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ABSTRACT 

The finite element solution of certain two-point boundary value 

problems is discussed. 

In order to obtain more accuracy than the linear finite element 

method can give, an order-h^ gtobcUi 6upeAconveAge.nce. technique is 

studied. This technique, which uses a quasi-inverse of the Rayleigh- 

Ritz-Galerkin (finite element) method, is motivated by the papers of 

C. de Boor and G. J. Fix [14] and P. 0. Frederickson [25]. The 

Peano kernel theorem is generalized and used to approximate the rate 

of convergence of the global superconvergence. 

Following Sard’s theory on be6t quad'uUuA.e ionmaZaz [50], with 

some generalization, several quadrature formulae are derived. These 

quadrature formulae are shown to be consZstent, and have some advantages 

over those obtained by Herbold, Schultz and Varga [34]. 

For solution of large linear systems which result from the finite 

element method, LU decomposition (Gaussian Elimination Method) is fast 

and accurate. However, when it comes to a singular or a nearly singular 

system, LU decomposition fails. The algorithm FAPIN developed by 

P. 0. Frederickson for 2-diraensional systems is able to solve singular 

# 

systems as we demonstrate. 

We found FAPIN will work more efficiently in 1-dimensional case 

if we replace the DBq approximate inverse C, developed by Benson [3], 

with other approximate inverses. 

For the sake of verifying the theory, appropriate numerical 

experiments are carried out. 

,ii 
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CHAPTER 1 

INTRODUCTION 

1• Two-Point Boundary Value Problems 

Two-point boundary value problems Ca-bbrev. TPBVP) 

associated with ordinary differential equations mostly arise in 

physics and engineering problems. For these problems conditions 

are specified at the two ends of an interval and a solution to the 

ordinary differential equation is sought to satisfy the boundary 

conditions. For example the vertical deflection y(x) of a transverse 

loaded string with two ends fixed satisfies the ordinary differential 

equation -y"(x)=f(x) with the boundary conditions y(0)=a, y(l)=b. 

Numerous analytical techniques for solving TPBVP have been developed. 

The characteristic of an analytical method is that it expresses 

particular solutions of ordinary differential equations in terms of 

series or integrals involving elementary or special functions. 

However there are restrictions on analytical methods. For example, 

£-2 
e^ d^dc. 

fx 
the TPBVP -y”Cx)=e , yC0)=yCl)=0 has the solution y(x)=- 

This integral can not be expressed in closed form in terms of known 

functions, • thus numerical quadrature is necessary to approximate the 

y(x).. By numerical methods we mean methods to approximate the solution 

of TPBVP without any assistance of an analytical solution. Numerical 

methods provide practical procedures for approximating the solutions of 

a very general class of TPBVP. In parallel with the development of the 

modern computer, numerical methods are becoming increasingly important. 

Many numerical methods have been developed, for example finite 

1 
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difference methods which have been investigated in detail in C241, and 

shooting methods for which a detailed investigation can be found in [46]. 

C38i and [391 cover some other numerical methods. [531 is devoted to 

the numerical methods which are under current research activities. 

However, this thesis is dedicated to finite element methods. 

1.2. Basic Notations 

Let u*“ denotes the n^^ derivatives of u. Let 

Cl.2.1) H"[0,1] = { U I £ tztO.l] } for n > 0 

Define 

Cl.2.2) Cf.g)„ = I (f'-'^^g’-^^) 
“ i=0 

then ||f[| = is a (Sobolev) norm on f/^[0,ll and 

C f^^[0,l] ^ 11*11^ ^ known as a Sobotzv .Apace (cf. [2], [61]). 

From (1.2.1) and (1.2.1), we have 

(1.2.3) I I‘1 ini “ 

hence it is clear that H^^[0,1] =• H^^[0,1] , i.e. the embedding of 

H^^[0^1] into H^^[0,1] is continuous (cf. [21, pp.21). 

We shall denote by 

Cl. 2.4) H?:o.ii { u £ H"L0.13 1 uCO) = uCl) = 0 } . 
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Obviously it is a subspace of 

Define (cf. C2l C561) 

Cl.2.5) = { u u(t)dt e 0 < X < 1 } 

with norm 

.1 
max 

(1.2.6) flLi = 
f (x)v(x)dx 

veH^CO,!! I kill 

We observe that the Dirac 5-function, 5 , is an element of H 

if X € (0,1) 

Let C^C0,ll be the set of all real-valued functions which 

have continuous derivatives of order at least n in [0,1], where 

n is a non-negative integer. 

Let n : 0 = XQ < xi < " * < x^ = 1 be a partition on 

[0,13. Let x^l, \ > ^or i = l,»»**,n , 

and h = h^. If h^ = h for all i, we shall denote, by the 

regular partition on [0,1] with regular mesh h = ~ 

n Ic 
We shall denote by the space of spline functions (definition 

is given in 1.9.) defined on II. 
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Let E = Ca,bl c [0,11. Denote by 3^*^(E) the set of polynomials 

of degree m defined on E and Po^(E) = { p e | p(a) = p(b) = 0 }. 

The truncated power function is defined as 

m 
f m 
X X > 0 

X < 0 

For m = 0, this is the well known Heaviside function. 

1.3. Problem Formulation 

Consider the differential equation 

Cl.3.1) -(p(x)u'Cx)) ' + q(x)u(x) = fCx) x e [0,11 

Define the differential operator L : H^[0,ll H ^[0,11 

(cf. [81, [561) by 

(1.3.2) Lu = - Cpu')' + qu 

The problem is : given a f e H"^[0,ll, we are asked to find a 

u e H^[0,ll such that 

Cl.3.3) Lu = f 

with the boundary conditions : 

Cl.3.4) uCO) = go , uCl) = gi . 

To ensure that the equation (1.3.2') - (1.3.4) has a solution, we 

assume that ([81, [371, [561, [591) 



s 

(1.3.5) p(x) £ C^[0,1], q(x) £ C^CO,ll 

and 

(1.3.6) p(x) > p^^^ >0, q(x) > 0 

Let H^C0,ld = { u e H^C0,1J | u(0)=go, u(l)=gi } ; it is the space 

of admissible functions. It is not a vector space, but an 

space since ui, U2 e Hg[0,l3 imply ui - U2 ^ HjC0,l3. 

With the assumptions (1.3.5) - (1.3.6), L is a one-to-one continuous 

linear operator from H^C0,li to H“^C0,li. Thus for each f e ff ^[0,1], 
§ 

the BVP (1.3.2) - (1.3.4) has a unique solution u £ H^C0,13 ([56]). s 
Moreover, there exists a constant , independent of f, such that 

(1.3.7) I|u||i < Pil|f||-i 

If f £ H°[0,1], then u £ h^[0,l] and there exists p2 such that 
g 

(1.3.3) ||u||2 S P2l|f||o 

(with also independent of f). 

Lemma 1.5.1 (i) L is positive definite on Hj[0,l], 

i.e. (LVQ, VQ) > 0 for all non-zero VQ e HjCO,!]. 

(ii) L is symmetric, i.e. (Lu, VQ) = (LVQ, U) 

for u £ H^[0,1], VQ e hj[0,l] 
g 

(cf. [37], [40], [56]). 
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Proof: (i) If VQ e pCx) >0 and q(x) ^ 0, then 

1 
(Lvo,vo) = {-(p(x)v’(x)) * + q(x)v. (X) }v„ (x) dx 

^ {p(x> (VQ'(x))^ + q(x) (VQ (x))^} dx > 0 

(ii) Let u £ VQ e then 

(LU,VQ) = 

g 

.1 

7PCX)U'(x)v‘(x) + q(x)u(x)v^(x) dx 
0 0 u 

CLvo,u) 

I.4. The Variational Formulation of The Problem 

Let $ : ■> R be a quadratic functional defined by 
g 

(cf. C8i, [9], C401, C561) 

,1 

Cl.4.1) $(Vo) = {p(x) (v'(X)) ^ + q(x)(v^(x))^ - 2f(x)v„(x)} dx 

For any fixed w £ for any e and VQ e 

.1 

$(w+evo) = $Cw)+2e{ (-(p(x)w* (x)) * + q(x)w(x) -■ f(x)} Vo(x)dx} 

(1.4.2) 

+ £ 

1 

{p(x) (v' (x))2 + q(x) (Vo(x))^} dx 
0 ^ 

Define the first variation ([371, [561) 



6<5(w,Vo) = 
lim <I>(W+CVQ) - ^(w) 
£->0 e 

(1.4.3) 
.1 

= 2 C-(p(x)w» (x)) ' + qCx)w(x) - f(x))vo(x) dx 

Then (1.4.2) can be written as 

(1.4.4) 

^(w+evg) = $(w) + e-6^(w,Vo) 

. fl 
+ £' (P(x)(vo'(x))^ + q(x)(vo(x))^) dx 

From (1.4.4), we have the following important notes: 

(c£. [81, [371, [401, [561) 

(i) For each w e Hl[0,ll 

6'l(w,vo) = 0 

V VO€H1[O,13 

iff (LW.VQ) = (f,vo) 

V voeHjCO,!] 

The right-hand side is known as the Galerkin weak form. 

(ii) If w e H^[0,ll has the property that 

6<l>(w,vo) = 0 for all VQ e H-!:[0,ll 

then 

$(w) < $(w + evo) for any e 0, 

and non-zero VQ e Hj.[0,ll 

The reverse is true. 
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In other words, the element w in H^[0,ll which minimizes the 

quadratic functional ^ over h^C0,l3 is the unique element 

at which the first variation of $ is zero. 

(iii) If w € H^[0,1I such that 6^(W,VQ) =0 V VQ e Hj[0,l3 

then w is the solution to (1.3.2) - (1.3.4). The reverse is true. 

Thus, we have the following theorem: 

Theorem 1.4.1 

(i) u*, the unique solution to (1.3.2) - Cl*3.4), strictly 

minimizes ^Cv) over the admissible space h^[0,ll, 
S 

Cii) The first variation of $(v) at u* vanishes. 

(cf. C8], [371, [401, [561) 

1.5. The Energy Norm 

Since L in (1.3.3) is a positive definite and symmetric 

linear operator on HQ[0,11 . we can define a new inner product 

a(u,v) on Hj[o,ll by (cf. [21, [401, [561, [591) 

(1.5.1) a(u,v) = (Lu,v) for all u,v e HQ[0,11 

The proof that a(u,v) is an inner product is straight forward by 

the definition of an inner product and the properties of L. 
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Following [56], we shall call a(u,v) the dviQAQij inner product on 

f/J[0,l]. 

Define a norm 11*11^ Hj[0,l] by 

[1.5.2) N^l ~ ta(u,u)j^ for all u e Hj[0,l]. 

We shall refer it as the 2.n2JiQy norm. 

Lemma 1.5.1 

The norm is equivalent to I on Hj[0,ll, i.e. there 

exists constants p3, 0, such that 

(1.5.3) P3l|V||l ^ I|V|1^ < P4||V1|i 

Proof: [cf. [56], pp.42), let VQ e Hj[0,l] 

I Wol = a(vo,Vo) 
,1 

PCX)CVJ(X))^ + q(x)vg(x) dx 

max[p(x) ,q(x) ] (v'(x))^ + (voW)^) dx 

= max[p(x),qCx)] ||vo|li 

On the other hand, if VQ(0) = 0, then we have 
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fXi 

VnC^o) = VQCZ) dz 

By the Schwarz inequality 

I Vo(xo) p S c l2 dz)( 
rx. 

v!(z) P dz) 

Cl 1 dz) ( 

0 

0 lv'(z)|2 dz) 

rxo 
j |vJ(z)Pdz 

|vA(z)|^ dz 

Integrating w.r.t. XQ over the interval [0,1] , we have 

Cl.5.4) 
rl 

(Vp(x)) dx < (vJCz))^ dz 

and 

Ivoil^ 
fl 

P(x)(vJ(x))2 + q(x)(vo(x))2 dx 

Pmin f (v*(x))^ dx 
Jo 0 

f (v6(x))^ + (vo(x))2 dx 
2 ‘'o 

Pmin 
Ivo 

This completes the proof. 
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1.6. The Rayleigh-Ritz-Galerkin (RRG) method 

From theorem 1.4.1 we know that the solution of (1.3.2)- 

Cl.3.4) is equivalent to the minimization of $(v) in (1.4.1). 

Thus instead of solving (1.3.2)-(1.3.4) directly, we could, 

alternatively, concentrate on the following problem (C371, [40], [56]) 

(1.6.1) 

Given f e ff"^[0,l] 

find the function u* e f/^[0,l] s.t. 

0(u*) < 0(v) for all V e H^[0,1] 

where $ is defined in (1.4.1) 

For this kind of problem, a simple yet efficient 

method was proposed by W. Ritz in [49] in 1908. 

Ritz*s method has been used widely in applied mechanics ([10],[35], 

[44]). In 1915, B. G, Galerkin ([23], [30]) proposed a method in 

solving BVP. It is well known that Ritz's method is a special case 

of Galerkin's method ([8], [37],[40]). For the self-adjoint 

elliptic problems the two methods are equivalent. 

,Ritz*s method is to approximate u* by a u* from an affine 

subspace in the sense that $(u*) is minimum over S, 
^ h,g h-' h,g 

[[41, [37], [40]). More precisely, to approximate u* by a sequence 

of more accurate solutions u* e S, „ 
h r9 

“ n 
such that 



12 

(1.6.2) ) > ^>(u* ) > 
hi h2 

and 

Cl.6.3) ) = ^>(u*) n-x» '* v> ^ 
“n 

where for fixed n 

(1.6.4) $(u* ) < «i)(v ) 
“n *n 

V Vv, € Sv, a “n hn^y 

The Galerkin method is to approximate u* by any u* e „ which 
h “n ^y 

satisfies 

(1.6.5) V V, e 
hn 

More precisely, to approximate u* by a sequence of more accurate 

solution uj^ e ^hn^g properties 

Cl.6.6) ^ Si^,g if n < m 

and 

Cl.6.7) '' ^hk ^ Shj^.O 

Ccf. [37], [401). 

The proof that (1.6.4) and (1.6.6) are equivalent is similar 

to the proof of Theorem 1.4.1. 



be Let g ^ closed affine subspace and let uj e ^ 

the RRG solution to u* in the sense that u* minimizes 

over The following theorem concerning the minimization 

property of the error e = u* - (note that e e Hj[0,l]) in 

the energy norm is equivalent to Theorem 1.1 of [56, pp.39i. 

Theorem 1.6.1 

Ci) u* minimizes a(u*-Vjj^,u*-Vj^) over 

(1.6.8) a(u*-ug,u*-ug) = a(u*"Vj^,u*-Vj^) 

(ii) L(U*-U*,VJ^^Q) = 0 V Vj,,o ^ %,0 

(iii) LK.VJ^^Q) = Cf,Vj,,o) V Vj^,o « 

In particular, if = H^[0,1], then 
'9 S 

LCu*>Vo) = (f,Vo) V Vo e Hj[0,l3 

Theorem 1.6.1 is fundamental to the Ritz theory. The Ritz method 

provides us with an idea that we could approximate u* from a close 
j 

affine subspace The problem we are now facing is: ”how do 

we construct the Ritz solution (equivalently, the Galerkin solution) 

This is essential because for a method to be practical, it has 

to be constructive. 
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The construction of the Ritz solution is based on the choice of 

an affine subspace Since the difference of any elements in 

S, is in S, it is clear that is a shift of ^ ; 
h,g h,0* h,g h,0 

we have = g + ^ , where g £ . 
h,g * h,0 ^ 

Suppose that the dimension of S^ Q is m-1 , then it has a basis 

such that every element Q ^ 0 represented in 

m=l 
the form u, _ = > a. d>.. Then u^ e S, can be written as 

h,0 1^1 h,g h,g 
m-1 ^ ^ 

u, ^ = g + y a.d). . In the finite element method, the t/Uxit functions 
h,0 ^ 1^1 

<j)^ are piecewise polynomials (spline functions, cf. 1.9). We shall 

call (j)^ , i = l,'***,m-l , i'iyUZo, eZem^nt6 when they are taken to 

be spline functions. 

The basic steps in the finite element method are: 

Ci) The conversion of the operational form of the problem to the 

variational form as we have discussed in section 1.4. . 

(ii) The construction of the spline trial functions. This is the 

main subject of section 1.8. . 

(iii) The computations of the stiffness matrix and the solution of 

the discrete large linear system. This will be discussed in Chapter 

2 and Chapter 5 respectively. 

The convergence rate of the RRG (finite element) approximation 

is the main topic of Chapter 4. 
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The next section is devoted to the Peano Kernel Theorem. We 

find that it is very useful in the error analysis. 

1.7. The Peano Kernel Theorem 

The Peano Kernel Theorem was due to G. Peano in his 

paper [45] in 1914, It is a very useful tool in the evaluation of 

the error functional either in interpolation or quadrature [12], 

[491, [57]), 

Theorem 1.7.1 (Peano) 

Suppose the linear functional 

Cl.7.1), E : C“C0,1] + R 

has the property that 

Cl.7.2) ECP) = 0 V p e y™, m < n 

m+1 
Then there exists a function such that, for f € C [0,1] , 

(1.7.3) E(f) 
JQ 

Furthermore, the Peano Kernel K m+1 

_ 1 m 

is of the form 

(1.7.4) 
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(The subscript x is used to indicate that E^(x-t)"^ is a function 

of x) . 

Proof: Suppose that E is defined on L^[0,1], then by the Riesz 

representation theorem there exists a function e EcoC0,l] 

such that 

Cl.7.5) 

If f € C^CO,!] 

(1.7.6) E(f) 

E (f) 

,1 

KoCt)f(t) dt 

and (E) (the null set of E) then 

,1 

Ki(t)f'(t) dt 

where 

(1.7.7) Ki(t) 

.t 

, 0 
Ko(s) ds 

Let f = c (non-zero constant), then f' = 0 and (0) = 0, 

these imply that 0 = E(c) = Ki(t)*c hence (1) = 0. Thus (1.7.6) 

becomes 

(1.7.8) E(f) 

.1 

Ki(t)f’(t) dt 
J 0 

By induction. 

Cl.7.9) 

assume that there is a Iv.,, k < m, 
iC • JL 

E(f) = 

,1 

0 dt 

such that 

Let 

f (x) 
xk+1 

(1.7.10) 
(k+1)! 
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then 

Cl.7.11) E(f) = 0, = 1. and f'-'^'^^^Cx) = 0 

Define 

<•1 

Cl.7.12) K^^^Ct) = - „ >Sc^,(s) ds 

then we have 

Cl.7.13) E(f) = * 
0 

From (1.7.10) and (1.7.11), we have 0 = ^ 

thus 

(1.7.14) E(£) = [k+2] 
(t) dt 

Hence, there is a K ,, such that 
m+1 

,1 

E(£) = 
0 K„^i(t)f'^“^'^(t) dt 

Itl"l 
To evaluate K ,(t), let us consider a function £ e c such 

m+1 t 

that £ £ l2[0,l] and f^^"^^^(T) = 5 (T) , 
t t t 

then from (1.7.3) 

E(f^) Cl.7.15) 
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By integrating m+1 times, we have 

Cl.7.16) 
m! 

Thus 

This completes the proof. 

1,8. The PeanO“Sard Kernel Theorem 

A. Sard in [48] and [49] generalized the Peano Kernel 

Theorem and developed the theory of best approximation especially 

on the topic of best quadrature formulae. 

V V 
Let T : H [0,1] A c H [0,1] be a bounded linear operator 

such that 

then T can be viewed as an approximation of the identity mapping 1. 
# 

Define the error function 

(1.8.1) Tu = u for all u € c A 

E = I - T 

From (1.8.1) we have 
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= 0 . For such an approximation T, we say that it is exact for 

polynomial of degree m or call it a m~exa.ct approximation to I , 

Theorem 1.8.1 (Peano-Sard) 

k, Ic. 
Let E : H [0,11 H C.0,11 be a bounded linear function 

such that = 0 , then there exists ♦ C0,lIxE0,lI R 

such that 

Cl.8.2) 

Furthermore, 

(1.8.3) 

rl 

E(w) = K dt 
0 m+1 ^ ^ 

K , m+1 
c-,t) -1. 

m! Ex(CT-t)^) 

Proof : 

For each k ^ 0 ; consider for each x e [0,11 , the proof is 

similar to the proof of Theorem 1.7.1 . 

Lemma 1.8.1 If and KQCL) = 
0 

(cf. (1.9.)) . 

Proof : 

jn ,k = / u e I ^ n s.t. U| e [x. ,x.) | 

. ~ /k' du pk'-l 11^1 

so if u e S , then -j— e C k’ > -1 
dt 



We shall make use of the Peano-Sard Kernel Theorem in Chapter 2 

to investigate the errors of the quadratures; and the applications 

of the Peano Kernel Theorem will be discussed in detail in Chapter 4. 

Now we go on to discuss spline functions and spaces of spline functions 

which will be used in the thesis. 

1.9. Spline Functions 

A draftsman's spline is a mechanical tool, consisting of 

a strip of wood or some flexible material, used by draftsman to draw 

a smooth curve to pass through specified points, called knots. 

The idea of a mathematical spline came from the drafts- 

man's spline. The term 4>pZuLC. iuncXion, first used by Schoenberg 

CC501) in 1946, is intended to suggest that the graph of such a 

function is similar to a curve drawn by the draftsman's spline 

which is approximately a cubic spline function. However, a 

generalization of this idea leads to the following definition: 

Definition 1.9.1 A 4pf/cnc, function (of degree m and q times 

differentiable, 0 ^ q < m) is a function s which satisfies the 

the following properties: 
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Ci) s r & p LX. . Cx._i.Xi2 J 1-1 e P^Lx. 1,x^] i=l,--*,n 

Cl.9.1) 

(ii) s e C^[0,1] 

(c£. Cl], [33], [50]) 

We shall denote by S^^^CO,!] the class of spline functions 

defined on n. If II is of regular mesh h, we shall denote S™^^[0,1] 

by S^’\0,1]. 
n 

Remarks 

(i) When q = m-1 , the definition is the same as that of 

Schoenberg in [501. 

(ii) The above definition extends for q = -1 . A spline 

s £ is a piecewise polynomial with discontinuities at the 

knots. 

(iii) It follows from the definition that ^ L^CO,!] 

and s^*^^ is absolutely continuous. Thus s £ H^^^[0,1] . 

1.10. Approximation by Splines 

1.10a. Introduction 

Polynomials have long been used to approximate func- 

tions, partly because they are simple and can be easily handled. 

However, evaluation of a high degree polynomial will not be that 



simple; to interpolate a function f with a polynomial p of 

degree n at m points, m ^ n+1 , we need to evaluate n+1 

unknowns which are the coefficients of p , Due to the accuracy 

of the digital computer, for a fairly large n , the round off 

errors by the computer will be of considerable significance; also, 

when one fits a high degree polynomial to a large number of data 

points, the result is often rather undulated. There is now evidence 

that in many circumstances a spline function is a more adaptable 

approximating function than a polynomial involving a comparable number 

of parameters. It has been shown that a variety of problems of best 

approximation turn out to have as a solution spline function 

C51i, [52] ). Many other properties such as ’'minimum curvature” ([36]) 

and "smoothest interpolation” ([13], [32], [36], [51]) have been 

widely investigated. Spline functions have been used v/idely in smooth- 

ing datas ([45]) , approximation of linear functions ([52]) and 

solving differential equations ([31], [59]) . The theory of finite 

element method is one of the many successes of the spline functions 

in the application on solving boundary value problems. 

In the next two sections, we shall discuss the spline spaces 
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l.lO.b. The Spline Spaces 

l.lOb.l The space 

An s £ is a spline function which 

is continuous over L0,ll and reduces to a linear function in each 

interval Cx. ,,x.] , i = I,*** n . 

The dimension of is n+1 . Thus has a 
h h 

n 
basis {(1).}. ^ of n+1 elements. 

^1 1=0 

A basis (4).}^ _ , shown in fig. 1.10.1 , is 
1 1=0 o > 

defined as 

(1.10.1) (|).Cx) 

( t X € Cx. -,x.3 
1-1 1 

/ l-t X £ t;x.,X.^^] 

t = 
x-x. - 

1-1 

t = 

, 0 otherwise 

^0 

This space of functions has been used for a long time as interpola- 

tion functions. 
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1.10b.2 The space 

3 2 
An s e is a cubic spline with continuous second 

derivative. This function has an important property that it is 

analogous to a curve drawn by the draftsman’s spline. CCH* C503, 

[331). 

3 2 
The dimension of S, ' is n+3. To construct a basis 

h 
3 2 

for S' , we introduce four additional knots x x x and 
h -2-1 n+1 

X such that x ^ < x , < x_ = 0 and l=x.<x^_ <x^_ 
n+2 -2-10 n n+1 n+2 , 

Tl + l 

Define the fimctions > called basis B-splines [17], 

[18], [51]) by 

(1.10.2) 

(i) 

(ii) 

(iii) 

B. € 5^'^ 
1 h 

B. is identical to zero outside (x. _,X..T) 
’ ^ x-2' 1+1^ 

B (x._p = B (x.^p = i 

B-Cx.) = 1 

By the constraints in (iii), we have 

(1.10.3) 5i(x) 

4 

- |-(3t3 - 3t^ -3t -1) 

1 - + :^t^ 
2 T 

3 
(1. - t ). 

I 0 

X £ [x._^,x.] 

X € [v. X ] 
i’^i+1-' 

otherwise 
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where t, 0^t^l,isa local variable defined by 

X - X, 

Cl.10.4) t = 
k“l 

k k-1 
for X £ 

The graph of is shown in fig. 1.10.2 

B.(x) 

Fig. 1.10,2 

1.10c. Quasi-Interpolation 

Quasi-interpolation was first introduced by C. de Boor 

and G. Fix in [143 and was generalized by P.O. Frederickson in 

k 
[253. The problem can be stated as follows : for each f e C [0,13 , 

let F^f : C^^^[0,13 -> 5^'^ ^ , such that F^f , which called a 

qucu>^~yiyLtc/LpoZayit of f, has the following properties : 

Ci)' F^f is local in the sense that its value at a point x 

depends only on the values of f in a uniformly small 

heighbourhood of x . 

k 
(ii) F-,^ reproduces polynomials; FTTCP) “ P V P € 

(iii) F^jf - f = . 
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The explicit forms of F-,yf were given in [14] which are 

written in the linear combinations of the k-degree B-spline (A 

k k—1 
B-spline basis for S' ). As indicated in [25], quasi-interpolations 

have two strong advantages over interpolations. The first of these 

is ease of computation and the second advantage is that strong error 

estimates,very nearly sharp, are easy to obtain for almost any norm. 

The idea of (ii) is a source of motivation for the works in Chapter 3. 



CHAPTER 2 

THE FINITE ELEMENT SOLUTION 

2.1. The Discrete Linear Systems due to the Piecewise Linear Approximation 

We have shown in section 1.5 that the exact solution to 

Cl.3.2) - (1.3.4) is equivalent to the finding of a u* e H ^C0,1] 

which minimizes $(v) over H^[0,l3 . The RRG approach in section 

1.6 is to approximate u* by u* ^ from an affine subspace ^ 

such that <l(u* ) is minimum over S, . In this section, we 
h,g h/g 

shall construct u* by using the affine subspace . A set 
h,g ^ to r 

of trial functions is taken to be « which has been defined 
1=0 

in 1.10b. . From section 1.6, an element u, £ can be written 
h,g h,g 

as u = g + u, ^ , where g e and u, « e ; since 
h,g ^ h,0 ^ h,g h,0 h,o 

g e , it can be taken as 
h,g 

g = go^oCx) + gi(|>nCx) 

Thus 

C2.1.1) u 
h,g 

n-1 

+ I + gi<j>^(x) 

The coefficients a. are to be determined so that ^(u, ) is 
1 h,g^ 

minimum. From (1.4.1), we have 

{p(x)C I a J)!(x))^ + q(x) (.y a c|) (x))^ 
i=0 ^ ^ 1=0 1 1 

<l>(u ) 
^ h,g^ 

fl 

0 

n 
- 2( y a d) (x))f(x)} dx 

i=0 1 1 

n n n n n 

I I vA 3 * ^ ^ Vj\ j ■ ^ ^ 
k=0 j=0 k=0 j=0 D=0 

27 
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where and 

r 

(2.1.3) 

^k, j 

^k,j 

f. 

i: 
c 

PCx)(f)j^Cxl(|)t (x) dx 

q(x)<f)j^Cx)c|)j(x) dx 

f f(x)<J>. (x) dx 
Jo 3 

k,j = 

(Note that ) 

Thus (2.1.2) can be written as 

n n n 
C2.1.4) *CUj, J = I a.A^ . + I a B 

"'5 k=o j=0 ^ j=0 ^ 
- 2f.} 

The variables are a^,••••sa^-i • Thus 

(2.1.5) 

To determine a^ , i = l,-**-,n-l , such that g) is minimum, 

we solve -r— = 0 , and obtain a system of linear equations : 
O ^ JL 

n 
(2.1.6) I aj^(Aj^^i+Bj^^i) = £j^ i = 1, ,n-l 

k ^0 

Let j ~ ^k,j ^k,j * then (2.1.6) becomes 

n 
(2.1.7) I aj^Mj^ i = i =  >n-l 

k=0 ' 

Since aQ = gQ and a^^ = gj are fixed, (2.1.7) is a linear system 

of n - 1 unknowns. It is 
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C2.1.8) 
n-1 

k= 
- 8(3%,i - 8n“n,i 

= Fi i = !,*'•«,n-l 

Let 

(2.1.9) 

M 

Mo 

M 

= ^ 1 ^ k,i < n-1 

= ( Mo,l, * •* *",Mo,n-l )'^ 

( 1»* *' * ‘ 

= ( ai, )'^ 

= C £^,•••””,£^_j ) 

= C Fj.••••*,)' 

T 

s, = [ f - goMo - gj^M^ ] 

Then (2.1.8) can be written as 

C2.1.10) Ma = F 

I£ the boundary conditions (1.3.4) were homogeneous, i.e. go=gi=0> 

then the linear system would be . 

C2.1.11) Ma = f 

The matrix M is positive de£inite since £or all a , there 

exists a u € HJ[0,11 such that a^Ma = (Lu,u) > 0 . It follows 

from C2.1.3) that M is symmetric. 

The i^yiLte, eZement (RRG) ^oZuutLon has been constructed if the 
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linear system (2.1.10) (or equivalently (2.1.11) for homogeneous 

boundary conditions) has been solved. The solving of (2.1.10) 

Cor (2.1.11)) will be discussed in Chapter 5. 

We shall evaluated M for constant p and q . From (2.1.3), 

we have 

(2.1.12) 
. Bi,j = qWi.'fj) 

After some calculations, we have 

(2.1.13) 

(2.1.14) 

|j-i| = 1 

3 = i 

Otherwise 

|j-i| = 1 

j = i 

Otherwise 

By using (2.1.13) and (2.1.14), the matrix M is of the form 

M = 

2 

-1 

0 

-1 

2 

-1 

0 

-1 

2 

0 

0 

-1 

-1 

-1 

2 

qh 
6 
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For the right-hand side vector F , we have 

F 1 6 )gQ 

F^ = i = 2,••‘•,n-2 

F' = f « r . P + ^ )g 
' n-1 n-i '* h ^ 

For general pCx) and q(x) , M is either obtained by exact integration 

or by quadrature formulae which we shall discuss in the subsequent 

sections. 

2•2. Best Quadrature Formulae 

2.2a. Introduction 

In (2.1.3), there are integrations namely 

.1 A 

liCf) = dx . li j CP) = 

0 
p(x)(J)jCx)(|>jCx) dx 

and Ij^^j(q) = j q(x)(|)j^(x)({)j (x) dx . Beside performing the actual 

integrations, we could approximate these integrations numerically. 

Especially, when the analytical solution is not possible to obtain, 

then an approximation will be become necessary. There are several 

^ways to approximate these integrations. For example, to approximate 

Ijl^(f) , we could interpolate f by a spline s and then integrate 

Ijl^(s) exactly C[8],[34l,C56]); or we could approximate 
N 

a quadrature rule of the form Hi(f) = I 3^• However, 
j=0 ^ ^ ^ 

in the subsequent sections, we shall extend Sard's approach on 
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quadrature formulae to obtain beJit 

type of integrations, namely TCg) 

is a weight function. 

qacidAcutuAQJi for a more general 
'1 

= g(x}wCx) dx , where v;Cx) 
Q 

Let 

C2.2.1) T(g) 
■1 

g(x)w(x) dx 
0 

Consider a discrete approximation Q to T , or quadrature formulae, 

of the form 

N 
C2.2.2) Q(g) = I aig(5i) 

i=0 

If w(x) = 1 , X £ C0,li , then (2.2.1) - (2.2.2) reduces to the 

case which considered in detail by A. Sard in [48] and [49]. 

Assume that Q is m-exdcX (exact for . Define the QJVioH. 

imcJujonal E : -> R by 

(2.2.3) ECg) = TCg) - Q(g) 

From the assumption, E^^) = 0 . Thus we could apply the Sard 

kernel theorem that there exists a function such that 

(2.2.4) 

and 

E(g) = Vpt)g^”'^lft) dt 

JL 
ml 

Exccx-t):;:) 

1 

mT C T(x-t)^ 

N 

I ai(^i-t)” 
i=0 

] 

(2.2.5) ^m+1CL) 
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Then by applying the Holder inequality on (2.2.4), we have, 

1 1 
for p,q > 1 with — + — = 1 

p q ' 

C2.2.6) |Ecg)i s {f^K{f*|g'-"'’^^TtqPdt} 
1 
-P 

^m+1 * ^ 
Cm+ll 

Equality holds for the function g with the property 

(2.2.7) = sgn(K^^^(x)) |K^^^(X) |P (a.e. for p > 1) 

In particular, there exists a function g* e H”^^^C0,1] such that 

(2.2.8) 

Thus from (2.2.6) and (2.2.7) 

(2.2.9) 

Define 

C2.2.10) 

E(g*) m+1''i 
[m+1] 

IIUlllp =' 

Note that |||gl|| = 0 if g e , so we do not distinguish 
P 

f and g if f - g e , then ||| * III ^ norm on //'^^^[0,l]/j5)™ 
P 

C2.2.6) can he written as 

C2-2.ll) |E(g)l S IIK^+IIIL -lllg 
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Hence if E : R annihilates polynomials of degree m, then 

the i^-norm of E is given by 

(2.2.12) L 
q 

In particular, 

(i) If p=“j q=l,we have 

(2.2.15) 

If 

(2.2.14) 

lECg)l s 1 li^-lllgllL 

l|Elli= NWIIL, 

p = 2 , q = 2 , we have 

|E(g)l . llK„,JI,^-|l|g|IU 

Different quadratures have different Kernel functions for the 

error functionals. We shall denote by EQ if the dependency of E 

on Q is to be emphasized. Following E483 and [491 , we have the 

following definition: 

Definition 2.2.1 

m-exact quadrature 

the be^t quadrature 

(2.2.15) 

Let (2.CN,m,{Ci}^„ ') (abbrev. 0 
•L 3__ J_ 

Q to T of the form (2.2.2). 

(w.r.t. 0 if 

II Vh = SQIIEJU 

be the class of 

£ Q. is called 

The subsequent sections are devoted to the evaluation of the best 

quadratures for I. , I! . and I. . 
1 1,1 1,1 
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2.2b. Best Quadrature for dx 

Let I.Cf) = f Cx) dx , 1 < i < n-1 
^ Jo ^ 

where 

(j)^ , 1 < i ^ n-1 , is defined in Cl»10.1). Since cj)^(x) = (j)Cx-kh) , 

where 

4 Cx) = -< 
t X £ c-h,on t = 
l“t X e CO,hi t = 

'k' 

x+h 
h 

h-x 
h 

we only need to evaluate one quadrature formula for Io(f) 

this quadrature applies to f Vi. 

f Cx) 4> (x) dx ; 

Notation : 

Ci) QJO CN>ni,: the class of m-exact quadrature QQ of 

IQ of the form (2.2.2). 

Cii) Qo : the best quadrature formula w.r.t. 2o CN»ni,. 

The following is a list of quadrature formulae which are best 

in each class of quadratures. The bounds for the error functionals 

are computed via the Peano-Sard kernel theorem. 

The best quadrature in the class Qx)Cl,l,{0}) is 

Qo(f) = h.f(O) 

If f € H^C0,1] , then 

|E(f)l S 0.0833.h^||f"|lLJo,l] 

|E(f)| S 0.0891.h2-5. Ilf’li, 

and 
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The best quadrature in the class Q.o (2,1, {is 

oCf) = 2 

If f e then 

|EC£)| S 0.0542.h3.||£"|li^„^„ 

and 
|E(f)l < 0.0570-h2-5.||f"|l^^|.Q^^^ 

h h 
The best quadrature in the class ^0 3, is 

QID f' J2'\ hr'/^ ^-C/' ^ 
„Cf) = -.f(--) .-.f(_) 

If £ € H^Co,l] , then 

[EOT I S 0.0282.h3.||f"l|^^^^^^^ 

and 

|ECf)| fi 0.0267-h2-5.||£"||j_^^^^^^ 

If £ eH^COjl] , then 

lECUl ^ 0.00162-h5.|l£^"dlL„Co,l] 

and 

|EC£)i S 0.00178-h‘*-5.||T4n||^^^^^^^ 

This is an example of a Gaw!>6^n typ2, boAt qaadAcutuA^, formula . 

It shows that there exist two-point best quadratures which are exact 

for . An disadvantage of this quadrature is that we have to place 

the weights at ±h//6 . Another way to obtain higher order quadratures 
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is to place the weights at more points. 

The best quadrature in the class QoC3,3,{-h,0,h}} is 

If f e . then 

and 

|E(£)1 S 0.0381-h2-5.||f'||^ 

If f € H‘*CQJ12 , then 

|E(f)| < 0.00417.h5.1|f'^‘*l||^^^^^^^ 

and 

|E(f)| S 0.00404-h‘^-5.||/43||^ 

Herbold, Schultz and Varga [34] obtained the same quadrature by 

interpolating f by a quadratic (Lagrange) polynomial p and then 

integrating IQCP) exactly. 

The best quadrature in the class Q^)(3,3,is 

q'^Cf) = j-fc-|) + l-fco) + j-fCj) 

If fe f/^[0,ll , then 

|ECf)| ^ 0.015I.h3.11f"ilL„C0.11 

and 

|E(f)| £ 0.0I35-h2-5.|lf"|lj^^|-^^^^ 
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If f € , then 

lECf)| s 

|ECf)| < 0.00107-h2-5-llf'^'’^||j_^j.0^^3 

2.2c. Best Quadrature for 
fl 
Q P W<f)|(x)(J)^U) dx 

In (2.2.2), if we take wCx) = <{>I (x)(J>'-Cx) , then we have 
-.1 1 J 

= J p (x)(f)'(x)(f)’.Cx) dx . 
0 1 J 

We need only to consider two cases : (i) |j“i| = 1 and (ii) j = i 

since II . (p) = 0 V p c ,Vk>0 if |j-i|>l. 
1 >1 

2.2c.l. The Case |j-i|=l, l<i,j< n-1 

For j = i-1 , we have 

C2.2.16) 
fih 

p(x) dx 
(i-l)h 

This case has been considered in detail in Sard [49]. 
/ 

The quadrature for I' is valid for II . ^ , i = 2 j^^jn-l 

[cf. 2.2b.) , and for the case when j = i+1 , since II . = II . 
1—i,1 1,i~i , 

the same quadrature applies, so we shall evaluate the quadrature 

for I 
1,0 
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Notation : 

9 1^ ¥ 

Ci) • the class of m-exact quadratures ^ 

the form (2,2.2) of I* . 
j.. u 

Cii) the 6e6-t quadrature w.r.t. (2.^ ^CN^m, 

I 
The best quadrature in QCSjS^iOj-jjh}) is the Simpson’s rule 

Qi.o - g^pc|) - 5^-P(h) 

If £ e H^CO.ll . then 

|ECf)l s 0.0123-h-||£"|lj^^|-o^^j 
and 

lECfJl S 0.0152-hO-5.1|f"||j^^j.p^j^^ 

If f € ff^[0,ll , then 

|ECf)| S 0.000347-h3-||f‘^'‘l|l^^^Q^^j 

and 

|E(£)| s 0.000464-h2-5.11f'-'‘^|lj^^|.p^^^ 

2«2c/2. The Case j = i, l<i,j< n-1 

For j = i , we have 

l! . = 
1,1 

of 

1 /-(i+Dh 
— PW dx 
h^ ^ Ci~l)h 
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For notational simplicity, we shall evaluate the best quadratures by 

considering 

(This case can be found in Sard C49I). 

Notation : 

(i) 0^ 0^^i^i=l^ ' class of m-exact quadrature ^ 

of the form (2.2.2) of I* . 
\J y \J 

(ii) QQ^Q • beAt quadrature w.r.t. ^(N,m,. 

The best quadrature in Q(3,3,{-h,0,h}) is the Simpson's rule : 

If f £ H^C0,11 , then 

|ECP)| < 0.0987.h.||p"lh„no,ll 

and 

|E(p)l S 0.0861-h0-5.1|p"|ij^^|.j^^^^ 

If f e H^fO,l] , then 

|E(p)| < 0.0111.h3.1|p‘^«l|^^^o^^^ 

and 

lE(p)l < 0.0105-h2-5.||p'^4^||^^^^ 



41 

2.2d. Best Quadrature for 
fl 

Cx) dx 

I. .(q) 
1,1 

If we take wCx} = <f)^Cx]<f>- (x) in C2*2.1] , then we have 

fl 
q(x)^^(x)(f)^ (x) dx ; we need only to consider two cases 

Ci) [j-il = 1 and Cii) j = i 

2.2d.l The Case |j-i|=l, l<i,j< n-1 

In this case , we need only to evaluate the quadratures 

for I-i n * which is 
Jm f \J 

^1,0 ■ ^2 

fh 

h^ 
q(x)•Ch-x)«x dx 

Notation: 

Ci) (abbrev. Q) : the class of quadratures 

m-exact Q. . of the form C2.2.2) of L ^ . 

(ii) Q? : the be6>t quadrature w.r.t. Q. (N,m, ) . 
JL, U J., U 1 1 X 

The following is a list of quadratures in each class Q. „ 
» 1, ^ 

The best quadrature in the class Q „(l,l,{y}) is 
X ^ V/ M 
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If q € H^[0,1] , then 

|E(q}| < 0.0Q417-h2-||q"llt^|;0,il 

and 

|ECq)l ^ 0.00616.hl-5.|lqn||^^^^^^^ 

The best quadrature in the class ^C3,3,{0,y,h}l is 

If q £ H^[0,11 , then 

|ECq)l £ 0.00189-h3-| lq"| 

and 

|ECq)i fi 0.00246-h2-5.||q"|!j_^^Q^^^ 

I£ q £ , then 

|ECq)| < 0.0000496-h5.||q‘^41||^^^^^^^ 

and 

|E(q3| < 0.0000676-h‘*-5.| 

2.2d.2. The Case j=i, l<i,j< n-1 

As before, for notational simplicity, we shall consider 

rO 

-h 
q(x)*(x+h) dx + 

fh 
qCx)*Ch-x) dx 
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Notatiori : 

Ci) 0^ (abbrev. Q) : the class of m-exact quadra- 

ture Q of the form f2.2.2) of I . 
v/ ^ U \J y \J 
Vv \T 

Cii) QQ Q : the beJit quadrature in J ' 

The following is a list of best quadratures in each class (2^ Q • 

The best quadrature in the class QQL,1,{0}} is 

If qeH^COjl] , then 

iE(q)l < 0.0334-h3-||q"|q_^|-g^^^ 

and 

|E(q)| < 0.0323-h2-5.| |q"| 

The 
r> W 

best quadrature in the class QC3>3,{-~,0,y}) is 

2h 6h 2h .h. 
,0 15*^^"2^ 15*^^2^ 

If q e H^C0,1] , then 

|ECq)| ^ 0.0223.h3.|lq"i|,^^o^,3 
and 

|ECq)| S 0.0246.h2-5-||q"iq^[;0,i: 
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If q € 

and 

H^C.0,1] , then 

lECq)l s Q.QQQQ9.93-11®- 1 L„[!0,1] 

lECqll S O.OOOlOSO-h'*-^- |k'‘‘‘^lll.2E0,l] 

The best quadrature in the class ^(3,3,{-h,0,h}) is 

- i-qC-h) ^ l^q(O) ^ i^-q(h) 

If q € K^C0,11 ^ then 

|E(q)| s 0.0219-h^. ||q"lli.„[;o,l] 

and 

|ECq)| S 0.0208-h2-5. ||qM II 

If q £ H**no,l] , then 

and 

|ECq)| S 0.00199-h®- llq'^^^ Hl.„Co,l] 

iE(q)| s o-ooige-h**-^- 

We shall end this Chapter by concluding that, as far as we know, 

the best quadrature formulae in Section 2.2b, except the best quadrature 

in Q.oC3,3,{-h,0,h}), and Section 2.2d are new. 



CHAPTER 3 

SUPERCONVERGENCE 

3.1. Introduction 

In C161, C. de Boor and B. Swartz showed that in solving a 

certain BVP by a certain collocation method, the error at the knots 

of the spline being employed is of much higher order than it can be 

either uniformly or in I.2« Douglas and T. Dupont in C19] discovered 

the knot higher order phenomenon does occur when they approximated 

in 0 
certain TPBVP by the Galerkin method using the space ; they used 

the word ^'SupoAconve/cgmce,'' to represent this knot higher order 

phenomenon. In C201, they demonstrated several methods to obtain 

higher order convergence and extended the meaning of superconvergence 

to include methods of obtaining higher order convergence. The 

characteristic of their methods in [20] is Zocat in the sense that 

superconvergence results at a certain small number of subintervals. 

However, motivated by L201, together with [142 and [25}, we shall 

introduce a method called ’'gZobaZ ^upeAconveA.ge,nce vZa ZoaaZ 

qu(K>A,-ZyiV2/U>e,*' in section 3.3 to obtain higher order convergence for 

the solution of [1*3.3) with homogeneous [1.3.4). 

s 

For the sake of simplicity, in this chapter, we shall restrict 

our discussion on the solution of [1.3.3) with homogeneous [1.3.4). 

3.2. The Superconvergence Phenomenon at the Knots 

The solution of [1.3.3) with homogeneous [1,3.4) by the 

45 
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Ritz method has been shown in section 1.5 and 1.6 to be equivalent 

to the Galerkin solution. In this section, we shall modify the 

proof in [211 to show the superconvergence phenomenon at the knots for 

the RRG solution of [1-3.31 with homogeneous (1.3.4). 

Let u be the true solution of [1-3.3) with homogenous Cl-3.4). 

m 0 
Let Uj^ € be the RRG solution to u in the sense that 

,m,0 
(3.2.1) CpUj!^,v^) + Cqu^,v^) Cf,Vh) V 

Let ^ = u-u, , then 
h 

C3.2.2) CP5’,V^) Cq?,Vj^) = 0' V 

Let G(x,5) be the Green's function for (1.3.3) with homogeneous 

[1.3.4), i.e. 

(3.2.3) u[x) = [f,G[x,0) 

= (Lu,G[x,‘)) 

= (pu',||-[x, •)) + (qu,G[x,-)) 

for sufficiently smooth u. In particular, the representation 

holds for u e Hj[0,ll , so that it can be applied to t, , Thus 

[3.2.4) c(x.) = (p^.,||cx.,-)) + [q^;,G(x.,-)) 

= (qc,G[x^,o-v^) 

for all V, e 
h h, 0 

and 
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C3.2.5) Ictx )| £ C- lie 111- Inf ||GCX ||i 

where C = CCp,q) 

I£ p e and q e H’^^^C.0,11 , then 

(3.2.6) G(Xj^,-) e ([0,x^]) n H“'^^C[X. ,1]) 

and 

(3.2.7) ||G(x^,-) II ,1] “ 

Since the functions in S™’; are not required to be differentiable 
h, 0 

at X = , it is clear ( by using Lagrange interpolation at 

each interval ) that 

r, , S'! ^ liG(x,-)-Vh|ll < C2(p,q)-h™ 13.2.8J ^qm,0 ^ 
^h h,0 

It is known that ([8],[20],[21],[41]) 

(3.2.9) ll?IU + h-i|?||i < Cs- |u 

0 < k < m 

From (3.2.5),(3.2.8) and (3.2.9) 

(3.2.10) |c(xp| S C (p,q)- l|u 0 £ k < m 

Thus we have proved the following theorem: 

Theorem 3.2.1 If the solution of (1.3.3) with homogeneous Cl-3.4) 

is such that u e HQ[0,1] , then the knot estimate (3.2.10) is valid, 

i = !,••••, n-1 . 
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Remarks: 

(i} If the coefficients pC^} and qCx} are not smooth enough 

for (3.2.7) to hold but are such that, for some j e CO,ml , 

G(x^,«) e H^^^([0,x^]) n H^^^([x^,l]) , then 

(3.2.11) |c(x.) I < C5(p,q)- ||u 0 £ k < m 

(ii) In particular, if k = m , then we have 

|?Cxi)| < CeCp.q)- llu 

for i = 1 ,••••, n-1 . 

(iii) It is worthwhile to mention that Wheeler in [601 made use 

of [3.2.10) in showing that 

(3.2.12) 

where 

lUll f rn ii ~ ^yCPii)* llu H , LooLU,i_l 11 h 
m+l 

^ ■■ Xil f II P3, = I llf^ .. p 
o;P’\o,ii i=o L^co,ii 

W^*\o,ll = < u £ C^”\o,ll 

Ck-ll . , ^ , 
u IS absolutely 

Ckl 
continuous and u e C [0,11 

P 

[see a similar result by Douglas, Dupont and Wahbin in [221 ). 
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(iv) In particular, if m ^ 1 , i.e. u, € , then we have 
h h,0 

1 I ^ Cg(p,q) • IIu II 2*h^ 1 < i < n-1 

and iUllo - MUII < c k 
k = 1,2 1 10 

hence 

(v) If p = 1 and q = 0 

!|G(X,-}-V, II 
I , the Green's function Gfx,") e c Sf*’^ 

h j 0 h ^ 0 

'^11^ = 0 ,which implies, (3.2.5), C(x^) = 0 , 

1 < i < n-1 . 

3.3. Global Superconvergence via Local Quasi-Inverse 

In this section, we shall introduce a constructive method 

to obtain a "gtobat ^LLpeAconueAgence," solution to fl.3.3) with 

homogeneous Cl*3.4) in the sense that the global error is of higher 

order then the RRG solution in either the energy norm or HQ norm. 

The outline of the method is as follows : 

Firstly, we solve (1.3.3) - homogeneous (1.3.4) by RRG Cfiiiite 

element) method using the space to obtain the RRG approximation 

Uj^ . We shall write the RRG method in an operational form by . 

Thus R : Hi[0,ll ->■ such that u, = R, C^) • Note that u, 
hO li,0 hh h 

is a linear function of u . 
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As soon as we know , it is nice to know the inverse of 

, then we can compute u exactly. But, unfortunately, this is 

impossible in general. However, motivated by C. de Boor and G. Fix 

in C141 and P.O. Frederickson in C251, we know that we could make 

use of an approximate, inverse more about an approximate inverse 

of a linear operator, please refer to Benson [3]) of to obtain 

a better approximate solution s of u . An easy type of an approxi- 

mate inverse to compute is what we shall call a qucu>^~^n\}2A6Q, Q 

of R^ ; thus we define s = Q*Rj^(u) , 

In section 4.5 , we will obtain error estimates for the 

error operator E = I - Q*Rj^ . 

Definition 3.5.1 ([14,pp.l9!l, [25,pp.l59]) 

An approximation operator H : A c H^[0,1] -> B c H^[0,li is 

called a tocjodi apph.oxAMCutiovi opoAoXon, if (Hf) (x) is independent 

of the function f outside a certain neighborhood of the point x . 

To be more precise, we require a compact set K such that for 

any f in A and any x in Q0,ll, CfCx) =0 V y e x+K => 

CHfJCxl = 0]. 

Definition 3.5.2 

Let i|) : A c Hk[o,ll B <= be a linear operator. 

Q : B C c: H^COjll , a linear operator, is a fi-QXdcX qncu>X-XYiV2/U2, 
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of ijj if (i) Q is a local approximation operator and 

(ii) Q-ij^Cp) = p V p £ J>^L0,11. 

In this thesis, we shall consider in particular, A = , 

^ ~ ^ ~ "^h^O ’ ^ ~ ^h ' shall make use of a 

3-exact quasi-inverse of the RRG method to obtain a superconvergence 

3 2 
approximation s £ to u . 

Let us go on to the construction of the superconvergence solution. 

From Cl-6.9) , 

C3.3.1) a(u-Uj^,Wj^) 

=> aCu-Uj^,(f) j} 

=> a(u,(|)j3 = 

= 0 V Wjj £ Shio 

= 0 j = 1 , • • • •,n-l 

j) 

n-1 

— E ^i * ^ i *1^ j ) 
i=l 

n-1 
where uj^ = J! with which have been determined earlier 

i=l 
by Rh . 

QCuh) Is in , it can be written as QC^j.) = E » 

+ 1 -^7 
where {B, , is a basis of (cf. 1.10b.2). We want 

Q*Rh to reproduce p for p £ . By the Zocdt property of 

Bj^ in tk]^_2>^k+2^ ^®k identical to zero outside C^]^_2^^k+2) 

we could have Q to be a local approximation operator by defining 

^ ^ ^k-1 ^ ^k ^ ^k+1 
(3.3.2) 
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where u, = u, (x.) 
hj^ h i 

C3.3.3) qCuj^)Cx.) 

Note that 

K u K 
4 j-1 j 4 j+1 

C= if u € fp 
for j = 0,••••,n-l 

is of dimension 2, and {u^^Cx) = x(l-x) , u°^(x) = x^(l-x)} 

form a basis for will reproduce p e J^Q if and 

3j^ are determined through : 

C3.3.4) 

where 

Q*R^Cu°°) Cxj^) = uOO(Xj^) 

. Q*\(u°^) Cxj^) = uOl(Xj^) 

C3.3.5) 

. uOl(Xi^) 

khCl-kh) 

k^h^Cl-kh) 

After we have obtained the RRG solutions {a^^} and > 

1 < k < n-1 , the next step is to evaluate -1 < k < n+1 , t = 0,1 , 

and {ot, ,3, . These determine {b, , and hence s is obtained. 

From (3.3.3), (3.3.4) and (3.3.5), we have 

(3.3.6) 

Qu^Cxp 

1 
I Qu“ 1 (xp 

" *’k“ " Hh - '^''tl-kh) 

^kh ^ '’k^ ^ ^kh = k2h2(l-kh) 

A solution of (3.3.6) is 
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(3.3.7) 

50 Q 
k 

2 2h^ 
|kh(l-kh) + ~ 

-^1 < k < n+1 

= |fc2h^(l-khl + |kh.3 - 
k 3 3 9 

,n-l 
From C3*3.2), obtained by solving the linear systems 

C3.3.8) a 
hk_i 

+ 3, + a, u Ot _ uOt 
k h, k h- 

t = 0,1 
k+1 

For k = -l,0,n,n+l , we need extrapolations as follows : 

C3.3.9) 

(3.3.10) 

y + 3. uP^ + a. uP^ = bP^ 
k hg k ^ ^2 ^ 

Ot + 3, u Ot 
*^k^h „ ■'k''h T ' k'^h 

n-2 n-1 n 
+ Y uP^ = bp^ 

k = -1,0 t = 0,1 

k = n,n+l t = 0,1 

Note that up^ = uP^ = uP^ = uP^ = 0 , so we need only to evaluate 
>^0 >^0 ‘'n 

{ak^3k^ for k = -l,0,n,n+l . The solutions of (3.3.8) - (3.3.10) 

can be easily obtained by Gaussian elimination method. 

n+1 
For p a constant and q = 0 , ^^k'^k^k“-l evaluated 

by pen and paper calculation. The evaluation is as follows : 

From (2.2.12) we have a(^$^,(|)^) “ > where A is defined 

in (2.2.13) . The RRG solution for u^^ and u^^ can be derived 

from (3.3.1) with A : 

(i) For u^^(x) = x(l-x) 

From (3.3.1) a 9® + 2a9^ - a9^ I 
J-1 J 1+1 

but from 
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tke definition, 2pk , j = l,‘”‘,n-l . The solution is 

C3.3.111 aOO = khCl-kli] 1 < k < n-1 

This fits Remark Cv) in 2.2 . 

Cii) For u^^Cx) = x^Q-x) 

Similar to (i), we have -2ph + 6ph^j^ = ^ ^ ^j+1^ 

The solution is 

C3.3.12) a°l = k%2(l-kh) 1 ^ k < n-1 

This fits Remark fv) in 2.2 too. 

With C3.3.11) and C3-3.12), the solutions of (3.3.7) - (3.3.10) by 

Gaussian elimination method are : 

„ lyS+2h. 
“-1 ” 9^1 

g - if—1 
g'-iTP Y.i = 0 

1,1+h. 
“O ” “9^1-2h^ 

. _ 2.1+2h. 
-0 9^1-h^ 

Yo-0 

“k ’ ”9 ^k " 9 
2 < k < n-1 

a = 
n 0 ®n = \ = ^0 

a = a - 
n+1 -1 ®ntl = Vl = ^-1 
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Remarks : 

(i) For general p(x) and qC^) , the cofficients 

be solved numerically in a similar way by Gaussian elimination method. 

Cii} For p constant and q = 0 , the extrapolation for * 

k = -l,0,n,n+l , can be evaluated in an alternate way as follows : 

For k = -1,0 , we let 

,0t Ot o Ot Ot o Ot 
(3.3.13) t = 0,1 

and for k = n,n+l , we let 

, Ot . Ot Ot „ Ot Ot 
\ ," q"h ," “k“h 

n-3 n-2 n-1 n 

C3.3.14) 

Then from (3.3.3) - (3.3.7) , we have 

t = 0,1 

(3.3.15) 
1, Ot , Ot 1, Ot Ot 

1 + b, + 1 = u, 
4 k-1 k 4 k+1 hv 

k = -l,0,n,n+l 

t = 0,1 

By expanding both sides of (3.3.15) in terms of order of h and then 

identifying the coefficients of the terms in order of h, we will have, 

for each k, t, a linear system. After solving these linear systems. 

a 
-1 

= a 
n+1 

= 0 a. a 
n 

0 

-1 n+1 

^-1 = ^n+l 

5=6 , 
-1 n+1 

■ 9 

IZ. 
9 

4 

■9 

3 
n 

5 

9 

^0 = ^n = 

4 
9 

6 
n 9 

we obtain 
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The next chapter is on the error analysis, in which we shall 

extend the Peano kernel theorem and make use of it to estimate the 

convergence rate of the global superconvergence. 



CHAPTER 4 

ERROR ANALYSIS 

In this chapter, we shall discuss the errors and obtain error 

bounds on different norms for the RRG approximation and the global 

superconvergence. We shall employ the Peano Kernel Theorem as a tool 

in the error analysis especially in 4.1 when we make use of the linear 

interpolant u^-Cx) of uCx). to obtain the bounds for 

well as the bounds for [0 1]' shall, in 4.3, extend 

the Peano Kernel Theorem to apply on the BVP so that we could make 

use of the theorem to obtain the error bounds for the global super- 

convergence approximations. Finally, in 4.5, the effects of quadrature 

rules on the RRG approximation will be discussed in detail. 

4.1. The Applications of the Peano Kernel Theorem on Interpolation 

In the section, we discuss the applications of the Peano 

kernel theorem on the evaluation of the error bounds for the inter- 

polation of functions. These applications will be used extensively 

in 4.2 , 4.4 , and 4.5 . A more general discussion can be found in C51. 

Let f £ ^[0,1] . Let s € be an interpolant of 

f at the knots {x.}^ ^ . 
1 1=0 

Assume that s is exact for . 

Let E(^,»3 : ‘^[0,1] -> R be the error functional, when f 

is interpolated by s, at each point ^ e [0,1] . i.e. 

57 
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C4.1.1) EC£,f} = fC£} - SCO 

Then by the Peano kernel theorem, we have 

C4.1.21 EC5,f) = 0 dt 

where is the Peano kernel function which has been shown 

in section 1.7 to have the explicit form : 

C4.1.3) Km+lC5,0 = ^ E^(5,Cx-t)“) 

Let, for each £ e , 

C4.1.4) e(0 = ECC.f) 

Then by Holder's inequality, we have 

(4.1.5) jeCOl s ||f 

If we define 

(4.1.6) feqCO 

(m+1) 
lit • 

K+iCot)!"* dt 

then (4.1.5) becomes 

(4.1.7) |e(0| s llf^'"’^^’ llj^ -CfegCO: ii/q 

Since, in (4.1.7), |jfCni+l) || ^ constant, we could easily obtain 

C4.1.8) e II ^ Ilf 
*-s 

where 
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(4.1.9) k 
q,s 

fl , , l^/q 1/s 
I Kj^+1 (C j t) I ^ dtj ds 

In particular, 

C.i) p = co,q=i^s = 

C4.1.10) 

k 
fl 

1,. 

sup 
0<^<1 0 

(ii) p= l,q-oo,s = oo 

(4.1.11) ^ 

||e|q s Ilf 
1-00 

^^voroo ~ 
sup sup I rptil 

0<?<1 0<t<l ' 

(iii) p = 2,q = 2,s = 2 

C4.1.12) 
^ Ilf II, -fe2. 

k 2.2 - 

r fl fl , ,o 'll 

tJo Ic 
/2 

4.2. The Errors in the Interpolation by S 1,0 

Theorem 1.6.1 tells us that the energy norm of the RRG 

error is minimum over the space approximation 

is from sf’° • i-e. Il“-'^h V ^ sijg . 

Generally, the bound for ||u-u. || is difficult to obtain directly, 11 
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but from the fact that II||^ is minimum over ^ we could 

suitably choose a uj e such that the bounds of ||u~ui ||^ can 

be found easily and hence we could make use of these bounds for 

||u-Uj 11^ to be the bounds of ||ti-uj^||j^ . Such a Uj to be chosen 

is the linear interpolant of u, i.e. the piecewise linear function 

which agrees with u at the knots Note that uj can be 

written as n 
UT (X3 I u(xj)4)jCx) 

j=0 

Obviously, uj is exact for 'P^ . Hence by the Peano kernel theorem ^ 

the error functional for fixed ^ e [0,13, can be written as, 

for u e H^[0,1] , 

(4.2.1) E(^,u) = uC^) - I u(Xj)(j>jC5) 

= f K2C^,t)u"(t) dt 
0 

where 

(4.2.2) K2(?,t) = ExC^>(x-t)^) 

Suppose that ^ £ [x TjX 1 , for some k £ {l,***,n} , then the 
Kl X JC 

Peano kernel K2(Ci*) is of the form: 

(4.2.3) K2(4,t) 

where 

C4.2.4) 

= (5-t)+ - r.(xj^_^-t)'|‘(t,j^_^(?)+(xj^-t)';;(|)j^(?)] 

= 

h 

?-x k-1 
h 

We have, from (4.2.3) and (4.2.4) 
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(4.2.5) K2 (^, t) =4 a -t) - <j>^ a) 

The graph of K2C^,t} is 

t < X, , or t > X, 
k-1 k 

’'k-i - ^ « 

5 < t < X, 

and 

C4.2.6) ||K,C5,-) 

Fig. 4.2.1 

L^C0,ll 2 “ 8 

If u e H^[0,1] , and u" is bounded, then 

|ECC,u}l < IlK^Ce,-) llg,[;o,i]’ 11^" 

and 

C4.2.7) ilEC*,u) ^ 8 lh„C0,l3 

The constant ^ is the best constant, since there exist functions 
o 

such that the equality holds in (4.2.7) (cf. [56, pp.44]). 
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To establish bounds for u'-u^ , we let, at each point ^ £ [0,1] ^ 

(4.2.8) E(5,U') = u-(5) - u^(C) 

we see that the right hand side of (4.2.8) is exactly the quantity 

“ E(x,u)(we shall denote it by E'(^,u)) 

It is clear that is exact for p' if p e . By the 

Peano kernel theorem and similar way of working as before, we have, 

if u 6 and for ^ e [x ] , 
X K 

(4.2.9) E'(^,u) = K|(C,t)u”(t) dt 

0 t < X],_i 

(4.2.10) Kj(^,t) = < 
h 

Xk-t 

h 

Xk_i ^ t ^ C 

C ^ t ^ x^ 

0 t > X, 
k 

The graph of KJ is shown in fig. 4.2.2 
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From [4.2.9) , we have 

(4.2.11) l|K2(5,-)lhjC0,n 

Then 

(_r-)dt . fXk x^-t 
h 

dt 

k-1 
h 

|E'C5,u) I < 2 11*^" llu[0,l] (4.2.12) 

and 

(4.2.13) ||E'(-,u) - 1 IIL„[0,13 

The constant ^ in (4.2.13) is an improvement o£ the constant 

in [83 in which C = 1 . However [563 has the same result. 

Thus we have proved the following theorem : 

Theorem 4.2.1 If u € H^[0,ll and u" is bounded, then 

(4.2.14) ||u-u^ lluo.ll - I ll“" IIUCO.II 

(4.2.15) 

For the bounds of the errors u-u^ and u'-u’ in L^-norm , we 

have the following theorem ; 
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Theorem 4.2.2 If u e H^[0,1] , then 

(4.2.16) l|u-u 
l"I-2[0,l] - 3/10 

< ^ h2 Hu” 

(4.2.17) Ih'-uill^Eo.l] 
1-2^0,1] 

Proof 

From (4.1.12) , we compute, for C e , 

(4.2.18) 

and 

(4.2.19) 

fe2(o = ir cvo"(5-x„.,)2 

kz,2 =[| fezCOds] 
1/2 

3/10 
h2 

Thus, if u € H^C0,1] , 

il“-«lll2 ^ fe2.2 ll“"lli.2[o,l] 

= -J_h2 Hu”" 
3A0 /-2[0,1] 

Similary, we have 

ll"’-"illl.2CO,l3 ^ ll“"llj.2*feL2 

where 

fe5. [( fe?(€) d? 
with 
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(4.2.20) 

3h' 

K2(C,t)l^ dt 

3h 2 k 

Then 

k* 
2,2 

/6 

This completes the proof. 

For the and energy error bounds, we have : 

Theorem 4.2.3 If ucH^CO,!], then   g 

(4.2.21) ~ §0^* lb" lip'll^ 

(4.2.22) IIU-UTIIA - (i P )-||u"|p‘h2 
^ “ I"A 6 ^max 90 ^ax " “g 

Proof : (4.2.21) follows from Theorem 4.2.2. 

For (4.2.22) , we have : 

u-u 
I"A 

p(u’-up^ + q(u-u^)^ dx 

- (P *“— Q 11 '^^max 6 %iax 90^ " *' 

Theorem 4.2.3 will be used to establish error bounds for the RRG 

solution. 
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4.3. The Errors in the RRG Solution 

Since the energy norm of the RRG error is minimum 

over , thus from theorem 4.2.3 , we have the following 
xl j y 

theorem : 

Theorem 4.3.1 For all f e , 

(4.3.1) 

2^ 6 

Proof : If f e H^[0,1] , then u e H^[0,1] ; and from (1.3.8), 

we have 

u' ^ P2PII0 

and from Theorem 1.6.1 and Theorem 4.2.3 , we have 

u-Uhlh - I”A 

^ (- 
^max , Snax « t 
6 90 " " “ "0 

h2)'^ h* llu" II 

.^max %iax 11 ^11 
2^— " ^ h2)^h.llf|| 
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Theorem 4.5.2 If u £ H^[0,1] , then 

(4.3.2) ||U-LL^||Q < Pmax ^ H HQ 

" ^2 ^niax ■*■ M ^max)h^ Iloilo 

Proof : (cf. [56], pp.49]) . 

However, for a self-adjoint second order ODE (1.3.2 - 1.3.4), 

a theorem in ([60], pp. 914) could be applied. 

Theorem 4.3.3 [Wheeler] 

^ a constant C such that if u e W^’^^iO,!] , 

then 

(4.3.3) llU-Uj^llo < Ch2||u"||^g^, 

(cf. Section 3.2) 

From theorem 4.3.1 to theorem 4.3.3, we have shown that, the 

order of accuracy in the error u-Uj^ in different norms are: 

II-IL : 0(h) , II-Ho : O(h^) and ||•||J_ . : 0(h2] . 
oo^ > -* 
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4.4. A Generalization of the Peano Kernel Theorem 

By a generalization of the Peano kernel theorem, we are able 

to establish error bounds for the Global Superconvergence. 

Theorem 4.4.1 (Gene/caLczdcl Peano KeAneZ TheoAm) 

Suppose E : HQ[0,1] -> R has the property that 

(4.4.1) E(u) = 0 if u(t) = t(l-t)p(t) V p € 

Then there exists a K . such that 
m+1 

(4.4.2) 

where 

(4.4.3) 

E(u) = 

(m+1) 

ri 

u 

(t) dt 

d  u(t) 
dtm+1 t(l-t) 

Furthermore, the generalized Peano kernel has the form 

(4.4.4) K^^^Ct) = E(up 

where 

fx-tl™ 
(4.4.5) 

Proof : 

O 
By Rieszi’s representation theorem, there exists a K such that 

(4.4.6) 

Let KQ 

E(u) 
o 
K(t)u(t) dt 

0 

t(l-t)K and u^^^ = » then (4.4.6) can be written 
11J- “ t j 

as 
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E(u) 

K, (t) = 

KQ(t)u^^^(t) dt 
0 

K„(T) dT 
0 

d „(0) 

(4.4.7) 

Define 

Then since 

we have 

(4.4.8) E(u) = [-K^(t)u(°ht)]J + K^(t)u^^ht) dt 

Take u(t) = t(l-t) , then = 1 , = 0 , and from (4.4.1) . 

E(u) = 0 ; these with K^(0) = 0 give us K^(l) = 0 . Thus 

(4.4.9) E(u) = f K.. (t)u^^^ (t) dt 
J 0 1 

Assume that we have, for some 1 < s < m , 

(4.4.10) 

Define 

E(u) = f (s) K (t)u^ (t) dt 
Jo ^ 

K , (t) = s+l'- ^ 

rt 

0 
K^(T) dx 

Then since Ct) = ^ u^^^ E't) 

and by integration by parts, we have 

(s) E(u) = -K3^lCt)uf"ht)]^ 1K^^^(t)u(""lht) dt 

Take u(t) = t(l-t)^ , then from (4.4.1), E(u) = 0 . We also have 

u^^^l)(t) = 0 and ~ ^ ' these give K^^^(l) = 0 and hence 

rl 
E(u) = K^^j^(t)u^®'"^ht) dt 



70 

The function ' 1 ^ s £ m , is a generalized Peano kernel 

function. 

To evaluate , we want 

(4.4.11) = «^,tT) 

so we take u = u , where is defined as 
t t 

(4.4.12) U^(T) = T(1-T) 

Then 

C4.4.13] S+lW = ECu^) 

This completes the proof. 

We shall, in the following Lemma, establish conditions on u to ensure 

Cs+1) 
the existence of u . We shall define 

CgCO.l] = {u £ c’^co,!] I u(0) = u(l) = 0} . 

Lemma 4.4.1 

(i) If u € CjC0,l3 , then u^^^ € C°C0,1] . 

(ii) .If u € C^COjl] , then u^^^ e C°[0,13 . 

(iii) If u £ CQCO,1] , then u^^^ £ C®C0,1] . 

Proof : 

It is clear that (i) - (iii) are valid for t £ (0,1) . We 
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shall show that the derivatives exist at t = 0,1 for the three cases. 

(i) If u e C^[0,1] , then we have 

u(t) = tu'(0) + t*o(l) 

Let = ^(1 + t + fO(l)) 

Then (t) = = u'(0) + 0(1) 

Thus we have (0) = u'(0) . 

Similarly, we have (1) = -u*(l). 

(ii) If u € C^[0,1] , then we have 

t2 
u(t) = tu’(0) + ~^u”(0) + t^-*o(l) 

Let toW " |(l + t + ^ + t2-o(i)3 

Then we have u^^^ (t) = (l+t)u'(0) + t»o(l) 

Thus u^^^(O) = |u"(0) + u'(0) 

Similarly we have u^^^(l) = iu”(l) - u'(1) 

(iii) If u e C^C0,1] , then we have 

2 3 
u(t) = tu’(0) + ^u”(0) + ^u’”(0) + t^*o(l) 

2. o 

2 3 
Let T(ht) " ici + t + ^u”(0) + ^u’”(0) + t3-0(l)) 

Then we have u^^^ (t) = u’(0) (1+t+t^) + u”(0) + u'"(0)~ + t^*0(l) 

and hence u^^^ (0) = 2u’(0) + u”(0) + yu'”(0) , 

u(2)(l) ^ -2u’(l) + u”(l) --|u’"(l). Similarly 
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4•5. The Rat© of Convergence of the Global Superconvergence 

The global superconvergence S = has the property 

C4.5.1} S(p) = p V p € m > 0 

Each p can be written as 

(4.5.2) P(t) = tCl-t)p*(t) p* 

From Section 4.4 , for each ^ e L0,ll , the error functional 

R , EC^,u) = uCC)-sC5) , has a representation 

form 

C4.5.3) E(C,u) = 
0 dt 

Similar to Section 2.2, we define, for each y 

C4.5.4) e(^) = E(^,u) 

Following Section 4.1, we have, for p,q ^ 1 s. t. s 

C4.5.5) 

where 

C4.5.6) 

^|'L^ro,u ~ 
Cm+li 

Lco.u'^'q.s 

- >r, (j; n..,cc..)i’d.)‘/«dc)‘'= 

From Section 4.4, the kernel function Kj|^+i(C,t) is of the form 

Kjjj+iC?,t) = EC?,ut) where u^C^) = f' ~ '^(1"'^) • The analytical 

solution of kjjj+i is rather difficult to obtain. However, in 

Section 6.2 , we shall evaluate, in particular, K^C^jt) numerically 
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and then compute the quantities f^oo^oo and fel,oo to obtain the error 

bounds 

C2) 

luo.i] - IILUO,U'^1' 

Thus the H/vto, conueAgenae of the global superconvergence can be 

approximated. 

4.6. The Effects of Quadrature Errors on the RRG Solution 

In this section, we shall discuss the effects of quadrature 

errors on the RRG solution of (1.3.3) , for simplicity, with 

homogeneous (1.3.4) . 

From Section 2.1 , the RRG solution Uj^ is obtained 

by solving the linear system 

(4.6.1) Ma = f 

Our discussion will be concentrated on the following cases: 

(i) ^Vhen f is approximated by the quadrature schemes in 2.2b alone. 

(ii) When M is approximated by the quadrature schemes in 2.2c and 

2,2d alone. 

(iii) When both f and M are approximated by the quadrature 

schemes in 2.2b and (2.2c - 2.2d) respectively. 
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For the case when f alone is approximated by quadrature rules, 

then we have a new linear system 

(4.6.2) Ma = f 

and the solution of (4.6.2) gives us an approximation 
* 

n-1 
(4.6.3) Uj^ = ^i4>i 

i=l 

We shall discuss the choice of quadrature schemes for a given 

sequence of spline subspaces o^i=l HjCO,!] so that the 

00 

theoretical approximations {uh^}-.! , determined successively from 
J- 1—J. 

oo 

(4.6,1) , and the approximations , determined successively 

from (4.6.3) , have a general order of accuracy. 

Let 

(4.6.4) Ii(f) = = IQ f(x)<}>i(x) dx 1 < i < n-1 . 

We associate with the subspace ^ set of quadrature rules 

which is to approximate • 

Let 

(4.6.5) fi = Qi(f) = I cj£(x!) 
j=0 ■’ 

as the approximation of f^^ in (4.6.4). 

It can be easily verified that the quadratic form y'^My can be 
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expressed in terms of the norm 1| • IL as follow 

n-l 
(4.6.6) y^My = II I Xi't'illi 

i=l 

Subtracting (4.6.2) from (4.6.1), we have 

(4.6.7) M(a-a) = f - f 

«p 
Then by multiplying both sides by (a - a) and using (4.6.6) , we 

have 

(4.6.8) (a-a)'^M(a-a) = IIV^HA = (a-a)’’(f-f) 

Up to this point the discussion is similar to [341 ; what 

is different is the form of the quadrature rules. In [341 Herbold, 

Schultz and Varga considered the quadrature rule for of 

the form 
n' 

(4.6.9) H.(f) = I <Ji(x') 
j=0 

where = f(j)j^ 

i.e. their quadrature rules take on the values of f<|)j^ at the 

selected points. The following works will show the quadrature rules 

which we are employing have the following advantages over the 

quadrature rules of the form (4.6.9) , 

(i) The bound for ||uh“UhllA easy to obtain, 

(ii) The order of accuracy for the bound of lluh'^lla higher. 
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Let 

C4.6.10} 

e = a - a 

■< EjL = li “ Qi 

^ E = C^ij • • • jEJ^_2) 

i = 1,»*•,n-l 

i = 1,»»•,n-l 

Then we have, from C4.6.4) and (4.6.5), 

(4.6.11) Ei(f) 

A 

dx 

‘^0 

n’ 

I c £(xn 
j=0 J J 

and the last quantity in (4.6.8) can be written as 

C4.6.12) Ca-a)'^Cf-b 
n-1 

I Cai-aiKIiCf)-QiCf)) 
i=l 
n-1 

I Ei(f) 
i=l 
n-1 

I Ei(fei) 
i=l 

= E*fe 

Thus (4.6.8) is of the form 

(4.6.13) e^Me = iluh-uhll^ = E-fe 

This equation will be used to obtain bounds for || • 

As we have done in Section 2.3, given a f £ f/”^[0,l] , we could 

select a quadrature formula of the form (4.6.5) such that the 

A 

quadrature errors of fi~fi satisfying 
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(4.6.14) |Ii(f)-Qi(f)i S Kr.II 

where is independent of h . 

In particular, we have, from 2.2b, m«» = m + 1 and m2 m + 

Theorem 4.6.1 

Let f £ H™C0,1] , ^ '^h^o ‘ ^ ^ linear 

functionals defined in (4.6.5) satisfies (4.6.14), then we have 

for q > 2, 

In particular, we have 

(4.6.16) llu^-Sjll^ 6 1.. 

(4.6.17) llvinlU ^ [O,!)-""*'" 

Proof 

By applying the Holder*s inequality on (4.6.12) , we have. 

1 1 
for p,q > 1 with — + — = l 

/ p q 

n-1 
E'fe = I Ei-fei 

i=l 
n-1 

= 5] e^'E^f 
i=l ^ ^ 

, ,P 1/P 
= (X |eir)"'^(,L |Eif|‘^)^/‘^ 

(4.6.18) 

hj
| M
 



78 

Since 

Kqi “ Kq 

(4.6.19) 

Thus (4.6, 

(4.6.20) 

Define 

(4.6.21) 

Since M 

equivalent 

we have 

(4.6.22) 

Then from 

, 1 < i < n-1 j are identical, (cf. 2.2b) , we have 

, 1 < i < n-1 and 

n-1 r . r -I q 

i, k i [X X ] 

n-1 
Kq - .L [ lf‘“hx)|^ dx 
^ ^=1 Jxi-1 

< 2K3 • II? 
tq[0,l3 

18) becomes 

oi/q . II ^[m] E.fe s ||e||^.h'^.2--.y||f‘ „,ro,i] 

e|l„ = e’-Me 

is positive definite. M 
„n-l , . 

is a norm on R and is 

to li • ll^p (’^oung [63], pp.27). In particular, for p < 2 , 

l/q-1/2 

(4.6.13), (4.6.20), (4.6.21) and (4.6.22), we have 

,1/q. .[m] 
IIV“hlh 11^ IllqCO.l]-^ 

mq+l/q-1/2 

This completes the proof. 
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ni““ 1 
Herbold, Schultz and Varga [34,pp.253] obtained ll^'^hUA “ ^ 

m > 1 ; compare this with (4.6.16), (4.6.16) has an order 0(h^’^) higher. 

We see from (4.6.15) that if we have a sequence 

dimensional subspaces of HQ[0,1] such that 

then if m , dependent only on f , satisfies 

have 

iiS llu^-ujl^ = 0 

This means that the quadrature errors, introduced by computing uj^ 

rather than u^^ , tends to zero with i . These errors may or may not 

be small relative to 11;^ • Following [34], we have the 

following definition : 

Definition 4.6.1 

The choice of quadrature rules in (4.6,5) is said to be 

con6Z6te.yit in the norm II * llj;j if order of ll^^'^hHj^ 

same order with ||u-uj^||j^ .i.e. ^ K^. if 

(4.6.23) ll^-UhliN - ^3'^^ 

then 

C4.6.24) lluhAI^ S 

where K3,K4 and £ are positive constants, which are independent of h. 

With the triangle inequality, the bounds of (4.6.23) for the norm 

11*11 and the result of Theorem 4.6.1, it follows that 

1,0 ~ 

1 of finite hi,0 1=1 
lim , . = n 
i->oo hi o 

m > 0 , we evidently 
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(4.6.25) II < 

< Ks-h^ . 2^/‘J-Kq. ll/™^ 
m +l/q-l/2 

•h ^ 
i-qCO.l] 

It follows that niq + 1/q - 1/2 > Z gives a consistent choice of 

quadratures in (4.6.15) in the norm 1| * |L which preserves the 
r\ 

asymptotic accuracy of (4.6.23) in this norm. 

As we notice from Theorem 4.3.1, for sufficiently small h , is 

independent of h , and f. = 1 , thus nioo ^ ~ , equivalently m > 

will give a consistent choice of quadrature in (4.6.16) in the norm 

11*11 Thus an 1-exact quadrature in Section 2.2b is good for a 

consistent quadrature. 

Now we consider the case when we apply quadrature rules on M 

and compute f exactly. In this case, we have a different linear 

system 

(4.6.26) M a = f 

The solution of (4.6.26) will give us an approximation 

n-1 

(4.6.27) Uj, = ,L H <l>i 
1=1 

Let 

(4.6.28) 

a - a 

M - M 

then from (4.6.1), (4.6.26) and (4.6.28), we have 

H
i

 CNJ 
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(4.6.29) (M - 6M)(a - e) = Ma 

After neglecting the term 6M*e in (4.6.29), we have 

(^6M)a + Me = 0 

Thus 

-1 
(4.6.30) e = -M (6M)a 

and for q > 2 , 

(4.6.31) l|e||^ < ||M‘'l|^.||fiMli3-||aL 
q s. 

where ll'lls spectral norm. For symmetric and positive definite M, 

(4.6.32) “ ^max 

where X^ax is the largest eigenvalue of M . 

If p £ H ^[0,1] and q e f/^^C0,l] , we could select 

quadratures (cf. Section 2.2c and 2.2d) 

such that 

(4.6.33) 

(6M) 
i-l.i 

< («M)i i s 

s Kgh 
®lq 

I ^ + 
m 

Kyh 

Kah + Kgh 

m^ m 
^ Kah ^ + Kyh 

2q 

2q 

where K6,Ky,Ka and Kg are independent of h . Note that (6M). .: = 0 

if |j“i| > 1 . Thus there exists a constant Kyo which is 
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independent of h , for sufficiently small h , such that 

(4.6.34) (6M) . . < 
^ ^ 1 

Then, there is a , which is independent of h for sufficiently 

small h , such that 

(4.6.35) ll<5M|l^ < 

-1 
By multiplying M on both sides of (4.6.1), we have 

(4.6.36) Ihll^ s IlM'^llsIhllt, 

From (4.6.35) and (4.6.36), (4.6.31) becomes 

(4.6.37) Pll^ s 

To evaluate |lM ||s > we shall consider first the case when p and 

q are both constants. For this case, M is given in Section 2.1 . 

The eigenvalues and the corresponding eigenvectors of M is 

' Uj^(i) = sirnri 1 < Ic < n-1 

(4.6.38) 

2.frl-cos^t] + ^cos^ ^ 2] 
h non 

t h 
where 1 < i < n-1 denote the i component of u 
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For h < /6p/q , we have 

^min 
^ + lah + (-^ + ^)cos- 
h ■ h 6 ^ n 

(4.6.39) 

X = ^ + (_2p ^ ^3cosiS^ 
max h 6 h 6 n 

For large n , equivalently small h , we have 

(4.6.40) 

X„ = 4£ ^ _ 2] , h3[9^] = 4? 
max h 

“1 1 
The maximum eigenvalue for M is -r  , thus we have 

'min 

(4.6.41) 1|M''|| s A 
^ h"^ 

min PTT' 

For general p(x) and q(x) , by the Sturm comparison theorem 

[6, pp.290], the minimum eigenvalue of L in (1.3.3) is greater 

that the minimum eigenvalue of L' = p . u" + (A-q . )u’ , thus 
^ ^min ^min'^ 

we have 

(4.6.42) 

and 

(4.6.43) 

> p . TT^h 
* rm n min - Fj^in 

^min" 

By substituting (4.6.43) into (4,6.37), we have 

(4.6.44) 
Kii 

l|f|| .h“P"("'lq>™2q)-5/2+l/q 

. TT 
^min 
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From the definition of f. , we easily obtain 
1 

C4.6.45) ||f||^ 

Substituting (4.6.45) into (4.6.44), we have 

(4.6.46) liell^ 
q p . TT 

^min 

Up to this step, it is not hard to obtain bounds for 

1 1 
We observe that, for p,q ^ 1 with — + — = 1 , 

P *1 

A 

C4.6.47) i| Uj^-uj^ = Cut^-Uh)^(x) dx J n 

r1 n-1 2 

t I ei<j>iCx)] dx 
0 i=l 

11^11^ IUi(x)||« dx 
0 -^q 

= l|e|i 
flrU-l 

0 

^ , 2/p 
I kiCx) P dx 

L=1 J 

s II elf .h-2/P 
Ir. 
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(4.6.48) II u 

By using (4.6 

C4.6.49) 

Then from (4.< 

(4.6.50) 

In particular, 

(i) when p = 

(Ujl^-u^) C^) dx 
0 

1 r-n-1 

0 
I 6^4!(x) 

^i=l "■ 
dx 

fl 
II e|f -11 4>; Cx) if dx 

q ^ 0 -^q '^p 

II e|| •([ [.L U^Cx) 1^] dx) 
Iq Jo ^ 

2 

I 
i. 

s lie II -cf)^ 

47) and (4.6.48), we have 

il“h’\llA- "llel^ 

5.46), we have 

2K 
u, -u, L < 11 1 

h h"A 2 4 /3 
^min" 

• *(h“^/P + 4h"^)^/^ 

•h"’i"("'iq’"’V-2"^/‘J.||f|lL,[o.i] 

1 and q = °° , we have 

“l.co = 1 . ">2,00 =">2^1 

and 
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(4 
, il ~ II ^ rS'i 1/2 , min (m-, ,m^)H H 

.6.51) ||uh-Uh||^ ^ ——-y -h 1^2 
. 7T 

^min 

(ii) when p = 2 and q = 2 , we have 

m 
1,2 

mi 4. - , = "^2 ^ 2 

and 

(4.6.52) l|ujj-%||^ 
2Kli 

. 7T^ /S 
i- .(h.4)^/2 . |^min(mi,m2)-2 .||^.||^ 

min 

Consider (4.6.51), it shows that min(mi,m2)-2 > t will give a 

consistent choice of quadratures in the norm ll'llj^ (4.6.23) . 

For f. = 1 (w.r.t. ||*|L^ need min(mi,m2) ^ 3 . This shows 
A 

that the quadratures in 2.2c and 2.2d are consistent in the energy 

norm ||-||^ . 

Now we shall consider the case when M and f are both 

approximated by quadratures. In this case, the linear system is 

C4.6.53) 

Let 

C4.6.54) 

r^'k 
Ma = f 

6M = M - M 

* 
a - a 

6f = f - f 

Then from (4.6.53) and (4.6,54), we have 

(M - 6M)(a - e) = (4.6.55) f - 6f 
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By expanding the 

6M*e 3 we have 

C4.6.56) 

By multiplying M 

and, for q ^ 2 

C4.6.57) l|elL 

From (4.6.14) and 

(4.6.58) ll6f||£ 

From (4.6.35), (4 

(4.6.59) llell^^ 

where 'K14 and 

left hand side of C4-6.55) and neglecting the term 

Me + C^Mla = 6f 

^ on both sides of (4.6.56) , we have 

e = M"^*6f - M'^^aM^a 

s (l|M'^llsll«flU, * ll«M|l3l|all» )-h 
l/q-1/2 

l/q-1/2 

(4.6.19) , we have 

m+1/2 

.6.43), (4.6.45) and (4.6.57), (4.6.58) becomes 

min 

m+l/q-1 

/3p^. tr^ 
^min 

„ , m+l/q-1 ^ . min(mT ,m2^)-2+l/q 
= Ki4«h ^ + Ki5*h +q ^q 

KI5 are constants independent of h for sufficiently 

small h . 
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le could have 

< + Ki5'h“^"*®lq’"‘2q)-2+(l/q) 

q = » , we have, if f e , p e H ^ and 

< /SCKm.h"'-^ + K,5.h"""'“l’”2)-2) 

where K^g is independent of h when h is sufficiently small. 

(ii) If p = 2 and q = 2 , we have, if £ e , p e H ^ and 

q e , 

(4.6.62) lluh-ujill^ < (h+4)^/^-(Ki4-h““‘^ + Ki5.h““‘“l’“2)-23 

min (m+l/2,m2^,m2) -2 

where K^y is independent of h when h is sufficiently small. 

Consider (4.6.61), min(m,m2^,m2)-2 < t will gives a consistent choice 

of quadratures. Since f = 1 for || • IL , we need min(m,mi,m2) ^ 3 i.e. 
£\ 

m>3,m]^>3,m2^3, these show that the 3-exact quadrature rules 

in Sections 2.2a, 2.2b and 2.2c are consistent in || * ||^ • 

Then from (4.6.49), \ 

(4.6.60) iliY-Shll 
A 

In particular, 

(i) If p = 1 and 
m. 

q ^ . 

(4.6.61) l|uh-uh 
'A 



C^iAPTER 5 

ALGORITHvlS FOR SOLVING THE LARGE LINEAR SYSTEMS 

5.1. LU Decomposition (Gaussian Elimination Method) 

We have shown that, the solution of (1.3.3}-(1.3.4) by 

the linear finite element method is obtained by solving the large 

linear system (2.1.10)), which is Ma = F . The matrix M has been 

shown to be symmetric, positive-definite and tridiagonal. These 

special characteristics of M will ensure that the solution of the 

system by Gaa^^Zan dLuninoutLovi m2JJiod, also called LU dzcompo^djtionj 

without row exchanges is not only possible but also numerically stable 

([56, pp.36]). By the Gaussian elimination method, the matrix M is 

factorized into the product M = LU , where L is an lower bidiagonal 

matrix with unit diagonal elements and U is an upper bidiagonal matrix. 

The linear system (2.1.10) is converted to an equivalent system Ua = F‘, 

where F' = L"^F . Thus a = U~^F' = U**^L ^F . If M is symmetric, it 

can be easily verified that M = LDL , where D is the diagonal matrix 

which consists of the diagonal elements of U . For a tridiagonal matrix, 

the entries of L and D satisfy the recursion : , 

do = 0 , = ^i+l,i/di . Then F‘ = L~^F satisfy 

F! = F- - F- , FQ = 0 and a is obtained from back substitution 

by a = F|/dj|^ - aj^+i-f-i+i i , ^ri+l ~ ^ total operations needed 

are about 9n. 

If the sparse system is singular or nearly singular, the LU 

decomposition may fail. Thus we would like to introduce the algorithm 

FAPIN which is able to solve singular systems. 

89 
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5,2. The Algorithm FAPIN 

The algorithm FAPIN developed by P.O. Frederickson first 

appeared in C26i was introduced in two dimensional case. We shall in 

this section introduce the theory of FAPIN in one dimension and 

in Section 6.3 demonstrate the ability of the algorithm FAPIN in 

solving singular linear systems. 

Let A : X -> i*' be a large sparse linear operator. A 

linear operator B : / X is called an p-app^oxMnate. to 

A if the operator I - AB : V V has a spectral radius p < 1 . 

We shall make use of a ZocaJt p-app^oxJjncuto, imoAMd B to A to construct 

a ^-a.ppK0XAmaX<l ^oZution x e X to the linear system 

C5.2.1) Ax = y 

with the property 

CS.2.2} l|y-Ax|l < ellxll 

For a given ye V and a given tolerance e < 1 . 

Usually, the iterations 

C5.2.3) 

r y ~ Ax 

X ^ X + Bx 

are used to improve the approximate x"^ . From C5.2.3), we have the 

iterate r’'” satisfies 

r“ = Cl - AB)"'r° C5.2.4) 
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(see Chapter 3 of either Varga [58] or Young [63] for more detail). 

Let be a set of 2n+l integer lattice points in 

[0,11. Denote by X the space of real functions on ^ and let / be a 

subspace of X. Let A : X -> V , a linear operator, be a l-tocoJi 

opoAcuto^, i.e. 

(5.2.5) [(Ax)^ 0] => [ ^ j e |i“j| ^ 1 and Xj 0 1 

(cf. Definition 3.3.1) 

The number of points in [2 is N = 2n+l , hence X is isomorphic to R^, 

and any 1-local operator A is represented through this isomorphism by a tri- 

diagonal matrix having at most three nonzero elements in each row , 

for example, the matrix M arising from the linear finite element (RRG) 

approximation is a discrete 1-local operator. Corresponding to every 

1-local operator A : X ^ / there is an array A^ A such that for 

any point i . 

C5.2.6) (Ax)j^ = I 
|jhi 

Implementation of (5.2.6) allows storage of A in 3N locations and 

evaluation of Ax in 3N multiplications. 

If an approximate inverse B to A is also 1-local, the representa- 

tion C5.2.6) will be used for B as well as A. We shall discuss some 

techniques other than the DB^ method, developed by Benson [3] , 
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in Section 5.3 to obtain approximate inverses of A . 

a 
Assume that we have subdivided L0,l!l into 2 number of subinterval 

such that N = 2^+1 , i.e. |i| ^ 2^ ^ V i € . We write for 

and define, using the recurrence 

(5,2.8) J > hi - 1 > 2i+j e Q^} , 

the set n for 1 < k ^ Jl , we note that | i | ^ 2^~^ if i e 

k k 
Denote by X the linear space of real functions of and define 

the cotte^Cytion opoAaton. X^"^ by 

(5.2.9) 
k-1 r. 
1 

where the coefficients tj are binomial coefficients 

C5.2.10) tj = (,2J 

Hence we have 

and 

' t_i = ti = 1 

< to = 2 

tj = 0 otherwise 

k-1 
r 
k 

2i-l 
+ 2r 

2i 
+ r 

k 
2i+l 

We then use the same coefficients to define the sequence of 

. . k k-1 k 
AjfitVipoZjDutLon opoAcuto^ Q : X -> X through 
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CS.2.11) 
1 4 2 J 

By this definition, with (4.2.10), we have 

k k-1 
x„. ^ X. 
2i 1 

k 1 r k-1 k-1-, 
x«. ^ ^ ^ Lx. - + X. j 
2i-l 2 1-1 1 

We define the subspace of by beginning with 

a k k k y - y and we define the sequence of operators A : X / by 

C5.2.12) AU-I IWA 
U V 

2i+u,2j+v ty 

By this definition, we have 

1»1 

j-il ^ 1 

— ftk + L A^ 
2 2i-l,2j-l ^2i-l,2j 2 ^2i-l,2j+l 

= <! + + 2A^ + A^ 
^ A2i^2j-l ^*2i,2j ^2i,2j+l 

+ 1. A^ A^ + 1_ A^ 
2 2i+l,2j-l ^2i+l,2j 2 2i+l,2j+l 

It can be easily verified that if A is of the form of C2.1.13), then 

A ,2^K<£,is also of the same form. 

Implementation of P requires less than n multiplications and 

Ic 
additions, and Q requires only n multiplications and n additions if 

Ic 
it is well coded. Similarly, construction of all the operators A 

from the given A = A requires about 3n multiplications and 12n 

additions. 
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We shall prove Theorem 1 in D26, pp-7] concerning the best 

approximation properties of PAPIN . 

Theorem 5.2.1. CFtederickson [261, pp.7) 

k-1 
The operator A defined by equation C5.2.12) satisfies the 

identity 

C5.2.13J 

and is the Rayleigh-Ritz-Galerkin best approximation to A in 

the subspace of 

Proof : 

The proof of equation [5-2.13) involves comparing (5.2.12) 

with the expression which results when the right hand side is expanded, 

using (5.2.11), (5.2.6) and then (5.2.9) . 

k-1 nk 
To show that A is the RRG best approximation to A in the 

subspace = Q^(X^’'^) of X^ , we need to show the following : 

(i) Given a r^ e X^ , find x^ e X^ such that 

(5.2.14) A“ = 

Ic k. 
(ii) Find a x e X which minimizes the quadratic functional 

(5.2.15) 'l'(x^) = <Ax^-2r^,x^> 

? k k 
^ .^i >^i 

k k 
where <x ,y > 

i=-n 
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k ,,k 
(iii) Let U = Q (X ) , then find z e LI which 

minimizes $ . 

Rewrite (J5*2.11) for ^ as 

ok-2 

C5.2.16) = CQV‘^) • = 

^ ^ i="2k-2 

k,., k-1 I , . 

where 

C5.2.17) = <! 

^ 1 if j = 2i 

if lj-2i| =1 i = -2^"^, • •',0, • • • ,2 

0 otherwise 

k-2 

k k k 
From ^4.2.15) and assume that A : X ->■ X is symmetric positive 

definite, then we have 

C5.2.18) $Cx^+ev^) = + 2e<A^x^-r^,v^> + e^<A'^v^,v^> 
k k k k. ik k k. 

k k k 
Thus ^(x ) is a minimum means that 6<l'Cx ,v ) = 0 i.e. 

C5.2.19) <Ax^-r^,v^> = 0 for any v^ e X^ 

we will show (ii) iff (^i), i.e. 

k k 
Cii) - x^ e X which minimizes $ in C5*2.15} 

iff <AxJ^-r^,v^> = 0 V € X^ 

iff A’^X* = r'‘ -(i) 

k k-1 
X ^ X in (5.2.9) can be written as 

.k-2 
k-1 K.-J. ^ V j.k^ k 
i = i_Sk-2 

= 2<(j)^,r > 

(5.2.20) 
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iff 

(i i i} 

IS. 3S. « <A z -r ,(h.> = 0 
1 

yk-2 

iff -r ,<j). > = 0 
1 

iff 

iff 

iff 

iff 
ftk-1 k-1 ok k A z = P r 

This completes the proof. 

FAPIN should be viewed as an interative algorithm. At the 

beginning of each pass we have an approximate x to the solution to 

equation (5.2.1), which may or may not be zero during the first pass, 

and we have evaluated the residual vector r -f- y-Ax . The pass really 

£-1 £ begins when we apply (5.2.9) repeatedly, creating r ,**»,r from 

r^ = r . Next x^ = B^r^ is computed, and then we work back up from 

k=2 to k=£-l, first interpolating and then refining this 

approximation : 

< 
(5.2.21) 
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At the top level, k = Jl , these assignments are replaced by 

C5.2.22) 

( Z ^ 
I X X + Q X 

1 £ Z rjil, nZ Z. 
X X + B (y-A X ) 

A Subroutine FAPIN is given in Appendix 1. We make use of 

some other Subroutines to perform individual tasks. We shall describe 

a pass of FAPIN as follows with the Subroutine*s name, which is 

used to perform the task, on the left. 

OP : r y -A Cx ) 

' P : DO k = £,£-!,•••,2 

^k-i ^ pk(.^kj 

OP : x^ 

DO k = 2,3,»••,£-! 

Q : X Q Cx } 

r>n h k k^ OP : r -t- r -A Cx ) 

k ^ k k. 
[ OP ; X X +B ) 

^ Z Z rsZ, Z-lx 
Q : X X +Q Cx i 

OP : r <- y -A Cx J 

OP j X “t- X +B Cr } 
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From the algoritlun above, it shows clearly that FAPIN solves 

k k k 
certain subprograms Ax = y , In order not to waste 

Ic Ic 
storages we store x and r in the arrays X and R, respectively. In 

particular, we creat tv^o arrays of structure constants NK and MK such 

that MK is the dimensional of X at the level K and NK is the position 

Ic Ic 
of the first element of x in the array X. Thus we store x^ as X(NK+i}. 

A subroutine STRUCT to construct these structure constants is listed in 

Appendix 1. 

5.3. Approximate Inverses 

During the numerical experiments in Chapter 6, we found 

that an approximate inverse of A, for the one dimensional case, 

obtained by the technique developed by Benson [3] is not efficient 

enough in the sense that the covergence of the residual r in (5.2.3) 

is very slow. This forces us to seek for other better approximate 

inverses to A . An approximate inverse of A is said to be better 

than an approximate inverse B]^ to A if p (I-Bj[A) < p (I-B]^A) . 

Following Varga C581 and Young 11631, we have, for a matrix G, 

C5.3.1) PCG) = 
1/m 

However, from C7, pp.269l and C581, we have 

C5.3.2) . pd-BpA) 

H II2 
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This provides us a mean to approximate the spectral radius of I-BpA . 

We shall also employ an algorithm of Shanks C53d to smooth the 

sequence {|lr^^^||2 / Hr^||2} and predict the limit of the sequence. 

This limit is taken to be an approximate spectral radius of I-BpA . 

For simplicity, we shall consider A to be a tridiagonal symmetric 

matrix with constant band elements. 

Let A be the set of all tridiagonal symmetric matrix with constant 

band elements. Then every element A e A can be written as (^cf. Benson 

C3d, pp.l4) 

C5.3.3) A =: Cai a2 aj) 

For A,B e A , define an convoZjJUtion operator * by 

A*B = fai a2 ai)*Cbi b2 b^) 

= faibi a2bi+a]^b2 2aibi+a2b2 a]_b2+a2bi a^bi) 

fNote that A*B ^ A) 

The DBq techniques [3d can be viewed as 

[5.3,4) Bi*A = I 

i.e. v^e truncate Bi*A and solve the linear system : 

[ ^2^11 + aibi2 = 0 

2aibii + a2bi2 = 1 
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and obtain 

t>12 

2^2 
d-2~ ^3.1 

a|-2ai 

In particular, for A = C“1 2 -1) , we have B]^ = (.5 1 .5) 

Initiated by the DB^ technique, we have a generalization as 

follows : an approximate inverse of A is evaluated through 

(5.3.5) B^^*(A*W) = W 

where W e A is a weight. 

In particular, we shall consider (i) W = A*A and Cii) W = A*A*A 

Let B2 be an approximate inverse of A evaluated through 

(5.3.6) B2*CA*A) = A 

Then we need to solve the following equations 

bipi + b2P2 + biP3 = ai 

< 

. biP2 + b2P3 + biP2 = a2 
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where 

Pi = 

<j P2 = 2aia2 

^ P3 
O 2 ^ 2 2ai + a2 

In particular, if A = (^-1 2 -1) , then B2 = (0*2 0.6 0.2) 

we shall call this DB^ techniques- 

Let B3 be an approximate inverse evaluated through 

C5.3.7) B3 * CA*CA*A)) = A * A 

In this case, we need to solve a linear system 

where 

f biS2 + b2S3 + biS4 - p2 

i biS3 + b2S4 + biS3 = P3 

<i 

V. 

< 

52 = a2Pi + P2ai 

53 = aipi + a2P2 + aiP3 

54 = aiP2 + a2P3 + aiP2 

2 
Pi = ai 

P2 = 2aia2 

2 ? 
P3 = 2ai+ a2 
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In particular, if A = (-1 2 -1) , then B3 = 

we shall call this DB^ method. 

For a fixed matrix A , after we have obtained an approximate 

inverse, we could improve this approximate inverse by interpolation 

technique [42j to obtain the optimal approximate inverse B* . We 

found, for A = (-1 2 -1) , B* = CO-125 0.5 0.125) is quite close 

to the optimal. There are many ways of generalization. We may try, for a 

fixed A , varying the weight W in (5.3.5) , or we may, do a bit more 

calculation, consider a Bj^ such that ||B^*(A*W) - W||2 is minimum 

over A . However, we found that B3 is good enough for our experiments 

in Chapter 6. 

The following tables give a comparison of DBq , DB^ and DB^ methods, 

in which we take 

(i) Ai = (-1 2 -1) 

Cii) A2 = ^ (-1 2 -1) - l-XiCl 4 1} , 

where Xi = 6(1 - cos(TTh)) / (2 + cos(iTh))h^ . A2 is a singular matrix 

which is arisen from the solving of an eigenvalue problem (cf. 6.3). 
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In the tables. L is the level of partition, i.e. we partition 

[0,1] into n = 2^ subintervals. 

Table 5.3.2 



CHAPTER 6 

NUMERICAL EXPERIMENTS 

The nmnerical experiments in this chapter are carried in double 

precision arithmetic on the IBM/360 computer at Lakehead University. 

These experiments consist of (i) the verification of the rate of 

convergence of the RRG solution and the Global Superconvergence, 

Cii) the numerical evaluation of the Generalized Peano kernel function 

and Ciii) the ability of the algorithm FAPIN in solving singular sparse 

systems. 

Throughout the chapter L will be the level of partition i.e. we 

partition [0,1] into n=2 number of subdivisons. 

6.1. Verifications of the Rate of Convergence of the RRG Solution 

and the Global Superconvergence 

In this experiment we solve the TPBVP : -u'*Cx] = fCx) with 

uCO) = uCl) = 0 . The RRG solution uj^ is from -S^'Q . We set 

s-iid compute the Hi-norm, Hg-norm and the energy 

norm of the error ej^ = u-u^ . We also construct the superconvergence 

3,2 
approximation s e Q and the various norms of the error e^ = u-s 

are computed. 

The results are listed in Table 6.1.1, Table 6.1.2 and 

Table 6.1.3 . 

104 
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In the tables, the numbers under the name "Rate of Convergence" are 

computed as follows : 

Rate of convergence 

log 

' II • II at level 

II • II at level 

log 2 

k 

Fig. 6.1.1 is a comparision of the RRG solution and the Global 

Superconvergence solution. 

Table 6.1.1 

'n 

Rate of Convergence 

RRG 

0.2153898(00) 

0.1080515(00) 

0.540705-0(-l) 

0.2704085(-l) 

0.1352113(-1) 

0.6760649(-2) 

0.3380336(-2) 

0.1690169(-2) 

0.7257666(-2) 

0.7153933(-3) 

0.6823556(-4) 

0.6322846(-5) 

0.5790591(-6) 

0.5322389(-7) 

0.4985981(-8) 

0.4S41845(-9) 

0.9952310(00) 

0.9988053(00) 

0.9997007(00) 

0.9999250(00) 

0.9999814(00) 

0.9999945(00) 

0.9999986(00) 

0.3342696(01) 

0.3390140(01) 

0.3431872(01) 

0.3448795(01) 

0.3443563(01) 

0.3416124(01) 

0.3364247(01) 

From Table 6.1.1 , it shows that the rate of convergence of e^^ and 

e^ in the H^-norm is about of order O(h^) and O(h^) respectively. 
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Tabic 6.1.2 

11% II 
Rate of Convergence 

's 11^ 
RRG 

0.2147222(00) 
0.1079672(00) 
0.5405994(-l) 
0.2703953(-l) 
0.13S2096(-1) 
0.6760631(-2) 
0.3380334(-2) 
0.1690169(-2) 

0.7229935(-2) 
0.7140480(-3) 
0.6817548(-4) 
0.6320235(-5) 
0.5789451(-6) 
0.5321901(-7) 
0.4985775(-8) 
0.4841771(-9) 

0.9918782(00) 
0.9979609(00) 
0.9994894(00) 
0.9998720(00) 
0.9999676(00) 
0.9999917(00) 
0.9999979(00) 

0.3339890(01) 
0.3388695(01) 
0.3431202(01) 
0.3448479(01) 
0.3443412(01) 
0.3416051(01) 
0.3364210(01) 

From Table 

e in the 
s 

6.1.2, it shows that rate of convergence of e^^ 

energy norm is about of order O(h^) and O(h^) 

and 

respectively. 

Table 6.1.3 

'hllO lies II Rate of Convergence 

RRG 

0.1694562(-1) 
0.4265890(-2) 
0.1068335(-2) 
0.2672004(-3) 
0.6680739 (-4) 
0.1670231(-4) 
0.4175605(-5) 
0.1043903(-5) 

0.6338867(-3) 
0.4385140(-4) 
0.2862917(-5) 
0.1823095(-6) 
0.1149049(-7) 
0.7209842 (-9) 
0.4511518(-10) 
0.2687543(-ll) 

0.1989993(01) 
0.1997482(01) 
0.1999368(01) 
0.1999842(01) 
0.1999958(01) 
0.1999989(01) 
0.1999995(01) 

0.3853415(01) 
0.3937046(01) 
0.3973023(01) 
0.3987877(01) 
0.3994328(01) 
0.3998281(01) 
0.4069252(01) 

From Table 6.1.3, it shows that the rate of convergence of e^^ and 

e^ in the Ho-norm is about of order O(h^) and 0(h^^) respectively. 
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6.2. Numerical Evaluation of the Generalized Peano Kernel Function 

In Section 3.3, we constructed an 3-exact Global 

Superconvergence S , i.e. S(p) = p Vpe^^. In Section 4.5, we 

have discussed the rate of convergence of the Global Superconvergence. 

In this section, we shall evaluate the generalized kernel K2(?,t) 

(cf. Section 4.5) and then evaluate the quantities feoo^co and kj^,oo . 

The results are listed in Table 6.2.1 

Rate of 
Convergence 

k 1 i CO 

Rate of 
Convergence 

0.13500C-1) 
0.59878(-2) 
0.29089C-2) 
0.14438C-2) 

0.117(01) 
0. 104(01) 
0.101(01) 

0.28495(-4) 
0.55547(-5) 
0.14471(-5) 
0.36541(-6) 

0.236(01) 
0.194(01) 
0.199(01) 

Table 6.2.1 

From Table 6.2.1 , it seems that the rate of convergence of the Global 

Superconvergence, for u e H^CO,!] , is of order C>(h^). 

However, from the experiment in Section 6.1, it shows that, if u is 

sufficiently smooth, the rate of convergence is of order O(h^) in the 

Ho-norm. It seems to suggest that the Global Superconvergence is 

of order 0(h’^) for a certain class of functions. Now the question 

remains is : "what is the class of functions for which the Global 

Superconvergence has an order (?(h*^) convergence rate?" 
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6.3. The Ability of the Algorithm FAPLN in Sovling Singular Systems 

Consider the TPBVP -u" + qu = £ , u(0) = u(l) = 0. 

If q = -Xi = 6(l-cos (7rk/n)) / (2 + cos (irk/n) )h^ , then the TPBVP becomes 

an eigenvalue problem. The linear sparse system arising from the 

linear finite element method will be singular. 

Table 6.3.1 and Table 6.3.2 show the various norms of the errors when 

we solve the TPBVP's by LU decomposition and FAPIN with q varying 

around -Aj , u(x) = x(l-x)(l-2x) at levels L = 7 and L = 10 

LU FAPIN 

•0.98700998592898(1) 
■0.98700998592908(1) 
■0.98700998592918(1) 
■0.98700998592928(1) 
■0.98700998592938(1) 
■0.98700998592948(1) 
■0.98700998592958(1) 
0.98700998592968(1) 
0.98700998592978(1) 
0.98700998592988(1) 

0.183(-1) 
0.184(-1) 
0.287(-l) 
0.278(-l) 
0.338(-l) 
0.398(-l) 
0.568(-l) 
0.280(00) 
0.721(00) 
0.683(-l) 

0.503(-2) 
0.506(-2) 
0.837(-2) 
0.807(-2) 
0.999(-2) 
0.119(-1) 
0.171(-1) 
0.850(-l) 
0.219(00) 
0.206(-l) 

0.781(^2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 
0.781(-2) 

0.249(-4) 
0.249(-4) 
0.249(-4) 
0.249(-4) 
0.249(-4) 
0.249(-4) 
0.249(~4) 
0.249(~4) 
0.249(-4) 
0.249(-4) 

Table 6.3.1 , L = 7 ,(cf. Fig. 6.3.1 and Fig. 6.3.2) 

-Ai = -0.98700998592948(1) 
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LU 

0 

FAPIN 

-0.98696121375(1) 
■0.98696121385(1) 
-0.98696121395(1) 
-0.98696121405(1) 
•0.98696121415(1) 
■0.98696121425(1) 
■0.98696121435(1) 
■0.98696121445(1) 
■0.98696121455(1) 
■0.98696121465(1) 
■0.98696121475(1) 

0.282(-2) 
0.259(-2) 
0.343(-2) 
0.464(-2) 
0.835(-2) 
0.480(-l) 
0.113(-1) 
0.534(-2) 
0.349(-2) 
0.265(-2) 
0.220(-2) 

0.558(-3) 
0.727(-3) 
0.997(-3) 
0.138(-2) 
0.252(-2) 
0.146(-1) 
0.341(-2) 
0.159(-2) 
0.101(-2) 
0. 745(-3) 
0.599(-3) 

0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 
0.977(-3) 

0.389 (-6) 
0.389(-6) 
0.389(-6) 
0.389 (-6) 
0.389(-6) 
0.389 0-6) 
0.389(-6) 
0.389(-6) 
0.389(-6) 
0.389(-6) 
0.389(-6) 

Table 6.3.2 , L = 10 (cf. Fig. 6.3.3 and Fig. 6.3.4) 

-Ai = -0.98696121425(1) 

Table 6.3.1 and Table 6.3.2 show clearly that the algorithm FAPIN 

is able to solve singular or nearly singular systems. 
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.1( 1) 

.9( 0) 

.8( 0) 

.7C 0) 

• 6( 0) 

.5(0) 

.4( 0) 

.3C 0) 

.2C 0) 

• 1C 0) 

.9C-1) 

.8(-l) 

.7(-l) 

.6(-l) 

.5C-1) 

.4C-1) 

.3(-l) 

.2(-l) 

llelli 

Fig. 6.3.1 

-IC-l) 

.8 (-2) 

0.4 

 >- 

X C 

q = qQ + ? ; qQ = -0.9870099859294a(l) 



0.2( 0) 

L = 7 

Hello 
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Fig. 6.3.2 

0.1 ( 0) 

0.9(-1) 

0.8(-l) 

0.7(-l) 

0.6C-1) 

0.5C-1) 

0.4C-1) 

0.3C-1) 

0.2C-1) 

o.i(-i) -- 
LU 

0.3(-4) 

-.4 

FAPIN 

2 0 0.2 0,4 X 10“11 

q = qQ + ^ ; qQ = -0.98700998592948(1) 
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q = 0.98696121425(1) + ? 
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0.15(-1) - 

0.35 (-2) 

0.30 (-2) 

0.25(-2) — 

0.20 (-2) 

0-15(-2) 

0.10(-2) 

0.50(-3) 

0.40(-6) ^APIN 

 >- 
~. 4 .2 0.4 0.2 X 10 

■8 

q = -0.98695121425(1) + ^ 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The concept of Sard’s theory on best quadrature formulae is 

n 
fw dx . The form of quadrature 

JO n' 
extended to the integration T = 

Q for T which we consider is Q = c.f(x!) . This concept of best 
i=l ^ ^ n” 

quadrature can be applied to the quadrature H , H = a.f(x’.')w(xV) , 
i=l ^ ^ ^ 

which is considered in [34]. Furthermore, the best quadratures which 

we derived are consistent with the energy norm. 

A quasi-inverse of the finite element method is introduced to obtain 

a global superconvergence solution of the TPBVP. This global super- 

convergence technique, as we suggested, can be applied to other methods 

such as the collocation method. 

A generalization of the Peano kernel theorem is useful in the error 

analysis on the solution of TPBVP. By applying this generalized Peano 

kernel theorem,the rate of convergence of a 3-exact global super- 

convergence solution is of order 0(h ). But from the experimental 

results, for some smooth u, the rate of convergence of the global 

superconvergence is of order O(h^). It still remains a question: 

”what is the class of functions for which the global superconvergence 

4 
has an order U(h ) convergence rate?" 

The algorithm FAPIN has also been used successfully in this 
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thesis. However, the LU decomposition is perfered if the linear 

system is far from singular. The approximate inverses, which used in 

conjunction with the algorithm FAPIN, derived in this thesis have 

smaller spectral radius than the DB^ approximate inverse [3]. Other 

techniques to obtain approximate inverses are suggested in Section 5.3 



APPENDIX 1 

In this Appendix, we list a subroutine of the algorithm FAPIN 

with all the relevant subroutines which have been introduced in 

Section 5.2. 

Programs are written in WATFIV . 

SUBROUTINE FAPINIF^U^R^A^C,OF,DU) 
INTEGER STR( 16,2 ) 
COMMON STR,L 
INTEGER DF,DU 
REAL=<=8 F( DU ) ,R(OU ) fU{T>U ) , A (DU , 3 ) , C{ OU ,3 ) 
CALL OP(R,F,A,U,L,0F9DU,.TRUE.) 
CALL P(DF,DU,L,R) 
K=1 
CALL OP(U,U,C,R,K9DF,DU ,.FALSE. ) 

4 K=K+1 
IF (K.EQ.L) GO TO 5 
CALL Q{DF,DU,K,U) 
CALL OP(R,R9A,U,KtDF,DUf.TRUe. ) 
CALL OP{U,U,C,R 9K,DF,DU,.TRUE.) 
GO TO 4 

5 CALL 0(DF,DU,K,U) 
CALL OP(RtFtA^UtK^DF^DUt.TRUE.) 
CALL OP{U»U,C »R tK^DF^DU, .TRUE.) 
RETURN 
END 

SUBROUT INE OP( X,Y,A,Z,K ,DF,DU,FLAG) 
INTEGER STR( 16,2 ) 
COMMON STRfL 
LOGICAL FLAG 
INTEGER DF,DU 
REALMS A(DU,3),X(DU),Y<OU),Z(OU) 
NK=STR(K,1) n 
MK2=STR(K,2)-2 
IF (FLAG) GO TO 100 
DO 50 1=1,MK2 
X( NK+I)=-A(NK+I,1 )^Z(NK + I-1)-A(NK +1,2 ) ^Z(NK+I )-A{NK + I ^3)^Z{NK+I + l) 

50 CONTINUE 
RETURN 

100 no 150 1=1,MK2 
X( NK+I )=Y(NK+I )»-A{NK+I ,1 )=i^Z(NK + I-l )-A(NK+I ,2 )sJ:Z{NK+I ) »A ( NK+I , 3 ) ( 

^T^NK +1 +1 ) 

150 CONTINUE 
RETURN 
END 
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SUBROUTINE P(DF,DU,LL,R) 
INTEGER STR(l6t2) 
COMMON STR,L 
INTEGER DF,DU 
REAL-8 R(DU) 
K = LL 

1 J=K-1 
NK=STR(K,1) 
NJ = STR(Jtl ) 
MJ2=STR(J,2)-2 
DO 2 I=ltMJ2 

2 R('NJ-M ) = R (NK+2-1-1 )+2 •0*R( NK+2=f'I )+R ( NK+2=«J I + 1 ) 
K = K~“1 
IF (K.GE*2) GO TO 1 
RETURN 
END 

_SUBROUTlNE Q(DFtDU,K,U) 
INTEGER $TR(16,2) 

COMMON STR,L 
INTEGER DFtDU 
REAL-8 U(DU) 
J = K-1 
MK2=STR(Kt2)~2 
NK=STR(K,1) 
NJ=STR(J,1) 
MJ2=STR(J,2)~2 
IF (K.EQ.L) GO TO 100 
U(NK+1)=0.0 
DO 50 1=1,MJ2 
U{ NK + 2-I~l )=U( NK+2-1-1 ) + .5=!=U(NJ+I ) 
lMNK + 2-1 )=U( N J4-1 ) 

50 U{NK+2-1+1)=.5-U(NJ+I) 
RETURN 

100 DO 150 1=1,MJ2 
UfNK + 2-I-l )=U(NK+2-I~1 )+.5=5=U( NJ + I) 
U( NK + 2-I ) =U( NK+2-I )+U( NJ-f-I ) 

150 U(NK + 2^I-^1 )=U(NK+2FI+1 ) + .5-U( NJ + I 1 
RETURN 
END 

SUBROUTINE STRUC(DF,DU) 
INTEGER STR(16,2) 
COMMON STR,L 
INTEGER DF,DU 
STR( L,,U = 1 
Ll=L-i 
DO 50 1=1TLI 
STR(L-I+1,2)=2F^(L-T+1)+l 

50 STR(L-I,1 ) = STR(L-I+l,1 )+STR(L-I + l ,2) 
STR(1,2 )=3 
DU=STR( 1 , 1 )+2 
DF = 2.*-L + 1 
RETURN 
END 
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The Subroutine AIC is used to construct the matrices A , 1 ^ k ^ A 

Ccf. Section 5.2). Note that in the Subroutine, the construction of 

A at level L is varied with different linear system Mu = F in 2.1.10. 

SUBROUTINE AK(DU,A^HTQ) 
C — TO FORM AKrTHE BEST RRG APPROXIMATION TO AK+1 

INTEGER STR(16,2)»DU 
COMMON STR^L 
REALMS A(DU,3) 
REAL=>5=8 Q,DCnS»PI TH,DELTA 

  CONSTRUCT A AT LEVEL L FIRST 

PI=3.141592653589793 

c 

NL=STR( L»l) 
ML=STR(L,2) 
DO 11 1=1»ML 
NL1=NL+I~1 
A( NL 1 r 1 ) = A( NLl t3 > =“1 .DO/H+6« 
A ( NL1 f 2 )=2 .D0/H + Q4:H^4.DO/6. DO 

11 CONTINUE 
—CONSTRUCT AK START FROM LEVEL L 

L1=L-1 
KI=1,L1 

DO 

DO 111 
K=L-KI 
NK1=STR(K+1 
NK=STR{K,1) 
MK=STR(K»2) 
MKS2=MK“2 

1 ) 

Nl=NK+l 
K1=NK4MK-»1 
K2 = K1~1 
A(NKf1)=A(NK,2 >=A(NK,3)=A(K1 ,1 ) = A{K1 ,2)=A(K1 ,3)=0. 
DO 112 I=1,MKS2 
NI=NK+1 
NKll = NKl-i-2-I-i 
NK12=NKl+2-I 
NK13=NK1+2^I+1 
A(NI tl)=A(NKll ,1) + .5*A( NKl 1,2)+A(Nkl3 t1 ) 

.. A (NI ,2 A (NKll ,2 )+A( NKl 3,2) ) 
1 +A( NKl 1,3 )-^A { NK 12,1 )+2 .=*:A (NK 1 2,2 )+A( NKl 2,3 )+A (NKl 3* 
A(NI ,3 )=A(NK12,3)+.5*A(NK13,2)-fr>A(NK13,3) 

112 CONTINUE 
111 CONTINUE 

RETURN 
END 

1 ) 
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