not prevent that the change may have future 

value, but it prevents against both becoming stuck in a local maximum and 

in an endless cycle.

Genetic Algorithms

Genetic Algorithms take a fundamentally different approach. While the 

other methods start with a single feasible solution and try to build a solution, 

the Genetic Algorithm starts with a population of many feasible solutions. 

By mutating the various solutions with each other it attem pts to create new 

solutions that have the desired properties.
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This can be a very complex pattern of steps in the combination, this 

method works based upon every two parents creating two children solutions 

which inherit certain properties of both parents.

Genetic algorithms in their natural form can be highly complex, however, 

the concepts they use can be very useful in manipulating data in other search 

problems. They can very quickly build many variations on a set of data.

For a much more in depth explanation for each of these cases as well as 

examples and application please see [Kreher]

These somewhat brief examinations of various search methods are pre- 

sented to serve as an introduction to the specific methods we employed in 

searching for ISOLS. The background provided will allow the reader to fully 

understand the methods used and their optimizations in regards to the prob

lem at hand.
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Parallel Algorithm s

Parallel programming represents a tremendous opportunity for solving prob

lems which otherwise may take an infeasible length of time to compute. 

Parallel machines have the unique ability of grouping processors to share 

data and share work which allows for the subdivision of large problems into 

manageable pieces.

Designing a parallel algorithm can be quite complex as it is critical to 

manage the data. Ideally, the data can be shared between the various pro

cessors, as well as be protected. Careful planning can ensure that both can 

happen, and waiting time can be reduced.

This chapter focuses on the approaches which can be taken in develop

ing a parallel algorithm. It will examine the physical structures involved 

in the parallel machinery and draw comparisons to the previously covered 

algorithms such as Backtracking emd Heuristics from a parallel viewpoint.

57
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6.1 Basic Design and Structure

There are three different types of approaches that can be used to develop 

an algorithm for use in a parallel environment. Each are useful for solving 

different problems.

1. Modify an existing sequential algorithm by adapting the naturally par- 

allelizable portions.

2. Design a completely unique parallel algorithm, which may have no 

direct sequential equivalent.

3. Run a simple sequential program on multiple processors at the same 

time with different inputs collecting the results.

All methods can be quite useful, and in complex problems, combinations 

of the methods may be the optimal solution.

When developing in parallel, it is important to remember that if 8 pro

cessors are needed to process the data, at some point that data must be 

recombined. This takes extra overhead, and care must be taken to manage 

the data during the process to make sure that each process only uses its own 

data and does not alter data needed by any other process. Typically large 

programs will assign a control processor which oversees the work of the other 

processors.

Each processor in a parallel array should be viewed as a node. Each node 

is assigned either a job or part of a job which it calculates and returns a 

result. The combined results are then processed to form the final result.
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6.1.1 Constraints on Parallel Algorithms

By adding additional power, the complexity naturally increases. Here we will 

define rules that will aid us in better understanding the building of a parallel 

algorithm.

M ultiple Instructions

Clearly a single processor can only execute a single instruction at any given 

time. A parallel processor, on the other hand, can execute up to its physical 

number of processors processes. These processes can be of different natures, 

as mentioned previously, they may all run the same instruction set, using 

different sets of data. A program of this type is referred to as a SIMD (single 

instruction, multiple data). The more complex variety where the processors 

divide the data as well as the job type are referred to as MIMD (multiple 

instruction, multiple data)

The majority of parallel algorithms are based upon the SIMD model. 

While multiple instructions can be used to improve performance, it is some- 

times more useful to begin with a SIMD and exploit the nature of the prob- 

lem.

Number of Processors

When dividing the work, the number of processors available can play an 

important role. Should the program request more processors than are avail-

able, the machine in most cases will spool your requests. This causes major 

slow downs as your program is always waiting for itself. Work should be dis
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tributed among the available processors to optimize the performance. If the 

given problem size is N and there are P processors each processors portion 

of the problem should be N /P .

Shared Memory

Parallel computers generally do not have independent memory for every pro

cessor. Primarily they use what is referred to as PRAM (parallel random

access memory) that all processors share. As such, every processor has equal 

access to all memory locations. The machine itself on a lower level will pre

vent its own simultaneous reads or writes to the same location, however, if 

it is not accounted for in the program, unexpected results can occur.

One of the keys to working with in PRAM environment is the careful 

management of the resources. Should the data not be properly protected it 

can become corrupted and the data invalid. Avoiding this case is a necessary 

set in designing an algorithm using the shared memory model.

Messages

In more complex computations, it may be necessary for processors to in

terchange data one or more times during the calculations. In the PRAM 

model of parallel computing this does not occur as frequently as in the dis

tributed model, however, it is still important to consider regardless of the 

memory model employed. Should a program need to interchange even a 

single variable it may be necessary to halt everything and wait.

When interchanging data, the data being passed is referred to as a mes-
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sage. The sender makes a message and sends it to its recipient if they are 

ready to receive it it accepts it and continues. Otherwise it must wait until 

the other side is ready.

When designing an algorithm, it is important to realize that the time to 

compile, send, and acknowledge receipt of the message takes time. Even if 

no waiting is involved processing must occur, as such, data should be inter

changed sparingly. Often it is more efihcient to regenerate small parts of a

problem rather than pass the data between processors repeatedly.

Input and Output

Gathering the necessary data into the proper memory locations can be an 

important step in finding a solution. As well, the program must have some 

method for outputting the data in order for it to be useful.

A generally accepted standard is to assume when designing the algorithm 

that the initial data is stored where it needs to be and that the central com

mand of the program ensures that as well as handles all output. While this 

portion is not itself done in parallel, it does store the data into parallel mem

ory, if applicable, and writes the combined results of the parallel processors. 

In larger sets of data a parallel generation or reading method may be used, 

however, for our purposes we will not require that methodology.

Having covered the basic design parameters and the physical limitations 

we now move onto the software aspect of the design. Parallel programming 

has two main systems that are used for it's handling. OpenMP and MPI, 

OpenMP is built directly into most parallel systems, while MPI is done via 

message passing and library usage.
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6.2 Parallel Libraries

Parallel algorithms can be larger divided into two types of approaches de-

pendant on the problem. This section will explain the two types and then 

explain the methods used for each.

6.2.1 Fine and Coarse Grain

The grain of the problem refers to the detail required for i t ’s parallel process

ing. For problems which must exchange a large amount of data, it is better 

designed using a fine grain approach, where problems in which each processor 

only needs to interchange data a select number of times in the entire running 

is a coarse grain algorithm.

Coarse grain problems are typically ones that can be run almost inde- 

pendently, possibly a one or two step parallel program. This type of parallel 

process would have sub loops and a fairly complex structure itself. A coarse 

grain algorithm is best support by the MPI library which will be covered 

next.

Fine grain problems are ones that utilize very small chunks of data in the 

processing. There may be hundreds of parallel steps and the data is usually 

highly dependent. Each threads typically runs a very small set of code and 

returns, in fine grain problems the task is to speed up existing structures by 

solving them in parallel. The fine grain is very useful for specific problems 

which have many restrictions on them, and is supported by OpenMP in most 

parallel machines.
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6.2.2 Message Passing Interface

MPI is the acronym for Message Passing Interface. It is a set of library func

tions which facilitate passing of messages to and from the various processors. 

This of course requires careful planning to properly subdivide the algorithm 

so that it is time and processor efficient to pass the messages. This type of 

interface can be used with either the parallel model of memory or with a 

distributed memory design.

MPI is a very powerful system with many uses, i t’s primary design how

ever is for the coarse grain of problem which is not our primary focus, as our 

problem due to its highly specific constraints is suited well to the fine grain 

algorithm approach.

6.2.3 OpenMP

OpenMP is built into the majority of parallel machines due to its wide ac- 

ceptance and ease of use. It relies on fork and join parallel by taking a time 

consuming portion of the problem and dividing it into smaller chunks then 

recombining it afterwards. Due to the integrated nature there is no need for 

message passing or the equivalent as it allocates processors based on needs, 

up to the maximum specified.

The application itself is done simply as pragmas within the source code 

instructing the system to handle itself in a parallel method. Converting a 

sequential program to a parallel program is a very simple job. The design 

problems occur when it is necessary to optimize the algorithm.

OpenMP should be viewed as a system which creates parallel sections. 

Each section is responsible for an equal portion of a small job. Due to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64 CHAPTER 6. PARAETEE AEGORfTHMS

speed at which OpenMP can create the new threads and recombine them, it 

is elective to use in a hne grain problem. OpenMP has bnilt in dehnitions 

which allow for the easy division of many types of loops, as well as, allowing 

the user to sp ec if the recombination rules of the problem.

Due to our applications needs, OpenMP will be the approach of choice. 

The specific approaches used in solving our problem will be covered in chapter

6.2.4 Deadlocking

Deadlocking is a very important concern when it comes to parallel program- 

ming in general. Anytime two processors want to read or write from the same

information at the same time they begin a race condition and the result can 

vary. This is usually solved by adding a locking mechanism. Unfortunately 

if not done carefully, you can have two processors waiting for each other to 

finish.

This is a much greater problem when using MPI as the messages them- 

selves can become stuck while they are trying to interchange the data. How

ever, in complex problems using OpenMP the same can occur. If attempting 

to solve a problem with many conditions, it may be necessary to lock not 

just the individual data that is being either read or written, but a section to 

make sure that none of the data that you are working with is replaced.

An easy way to visualize this is to think of a shopping cart. If you are 

trying to make a cake, you've got one person putting cake ingredients in the 

cart, and another taking them out, you still don't get a cake. While they 

may not being doing the same job at the same time, or in parallel thinking, 

even aware of what the other's job or actions are, the final result should be
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a cake.

Avoiding these situations all comes down to careful planning. It should 

not be possible for two processors to be competing with each other and they 

should properly protect the necessary data to avoid unexpected results or 

tampering with the information.

6.3 Backtracking

Referring back to the backtracking algorithm presented in 5.2.1, it is evident 

that adding parallelism to this algorithm would not work. Recursive solutions 

cannot be done in parallel, as they would continually be requesting new

processors. The parallel approach for this case would be a fine grain algorithm 

in which the processing is sped up.

The generation of new solutions, especially when there are many con

straints can be done in parallel any processing of that data which needs to 

be done. This can be a common occurrence when handling highly restricted 

sets of data.

This may seem to be of little improvement, however, when actual running 

time is considered, we see a great improvement. Anytime we have a large 

amount of processing we split it, as mentioned above, it will reduce that 

sections processing time. The recursion set is a very small step, only to have 

the larger chunk of processing done in parallel.

6.3.1 Branch and Bounding

The more complex method of branch and bounding that was covered in 5.2.3 

does give us a little more complex example to which explain the workings of
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the parallel methods.

A lg o rith m  6.3.1: PARALLELBRANCHBOUNDSECTIONl(:)

if X is a solution

P  ComputemPoroZeZ (Pro/%t(X)) 

if  P  > GpZP

I Compute in Parallel G ptP f -  P
th e n  <

th e n 1
Compute C 

counZ <— 0

Looking at the opening portion of this algorithm it can be clearly seen that 

similar to in the backtracking algorithm that the comparison and calculations 

of profit can be done in parallel, but only one processor can be used for the 

remainder. Doing simple comparisons and assigning values to variables is a 

single processor task.

We now take a look at the second portion of the algorithm which is able 

to provide us with a greater level of parallel involvement.
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A lg o r i t h m  6 .3 .2 :  PARALLELERANCHBOUNDSECTION2(z)

fo r  EveryK € C

Append x to X 

n e r Z c h o i c e  [ c o i i n l ]  <—  a:

f- Bm/nd(X)

Advance count 

Sort aearfcEoice and such that nearZbouTiiI

is in descending order

d o  <

As mentioned, this section provides us with many opportunities to make 

use of our parallel architecture. Parallel sorting is a widely analyzed task, 

and can be accomplished relatively easily. The ideal approach in altering the

do loop would be to have each processor run the Bound function on a set of 

the X data. If there are more sets then the processors will simply divide the 

work evenly, which the for structure in OpenMP will do automatically. This 

will fill both nextchoice and nextbound logically. Count should be naturally 

maintained as part of the for loop.

As mentioned previously there are many algorithms for parallel sorting 

which will not be covered in detail here please see [Berman] for details on 

parallel sorting.

The optimizations done for the branch and bound algorithm give the 

potential to greatly reduce the processing time, and are relatively simple to 

accomplish.
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6.4 Heuristics

Parallelizing the heuristic algorithm can vary a great deal. The core process-

ing in the heuristic algorithm can be isolated in the neighbourhood function. 

For the majority of neighbourhood functions adding parallelism should be 

rather simple as they work on sets of data. Simply dividing the data into the

logical segments is usually successful.

Dividing data does not need to be fully contained and in a situation like a 

neighbourhood function, in most cases, cannot be. Due to the neighbourhood 

function being based upon groups of data rather than on point data, it may 

be necessary to pass more information than will be updated in order to 

achieve the desired result. The function will only need the existing data so 

no interchanging while processing is needed. However, it will need a segment 

on points on either side of its segment to fully calculate the problem.

Algorithm 6.4.1: PARALLELNEIGHBOURHOOD(z)

For a simple problem such as the average of a line of points.

Neighbourhood function N  =

If this was being done in parallel. In order to process segment

Aj,..., 

then

would need to be passed to each processor with of course 

a special condition built in for the end points.
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The remainder of the Heuristic algorithm is processed just as the Back

track Algorithm would be, even though there is no recursion. Each set is 

completely dependent on the last so there is no usefulness in having one 

process advance without the others.
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Chapter 7

General Problem  Solvers and

SATO

It is important when developing a new algorithm, or solution to a problem to 

be aware of what is currently being done. The majority of research and focus 

is currently being placed on general problem solvers. A universal program is 

written which, given a problem, is expected to be able to find a result. This 

type of approach has been the dominant method for finding Latin Squares 

since 1990.

Out of the general solvers currently in existence, SATO (Satisfiability 

Testing Optimized) is the most efficient. It has solved many open problems, 

and is constantly being improved upon. SATO has moved the field of Latin 

Squares forward greatly by its approach and improvements made.

This chapter will explore the methods used in SATO and general solvers 

as a whole. We cover this material so as to better understand the existing 

methodologies being used and for later comparison of results.

71
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7.1 Basics

As mentioned previously, the model generator has become the method of 

choice for solving open Latin Square problems. The approach taken to solving 

the problems must focus on two areas.

1. Developing an efficient model generation program

2. Provide efficient program specification to the program

The first is cleeirly a lajge task. However, most approaches are quite sim-

ple. By leaving a large portion of the optimization to the specification used, it 

can simplify the program as well as focus ones attention. The basic approach 

taken in programming a general solver is to load in a set of conditions and 

search through the possibilities for ones that satisfy the constraints. Clearly, 

the greater the number of constraints and the more organized they are, the 

better the results.

SATO goes a step beyond the basic in their general solver approach by 

including many latin squares optimization techniques in the code itself. These 

allow for new conditions and improvements to handling latin squares to, in 

a sense, be hardwired into the search for the specified problem.

The second is a very important situation because it allows for the solving 

of a huge variety of problems, and can vary greatly. While the program does 

define the format and methods used to specify the problems, the specification 

itself has proved to be an area where tremendous gains can be achieved 

through optimization.

A great deal of research has been done over the past few years regarding 

this optimization for various problems. Some solutions include adding extra
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constraints, using cyclic group construction and checking for extra isomorphic 

cases.

SATO itself is a model generator based upon the Davis-Putnam algorithm 

for propositional clauses. SATO was largely developed to attack the open

latin squares problems. Full details can be found on the SATO web site, as 

well as full source code is available on the SATO website.

http: /  /  www.cs.uiowa.edu/^hzhang/sato.htm l

The remainder of this chapter will focus on the specification of the latin 

squares and some simple optimizations. The approach taken to explain the 

system will be that of a general overview, for a full study please see, [Zhang], 

[Zhang 2] and their sources. The goal is to simply provide enough information 

under which to make a fair comparison of the results.

7.2 Problem Specification

The building of a specification begins with simple definitions and builds upon 

those until the problem is fully designed. The first step of designing a rule 

set is transferring the visualized Latin Square, or other problem into a Quasi

group of possible values at any given point.

To begin any latin square problem we must define the orthogonality prin- 

ciples of the problem. These are a general definition that can be used for 

virtually all problems.

QGO : ( z* ^  = z*iuAi /*T = 'u;*z)=>(T = zAi/  =  w)

Q G l  : { x * y  = z * w A u * y  = x A u * w  = z ) =>{ x  = z A y  = w)
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QG2 : ( z * ^  =  z * w A ^ * n  =  T A t u * n  =  z)=t>(z =  z A y  =  'u;)

These three rules define the orthogonal conjugate constraints on any latin

square. Even though these are very well defined starting conditions, they 

still remain as quite a difficult model for generation problems. Even just the 

existence of QG2(10) has yet to be determined.

These are of course not the simplest of the building blocks, however they

do contain the more primary cancellation and closure properties within the 

orthogonal definition.

By constructing many sets of these rules it is possible to determine any 

applicable existence problem. Developing the conditions can, at times, be 

tedious and inefficient.

7.3 Example of SATO for Holey Latin Squares

W ithout getting into an extreme amount of detail, we will now cover the 

process of building a system using SATO to solve for holey Latin Squares. 

We will simply go over the sets involved, but because of the incredibly large 

number of rules needed, it will not be a complete working example.

To begin, we assume that the standard definitions already exist. Next we 

must define a binary relation, which we will call samchole,  on Latin Square 

(B, *). The relation some/ioZe(a;,ÿ) will return true under the condition that 

both X and y exist in the same hole.

With this relation defined, the constraints must be added to make sure of 

this function. For any constraint o * 6 =  c Isome — W e(o, 6), !somehoZe(n, c) 

and !(gome/)OZe(6, c). This method on its own is very tedious and for a square 

with n free variables, n(n — l) /2  occurrences of is required.
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To optimize the method we take the following steps.

1. Treat each idempotent Latin Square of order v as a frame Latin Squeire 

of type V.

2. Generate the negative unit clauses such as ^  z whenever same,ioZe(T, 

snme,ioZe(z, z) or some/ioZe(i/, z) is true.

3. Attach the condition \samehole{x,y) to the closure properties.

4. In none closure properties, Attach the negative some/ioZe to the clause 

if the positive literal a; * =  z does not have a negative literal as well.

Including all the necessary conditions and applying these rules results in 

the most optimized method for solving the incomplete latin square. Clearly 

organizing all the clauses can be tedious however when dealing with highly 

complex problems that is to be expected. Using the method overviewed above 

the creator of SATO was able to solve the problem for IS0LS(14,4) which as 

previously mentioned will serve as our comparison point for algorithm speed.

7.4 Other Optimization Techniques

This section will briefly cover some additional techniques used in optimizing 

the search parameters for use in a general solver environment. Understand

ing all the methods that are used to approach the problem leads us to a 

more complete understanding of the problem, as well as, provides additional 

methods to optimize our existing solution method.
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7.4.1 Conjugate-orthogonalities

Referring back to QG0-QG2 defined in section [Zhang] we can see the basic 

definition of the orthogonality. To convert those two clauses into the propo

sitional equivalents for a Latin Square of order v, requires 2n^ clauses. In a 

Latin Square due to cancellation, QGl or QG2 are sufificient, which reduce 

the complexity by half.

An additional method used is the grouping of variables. By creating a 

new predicate, accepting three variables, we reduce the total free variables 

from 6  to 4 reducing the number of clauses from down to v^.

These changes in semantics greatly improve the running time. In more 

general terms, it creates awareness of double searching for matching pairs. 

This case should not occur in an optimized search as if it fails or passes one 

of the conditions, the other must follow suit.

7.4.2 Isomorphism elimination

While Isomorphism elimination can be a very involved method to implement, 

the concept is very important. For any given latin square, there are many 

different patterns that can be created from it using Isomorphic properties. By 

simultaneously exchanging row and columns. By excluding these isomorphic 

cases, the total search space can be greatly reduced.

A common method for finding if this case will occur is called Least Num

ber Heuristic (LNH) used in FALCON and SEM. It works in the early stages 

of the seach when many of the value names are symmetric and eliminates 

at an early stage. Using this method however, requires special constructions 

within the general solver and may not be possible in many cases. This,
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however, remains an important method when searching for Latin Squares.

While SATO and other general solvers vary greatly from the methods 

being used in this paper, it is important to realize that both have a great 

deal in common. The general solver is a great tool for trying many problems. 

However, the specific approach used in this paper can prove to be helpful 

under circumstances when the problem grows to large to be feasible with the 

general solver.

The methods used in SATO influenced some of the choices made when 

developing the specific algorithm used by the author to develop a system to 

solve Incomplete Self Orthogonal Latin Squares. Full comparisons of SATO 

to the targeted approach can be found in chapter 9
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Chapter 8

Searching for ISOLS

The focus of this paper comes from one relatively straightforward theorem. 

The problem of Incomplete Self Orthogonal Latin Squares has almost been 

solved completely. The following theorem describes the current level of re

search in this field.

T heorem  8.0.1. TAere an IROLR/u, n j /o r all wines 0 /  n and n,

sali'sy^ln^ n > 3n -I- 1, e:rcepl /or /n, n/ =  4/(^3,2/ and possibly /o r n =

3n +  2, n G 6 ,8 ,10.

Clearly this theorem leaves much open to investigation. Possibly is a 

questionable wording for a construct such as a theorem, yet nonetheless does 

accurately describe the situation we begin with.

Our focus was to develop an efficient way to search for the three open 

cases of ISOLS, namely (20, 6), (26, 8) and (32, 10). To that end we will 

employ a variety of measures to attempt to solve the problem.

This chapter will begin with a basic breakdown of the steps taken in 

solving the problem, and will follow up with the algorithms used at each
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stage. When applicable, the parallel algorithms used will be explained as a 

subsection to the portion of the algorithm to which it applies.

8.1 Dividing and Conquering the problem

We begin by breaking down the problem. A finished Incomplete Self Orthog

onal Latin Square can be viewed as four separate portions. We begin with 

a sample square which is full, with the exception of it's hole in the bottom

right corner. This state is our finished Square.

The next step, when decomposing the problem, is to eliminate sets of 

values from the Square. Before doing this we must define the regions within 

the Square. We start by labelling the hole, as section D. The hole will always 

be square in shape. The columns and rows directly above and to the left of 

the hole will be sections B and C respectively. The large remaining section 

will be section A. While sections B and C may be squares, they do not need 

to be, however sections A and D must be a squares.

Visually we have

P
A B

C D

Where B is an (2n 4- 2) x n rectangle and C is a n x (2n 4- 2) (2« 4- 2) x n 

rectangle where n is the side of the hole. The rectangles which comprise 

sections B and C must be Orthogonal Arrays or OA as presented in chapter

3

At the same time, we will also divide the symbols used into two groups. 

One group will be firom an extended set (E), we will use greek symbols for it,
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the other will be the standard set (S), which will be represented numerically. 

The extended set represents the values which " should" be contained within

the hole of section D.

The standard set is all values which would not exist in D, making it the 

larger of the two sets. By way of the property of Latin Squares, the hole 

D, must be a latin square. Therefore, it must be assumed that every value 

hrom our extended set appears in each row and each column exactly once. 

W ith that being the case, no symbol from the extended set can appear in 

the adjoining sections B and G.

Now that we have the Square subdivided, we will cover the steps involved 

in finding a solution.

8.1.1 Building Sections B and C

In the first stage of our problem, we focus on sections B and C, which will 

only have the standard symbols. This step is done first as it has a tighter 

constraint than attempting to solve section A from the beginning. The con- 

straint comes from the fact that the Square must be self-orthogonal, so we can 

look at the pairings of values as we build to maintain our self-orthogonality.

This is done by viewing the superpositions of B with C^. We may only 

place one set of points, one point in B and one point in C, at a time. The 

set of points is only valid if the unordered pair being placed does not already 

exist between B and C.

In any Square, the superposition of B and will produce n(2n 4- 2) 

distinct unordered pairs on the standard symbol set, x ^zn+z- The total 

number of unordered pairs from the standard symbol set is leaving a

remaining n 4-1 unordered pairs which must exist in the superposition of A
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and A^.

8.1.2 Placing the Missing Pairs

The next step is to place the remaining nnordered pairs. This, of course,

is done in section A of the square. This step is done by considering section 

A and its transpose. All points must be placed within the square in valid 

locations for this section to be successful. Any square which can have all 

points placed, thus completing the set of unordered pairs on Zg^+z x Zg^+z, 

will be referred to as an extendable solution.

Having placed all missing pairs, we are now ready to try to place the 

remaining points.

8.1.3 Finishing the Square

The final step is to place the set of points that corresponds to the overlaying 

of the two value sets. None of these pairs have been used and the extended 

symbol set has no restrictions on it in section A. In order to reduce the search 

time, we want to test against restrictions to reduce the options available.

The standard symbols that must be placed in A have existing constraints, 

from the predefined main diagonal, which is in standard form, as well as 

sections B and C, and from the previous step of placing the missing pairs of 

values. By the definition of a Latin Square we know that each symbol from 

the standard set must appear in every row and every column of A exactly 

once.

We exploit this principle by attempting to place each value from the 

standard set in each column, and should it be able to place the value in
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every column, by definition, every row will also have the symbol placed. If 

the Square is able to accept all values from the standard set, it is a very

simple process to place the matching extended set symbols making sure that 

each pairing only occurs once.

This results in our having found an Incomplete Self Orthogonal Latin 

Square. Each algorithm will now be explained in further detail, as well as 

optimization techniques used to attem pt to find a solution for the larger 

problems when an exhaustive search is not feasible.

8.2 Building Sections B and C

The algorithm for building sections B and C in our application is done re

cursively and requires two functions which will be explained now as they will 

be referred to in each of the coming sections.

The first is CheckMainValid (), which searches through the row and col

umn that, corresponding with the specified point, checking for the number 

requested. The function returns TRUE if the point is not found and FALSE 

if it is found. The second is very similar, CheckSecondValid(), which checks 

the matching pair, first that the location is valid by running CheckMain- 

Valid() on the second point and then by cross referencing the point against 

an array holding used pair data.

The used pair data is a binary array keeping track of which pairs of 

unordered poirits have been placed. Both the (x, y) and (y, x) coordinates 

are updated to ensure that regardless of the order of the points the data is 

found correctly when checked.

Before moving on to the algorithm itself, the initial conditions placed
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upon the latin square should be explained. The algorithm runs in the memory 

space of a single Latin Square of the side requested to be solved. This square 

upon initialization is set to standard form. The main diagonal is in numerical 

order, guaranteeing the pairs, (1, 1), (2, 2), ..., (n, n) will only occur once 

and are present. As well, in a increasing order moving from right to left 

beginning at the first valid number, 2 in the standard form, the top row of 

B is labelled sequentially.

Example 8.2.1 A Blank Latin Square

The starting point for solving a IS0LS(14,4)

1 5 4 3 2*

2

3

4

5

6

7

8

9

1 0

*

The same pattern applies to a Latin Square of any size.

The processing of the latin square begins in the top right comer, where
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the two is located denoted in Example 8.2.1 by the asterisk, it then places 

these locations by matching values in the bottom left comer also denoted by 

an asterisk. Below is the basic algorithm used.

Breaking down the algorithm, it is not incredibly complex in it's basic

form. The first step is to find a symbol which can be placed in section B. 

Once that is found, it attempts to place a symbol in the matching location in 

section C. The check for a valid symbol is done using CheckMainValid() and 

CheckSecondValid() respectively. This is done as a loop ensuring tha t every

number is tried. When the recursive step backtracks, it continues at the 

point symbol it tried last and advances to the next symbol. By maintaining 

the recursive line, we guarantee an exhaustive search.

When the BuildSectionsBC algorithm returns, it is important to note 

that the value being tried in the LatinSquare must be reset to zero, as well 

as the UsedPair set, is marked as unused. The subloop allows the program 

to try every combination of Second for each Main as it proceeds.

Running the above algorithm will correctly yield all segments B and C 

tha t exist for the specified problem size. Now we will focus on the parallel 

enhancements which can be made to the algorithm.

8.2.1 Parallel Building of B and C

This section will cover not only the parallel used, but another method at

tempted for the discovery of the (32,10) sections B and C, which were more 

obscure due to the size of the problem.

To begin, at the simplest level, we began by parallelizing the CheckMain- 

Valid() and CheckSecond Valid () routines. These follow a nature parallel 

pattern as each point needs to be checked against every point in its row and
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A lg o rith m  8.2.1: BUILDSECTIONSBC(location)

e x te rn a l CheckM amVaRd(), CLeckSecondVoZid() 

g lobal LotmSgnore, UsedPozrs 

if  location > maxlocation 

th e n  We have found a set of sections B and C 

Convert location to (x, y) coordinates in square 

F O R  Every number G S

if CheckMainValid(x, y, number) is TRUE

do

Place number into LatinSquare(x, y) 

for Every secondnumber G S

if CheckSecondValid(x, y, secondnumber) 

is TRUE

th e n  Place second number into

LatinSquare 

Mark the pair used in UsedPair 

th e n  BuildSectionsBC (location+1 )

Reset LatinSquare location for 

secondnumber to zero 

Unmark the pair in UsedPair 

Reset LatinSquare location for number to zero
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column. The parallel machinery of OpenMP can take the for loop and do it 

automatically. Even this small change is able to increase runtime dramati

cally as will be shown in Chapter 9.

The added bonus with OpenMP is that it automatically adjusts the pro

cesses dependant on the number of processors available. For example, if the 

loop requires 12 processors and the machine only has 4, it will take three 

chunks of the problem for each machine. This is, of course, the simplest of 

the parallel operations.

The next, more complex arrangement is balanced around the protection

of data. Clearly in our ISOLS there is alot of dependant data. If we try to 

work in two places in the same row or column, we can never be sure if one is 

making the other invalid or vice versa. As well, the matching pairs cannot 

be placed in their corresponding locations without knowing both what the 

original value is and what others are used.

There are two key pieces of data that we must protect. These pieces of 

data are the Latin Square that we are building, and the UsedPair list that 

we are maintaining. One of these data sets will be protected by the design 

of the algorithm, the other by the features of OpenMP. We will begin with 

the design structure.

We already know that we cannot work on a row or column at the same 

time, so we will work along the diagonal. That allows exclusive access to 

each row and column during the processing of that point.
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Example 8.2.2 Parallel processing locations

7 6 5 4 3 2
y A

y A

y A

y A

y A

y

Clearly, we must not progress from the diagonal we are working on to 

the next until all processors are finished. This is simply the point we set 

for recursion to happen. All the X values and their corresponding values in 

section C must be placed prior to the loop starting for Y.

The algorithm alteration is minor. As well, we create an outer loop on 

the basic algorithm with an advancing (x, y) coordinate corresponding to the 

processor in which. The location variable now represents the starting point 

of the diagonal. The OpenMP parallel structure is able to do the rest of the 

work, dividing the physical processors and the data equally.

One additional update must be made in order to protect the UsedPairs
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variable to make sure that its values are safe and useful. This is done by 

making an update to the CheckSecondValid() routine. The routine is up

dated so that after running the CheckMainValid(), it enters a critical region

defined by OpenMP. A critical region will prevent any other thread from 

entering that segment. We can check the location without any worry of that 

data being changed as we work. We also move the marking of the used pair 

directly into CheckSecondValid(). This is done prior to the end of the critical 

region, thus the only access to UsedPairs is done during the critical region. 

The critical region is then ended.

The time that the critical region takes is a very small amount. While 

it will prevent other processors from continuing, it represents the smallest 

portion of the processors time. A boolean value needs to be checked in an 

array, and in some of the cases two booleans set. This proved to be an 

efficient method for protecting the data and improving run time.

8.2.2 Random Trials

An alternative method that was attempted in order to generate results for 

the largest of our search attempts (32, 10), was to use randomly generated 

starting sets.

The basic principle is that we fill the first set of values in the last column 

of section B.

The settings used for the random trials are broken into three categories. 

The first is the number of random numbers to chose. These numbers are 

chosen at the beginning of the algorithm and if the problem backtracks into 

the randomly chosen number, it is considered a failed path. These locations 

th a t are filled are denoted by the X variable in the empty end section shown.
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The initial conditions for random start of Latin Square generation

7 6 5 4 3 2

%

X

X

X

X
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The second value, and the one which required the most experimentation 

to get an optimal value, is the limiter. Using heuristic methods to control 

the search, we did bound checking in order to control the search time. In 

the (32, 10) the bound which results in the deepest searches in the minimum 

amount of time was 50, 000. It must have advanced at least one position 

further for each 50, 000 trials it makes. The program tracks all trials made 

including rebuilding after backtracking so this number can be processed very 

quickly. As the problem gets further out it is easy to visualize that the trials 

required to advance increase. By bounding it in this way, paths that can 

place earlier points easily, thus, are less constricted, and will have more time 

at the later points and run longer.

The process does not affect the parallel operations. The values are present 

before the building of sections B and C begins. When that function notices 

that a value is already contained in the location it was asked to work on, it 

advances.

The last control variable used is TotalRuns, When a valid solution is not 

found, it will choose a new set of random values and begin the process again. 

It essentially operates as a loop. The true power of this randomizing of the 

search is generated by the bounding function which enhances more probable

paths and limits less the probable.

Having generated a set of the sections B and C we are ready to move 

onto placing the unused pairings which have been carefully maintained in

UsedPairs during this step.
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8.3 Placing the Missing Pairs

As mentioned previously, the pairs that are not placed in sections B and 

C must be placed in section A. These pairs will, of course, vary from one 

possible Latin Square to the next. They can be placed in any location in the 

Latin Square providing the position does not break any condition of a Latin 

Square.

When placing the unused pairs we will strictly consider them in pairs. As 

such, we will deal with a pair of locations in the Latin Square when placing 

the values, (x, y) and (y, x). If we can place item one of the pair in (x, y) 

but cannot place item two in (y, x) then it is not a valid location for either 

item one or two. A solution for this stage of the problem is only found if all 

missing pairs can be placed within the square. As with the previous stage, 

this stage must be an exhaustive search as well. Even if we can place a set 

of points in a location, we still must try all other spots for it as well as all 

other missing pairs. It is important to note that even with a solution at this 

point, the majority will not have a complete solution.

The algorithm itself is very similar to building the ends. However, instead 

of recursively cycling the locations, we will cycle the points to be placed. 

Prior to running of the algorithm, the UsedPairs structure which holds all 

the pairings of symbols must be parsed into a list of points. This list will be 

our index of points to process.

The key values for the algorithm come from the MissingList. It holds 

the sets of symbols which need to be placed. In the above algorithm, we 

label these as number and secnumber. Both would be naturally read off of 

whatever data structure was used to hold MissingList.

The algorithm contains a two level for loop which is necessary to try every
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A lgorithm  8.3.1: PLACEMiSSiNG(n,'um6er)

ex te rn a l C/iecA:MomyoZ*d() 

global EotmSguare, MiggmgEzat 

if number > maxnumber 

th e n  We have found an extendable solution

for Every x < size of section A 

for Every y < size of section A

if LatinSquare(x, y) is empty)

th e n

do <

if CheckMainValid(x, y, number) is TRUE

th e n

for Every secondnumber E S

do <

if CheckMainValid(x, y, secnumber) is TRUE

th e n

Place number into LatinSquare

Place secondnumber into LatinSquare 

PlaceMissing(number-bl)

Reset LatinSquare at this location

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94 CHAPTER 8. SEARCHING PGR ISOES

location in every row and column, which is accomplished by searching every

location in a column and then moving on to the next row.

The size of section A is the constraint used for the for loop, which

corresponds to the size of the latin square minus the size of the hole, ie, 

(2 0 ,6 ),2 0 - 6 =  14.

The main diagonal of the Latin Square will be skipped each time during

the running as the values are preloaded and the first step of the algorithm 

is a check as to whether the location is empty. Any points placed will also 

be skipped as each new number set begins from the beginning to ensure 

exhaustiveness.

The loop itself is very similar to the algorithm used for Building Sections 

B and C. It makes use of CheckMainValid() twice this time. The use of 

CheckSecondValid 0 is to check the UsedPair data, however, in this case it 

is no longer of concern. Only the basic property of the Latin Square applies. 

If both of the calls to CheckMainValid() pass then it can add the location to 

the latin square. The missing pairs do not need to be managed as when the 

recursion runs, it will automatically advance to the next value to be placed. 

And lastly, if the path it is on backtracks, the data must be reset in Latin 

Square.

Checking for a valid solution is done at the start of the cycle by a simple 

check if there are any more pairs which need to be placed. If there are not, 

it saves the square and begins looking for other partial solutions it can find 

in the current square. The algorithm will keep running until all possible 

solutions from the given square are found. Only then should the next square 

found in Building Sections B and C be processed.
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8.3.1 Parallel Placing the Missing Pairs

Due to the very interconnected nature of section A to sections B and C, it

is not possible to process different sets of points in parallel. It is still, of 

course, possible to add the parallelism mentioned previously to the Check- 

MainVahd(). As well, we can divide the work of checking the pair of points.

When dealing with pairs we have a unique pairing of data, each symbol 

can only match with it's mate. As well, because they must match with the 

transpose location they will never be altering data they share as they cannot 

be on the same row or column.

By using the OpenMP section feature we can process the two instances of 

CheckM ain Valid () at the same time. While they appear as a sub loop above 

they could easily be reversed in order and produce the same fundamental 

result. Should either fail it is invalid.

A simple change such as dividing the two calls of CheckMain Valid () can 

produce a speed up in the processing, since the processing done in the func- 

tion is the most intensive portion of the calculation in this stage.

8.4 Finishing the Square

The final step of the procedure is in truth, two steps. Given an extendable 

solution up until this point, we must fill section A with the set of standard 

symbols paired with the set of extended symbols. It is clear th a t the con- 

straint on the standard set is much more strict than that of the extended set. 

The extended set, up until this point has not been used.

Due to the difference in possible options between the two sets, we will 

first attem pt to place the standard set symbols, following the property of
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the Latin Square and ensuring that each symbol appears in every row and 

column. If properly placed, each symbol in every row must be in every 

column.

Finding a solution which can place the entire standard set leaves a rather 

simple task of placing the extended set, ensuring that each symbol matches 

exactly once with each of the standard set symbols.

In order to fully present this set, it must be done as two separate algo

rithms. While one in this example does call the second algorithm, it can 

very easily be implemented to save the information found and have the sec

ond step run as a stand alone program. However, if the goal is to simply find 

a solution, the optimal path, as the second step will usually yield a result, is 

to solve it immediately, thus, allowing the program to exit with its desired 

result much faster.

The two algorithms used are BuHdSquare, which performs the first step 

by placing the standard set, and CompleteSquare which places the extended 

set, thus completing the solution.

In order to make things more concise, the calculation of the point to 

advance was omitted from the above algorithm. Before an explanation of 

the algorithm, the method for the calculation will be presented.
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A lg o rith m  8.4.1: BuiLDSQUARE(Mum6er,^)

ex te rn a l G/iecA:AIomyoZ%d(),Gompfe(eSgnare()

global EatmSgnore

for Every x < size of section A

if LatinSquare(x, y) =  number)

if Last number and last row 

th e n  < th e n  CompleteSquare()

else HmfdSguore(Advancing) 

for Every x < size of section A

if LatinSquare(x, y) is empty

do <

th e n  X

if CheckMainValid(x, y, number) is TRUE

LatinSqnare(x, y) gets number 

LatinSquare(y, x) gets -1 

th e n  if Last number and last row 

th e n  CompleteSquare () 

else BuildSquare (Advancing) 

Reset LatinSquare (x, y) and (y, x) to zero
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Algorithm 8.4.2: ADVANCE(nttm,6er, 2/)

external HmZdSgttare(nnm6er, y) 

global Stzeo/Sguare, Sizeo/Hoie 

if  ̂> Sizeo/Sgtiare — Sizeo/HoZe 

then HuiZdSguore(nu77i6gr +  1,1) 

else HmZdSgnaT'e(Tmmber,  ̂+ 1)

Advancement in the algorithm is recursive, thus this code could be dropped 

right into the main algorithm. The program advances the number in the 

standard set it is currently working on, if it has already placed the symbol

in every row. If not, it moves to the next row.

The number and the row are the two condition upon which the algorithm 

operates. It begins with the number given and the row and first checks if it 

already exists in the row. CheckMainValid() cannot be used here as only the 

row is the concern, not whether the square is valid at this step. If it already 

exists, it must be valid, otherwise it could not have been placed by any of 

the previous steps, then the algorithm moves on.

Next is the case where the symbol does not exist. The algorithm is run 

on each and every column in the current row. First, it checks if the location 

in question is empty. If it contains a value, it will not be altered and moves 

on to the next square. If the square is empty, it is available for use. If the 

square is able to accept the number in question, it is placed, otherwise it 

moves to the next square. When the number is placed one of two things 

can occur, the square can be complete and call the second algorithm, or the 

square can advance.

When the numbers are placed, its self orthogonal mate square must be
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marked as used, otherwise when the bottom half of the square is searched 

that square may be filled. To prevent this, rather than leave the symbol 0, to 

mark unused, we update the square to mark -1 as the unused squares. When 

this step is complete, all unused squares will contain a - 1 .

The square is complete if the number placed is the last number, and we 

are in the last row to be processed. In this case CompleteSquare is called with 

default parameters to indicate the starting position. Otherwise BuildSquare 

is run as previously mentioned.

8.4.1 CompleteSquare

Now comes the important step of finding a solution. The final step requires 

that the extended set of symbols be placed into the Latin Square. This in 

comparison to the other steps is relatively easy. None of the symbols have 

been used previously, and there are only enough spaces for them to fit, so 

there are not a great deal of choices. For example, on the 20, 6  problem, there 

will be six empty spots that correspond to 1. That leaves only 6  spaces for the 

first of the extended set, and then 5 and so on. W ithout many possibilities 

they can be checked quickly, and because of the lack of constraints, they are 

easy to place.

The CompleteSquare algorithm works from a starting point of two inputs. 

A number from the standard set, and a number from the extended set. It 

works sequentially trying all extended set symbols for the first number from 

the standard set before advancing to the next number from the standard 

set. Therefore, the advancement in the recursion is done exactly like that 

from BuildSquare with just a simple symbol change. As such, it will not be 

presented again.
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A lg o rith m  8 .4 .3 :  COMPLETESQUARE(gn,um, e?mm)

e x te rn a l Cfiec/cMamyaZtd() 

g lobal Eatm Sçüore 

for Every x < size of section A 

for Every y < size of section A

do <

if LatinSquare(x, y) =  snum

th e n

if LatinSquare(y, x) =  - 1

th e n

if CheckMain Valid (y, x, enum) is TRUE

th e n
f

LatinSquare(y, x) gets enum 

if Last snum and last enum 

th en  A Solution has been found 

else CompleteSquare (Advancing) 

Reset LatinSquare (y, x) to -1
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The algorithm does a complete search of section A looking for any possible 

location it can place an ennm (Extended Set Member). If it finds a location 

with a -1, the symbol used to identify empty spots at this stage. Given a 

matching snum (Standard Set Member) and an empty location, the algorithm 

can verify that the location is valid for enum. Given the valid location, the 

symbol can be placed and the algorithm can progress to the next pair of 

symbols.

Should the last snum and last enum be placed we have a solution. The 

last snum will always equal the size of section A, and the last enum will 

always equal the size of Section D. Of course, should a solution not be found, 

and the algorithm must backtrack, we have the provision in place to reset 

the data that was updated in this step.

8.4.2 Parallel Finishing the Square

Just as in the Place Missing algorithm, the possibilities for parallel applica- 

tion are somewhat limited. Due to every location in section A being depen

dent the square cannot be internally divided to be computed in parallel. As 

with all previous cases CheckM ain Valid ( ) can be utilized to improve perfor

mance, however, due to the relatively long runtime of BuildSquare, the most 

efficient method for parallel is to subdivide the list of squares.

It is a simple task within the OpenMP environment to split off a loop into 

its own section. The program is simply entered into a parallel loop at the 

beginning of its main loop, thus each processor is responsible for first reading 

in a set of squares and then processing them. This coarse grain of parallelism 

works very well when processing each step is very time consuming as it is in 

this algorithm.
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That being said, a balance must be reached between the processor usage 

and the memory. We found the best method was to establish a block of 

memory that could easily be contained in memory and turn it into a private 

memory block. Each processor then protects its own set of data and then 

loads the next block when it runs out of data. Reading and writing of files 

is the only necessary critical region in this process and can be implemented 

within the individual functions.

Providing each processor does not take more of a block than the memory 

can handle, with taking into account how the problem grows, this method 

can greatly optimize run time. The same could be accomplished by creating 

many instances of the program using separate file names, and input files, 

however, the extra loading and accessing of common routines increases the 

time. As well, keeping all the individual files open makes the result less than 

optimal.

This concludes the methods used in the search for ISOLS. The methods 

detailed in this chapter can be implemented to solve any ISOLS, the methods 

used to optimize the search can be implemented for a Latin Square of any 

size.
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Summary

In presenting the results of this research, we will use the system described 

in chapter 7 as a speed reference in our search. SATO's ability to solve

the ISOLS(14,4) problem makes it ideal to match against our specific solver 

application.

For all comparisons, the program was run on our available parallel ma- 

chine. As such, we are provided with the ability to reference the speed of 

execution of the parallel versions of the program against their equivalent 

sequential versions. Through these comparisons we will show a large im-

provement in the reduction of search time.

Our ultimate goal, of course, was to solve for the three open cases of 

ISOLS. At this time, we will present the current state of the problem and 

our relative distance to the solution.

103
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9.1 Speed Comparisons

The comparison on speed will be our primary evidence as to the effectiveness 

of our implementation. The primary comparison will be in comparing the 

two methods, that of our targeted approach and the general solver method 

used by SATO. While the method developed by SATO can be used to solve 

many problems, it will be shown that the specific solver is able to improve 

on performance by using the alternate structure to subdivide the problem.

In order to fairly calculate the performance of both algorithms, the source 

code for SATO was downloaded and compiled on our local parallel machine. 

The on site parallel machine is a forty processor SGI Origin 2000, with a 

total memory of sixteen gigabytes. Both programs were run at separate 

times under similar load conditions on the machine. Due to the size of the 

ISOLS(14,4) problem we used it as a base comparison as its running time was 

reasonable enough to execute a number of times and compare the results.

One small difference should be noted between the results, our implemen

tation presets the ISOLS into standard form, whereas the SATO application 

does not. Both are still able to produce a valid result.

Comparing the sequential version of our solution to that of SATO provides 

interesting values, the total time of solution in SATO for the (14,4) problem 

was 29 days, 7 hours, 40 minutes and 5 seconds. Timing is referenced by 

the unix time function in c and can be considered accurate to within 24 ms. 

Thus, by comparing only to the second we can assume the value to be correct. 

To compare the above times to our results, the total run time of our specific 

program on the (14,4) set was 5 days, 9 hours, 25 minutes, 28 seconds.

The time difference corresponds to an improvement of almost 600 percent, 

by running almost six times faster it can be considered a significant improve-
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ment. As well, this is the comparison using strictly sequential running. The 

running time is further reduced by adding in the parallel optimizations.

In comparing the parallel, we see the greatest speed improvements in the 

first and last step. This test was done using two different methods. The 

first approach used was to run it using only general parallelism in the Check- 

Main Valid() routine using the OpenMP for loop construct. This would be our 

baseline for parallel, while the second would provide our ideal optimizations.

Through the trials it became clear that the place missing operation is only 

able to provide a small improvement. Our second implementation method is 

to activate all presented parallel methods in chapter 8  and for the last portion 

the code is updated so that each processor takes a set of data as mentioned 

with each processor taking one hundred possible squares at a time.

Upon running it under these conditions the improvement of the program 

under parallel was immediately evident. The total run time for the simple 

parallel setup was 3 days 18 hours, 23 minutes 34 seconds. The total run 

time for the (14,4) with all parallel optimizations became, 2 days, 3 hours, 

48 minutes, 13 seconds. The basic parallelism represents a thirty percent 

increase in speed while the fully optimized version is sixty percent more 

efficient that the same sequential application. W ith the extra processing 

needed to handle the parallel application, this can be considered a very large 

improvement by having a good balance of the work performed between the 

processors.

Our targeted approach was able to provide a significant improvement in 

performance in both its sequential modes and parallel modes. By eliminating 

many cases in our subdivided approach the total search space was greatly 

reduced.
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The resulting Latin Square as generated by SATO is:

1 7 A 8 7 4 9 9 10 a 6 5 3 2

9 2 8 7 6 a 3 5 A 4 10 7 9 1

9 a 3 10 8 A 9 7 7 2 5 6 1 4

A 8 9 4 7 5 10 2 a 7 9 1 6 3

10 7 1 a 5 7 4 3 9 A 8 9 2 6

7 9 2 9 A 6 7 a 8 3 1 4 10 5

7 10 9 A a 1 7 6 4 9 3 2 5 8

6 A 7 9 9 3 a 8 5 1 2 10 4 7

a 6 4 1 2 9 A 7 9 5 7 3 8 10

5 6 a 2 3 7 1 A 6 10 4 8 7 9

8 1 7 3 10 9 5 4 2 6

2 3 10 5 4 8 6 9 1 7

4 5 6 7 1 2 8 10 3 9

3 4 5 6 9 10 2 1 7 8
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The resulting Latin Square generated by our application is:

1 7 A a 6 8 9 e 10 7 5 4 3 2

e 2 8 5 7 a 3 4 A 6 10 7 9 1

9 7 3 8 A 10 9 7 a 2 4 5 1 6

10 Ot 1 4 7 7 6 3 e A 8 9 2 5

7 9 2 A 5 d a 7 8 3 1 6 10 4

A 8 d 7 4 6 10 2 7 a 9 1 5 3

a 10 9 7 1 A 7 5 6 9 3 2 4 8

5 A a e 3 9 7 8 4 1 2 10 6 7

7 5 6 2 d 1 A a 9 4 7 3 8 10

4 e 7 3 a 2 1 A 5 10 6 8 7 9

8 1 7 10 9 3 4 6 2 5

2 3 10 6 8 4 5 9 1 7

6 4 5 1 2 7 8 10 3 9

3 6 4 9 10 5 2 1 7 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108 CHAPTER 9. SUMMARY

9.2 Searching for ISOLS(20,6)

As mentioned the focus of this paper was initially to find ISOLS(20,6). After 

finding a successful solution to (14,4) this appeared to be an emminent pos

sibility. However it soon became clear that while (20, 6) is a larger problem, 

it is not of the scale that was expected. Clearly, any processing with (20, 6) 

will be of a greater magnitude. The true processing difference came with the 

number of possible latin squares it was able to find.

In the (14,4) problem, the total Squares comprised of sections B and C 

generated which needed to be processed was 3521. Processing these took 

approximately forty five seconds each. Thus, once the first step is complete 

we can proceed to trying all the options and have a solution within 44 hours 

or 2 days. Naturally, in most cases, the full number will never need to be 

searched. With the ISOLS(20, 6 ) problem we came across a different case. 

After running the program for over six weeks, no solution had been found. 

To better gauge the time frame we would be looking at, the first step was 

executed in isolation, in order to generate all possible results from the first 

step before continuing. Without knowing where the ISOLS can be found in 

relation to the list of the initial Squares we must assume that the exhaustive 

search will be necessary. Thus, the following data results.

During the first stage, the total number of squares generated for the (20, 

6) problem which needed to be processed equaled over 58 million. h8 192 203 

to be exact. Clearly this problem is very large and will take a large time to 

solve. The average time to complete a square for this problem is five minutes 

and fifty one seconds. This results in a total run time using the existing 

methods to be 1201 years, 97 days, 5 hours, 6 minutes, 4 seconds. While it 

is able to run faster than any previous method, it is still not feasible to run
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within an acceptable time frame.

Another alternative was to look at the equivalent cases within the building 

of sections B and C, which has the ability to greatly reduce the number 

of valid cases. However, the maximum possible improvement would be a 

reduction on the scale of 1:21. Thus, reducing the search time to a total 

of 57.5 years. Even if this update were implemented, the size of the search 

remains too large to currently be solved.

While the total number of open cases was not reduced within this paper, 

the volume of possible solutions leads to a strong belief that a solution to 

ISOLS(20, 6 ) does exist. However, even without locating a new solution, the 

improvements made to the search method are very evident as shown by the 

results of the previous section. It would be wise for any new algorithm to 

begin with a subdivision of the problem as does here, and if possible, utilize 

an appropriate parallel structure.

9.3 Searching for ISOLS(26, 8), (32, 10)

In searching for the open cases of ISOLS, we focused upon the smallest of 

the problems the (20, 6) however, time was spent attempting to locate the 

larger two cases as well.

In searching for (26, 8), there was early success as it was able to find "a 

number of solutions for the first two stages of the problem, however none 

of these possible solutions lead to a final solution. Due to time constraints 

after eight weeks of running this problem we reallocated the processor time 

to focus on the (20, 6) problem.

The same approach was taken to the (32, 10) problem. During the eight
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weeks it was allowed to run however, it was not able to generate even an 

introductory solution. The size of the hole created sections B and C that 

were sufficiently large enough to make finding a solution a large task. In the 

attempts to find a valid solution which would allow us to continue the search 

for (32,10) we tried some alternative method. As mentioned in the previous 

chapter we attempted the random building method, however, during the four 

weeks that method was used, no result could be generated either.

While these larger problems did not provide us with the details to the 

nature of the problem as specifically as we were able to gain from the (2 0 , 6 ) 

problem, it did become clear that the problem is very large, and some special 

construction beyond what we have developed thus far will be necessary to 

prove the existence of these open cases.
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