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ABSTRACT

A mobile agent is a multi-threaded autonomous program th a t can be dis- 

ti.bu ted  over a heterogeneous network to perform some predefined task for its human 

creator (user). The independence, flexibility and autonomy offered by the mobile 

agent paradigm  hold many promises for the future of distributed computing [18]. 

However, for an agent to be autonomous, it must carry its code, states and results 

from host to  host. Since an agent executes on remote potentially hostile environments, 

hiding information from hosts has proven to be a tough challenge.

This thesis introduces two novel ideas tha t can be used in the mobile agent 

paradigm. First, is the use of Shamir’s [33] (f, n)-threshold secret sharing scheme 

for the distribution of the private key of a public/private key pair amongst n agents. 

Thus giving an agent the ability to use cryptographic primitives for protection of 

intermediate results obtained from previously visited hosts. An agent can use the 

public key for encryption while the private key is safely shared between the agent 

and its siblings. Second, a “cookie” will be introduced as an tool for avoiding agent 

collisions. Analogous to cookies used by web browsers for tracking of visitors to a site, 

it will be used as a tool for marking previously visited hosts. The goal of marking 

previously visited hosts is to resolve the problem of agent collisions. Agent collisions 

occurs when a group of agents from the same originator with the same purpose visits 

a particular host more than once.

vin
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CHAPTER I

INTRODUCTION

Few would argue the importance of the internet as a medium for the distribution and 

retrieval of information. The vast amount of information available is overwhelming. 

W hat began as a hand full of hosts in the late 1960’s has since become a world wide 

network of over 160 million hosts [41]. This growth has not been strictly confined to 

the internet. W ith the availability of cheap and reliable hardware, smaller intra-nets 

have also experienced similar growth. A com puter’s connectivity to a network is no 

longer considered an optional add-on, but an integral part of its functionality. Until 

just recently, users were confined to well defined static sets of locations to gain network 

access. However, the recent advancements in wireless and mobile technologies means 

th a t today, the same users can literally bring the network with them. The effect of 

this growth is the ever increasing demand that the entire network infrastructure be 

more flexible and scalable.

Traditional models of network computing rely primarily on well established tech

nology based on the client-server paradigm. In the typical client-server scenario, 

contact is initiated by the client as some form of request for execution of service. The 

server which hosts computational resources, da ta  and a static set of services performs 

the request on behalf of the client then responds with the result. Depending on the 

types of services requested, multiple rounds of interactions between the client and 

server might be required to complete the request. This model of network computing 

has its usefulness and is well suited for most applications. However, because of the 

ever increasing size and dynamics of the internet, this model is beginning to  show its 

limitations. For instance, a client requests a service from a server which the server
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has the com putational resources and necessary data  to fulfil the request bu t lack the 

knowledge (e.g. program). To complete the request, the client either has to down

load the data  from the sever to process locally on the client’s machine or find another 

server th a t can complete the request. In either case, the model lacks flexibility and 

exerts unnecessary strain  on the network infrastructure.

The benefit of the mobile agent paradigm over the above paradigm is its inherent 

ability to process information at its source. A mobile agent is autonomous; each 

agent is encapsulated with the knowledge required to perform its function. A host is 

obligated to provide only the input and com putational resources to an agent. This 

flexibility has the potential of resolving many of the shortcomings of the client-server 

network computing model in use today. Chess et al. [6] investigation into the benefits 

of using mobile agents concluded th a t mobile agents offer a better general solution 

in term s of prototyping, transactions and scalability when compared to client-server 

model of distributed computing. Its ability to reduce network traffic, operate over in

term itten t unreliable network connections, and execute over heterogeneous networks 

and environments makes the paradigm an attractive option for future implementa

tions of e-commerce, information research and mobile device applications [18].

1.1 The Security  Problem

Agent code w ritten by one party typically executes on remote host under control of 

another party. Because neither party has to know or trust the other party, without 

adequate security tha t fulfills the requirements of both, participation of either party 

in this potentially beneficial relationship is unlikely.

The level of security required by an agent depends primarily on the function of the 

agent. Potential gains by implementing security on an agent must always be weighted 

against the cost of providing such security. It is arguable th a t in certain instances an 

agent requires no security. For example, an agent is created to search for information
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on the topic, “mobile agent security”. If the purpose of the agent is to collect a 

list of links and abstracts on documents pertaining to the subject. Then the risk of 

such agent to attacks should be considered relatively low. Providing such agent with 

cryptographic security might be far too expensive to both the agent owner and remote 

hosts in terms of hardware resources such as CPU cycles and storage requirements. 

On the other hand, if an agent is carrying private and sensitive information such as, 

credit card numbers and private keys on behalf of its owner. Such agent must not only 

be protected, cryptographic primitive should be given to the agent so th a t information 

collected can be protected as well. For example, in the often used scenario where an 

agent is searching for a plane ticket from one destination to another. The importance 

of protecting secret information the agent carries on behalf of its creator is obvious. 

However, in this case, results collected by the agent from visited competing hosts 

must also be protected. To keep all participating hosts honest, none of the hosts 

should know what offers any of the other hosts has rendered.

Often, a mobile agent is thought of as an “autonomous” entity capable of making 

decisions, executing code fragments and storing results before m igrating to another 

host. Although justified, after all, autonomy is one of the underlining primitives of 

a mobile agent. However, to truly grasp the complexity of the many security issues 

associated with a mobile agent, we must think of them  at a lower level of structural 

components. Mobile agents are nothing more than  encapsulated code fragments com

prising of execution code, execution states and data  segments. The agent m igration 

process although conceptually similar traditional migration from location to location, 

agent m igration is simply the replication of an agent on another host’s machine. An 

agent can only m igrate if the environment which “hosts ” the agent establishes a con

nection with a target host, copies the agent on to the host before destroying the local 

copy. It is a t this level of thinking the true complexities of securing an agent can be 

realized. How does an agent hide information from a host if the host has to tal control
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over the agent? W hat stops a host from deleting the agent or its da ta  all together? 

W hat if the host refuses to transport the agent? As you can see the problem of a 

malicious host is quite challenging.

1.2 Thesis  P o s i t io n

Until Sanders and Tschudin [32], using only software approaches for the protection 

of a mobile agent was generally considered to be impossible. In [32], the proposed 

solution uses the notion of encrypted functions for the protection of an agent and its 

functionality (see Chapter 4). However, this m ethod is complex and has limited appli

cations. Therefore, for most applications, the problem of protecting an agent from a 

malicious host remains mostly unresolved. The position of this thesis is that, although 

the agent itself cannot be protected, using cryptographic primitives, its resu lts /da ta  

can. The term  protection in this case is the encrypting of results obtained by an agent 

on previously visited hosts. The use of cryptographic primitives for the protection of 

da ta  has its limitations, a malicious host will still be able to delete encrypted results 

on an agent. However, this problem is wide ranging in the mobile agent paradigm 

as mentioned earlier. The premise behind using cryptographic primitives is “out of 

site of m in d ”. If a host cannot decipher any meaning from data  contained within an 

agent, the likely hood of tam pering by such host can be dram atically reduced. An 

example is the agent searching for the airline ticket, if a host cannot determine what 

offers other hosts has rendered, then the hosts will tend to be more honest with its 

bid. By cryptographically enciphering the agent’s results, a host is left with two de

cisions, to delete the agent or just parts of the agent which the host believes contains 

bids from competing hosts. Because there’s no financial gain by deleting the agent, 

the host m ust weight the possibility of being detected and '’black listed” against any 

potential benefits of deleting only parts of the agent.
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1.3 Thesis Layout

This thesis will show how Sham ir’s (t, n)-threshold secret sharing scheme [33] can 

be used to share the private key of a public/private key pair amongst n agents. 

The public-key can be used by an agent to encrypt results obtained from visited 

host. By distributing the private key as shares, only agents w ith a piece of the 

original share can participate in the successful regeneration of the private key. Thus 

provide additional security for the protection of the private key. Chapter 2 describes 

the mobile agent paradigm including its applications and security. In Chapter 3, 

cryptographic techniques for the prevention and detection of malicious host attacks 

will be discussed. Chapter 4 will first give a general overview of Sham ir’s [33] threshold 

scheme before outlining how i t ’s used in the protocol to hid and distribute shares to 

agents. Later in Chapter 4, the protocol will be extended to show how an agent on 

a remote “trusted host” can adopt parts of the same protocol to distribute agents of 

its own. Chapter 5 will dem onstrate how the protocol can be used with RSA [28] 

keys. Chapter 6 investigates the use of a “cookie” to track agents for avoiding agent 

collision. Security related issues of using cookies will also be discussed in Chapter 

6. Chapter 7 concludes this thesis. (Note, all or parts of Chapters 2, 3, 4, 5, 6 will 

appear in the 1st annual proceedings of the Communications Networks & Services 

Research (CNSR) conference [23].)

1.4  Security  Term s For M obile Agents

The following security definitions all have relevance to security in the mobile agent 

paradigm. For every term, a general definition will first be given and whenever 

possible, the context to which it pertains to the mobile agent paradigm.

A u th e n tic a t io n :  In security, to authenticate is to verify the identity of a person or 

process. Authentication is also used as a term  for describing integrity of infor

mation. For instance, whether results obtained by an agent has been tam pered
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with. Agents often need to authenticate a host to avoid masquerade types of 

attacks. The authentication of a host by an agent and visa-versa  is commonly 

performed through the Public-Key Infrastructure (PKI), consisting of Digital 

Signatures (DS) and Digital Certificates (DC).

P u b lic -K e y  I n f r a s t ru c tu re :  A system of DC, Certificate Authorities  (CA), and 

other registration authorities th a t verify and authenticate the validity of each 

party  involved in an internet transaction. It is assumed in the rest of this thesis 

th a t DC belonging to an agent owner, or a host, are legitimate products of the 

PKI.

P u b lic -K e y  C ry p to g ra p h y : Public-Key Cryptography (PKC) refers to encryption 

e and decryption d using a pair of asymmetric keys, public-key kpub and private- 

key kpriv Each kpub is made public typically through the use of DC and kpriv 

is only known to its owner. Let the m  be a message, ,_(m) is the encryption 

of m  and (%«i,(?Ti)) =  m i s  the decryption of using the receiver’s

kpriv In the case of mobile agents, the receiver is assumed to be the owner of 

the agent unless otherwise specified.

D ig ita l s ig n a tu re s : DS are produced using kp îy which is only know it is owner. 

Once singed, the signature is non-reputable. Anyone can verify a signature 

using the associated kpub- Let sig  be the signing function, sigkj,^-^{m) is a 

signature of m  using kpriv Let ver  be the verification function of sig, if

=  true , then is valid signature on message

m. Agents and hosts can use DS for the signing of transactions. Again using 

the airline agent as an example, once the agent has determines th a t a host has 

made the best offer, DS then can be used by the agent and the host to  make 

the transaction non-reputable.
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M essag e  A u th e n tic a t io n  C ode: Message Authentication Code (MAC) is the hash

ing of a message m  combined with a key k. Each unique k will produce a unique 

MAC on m. Let h be the hash function, then h{h[m, k)) is the MAC of message 

m  using k. The one way property of h ensures tha t each m  using k, produces 

an unique MAC. For example, a host can produce a MAC of its agent before 

dispatching the agent. Upon return of the agent, the owner can again calculate 

the MAC to verify the integrity of the agent.

O b fu sc a tio n : The obscuring or hiding of the functionality of code. Typically, obfus

cation is used to obscure proprietary agent code. CEF [32] and code scrambling 

[27] are examples of code obfuscation.

M a sq u e ra d e : Is when an entity is disguised as another entity. Agents with limited 

permissions might masquerade as another agent with more permissions to gain 

access to  resources on a host which the agent otherwise wouldn’t have. A 

host might masquerade as another host to lure an agent into revealing private 

information such as credit card numbers and private-keys.
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CHAPTER II

MOBILE AGENTS

A mobile agent is a m ulti-threaded autonomous program th a t can be distributed 

over a heterogeneous network to perform some predefined task for its human creator 

(user). In this chapter, a more formal description of a mobile agents will be given 

with respect to its mobility, composure, benefits and applications. A more in-depth 

discussion on security issues of the paradigm will be covered in section 2.4. Since this 

thesis focuses on agent security rather than the environment which it executes (host), 

the terms mobile agent and agent will be used interchangeably.

2.1 W hat is a M obile Agent?

To answer this question, a clear distinction must first be made between a mobile agent 

and mobile code because the two terms are often used synonymously. Fuggetta et al. 

[9] considers mobile code as any program which exploits code mobility. Therefore, 

mobile agents, Remote Procedure Call (RPC), Remote Evaluation (REV), Code on 

Demand  (COD), Java ^^app le t and other code written for distributed applications 

fall within the definition of mobile code. In Figure 1, a model of a mobile agent 

is given. The mobile agent consists of Execution Code (EC), Execution State (ES) 

and Storage Space (SS) which together makeup an Execution Unit (EU). EC is the 

knowledge or “know-how” required for computation. SS encapsulates initialization 

data  and com putational results. ES includes information on the program counter, 

registers and stack information required by an agent to execute or resume execution 

after it has been suspended either for migration or hibernation. The ability to suspend 

state, and resume execution on another host is known as strong migration[9].

10
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Execution
C o d e

E x ecu tio n
Unit
(EU)

Figure 1; A Model of mobile agent as an EU.

One of the key distinguishing features between the above mentioned mobile codes 

is how each communicate between their respective originators, otherwise known as 

their level of migration. As mentioned earlier, strong migration is the ability for mo

bile code to m igrate with sta te  information so th a t execution can resume on another 

host. However, in each of the client server models mentioned above, code mobility is 

restricted to the passing of procedures and data, or weak migration[9]. For example 

download Java^^^applet contains code and data, but an applet lack the ability to 

suspend execution and m igrate to  another host to resume execution. In Figure 2, 

similarities and differences of the different mobile code paradigms are shown. Figure 

2a-c show the more traditional client-server models of code migration. Figure 2a, is 

the communication model of RPC, param eters (e.g. data  and threshold of computa

tion) of the request is sent from the client to the server which hosts the know-how and 

com putational resources. The server executes the request before returning results to 

the client. In the COD model of Figure 2b, the client which hosts the computational 

resources and data, requests the know-how from the server. Once the client receives 

the know-how from the server, execution is carried out on the client’s machine using 

local com putational resources. Figure 2c, the REV model, the client provides the 

know-how and data, execution is carried out by the server before results are returned

11
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to the client. In each of the these synchronous models, the client initiates contact 

with the server and blocks for a response from the server. Figure 2d, is the mobile 

agent model of communication, the User dispatches the agent which has the know

how, storage (storage encapsulates execution results and if necessary initialization 

data) and execution sta te  information. In this model, each host provides the data  

and com putational resources required for execution. The agent migrates from host 1 

to n autonomously and communicates with the user only upon its return  from host

n.

Client

Client

Client

P a ram e tT a(d a ta )

R om ote P ro ced u re  Call (RPC)
resu lt$ (da ta )

a)

raquaatiknow -how )

C ode o n  D em and (COD)
rasponsa lknow -tiow )

b)

know -how (data)

R em ote E valuation  (REV)
rasu lta(data)

c)

Server

Server

Server

M obile A gen t (MA)

M tgrata

Server

'Server
I (n-1) ,

Server

User

Server

Figure 2: Comparison of communication models between Remote. Procedure Call
(RPC), Code on Demand (COD), Remote Evaluatton (REV) and Mobile Agent (MA).

In the more traditional mobile code paradigm such as in distributed systems, code 

migration is designed for relatively small scale networks. Code is passed from one 

machine/processor to an other. To the programmer, these actions are seamless and
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transparent because they are handled at the operating system level. Location of 

execution is never a concern to users of such system, as far as they know, everything 

appears to be executing on their local machine. In the left diagram of Figure 3, each 

EU resides w ithin the distributed execution environment (In distributed computing 

environments EU can be considered as individual processes or a thread of a m ulti

threaded process). In contrast, the mobile agent paradigm is designed with the vast 

scale of the internet in mind. Agents migrate independently from host to host and 

must always be aware of its location and the identity of its current host (Right diagram 

of Figure 3).

EU EU : - EU : I EU . EU . ( EU

D istrib u ted  E x e cu tio n  E n v rio n m en t

Figure 3: Distributed execution environment (left.) Us. m,obile agent computational 
environment (right).

2.2  W hy Use M obile A gen ts?

Various authors have studied benefits of the mobile agent paradigm [6 , 18, 9, 15]. The 

consensus between them  seems to be tha t the mobile agent paradigm  offers greater 

flexibility, scalability and transportability over the traditional client-server paradigm. 

The next few sections will summarize some of the most im portant features that make 

the paradigm  so promising.

O v e r c o m e s  n e t w o r k  la t e n c y .  Network latency refers to the time it takes a packet 

to get from the sender to the receiver. In networks with high noise to signal
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ratio or networks with low bandwidth connections, network latency can be 

substantial. Because a mobile agent reside on the target host, network latency 

is rarely a factor during its execution.

L o y a lt y :  An agent is created to perform computations on behalf of its owner. The 

agent represents the owner on the network, therefore, performs only tasks which 

the user assigns.

R e d u c e s  n e t w o r k  tr a ff ic :  Often, results collected by an agent is much smaller than 

the data  required for its computation. Moving an agent to the source of da ta  

reduces not only the amount of data  to be sent over a network, but the number 

of rounds of communication between the client (agent user) and remote hosts.

E x e c u t e  a s y n c h r o n o u s ly :  Agents once dispatched can operate independently and 

autonomously without further interactions with its creator. This unique ability 

is particularly well suited for networks with unreliable or expensive connections.

D y n a m i c  a d a p t a b i l i t y  a n d  f a u l t - t o l e r a n t :  An agent can sense and adapt to their 

environment. If a host is unable to  provide the requested service, an agent has 

the ability to m igrate to another host. In the event a host environment becomes 

unfavorable, an agent can migrate to another host or hibernate until favorable 

conditions are again available.

O p e r a t e  in  h e t e r o g e n o u s  n e t w o r k s  a n d  e n v ir o n m e n t s :  An agent typically op

erating in a Virtual Machine (VM) execution environment independent from 

host hardware. Agent migration protocols protect agents against network in

compatibilities.

F l e x i b l e  a n d  s c a la b le :  The typical client-server model of computing limits a client 

to a static set of services offered by a server. The mobile agent paradigm
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overcomes these limitations because it allows the user of an agent to design the 

agent to suit their specific set of needs.

2 .3  M A  A pplica tions

The goal of the mobile agent paradigm is the eventual adoption by the internet 

community for use in various research and commercial applications. Ever since the 

introduction of mobile agent paradigm [36], there has been ongoing discussions about 

its application domain [24]. Various “killer applications” has since been proposed, 

below are some of well acknowledged applications of the mobile agent paradigm. If 

possible, security requirements of each will also be included.

2 .3 .1  E - C o m m e r c e

Mobile agents for use in e-commerce is a particularly popular idea [35, 31, 17]. By 

dispatching agents to seek out products or services not only reduces network traffic 

but can also save the agent user considerable amount of time. Once created, an agent 

is independent from its owner, depending on the design of the agent, it will seek for 

the products or services and communicate with its owner only upon completion of the 

task or when some criteria set by the owner is meet. Contract negotiations, service 

brokering, auctions and stock trading are just some of the applications mobile agents 

are well suited for [9].

In most instances using a mobile agent for e-commerce applications requires the 

highest levels of security. For example, a “shopping agent” might have to carry 

electronic cash, credit card information and private signature keys to sign contracts. 

In this case, the owner would obviously want to protect his/her assets including 

results collected by his or her agent. Another type of shopping scenario agent is the 

“window shopper”. Although such agent might not be carrying any “secret” financial 

assets, bu t as mentioned in the airline ticket scenario, bids gathered by such agent 

still require protection from spying hosts.

15
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2 .3 .2  P e r s o n a l  A s s i s t a n t s

An example of a mobile agent used as a personal assistant is the meeting agent 

[18] dispatched for setting up a meeting between a number of participants. In this 

scenario, several people need to arrange a meeting time th a t suits the schedules of 

all participants. Each participant can create an agent preloaded with acceptable 

times which he/she can meet. The agents can then meet to make the necessary 

arrangements. If an agreement can be made, each agent returns to its respective 

owner with the scheduled time for the meeting.

Security for such agent depends on sensitivity of the data  (schedule of individual 

participant) and the level of security sought by their respective owners. In cases 

where participants wish to keep their da ta  hidden, arrangements can be made so tha t 

negotiations takes place on a m utual trusted host often referred to as a Trusted Third 

Party  (TTP).

2 .3 .3  N e t w o r k  M a n a g e m e n t

The use of mobile agents for remote network adm inistration can be argued as the “kill 

application” for most network adm inistrators. A mobile agent’s ability to adaptively 

respond to network events in real-time make them  a very powerful tool for system 

monitoring and hardware reconfiguration. An agent’s mobility and independence can 

also be useful for distribution of software on the network wide bases.

An adaptive agent {intelligent agent) over time can learn the normal behavior of 

the resource i t ’s monitoring. Such agents can be dispatched to monitor vital network 

resources for “abnormal” behavior so th a t preventative measure can be taken prior 

to the occurrence of catastrophic events. If an agent senses abnormal behavior, the 

adm inistrator can be notified, and another “maintenance agent” could be dispatched 

with preloaded configuration and support software to perform required services. Thus
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eliminate the need for such software to be installed on every resource. The m ainte

nance agents can also be used for applying software patches, reconfiguring of existing 

applications and installation of new applications as they become available.

An agent used for network management is vulnerable to both internal and external 

threats. The most likely internal treat is disgruntled employees assuming th a t all 

hosts within the network are trusted. A disgruntled employee with access to internal 

system resources can potentially modify or delete an agent. External threats to such 

agent usually depend on the resilience of the firewall protecting the network.

2 .3 .4  I n f o r m a t i o n  R e t r i e v a l

There are many benefits of dispatching MA for information processing and retrieval 

[18]. Information agents have the ability to process information without being con

fined by operational time of their owner. D istributing multiple agents to process or 

search for information increase the scope of the of coverage while reducing the time 

required to  complete the task. Information retrieval and processing typically involve 

the processing of large amounts of da ta  to obtain relatively small amount of results. 

Again, by sending agents to the source of information, only the results need to be 

transported by the agent, thus reducing load on the network infrastructure.

The level of security required for an information retrieval agent depends on the 

sensitivity of the information being collected. Information gathered on publicly avail

able sources might not require protection, but encryption still can be used if the agent 

owner does not wish to disclose the type of information sought by the agent. For ex

ample, if a commercial enterprise is seeking data  for a new product or service under 

development. Although the d a ta  gathered are from publicly available sources, there 

would still be the need to hide sources and composure of such data  from competitors.
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2 .3 .5  M o b ile  D e v ic e s

Perhaps the most natural application of a mobile agent is in mobile devices such as 

cell phones, personal organizers, notebook computers, e tc ,.. Most mobile devices rely 

on wireless technology which at best is sporadic in availability and have limited band- 

wMth. Another inherent weakness of mobile devices with the exception of notebook 

computers is their limited processing power and storage capacity. User of mobile 

devices can dispatch an agent when network connection is available and collect it at 

a later tim e when network connection is once again available. Thus eliminating the 

need to transfer large amount of da ta  to the device to be processed locally.

As with all applications of mobile agent, security requirement of the agent depends 

on its functionality and the sensitivity data  within the agent. However, mobile device 

users m ust always take into consideration the lim itation of their devices, particu

larly the lack of processing power and storage capacity when making security related 

decisions.

2.Ji. M A  Secu rity  Issues and C ounterm easures

Many functional mobile agent systems have already been implemented [10, 7, 21, 12]. 

However, their use has yet to be widely adopted outside the research and academic 

arenas mainly because of the many unresolved security related issues. Mobile agent 

systems as with any network computing platforms have four core security require

ments [15]. First, both agents and platforms must have confidentiality protection 

against potential eavesdroppers and thieves. Second, security policies m ust provide 

for varying levels of code and data  integrity. Third is the accountability of both 

agents and hosts for any damages caused by malicious actions or poorly w ritten 

code. Finally, agent platforms must ensure availability of resources for agents (e.g. 

CPU cycles, network bandwidth, tem porary storage space e tc ... ) if prior contractual 

agreements bound hosts to do so.
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As discussed earlier, the introduction of mobile agents into a network posses many 

security related issues. An agent typically executes on remote potentially hostile 

environments. This leaves the agent open to various types attacks by malicious hosts 

and hosts to attacks by agents [2, 14]. The security domain of the mobile agents 

paradigm  can be broken into two broad categories.

1. Securing remote hosts from malicious agents.

2. Securing agents from malicious hosts.

Many solutions to security issues related to the mobile agent paradigm  have been 

proposed by various authors, unfortunately, they are ad hoc in nature because of the 

absence of well defined set of specifications. The rest of this chapter will discusses 

some these security issues for both hosts and agents along with various proposed 

m ethods for countering them.

2 .4 .1  H o s t  S e c u r i t y

Any host which offers external agents access to its resources faces many serious threats 

from a malicious agent [14, 15, 2]. The attacks a mobile agent host might face are 

similar to attacks any traditional host connected to a network faces. These include; 

masquerading, denial of service and unauthorized access. Fortunately, many m ethods 

to protect against a malicious agent can be adapted from the traditional client-server 

model of security. Mechanisms for process isolation, resource access control are al

ready in place on most hosts. Well known and proven cryptographic techniques for 

encryption/ decryption, signatures and authentication are readily available for use by 

every host.

Bierman and Cloete [2] classified countermeasures to agent th reats as suited either 

for prevention  or detection. The same classification will be used here for countermea

sures classification of host treats as well. For a host, the first and obvious goal is to 

detect malicious or poorly written agent code prior to its execution. However, this
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is not always possible or reliable. Therefore, the goal of prevention is to contain or 

minimize the effects of such code.

D e t e c t i o n :  An example of detection is the static type checking of downloaded Java'^^ 

byte code implemented in the J a v a ^ ^ secu r ity  architecture [16]. Before a down

loaded applet is perm itted to execute, the class loader invokes the verifier which 

checks for memory management violations such as stack overflow, underflow and 

illegal type casts within the applet code. Signed code can also be used as part of 

an overall detection strategy. Allowing only signed code from verifiable trusted  

entities to execute does not guarantee code integrity, however, it does allow a 

host to seek retribution in cases where the code has caused damages. Agents 

which record their itinerary[5] and can prove tha t they’ve already executed on 

other hosts trusted  by the current host can also give some assurance on the 

integrity of the agent code.

Predictably, the above mentioned m ethods for detection all have its associated down 

sides. It might be computationally infeasible for an host to examine every line of 

code for every agent prior to execution. There are also instances where the host 

might learn nothing on the intent of the code prior to execution if the code has been 

intentionally obfuscated [11] or encrypted [32]. To require every agent to be signed 

could mean th a t many un-signed non-malicious agents would have to be turned away 

thus limiting wide adaption of the mobile agent paradigm by the general public. 

Agents th a t have executed on other trusted  hosts are still subject to tem pering on its 

m igration from one host to another. For example, if the itinerary of an agent shows 

th a t the agent m igrated from a trusted  host, then to an un-trusted host, prior to its 

m igration to the current host. How confident is the current host th a t the agent hasn’t 

been tem pered with by the un-trusted host? This issue can obviously be resolved by 

limiting access to agents with an itinerary of only trusted hosts. However, this again 

limits the usefulness of the mobile agent paradigm.
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P r e v e n t io n ;  A key requirement of host prevention is ensuring agents cannot interfere 

w ith other agents or their environments. This can be accomplished through the 

use of w hat’s know as reference monitors to establish isolated domains for each 

agent and to  control all resources access by an agent. Reference m onitors uses 

a number of traditional security techniques such as: process isolation, resource 

access control and cryptographic primitives for information enciphering and 

authentication. More recently, the use of interpreted programming languages 

has also offered an additional layer of abstraction against agents. The most 

popular are Java™  [16] and SafeTcl [26].

The Java ^'^programming language implements w hat’s known as a sandbox 

model of security. As mentioned earlier, static type checking of download code 

is a powerful tool for prevention of attacks. For detection, Java ’’"'^uses w hat’s 

called a Security Manager. Similar to a reference monitor, the Security Manager 

control all access to system resources during runtime.

SafeTcl is an interpreted language used by AgentTcl [10]. SafeTcl uses a padded 

cell concept where un-trusted or suspicious code is executed w ithin the padded 

cell before being allowed to be executed within the main interpreter.

Unlike detection techniques, prevention techniques are more well established and are 

widely implemented. The overall security of any host system often depends on an 

organization’s security policy and their willingness to follow through on its imple

mentation. Security breaches even in well established systems and languages occur 

frequently due to lack of willingness to implement security policies already in place.

2 .4 .2  A g e n t  S e c u r i t y

Agent security is widely believed to be more challenging when compared to  host 

security. This can be partially attribu ted  to the fact tha t the mobile agent paradigm 

is relatively new and partially to the autonomous encapsulated nature of an agent.
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Treats against an agent from a malicious host can be categorized into four categories

of: integrity attacks, denial of service, confidentiality attacks and authentication risks

[2].

I n t e g r i t y  A t t a c k s :  Violations to an agent’s code, data  or states are considered in

tegrity attacks. There are two prevalent categories of violations, active and 

passive. Example of passive violations occurs when a host intentionally delays 

or refuses the transmission of an agent. More serious are active violations when 

an host m anipulates an agent’s code, state or data  to its benefit.

D e n i a l  o f  S e r v ic e  A t t a c k s :  Denial of service attacks occurs when an host denies 

an agent access to its resources. For example, a host might have previously 

been compensated to provide a certain set of services for an agent but, upon 

arrival of the agent, the host refuses the agent the previously agreed services. 

There are many reasons for a host to refuse agent such services but the most 

prevalent is the potential for financial gain.

A u t h e n t i c a t i o n  R is k s :  Consequence of agent autonomy is the need for an agent 

to be more location aware than  its traditional client-server counterpart. In 

the traditional mobile code paradigms of Figure 2, connection is established by 

the client to the server. In each of the model, authentication can proceed any 

transmission of code. For a mobile agent, authentication typically occurs after 

the arrival of the agent. Agents then are susceptible to masquerading attacks 

by a host. For example, suppose the airline agent believes its being hosted by 

a trusted  m ajor airline, but instead it has been ’’hijacked” by the FlyByNight 

host disguised as the m ajor airline host.

C o n f id e n t ia l i t y  A t t a c k s :  An agent is often embedded with private or sensitive 

information belonging to its owner. To compromise an agents confidentiality 

implies th a t the agent is either illegally accessed or its privacy is under attack.
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The most obvious is a host which eavesdrops on an agent to  steal information 

such as private keys or credit card information. However, proprietary algorithms 

of an agent could also be target of such attacks.

Agent security similar to host security should also implement two lines of defence. 

F  w ever, for an agent, the first line of defence should be the prevention of possible 

attacks by malicious hosts. In the case where prevention is unattainable due to 

factors such as technological limitations. Then detection mechanisms in terms of 

result authentication should be used to validate results obtained by an agent.

P re v e n tio n : The aim of prevention is to thwart possible attacks by a malicious host. 

Arguably, prevention of malicious host attacks is perhaps the toughest security 

challenge in the mobile agent paradigm. The various m ethods dealing with pre

vention of malicious hosts attacks are based on trust-based computing, recording 

and tracking and cryptographic primitives. The first two techniques will be 

discussed here while m ethods of using cryptographic primitives is reserved for 

Chapter 3.

Trust based computing relies on the availability of Secure Hardware (SH) to pro

vide Secure Execution Environment (SEE) for an agent (see Chapter 4 for more 

details). Devices such as secure coprocessor [39], tam per resistant hardware [38] 

and Sm artCards [19] have all been proposed to provide the SEE. However, such 

hardware are either theoretical or under development.

Recording and tracking mechanisms have also been proposed. The idea of using 

cooperating agents [30] is th a t two agents are used to track each others migra

tion. Each agent forwards the location of previous, current and next hosts to 

the other co-operating agent. In essence each agent is keeping an itinerary of 

the other agent. If either of the agent senses inconsistencies, then appropriate 

preventative measures can be taken. This idea is based on the premiss tha t not
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all hosts are malicious and tha t at least one of the agent is being hosted by a 

“trusted host”  ̂ a t any given time.

D e t e c t i o n :  W ithout adequate preventative mechanisms to protect an agent, user 

of an agent is confined to detection mechanisms to determine authenticity the 

agent and its results. Conceptually, the simplest m ethod for detection of tem 

pering is the use of “detection objects” [22]. Detection objects are fictitious 

d a ta  closely m atching results an agent might collect on remote hosts during 

its migration. For example, consider the airline ticket agent. The user of the 

agent can im plant some fictitious offers within the agent prior to dispatching 

the agent onto the network. Upon the return  of the agent, the user checks for 

the authenticity of the implanted results. The premiss is th a t if the implanted 

results are intact, then the agent and results are presumed to be authentic.

Agents can also record their path  history to detect tam pering [25]. For instance, 

as hosts are visited by an a gen t, the agent records the locations of the current 

and next host to be visited by the agent. Each entry is signed by the current 

host verifying the m igration of the an agent. Upon return  of the agent, its 

owner can verify the path  taken by its agent. If the agent migration path  strays 

from the path  recorded, then the agent has been tam pered with.

2.5  R em arks

This chapter covered some of the most im portant tra its  of the mobile agent paradigm 

including i t’s benefits and mostly security related drawbacks. The above countermea

sure given to protect an agent all lack cryptographic strength. The next chapter will 

focus strictly on cryptographic techniques for the protection of agent.

^Chapter 4, discusses the concept of a trusted host. See cliaptor 4.1
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CHAPTER III 

CRYPTOGRAPHIC PRIMITIVES FOR 

MOBILE AGENT

This chapter describes different techniques for protecting an agent using cryptographic 

primitives. As previously discussed in section 2.4, protection of an agent first involves 

p r o te ctio n  then prevention. This chapter will first describe techniques for protection 

followed by prevention. The use of cryptographic primitives offer a new set of chal

lenges for an agent. The user of an agent cannot offer the level and trust security 

the agent enjoys in its home environment. Once dispatched an agent is under to tal 

control of the remote host. Cryptographic key even if it can be hidden from the 

remote host, cannot be protected if the agent is to use such key.

3.1 C ryptographic P reven tion
3 .1 .1  C o m p u t i n g  w i t h  E n c r y p t e d  F u n c t io n s

Prior to the introduction of Computing with Encrypted Functions (CEF) by Sanders 

and Tschudin [32], it was widely believed th a t software only solution to  the problem 

of malicious host was impossible. CEF allows an agent to execute on remote poten

tially hostile environments autonomously w ithout disclosing any information on the 

function of the agent or any cryptographic primitives within the agent. The basis for 

CEF is the use of a homomorphic PK E scheme th a t allows for non-interactive addi

tion or multiplication of two encrypted cleartext messages through the m anipulations 

of ciphertext only. Given the pair of functions e, d which are the encryption and 

decryption functions respectively and two ciphertext messages e{x)  and e{y).  Homo

morphic encryption allows for the efficient calculation of e{x +  y) and e{xy)  without
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disclosing either values x oi  y . To illustrate, Alice A  has a function /  which Bob B  is 

willing to execute for her with his input x.  To hide the functionality of /  from Bob, A  

encrypts /  into another function e ( /) . A  then creates a program P{ e [ f ) )  which im

plements e ( /)  and the procedures A D D  and M U L T ,  sends them  along with F (e ( /) )  

to B. B  then executes the program P{ e { f ) )  on x  to obtain P{ e{ f { x) ) ) ,  each call for 

addition uses the procedure A D D  and multiplication uses M U L T .  Once execution of 

F (e ( /) )  is completed, B  sends F (e (/(x )))  back to A  who decrypts it to obtain f {x) .  

If /  is a signature or encryption algorithm then A  has effectively signed or encrypted 

information respectively w ithout disclosing her private key (see Figure 4).

I  P(e(f))  -

f  ;  -  e(f)

Alice

W  - —  d(e(f(x)))  '

P(e(f))

Network Bob

Figure 4: Computing with Encrypted Functions.

3.1.1.1 Undetachable Digital Signatures

The use of CEF was also extended to producing Undetachable Digital Signatures 

(UDS) where a signature routine can be “attached” to the function /  such that

f s i g n e d   ̂  ̂ f

Let / ,  s be rational functions and s is used by A  to sign the message m where m is 

the output of /  on some data  x.

m =  / (z )
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Let V be the verification function of s, where

and V is public. To make the signature undetachable, A  sends {fsigned, f )  to B. B  

uses his input x to  produce {fsigned{x), f (x) ) .  Using the public verification function 

V anyone can verify that,

s. 1.1.2 Remarks

CEF provides protection for both the agent and the host. The functionality of the 

agent is protected because of the encryption of / .  Hosts are also protected because 

/  is executed with the input x controlled by the host. CEF has since been shown 

to  be useful for all polynomial-time functions by Cachin et al [4] and Kotzanikolaou 

et al [27] showed th a t it can be used with the RSA signature scheme. However the 

construction of encrypted functions is complex and has y e t to be shown to  work with 

a more wide range of functions.

Algeheimer et al. [1] later showed that non-interactive secure mobile agent com

puting schemes do not exist. N on -in ter  a c tiv e  refers to no interactions between the 

host and agent during the agent execution. CEF allows the secure evaluation of /  to 

produce only a final result. Therefore, agents cannot react to  host actions during its 

execution. Using the airline agent example, suppose the agent’s previous best offer 

is c. If the output of /  is to  accept or reject the offer x by the host. Then there 

is nothing th a t keeps the host from continuing to make an offer x' until c has been 

completely exposed by the agent.

3 .1 .2  S l id in g  E n c r y p t io n

Sliding Encryption [40] is a deterministic m ethod for operations on public key cryp

tosystems. It allows for encryption of small amounts plain text into same size cipher
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text. A general description of the m ethod will be given here. More details can be 

found in [40].

Let m  be the size of a RSA key and m is a power of 2. Plain-texts are broken 

into small equal sized blocks Oi, dg, - - - , where 'ii, \  <  i <  k and ]ai] =  u. Let 

V be the size of some random string and t  =  u +  v  where t  m  and t  divides m. 

To perform slide encryption requires the use of a stack S, an accumulator A  and an 

window W . Elements of A[i] and W['i] are of size t. Let e ,d  be the encryption and 

decryption functions respectively. To encrypt, ai is pu t into the lower order of bytes

Accumulator yj

Slide

Stack 5

Figure 5: Slide Encryption.

of >l[l], the upper v  order of bytes contain random strings. The accumulator is then 

encrypted to  obtain e(A). .A[l] is then slid into W [m /t]. To encrypt Ug, Og is pu t into 

the lower order byte of ^[1], the upper v  order of bytes contain random strings. The 

accumulator is then encrypted and A[l] is slid into W [ m / t  — 1]. This process repeats 

until üm/t has been slid into W [l] a t which tim e W  is pushed onto the S, pu sh{W ).  

The plain tex t am/t+i to aom/t uses the same process. This repeats until all k plain 

text blocks are encrypted. Decryption is the exact reverse of the encryption.
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3.1.2.1 Remarks

Slide encryption was designed with minimizing agent code in mind. A smaller agent 

gives the agent better mobility, but because the decryption key stored in one location, 

any breach of security a t th a t location would allow an adversary access to the plain 

text.

3.2 C ryptographic D etec tion
3 .2 .1  P a r t i a l  R e s u l t  A u t h e n t i c a t i o n  C o d e

Partial Result Authentication code (PRAC) was proposed by Yee [39]. PRAC, requires 

tha t the a g en t and owner m aintain a set of secret keys incrementally generated on each 

host the agent visits. The secret key is used to generate a cryptographic checksum 

(similar to MAC) of an agent’s state and results on each host it visits. Once used, 

the secret key is destroyed by the agent before moving to the next host, thus insuring 

forward integrity. More formally, suppose th a t an agent is to visit a list of servers 

s i , . . . ,  s„, if the agent encounters a malicious server Sc where c <  n, the information 

collected at s i , . . .  Sc-i is preserved. Because only the agent and its owner know the 

secret keys and the agent’s copy is destroyed after use, only the owner of the agent 

can authenticate any results.

3.2.1.1 remarks

The m aintaining of the secret keys by the owner requires an agent to contact its owner 

from each host it visits. This reduces agent autonomy and because the keys are stored 

in one location (owner) any breach of security a t th a t location could potentially reveal 

all the secret keys.

3 .2 .2  C r y p t o g r a p h ic  T r a c e s

Vigna [35] proposed a process where the executing host is required to produce a 

trace of operations performed by the agent. The PK l is used for the generation of
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a hash and securing of communication between the agent owner and executing host. 

During agent execution, the host records (logs) the operations performed by the agent. 

Upon term ination of execution, a hash of the agent operations and is current sta te  

is calculated. A copy of the trace is stored by the host so tha t it can be produced 

later a t the request of the agent owner. The hash is then forwarded to the agent 

owner. Thus allowing an agent owner to re-execute the agent with data  supplied 

by the host and compare the hash of the re-execution with the one supplied by the 

host. To produce a cryptographic trace requires multiple rounds of communication 

between the owner of the agent and the host executing the agent. Figure 6 illustrates 

the rounds of communication to produce the execution trace.

1 . =

2. g  A I mg =  gX-B, A, Û, /i(mi), AF)

3. A g  I m3 =  A,(A, g , gp(K.4))

4. g  A I m,4 =  g ,(B , A, A(m3))

5. g  A I ms =  g ,(g , A,f^, Aa(SB),fi(T^),fg)

6. A g  I me =  A^(A, g , Ù , h(ms))

7. g  A I my = g ,(g , A,2^,Ap(KB))

Figure 6: Cr-yptographic Tracing Steps.

In Figure 6 , Alice A is the owner of the agent and Bob B  is the executing host. 

Let rui be a message where 1 <  L Let (Ap, A,) and (gp, g«) be A and g ’s public and 

private keys respectively and A ^  B  is the passing of m, from A to B.  Let A(m,) 

be the hash value of m, and h is a one way hash function. Singing (e.g. Produce a 

DS) of a message by A or B  is indicated by A  ̂ or g^ respectively.

S te p  1: In Figure 6 , the message mi is from A to g  as indicated by the first two
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fields of each The singing of all m* insures authenticity of messages to 

the receiving party. The third held is a unique identifier for all messages 

during this execution request. A time stam p Ia is also included in m i to ensure 

’’freshness” of the message and to guard against reply-attacks. The last field, 

K a (p ) is the program p  (agent) to be executed by B  encrypted with a secret 

key K a chosen by A.

S t e p  2: B  has options of either to accept or reject the request which is contained in 

the message M .  A hash of m i is returned to the agent owner to  ensure to A  

th a t m i was received by B  correctly.

S t e p  3: If M  is an accept message, then A  responds with m 3 which contain the K a  

required by B  to decrypt the program p.

S t e p  4: An acknowledgment message 1714 is sent by g  to A indicating th a t B  has 

successfully decrypted p. Again a hash of the previous message received by B  

is returned to A. Now th a t p  has been decrypted, B  proceeds to execute p  and 

the trace, Tg is recorded by B.

S t e p  5; Once p  has completed execution, Sb, the state (results of execution) of p, 

is recorded and encrypted with a random  key K b  to obtain Kb { Sb ) -  Then a 

hash A(Tg) is generated along with another time stam p tg . B  then proceeds to 

send mg to A.

S t e p  6: W hen m g is received by A, A replies with an acknowledgement message mg 

requesting for K b  to  decrypt the state of agent Sb-

S t e p  7: If all previous steps were successful, B  sends A m? which contains K b-  A 

can now decrypt state  of the agent to obtain the state Sb-

If A suspects that B  has cheated while executing p, A can request tha t B  send

Tg and the data  used to produce Tg. A first computes h{Tg)' and compares it with
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h{Tg) received in mg to check the authenticity of Tg. If the h{Tg)' — h{Tg) ,  A  

executes p  to  produce Tg'. If Tg'A Tg, A  knows th a t B  has cheated.

3.2.2.1 remarks

The lim itation of using cryptographic tracing is the large number of rounds of commu- 

n'nation required per execution. This somewhat undermines some of the key benefits 

of the mobile agent paradigm of autonomy and independence.

3 .3  R em arks

The techniques discussed in this chapter all provide an agent with the capability to 

use cryptographic primitives on a remote host. CEF aims not only to  provide privacy 

for the agent da ta  but also any potentially proprietary agent algorithm. However, 

as mentioned earlier, the generation of the encrypted function is only limited to 

polynomial functions. SE offers an agent better mobility by limiting the size of 

encrypted data. However, the strength of the scheme depends on the securing of 

the private key. The next chapter introduces Secret Sharing Scheme (SSS) for mobile 

agent cryptography. Although, its aim is not as bold as CEF, its application is similar 

to SE but because the private key is shared, the compromising of the private key is 

much more challenging for an adversary.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV 

SSS FOR AGENT CRYPTOGRAPHY

This chapter will introduce the idea of using SSS for mobile agent cryptography. As 

mentioned earlier, the distribution of the private-key amongst n provides additional 

protection against a adversary. This chapter will outline the protocol for initialization, 

distribution and hiding of shares within agents. Later in the chapter, a modified 

version of the protocol will be introduced which allows an agent on remote trusted 

hosts (TH) to distribute agents of own.

4.1  Trusted H osts

Here, TH will be defined as any host which can provide an agent with a Secure 

Execution Environment (SEE) including protection against the following attacks as 

categorized by [2]. Integrity attacks, an agent is secure from tam pering by the host 

and other entities such as other agents. Availability refusal, an authorized agent 

cannot be denied access to resources which has been universally agreed upon to be 

vital to the proper function of an agent such as, CPU cycles, RAM, storage space 

and network bandwidth to  m igrate to other hosts. Confidentiality attacks, an agent 

private assets cannot be destroyed, tem pered with or made public by the host or 

other entities. Authentication risks, when requested, a host must be able to provide 

appropriate credentials (e.g. Certificate from a CA) so tha t the agent can authenticate 

the identity of the host.

It is assumed th a t the home environment of an agent is trusted. Therefore, the 

first and obvious TH is an agent’s home environment. The process of initializing 

agents for distribution involves the generation of a pair of public and private keys.
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The importance of keeping the private-key secure is obvious, therefore, the key gener

ation process -will only be performed on a TH. All hosts are classified as either trusted  

or non-trusted. TH are host which can provide an agent with a SEE mentioned above. 

Classification of a host as un-trusted does not imply maliciousness, but rather, it can

not provide an agent with an execution environment tha t fulfills all the requirements 

set forth by SEE.

It is still an open question whether SEE is possible with only software based 

solutions by using current technology [1]. Some believed tha t such environment will 

only be available through specialized Secure Hardware (SH) strictly designed for agent 

execution [39, 19, 37]. In [39], a SH in the form of a secure coprocessor is under 

development which will allow for a SEE for Java ™ agen ts. In [20], a lim ited capacity 

Sm artcard was proposed th a t interacts with an agent’s code to hide the functionality 

of the code from a host. In [37], the proposed hardware provides agent code a tamper  

proof environment in which to execute.

The proposed SH all rely on cryptographic primitives of PKL The common prin

ciple behind each of the above mentioned SH is the use of PKE. Each SH has its own 

associated public/private key pair. The public-key is made public while the private 

key is embedded into the SH either during the manufacturing process or by the m an

ufacturer after its production. The assumption is tha t SH manufacturers are large 

multi-national corporations with valued global reputation which they wish to protect. 

Another obvious key assumption of SH is th a t the host system employing the SH can

not tam per with the SH or gain access to  i t ’s private-key. Here is a example use of SH. 

Suppose an agent owner wants to dispatch an agent to n hosts H i .. .Hn-  Once the 

agent is created, the owner obtains the public-key of Hi,  encrypts the agent before 

sending the agent to Hi .  W hen Hi receives the agent, it decrypts the agent with its 

private-key, then proceeds to execute the agent. Upon completion of execution of the 

agent. Hi encrypts the agent with the public-key of H 2 before send the agent to H-,.
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This process continues until iF„_i, at which time the public-key of the owner is used 

to encrypt the agent. This process has effectively hidden the function of the agent 

along with any secrets the agent might be carrying.

Although SH theoretically offer unambiguous protection for an agent, unfortu

nately such hardware is not yet available. However, for ease of discussion of the 

protocol th a t follows, the assumption will be made tha t such hardware is available 

and is employed by limited number of hosts. The purpose for SH is to extend the 

security of an agent’s home environment to a remote host. Therefore, any solution 

th a t can offer an agent SEE can be used, including non-technological social means. 

For example, a certain number of dedicated hosts which are socially bound to offering 

secure resource access to agents such as a University network, or financially bound 

such as paid TTP. A concept often discussed in the mobile agent paradigm  to act as 

an im partial m ediator [38, 35].

4-2 Secret Sharing

Secret sharing schemes (SSS) was introduced independently by Shamir [33] and 

Blakey [3] in 1979. SSS allows a secret to be distributed by a trusted  dealer to 

a set of participants which perm its only sp ec ific  subsets or a threshold number of 

participants to recover the secret.

4 .2 .1  S h a m ir ’s  T h r e s h o l d  S c h e m e

Shamir uses a polynomial (t, n)-threshold scheme, where t, n are positive integers 

and t  <  n. A  secret value k can be shared by a trusted dealer D  amongst a set 

of participants F, where F  =  { F ] l  <  i <  n} (See Appendix A, Figure 12). The 

recovery of k requires at least a set of M  participants where \M\ > t  and M  Ç P  (See 

Appendix A, Figure 13). For instance, let f =  3 and n =  5. The value k is shared 

amongst 5 participants and any 3 can regenerate k using their shares.
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4-S The Protocol

The goal of agent autonomy is to minimize number rounds of communication between 

an agent and its OriginatoA O. Therefore, the protocol’s aim is to allow agents 

to  use cryptographic primitives on remote hosts while restricting communication be- 

tv^een O  and each agent to only one round (send and receive). More precisely, let 

O be the originator (creator) of n agents, 1 <  n. Let C  the number of rounds of 

communications between O  and n agents. Therefore, the goal is such th a t C  =  n. 

Note th a t O  recursively inherits any agents generated on remote hosts by its children. 

For example, if O  generates n agents and the n agents combined generates g agents 

then O  has n +  g agents.

4 .3 .1  A g e n t  I n i t i a l i z a t i o n

Again, the point will be emphasized th a t agent initialization is to only be performed 

on a TH in order to  protect the private-key. Agent initialization involves the genera

tion of the public/private key pair which will be used for encryption and decryption 

respectively. Share generation is performed once the private-key has been created. 

To protect each share, a random number is generated for each share. The random 

number is combined with each share prior to distribution to agents. Figure 7 outlines 

the steps required for initialization.

Here, a formal description of agent initialization will be given. Let D be the 

trusted dealer in Sham ir’s algorithm, and D is the originator of agents A , where 

A  =  { A ; | l  <  i <  n } .  Let 77 be a set of remote hosts, where H  =  {77*11 <  i <  n}.  

Let 1C be the set of all possible keys and 1C =  Zp, such tha t p >  n -f 1 is a prime and 

Zp is a finite field of size p. Let <S be the set of all possible shares and S  =  Zp. Let s* 

be the shares given to each A*, (Vi,s* e  <S). A random number Wi G Zp is generated

^Notc, in previous diapters, an agent's originator was referred to  as owner or agent owner. In 
the protocol the dealer D is also the owner and originator of agents.
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by D  for eacfi A*.

Let kjnih and k^riv be tfie public and private key pair generated by D  respectively. 
Let be the signature function using kj„-iy.

1. D  generates a key pair {kj„,b/kprif) such tha t {kpuh,kpriv} € fC.

2. D  publishes

3. D  calculates shares .s* using kpriv for each A*.

t - i
kpriv +  rnod{p)

7 =  1

4. D  also generates a random number for each A* and combines each s* +  lUi 
to obtain z* =  .s,; +  «,>*. D  then stores a copy of each re,; in a secure location.

5. D  signs each agent, .s?Pfep .̂„(Ajjjzj) with kpriv before destroying kpriv

6 . D  attaches with each A*||z,:||s{%p,.,,,(A*||z,:) and transfers each

Figure 7: Agent Initialization

In step 2 of the agent initialization (Figure 7). The requirement th a t kpub be 

published is to  allow all agents access to the public-key used for encryption. The 

publishing of kp b̂ is to  reduces the size of an agent. It is possible for agents to carry 

kpub- In step 4, the random value Wi added to each s* conceals the actual share s* from 

un-trusted hosts. Also, by concealing Si, in the event th a t a malicious host is able 

to capture all z*, w ithout the random values Wi, s* will remain hidden. The signing 

of the agent in step 5 allows D  to  authenticate each A* upon its return  and kpriv is 

destroyed because it can be regenerated upon return of t  agents.

4 .3 .2  E n c r y p t i n g

Let be the encryption function using kpub- As results R i j  (Results collected 

by agent A* on host j-)  are collected by A* on 77*j ,  j  >  1, before A* moves to
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host H ij+ i  {Note that the movement 0/ A* from host 77* j to 77jj.^i is for notational 

purposes only. Agent migration does not require an strict itinerary.), A* retrieves kp b̂ 

from the publicly accessible location and encrypts 7?*j with kpub to  obtain Gkpuhi^id)-

4 .3 .3  D e c r y p t i n g

L..V d*. be the decryption function using fcpriu- Let be verification function

for siçkp,.i„- Decryption requires a t least 7 of n  agents to return with their shares. 

Upon return  of each A*, D  verifies each A*, if verkpub{{Ai\\zi), sigkj,„„{Ai\\zi)) =  true  

D  retrieves the value rc* from the secure location and extracts each s* =  z* — w*. 

If j{f : verpub{{Ai\\zi),sigpriv{Ai\\zi) — true}\ >  t, though polynomial interpolation 

(See Appendix A Figure 13) using each s*, D  regenerates kpriv, D  can now use dkp„„ 

to decrypt obtain 77*j.

4 .4  A gen t  D is tr ibu tion  on R e m o te  Trusted H osts

Suppose A* is on a remote TH 77*, and A* wishes to distribute I agents A ' where 

A ' =  {A ' I 1 <  % <  Z} from 77*. Let SS be A*’s storage space (See Figure 1). Let w{ 

be a random  storage location within SS generated by A* and % is the contents of SS 

at location w{, % G SS {See Figure If)- Let W  =  {rcjHwgH . . .  ||u7(} and W  € Zp. Let 

S' be the set of all possible shares and S' =  Zp- Let s' be the shares given to each 

A|, (V i,s 'e ,S ') .

In the original protocol, the random values tc* was stored in a secure location on 

D ’s home environment. However, now A* is on a remote host and must migrate at 

least once (back to its home host). Therefore, the random number generated to mask 

shares m ust be hidden within A^. To accomplish this, instead of masking each share 

with the random  number re* directly. The modified protocol generates a random 

storage location re' within SS. The contents r/* at location re' is used to mask each 

s' (See Figure 14). The combined randomly generated memory locations W  is also 

shared amongst I agents as r*. Figure 8 illustrates the modified protocol for agent
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distribution on remote TH. Note tha t in Figure 8, A* is represented by D.

Let uf represent a random  memory location in A /s  SS. Let % be the contents at 
w f  Let 7'i be shares of W  generated for each A '.

1. D  generates a keys pair {kpublkpri) such that {kj^b, kpriv} 6 1C.

2. D  publishes kpub-

3. D  calculates shares .s' using kpriv for each A '.

j=i

4. D  also generates a random memory location w[ for each A ' and combines its 
contents y* w ith s' to obtain z' =  s' +  iji (See Figure 14).

5. D  calculates shares r* for each A ' using W .

Ti — W  +  üjX-’ mod{p)
j=i

6 . D  signs each agent, 8i,%p,.„,(A'||z'||rJ with kpriv before destroying kpriv

7. D  attaches with each A '||z '||r/|sigkp i,.„(A '||2 '||r*) and transfers each 
(All^llnllaZg^, XAIIkilln)) to 77'.

Figure 8 : Agent initialization on remote hosts.

4 .4 .1  E n c r y p t i n g

The procedure for an agent to perform encryption on results gathered on remote hosts 

is the same as outlined in Section 4.3.2.

4 .4 .2  D e c r y p t i n g

Decryption is performed only on the home host (User in Figure 10) regardless where 

the agent was generated. The decryption process is also similar to the procedure 

outlined Section 4.3.3. But because the value y* in stored within A./s SS. decryption 

can be performed only when A* returns to its home host. First the value r, is extracted
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from each A ' to generate the combined random locations W  through polynomial 

interpolation. Using each w' the values % is retrieved from A /s  SS. Using each s', 

again through polynomial interpolation, kpriv can be regenerated.

4 .5  R em a rk s

The distributing of the private-key amongst agents offers greater protection for the 

key. Not only will a malicious host have to capture a t least t agents, it must also find 

the shares within each agent. For example, suppose a host has all of the agents and 

is able to find the values z*, without the random value w*, s* is considerably harder to 

obtain. Independence and autonomy are key characteristic of an agent. Therefore, the 

ability to  distribute agents on remote hosts have some obvious advantages. However, 

this also posses new challenges. How to hide a secret within an agent? Through 

the use of secret sharing, and information hiding within an agent’s SS it was shown 

th a t information and private-keys can be hidden within a number of agents. The use 

of Sham ir’s threshold scheme also allows for inherent fault-tolerance because only t 

of n  shares are required to regenerate the private key. Thus, the robustness of the 

algorithm allows regeneration of the private-key even iî n — t  agents are destroyed, 

lost, or tem pered with.
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CHAPTER V 

SECRET SHARING WITH RSA KEYS

This chapter will demonstrate how the protocol of Chapter 4 can be implemented 

with RSA [28] PK E algorithm. RSA keys can be used for encryption/ decryption and 

for DS.

5.1 R S A  Overview

Let n  =  p q  be the RSA modulus and p , q  are primes. Let a, b be the encryption and 

decryption keys respectively where:

ah =  1 mod[(j){n)) and </)(n) =  (p  — l ) ( q  -  1)

The values p , q , b are private and n , a are public. Given the message m  encryption is 

defined as:

y  =  efc(m) =  m “ mod{n),

decryption is defined as:

dkiy) =  y'̂  mod{n)  =  m

signature is defined as:

sigk{m) =  mod{n)  

and verification of sigk{m) is defined as:

verk{m , sigk{m)) =  true  x =  mod{n)
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5.2 A gen t In it ia l iza tion

Let sigh be the signature function using private value b.
1. D  generates the primes p ,q  and calculates the RSA modulus n.

2. D  calculates the private value b and the public value a, then destroys the p , q  
and publishes the public values n, a in a accessible location.

3. Using the private value b, D  generates s,; for each A,.

t- i
Si =  b +  ^  (ijX  ̂ mod{p)

.7 =  1

4. D generates a random number Wi for each A.;, and distributes Zi =  .s, +  u;,; to 
each Ai.

5. D signs each agent, s% (A i||Z ;) with b before destroying b.

6 . D attaches with each A i||zi||sig,;(A i||zi) and transfers each 
(Ai||zi||a?:g(,(Ai||zi)) toLfi.

Figure 9: Agent Initialization Using RSA Keys.

5.3 R S A  E ncryp ting

Let e„ be the encryption function using the public key a. As results Ri ĵ are collected 

by Aj on host iLjj, j  >  1, before Ai moves to  host Hj+i  (Again note th a t movement of 

Ai from host H ij  to i ï i j+ i  is for notational purposes only. Agent m igration does not 

require an itinerary.), Ai retrieves a from the public accessible location and encrypts

R i j  w ith a to obtain:

T M o d (n )

5.4 R S A  D ecryp ting

Let db be the decryption function using key b. Let veva be verification function for 

sigh- Decryption requires a t least t of n  agents to return with their shares. For
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1 <  z <  f, upon return  of each Aj, D  verifies each A,, if

vera{{A^\\zi), sigh{Ai\\zi)) =  true

D  retrieves the value Wi from the secure location and extracts each Si =  Zi — Wi. If

|{% : r;era((Ai||zi), 8%g6(Aj||zi)) =  >  (

though polynomial interpolation using each Si, D  regenerates the private key b. D  

can now use to  decrypt:
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CHAPTER VI

AGENT TRACKING  

b . l  A gen t Collis ion

A host th a t contain high concentration of relevant information will eventually a ttrac t 

multiple agents from the same family^ . For example, a family of agents are created 

to find a television on behalf of its creator. It is conceivable tha t more than  one agent 

from th a t family will eventually visit the same m ajor electronics retailer. Agent 

collision occurs when a host is visited more than  once by agents from the same family 

either individually or concurrently as depicted in Figure 10.

□

U se r

09579M \  '49579W

□
iO

Figure 10: Family of agents with same unique T V  showing agent collision.

'All agents created by a user to  perform the same task. .Agents in Figure 10 are from the same 
family.
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6.2 Cookies

Cookies are small files an agent stores on each host it visits. All cookies generated 

by agents of the same family share the same unique J V  (see Figure 10). W hen an 

agent arrives, it first checks for a file on the host with the same I V  as the agent. The 

existence of a file with the same I V  on a host means the host has already been visited 

by a member of its family. Otherwise, the agent creates the file and proceeds with 

execution. To avoid overloading agent storage environments on remote hosts, cookies 

have a limited life span. Once expired, the cookie can be deleted by the remote host.

6 .2 .1  I V  G e n e r a t io n  

g .g .T l *

I V  Generation There are two requirements for the generation of I V :  the I V  should 

be as unique as possible and the generation of I V  must use a well-established publicly 

available one-way hash function (e.g. The MD5 [29] algorithm).

The generation of an unique I V  requires tha t a message m  be the input of the 

hash function h, I V  — h{m). Any random string can be used, but to ensure high 

probability of uniqueness, the suggestion is th a t m  contain information such as user’s 

IP address along with purpose of the group of agents and some salt (random numbers). 

For example, m  =  (211.112 . . .  11 "return;YVR,YYZ . . . ” \\salt). Once the I V  has been 

generated, m  must be stored in a secure accessible location to be produced when 

requested by T T P  for cookie authentication (see section on Cookie Authentication).

6 .2 .2  C o o k ie  S e c u r i t y

Possible attacks against cookies include the following; 1. Hosts use cookies as a tool 

for denial of service attacks. Because of the uniqueness of the I V ,  it would be unlikely 

th a t a host can generate the unique I V  prior to an agent’s arrival. 2. Hosts can hide 

or remove cookies before they expire. This ability is also of little concern because a 

legitimate cookie on a host means the host has already been visited by a member of
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the agent family. 3. Hosts once visited by an agent, creates their own agents with 

the same XV,  and distributes the agents onto competitors hosts to plant cookies. 

This scenario is possible, particularly for e-commerce applications where there is a 

potential for financial gain. A possible solution to this type of denial of service attack 

is the use of a T T P  to authenticate cookies.

6 .2 .3  C o o k ie  A u t h e n t i c a t i o n

Cookie authentication can be initiated by a host, or an agent tha t suspects th a t a 

cookie on the current host is fake. The authentication process is performed by the 

host with the suspect cookie. Before the cookie authentication process is described, 

a couple of assumptions will first be made. 1. All agents, including ones generated 

on remote hosts know the location of their originators. In Figure 10, all agents in the 

diagram belong to User; therefore User is the originator. 2. A host also knows the 

location (e.g. IP) of an agent’s originator.

The authentication process requires the participation of a TT P ; a T T P  could be 

any TH mentioned previously in this paper, with a signed digital certificate. The 

certificate is used to  authenticate the T T P  to the User and the Host (Figure 11). 

Connections between the Host and TTP, and the User and T T P  are secure (e.g. 

Using SSL [13] with the T T P ’s certificate). The authentication protocol requires the 

following routines.

R eq -A u th (X V ,U serIP ) .  Authentication request sent by the suspecting host to the 

T T P  to verify the I V  of the cookie.

I V .  The unique number th a t identifies a family of agents.

U s e r lP .  The location of the User th a t created the agent.

R eq _ M sg {IV ) .  Message request sent by the T T P  to the host located at U s e r I P  

(User in Figure 11).
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M sg {m ).  Response from the User located at U s e r I P  to the TTP.

rn. Input of h th a t generated I'D. 

h{rri). Hash value on the message m.

A' th { tr u e / fa l s e ) .  Reply from T T P  to the suspecting host.

t r u e / fa l s e .  W hether h{rn) =  I V  or h{m) 7  ̂I V  respectively.

The host with the cookie can request a T T P  to verify the cookie on its behalf. 

The host with its request sends the unique I V  of the cookie and the location of User 

User I D  to TTP. The T T P  then requests from User the message m  which generated 

the unique I V .  The T T P  uses the hash function h to generate h{m) =  I V .  If 

h{m) =  I V ,  T T P  sends a true reply to the Host, (see Figure 11)

H ostU ser

TTP
4. H(mj

Figure 11: Cookie Authentication

6.3 R em arks

In Section 6.2.3, two assumptions were made. The first assumption was th a t every 

agent knows the location of its originator. This assumption was made because in 

the model described above, every agent must return to their respective originators.
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This assumption is also im portant for the cookie authentication process. If a host 

is to  check authenticity of a cookie, it must know the location of originator (User in 

Figures 10,11) of the agent. The second assumption was th a t a remote host knows 

the originator of an agent it executes. This fact is especially im portant because to 

authenticate a cookie, the current host (host with the cookie) sends the T T P  the 

message R eq . .A u th {IV ,U se rIP )  to User. This message contains U e se rIP ,  which 

should be location of User. However if the current host is not certain where an agent 

comes from, then there is possibility tha t although the final response from T T P  is 

M sg{m )  =  true, there is no certainty tha t the cookie is authentic.

For example, given two hosts X , Y  and host X  and Y  are competitors. Let host 

X  be a malicious host. Suppose agent A% visits host X  first and A i ’s originator is

O. Now host X  knows both  the purpose of A i and i t ’s unique I V .  Host X  then 

generates its own agent A) and sends it to host Y  and A) plants a cookie on host Y  

with the same I V  as A i. Suppose A) arrives at host Y  before A i. W hen A i arrives 

two things could happen. First, A i could simply move on thinking th a t host Y  has 

already been visited. Second, A i suspects tha t the cookie is fake and requests the 

current host to authenticate the cookie. If the current host doesn’t know the true 

originator of the cookie is from host X  and believe the cookie is from O. W hen host 

Y  authenticates the cookie, the request will be sent to T T P  which then sends the 

request to O. After the authentication process is complete, the message from T T P  

will show th a t the cookie is authentic when in fact its fake.
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CHAPTER VII

CONCLUSION

This thesis explored the mobile agent paradigm from the security perspective. Some 

key benefits of a mobile agent was discussed as well as how they can contribute to the 

overall network computing community. Various applications which can benefit from 

an agent’s flexibility, mobility and scalability was also investigated and their security 

requirement highlighted.

Mobile agent computing as with most emerging technology has many unresolved 

issues. The most significant of which are in the area of security. Technologies such as 

programming languages and network infrastructures are all in place for deployment 

of agents. However, until the establishment of a well defined set specifications which 

the network community as a whole is willing to adopt, mobile agent development will 

still remain ad hoc in nature.

The contribution of this research is the use of secret sharing schemes as a tool for 

security. Using secret sharing scheme, it was shown that an agent with a public-key 

can perform encryption on remote hosts while protecting the private-key for decryp

tion though secret sharing. All the tools required for implementation such as secret 

sharing schemes and PK E are available and proven secure. The example showing 

implementation using the RSA PK E demonstrates tha t the protocol is practical.

Agent tracking using a cookie concept borrowed from the web browser technology 

showed how to avoid agent collision. The security issues with using such technology 

was also discussed and solutions proposed.

In future work, the hope is to explore other uses for secret sharing in the mobile 

agent paradigm. Another possible branch of this research is the use of CEF for the
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generation of shares on remote hosts because as mentioned earlier, CEF has been 

shown to work with polynomial functions [4].
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APPENDIX A

SHAMIR’S THRESHOLD SCHEME

A . l  In it ia l iza t ion  and Share D is tr ibu tion

I n i t i a l i z a t i o n  a n d  S h a r e  D i s t r i b u t i o n

1. D  chooses n distinct non-zero elements of Zp denoted by xi, 1 < 
i <  n and p > w  +  l .  For 1 <  i <  n, D  gives each Pi the value i , .

2. To share the key k E Zp, D  secretly chooses a t random t — 1 
element of Zp, Ui, «2----

3. For 1 <  i <  n, D  calculates % =  a(x,:), where

t - i
a(x) =  k +  ^  üjX  ̂ mod(p)

J=i

4. For 1 <  i <  n, D  gives the share y, to F).

Figure 12: S ham ir’s {t,n)-threshold scheme in Zp. Initialization and Share D istri
bution. [34]

A . 1 .1  I n i t i a l i z a t i o n  a n d  S h a r e  D i s t r i b u t i o n  E x a m p l e

This is a small example of to illustrate Shamir’s Threshold Scheme [34]. 

Let t  =  2), and p — 17 and n  =  5 and fc =  uq =  13 

Given the polynomial:

a[x) =  uo 4- a\x  -t- mod{p)
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step 3  F ig u r e  1 2 )

Let a\ =  10 and 02 — 2

o ( l ) =  13 + 10 +  2 m o d [n )

a ( l ) =  8 m o d { n )

0 (2 ) =  13 + 1 0 ( 2 ) + 2(2)^ mod{17)

0 (2 ) =  7 mod{17)

o (3 ) =  13 + 1 0 ( 3 ) + 2 (3 ) ' m od{l7)

o (3 ) =  10 m od{l7)

o (4 ) =  13 + 10(4)+ 2 (4 ) ' mod{17)

0 (4 ) =  0 m od{\7)

o (5 ) =  13 + 1 0 ( 5 ) + 2 (5 ) ' m od[\7)

o (5 ) =  11 m od{l7)

Let i == { 1 ,3 ,5 } , f i  =  8 . P2 = 10, P5 =  :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A . 2 K e y  R econstruction

K e y  R e c o n s t r u c t i o n
The regeneration of k is achieved though polynomial interpolation. 
Suppose P i^ ,. . . ,  Pi, want to regenerate the k, th e y  know that

Vij —

and I <  i <  t where a{x) € Zp[x] is the secret polynomial chosen by 
D. Since a{x) has degree at most t — 1, a(x) can be written as

a(x) — ao +  (2ix  +  . . .  +  (it^iX

where ao is the key and the coefficient o,o . . .  are unknown elements 
of Zp. Since iji =  a{x), 1 <  i <  t, M  can obtain t linear equations with 
t  unknowns o,o,. . . .  cp-i with all arithm etic done in Zp. If the equations 
are linearly independent, there will be a unique solution and Oq is the 
key.

Figure 13: S ham ir’s {t,n)-threshold scheme in Zp. K ey Reconstr‘uction.\iY\

A . 2 .1  K e y  R e c o n s t r u c t i o n  E x a m p l e

Let t  =  3, and p =  17 and n =  5 and Xi =  i and M  =  {P i,  P2 , Ps} with shares 

8,10,11 respectively(See A.1.1).

ao +  ai +  Ü2 — 8 mod(17)

ÜQ +  3a\ +  9(ï2 — 10 mod(17)

ÜQ +  5a+8a2 =  11 mod(17)

Solving the system of linear equations we get üq =  13, ai =  10 and 02 =  2. Since 

k =  Ü0 =  13, therefore the key has been successfully regenerated.

Given the polynomial:
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APPENDIX B 

SHARE HIDING WITHIN AGENT’S STORAGE 

SPACE

IV,'

Agent Storage Space 
(SS)

y '
00000000 785E738FDC3490A65B388
00000001 FD5492650BA6EFE53478C
00000002 5437F4A2E275437ADEB53
00000003 E98CA2764AED839D5853C
00000004 5E378F328743DF4382CDA
00000005 8DA32978C21AERE356F40
00000006 6D43AE190FD5336C5B798

•

OOOOOOOF 6278FD358A53BCA538230

. .

FFFFFFFF E3478590AC473F375DE947

Wi'= 00000004
yi' = E98CA2764AED839D5853C 
zi' = S ,'+  yi

Figure 14: Share hiding within the Storage Space (SS) of an agent.
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