
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

2003

Secret sharing for mobile agent cryptography

Miao, Chung

http://knowledgecommons.lakeheadu.ca/handle/2453/4038

Downloaded from Lakehead University, KnowledgeCommons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lakehead University Knowledge Commons

https://core.ac.uk/display/84406415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Secret Sharing for M obile A gent
C ryptography

A Thesis
Presented to

The Academic Faculty

by

Chung Miao

In Partial Fulfillment
of the Requirements for the Degree

M aster of Science

Departm ent of Computer Science
Lakehead University

May 2003

Copyright © 2003 by Chung Miao

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence

Our file Notre référence

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accordé une hcence non
exclusive permettant à la
Bibhothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fihn, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0 - 612 - 84956-2

CanadS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

This thesis is dedicated to my grandmother Wang who passed away September, 2001

at the age of 102. I also want to dedicate this thesis to my grandpa Gu who passed

away February, 2002 at the age of 78. I miss you and I will always remember your

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

First, I would like to thank my thesis supervisor Dr. Ruizhong Wei for his patience,

Support and advice. Dr. Wei was the originator of the idea of using secret sharing

as a tool for mobile agent security. I would also like to thank my external examiner

Dr. Xining Li for his willingness to contribute his time to examination of this thesis.

Also, I want thank the every at Lakehead University’s Computer Science departm ent

for giving me the opportunity learn and grow over the last two years.

I wish to express my gratitude to my wonderful and lovely wife Yentle for her

patience and constant encouragement over the years and especially during the time

I spent writing this thesis. Last but not least, I want to thank my parents, brother,

sister and anyone who has shown me support over the last two years.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

D E D IC A T IO N ii

A C K N O W L E D G E M E N T S iii

L IS T O F F IG U R E S vii

A B S T R A C T viii

A B B R E V IA T IO N S 1

I IN T R O D U C T IO N 3

1.1 The Security P ro b le m ... 4

1.2 Thesis P o s itio n .. 6

1.3 Thesis L a y o u t .. 7

1.4 Security Terms For Mobile A g e n ts ... 7

I I M O B IL E A G E N T S 10

2.1 W hat is a Mobile A g e n t? .. 10

2.2 Why Use Mobile A g e n ts ? ... 13

2.3 MA A pplications... 15

2.3.1 E -C om m erce .. 15

2.3.2 Personal A s s i s ta n ts .. 16

2.3.3 Network M anagem en t... 16

2.3.4 Information R e tr ie v a l ... 17

2.3.5 Mobile D evices.. 18

2.4 MA Security Issues and C oun term easu res.. 18

2.4.1 Host Security .. 19

2.4.2 Agent S e c u rity .. 21

2.5 R e m a r k s .. 24

I I I C R Y P T O G R A P H IC P R IM IT IV E S F O R M O B IL E A G E N T 25

3.1 Cryptographic P rev en tio n .. 25

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1 Computing with Encrypted F u n c tio n s .. 25

3.1.2 Sliding E n cry p tio n ... 27

3.2 Cryptographic D e te c t io n .. 29

3.2.1 Partial Result Authentication C o d e ... 29

3.2.2 Cryptographic T r a c e s .. 29

3.3 R e m a r k s .. 32

IV SSS F O R A G E N T C R Y P T O G R A P H Y 33

4.1 Trusted H o s t s .. 33

4.2 Secret S h a r in g .. 35

4.2.1 Sham ir’s Threshold S chem e.. 35

4.3 The P ro to c o l .. 36

4.3.1 Agent In it ia l iz a tio n ... 36

4.3.2 E n c ry p tin g .. 37

4.3.3 D e c ry p tin g .. 38

4.4 Agent D istribution on Remote Trusted H o s t s ... 38

4.4.1 E n c ry p tin g .. 39

4.4.2 D e c ry p tin g .. 39

4.5 R e m a r k s .. 40

V S E C R E T S H A R IN G W IT H R S A K E Y S 41

5.1 RSA O v erv iew .. 41

5.2 Agent I n it ia l iz a tio n .. 42

5.3 RSA E n c ry p tin g ... 42

5.4 RSA D e c ry p tin g ... 42

V I A G E N T T R A C K IN G 44

6.1 Agent Collision.. 44

6.2 C o o k ie s ... 45

6.2.1 I V G enera tion ... 45

6.2.2 Cookie S e c u r i t y ... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.3 Cookie Authentication ... 46

6.3 R e m a r k s .. 47

V II C O N C L U S IO N 49

A P P E N D IX A — S H A M IR ’S T H R E S H O L D S C H E M E 51

A P P E N D IX B — S H A R E H ID IN G W IT H IN A G E N T ’S S T O R A G E
S P A C E 54

R E F E R E N C E S 55

V I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1 A Model of mobile agent as an E U 11

2 Comparison of communication models between Remote Procedure Call
(RPC), Code on Demand (COD), Remote Evaluation (REV) and Mo
bile Agent (M A) .. 12

3 Distributed execution environment (left) Vs. mobile agent computa
tional environment (right)... 13

4 Computing with Encrypted Functions.. 26

5 Slide Encryption .. 28

6 Cryptographic Tracing Steps... 30

7 Agent In i t ia l i za t io n .. 37

8 Agent initialization on remote hosts .. 39

9 Agent Initialization Using RSA K eys .. 42

10 Family of agents with same unique X V showing agent collision 44

11 Cookie Authentication ... 47

12 Sham ir’s {t,n)-threshold scheme in Zp. Initialization and Share Dis-
tribution.[34:\.. 51

13 Sham ir’s {t,n)-threshold scheme in Xp. K ey Reconstruction.[3A\ . . . 53

14 Share hiding within the Storage Space (SS) of an agent................... 54

\n i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A mobile agent is a multi-threaded autonomous program th a t can be dis-

ti.bu ted over a heterogeneous network to perform some predefined task for its human

creator (user). The independence, flexibility and autonomy offered by the mobile

agent paradigm hold many promises for the future of distributed computing [18].

However, for an agent to be autonomous, it must carry its code, states and results

from host to host. Since an agent executes on remote potentially hostile environments,

hiding information from hosts has proven to be a tough challenge.

This thesis introduces two novel ideas tha t can be used in the mobile agent

paradigm. First, is the use of Shamir’s [33] (f, n)-threshold secret sharing scheme

for the distribution of the private key of a public/private key pair amongst n agents.

Thus giving an agent the ability to use cryptographic primitives for protection of

intermediate results obtained from previously visited hosts. An agent can use the

public key for encryption while the private key is safely shared between the agent

and its siblings. Second, a “cookie” will be introduced as an tool for avoiding agent

collisions. Analogous to cookies used by web browsers for tracking of visitors to a site,

it will be used as a tool for marking previously visited hosts. The goal of marking

previously visited hosts is to resolve the problem of agent collisions. Agent collisions

occurs when a group of agents from the same originator with the same purpose visits

a particular host more than once.

vin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABBREVIATIONS

CA - Certificate Authority

CEF - Computing with Encrypted Functions

COD - Code On Demand

DES - D ata Encryption Standard

DC - Digital Certificate

DS - Digital Signature

EC - Execution Code

ES - Execution State

EU - Execution Unit

IP - Internet Protocol

MA - Mobile Agent (s)

MAC - Message Authentication Code

PKC - Public Key Cryptography

PK E - Public Key Encryption

PKI - Public Key Infrastructure

PRAC - Partia l Result Authentication Code

REV - Remote Evaluation

RPC - Remote Procedure Call

RSA - Rivset, Shamir and Adleman PKE

SE - Slide Encryption

SEE - Secure Execution Environment

SH - Secure Hardware

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SSS - Secret Sharing Scheme

T T P - Trusted Third Party

TH - Trusted Host

VM - V irtual Machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Few would argue the importance of the internet as a medium for the distribution and

retrieval of information. The vast amount of information available is overwhelming.

W hat began as a hand full of hosts in the late 1960’s has since become a world wide

network of over 160 million hosts [41]. This growth has not been strictly confined to

the internet. W ith the availability of cheap and reliable hardware, smaller intra-nets

have also experienced similar growth. A com puter’s connectivity to a network is no

longer considered an optional add-on, but an integral part of its functionality. Until

just recently, users were confined to well defined static sets of locations to gain network

access. However, the recent advancements in wireless and mobile technologies means

th a t today, the same users can literally bring the network with them. The effect of

this growth is the ever increasing demand that the entire network infrastructure be

more flexible and scalable.

Traditional models of network computing rely primarily on well established tech

nology based on the client-server paradigm. In the typical client-server scenario,

contact is initiated by the client as some form of request for execution of service. The

server which hosts computational resources, da ta and a static set of services performs

the request on behalf of the client then responds with the result. Depending on the

types of services requested, multiple rounds of interactions between the client and

server might be required to complete the request. This model of network computing

has its usefulness and is well suited for most applications. However, because of the

ever increasing size and dynamics of the internet, this model is beginning to show its

limitations. For instance, a client requests a service from a server which the server

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has the com putational resources and necessary data to fulfil the request bu t lack the

knowledge (e.g. program). To complete the request, the client either has to down

load the data from the sever to process locally on the client’s machine or find another

server th a t can complete the request. In either case, the model lacks flexibility and

exerts unnecessary strain on the network infrastructure.

The benefit of the mobile agent paradigm over the above paradigm is its inherent

ability to process information at its source. A mobile agent is autonomous; each

agent is encapsulated with the knowledge required to perform its function. A host is

obligated to provide only the input and com putational resources to an agent. This

flexibility has the potential of resolving many of the shortcomings of the client-server

network computing model in use today. Chess et al. [6] investigation into the benefits

of using mobile agents concluded th a t mobile agents offer a better general solution

in term s of prototyping, transactions and scalability when compared to client-server

model of distributed computing. Its ability to reduce network traffic, operate over in

term itten t unreliable network connections, and execute over heterogeneous networks

and environments makes the paradigm an attractive option for future implementa

tions of e-commerce, information research and mobile device applications [18].

1.1 The Security Problem

Agent code w ritten by one party typically executes on remote host under control of

another party. Because neither party has to know or trust the other party, without

adequate security tha t fulfills the requirements of both, participation of either party

in this potentially beneficial relationship is unlikely.

The level of security required by an agent depends primarily on the function of the

agent. Potential gains by implementing security on an agent must always be weighted

against the cost of providing such security. It is arguable th a t in certain instances an

agent requires no security. For example, an agent is created to search for information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the topic, “mobile agent security”. If the purpose of the agent is to collect a

list of links and abstracts on documents pertaining to the subject. Then the risk of

such agent to attacks should be considered relatively low. Providing such agent with

cryptographic security might be far too expensive to both the agent owner and remote

hosts in terms of hardware resources such as CPU cycles and storage requirements.

On the other hand, if an agent is carrying private and sensitive information such as,

credit card numbers and private keys on behalf of its owner. Such agent must not only

be protected, cryptographic primitive should be given to the agent so th a t information

collected can be protected as well. For example, in the often used scenario where an

agent is searching for a plane ticket from one destination to another. The importance

of protecting secret information the agent carries on behalf of its creator is obvious.

However, in this case, results collected by the agent from visited competing hosts

must also be protected. To keep all participating hosts honest, none of the hosts

should know what offers any of the other hosts has rendered.

Often, a mobile agent is thought of as an “autonomous” entity capable of making

decisions, executing code fragments and storing results before m igrating to another

host. Although justified, after all, autonomy is one of the underlining primitives of

a mobile agent. However, to truly grasp the complexity of the many security issues

associated with a mobile agent, we must think of them at a lower level of structural

components. Mobile agents are nothing more than encapsulated code fragments com

prising of execution code, execution states and data segments. The agent m igration

process although conceptually similar traditional migration from location to location,

agent m igration is simply the replication of an agent on another host’s machine. An

agent can only m igrate if the environment which “hosts ” the agent establishes a con

nection with a target host, copies the agent on to the host before destroying the local

copy. It is a t this level of thinking the true complexities of securing an agent can be

realized. How does an agent hide information from a host if the host has to tal control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

over the agent? W hat stops a host from deleting the agent or its da ta all together?

W hat if the host refuses to transport the agent? As you can see the problem of a

malicious host is quite challenging.

1.2 Thesis P o s i t io n

Until Sanders and Tschudin [32], using only software approaches for the protection

of a mobile agent was generally considered to be impossible. In [32], the proposed

solution uses the notion of encrypted functions for the protection of an agent and its

functionality (see Chapter 4). However, this m ethod is complex and has limited appli

cations. Therefore, for most applications, the problem of protecting an agent from a

malicious host remains mostly unresolved. The position of this thesis is that, although

the agent itself cannot be protected, using cryptographic primitives, its resu lts /da ta

can. The term protection in this case is the encrypting of results obtained by an agent

on previously visited hosts. The use of cryptographic primitives for the protection of

da ta has its limitations, a malicious host will still be able to delete encrypted results

on an agent. However, this problem is wide ranging in the mobile agent paradigm

as mentioned earlier. The premise behind using cryptographic primitives is “out of

site of m in d ”. If a host cannot decipher any meaning from data contained within an

agent, the likely hood of tam pering by such host can be dram atically reduced. An

example is the agent searching for the airline ticket, if a host cannot determine what

offers other hosts has rendered, then the hosts will tend to be more honest with its

bid. By cryptographically enciphering the agent’s results, a host is left with two de

cisions, to delete the agent or just parts of the agent which the host believes contains

bids from competing hosts. Because there’s no financial gain by deleting the agent,

the host m ust weight the possibility of being detected and '’black listed” against any

potential benefits of deleting only parts of the agent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Thesis Layout

This thesis will show how Sham ir’s (t, n)-threshold secret sharing scheme [33] can

be used to share the private key of a public/private key pair amongst n agents.

The public-key can be used by an agent to encrypt results obtained from visited

host. By distributing the private key as shares, only agents w ith a piece of the

original share can participate in the successful regeneration of the private key. Thus

provide additional security for the protection of the private key. Chapter 2 describes

the mobile agent paradigm including its applications and security. In Chapter 3,

cryptographic techniques for the prevention and detection of malicious host attacks

will be discussed. Chapter 4 will first give a general overview of Sham ir’s [33] threshold

scheme before outlining how i t ’s used in the protocol to hid and distribute shares to

agents. Later in Chapter 4, the protocol will be extended to show how an agent on

a remote “trusted host” can adopt parts of the same protocol to distribute agents of

its own. Chapter 5 will dem onstrate how the protocol can be used with RSA [28]

keys. Chapter 6 investigates the use of a “cookie” to track agents for avoiding agent

collision. Security related issues of using cookies will also be discussed in Chapter

6. Chapter 7 concludes this thesis. (Note, all or parts of Chapters 2, 3, 4, 5, 6 will

appear in the 1st annual proceedings of the Communications Networks & Services

Research (CNSR) conference [23].)

1.4 Security Term s For M obile Agents

The following security definitions all have relevance to security in the mobile agent

paradigm. For every term, a general definition will first be given and whenever

possible, the context to which it pertains to the mobile agent paradigm.

A u th e n tic a t io n : In security, to authenticate is to verify the identity of a person or

process. Authentication is also used as a term for describing integrity of infor

mation. For instance, whether results obtained by an agent has been tam pered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with. Agents often need to authenticate a host to avoid masquerade types of

attacks. The authentication of a host by an agent and visa-versa is commonly

performed through the Public-Key Infrastructure (PKI), consisting of Digital

Signatures (DS) and Digital Certificates (DC).

P u b lic -K e y I n f r a s t ru c tu re : A system of DC, Certificate Authorities (CA), and

other registration authorities th a t verify and authenticate the validity of each

party involved in an internet transaction. It is assumed in the rest of this thesis

th a t DC belonging to an agent owner, or a host, are legitimate products of the

PKI.

P u b lic -K e y C ry p to g ra p h y : Public-Key Cryptography (PKC) refers to encryption

e and decryption d using a pair of asymmetric keys, public-key kpub and private-

key kpriv Each kpub is made public typically through the use of DC and kpriv

is only known to its owner. Let the m be a message, ,_(m) is the encryption

of m and (%«i,(?Ti)) = m i s the decryption of using the receiver’s

kpriv In the case of mobile agents, the receiver is assumed to be the owner of

the agent unless otherwise specified.

D ig ita l s ig n a tu re s : DS are produced using kp îy which is only know it is owner.

Once singed, the signature is non-reputable. Anyone can verify a signature

using the associated kpub- Let sig be the signing function, sigkj,^-^{m) is a

signature of m using kpriv Let ver be the verification function of sig, if

= true , then is valid signature on message

m. Agents and hosts can use DS for the signing of transactions. Again using

the airline agent as an example, once the agent has determines th a t a host has

made the best offer, DS then can be used by the agent and the host to make

the transaction non-reputable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M essag e A u th e n tic a t io n C ode: Message Authentication Code (MAC) is the hash

ing of a message m combined with a key k. Each unique k will produce a unique

MAC on m. Let h be the hash function, then h{h[m, k)) is the MAC of message

m using k. The one way property of h ensures tha t each m using k, produces

an unique MAC. For example, a host can produce a MAC of its agent before

dispatching the agent. Upon return of the agent, the owner can again calculate

the MAC to verify the integrity of the agent.

O b fu sc a tio n : The obscuring or hiding of the functionality of code. Typically, obfus

cation is used to obscure proprietary agent code. CEF [32] and code scrambling

[27] are examples of code obfuscation.

M a sq u e ra d e : Is when an entity is disguised as another entity. Agents with limited

permissions might masquerade as another agent with more permissions to gain

access to resources on a host which the agent otherwise wouldn’t have. A

host might masquerade as another host to lure an agent into revealing private

information such as credit card numbers and private-keys.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

MOBILE AGENTS

A mobile agent is a m ulti-threaded autonomous program th a t can be distributed

over a heterogeneous network to perform some predefined task for its human creator

(user). In this chapter, a more formal description of a mobile agents will be given

with respect to its mobility, composure, benefits and applications. A more in-depth

discussion on security issues of the paradigm will be covered in section 2.4. Since this

thesis focuses on agent security rather than the environment which it executes (host),

the terms mobile agent and agent will be used interchangeably.

2.1 W hat is a M obile Agent?

To answer this question, a clear distinction must first be made between a mobile agent

and mobile code because the two terms are often used synonymously. Fuggetta et al.

[9] considers mobile code as any program which exploits code mobility. Therefore,

mobile agents, Remote Procedure Call (RPC), Remote Evaluation (REV), Code on

Demand (COD), Java ^^app le t and other code written for distributed applications

fall within the definition of mobile code. In Figure 1, a model of a mobile agent

is given. The mobile agent consists of Execution Code (EC), Execution State (ES)

and Storage Space (SS) which together makeup an Execution Unit (EU). EC is the

knowledge or “know-how” required for computation. SS encapsulates initialization

data and com putational results. ES includes information on the program counter,

registers and stack information required by an agent to execute or resume execution

after it has been suspended either for migration or hibernation. The ability to suspend

state, and resume execution on another host is known as strong migration[9].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Execution
C o d e

E x ecu tio n
Unit
(EU)

Figure 1; A Model of mobile agent as an EU.

One of the key distinguishing features between the above mentioned mobile codes

is how each communicate between their respective originators, otherwise known as

their level of migration. As mentioned earlier, strong migration is the ability for mo

bile code to m igrate with sta te information so th a t execution can resume on another

host. However, in each of the client server models mentioned above, code mobility is

restricted to the passing of procedures and data, or weak migration[9]. For example

download Java^^^applet contains code and data, but an applet lack the ability to

suspend execution and m igrate to another host to resume execution. In Figure 2,

similarities and differences of the different mobile code paradigms are shown. Figure

2a-c show the more traditional client-server models of code migration. Figure 2a, is

the communication model of RPC, param eters (e.g. data and threshold of computa

tion) of the request is sent from the client to the server which hosts the know-how and

com putational resources. The server executes the request before returning results to

the client. In the COD model of Figure 2b, the client which hosts the computational

resources and data, requests the know-how from the server. Once the client receives

the know-how from the server, execution is carried out on the client’s machine using

local com putational resources. Figure 2c, the REV model, the client provides the

know-how and data, execution is carried out by the server before results are returned

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the client. In each of the these synchronous models, the client initiates contact

with the server and blocks for a response from the server. Figure 2d, is the mobile

agent model of communication, the User dispatches the agent which has the know

how, storage (storage encapsulates execution results and if necessary initialization

data) and execution sta te information. In this model, each host provides the data

and com putational resources required for execution. The agent migrates from host 1

to n autonomously and communicates with the user only upon its return from host

n.

Client

Client

Client

P a ram e tT a(d a ta)

R om ote P ro ced u re Call (RPC)
resu lt$ (da ta)

a)

raquaatiknow -how)

C ode o n D em and (COD)
rasponsa lknow -tiow)

b)

know -how (data)

R em ote E valuation (REV)
rasu lta(data)

c)

Server

Server

Server

M obile A gen t (MA)

M tgrata

Server

'Server
I (n-1) ,

Server

User

Server

Figure 2: Comparison of communication models between Remote. Procedure Call
(RPC), Code on Demand (COD), Remote Evaluatton (REV) and Mobile Agent (MA).

In the more traditional mobile code paradigm such as in distributed systems, code

migration is designed for relatively small scale networks. Code is passed from one

machine/processor to an other. To the programmer, these actions are seamless and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transparent because they are handled at the operating system level. Location of

execution is never a concern to users of such system, as far as they know, everything

appears to be executing on their local machine. In the left diagram of Figure 3, each

EU resides w ithin the distributed execution environment (In distributed computing

environments EU can be considered as individual processes or a thread of a m ulti

threaded process). In contrast, the mobile agent paradigm is designed with the vast

scale of the internet in mind. Agents migrate independently from host to host and

must always be aware of its location and the identity of its current host (Right diagram

of Figure 3).

EU EU : - EU : I EU . EU . (EU

D istrib u ted E x e cu tio n E n v rio n m en t

Figure 3: Distributed execution environment (left.) Us. m,obile agent computational
environment (right).

2.2 W hy Use M obile A gen ts?

Various authors have studied benefits of the mobile agent paradigm [6 , 18, 9, 15]. The

consensus between them seems to be tha t the mobile agent paradigm offers greater

flexibility, scalability and transportability over the traditional client-server paradigm.

The next few sections will summarize some of the most im portant features that make

the paradigm so promising.

O v e r c o m e s n e t w o r k la t e n c y . Network latency refers to the time it takes a packet

to get from the sender to the receiver. In networks with high noise to signal

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ratio or networks with low bandwidth connections, network latency can be

substantial. Because a mobile agent reside on the target host, network latency

is rarely a factor during its execution.

L o y a lt y : An agent is created to perform computations on behalf of its owner. The

agent represents the owner on the network, therefore, performs only tasks which

the user assigns.

R e d u c e s n e t w o r k tr a ff ic : Often, results collected by an agent is much smaller than

the data required for its computation. Moving an agent to the source of da ta

reduces not only the amount of data to be sent over a network, but the number

of rounds of communication between the client (agent user) and remote hosts.

E x e c u t e a s y n c h r o n o u s ly : Agents once dispatched can operate independently and

autonomously without further interactions with its creator. This unique ability

is particularly well suited for networks with unreliable or expensive connections.

D y n a m i c a d a p t a b i l i t y a n d f a u l t - t o l e r a n t : An agent can sense and adapt to their

environment. If a host is unable to provide the requested service, an agent has

the ability to m igrate to another host. In the event a host environment becomes

unfavorable, an agent can migrate to another host or hibernate until favorable

conditions are again available.

O p e r a t e in h e t e r o g e n o u s n e t w o r k s a n d e n v ir o n m e n t s : An agent typically op

erating in a Virtual Machine (VM) execution environment independent from

host hardware. Agent migration protocols protect agents against network in

compatibilities.

F l e x i b l e a n d s c a la b le : The typical client-server model of computing limits a client

to a static set of services offered by a server. The mobile agent paradigm

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overcomes these limitations because it allows the user of an agent to design the

agent to suit their specific set of needs.

2 .3 M A A pplica tions

The goal of the mobile agent paradigm is the eventual adoption by the internet

community for use in various research and commercial applications. Ever since the

introduction of mobile agent paradigm [36], there has been ongoing discussions about

its application domain [24]. Various “killer applications” has since been proposed,

below are some of well acknowledged applications of the mobile agent paradigm. If

possible, security requirements of each will also be included.

2 .3 .1 E - C o m m e r c e

Mobile agents for use in e-commerce is a particularly popular idea [35, 31, 17]. By

dispatching agents to seek out products or services not only reduces network traffic

but can also save the agent user considerable amount of time. Once created, an agent

is independent from its owner, depending on the design of the agent, it will seek for

the products or services and communicate with its owner only upon completion of the

task or when some criteria set by the owner is meet. Contract negotiations, service

brokering, auctions and stock trading are just some of the applications mobile agents

are well suited for [9].

In most instances using a mobile agent for e-commerce applications requires the

highest levels of security. For example, a “shopping agent” might have to carry

electronic cash, credit card information and private signature keys to sign contracts.

In this case, the owner would obviously want to protect his/her assets including

results collected by his or her agent. Another type of shopping scenario agent is the

“window shopper”. Although such agent might not be carrying any “secret” financial

assets, bu t as mentioned in the airline ticket scenario, bids gathered by such agent

still require protection from spying hosts.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 .3 .2 P e r s o n a l A s s i s t a n t s

An example of a mobile agent used as a personal assistant is the meeting agent

[18] dispatched for setting up a meeting between a number of participants. In this

scenario, several people need to arrange a meeting time th a t suits the schedules of

all participants. Each participant can create an agent preloaded with acceptable

times which he/she can meet. The agents can then meet to make the necessary

arrangements. If an agreement can be made, each agent returns to its respective

owner with the scheduled time for the meeting.

Security for such agent depends on sensitivity of the data (schedule of individual

participant) and the level of security sought by their respective owners. In cases

where participants wish to keep their da ta hidden, arrangements can be made so tha t

negotiations takes place on a m utual trusted host often referred to as a Trusted Third

Party (TTP).

2 .3 .3 N e t w o r k M a n a g e m e n t

The use of mobile agents for remote network adm inistration can be argued as the “kill

application” for most network adm inistrators. A mobile agent’s ability to adaptively

respond to network events in real-time make them a very powerful tool for system

monitoring and hardware reconfiguration. An agent’s mobility and independence can

also be useful for distribution of software on the network wide bases.

An adaptive agent {intelligent agent) over time can learn the normal behavior of

the resource i t ’s monitoring. Such agents can be dispatched to monitor vital network

resources for “abnormal” behavior so th a t preventative measure can be taken prior

to the occurrence of catastrophic events. If an agent senses abnormal behavior, the

adm inistrator can be notified, and another “maintenance agent” could be dispatched

with preloaded configuration and support software to perform required services. Thus

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eliminate the need for such software to be installed on every resource. The m ainte

nance agents can also be used for applying software patches, reconfiguring of existing

applications and installation of new applications as they become available.

An agent used for network management is vulnerable to both internal and external

threats. The most likely internal treat is disgruntled employees assuming th a t all

hosts within the network are trusted. A disgruntled employee with access to internal

system resources can potentially modify or delete an agent. External threats to such

agent usually depend on the resilience of the firewall protecting the network.

2 .3 .4 I n f o r m a t i o n R e t r i e v a l

There are many benefits of dispatching MA for information processing and retrieval

[18]. Information agents have the ability to process information without being con

fined by operational time of their owner. D istributing multiple agents to process or

search for information increase the scope of the of coverage while reducing the time

required to complete the task. Information retrieval and processing typically involve

the processing of large amounts of da ta to obtain relatively small amount of results.

Again, by sending agents to the source of information, only the results need to be

transported by the agent, thus reducing load on the network infrastructure.

The level of security required for an information retrieval agent depends on the

sensitivity of the information being collected. Information gathered on publicly avail

able sources might not require protection, but encryption still can be used if the agent

owner does not wish to disclose the type of information sought by the agent. For ex

ample, if a commercial enterprise is seeking data for a new product or service under

development. Although the d a ta gathered are from publicly available sources, there

would still be the need to hide sources and composure of such data from competitors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 .3 .5 M o b ile D e v ic e s

Perhaps the most natural application of a mobile agent is in mobile devices such as

cell phones, personal organizers, notebook computers, e tc ,.. Most mobile devices rely

on wireless technology which at best is sporadic in availability and have limited band-

wMth. Another inherent weakness of mobile devices with the exception of notebook

computers is their limited processing power and storage capacity. User of mobile

devices can dispatch an agent when network connection is available and collect it at

a later tim e when network connection is once again available. Thus eliminating the

need to transfer large amount of da ta to the device to be processed locally.

As with all applications of mobile agent, security requirement of the agent depends

on its functionality and the sensitivity data within the agent. However, mobile device

users m ust always take into consideration the lim itation of their devices, particu

larly the lack of processing power and storage capacity when making security related

decisions.

2.Ji. M A Secu rity Issues and C ounterm easures

Many functional mobile agent systems have already been implemented [10, 7, 21, 12].

However, their use has yet to be widely adopted outside the research and academic

arenas mainly because of the many unresolved security related issues. Mobile agent

systems as with any network computing platforms have four core security require

ments [15]. First, both agents and platforms must have confidentiality protection

against potential eavesdroppers and thieves. Second, security policies m ust provide

for varying levels of code and data integrity. Third is the accountability of both

agents and hosts for any damages caused by malicious actions or poorly w ritten

code. Finally, agent platforms must ensure availability of resources for agents (e.g.

CPU cycles, network bandwidth, tem porary storage space e tc ...) if prior contractual

agreements bound hosts to do so.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As discussed earlier, the introduction of mobile agents into a network posses many

security related issues. An agent typically executes on remote potentially hostile

environments. This leaves the agent open to various types attacks by malicious hosts

and hosts to attacks by agents [2, 14]. The security domain of the mobile agents

paradigm can be broken into two broad categories.

1. Securing remote hosts from malicious agents.

2. Securing agents from malicious hosts.

Many solutions to security issues related to the mobile agent paradigm have been

proposed by various authors, unfortunately, they are ad hoc in nature because of the

absence of well defined set of specifications. The rest of this chapter will discusses

some these security issues for both hosts and agents along with various proposed

m ethods for countering them.

2 .4 .1 H o s t S e c u r i t y

Any host which offers external agents access to its resources faces many serious threats

from a malicious agent [14, 15, 2]. The attacks a mobile agent host might face are

similar to attacks any traditional host connected to a network faces. These include;

masquerading, denial of service and unauthorized access. Fortunately, many m ethods

to protect against a malicious agent can be adapted from the traditional client-server

model of security. Mechanisms for process isolation, resource access control are al

ready in place on most hosts. Well known and proven cryptographic techniques for

encryption/ decryption, signatures and authentication are readily available for use by

every host.

Bierman and Cloete [2] classified countermeasures to agent th reats as suited either

for prevention or detection. The same classification will be used here for countermea

sures classification of host treats as well. For a host, the first and obvious goal is to

detect malicious or poorly written agent code prior to its execution. However, this

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not always possible or reliable. Therefore, the goal of prevention is to contain or

minimize the effects of such code.

D e t e c t i o n : An example of detection is the static type checking of downloaded Java'^^

byte code implemented in the J a v a ^ ^ secu r ity architecture [16]. Before a down

loaded applet is perm itted to execute, the class loader invokes the verifier which

checks for memory management violations such as stack overflow, underflow and

illegal type casts within the applet code. Signed code can also be used as part of

an overall detection strategy. Allowing only signed code from verifiable trusted

entities to execute does not guarantee code integrity, however, it does allow a

host to seek retribution in cases where the code has caused damages. Agents

which record their itinerary[5] and can prove tha t they’ve already executed on

other hosts trusted by the current host can also give some assurance on the

integrity of the agent code.

Predictably, the above mentioned m ethods for detection all have its associated down

sides. It might be computationally infeasible for an host to examine every line of

code for every agent prior to execution. There are also instances where the host

might learn nothing on the intent of the code prior to execution if the code has been

intentionally obfuscated [11] or encrypted [32]. To require every agent to be signed

could mean th a t many un-signed non-malicious agents would have to be turned away

thus limiting wide adaption of the mobile agent paradigm by the general public.

Agents th a t have executed on other trusted hosts are still subject to tem pering on its

m igration from one host to another. For example, if the itinerary of an agent shows

th a t the agent m igrated from a trusted host, then to an un-trusted host, prior to its

m igration to the current host. How confident is the current host th a t the agent hasn’t

been tem pered with by the un-trusted host? This issue can obviously be resolved by

limiting access to agents with an itinerary of only trusted hosts. However, this again

limits the usefulness of the mobile agent paradigm.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r e v e n t io n ; A key requirement of host prevention is ensuring agents cannot interfere

w ith other agents or their environments. This can be accomplished through the

use of w hat’s know as reference monitors to establish isolated domains for each

agent and to control all resources access by an agent. Reference m onitors uses

a number of traditional security techniques such as: process isolation, resource

access control and cryptographic primitives for information enciphering and

authentication. More recently, the use of interpreted programming languages

has also offered an additional layer of abstraction against agents. The most

popular are Java™ [16] and SafeTcl [26].

The Java ^'^programming language implements w hat’s known as a sandbox

model of security. As mentioned earlier, static type checking of download code

is a powerful tool for prevention of attacks. For detection, Java ’’"'^uses w hat’s

called a Security Manager. Similar to a reference monitor, the Security Manager

control all access to system resources during runtime.

SafeTcl is an interpreted language used by AgentTcl [10]. SafeTcl uses a padded

cell concept where un-trusted or suspicious code is executed w ithin the padded

cell before being allowed to be executed within the main interpreter.

Unlike detection techniques, prevention techniques are more well established and are

widely implemented. The overall security of any host system often depends on an

organization’s security policy and their willingness to follow through on its imple

mentation. Security breaches even in well established systems and languages occur

frequently due to lack of willingness to implement security policies already in place.

2 .4 .2 A g e n t S e c u r i t y

Agent security is widely believed to be more challenging when compared to host

security. This can be partially attribu ted to the fact tha t the mobile agent paradigm

is relatively new and partially to the autonomous encapsulated nature of an agent.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Treats against an agent from a malicious host can be categorized into four categories

of: integrity attacks, denial of service, confidentiality attacks and authentication risks

[2].

I n t e g r i t y A t t a c k s : Violations to an agent’s code, data or states are considered in

tegrity attacks. There are two prevalent categories of violations, active and

passive. Example of passive violations occurs when a host intentionally delays

or refuses the transmission of an agent. More serious are active violations when

an host m anipulates an agent’s code, state or data to its benefit.

D e n i a l o f S e r v ic e A t t a c k s : Denial of service attacks occurs when an host denies

an agent access to its resources. For example, a host might have previously

been compensated to provide a certain set of services for an agent but, upon

arrival of the agent, the host refuses the agent the previously agreed services.

There are many reasons for a host to refuse agent such services but the most

prevalent is the potential for financial gain.

A u t h e n t i c a t i o n R is k s : Consequence of agent autonomy is the need for an agent

to be more location aware than its traditional client-server counterpart. In

the traditional mobile code paradigms of Figure 2, connection is established by

the client to the server. In each of the model, authentication can proceed any

transmission of code. For a mobile agent, authentication typically occurs after

the arrival of the agent. Agents then are susceptible to masquerading attacks

by a host. For example, suppose the airline agent believes its being hosted by

a trusted m ajor airline, but instead it has been ’’hijacked” by the FlyByNight

host disguised as the m ajor airline host.

C o n f id e n t ia l i t y A t t a c k s : An agent is often embedded with private or sensitive

information belonging to its owner. To compromise an agents confidentiality

implies th a t the agent is either illegally accessed or its privacy is under attack.

oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The most obvious is a host which eavesdrops on an agent to steal information

such as private keys or credit card information. However, proprietary algorithms

of an agent could also be target of such attacks.

Agent security similar to host security should also implement two lines of defence.

F w ever, for an agent, the first line of defence should be the prevention of possible

attacks by malicious hosts. In the case where prevention is unattainable due to

factors such as technological limitations. Then detection mechanisms in terms of

result authentication should be used to validate results obtained by an agent.

P re v e n tio n : The aim of prevention is to thwart possible attacks by a malicious host.

Arguably, prevention of malicious host attacks is perhaps the toughest security

challenge in the mobile agent paradigm. The various m ethods dealing with pre

vention of malicious hosts attacks are based on trust-based computing, recording

and tracking and cryptographic primitives. The first two techniques will be

discussed here while m ethods of using cryptographic primitives is reserved for

Chapter 3.

Trust based computing relies on the availability of Secure Hardware (SH) to pro

vide Secure Execution Environment (SEE) for an agent (see Chapter 4 for more

details). Devices such as secure coprocessor [39], tam per resistant hardware [38]

and Sm artCards [19] have all been proposed to provide the SEE. However, such

hardware are either theoretical or under development.

Recording and tracking mechanisms have also been proposed. The idea of using

cooperating agents [30] is th a t two agents are used to track each others migra

tion. Each agent forwards the location of previous, current and next hosts to

the other co-operating agent. In essence each agent is keeping an itinerary of

the other agent. If either of the agent senses inconsistencies, then appropriate

preventative measures can be taken. This idea is based on the premiss tha t not

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all hosts are malicious and tha t at least one of the agent is being hosted by a

“trusted host” ̂ a t any given time.

D e t e c t i o n : W ithout adequate preventative mechanisms to protect an agent, user

of an agent is confined to detection mechanisms to determine authenticity the

agent and its results. Conceptually, the simplest m ethod for detection of tem

pering is the use of “detection objects” [22]. Detection objects are fictitious

d a ta closely m atching results an agent might collect on remote hosts during

its migration. For example, consider the airline ticket agent. The user of the

agent can im plant some fictitious offers within the agent prior to dispatching

the agent onto the network. Upon the return of the agent, the user checks for

the authenticity of the implanted results. The premiss is th a t if the implanted

results are intact, then the agent and results are presumed to be authentic.

Agents can also record their path history to detect tam pering [25]. For instance,

as hosts are visited by an a gen t, the agent records the locations of the current

and next host to be visited by the agent. Each entry is signed by the current

host verifying the m igration of the an agent. Upon return of the agent, its

owner can verify the path taken by its agent. If the agent migration path strays

from the path recorded, then the agent has been tam pered with.

2.5 R em arks

This chapter covered some of the most im portant tra its of the mobile agent paradigm

including i t’s benefits and mostly security related drawbacks. The above countermea

sure given to protect an agent all lack cryptographic strength. The next chapter will

focus strictly on cryptographic techniques for the protection of agent.

^Chapter 4, discusses the concept of a trusted host. See cliaptor 4.1

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

CRYPTOGRAPHIC PRIMITIVES FOR

MOBILE AGENT

This chapter describes different techniques for protecting an agent using cryptographic

primitives. As previously discussed in section 2.4, protection of an agent first involves

p r o te ctio n then prevention. This chapter will first describe techniques for protection

followed by prevention. The use of cryptographic primitives offer a new set of chal

lenges for an agent. The user of an agent cannot offer the level and trust security

the agent enjoys in its home environment. Once dispatched an agent is under to tal

control of the remote host. Cryptographic key even if it can be hidden from the

remote host, cannot be protected if the agent is to use such key.

3.1 C ryptographic P reven tion
3 .1 .1 C o m p u t i n g w i t h E n c r y p t e d F u n c t io n s

Prior to the introduction of Computing with Encrypted Functions (CEF) by Sanders

and Tschudin [32], it was widely believed th a t software only solution to the problem

of malicious host was impossible. CEF allows an agent to execute on remote poten

tially hostile environments autonomously w ithout disclosing any information on the

function of the agent or any cryptographic primitives within the agent. The basis for

CEF is the use of a homomorphic PK E scheme th a t allows for non-interactive addi

tion or multiplication of two encrypted cleartext messages through the m anipulations

of ciphertext only. Given the pair of functions e, d which are the encryption and

decryption functions respectively and two ciphertext messages e{x) and e{y). Homo

morphic encryption allows for the efficient calculation of e{x + y) and e{xy) without

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disclosing either values x oi y . To illustrate, Alice A has a function / which Bob B is

willing to execute for her with his input x. To hide the functionality of / from Bob, A

encrypts / into another function e (/) . A then creates a program P{ e [f)) which im

plements e (/) and the procedures A D D and M U L T , sends them along with F (e (/))

to B. B then executes the program P{ e { f)) on x to obtain P{ e{ f { x))) , each call for

addition uses the procedure A D D and multiplication uses M U L T . Once execution of

F (e (/)) is completed, B sends F (e (/(x))) back to A who decrypts it to obtain f {x) .

If / is a signature or encryption algorithm then A has effectively signed or encrypted

information respectively w ithout disclosing her private key (see Figure 4).

I P(e(f)) -

f ; - e(f)

Alice

W - — d(e(f(x))) '

P(e(f))

Network Bob

Figure 4: Computing with Encrypted Functions.

3.1.1.1 Undetachable Digital Signatures

The use of CEF was also extended to producing Undetachable Digital Signatures

(UDS) where a signature routine can be “attached” to the function / such that

f s i g n e d ̂ ̂ f

Let / , s be rational functions and s is used by A to sign the message m where m is

the output of / on some data x.

m = / (z)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let V be the verification function of s, where

and V is public. To make the signature undetachable, A sends {fsigned, f) to B. B

uses his input x to produce {fsigned{x), f (x)) . Using the public verification function

V anyone can verify that,

s. 1.1.2 Remarks

CEF provides protection for both the agent and the host. The functionality of the

agent is protected because of the encryption of / . Hosts are also protected because

/ is executed with the input x controlled by the host. CEF has since been shown

to be useful for all polynomial-time functions by Cachin et al [4] and Kotzanikolaou

et al [27] showed th a t it can be used with the RSA signature scheme. However the

construction of encrypted functions is complex and has y e t to be shown to work with

a more wide range of functions.

Algeheimer et al. [1] later showed that non-interactive secure mobile agent com

puting schemes do not exist. N on -in ter a c tiv e refers to no interactions between the

host and agent during the agent execution. CEF allows the secure evaluation of / to

produce only a final result. Therefore, agents cannot react to host actions during its

execution. Using the airline agent example, suppose the agent’s previous best offer

is c. If the output of / is to accept or reject the offer x by the host. Then there

is nothing th a t keeps the host from continuing to make an offer x' until c has been

completely exposed by the agent.

3 .1 .2 S l id in g E n c r y p t io n

Sliding Encryption [40] is a deterministic m ethod for operations on public key cryp

tosystems. It allows for encryption of small amounts plain text into same size cipher

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

text. A general description of the m ethod will be given here. More details can be

found in [40].

Let m be the size of a RSA key and m is a power of 2. Plain-texts are broken

into small equal sized blocks Oi, dg, - - - , where 'ii, \ < i < k and]ai] = u. Let

V be the size of some random string and t = u + v where t m and t divides m.

To perform slide encryption requires the use of a stack S, an accumulator A and an

window W . Elements of A[i] and W['i] are of size t. Let e ,d be the encryption and

decryption functions respectively. To encrypt, ai is pu t into the lower order of bytes

Accumulator yj

Slide

Stack 5

Figure 5: Slide Encryption.

of >l[l], the upper v order of bytes contain random strings. The accumulator is then

encrypted to obtain e(A). .A[l] is then slid into W [m /t]. To encrypt Ug, Og is pu t into

the lower order byte of ^[1], the upper v order of bytes contain random strings. The

accumulator is then encrypted and A[l] is slid into W [m / t — 1]. This process repeats

until üm/t has been slid into W [l] a t which tim e W is pushed onto the S, pu sh{W).

The plain tex t am/t+i to aom/t uses the same process. This repeats until all k plain

text blocks are encrypted. Decryption is the exact reverse of the encryption.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2.1 Remarks

Slide encryption was designed with minimizing agent code in mind. A smaller agent

gives the agent better mobility, but because the decryption key stored in one location,

any breach of security a t th a t location would allow an adversary access to the plain

text.

3.2 C ryptographic D etec tion
3 .2 .1 P a r t i a l R e s u l t A u t h e n t i c a t i o n C o d e

Partial Result Authentication code (PRAC) was proposed by Yee [39]. PRAC, requires

tha t the a g en t and owner m aintain a set of secret keys incrementally generated on each

host the agent visits. The secret key is used to generate a cryptographic checksum

(similar to MAC) of an agent’s state and results on each host it visits. Once used,

the secret key is destroyed by the agent before moving to the next host, thus insuring

forward integrity. More formally, suppose th a t an agent is to visit a list of servers

s i , . . . , s„, if the agent encounters a malicious server Sc where c < n, the information

collected at s i , . . . Sc-i is preserved. Because only the agent and its owner know the

secret keys and the agent’s copy is destroyed after use, only the owner of the agent

can authenticate any results.

3.2.1.1 remarks

The m aintaining of the secret keys by the owner requires an agent to contact its owner

from each host it visits. This reduces agent autonomy and because the keys are stored

in one location (owner) any breach of security a t th a t location could potentially reveal

all the secret keys.

3 .2 .2 C r y p t o g r a p h ic T r a c e s

Vigna [35] proposed a process where the executing host is required to produce a

trace of operations performed by the agent. The PK l is used for the generation of

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a hash and securing of communication between the agent owner and executing host.

During agent execution, the host records (logs) the operations performed by the agent.

Upon term ination of execution, a hash of the agent operations and is current sta te

is calculated. A copy of the trace is stored by the host so tha t it can be produced

later a t the request of the agent owner. The hash is then forwarded to the agent

owner. Thus allowing an agent owner to re-execute the agent with data supplied

by the host and compare the hash of the re-execution with the one supplied by the

host. To produce a cryptographic trace requires multiple rounds of communication

between the owner of the agent and the host executing the agent. Figure 6 illustrates

the rounds of communication to produce the execution trace.

1 . =

2. g A I mg = gX-B, A, Û, /i(mi), AF)

3. A g I m3 = A,(A, g , gp(K.4))

4. g A I m,4 = g ,(B , A, A(m3))

5. g A I ms = g ,(g , A,f^, Aa(SB),fi(T^),fg)

6. A g I me = A^(A, g , Ù , h(ms))

7. g A I my = g ,(g , A,2^,Ap(KB))

Figure 6: Cr-yptographic Tracing Steps.

In Figure 6 , Alice A is the owner of the agent and Bob B is the executing host.

Let rui be a message where 1 < L Let (Ap, A,) and (gp, g«) be A and g ’s public and

private keys respectively and A ^ B is the passing of m, from A to B. Let A(m,)

be the hash value of m, and h is a one way hash function. Singing (e.g. Produce a

DS) of a message by A or B is indicated by A ̂ or g^ respectively.

S te p 1: In Figure 6 , the message mi is from A to g as indicated by the first two

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fields of each The singing of all m* insures authenticity of messages to

the receiving party. The third held is a unique identifier for all messages

during this execution request. A time stam p Ia is also included in m i to ensure

’’freshness” of the message and to guard against reply-attacks. The last field,

K a (p) is the program p (agent) to be executed by B encrypted with a secret

key K a chosen by A.

S t e p 2: B has options of either to accept or reject the request which is contained in

the message M . A hash of m i is returned to the agent owner to ensure to A

th a t m i was received by B correctly.

S t e p 3: If M is an accept message, then A responds with m 3 which contain the K a

required by B to decrypt the program p.

S t e p 4: An acknowledgment message 1714 is sent by g to A indicating th a t B has

successfully decrypted p. Again a hash of the previous message received by B

is returned to A. Now th a t p has been decrypted, B proceeds to execute p and

the trace, Tg is recorded by B.

S t e p 5; Once p has completed execution, Sb, the state (results of execution) of p,

is recorded and encrypted with a random key K b to obtain Kb { Sb) - Then a

hash A(Tg) is generated along with another time stam p tg . B then proceeds to

send mg to A.

S t e p 6: W hen m g is received by A, A replies with an acknowledgement message mg

requesting for K b to decrypt the state of agent Sb-

S t e p 7: If all previous steps were successful, B sends A m? which contains K b- A

can now decrypt state of the agent to obtain the state Sb-

If A suspects that B has cheated while executing p, A can request tha t B send

Tg and the data used to produce Tg. A first computes h{Tg)' and compares it with

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h{Tg) received in mg to check the authenticity of Tg. If the h{Tg)' — h{Tg) , A

executes p to produce Tg'. If Tg'A Tg, A knows th a t B has cheated.

3.2.2.1 remarks

The lim itation of using cryptographic tracing is the large number of rounds of commu-

n'nation required per execution. This somewhat undermines some of the key benefits

of the mobile agent paradigm of autonomy and independence.

3 .3 R em arks

The techniques discussed in this chapter all provide an agent with the capability to

use cryptographic primitives on a remote host. CEF aims not only to provide privacy

for the agent da ta but also any potentially proprietary agent algorithm. However,

as mentioned earlier, the generation of the encrypted function is only limited to

polynomial functions. SE offers an agent better mobility by limiting the size of

encrypted data. However, the strength of the scheme depends on the securing of

the private key. The next chapter introduces Secret Sharing Scheme (SSS) for mobile

agent cryptography. Although, its aim is not as bold as CEF, its application is similar

to SE but because the private key is shared, the compromising of the private key is

much more challenging for an adversary.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

SSS FOR AGENT CRYPTOGRAPHY

This chapter will introduce the idea of using SSS for mobile agent cryptography. As

mentioned earlier, the distribution of the private-key amongst n provides additional

protection against a adversary. This chapter will outline the protocol for initialization,

distribution and hiding of shares within agents. Later in the chapter, a modified

version of the protocol will be introduced which allows an agent on remote trusted

hosts (TH) to distribute agents of own.

4.1 Trusted H osts

Here, TH will be defined as any host which can provide an agent with a Secure

Execution Environment (SEE) including protection against the following attacks as

categorized by [2]. Integrity attacks, an agent is secure from tam pering by the host

and other entities such as other agents. Availability refusal, an authorized agent

cannot be denied access to resources which has been universally agreed upon to be

vital to the proper function of an agent such as, CPU cycles, RAM, storage space

and network bandwidth to m igrate to other hosts. Confidentiality attacks, an agent

private assets cannot be destroyed, tem pered with or made public by the host or

other entities. Authentication risks, when requested, a host must be able to provide

appropriate credentials (e.g. Certificate from a CA) so tha t the agent can authenticate

the identity of the host.

It is assumed th a t the home environment of an agent is trusted. Therefore, the

first and obvious TH is an agent’s home environment. The process of initializing

agents for distribution involves the generation of a pair of public and private keys.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The importance of keeping the private-key secure is obvious, therefore, the key gener

ation process -will only be performed on a TH. All hosts are classified as either trusted

or non-trusted. TH are host which can provide an agent with a SEE mentioned above.

Classification of a host as un-trusted does not imply maliciousness, but rather, it can

not provide an agent with an execution environment tha t fulfills all the requirements

set forth by SEE.

It is still an open question whether SEE is possible with only software based

solutions by using current technology [1]. Some believed tha t such environment will

only be available through specialized Secure Hardware (SH) strictly designed for agent

execution [39, 19, 37]. In [39], a SH in the form of a secure coprocessor is under

development which will allow for a SEE for Java ™ agen ts. In [20], a lim ited capacity

Sm artcard was proposed th a t interacts with an agent’s code to hide the functionality

of the code from a host. In [37], the proposed hardware provides agent code a tamper

proof environment in which to execute.

The proposed SH all rely on cryptographic primitives of PKL The common prin

ciple behind each of the above mentioned SH is the use of PKE. Each SH has its own

associated public/private key pair. The public-key is made public while the private

key is embedded into the SH either during the manufacturing process or by the m an

ufacturer after its production. The assumption is tha t SH manufacturers are large

multi-national corporations with valued global reputation which they wish to protect.

Another obvious key assumption of SH is th a t the host system employing the SH can

not tam per with the SH or gain access to i t ’s private-key. Here is a example use of SH.

Suppose an agent owner wants to dispatch an agent to n hosts H i .. .Hn- Once the

agent is created, the owner obtains the public-key of Hi, encrypts the agent before

sending the agent to Hi . W hen Hi receives the agent, it decrypts the agent with its

private-key, then proceeds to execute the agent. Upon completion of execution of the

agent. Hi encrypts the agent with the public-key of H 2 before send the agent to H-,.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This process continues until iF„_i, at which time the public-key of the owner is used

to encrypt the agent. This process has effectively hidden the function of the agent

along with any secrets the agent might be carrying.

Although SH theoretically offer unambiguous protection for an agent, unfortu

nately such hardware is not yet available. However, for ease of discussion of the

protocol th a t follows, the assumption will be made tha t such hardware is available

and is employed by limited number of hosts. The purpose for SH is to extend the

security of an agent’s home environment to a remote host. Therefore, any solution

th a t can offer an agent SEE can be used, including non-technological social means.

For example, a certain number of dedicated hosts which are socially bound to offering

secure resource access to agents such as a University network, or financially bound

such as paid TTP. A concept often discussed in the mobile agent paradigm to act as

an im partial m ediator [38, 35].

4-2 Secret Sharing

Secret sharing schemes (SSS) was introduced independently by Shamir [33] and

Blakey [3] in 1979. SSS allows a secret to be distributed by a trusted dealer to

a set of participants which perm its only sp ec ific subsets or a threshold number of

participants to recover the secret.

4 .2 .1 S h a m ir ’s T h r e s h o l d S c h e m e

Shamir uses a polynomial (t, n)-threshold scheme, where t, n are positive integers

and t < n. A secret value k can be shared by a trusted dealer D amongst a set

of participants F, where F = { F] l < i < n} (See Appendix A, Figure 12). The

recovery of k requires at least a set of M participants where \M\ > t and M Ç P (See

Appendix A, Figure 13). For instance, let f = 3 and n = 5. The value k is shared

amongst 5 participants and any 3 can regenerate k using their shares.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4-S The Protocol

The goal of agent autonomy is to minimize number rounds of communication between

an agent and its OriginatoA O. Therefore, the protocol’s aim is to allow agents

to use cryptographic primitives on remote hosts while restricting communication be-

tv^een O and each agent to only one round (send and receive). More precisely, let

O be the originator (creator) of n agents, 1 < n. Let C the number of rounds of

communications between O and n agents. Therefore, the goal is such th a t C = n.

Note th a t O recursively inherits any agents generated on remote hosts by its children.

For example, if O generates n agents and the n agents combined generates g agents

then O has n + g agents.

4 .3 .1 A g e n t I n i t i a l i z a t i o n

Again, the point will be emphasized th a t agent initialization is to only be performed

on a TH in order to protect the private-key. Agent initialization involves the genera

tion of the public/private key pair which will be used for encryption and decryption

respectively. Share generation is performed once the private-key has been created.

To protect each share, a random number is generated for each share. The random

number is combined with each share prior to distribution to agents. Figure 7 outlines

the steps required for initialization.

Here, a formal description of agent initialization will be given. Let D be the

trusted dealer in Sham ir’s algorithm, and D is the originator of agents A , where

A = { A ; | l < i < n } . Let 77 be a set of remote hosts, where H = {77*11 < i < n}.

Let 1C be the set of all possible keys and 1C = Zp, such tha t p > n -f 1 is a prime and

Zp is a finite field of size p. Let <S be the set of all possible shares and S = Zp. Let s*

be the shares given to each A*, (Vi,s* e <S). A random number Wi G Zp is generated

^Notc, in previous diapters, an agent's originator was referred to as owner or agent owner. In
the protocol the dealer D is also the owner and originator of agents.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by D for eacfi A*.

Let kjnih and k^riv be tfie public and private key pair generated by D respectively.
Let be the signature function using kj„-iy.

1. D generates a key pair {kj„,b/kprif) such tha t {kpuh,kpriv} € fC.

2. D publishes

3. D calculates shares .s* using kpriv for each A*.

t - i
kpriv + rnod{p)

7 = 1

4. D also generates a random number for each A* and combines each s* + lUi
to obtain z* = .s,; + «,>*. D then stores a copy of each re,; in a secure location.

5. D signs each agent, .s?Pfep .̂„(Ajjjzj) with kpriv before destroying kpriv

6 . D attaches with each A*||z,:||s{%p,.,,,(A*||z,:) and transfers each

Figure 7: Agent Initialization

In step 2 of the agent initialization (Figure 7). The requirement th a t kpub be

published is to allow all agents access to the public-key used for encryption. The

publishing of kp b̂ is to reduces the size of an agent. It is possible for agents to carry

kpub- In step 4, the random value Wi added to each s* conceals the actual share s* from

un-trusted hosts. Also, by concealing Si, in the event th a t a malicious host is able

to capture all z*, w ithout the random values Wi, s* will remain hidden. The signing

of the agent in step 5 allows D to authenticate each A* upon its return and kpriv is

destroyed because it can be regenerated upon return of t agents.

4 .3 .2 E n c r y p t i n g

Let be the encryption function using kpub- As results R i j (Results collected

by agent A* on host j-) are collected by A* on 77*j , j > 1, before A* moves to

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host H ij+ i {Note that the movement 0/ A* from host 77* j to 77jj.^i is for notational

purposes only. Agent migration does not require an strict itinerary.), A* retrieves kp b̂

from the publicly accessible location and encrypts 7?*j with kpub to obtain Gkpuhi^id)-

4 .3 .3 D e c r y p t i n g

L..V d*. be the decryption function using fcpriu- Let be verification function

for siçkp,.i„- Decryption requires a t least 7 of n agents to return with their shares.

Upon return of each A*, D verifies each A*, if verkpub{{Ai\\zi), sigkj,„„{Ai\\zi)) = true

D retrieves the value rc* from the secure location and extracts each s* = z* — w*.

If j{f : verpub{{Ai\\zi),sigpriv{Ai\\zi) — true}\ > t, though polynomial interpolation

(See Appendix A Figure 13) using each s*, D regenerates kpriv, D can now use dkp„„

to decrypt obtain 77*j.

4 .4 A gen t D is tr ibu tion on R e m o te Trusted H osts

Suppose A* is on a remote TH 77*, and A* wishes to distribute I agents A ' where

A ' = {A ' I 1 < % < Z} from 77*. Let SS be A*’s storage space (See Figure 1). Let w{

be a random storage location within SS generated by A* and % is the contents of SS

at location w{, % G SS {See Figure If)- Let W = {rcjHwgH . . . ||u7(} and W € Zp. Let

S' be the set of all possible shares and S' = Zp- Let s' be the shares given to each

A|, (V i,s 'e ,S ') .

In the original protocol, the random values tc* was stored in a secure location on

D ’s home environment. However, now A* is on a remote host and must migrate at

least once (back to its home host). Therefore, the random number generated to mask

shares m ust be hidden within A^. To accomplish this, instead of masking each share

with the random number re* directly. The modified protocol generates a random

storage location re' within SS. The contents r/* at location re' is used to mask each

s' (See Figure 14). The combined randomly generated memory locations W is also

shared amongst I agents as r*. Figure 8 illustrates the modified protocol for agent

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution on remote TH. Note tha t in Figure 8, A* is represented by D.

Let uf represent a random memory location in A /s SS. Let % be the contents at
w f Let 7'i be shares of W generated for each A '.

1. D generates a keys pair {kpublkpri) such that {kj^b, kpriv} 6 1C.

2. D publishes kpub-

3. D calculates shares .s' using kpriv for each A '.

j=i

4. D also generates a random memory location w[for each A ' and combines its
contents y* w ith s' to obtain z' = s' + iji (See Figure 14).

5. D calculates shares r* for each A ' using W .

Ti — W + üjX-’ mod{p)
j=i

6 . D signs each agent, 8i,%p,.„,(A'||z'||rJ with kpriv before destroying kpriv

7. D attaches with each A '||z '||r/|sigkp i,.„(A '||2 '||r*) and transfers each
(All^llnllaZg^, XAIIkilln)) to 77'.

Figure 8 : Agent initialization on remote hosts.

4 .4 .1 E n c r y p t i n g

The procedure for an agent to perform encryption on results gathered on remote hosts

is the same as outlined in Section 4.3.2.

4 .4 .2 D e c r y p t i n g

Decryption is performed only on the home host (User in Figure 10) regardless where

the agent was generated. The decryption process is also similar to the procedure

outlined Section 4.3.3. But because the value y* in stored within A./s SS. decryption

can be performed only when A* returns to its home host. First the value r, is extracted

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from each A ' to generate the combined random locations W through polynomial

interpolation. Using each w' the values % is retrieved from A /s SS. Using each s',

again through polynomial interpolation, kpriv can be regenerated.

4 .5 R em a rk s

The distributing of the private-key amongst agents offers greater protection for the

key. Not only will a malicious host have to capture a t least t agents, it must also find

the shares within each agent. For example, suppose a host has all of the agents and

is able to find the values z*, without the random value w*, s* is considerably harder to

obtain. Independence and autonomy are key characteristic of an agent. Therefore, the

ability to distribute agents on remote hosts have some obvious advantages. However,

this also posses new challenges. How to hide a secret within an agent? Through

the use of secret sharing, and information hiding within an agent’s SS it was shown

th a t information and private-keys can be hidden within a number of agents. The use

of Sham ir’s threshold scheme also allows for inherent fault-tolerance because only t

of n shares are required to regenerate the private key. Thus, the robustness of the

algorithm allows regeneration of the private-key even iî n — t agents are destroyed,

lost, or tem pered with.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

SECRET SHARING WITH RSA KEYS

This chapter will demonstrate how the protocol of Chapter 4 can be implemented

with RSA [28] PK E algorithm. RSA keys can be used for encryption/ decryption and

for DS.

5.1 R S A Overview

Let n = p q be the RSA modulus and p , q are primes. Let a, b be the encryption and

decryption keys respectively where:

ah = 1 mod[(j){n)) and </)(n) = (p — l) (q - 1)

The values p , q , b are private and n , a are public. Given the message m encryption is

defined as:

y = efc(m) = m “ mod{n),

decryption is defined as:

dkiy) = y'̂ mod{n) = m

signature is defined as:

sigk{m) = mod{n)

and verification of sigk{m) is defined as:

verk{m , sigk{m)) = true x = mod{n)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 A gen t In it ia l iza tion

Let sigh be the signature function using private value b.
1. D generates the primes p ,q and calculates the RSA modulus n.

2. D calculates the private value b and the public value a, then destroys the p , q
and publishes the public values n, a in a accessible location.

3. Using the private value b, D generates s,; for each A,.

t- i
Si = b + ^ (ijX ̂ mod{p)

.7 = 1

4. D generates a random number Wi for each A.;, and distributes Zi = .s, + u;,; to
each Ai.

5. D signs each agent, s% (A i||Z ;) with b before destroying b.

6 . D attaches with each A i||zi||sig,;(A i||zi) and transfers each
(Ai||zi||a?:g(,(Ai||zi)) toLfi.

Figure 9: Agent Initialization Using RSA Keys.

5.3 R S A E ncryp ting

Let e„ be the encryption function using the public key a. As results Ri ĵ are collected

by Aj on host iLjj, j > 1, before Ai moves to host Hj+i (Again note th a t movement of

Ai from host H ij to i ï i j+ i is for notational purposes only. Agent m igration does not

require an itinerary.), Ai retrieves a from the public accessible location and encrypts

R i j w ith a to obtain:

T M o d (n)

5.4 R S A D ecryp ting

Let db be the decryption function using key b. Let veva be verification function for

sigh- Decryption requires a t least t of n agents to return with their shares. For

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 < z < f, upon return of each Aj, D verifies each A,, if

vera{{A^\\zi), sigh{Ai\\zi)) = true

D retrieves the value Wi from the secure location and extracts each Si = Zi — Wi. If

|{% : r;era((Ai||zi), 8%g6(Aj||zi)) = > (

though polynomial interpolation using each Si, D regenerates the private key b. D

can now use to decrypt:

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

AGENT TRACKING

b . l A gen t Collis ion

A host th a t contain high concentration of relevant information will eventually a ttrac t

multiple agents from the same family^ . For example, a family of agents are created

to find a television on behalf of its creator. It is conceivable tha t more than one agent

from th a t family will eventually visit the same m ajor electronics retailer. Agent

collision occurs when a host is visited more than once by agents from the same family

either individually or concurrently as depicted in Figure 10.

□

U se r

09579M \ '49579W

□
iO

Figure 10: Family of agents with same unique T V showing agent collision.

'All agents created by a user to perform the same task. .Agents in Figure 10 are from the same
family.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Cookies

Cookies are small files an agent stores on each host it visits. All cookies generated

by agents of the same family share the same unique J V (see Figure 10). W hen an

agent arrives, it first checks for a file on the host with the same I V as the agent. The

existence of a file with the same I V on a host means the host has already been visited

by a member of its family. Otherwise, the agent creates the file and proceeds with

execution. To avoid overloading agent storage environments on remote hosts, cookies

have a limited life span. Once expired, the cookie can be deleted by the remote host.

6 .2 .1 I V G e n e r a t io n

g .g .T l *

I V Generation There are two requirements for the generation of I V : the I V should

be as unique as possible and the generation of I V must use a well-established publicly

available one-way hash function (e.g. The MD5 [29] algorithm).

The generation of an unique I V requires tha t a message m be the input of the

hash function h, I V — h{m). Any random string can be used, but to ensure high

probability of uniqueness, the suggestion is th a t m contain information such as user’s

IP address along with purpose of the group of agents and some salt (random numbers).

For example, m = (211.112 . . . 11 "return;YVR,YYZ . . . ” \\salt). Once the I V has been

generated, m must be stored in a secure accessible location to be produced when

requested by T T P for cookie authentication (see section on Cookie Authentication).

6 .2 .2 C o o k ie S e c u r i t y

Possible attacks against cookies include the following; 1. Hosts use cookies as a tool

for denial of service attacks. Because of the uniqueness of the I V , it would be unlikely

th a t a host can generate the unique I V prior to an agent’s arrival. 2. Hosts can hide

or remove cookies before they expire. This ability is also of little concern because a

legitimate cookie on a host means the host has already been visited by a member of

45

Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

the agent family. 3. Hosts once visited by an agent, creates their own agents with

the same XV, and distributes the agents onto competitors hosts to plant cookies.

This scenario is possible, particularly for e-commerce applications where there is a

potential for financial gain. A possible solution to this type of denial of service attack

is the use of a T T P to authenticate cookies.

6 .2 .3 C o o k ie A u t h e n t i c a t i o n

Cookie authentication can be initiated by a host, or an agent tha t suspects th a t a

cookie on the current host is fake. The authentication process is performed by the

host with the suspect cookie. Before the cookie authentication process is described,

a couple of assumptions will first be made. 1. All agents, including ones generated

on remote hosts know the location of their originators. In Figure 10, all agents in the

diagram belong to User; therefore User is the originator. 2. A host also knows the

location (e.g. IP) of an agent’s originator.

The authentication process requires the participation of a TT P ; a T T P could be

any TH mentioned previously in this paper, with a signed digital certificate. The

certificate is used to authenticate the T T P to the User and the Host (Figure 11).

Connections between the Host and TTP, and the User and T T P are secure (e.g.

Using SSL [13] with the T T P ’s certificate). The authentication protocol requires the

following routines.

R eq -A u th (X V ,U serIP) . Authentication request sent by the suspecting host to the

T T P to verify the I V of the cookie.

I V . The unique number th a t identifies a family of agents.

U s e r lP . The location of the User th a t created the agent.

R eq _ M sg {IV) . Message request sent by the T T P to the host located at U s e r I P

(User in Figure 11).

46

Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

M sg {m). Response from the User located at U s e r I P to the TTP.

rn. Input of h th a t generated I'D.

h{rri). Hash value on the message m.

A' th { tr u e / fa l s e) . Reply from T T P to the suspecting host.

t r u e / fa l s e . W hether h{rn) = I V or h{m) 7 ̂I V respectively.

The host with the cookie can request a T T P to verify the cookie on its behalf.

The host with its request sends the unique I V of the cookie and the location of User

User I D to TTP. The T T P then requests from User the message m which generated

the unique I V . The T T P uses the hash function h to generate h{m) = I V . If

h{m) = I V , T T P sends a true reply to the Host, (see Figure 11)

H ostU ser

TTP
4. H(mj

Figure 11: Cookie Authentication

6.3 R em arks

In Section 6.2.3, two assumptions were made. The first assumption was th a t every

agent knows the location of its originator. This assumption was made because in

the model described above, every agent must return to their respective originators.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This assumption is also im portant for the cookie authentication process. If a host

is to check authenticity of a cookie, it must know the location of originator (User in

Figures 10,11) of the agent. The second assumption was th a t a remote host knows

the originator of an agent it executes. This fact is especially im portant because to

authenticate a cookie, the current host (host with the cookie) sends the T T P the

message R eq . .A u th {IV ,U se rIP) to User. This message contains U e se rIP , which

should be location of User. However if the current host is not certain where an agent

comes from, then there is possibility tha t although the final response from T T P is

M sg{m) = true, there is no certainty tha t the cookie is authentic.

For example, given two hosts X , Y and host X and Y are competitors. Let host

X be a malicious host. Suppose agent A% visits host X first and A i ’s originator is

O. Now host X knows both the purpose of A i and i t ’s unique I V . Host X then

generates its own agent A) and sends it to host Y and A) plants a cookie on host Y

with the same I V as A i. Suppose A) arrives at host Y before A i. W hen A i arrives

two things could happen. First, A i could simply move on thinking th a t host Y has

already been visited. Second, A i suspects tha t the cookie is fake and requests the

current host to authenticate the cookie. If the current host doesn’t know the true

originator of the cookie is from host X and believe the cookie is from O. W hen host

Y authenticates the cookie, the request will be sent to T T P which then sends the

request to O. After the authentication process is complete, the message from T T P

will show th a t the cookie is authentic when in fact its fake.

4S

Reproduced with permission of fhe copyright owner. Further reproduction prohibited without permission.

CHAPTER VII

CONCLUSION

This thesis explored the mobile agent paradigm from the security perspective. Some

key benefits of a mobile agent was discussed as well as how they can contribute to the

overall network computing community. Various applications which can benefit from

an agent’s flexibility, mobility and scalability was also investigated and their security

requirement highlighted.

Mobile agent computing as with most emerging technology has many unresolved

issues. The most significant of which are in the area of security. Technologies such as

programming languages and network infrastructures are all in place for deployment

of agents. However, until the establishment of a well defined set specifications which

the network community as a whole is willing to adopt, mobile agent development will

still remain ad hoc in nature.

The contribution of this research is the use of secret sharing schemes as a tool for

security. Using secret sharing scheme, it was shown that an agent with a public-key

can perform encryption on remote hosts while protecting the private-key for decryp

tion though secret sharing. All the tools required for implementation such as secret

sharing schemes and PK E are available and proven secure. The example showing

implementation using the RSA PK E demonstrates tha t the protocol is practical.

Agent tracking using a cookie concept borrowed from the web browser technology

showed how to avoid agent collision. The security issues with using such technology

was also discussed and solutions proposed.

In future work, the hope is to explore other uses for secret sharing in the mobile

agent paradigm. Another possible branch of this research is the use of CEF for the

49

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

generation of shares on remote hosts because as mentioned earlier, CEF has been

shown to work with polynomial functions [4].

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SHAMIR’S THRESHOLD SCHEME

A . l In it ia l iza t ion and Share D is tr ibu tion

I n i t i a l i z a t i o n a n d S h a r e D i s t r i b u t i o n

1. D chooses n distinct non-zero elements of Zp denoted by xi, 1 <
i < n and p > w + l . For 1 < i < n, D gives each Pi the value i , .

2. To share the key k E Zp, D secretly chooses a t random t — 1
element of Zp, Ui, «2----

3. For 1 < i < n, D calculates % = a(x,:), where

t - i
a(x) = k + ^ üjX ̂ mod(p)

J=i

4. For 1 < i < n, D gives the share y, to F).

Figure 12: S ham ir’s {t,n)-threshold scheme in Zp. Initialization and Share D istri
bution. [34]

A . 1 .1 I n i t i a l i z a t i o n a n d S h a r e D i s t r i b u t i o n E x a m p l e

This is a small example of to illustrate Shamir’s Threshold Scheme [34].

Let t = 2), and p — 17 and n = 5 and fc = uq = 13

Given the polynomial:

a[x) = uo 4- a\x -t- mod{p)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

step 3 F ig u r e 1 2)

Let a\ = 10 and 02 — 2

o (l) = 13 + 10 + 2 m o d [n)

a (l) = 8 m o d { n)

0 (2) = 13 + 1 0 (2) + 2(2)^ mod{17)

0 (2) = 7 mod{17)

o (3) = 13 + 1 0 (3) + 2 (3) ' m od{l7)

o (3) = 10 m od{l7)

o (4) = 13 + 10(4)+ 2 (4) ' mod{17)

0 (4) = 0 m od{\7)

o (5) = 13 + 1 0 (5) + 2 (5) ' m od[\7)

o (5) = 11 m od{l7)

Let i == { 1 ,3 ,5 } , f i = 8 . P2 = 10, P5 = :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A . 2 K e y R econstruction

K e y R e c o n s t r u c t i o n
The regeneration of k is achieved though polynomial interpolation.
Suppose P i^ ,. . . , Pi, want to regenerate the k, th e y know that

Vij —

and I < i < t where a{x) € Zp[x] is the secret polynomial chosen by
D. Since a{x) has degree at most t — 1, a(x) can be written as

a(x) — ao + (2ix + . . . + (it^iX

where ao is the key and the coefficient o,o . . . are unknown elements
of Zp. Since iji = a{x), 1 < i < t, M can obtain t linear equations with
t unknowns o,o,. . . . cp-i with all arithm etic done in Zp. If the equations
are linearly independent, there will be a unique solution and Oq is the
key.

Figure 13: S ham ir’s {t,n)-threshold scheme in Zp. K ey Reconstr‘uction.\iY\

A . 2 .1 K e y R e c o n s t r u c t i o n E x a m p l e

Let t = 3, and p = 17 and n = 5 and Xi = i and M = {P i, P2 , Ps} with shares

8,10,11 respectively(See A.1.1).

ao + ai + Ü2 — 8 mod(17)

ÜQ + 3a\ + 9(ï2 — 10 mod(17)

ÜQ + 5a+8a2 = 11 mod(17)

Solving the system of linear equations we get üq = 13, ai = 10 and 02 = 2. Since

k = Ü0 = 13, therefore the key has been successfully regenerated.

Given the polynomial:

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

SHARE HIDING WITHIN AGENT’S STORAGE

SPACE

IV,'

Agent Storage Space
(SS)

y '
00000000 785E738FDC3490A65B388
00000001 FD5492650BA6EFE53478C
00000002 5437F4A2E275437ADEB53
00000003 E98CA2764AED839D5853C
00000004 5E378F328743DF4382CDA
00000005 8DA32978C21AERE356F40
00000006 6D43AE190FD5336C5B798

•

OOOOOOOF 6278FD358A53BCA538230

. .

FFFFFFFF E3478590AC473F375DE947

Wi'= 00000004
yi' = E98CA2764AED839D5853C
zi' = S ,'+ yi

Figure 14: Share hiding within the Storage Space (SS) of an agent.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] A l g e s h e i m e r J o y , C a c h in C h r i s t i a n , C . J . K . G. Cryptographie security
for mobile code. Tech. Rep. RZ 3302 (# 93348), 2000. h t t p : / / c i t e s e e r . n j .
n e c . corn /algesheim erO O cryptographic .html.

[2] B i e r m a n , E ., a n d C l o e t e , E. Classification of malicious host th reats in
mobile agent computing. In Proceedings of the 2002 annual research conference of
the South African institute of computer scientists and information technologists
on Enablement through technology (2002), South African Institu te for Com puter
Scientists and Information Technologists, pp. 141-148.

[3] B l a k l e y , G. Safeguarding cryptographic keys. In Proceedings of the AFIPS
1979 National Computer Conference (1979), vol. 48, pp. 313-317.

[4] C a c h i n , C . , C a m e n i s c h , J ., K i l i a n , J ., a n d M u l l e r , J . One-round se
cure com putation and secure autonomous mobile agents. In Automata, Lan
guages and Programming (2000), pp. 512-523. h t t p : / / c i t e s e e r . n j .nec .com /
cachinOO oneround.htm l.

[5] C h e s s , D ., G r o s o f , B . , H a r r i s o n , C ., L e v i n e , D ., P a r r i s , C . , a n d
T s u d i k , G . Itinerant agents for mobile computing. In Readings in Agents,
M. N. Kuhns and M. P. Singh, Eds. Morgan Kaufmann, San Francisco, CA,
USA, 1997, pp. 267-282.

[6] C h e s s , D ., H a r r i s o n , C . , a n d K e r s h e n b a u m , A. Mobile Agents: Are They
a Good Idea? Tech. Rep. RC 19887 (December 21, 1994 - Declassified March
16, 1995), Yorktown Heights, New York, 1994. h t t p : / / c i t e s e e r . n j .nec .com /
chess9 5 m o b ile .html.

[7] D. J o h a n s e n , R . v a n R e n e s s e , F . S. An introduction to the tacom a dis
tribu ted system version 1.0 . h t tp : //w w w .ta c o m a .c s .u i t .n o /p a p e rs /ta c o m a .
S0SP95.ps,1995.

[8] F a r m e r , W . M . , G u t t m a n , J . D ., a n d S w a r u p , V. Security for mo
bile agents: Authentication and state appraisal. In Proceedings of the Fourth
European Symposium on Research in Computer Security (Rome, Italy, 1996),
pp. 118-130. h t tp : / / c i t e s e e r .n j .n e c .c o m /f a r m e r 9 6 s e c u r i ty .h tm l .

[9] F u g g e t t a , a .. P i c c o , G. P ., a n d V i g n a , G. Understanding Code Mobility.
IEEE Transactions on Software Engineering 24, 5 (1998), 342-361. h t t p : / /
c i t e s e e r .n j .n e c .c o m /fu g g e tta 9 8 u n d e rs ta n d in g .html.

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

http://citeseer.nj
http://citeseer.nj
http://citeseer.nj
http://www.tacoma.cs.uit.no/papers/tacoma
http://citeseer.nj.nec.com/farmer96security.html

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

G r a y , R. S. Agent Tel: A flexible and secure mobile-agent system. In Fourth
Annual T cl/T k Workshop (TCL 96) (Monterey, CA, 1996), M. Diekhans and
M. Roseman, Eds., pp. 9-23. h t tp : / /c i t e s e e r .n j .n e c .c o in /g r a y 9 7 a g e n t .
html.

H o h l , F . a model of attacks of malicious hosts against mobile agents. In In Pro
ceedings of the E C O O P Workshop on Distributed Object Security and Jth Work
shop on Mobile Object Systems: Secure Internet Mobile Computations (1998a),
p p . 105-120.

IBM. Aglets workbench, h ttp : / /w w w .tr l . ib m .c o m /a g le ts / .

IE T F . Transport layer security, h t t p : / /w w w .ie t f .o r g / in t e r n e t - d r a f t s /
d r a f t - i e t f - t l s - r f c 2 2 4 6 - b i s - 0 3 . t x t .

J a n s e n , W . Countermeasures for mobile agent security, 2000. h t t p : / /
c i t e s e e r . n j . n e c . com/jansenOOcountermeasures.html.

J a n s e n , W . , a n d K a r y g i a n n i s , T . Nist special publication 800-19 - mobile
agent security, 2000 . h t t p : / / c i t e s e e r . n j . n e c . e o m / j a n s e n O O n i s t . h t m l .

J .S . F r i t z i n g e r , M . M . Jav a™ secu r i ty , h t t p : / / j a v a . s u n . c o m / s e c u r i t y /
w h i t e p a p e r . p s .

K o t z a n i k o l a o u P a n a y i o t i s , K . G ., a n d V a s s i l i o s , C. Mobile agents for
secure electronic transactions, 1999. http : //www. in f o r m a t ik .u n i-S tu t tg a r t .
d e / ipvr/vs/projekte/m ole/security/kbcO O % .pdf.

L a n g e , D . B . , a n d O s h i m a , M . Seven good reasons for mobile agents. Com
munications of the A C M 4 2 , 3 (1999), 88-89.

L o u r e i r o , s . Mobile code protection, 2001. h t t p : / / c i t e s e e r . n j . n e c . c o m /
l o u r e i r o O l m o b i l e . h tm l .

L o u r e i r o , S., a n d M o l v a , R. Mobile code protection with sm artcards. http:
/ /c ite se e r .n j .n e c .c o m /4 0 8 4 1 0 .h tm l .

M. S t r a e r , j . B a u m a n n , F . H . Mole - a Java based mobile agent system.
Special Issues in Object-Oriented Programming, Workshop Reader E C O O P’96,
dpunkt.verlag, pp. 327-334. h t tp : / /w w w .in fo r m a t ik .u n i-s tu t tg a r t .d e /
ip v r /v s /P u b l ic a t io n s /1 9 9 6 -s tr a ss e r -0 % l.p s . gz.

M e a d o w s , C. Detecting attacks on mobile agents, 1997. h t t p : / / c i t e s e e r .
n j . n e c . c o m /m e a d o w s 9 7 d e te c t in g . h tm l.

M l AO, C ., a n d W e i , R. Secret sharing for mobile agent cryptography. In In
Proceedings of the 1st International Conference on Communications Networks &
Services Research (CNSR), 2003 (To Appear) (Moncton. Canada).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.nj.nec.coin/gray97agent
http://www.trl.ibm.com/aglets/
http://www.ietf.org/internet-drafts/
http://citeseer.nj.nec.eom/jansenOOnist.html
http://java.sun.com/security/
http://citeseer.nj.nec.com/
http://www.informatik.uni-stuttgart.de/

[24] M i l o j i c i c , d . M obile agen t applica tions. IE E E Concurrency, 1999, pp . 80-90 .
h t t p : / / www.c o m p u t e r . o r g / c o n c u r r e n c y / p d l 9 9 9 / p d f / p 3 0 8 0 . p d f .

[25] O r d i l l e , j . j . W h e n agen ts roam , who can you t ru s t? In First Confer
ence on Emerging Technologies and Applications in Communications (etaCOM)
(P o r t la n d , O R , 1996).

[26] O u s t e r h o u t , j . K . , L e v y , J . Y . , a n d W e l c h , B . B . T h e Safe-Tcl se
cu ri ty m odel. Lecture Notes in Computer Science 1419 (1998), 217 -?? h t t p :
/ / c i t e s e e r . n j . n e c . c o m / o u s t e r h o u t 9 7 s a f e t c l . h tm l .

[27] P . K o t z a n i k o l a o u , M . B . , a n d C h r i s s i k o p o u l o s , V . Secure t ra n sa c t io n s
w i th m obile agen ts in hostile env ironm ents . In Information Security and P ri
vacy (2000), P roceed ings of th e 5 th A u s tra la s ian Conference A C ISP, n u m b e r
1841 in L ec tu re N otes in C o m p u te r Science, Springer-Verlag, Berlin, pp . 2 8 9 -
297. h t t p : / / www. i n f o r m a t i k . u n i - S t u t t g a r t . d e / i p v r / v s / p r o j e k t e / m o l e /
s e c u r i t y /k b c O O % . p d f .

[28] R i v e s t , R . L . , S h a m i r , A . , a n d A d l e m a n , L. A m e th o d for o b ta in in g
d ig i ta l s igna tu res a n d public-key c ryp tosys tem s. Communications of the A C M
gf , 2 (1978), 120-126.

[29] R i v s e t , R . T h e m d5 m essage digest a lgori thm , rfc 1321. 1992. h t t p : / / t h e o r y ,
l e s . m i t . e d u / ° /o 7 E r iv e s t /R iv e s t -M D 5 . t x t .

[30] R o t h , V . Secure record ing of i t ineraries th ro u g h co -opera ting agents . In
E C O O P Workshops (1998), pp . 297-298. h t t p : / / c i t e s e e r . n j . n e c . c o m /
r o t h 0 2 s e c u r e . h tm l.

[31] R o t h , V . , J a l a l i , M . , H a r t m a n , R . , a n d R o l a n d , C . A n app l ica t io n of
m obile agen ts as pe rsona l a ss is tan ts in e lectronic commerce. In Proceedings of the
5th International Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM 2000) (M anchester , UK, 2000), J. B ra d sh a w
a n d G. A rnold , Eds., T h e P ra c t ic a l A pp lica t ion C o m p an y L td . , pp . 121-132.
c i t e s e e r . n j . n e c . c o m / r o t h O O a p p l i c a t i o n . h t m l .

[32] S a n d e r , T . , a n d T s c h u d i n , C . F . P ro te c t in g mobile agen ts ag a in s t m alicious
hosts . Lecture Notes in Computer Science 1419 (1998), 44-. h t t p : / / c i t e s e e r .
n j . n e c . c o m / s a n d e r 9 8 p r o t e c t i n g . h t m l .

[33] S h a m i r , A . How to share a secret. Communications of the A C M 22, 11 (1979),
612-613.

[34] S t i n s o n , D. Cryptography Theory and Practice. C h a p m a n a n d H all, isbn:
0849385210, C h a p m a n a n d Hall, 1995, pp . 327-329.

[35] V i g n a , J . C ry p to g rap h ic traces for m obile agents, 1998. h t t p : / / c i t e s e e r .
n j . n e c . c o m / v a g i n a 0 3 c r y p t o g r a p h i c . h t m l .

Oi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.computer.org/concurrency/pdl999/pdf/p3080.pdf
http://www.informatik.uni-Stuttgart.de/ipvr/vs/proj
http://theory
http://citeseer.nj.nec.com/
http://citeseer

W h i t e , J . E. Mobile Agents. MIT Press, isbn 0-262-52234-9, M IT Press, 1997,
pp. 437-472.

[37] W i l h e l m , U. Cryptographically protected objects, h t t p ; / / c i t e s e e r . n j .n ec .
com /74363.htm l, 1997.

[38] W i l h e l m , U. G ., S t a a m a n n , S., a n d B u t t y a n , L. Introducing trusted
th ird parties to the mobile agent paradigm. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, J. Vitek and C. Jensen, Eds.,
vol. 1603. Springer-Verlag, New York, NY, USA, 1999, pp. 471-491. h t tp :
/ / c i t e s e e r .n j .n e c . com /w ilhe lm 99 in troducing .html.

[39] Y e e , B. s . a sanctuary for mobile agents. In Secure Internet Pro
gramming (1999), pp. 261-273. h t t p : / / c i t e s e e r .n j . n e c . c o m / a r t i c l e /
y e e 9 7 sa n c tu a ry .html.

[40] Y o u n g A d a m , Y . M . Sliding encryption : A cryptographic tool for mobile
agents. In Fast Software Encryption. Lecture Notes in Computer Science, no.
1267, E. Biham, Ed. Springer-Verlag, Berlin Germany, 1997, pp. 230-241.

[41] Z a k o n , R . H. Hobbes internet timeline, h ttp ://w w w .z a k o n .o rg /ro b e r t/
i n t e r n e t / t im e l in e / .

b8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.nj.nec.com/article/
http://www.zakon.org/robert/

