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I. ABSTRACT 

Deviations from constancy of the Clausius-Mossotti 

function, with changes in density and temperature are 

considered on the basis of a one-dimensional oscillator 

model of the atom in which the valence electrons are assumed 

restricted by infinite potentials, but interact with all 

others in the medium through dipolar forces. 

The density-dependence of is qualitatively in 

agreement with experiment, but the temperature-dependence 

is negligible as the excited states of an oscillator do not 

represent those of real atoms. In addition, the model does 

not permit the existence of the ionized state of the atom. 

The analysis here suggest a more promising, three- 

dimensional model which admits of realistic atomic potentials, 

dipolar interaction based on continuous dielectric surround- 

ings and repulsive potentials which ensure the existence of 

delocalized electronic states with consequent screening of 

the dipolar forces. 
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II. INTRODUCTION, BACKGROUND AND SUMMARY 

It is well known for nonpolar materials that 

the static permittivity e obeys fairly well the Clausius- 
s 

Mossotti formula: 

e -1 s 4 IT N a 
3 o o (11:1) 

where N^ is the particle number density and is the polariz- 

ability of the isolated atom or molecule being considered. 

Since N^ = pA/W where p is the mass density, W the molecular 

weight and A = 6.02x10^^ is Avogadro's number, (11:1) indicates 

for a given nonpolar material that the Clausius-Mossotti 

function t 

W C = — 
M p 

£ -1 s 
£ +2 s 

4ITA 
a (11:2) 

should be a constant independent of density and temperature. 

Cj^ should also be independent of frequency up to the point 

where appreciable optical absorption by the material begins 

to occur, usually in the infrared region. 

t 1 In the literature C., is sometimes defined by C., = — . « 
>1 ^ s - 

a , but (11:2) is the more common definition. Density p 3W o 

is most frequently quoted in amagat units, but often in moles/t 

Note that 1 mole/£ = 22.39 amagats. One amagat is defined as 

the number of molecules per unit volume in a perfect gas at 

N.T.P., viz: 2.689x10^^ cm”^. 
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At Optical frequencies (11:1) is to be replaced 

by the Lorentz-Lorenz formula; 

(o)) -1 

(o3) +2 
a (0)) (11:3) 

where n(o)) is the refractive index at the frequency and a(a>) 

is the polarizability of the isolated particle at that fre- 

quency. From (11:3) it then follows that at a given frequency, 

CO, the Lorentz-Lorenz function: 

L((o) 
W 

P 

n^ 

n 2 + 2 

4TTA 
a (co) (II;4) 

should also be a constant independent of density and temperature. 

(a) Experimental Background 

Experiments to test the constancy of given by 

(11:2) for simple nonpolar gases such as Ar, Kr, He, Ne, N2/ 

H2, CO2 and CH4 have been carried out since the early 1930's - 

see, for example: Michels and Michels [1]; Michels, Jaspers 

and Saunders [2]; Michels, Saunders and Schipper [3]; Michels 

and Kleerekoper [4]; Michels, Ten Seldam and Overdijk [5]; 

Johnston, Outermans and Cole [6]; Johnston and Cole t7j; 

Orcutt and Cole [8], [9]. Most of the American work referred 



-4- 

to here was painstakingly accurate but carried out only at 

low or modest densities (0'^ 200 amagats, say), but the 

Dutch work quoted used densities as high as 600 ^ 800 amagats. 

The results show that for most nonpolar gases 

is not quite a constant, but rises as density is increased 

to a weak, broad maximum for densities in the range 200 300 

amagats, after which it decreases slowly as density is further 

increased. Generally, it is also observed that shows a 

weak temperature dependence at all densities. 

Experimental data for argon taken from Michels, 

Ten Seldam and Overdijk [5] are shown in Fig. l;a at tempera- 

tures of 25°C and 100°C. Naturally, the experimental error 

is largest at the lower densities since here e - 1 is very 

small. It may be noticed that over the whole range of density 

FIG. 1. Clausius-Mosotti function of argon (Ref. [5]). 
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the variation of is less than 1.6% in argon. Fig. 2 

shows experimental results for CO2 taken from Michels and 

Kleerekoper [4], at temperatures of 50^C and lOO^C. Here 

varies by about 2.8% over the density range shown. The 

temperature dependence of is also more pronounced than 

for argon. Again, of course, the measurement errors are 

largest at the lower densities. 

FIG. 2. Clausius-Mosotti function for carbon 

dioxide (Ref. [4]). 

The results depicted for Ar and CO2 are fairly 

typical of those obtained for simple nonpolar atomic and 

molecular gases, respectively, but it may be mentioned 

that for the light atomic gases. He and Ne, the recent 

\ 



-6- 

measurements by Vidal and Lallemand [10] indicate that 

does not exhibit a maximum in the density range of approxi- 

mately 100 ^ 900 amagats. In fact, in this range is 

observed to decrease almost linearly with increasing density 

and the maximum, if it exists, must occur at well below 100 

amagats. For both these gases the overall change in is 

very small - less than 1%. Similarly for molecular hydrogen, 

Michels, Sanders and Schipper [3] found that within experi- 

mental error no change at all could be observed in in 

the density range 10-1000 amagats. 

Measurements of are usually carried out at audio 

or radio frequencies and no frequency dependence of has 

been reported at these very long wavelengths. However, at 

optical frequencies where L(o)), given by (11:4), should be 

Lorentz-Lorenz functions of argon at 25°C for 

various wavelengths (Ref. [11]). 

FIG. 3. 



-7- 

independent of p and T, there also appears to be a paucity 

of experimental data. Fig. 3 shows the results for Ar given 

by Michels and Botzen [11] at various wavelengths in the 

range 4471°A-6678°A, all at 25^C. It may be observed that 

for a given wavelength the L p curve has the same general 

shape as the vs. p shown in Fig. 1. 

Measurements of LCco) y^. p for other gases, notably 

CO2, N2 and CH4 were carried out by Michels and Hamers [12], 

Michels, Lebesque and de Groot [13], and Michels, Botzen and 

de Groot [14], with essentially the same general results as 

for Ar; viz. an increase in L(o)) to a maximum followed by a 

decrease in L((JO) as density is further increased. 

(b) Theoretical Background 

The fact that Cj^ and L(OD) are nearly constant with 

changes in p and T indicates that use of the Lorentz local 

field to calculate the moment induced into a given nonpolar 

molecule is indeed a very good approximation. It will be 

recalled from elementary dielectric theory, Frohlich [15], 

that the Lorentz field is calculated as that existing inside 

a spherical specimen of radius so large that it has the 

macroscopic dielectric properties of the medium. This field 

arises from sources inside and outside the sphere and for a 
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cubic lattice or a homogeneous, isotropic medium the former 

vanishes. However, the latter is given by the combined con- 

tributions of the macroscopic field, ^ less the self-field, 

E = - of the homogeneously polarized sphere. The 

Lorentz local field is thus: 

^ ^ ^ ^ (II;5) 

independent of the radius of the spherical specimen. 

Equation (II; 5) leads at once to the macroscopic, 

Clausius-Mossotti formula (11:1) but as pointed out by 

Frohlich, [15], (App. 3), (11:1) may also be regarded as a 

molecular formula provided short-range (non-dipolar) forces 

are neglected and the molecular volume is chosen equal to 

the volume available per molecule, viz: 

4TT 

3 
(11:6) 

In this case (11:1) becomes the Clausius-Mossotti formula for 

a single molecule, viz: 

e -1 
s 

e +2 
s 

(11:7) 

Here a is the "dielectric" molecular radius. When (II;7) holds 
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it follows that a^/a^ is proportional to the density which 

may be varied by changing the external pressure. 

Kirkwood [16] was the first to realize that 

Lorentz’s calculation of the local field, while probably 

valid in a solid cubic lattice, is suspect for a gas or 

liquid since it takes no account of the comparatively large 

density fluctuations that occur in fluids. This means in 

a fluid that considering the medium surrounding the sphere 

(in Lorentz*s theory) to be a homogeneous, isotropic con- 

tinuum may be too strong an approximation and an approach 

based on a medium with particulate structure would be more 

satisfactory. 

Kirkwood assumed only dipolar interparticle forces 

need be considered and that the particle polarizability, 

was independent of density. Since his model was based entirely 

on a particle picture there was no need to introduce the in- 

geneous device of the "Lorentz sphere" at the outset. The 

th moment induced into the i^ nonpolar molecule is then: 

-£i = S. (11:8) 

where F. is the local field and T.. = r..-^(I - r.. r. ./r.^) 

is the dipole^dipole interaction tensor. The problem remaining 
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is to find the average value of using standard tech- 

niques of statistical physics. In this connection it may 

be noted, as shown by Kirkwood, that the calculation of 

. introduces in a natural way a small sphere of indefinite 

t h 
radius surrounding the i molecule. This is equivalent to 

the Lorentz sphere introduced in the earlier theory. 

At very low densities, where correlation between 

Pj and is negligible, the results show that the Clausius- 

Mossotti formula is recovered, but as the density increases, 

and correlation becomes more important, rises to a very 

weak maximum usually at higher densities than observed experi- 

mentally. then falls more slowly with increasing density 

than found experimentally. Kirkwood's [16] results for argon 

compared to the experimental results of Michels et al. [5] are 

shown in Fig. 4. 

p(Am) 

FIG. 4. Kirkwood's theory [16] for argon compared to 

experimental results of Michels et al. [5]. 
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The fact that C_. calculated by Kirkwood rises 

more slowly with increasing density than indicated by 

experiment at low densities, and falls less rapidly at 

high density prompted other workers to examine the fluctu- 

ation theory more carefully. Thus Mandel and Mazur [17] 

took steps to remove the shape dependence of the dielectric 

sample in Kirkwood's theory. Earlier, de Boer, Vander Maesen 

and Ten Seldam [18], had introduced the effect of short- 

range repulsive forces between particles by means of the 

Lennard-Jones and the Hertzfeld potentials. As expected 

their results show a more rapid decrease of ys. p at high 

densities, but too slow an increase of with increasing p 

at low densities. 

Jansen and Mazur [19], [20] were the first to treat 

the particulate theory using quantum mechanics. They limited 

themselves to spherical molecules undergoing dipolar inter- 

action only and found for H and He that the initial increase 

of with increasing density was of the same order of magni- 

tude as predicted by Kirkwood's theory. It should be stressed 

that unlike Kirkwood's theory, Jansen and Mazur took account 

of the fact that the polarizability of the particle was density 

dependent, but as in Kirkwood's theory short-range repulsive 

forces were ignored. Later, Jansen and Salem [21] extended 

the above theory to include the first few low-order multipole 
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moments for the rare gases and simple diatomic molcules, 

but finally Jansen [22] concluded that within the range of 

experimental error in the measurements this theory does not 

account for the observed results. 

A somewhat different approach to the problem was 

taken by Michels, de Boer and Bijk [23]; de Groot and 

Ten Seldam [24], [25]; and Ten Seldam and de Groot [26], 

[27]. These authors concerned themselves with the change 

in energies and wave functions of atoms when the electrons 

are localized to a finite region of space surrounding the 

atom. This step essentially confines the electrons to a 

suitably shaped box at whose sides the potential becomes 

infinite and at which the wave function must vanish. Thus 

FIG. 5. Polarizability of helium as a function of pressure: 

Ten Seldam and de Groot (Ref. [27]). 
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Ten Seldam and de Groot [27] considered an He atom confined 

to a sphere of radius r^ and used the change in energies and 

wave functions to find the change in polarizability of the 

confined He atom. As expected, decreases smoothly with 

increasing density without sign of a maximum. The result is 

shown in Fig. 5. 

It may be noted that, in a sense, this model rep- 

resents a return to the Lorentz "continuum" model except 

that dipolar interaction between the caged atomic electrons 

and all others in the medium surrounding the sphere has been 

ignored. However, the repulsive forces, which tend to con- 

fine the electron to the sphere surrounding the nucleus, 

have been taken into account. Of course, density fluctua- 

tions in the dipolar interaction between the molecule and the 

surrounding medium are not considered in the Ten Seldam and 

de Groot model. 

At this point it may be mentioned that in the area 

of a continuum theory for Bottcher [28], some years ago, 

proposed interpreting the Onsager formula for nonpolar materials 

in a certain way to try and explain the observed deviations from 

the Clausius-Mossotti formula. 

It will be recalled for a nonpolar medium that 

Onsager*s formula gives the permittivity from; 
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(e^-1) (2e^ + l) 
s s 

N a 
o o 

(11:9) 
12TT e 

s 

where is the number density of particles of polarizability 

a and 
o 

is the reaction field factor for molecules of radius a. It 

is usual in the Onsager theory to reduce (11:9) to the 

Clausius-Mossotti formula (11:1) by insisting that the par- 

ticle volume equals the volume available to it according to 

(11:6), but Bottcher declined taking this step and instead 

treated u = a^/a^ as a constant independent of density for 

each particular substance. In this way he finds a modified 

function: 
M 

g (11:10) 
2z +1 a 

s 

(II:ll:a) 

where /'< is r function at zero density and 

9 e 
s 

(e^+2) [(2eg+l)-2(e^-l)u] 

(II:ll:b) 
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/ o \ 

For £ = 1 it is readily seen that C., = C., , but for other 

values of the permittivity f will at first increase to a 

maximum and then decrease as (and thus the density) is 

further increased. In this way, with appropriate choices 

for u, Bottcher obtains vs. p curves which fit the experi- 

mental data remarkably well for gases such as CO2. 

However, there is a fundamental difficulty in 

Bottcher's argument that is a constant independent of 

density for from (11:9) and (11:10) we may readily compute 

. 4 7T g 
the quantity X = N a^ to be: 

X [« 7^ 
-1 

(11:12) 

In Onsager's theory X = 1 at all densities, but for Bottcher's 

idea we may always plot X y^. p using experimental results of 

ys. p. For CO2, for example, it may be shown that X 

decreases very slowly and almost linearly with increasing 

density. Extrapolating this result to p = 0 leads to a non- 

vanishing value X = X at zero density (X =1.55 for CO ), 

and hence when N = 0, a^  ^ <». It follows that at zero o 

density must also be infinite, a result in conflict with 

the observations that the polarizability of an isolated atom 

or molecule is a finite quantity. 
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(c) The Present Theory 

It is apparent from the above review that there 

have been two main approaches to a theory of the Clausius- 

Mossotti function, Cj^(p,T) in dense gases. The first of 

these is the "density-fluctuation" theory initiated by 

Kirkwood (loc. cit.) and the second the "continuum" theory 

initiated by de Groot and Ten Seldam (loc. cit.). To date 

there appears to be no theory which unifies both approaches 

simultaneously. However, the continuum theory has the advan- 

tage of predicting results at high densities which are beyond 

the accessible range of calculation of fluctuation theories - 

because of the need to take account of higher and higher 

orders of multipole interactions as the density rises. For 

this reason the present work favours the continuum approach. 

It is clear that a major improvement to the de Groot 

and Ten Seldam theory would be to include the effect of long- 

range dipolar interaction between the caged nonpolar particle 

and the surrounding medium. The effect of this interaction 

would be to attract the electron away from the core and thus 

lower the effective oscillator frequency of the caged electron 

and hence increase the polarizability. This would be the 

predominant effect at low densities. On the other hand, at 

high densities, where each electronic oscillator finds itself 

increasingly restricted by a 6^1ike potential at the surface 
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of the cage as density is raised, the energy would tend to 

increase and result in a reduction of polarizability. Quali- 

tatively, therefore, as density is increased the polarizability 

would at first increase, pass through a maximum and then 

decrease at higher densities in agreement with experimental 

observation. 

For long wavelength, dipole oscillations, where the 

fields are essentially electrostatic, it is not difficult to 

formulate the above idea quantitatively since the general 

technique for finding the potentials associated with an 

extended, eccentric dipole in a spherical cavity were given 

some time ago by Frood and Dekker [29]. For example, in the 

present problem a straightforward calculation (Frood [30]) of 

the reaction field of an extended, electronic dipole in a 

sphere of radius "a" with a fixed, centralized core charge, 

+e leads to the self-energy of the dipole in its own reaction 

field, viz: 

V 
self 

e-1 
2e + l 

ie) 
2n 

(11:13) 

n=0 

where 

(n+2) (2c + l) 

2 Qn+2) e+ (n+1)] 
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and where r < a is the position of the electron. The total 

potential in which the electron moves is then the sum of 

(11:13) and the atomic potential (-e^/r for hydrogen) which 

must then be inserted in the Schrodinger equation and the 

latter solved under the condition ip (r = a) = 0. 

Leaving aside for the moment the formidable mathe- 

matical difficulties consequent upon this step, it will be 

noticed that (11:13) depends explicitly on the quantity, e 

which we desire to calculate. Thus, as used in the calcu- 

lation of, say, a polarizability, (11:13) requires that the 

permittivity be calculated self-consistently with the resultl 

A further difficulty inherent in (11:13) is that it diverges 

at r = a. For these reasons we do not pursue here a calcu- 

lation for 3-dimensional atoms, but instead go directly to 

the more tractable case of a 1-dimensional model. As will 

be seen in Sec. Ill the self-energy of the 1-dimensional 

dipole in its own local field is then not explictly dependent 

on e except through the polarization, which is the quantity 

we wish to calculate. In addition, there is no divergence 

in this 1-dimensional self-energy. 

In Sec. Ill:a we review the well known calculation 

of the Clausius-Mossotti formula from the Onsager point of 

view, and in Sec. lll:b: (i) we introduce the 1-dimensional 
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model and the corresponding 1-dimensional Clausius-Mossotti 

formula for an unrestricted oscillator experiencing dipolar 

interaction with its neighbors. In Sec. Ill:(b):(ii) we 

then restrict this oscillator by assuming short-range forces 

introduce a 6-function potential which confines the oscillator 

to a finite slab of thickness 2x^. We treat this problem 

quantum mechanically and require the wave function to vanish 

at X = Here the computer is a natural tool since the 

range of the independent variable is finite for a restricted 

oscillator, and it is easy to discretize the interval 

-X < X < X . o — — o 

In Sec. IV we compute the energies and wave func- 

tions of the restricted S.H.O. without dipolar interaction. 

The wave functions and energies so calculated are then used 

in perturbation theory to give the ground state polarizability 

as a function of density. As expected, the polarizability 

decreases smoothly as density increases in this model. In 

Sec. V we consider the same problem as in Sec. IV, but with 

dipolar interaction present and again compute the ground state 

polarizability. As expected, for this more realistic model 

there is a definite maximum in a vs. P which occurs in the 

density range 200 '^ 300 am for Ar, Kr, CO2 and N2 » 

In Sec. VI we calculate the polarizabilities of the 

excited states of a restricted 1-dimensional S.H.O. experiencing 
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dipolar interaction with a view to investigating the tem- 

perature dependence of the function. As may be expected, 

our model shows this effect to be negligible in view of the 

rather large energy gaps between the different states. However, 

here a surprising result occurs, namely, that at sufficiently 

high densities the polarizability of any excited state can 

become negative. This suggests that these states are those 

of free electrons rather than bound oscillators and provides, 

qualitatively, a suggestion for a completely different model 

in which a particle oscillator should, at the outset, be 

characterized as having a finite, density-dependent activation 

energy. Furthermore its interaction with other oscillators in 

the surrounded medium should occur through screened dipolar 

forces as suggested some time ago by Frood [31] for a closely 

related model. Discussion of this idea is considered in 

Sec. VIII, but in Sec. VII we compare our results for the 

dielectric constants of Ar, Kr, CO2 and N2 with experimental 

values and as will be seen there is fair agreement for com- 

parison of experimental and theoretical e v^. p , but only 

qualitative agreement for the same comparison of functions. 

The hard copy of the computer programmes which form 

Appendices A, B, C and D are printed as a separate document 

accompanying this thesis. 
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III. THE MODEL 

(a) 3-Dimensional, Unrestricted Simple Harmonic Oscillator 

with Dipolar Interaction. 

Consider a point dipole m at the centre of a sphere 

of radius a and dielectric constant £This sphere is sur- 

rounded by a medium of dielectric constant e. The whole is 

in an electric field E which is uniform at infinity and par- 

allel to the dipole in. The potential outside the sphere 

satisfies Laplace's equation = 0? since there are no 

free charges except those at great distance required to main- 

tain the macroscopic electric field E. The potential inside 

the sphere consists of the potential of the source dipole m 

and the potential which satisfies Laplace's equation 

. = 0. 
1 

Let us set up a spherical coordinate system so that 

the Z-axis is parallel to E (and m) with origin at the centre 
wo 

of the sphere (Fig. 6). 

FIG. 6. Induced point dipole in spherical cavity. 



-22- 

A general solution of Laplace's equation in 

spherical coordinates r, 0 and cj> is: 

oo oo 

V 

n=0 n=0 

B 
- n , mn Art   
mn ^n+1 

_m, ^ . imcb 
P (cos0)e 
n 

(III:1) 

Since the system is spherically symmetrical, the 

potential both inside and outside are independent of the 

azimuthal angle. Thus the potential outside the sphere 

is equal to: 

V^(r,0) 

OO 

n^Q 

+ 

\ 
B 
n 

n+1 
P (cos0) 
n 

(III:2) 

Because the potential must not have a singularity at the 

centre of the sphere (r=0), we require: 

. = ) C r^P (cos0) (III:3) 

n=0 

and hence the potential inside is: 

V. (r,0) = $ . + V.. T 
1 1 dipole 

y Cr-P 
/ n n 

m 
(cos0) +  n- 

e . r^ 

n=0 

COS0 (III:4) 
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The boundary conditions are: 

At Z —“ the potential outside must reduce to 

V (r,0) = -EZ = -Ercose 
o 

and 

V^(a,0) = V^(a,0) 

since the potential is continuous across the boundary. Also: 

9V 

3r 
= £ 

\ J 

3V 
o 

9r 

r=a r=a 

because the normal component of D must be continuous at the 

boundary. 

av 
Since the field at Z is ^ = -E then all the 3r 

coefficients A^ are zero except Aj, which has the value 

Ai = -E, and the potential outside the sphere is therefore 

V^(r,0) = -ErcosO + Z 
n=0 

B 
n 

n+l 

Applying the second and third boundary conditions to (III:4) 

and (III:8), and recalling the orthogonality properties of 
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Legendre's polynomials we easily obtain: 

r I m c a +  7- 
n e . n, 1 

■Ea6 T + 
n, 1 

B 
n 

n+1 
a 

and: 

ne .C a 
1 n 

n-1 
-eE6 

n, 1 

e (n+l)B 
 n 
n+2 

a 

For n 7^ 1, these two equations become: 

C 
a 

B 
n 

n+1 

and 

ne 
i 
C 
n 

n-1 
a 

£(n+1)B 
 ^n 

n+2 
a 

From these last two equations it follows that B^ = 

= 0 for all values of n except n = 1. When n = 

Cl + 
m 

e . a- 
1 

-E 

and: 

£.ei 

(III ;9) 

(III;10) 

(III:11) 

(111:12) 

0 and 

1, we have: 

(111:13) 

-eE (111:14) 
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and solving (111:13) and (111:14) for Bi and , there 

results: 

= 

(e.-e)a^ » 
1 E + 

(2r + e.) (2e+e.) 
1 

(111:15) 

Cl = - (2e+e.) 
1 

2(e.-e) 
T? + 1 m 

(2e + e^) a^ 
(111:16) 

(i) Cavity Field 

Suppose in = 0^ then we have a dielectric imbedded 

in a dielectric e . For this case: 
o 

(e.-e ) a^ 
Bi = -p^ ^ E 

^ (2S+£.) 

1 

(111:17) 

Cl = j-- E ^ 2e+£. 
1 

(111:18) 

The field inside the sphere is thus homogeneous and in the same 

direction as E, and is given by: 

8V. . 
1 3e 

8Z 2e+e 
E (111:19) 

If in particular - 1, we have what is referred to as the 

"cavity field" 

E = -^ 
c 

E 
2e + l 

(III:20) 
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(ii) Reaction Field 

Consider now = 0 so that we have a point dipole 

at the centre of a sphere of dielectric constant embedded 

in the medium of dielectric constant e. For this case the 

field inside the sphere is given by; 

av.  1 
az 

2(e-e^) 

(2e+e^) 

m m 
F (l“3cos^ e) (111:21) 

The second term of (111:21) is the Z-field of the point dipole 

in. The first term of (111:21) is: 

2(e-e^) 

(2e+e^) 
(III:22) 

This is clearly the field inside the sphere due to the polar- 

ized charges on both the inside and outside surfaces of the 

sphere. These polarized charges arise, of course, from the 

"source" dipole m. For = 1^ we have what is called the 

"reaction field": 

R 2 (e-1) in 
2e + l a ^ 

(111:23) 

This field has the direction of m and is due to the polarized 

charges on the outside surface of the sphere which are con- 

sidered fixed before the dipole and the dielectric sphere are 
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removed. Note also for a central, point dipole that the 

reaction field is homogeneous. However, as discussed in 

Sec. III:(c), for an extended dipole or for a point dipole 

which is not located at the centre of the cavity, the re- 

action field is not homogeneous. 

(iii) Local Field (Onsager Theory) 

Suppose now we fix the state of polarization in 

the medium outside the sphere and remove the sphere and its 

polarization from the dielectric, what is the total field 

inside the cavity? Clearly the field is given by Onsager's 

expression F = (Cavity field) + (Reaction field of point 

dipole), that is: 

? = S +5 
c 

3£ 2 (e-1) in 
3£+1 ^ 2e+l a3 

(111:24) 

But for a homogeneously polarized sphere: 

(111:25) 

where: 

(111:26) 

is the polarization of the medium. Substituting (111:26) into 
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(111:25) we get: 

-y 

m e-1 
3 

(III:27) 

and employing (111:27) in (111:24) there results: 

F = E + 
4IT 

"T 
? = e + 2 (III:28) 

Eq. (111:28) is the well known Lorentz local field given 

earlier in (11:5). This field is independent of "a" the 

radius of the sphere. 

The dipole moment can also be written as: 

in = a F (111:29) 
o 

where is the polarizability of the isolated molecule and 

J is the local field. 

Since the total moment per unit volume is: 

P N m = 
ow- N a 

o 
(111:30) 

we find using (111:30) in (111:26) that: 

£-1 
e + 2 

4TTN a 
o o 

(III:31) 
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and (111:31) is just the Clausius-Mossotti formula for an 

assembly of nonpolar, spherical molecules as shown in Sec. 1. 

(b) l~Dimensional, Unrestricted and Restricted Simple 

Harmonic Oscillators with Dipolar Interaction. 

(i) Unrestricted Oscillator 

Consider a dipole with the positive charge +q at 

the origin and the negative charge -q free to oscillate 

along the x-axis. The dipole is confined to a plane slab 

of thickness 2x of dielectric constant unity which is sand- o 

wiched between two, plane semi-infinite media of permittivity 

e. These represent the "surrounding medium." The whole is 

in an electric field, E, which is uniform at infinity and 

parallel to the dipole (Fig. 7). 

Induced line dipolar in slab cavity. FIG. 7. 
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To obtain the local field in this case by the 

Onsager method used in Sec. Ill:(a) is very difficult and 

tedious. The reaction field can be obtained using the 

method of images and results in a non-summable series of 

terms. The cavity field is equally difficult to compute, 

but bearing in mind that it is only the local field which is 

of interest / we may proceed in a straightforward manner 

as follows: 

Because of the continuity of the normal displace- 

ment at the boundary, the local field, ^ inside the cavity 

must be: 

F = eE = E + 4TTP (111:32) 

where 2 is the macroscopic field and ? is the moment per unit 

volume which is also equal to: 

P = -qN X (111:33) 

Here is the number density of molecules in the medium and 

X is the displacement of the charge -q. It should be noted 

that the local field (111:32) is homogeneous and independent 

of the length of the dipole. Making use of (111:32) and 

(111:33), the energy required to polarize the dipole is 

clearly: 
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X 

W = q Fdx 

-qEx + 4TTN^q‘ 
( 2 

(111:34) 

-qEx + i m o)^x^ 
^ 2 o p 

(111:35) 

where; 

0) = 
p 

C o \ 

4TTN 

m. 
(111:36) 

o 

is the plasma frequency of the bound electrons in the medium. 

Thus, taking account of the back-reaction of the medium, the 

total potential energy of the system is: 

V = m o)^x^ - m o)^x^ + qEx 
2 o o 2 o p ^ 

(111:37) 

where to^ is the frequency of the isolated oscillator. The 

Lagrangian of the system is therefore: 

L = T-V = m x2 - ~ m 03^x2 + i m M^X^ - qEx 
2o 2 oo 2op 

I - - m - qEx 
2 o eff ^ 

(111:38) 

where o) 
eff 

((jo^-a)|^) ^ is the density-dependent, effective 
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frequency of the oscillator in interaction with its surround- 

ings. The first two terms of (111:38) represent the Lagrangian 

of a dipolar simple harmonic oscillator, and the last term in 

(111:38) is the negative of the interaction energy between the 

macroscopic field, E and this dipole of moment m = -qx. 

From classical mechanics the equation of motion of 

this oscillator is found from: 

9 
91 

9L 
9x 

0 (111:39) 

leading to: 

X + X   i 
m 

E 

For an oscilllating field of the form 

E (t) = E e 
o 

(III:40) 

(111:41) 

an immediate particular solution of (111:40) is: 

X (t) 
E e 
o 

io31 

~~2 T (111:42) 

Next using (111:42) in (111:33) the polarization becomes: 
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P(t) 
q^n 
  o 
in o 

E 

(jj 

i(jj t 
e 
 ^ 
ef f 

leading at once to; 

£-1 
4 ir 

E 

O. T i 0) t q^N E e 
^ o o 

o e 11 

(111:43) 

(111:44) 

and using (111:41) in (111:44) the frequency dependent dielec- 

tric constant is thus: 

e (w) 1 + 
4--P 

(111:45) 

Hence; 

£ ( 0) ) -1 

e (to) 

0). 

to 2 - 0)^ o 
(111:46) 

For static fields (to=0) , (111:46) becomes: 

0) 
P _ 

4TTN 

3e 3.to ^ 3 o 
(111:47) 

where a = —is the polarizability of the isolated simple 
o mo) ^ o 

harmonic oscillator. 
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Eq. (111:47) is just the Clausius-Mossotti formula 

for a 1-dimensional unrestricted simple harmonic oscillator 

interacting with dipolar forces with its neighbours. The 

factor 1/3 is introduced on both sides of (111:47) so that 

the right hand side corresponds with that for the 3-dimensional 

Clausius-Mossotti formula given by (1:1) and (111:31). 

(ii) Restricted Oscillator 

Consider the system which is described in (III:b;i), 

but now the dipole is restricted by infinite potential barriers 

at X = in other words, the dipole oscillates only in the 

region between -x^ and x^. This potential barrier represents 

the effect of the repulsive forces between the charge -q and 

the "whole surrounding medium." The latter is considered to 

be a homogeneous, isotropic medium with dielectric constant e 

(Fig. 7). Since the normal component of D must be continuous 

at the boundary, the local field,inside the cavity must 

still be given by (111:32), viz: 

? = eE = S + 47T? (Ill: 48) 

where ^ is the macroscopic field and ^ is the moment per unit 

volume. ^ is also homogeneous and independent of the length 

of the dipole, provided this length is less than x^. Compar- 

ing (111:32) with (111:48), we concluded that the local field. 
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for both unrestricted and restricted oscillators are the 

same. Thus, the energy required to polarize the dipole is 

given by (111:35). The classical Hamiltonian of the system 

is therefore: 

2. T 
H = 4 m 0)2 x2+ qEx (111:49) 

2m 2 o eff ^ 
o 

where p = m x is the momentum of the charge -q and oj2__ = 

(o)^-o)|^) is the density-dependent, effective frequency of the 

oscillator in interaction with its surroundings. The first 

two terms of (111:49) represent the Hamiltonian of a simple 

harmonic (dipole) oscillator, and the last term is the inter- 

action energy between the dipole of moment m = -qx and the 

macroscopic field, E. Since the charge -q is restricted by 

infinite potential barriers, its wave function must vanish 

for |x|^x^. When we consider the quantum nature of this 

system, the Hamiltonian of interest is: 

H = 
2m 

d2 
dx^ 

+ m 0)2 
o'^'eff 

x2 + qEx (111:50) 

where m^ is the mass of the charge -q and "tr is Planck's 

constant. The Schrodinger equation of the system is thus: 

~h:2 

2m 
o 

d2f 
dx2 

1 
2 
m 0)2 x2'i' + qExf 
o eff 

= W'l' (111:51) 
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and the wave function (x) is required to vanish at 

X = ±x , i . e. 
o 

^(-X ) = f(x ) = 0 
o o 

(111:52) 

It is usual to solve (111:51) by an exact method, that is, by 

introducing a new coordinate 

1 , qE X = X + ^ 
m 0) r;j: 
o eff 

(111:53) 

then the wave equation becomes 

d^'F (x ) , 1 ? I / I \  \ ' + - m_co^ -_x' Y (x') 
2m j I 2 o eff 

o dx 
W + 

2q^E 2TT2 ) 

m_o) o^eff 
'F (x' ) 

(111:54) 

but here the boundary conditions for the wave functions are: 

. qE -X + ■■^ 
o m (A) ^ o'^eff 

qE 
X + 
o m 00 ^ jr £ 

o eff 
= 0 (111:55) 

Since the wave functions depend upon a new coordinate, x', 

which is itself dependent on the macroscopic field, E, the 

2cr ^ E ^ 
new energy W' = W + - — n  and the wave function 'F (x* ) are 

o eff 
dependent on E in a more complicated way than for the unre- 

stricted oscillator. We could in principle solve the 



Schrodinger equation numerically for a range of fields, E, 

and extrapolate our results to zero field, but this is 

clearly a complicated procedure and we elect instead to 

use a perturbation method described below: 

Let us assume that the macroscopic field is so 

small that qEx can be treated as a perturbation, then the 

Schrodinger equation can be written: 

(H + H' ) 'I' = W'F 
o 

(111:56) 

where 

„ _ tl2 d2 , 1 „ H = - ^ + — m 03 2 ^2 
2m dx^ 2 o eff 

o 
(111:57) 

is the unperturbed Hamiltonian and 

= qEx (111:58) 

is the perturbation potential energy. 

The solution of the Schrodinger equation in the 

absence of both dipolar interaction (o)^ = 0) and a macroscopic 

field, E, but with a wave function which vanishes at |x| = x 

will be discussed in Sec. IV. Later, in Sec. V, the solution 

of the Schrodinger equation in the absence of a macroscopic 

field, E, but with dipolar interaction present and again with 

a wave function which vanishes at 1x1 = x will be discussed. 
' ' o 
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IV. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZ- 

ABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR 

WITHOUT DIPOLAR INTERACTION 

Consider a simple harmonic oscillator which is 

restricted at x = ±x^ by infinite potential barriers. This 

implies that the wave functions vanish for |x| ^ The 

Schrodinger equation of this system is then: 

2m 
o 

d^'F . 

dx^ 
1 
2 
m a)^X^'i' 
o o 

= m (IV:1) 

where m^ is the mass of the oscillating particle and is 

the angular frequency of the isolated oscillator. The wave 

function 'F (x) in (IV:1) is subjected to boundary conditions: 

'i' (~x^) = W (x^) = 0 (IV:2) 

To solve (IV:1), subject to condition (IV:2), we first trans- 

• i" 
form the equation into a dimensionless form. Thus by letting: 

Y 

2m 03 ‘ 
o o 
H X (IV:3) 

^Note that the inverse scale length given by (IV:3) is /2 times 

larger than usually defined in text books dealing with the 

S.H.O. 
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and 

w = W/Hoi) 
o 

(IV:4) 

(IV:1) becomes 

dy^ + V(y)Y w'F (IV:5) 

where: 

V(y) (IV:6) 

To solve (IV:5) numerically, the difference-quotient approxi- 

d^ 
mation is to be used for approximating or 'F"(y). To 

accomplish this, we select an integer N > 0 and divide the 

interval [-Y^,Y^] into N+1 equal subintervals whose end points 

are the meshpoints. Defining 

Y 
o 

X 
o 

(IV:7) 

we let: 

y. = -Y + ih, for i=0 to N+1 (IV:8) 
1 o 

where 

o o 
2Y 

o h 
N+1 N+1 

(IV: 9) 
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At the interior meshpoints, , 1 = the differ- 

ential equation to be approximated is 

-H"'(y^)+V(y^)^ (y^) =w'F(y^) (IV:10) 

Now, expanding the wave function 'I'(y) up to cubic terms in a 

Taylor polynomial about the point y^ evaluated at 

y. -, we have: 
^ 1-1 

h2 
<Yi+l)='^ (yj^+h)='i' (y^)+h'F (Y^)+ ^ H'" (Yi)+(Yi)+ §4'f (Y^) 

(IV:11) 

*1“ ^ 
for some point y^ < 

T (Y^_]^)='1’ (y^-h)='l' (Yj^)-hf (Y^)+ ^1'" (Y^)~ (Y^)+ (Y^) 

(IV:12) 

for some point Yj^_-L ^ ^ Y^ 

If these two equations are added together, there results 

>1^" (Y^) 
MYi_i)-2V?(Yi)^'r(Yi+l) 

24 FT (£;t)+'i< t**) (cT)J 

(IV:13) 
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Making use of Intermediate Value Theorem, the equation 

(IV:13) becomes 

h2 
_ hi »(■») 

12 (Ci> (IV:14) 

for some point ^ ^i ^ ^i+1* 

Equation (IV:14) is called the Central Difference Formula 

for 'i'" (Yj^) • Assuming that h is a small number such that the 

last term in Eq. (IV:14) can be neglected, and bearing in 

mind that the truncation error is of O(h^), we thus have: 

'i' (Yi) 
'i'(Yi_l)-2'i^(Yi)+'i' (Yi+i) 

h2 
(IV:15) 

Replacing H'" (y^) in (IV:10) by (IV:15) the differential equation 

is approximated by the difference equation: 

+ V(y^)'F(y^) = w¥(y^) (IV:16) 
'I' (y^_^)-2H' (y^)+'F (Y^+i) 

h2 

for each i = 1,2,3,...,N, and subject to boundary conditions: 

'F (Y ) = 'I' (Y ) = 0 or 'i' (y ) = '1' (y ^, ) = 0 
o o o ^n+1 z' 

(IV:17) 
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Equation (IV:16) can be rewritten as 

(YI )} 'i' (YQ) (Y2 ) 

(Y1 ) (Y2 )| (Y2 ) (Y3 ) 

(IV;18) 

Substituting (IV;17) into the first and the last equations of 

(IV;18) we get; 

{j^V(yi)}'P(yi)-j^¥(y2) =w>r(yi) 

-j^'l'(yi) + {j^V(y2)l'i'(y2)-j^’f (ys) = w'i'Cyz) 

+ = wf(yj^) 

(IV;19) 

= w'l' (YI ) 

= w¥(Y2) 

Equation (IV;18) can be expressed in the tridiagonal N x N^- 

matrix form shown in Eq. (IV;20); 
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2 +V(yi) 

1 
- 

1 

(Y2 ) - 

O 

(IV:20) 

or Wy = where the matrix A, shown in Eq. (IV:20) is also a 

a symmetrical. From mathematics, we know that it is possible 

to diagonalize the above matrix without changing its eigen- 

values. The matrix which transforms A to diagonal form is 

called a similarity transformation. Here the process of diag- 

onalization is done by computer. The computer program for this 

process is given in Appendix A. The well known QR algorithm 

for calculating the eigenvalues of the tridiagonal and symmetry 

matrix is used in this computation (see Burden et al. [32]). 

The diagonal matrix obtained above represents the eigenvalues 

(eigen-energies) of the matrix A, since A'l^ = w'F or 
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Ai 

O 

0 
1 
I 
I 
I 
I 
I 
I 
I 
o 

(IV:21) 

It should be noted that the size of the matrix is determined 

by the integer N, and N is selected so that the distance 

h = —^ between YI and very small. Of course, this 

distance can be made as small as we wish. In other words, N 

can be chosen as large as we want. When N is large, the size 

of the matrix is also large, meaning more computation time is 

required to compute the eigenvalues of the matrix. In order 

to speed up the computation time, one has to choose N so that 

the distance h = is reasonably small and the truncation 

error is also small. Of course, the larger the interval 

[-Y^,Y^], the bigger the value of N to be chosen. 

Now, we use the eigenvalue which is obtained 

by the QR algorithm to compute its corresponding eigenvector 
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(wave function), of course, the wave function which is 

obtained above is not entirely accurate since its corres- 

ponding eigenvalue carries a rounding error which is due 

to iteration in the QR algorithm. To find the nearly exact 

eigenvalue and eigen-vector, we write a computer program 

in which we can calculate this nearly exact eigen-energy 

and wave function simultaneously. This program is given 

in Appendix B, 

The computed energies and wave functions are 

shown in Figs. 8 to 14 for in the range 2-^5. In argon 

this corresponds to the density range 802 am (Y^=2) to 

51.3 am (Y^=5), with a similar density range for most other 

gases. Note here that energies are quoted in units of 

TTo) and that the energy and wave functions of the isolated 
o 

oscillator are shown as dashed lines. 

As mentioned in Sec. III:b:ii, we are not able 

to solve the Schrodinger equation given by (111:51) in an 

exact manner. Instead we introduce perturbation theory, 

that is, we assume the macroscopic field, E, so small that 

qEx can be treated as a perturbation. Now, let us consider 

that the unperturbed system is a restricted simple harmonic 

oscillator without dipolar interaction with a wave equation 

given by (IV:1) and subject to boundary conditions. The 

* Appendix D gives a programme for checking the accuracy of the 

wave function and energy. The former is seen to be correct to 

within 1 part in 10^. 
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y o 
= 2 3 

: Energy levels of restricted S.H.O. for = FIG. 8a 2,3 
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FIG. 8b: Energy levels of restricted S.H.O. for 

Y- =3.5 and 4. 
o 
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FIG. 8c: Energy levels of restricted S.H.O. for 

Y = 
o 

4.5 and 5. 
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2. 
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FIG. 9b; Wave functions of restricted S.H.O. for = 2. 
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Wave functions of restricted S.H.O. for - FIG- 10a: 3. 
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3. 
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3.5. 
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4. 
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FIG. 12b: Wave functions of restricted S.H.O. for = 4. 
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FIG. 13a: V7ave functions of restricted S.H.O. for = 4.5. 
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4.5. 
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FIG. 14b: Wave function of restricted S.H.O. for - 5. 

rCD 
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Hamiltonian of this system will be: 

H = 
d 2 

2m dx^ 
o 

1 
2 
m 0) ^ 
o o 

X‘ qEx = H^qEx (IV:22) 

According to the perturbation theory, the change in energy 

is given by:: 

W = 
|x|'l > 

-irr^ 
o n 

n^O 

q^E^ (IV:23) 

where W and ¥ (x) are the energy and the wave function of the 

unperturbed state of the restricted oscillator without dipolar 

interaction. The matrix element <'i' Ixl'l > is equal to zero 
o o 

since has even or odd parity. Therefore (IV: 2 3) can be 

simplified. It becomes: 

W W 
o 

(IV:23) 

The static polarizability of the restricted oscillator without 

dipolar interaction is given by: 

d.E^ = 2q' I <4' (x) 
n 

X ««o(x) 

W -W 
n o 

(IV:25) 

The wave functions, which are calculated by computer, are func- 

tions of y, where y is defined by (IV:3) The normalization of 
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wave function T(y) is done by computer (see Appendix B) 

and given by; 

Y 
' o 

¥ (y)'l' (y)dy = 1 (IV:26) 

-Y 
O 

However, the normalization of wave function 'F (x) is 

f(x)W(x)dx = 1 (IV:27) 

Using (IV:3), (IV:27) becomes 

60 

1 

o 

Y 
' o 

¥ (x) ¥ (x) dy 

. 

-Y 
o 

1 (IV:28) 

Comparing (IV:26) with (IV:28) yields: 

'F (x) 

2m (0 
o o 

tr 

h 

(y) (IV:29) 

Using (IV:29), (IV:3) and (IV:4) in (IV:25) the polarizability 

of a restricted oscillator without dipolar interaction then 

becomes: 
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a 

00 

m <13 ' 
o o I I |y| 'i^Q(y)> I ^ 

W “W 
n o 

(IV:30) 

Defining = q^/m^co^^ (IV: 30) gives the relative polariz- 

ability : 

a 
a 
o Z w -w 

n o 
(IV:31) 

Because the excited state wave functions have more nodes, the 

value of the matrix dipole element very small 

for n>l. Thus, the relative polarizability can be approximated 

and is given here for the first 8 terms only, viz: 

8 

W -W 
n o 

n=l 

(IV:32) 

We compute (IV: 32). using the energies and wave functions 

computed above. The program for this calculation is 

given in Appendix C. The relative polarizability of a res- 

tricted simple harmonic oscillator without dipolar interaction 

vs. density is shown in Fig. 15. Here the density is calculated 

assuming N - (2x )“^. 
o o 
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DENSITY, Amagot 

HZ 2 24 3J6 448 Si>0 

FIG. 15: Ground state polararization of restricted S.H.O. 

as a function of density. 
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V. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZ- 

ABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR 

WITH DIPOLAR INTERACTION 

The Hamiltonian of the restricted simple harmonic 

oscillator in the absence of macroscopic field, E, but with 

dipolar interaction present is given by: 

H = 2m o 

d^ 
d^ 

1 m 
2 o eff 

and the Schrodinger equation of this system is thus: 

m = W'i' 

or 

^ m 0)2 = m 
dni dx^ 2 o eff o 

(V:l) 

or 

1T2 d2y , 1 2^2 
2m dx 

o 
n- + -^r m o)^X 
^ 2 o o 

O) 2^1 

- P 
0) 

m 

o j 
(V:2) 

Subjected to boundary condition: 

'F i-x) = 'i' (x^) = 0 o o 
(V:3) 

Since we have basically the same problem as in Sec. IV, but 

with a different effective frequency in the potential, we 
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use the same method of solution subject to boundary conditions 

(V:3). Now, let us introduce the dimensionless y and w given 

by (IV:3) and (IV:4), viz: 

and 

y 
0) —I 

o 
X 

w = W/lTo) 
o 

(V:4) 

(V:5) 

(V:2) becomes 

111 
dy^ + V (y) y = (V:6) 

where now: 

V(y) (V:7) 

and the wave function ^(y) is still subject to the boundary 

conditions: 

'i' (-Y ) = y (Y ) = 0 o o (V:8) 

where 

Y 
o 4 2m 0)^ 

o o 
TT 

X 
o 

(V:9) 
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<3. ^ '1^ 
Now, let us discretize (V:6) and replace ^-2 (IV:14) 

and also bearing in mind that the truncation error is of 

0(h2), We thus have: 

+ V (y . )'F . = wf . (V:10) 
1 1 

where: 

2Y 
h =  o 
^ N+1 (V:ll) 

and N is the number of interior points. Also: 

+ i X h for i=l,2,3,..-N. (V:12) 

1-1 1 1+1 

h^ 

By imposing boundary conditions (V:8), (V:10) is written in 

the compact form shown in Eq, (Vs 13) below: 

2 
h^ +V(yi) - ^ 

~ 1^^ (YI) ~ 

(V:13) 
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To diagonalize the above matrix using the well known QR 

algorithm, one has to know the value of V(y^),.for i=l,2,3.. 

..,N. According to (V:7), V(y^) depends on and From 

(111:36) we have: 

2 

P 

iirq^N 
o (111:36) 

Now assume that the number density, is equal to: 

N 
o 

(V:14) 

where the charge q is equal to e and the mass m^ is equal to 

electron rest mass m . Then (111:36) becomes 

CJO 
2 

P 

47re^  

Using (V:9) the quantity is then given by: 

Tre^ 
y~T 

o 

(V:15) 

(V:16) 

By assigning values to and using values of 03^ which are 

obtained by extrapolating the experimental Clausius-Mossotti 

c~l W AIT AIT e^ 
functions —Aa = -=- A  ^ to zero density, one 

e + 2 n3o3maj^ 
^ o o 



can evaluate V(y^) for i=l,2,...,N. Using this procedure 

we find the frequencies of the electron in the isolated 

atoms to be for Argon = 1.243x10^^ sec“^; for Helium 

= 3.5115x10^^ sec”^; for Krypton o)^ = 1.009x10^^ sec""^ , 

while for COo w = 0.9245x10^® sec”^. o 

Since we now know the value of V(y^) the diagonal- 

ization of (V:13) can be performed. This process is, of 

course, done by computer. The program for assigning a value 

to and and calculating the quantity V(y^), and also 

diagonalizing the matrix which is given by (V:13) is given 

in Appendix A. As mentioned in Sec. IV, the eigen-energies 

computed above are not entirely accurate. This may be caused 

by the iteration process used in the calculating of the 

eigenvalues. To find the nearly exact eigenvalues and eigen- 

vectors, we write a program which can compute the nearly exact 

eigenvalues and eigenvectors simulaneously. This program is 

listed in Appendix B, 

The computed eigen-energies and wave functions of 

Ar gas are shown in Figs. 16 to 20. Note that the energies 

and wave functions of the isolated oscillator are shown as 

dashed lines in all figures. It should also be noted that 

we may not use the above method of calculation at very high 

densities, such that - o)^ , for then the particle is essen- 
p o 

tially free but localized to a thin slab. 
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FIG. 16a: Energy levels in the unit of of restricted 

oscillator with dipolar interaction for = 3 

and 3,5 for argon. 
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FIG. 16b: Energy levels of restricted oscillator with 

dipolar interaction for = 4 and 4.5 for 

argon. 
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FIG. 16c; Energy levels in the unit of tro)^ of restricted 

oscillator with dipolar interaction for Y = 

and for argon. 
5 



FIG. 

n=l 

17a: Ground state and first excited state of restricted 
oscillator with dipolar interaction for = 3 and 

for argon. 
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FIG. 

s n=2 
\ 

oscillator with dipolar interaction for = 

and for argon. 

3 
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0.8” 

FIG. 18a: Ground state and first excited state wave function 

of restricted oscillator with dipolar interaction 

for Y =3.5 for argon, o 
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FIG. 18b; Second and third excited state of restricted 

oscillator with dipolar interaction for = 

for argon:. 

3.5 
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FIG. 19a: Ground state and first excited state wave functions 

of restricted oscillator with dipolar interaction 

for = 4 for argon. 
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Second and third excited state wave functions of 

restricted oscillator with dipolar interaction for 

= 4 for argon. 

FIG. 19b: 
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FIG. 19c: Ground state and first excited state wave functions 

of restricted oscillator with dipolar interaction 

for Y =4.5 for argon, o 
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FIG. 20a: Second and third excited state wave functions of 

restricted oscillator with dipolar interaction 

for Y =4.5 for argon, o 
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FIG. 20b: Ground state and first excited state wave functions 

of restricted oscillator with dipolar interaction 

for Y = 5 for argon, 
o 
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FIG. 20c: Second and third excited state wave function of 

restricted oscillator with dipolar interaction 

for = 5 for argon. 
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We mentioned in Sec. IV that it is difficult to 

solve exactly the Schrodinger equation given by (111:53). 

However, we suggested earlier that it might be easier to 

solve (111:53) by means of perturbation theory assuming that 

the macroscopic field E is so small that qEx can be treated 

as a perturbation. According to perturbation theory, the 

energy of the system is given by: 

w W + qE< 'F X ¥ > 
o o ‘ ‘ o 

+ 
I <'1' I x| > I ^q^E^ I n' ‘ o ' ^ 

W^-W o n 
(V:16) 

where, because of parity, the first order change on the right 

of (IV:16) vanishes. Thus the ground state polarizability of 

the restricted oscillator with dipolar interaction is equal to 

<¥ (x) IxU (x) > I 2 
n o    
W -W (V:17) 
n o 

n=0 

where (x) and W are the wave function and the energy of the 
n n 

restricted oscillator with dipolar interaction. Both computed 

energies and wave functions are dimensionless quantities, and 

the relationships between dimensional and dimensionless quan- 

tities are given by (IV:3) and (IV:29), respectively. Using 

these in (V:17), the polarizability of the system becomes 

a m 0) ^ / vr -w 
e o L I n o 

(V:18) 

n=l 
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The relative polarizability of the restricted simple harmonic 

oscillator with dipolar interaction is thus: 

00 

n=l 

I <'f^(y) |y| > | ^ 
W -W 
n o 

(V:19) 

where = e^/m^w^ is the polarizability of the isolated 

molecule. Using the energies and wave functions calculated 

above, we compute the relative ground state polarizabilities 

•k 
of A, Kr, N2 and CO2 and the results are shown in Fig. 21. 

It is to be noted that in Fig. 21 shows 

maxima for the restricted S.H.O. with dipolar interaction. 

These maxima occur in the range of a few hundred amagats in 

qualitative agreement with experiment. Here, of course, the 

one-dimensional function is proportional to and given 

by: 

O 4 7T . 
where C., = Aa is the C,, function at zero density. 

However, our results for rise more rapidly with 

increasing density at low densities and fall off more rapidly 

with increasing density at high densities than do the experi- 

mental values. Possible reasons for this will be discussed 

in Secs. VII and VIII. 

*03^ for N2 is found from the function given by Ely and 

Staty [33]. 
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DENSITY, Amagat 

22^ 44 8 872 

DENSITY, mol/I 

FIG. 21. The ground state polarizability of restricted 

oscillator with dipolar interaction as a function 

of density for various gases. 



VI. POLARIZABILITIES OF EXCITED STATES AND TEMPERATURE 

DEPENDENCE OF THE C^^ FUNCTION. 
 M  

In Sections IV and V we derived the ground state 

polarizability of the restricted, simple harmonic oscillator 

both with and without dipolar interaction. At T = O^K this 

information is all we require to find the corresponding C^ 

function, but for T > some oscillators will be in excited 

levels and to examine the temperature dependence of the per- 

mittivity we should take account of their contribution to 

the total polarization. Thus in principle both e and C^ will 

exhibit temperature as well as density dependence. To discuss 

the former we first extend the computer calculation to find 

the polarizabilities of the excited states of the restricted 

simple harmonic oscillator experiencing dipolar interaction 

with its neighbours. 

If a = e^/m o) ^ is the polarizability of the isolated 
o o o 

oscillator, the relative polarizability, aof the n^^ level 

is: 

a 

mT^n 

w -w 
m n 

(VI:1) 

and in Appendix B we calculate (VI:1) directly from knowledge 

of w and jb for the first 8 states. The results for Ar, Kr 
n ^n 
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C02 and N2 are given in Tables I, II, III and IV, respec- 

tively. Plots of a ^ ^ ys_. p for these gases are also given 

in Figs. 22, 23, 24 and 25, 

It is interesting to note from these results that 

at sufficiently high densities the polarizabilities of the 

excited levels can become negative, and in this connection 

it should be recalled that the polarizability of the isolated 

simple harmonic oscillator is the same in all states. Now 

in simple dielectric theory it is usual to associate negative 

polarizabilities with free or unbounded states of the electron 

and if we adopt this interpretation here we would conclude 

that oscillator states n having a' ' < 0 do not exist 1 

Further, consequences of this idea will be discussed 

in Sec. VIII, but for the present we assume simply that at any 

given density there are a finite number, N of discrete levels 

possible where N is the largest quantum number possible for 

which a1.0. Clearly N decreases as the density increases. 

We also adopt a Clausius-Mossotti approach to the 

calculation of the permittivity. For T > 0°K, the medium is 

now essentially like a mixture of nonpolar, one-dimensional 

atoms of polarizabilities aand number densities: 

N<"> 
N -6W 
o n 
— e 
a 

(VI: 2) 
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where: N 

n=0 

(VI:3) 

is the partition function of the oscillator with N discrete 

levels. Here 3 = (kT)“^. 

Since the local field, F is still given by (111:32) 

for all states, the polarization contributed by particles in 

the level n is: 

(VI:5) 

Summing (VI:5) over allowed n values and solving for P leads 

to the dielectric constant: 
N 

-1 = 

1 A (n) (n) 1-4TT \ a N 

(VI:6) 

and (VI:6) gives at once the Clausius-Mossotti function: 

“M 3'G 

e-1 I W 
P j 

4TTA 
<a (T) > (VI:7) 

where, after use of (VI:2), the average polarizability at the 

temperature T is: 
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<(x (T) > 

-6(W -W ) 
n o 

e 

-3(W -W ) n o 
(VI:8) 

Apart from noting that <a>, and hence have 

(vanishingly weak) negative, temperature coefficients, we 

make no attempt to calculate (IV:8) since clearly in the one- 

dimensional model the spacing of the energy levels is so great 

compared to kT that the exponential factors in (IV:8) are 

negligibly small for all n^l. Thus, here, <a> reduces essen- 

tially to the polarizability, of the ground state. 

In fact, however, we should not use this simple 

method for estimating effects associated with excited states 

for although real atoms in any state of excitation can be 

looked upon as oscillators, the fundamental frequencies 

associated with their excited levels decrease as the quantum 

* 

numbers of the levels increase. Thus the extreme concavity 

of the restricted harmonic oscillator potential compared with 

the convexity of the potential in real atoms precludes use of 

* th 
For example, in hydrogen, the polarizability of the n level 

is a (n+1) (large n^O) where a Ee^/m^o)^ is the ground 

state polarizability. Letting aEe^/m , the fundamental 
th ^ ^ 

frequency of the n level compared to that of the ground 

state is seen to be: 

= U)^/ (n+1) 3 (VI:9) 
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the former to predict any significant results associated 

with the excited states of real atoms. For this reason we 

cannot estimate the oscillatory contribution to the specific 

heat of the gas. However, it is possible to compute a density- 

dependent contribution to the equation of state arising from 

the internal, oscillatory motions in the atoms. At T = 0*^K 

the latter contribution arises purely from the density- 

dependence of the ground state energy of the restricted 

harmonic oscillator, either with or without dipolar inter- 

action with its neighbours. Of course, for the isolated atom 

this contribution to the pressure is entirely absent. 
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TABLE 1 

ARGON 

DENSITY 

HIGHER STATE 

POLARIZABILITIES 

Amagat 

67 „ 7 

;l :i. 70 

;l. 50.. 2 

;l 605 

171.7 

197.4 

228.5 

266.. 5 

34 1 .. 1 

372., 1 

446.. 3 

541 7 

666., 2 

mol /1 

3 a 024 

Er n::; 
V..* H >}». .IMI 

5 a 906 

6. 710 

7. 167 

7.. hh 7 

8.. fB 1 6 

10 a 205 

1 ;l. ., 903 

13.. 999 

15.. 234 

16.. 61EJ 

19.. 932 

24a190 

d 
o) 

1 u 03897 

1 a 06833 

1.07677 

1 .. 0057 1 

1« 090 ;i. E) 

1 a 09427 

;!. a 10077 

1 ,. 1 0240 

1 ., 09485 

1 .. 07307 

1., 05502 

1 .. 03164 

O,. 9666.2 

0.. 87714 

O.. 76653 

5^ 
0(o 

1 .. 03878 

I .. 05290 

1 a 04518 

1 a 02493 

1.00743 

O.98472 

0.. 91659 

OII 81 70 

O,. 67934 

0„53858 

0.. 431 7 >3 

0„34963 

Oa18934 

0.. 05EB27 

•O. 03426 

a> 
joj 

«=<o 

1 .. 0Br>646 

0.. 95243 

Oa 8757"8 

0 a 75835 

O.. 67976 

0.. 60237 

Oa 41965 

0.. 2;;:>2 1 7 

Oa 06529 

II 06 1 i,::’5 

•O.. 10955 

•0.. 13942 

7;) a 17311 

U.. 1 /36i3 

•Oa 15438 

ca> 

o4» 

1 a 01955 

Oa 63241 

O a 45321 

Oa 24869 

Oa13619 

O a 0577 

-O.. 09274 

“0„ 18909 

•O., 23303 

•Oa 2367 1 

"0., 231 1 5 

•O a 21549 

-Oa 18262 

•0 a :i. 4'71 1 

•0„ 1140«;> 
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TABLE 2 

KRYPTON 

DENSITY 

HIGHER STATE 

POLARIZABILITIES 

u» 
Amagat 

49.5 

643 

85 „ 6 

96.. S 

109.9 

125., 6 

144. 4 

167. 2 

195. 0 

229.4 

326. 6 

396., 3 

mol /1 

.tM. at 

2- 872 

3- 823 

4 - 32 ;i. 

4. 910 

5.. 6;(. O 

6„ 450 

7.. 467 

a. 709 

10.. 243 

12.159 

14-504 

17.. 700 

do 

1.. 04343 

1.. 05704 

1.. 07650 

1 .. 0861 4 

1.09647 

1 - lu664 

1„114S6 

1 „ 1 ;l. 825 

1 .. 1 1242 

1 - 09191 

1.. 0 5121 

O.98592 

0-89517 

1.04084 

1 .. 05495 

1.06040 

1„05308 

1„03272 

O.. 99154 

0-92168 

0-81672 

0-67711 

0.5118 :l. 

0.33960 

O.. 17739 

0- 04495 

do 

1.04084 

1.03557 

O.95652 

O-87520 

O.75358 

O-59280 

0» 40808 

O.21786 

O.05165 

•O- 07529 

•0. 14830 

•0- 17984 

■Ou 17830 

1 - 02344 

0-93621 

O.. 62897 

O-43470 

O.22646 

O.03492 

-0. 1094 1 

-0.20273 

-0-24317 

•0.24371 

-0-21777 

•O. 18379 

O. 14'76 7 
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TABLE 3 

N I T R Q G E N 

DENSITY 

HIGHER STATE 

POLARIZABILITIES 

Amagat 

<S4. ~7 

84.. 0 

11 1 „ 9 

;L43„ 7 

16 4 .. .2 

108.. 7 

254.. 8 

‘•■>99 ^ -j 

355 „ 8 

426 u 7 

517 „ 9 

mo.1. /; 

2. 891 

4„ 996 

6 4 16 

7,. 331 

a.. 429 

11„381 

13» 385 

15,889 

19„057 

23,129 

«>> 

1.03958 

;l. , 05191 

1.06947 

1,08722 

1,09601 

1„10272 

1 - 09724 

1„07557 

1„03429 

0,96924 

0.. 87958 

0^0 

u> 

1,03939 

1,04999 

1„05392 

1,02578 

0,98515 

O„91669 

O,67782 

0,51622 

On 34743* 

0,18774 

O,05648 

oix> 

1,03706 

1,03107 

O,95300 

0,75404 

O. 5962^5 

n 414 4 1 

On 05965 

”0.06622 

“"O. 14064 

-O,17404 

-O.17432 

c^o 

1tt 02009 

O.93405 

0,63195 

O,23407 

, t-' 4 3 6 

-Ou 10143 

•0,23837 

•0,24057 

■0,21579 

•0, 18278 

<), 14719 
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TABLE 4 

CARBON DIOXIDE 

DENSITY 

HIGHER STATE 

POLARIZABILITIES 

Amagat 

43» 4 

564 

75 n O 

96 „ 4 

12'6.1 

3.46.. 6 

M<|* ^ 

347 „ 4 

mo 1/1 

1.940 

2„ 528 

“r!j 

4„ 304 

5„ 655 

6 u 546 

.10- 659 

;i.5„ 516 

o(o 

1u04547 

1 - 05975 

1„08022 

1 - 10135 

1 - 12130 

1u12555 

1.06028 

0„90355 

oC 

1 - 04526 

1„05759 

1 - 06381 

1 - 03667 

0-92502 

0-81914 

0-33530 

0« 03869 

1.04282 

1 - 03822 

0-96011 

0-75772 

O.40902 

O- 21778 

-O-15235 

•0- 18038 

0^0 

1 - 02597 

0-94169 

0„63776 

0-23602 

-"•0„ 10619 

“O-20020 

“0-21864 

“0-14791 
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DENSITY, Amaggt 

224 448 672 

DENSITY, mol/1 

FIG. 22. Polarizabilities of excited states of restricted 

oscillator with dipolar interaction for Argon. 



DENSITY, Amagot 

112 224 336 

FIG. 23. Polarizabilities of excited states of restricted 
oscillator w.ith. dipolar interaction for Krypton. 



DENSITY. Amogot 

112 224 356 

Polarizabilities of excited states of restricted 

oscillator with dipolar interaction for CO2. 

FIG. 24. 



-98- 

bENSITY, AmaflOt 

224 448 

DENSITY, mol/1 

FIG. 25. Polarizabilities of excited states of restricted 

oscillator with dipolar interaction for Nitrogen. 



VII. RESULTS 

There are two ways of comparing the present theory 

with experiment. 

(a) Comparison of Permittivities 

In the first, we recognize that refers to a 

common property in both the one-dimensional theory developed 

here and the three-dimensional experimental results. However, 

as seen by (111:31) and (111:47), the Clausius-Mossotti form- 

ulae differ for the two cases. If we now replace a in (111:31) o 

and (111:47) by a = a (a/a ), the three-dimensional and one- \ f JL o o 

dimensional functions (herein called and , respec- 

tively) become: 

.(3) _ 
'M 

w 

p ; 

4iTAa 

a 
o^ 

,(1) ^ 
'M 

e “1 
s 

3e_ 
W 

I P 

47rAa 
a 

(VII:1) 

(VII:2) 

and from (VII:1) and (VII:2) the experimental and theoretical 

static dielectric constants are: 

Expt.: e g 

1-2 (i-) 4'’ 
(VII:3) 

Theory: (VII:4) 



(3) Next, using experimental results for and 

the calculated values of , found using (V:19) and 

(V:20), we may plot e v^. p for both cases. The results s 

for A, Kr, CO2 and N2 are shown in Figs. 26, 27, 28 and 

29, respectively. 

It may be noted that over most of the density range 

the theoretical results are slightly higher than the experi- 

mental ones by as much as 4%w^5% in the mid-range of densities, 

but lower than the experimental values at high densities. 

These results may be considered reasonably satis- 

factory, but they are, in fact, quite misleading in that we 

should really be comparing from experiment with 

from theory. 

(b) Comparison of Functions 

When this step is taken the results are far from 

satisfactory as indicated by Figs. 30 and 31 which compare 

the experimental ) and theoretical ) Clausius- 

Mossotti functions for argon and krypton, respectively. 

Similarly unsatisfactory results hold for other gases exam- 

ined. 

In all cases the theoretical function achieves M 
(3) a maximum at roughly the same density as found for 
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DENSITY, Amagat 

DENSITY, mol/I 

static Permittivity of Argon v^. density. 

Present theory 

. ,. Experiment (Ref. [5]) 

FIG. 26. 
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DENSITY, Amagat 

DENSITY, mol/I 

static permittivity of Krypton y^. density. 

■■■ ■■ Present theory 
. »« »Experiment (Ref. [10]) 

. 27. 
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DENSITY, Amogat 

112 224 336 

static permittivity of Carbon Dioxide ys. density. 

" '■ " Present theory 

Experiment (Ref. [4]) 

FIG. 28. 
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(€^-l)yiOO DENSITY, Amagat 

A 224 448 672 

FIG. 29. Static permittivity of Nitrogen ys. density. 

    Present theory 

* * Experiment (Ref. [33]) 
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OENSITY, «ol/l 

Fig. 30. Comparison of Clausius-Mossotti functions for 

Argon. 

, Present theory; , Experiment (Ref. [5]). 
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FIG. 31. Comparison of Clausius-Mossotti functions for 

Krypton. 

, Present theory; r Experiment (Ref. [10]). 
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experimentally, but rises too rapidly with increas- 

ing density at low densities and falls off too rapidly 

with density at high densities. It thus appears that the 

dipolar forces between a given molecule and all others in 

the medium are too strong at low densities and the repulsive 

forces (arising from the 6-like potential at the "dielectric 

radius", x^) are too strong at high densities. 

In Sec. VIII we discuss the present model and are 

led to suggest a new model which, we feel, should lead to 

a better "continuum-type" theory for the function. 
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VIII. DISCUSSION AND FUTURE PROPOSALS 

Starting from a knowledge of the properties of an 

isolated, nonpolar atom (treated here as a simple harmonic 

oscillator), we have attempted in this thesis to discuss in 

a general way the forces acting on the valence electron (s) 

when the atom is surrounded by like particles at nonvanish- 

ing concentrations, as in a dense gas or fluid. 

Our model is based on a "continuum" point of view 

in that the medium surrounding a given atom has been treated 

as a homogeneous, isotropic substance characterized by a 

certain dielectric constant, e. We have recognized that the 

reaction potential of the instantaneous atomic dipole tends 

to attract the valence electrons away from the core while the 

repulsive potential, which is operative when these electrons 

are close to a nearest neighbour atom, tends to repel them 

back toward the core. 

We argued that these two forces could account in 

a qualitative way for the density dependence of the Clausius- 

Mossotti function However, on closer inspection, it was 

found difficult to formulate this approach quantitatively in 

three-dimensions (Sec. II) because of the explicit appearance 

in the self-energy of the dielectric constant, which is the 

very quantity we desire to calculate. A further difficulty 

was the divergence of the self-energy at the dielectric radius. 
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a, of the sphere containing the atom. 

(a) The Present Model 

These difficulties disappeared, however, when we 

considered the equivalent one-dimensional problem (Sec. Ill), 

for although the permittivity appeared in the back-reaction 

of the medium, it did so only 'tmiplioitly through the polar-, 

ization, P, the calculation of which is the main object of 

this thesis. 

With the aid of a computer it was then possible to 

find the wave functions and energies of a one-dimensional, 

simple harmonic oscillator restricted by a 6-like repulsive 

potential at its boundaries (Sec. IV). These same quantities 

were also calculated for the restricted, one-dimensional 

oscillator experiencing dipolar interaction with all others 

in the surrounding medium (Sec. V). The computer is a natural 

tool for both these cases since we are concerned with the 

motion of an electron confined to a finite region in space 

and it is easy to discretize the interval concerned. 

Our main result has been the calculation of the 

ground state polarizability of the one-dimensional, restricted, 

simple harmonic oscillator interacting through dipolar forces 

with the surrounding medium (Sec. V), and here we achieved 

qualitative agreement with experiment in that the Cj^-function 
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at first increased with increasing density at low densities, 

went through a maximum, and then decreased with further 

increase of density. 

When we extended our calculation to try to predict 

the temperature dependence of the Cj^-function (Sec. VI), 

difficulties occurred in the oscillator model since the 

spacing of the energy levels at any density is so large 

compared to kT that dCj^^/dT was entirely negligible. The 

oscillator model thus precludes useful calculations of 

properties relating to excited states, such as, for example, 

Cj^(T) or the oscillatory contribution to the specific heat 

of the medium. 

The basic difficulty here is that oscillator-like 

potentials are too concave compared with the potentials of 

real atoms, which are convex for valence electrons in excited 

levels. For this reason not too much significance is to be 

attached to the calculations of the excited state polariz- 

abilities, ^ discussed in Sec. VI. However, relative 

errors in employing the oscillator model for the ground state 

must be small and should lead to reasonable values for a. 

An interesting feature of the computer calculation 

of a' ^ has been the possibility of negative polarizabilities 

of excited levels at sufficiently high densities. This result 
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is a direct consequence of the oscillator model which, as 

explained above, is not to be taken too seriously for the 
/ \ 

excited states. However, a negative value of a^ ^ does 

remind us of an important omission in this model, as well 

as in all others discussed in Sec. II. This omission con- 

cerns the lack of a continuum state for the electron and 

is a direct result of assuming an infinite potential barrier 

at the dielectric radius. Such a feature precludes the 

existence of fully delocalized electronic states in the 

medium and may be a serious oversight, particularly at high 

densities. 

For any model there should be a finite potential 

barrier for the valence electron (s) and as density is 

increased we should expect the overlap of potentials of 

neighbouring atoms to decrease the barrier height. With a 

finite barrier in the one-dimensional, oscillator model, for 

example, the wave functions and energies would be different 

from those calculated here and consequently the polarizabilities 

would also differ from those found in Sec. VI. There would, 

in addition, be a finite number, N of excited states possible 

and one could argue that N and the barrier height should be 
(T\ \ 

chosen consistently with the ^c??^-appearance of negative a ^ 

for all 1 £ n £ N. An additional effect in such a model would 

be that the dipolar forces between atoms are screened by the 
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existence of a finite density of free electrons at any 

given temperature and particle density. Such screening 

would tend to decrease the dipolar interaction between 

atoms and could result in a slower increase of C.. with M 

increasing density than found with the present model. 

(b) Future Proposals 

From what has been said above, it is clear that 

the model discussed here is unsatisfactory in that: 

(i) an oscillator-like potential is unsuitable 

for calculating properties associated with 

excited states, 

(ii) the model lacks a finite activation energy 

for the valence electron(s) (even at zero 

density), and thus does not permit the 

existence of the ionized state of the atom. 

In a better model it is also desirable to work in 

three-dimensions and to this end we return to (11:13) and 

note firstly that the coefficients B^(e) in the self-energy 

of the valence electron in its own reaction field are very 

insensitive to the permittivity. Inspection shows that; 

0.75 < B (e) < 1 — n — 

for all 0 £n £ and all 1 £ e £ «> . For this reason we may, 

as a reasonable approximation, select B^(e) - 1 in which case 

(11:13) sums to give: 
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V 
self 

fe-l ] 
2 £ + 1^ 

r/a) 
- (r /a ) ^ 

(VIII:1) 

To (VIII:1) we must now add the atomic potential, V (r) of 
a 

the valence electron in the isolated atom to give an effective 

potential when the atom is surrounded by others at finite con- 

centration. The result is shown by the dashed curve of Fig. 32 

for say V (r) = e^/r (= coulomb potential). There is clearly a 
a 

maximum in this potential given by at r = r . 
lUa.X UlciX 

FIG. 32 



-114- 

The difficulty of the negative infinity at r = a 

could now be overcome by assuming the existence of a repul- 

sive potential: 

V 
r^ 

(r) 

V T .(r)-V 
self max 

0 < r < r 
— — max 

r < r < «> 
max — — 

(VIII:2) 

and the final total potential of a valence electron would be: 

0 < r < r 

V(r) = 

V 
max 

max 

r < r < «> 
max — — 

(VIII:3) 

V(r) is indicated in Fig. 32 by the hatched line. 

Fig. 32 may be taken to depict the situation at some 

intermediate density and to actually calculate the shape of 

V(r), given V (r), we could employ as a first approximation a 
a 

value for (e-1)/(2e+l) , occurring in (VIII:1), given by the 

unrefined Clausius-Mossotti formula (11:7) for a single molecule. 

In this way it may easily be seen that: 

T a /a^ 
£-1 ^ o^ 
2e+l 1+a /a^ o 

(VIII:4) 
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At low densities V will be small and r (<a) 
max max — 

will be large and there will be negligible error in assum- 

ing the activation energy, A to be that of the isolated 

atom. In this case there will be a large number of excited 

states and the polarizability of the atom will be only 

slightly higher than that of the isolated atom. Screening 

for this case would also be negligible as the activation 

energy is so large compared with kT that very few free 

electrons would exist at ordinary temperatures. 

However, as the density increases V would increase 
^ max 

and A and r would decrease and the energy levels would max 

begin to rise above their values of the atom in isolation. 

There would thus be a general increase of the polarizability 

of the atom as density increases at low densities. For suf- 

ficiently low densities screening would still be unimportant, 

but as density is increased, and A continues to decrease, 

there will come a point (probably rather suddenly) at which 

sufficient free electrons will be present at ordinary tempera- 

tures that screening of the dipolar forces between atoms will 

become important. We might expect this point to be reached 

when the screening radius r = (kT/4'rrn e^) ^ is of the same 

order as the dielectric radius a. Here n^(p,T) is the number 

density of free electrons. 
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When screening is important the self-energy 

(VIII;1) would have to be modified as shown by Frood [31] 

and in this situation it might be expected that the number 

of excited states, N(p,T) will be rather small. The polariz- 

ability of the particle would then be smaller than its value 

for the isolated atom and would continue to decrease as 

density is further increased. 

The above remarks outline qualitatively how a(p,T) 

could change with density in a manner comparable to what is 

observed experimentally. A calculation based on the above 

ideas in which at every density quantities such as the acti- 

vation energy, A(p,T), the number of excited states, N(p,T), 

the free electron density, n^(p,T) and the permittivity, 

E(P,T) are all mutually self-consistent would be interesting 

to perform with the aid of a computer. 

It may be noted here that the reduction in polariz- 

ability envisioned at high densities in this proposed model 

is directly connected with a reduction in the number of excited 

states possible as density increases - rather than through 

increasing confinement of the electron to a "cage" as assumed 

in the present theory, or those of Ten Seldam et al (loc. cit.). 

A complication which must be taken into account is 

that the polarizability of an electron (with principal 
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and orbital quantum numbers n and t) together with the 

number density, of atoms in that level must be 

non-catastrophic, i.e. 

(VIII.»5) 

where 

g 
(n,l) _ ^ 2 (£-1) ^{n,D 

3 2e + l 

is the reaction field factor for the level (n,£). As shown 

by Frood (loc. cit.) in connection with impurity conduction, 

(VIII:5) is the condition which determines the maximum quantum 

numbers N(p,T) and L(p,T) which can exist at a given density 

and temperature. 

possible appearance of the metallic state in a sufficiently 

dense medium. Experimentally, it may thus be of interest 

to examine dielectric and/or conduction losses in very dense 

nonpolar gases as well as the static or low frequency behaviour 

of the Clausius-Mossotti function Cj^(p,T). 

The foregoing remarks are closely related with the 
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APPENDIX A 
j.000 REM 

:l.050 REM 
.1100 REM 

1150 REM 
1200 REM 
1250 REM 
1300 REM 

1350 REM 

1400 REM 
1450 F-<EM 
1500 REM 
1550 REM 
1600 REM 

THIS PROGRAM IS WRITTEN IN MICROSOFT .BASIC FOR NORTH STAR 
HORIZON COMPUTER;, THIS PROGRAM RUN IN COMPILED BASIC- 

PURPOSE : TO CALCULATE EIGEN-ENERGIES OF A BOUND STATE. OF ONE 
DIMENSIONAL SCHRODINGER EQUATION, WITH THE CONDITION 
THAT THE WAVE FUNCTION VANISHES AT BOUNDARY POINTB- 

THE BOUNDARY POINTS WILL BE Y1 AND Y2- 

NOTES THE POTENTIAL ENERGY FUNCTION MUST BE A 
CONTINUOUS FUNCTION (BOUND STATE)- 
THE DISCRETE EIGENVALUE CAN BE OBTAINED,IF 
IT IS A BOUND STATE SYSTEM. 

THE SCHRODINGER EQUATION OF ONE DIMENSIONAL CASE IS GIVEN BYS 

'V*' 

“ (h--2./2M) *d Z(.X)/dX +V ( X > *Z ( X) (X ) 
1650 REM 
1700 REM 
1750 REM 
1800 REM 
1050 REM 
1900 REM 

1950 REM 
2000 REM 

2050 REM 
2100 REM 
2150 REM 
2200 REM 
2250 REM 
2300 REM 
2350 REM 
2400 REM 
2450 REM 
2500 REM 
2550 REM 
2600 REM 
2650 REM 
2700 REM 

2750 REM 

Z(X) IS WAVE FUNCTION 
V(X) IS POTENTIAL ENERGY 
e IS EIGEN-ENERGY 

TO SOLVE THIS EQUATION WITH THE COMPUTER, WE HAVE TO TRANSFORM 
THE ABOVE EQUATION INTO DEMENSIONLESS DIFERENTIAL EQUATION. 

NOW, CONSIDER A SYSTEM WHICH THE POTENTIAL ENERGY IS GIVEN BY, 
VCx')=0„5-«-M*w"-2*X--2 ( A RESTRICTED OSCILLATOR) 

OR V<X)=0.5*M*w--2*x--2*Cl-<wp/w) -23 ( A RESTRICTED OSCILLATOR WITH 
DIPOLAR INTERACTION > 

TO MAKE THE ABOVE EQUATION BECOMES DEMENSIONLESS DIFFERENTIAL 
EQUATION » WE LET, 

Y===X/ (h/2Mw)-'0.5 

E"~e/hw 

THEN THE DIFFERENTIAL EQUATION BECOMES, 

“d Z/dY H-V (Y)-x-Z^E^Z 

WHERE:; V (Y)== (Y/2) ■••••2 FOR A RESTRICTED OSCILLATOR, 
AND V(Y) = (Y/2)'-2*i:i-(wp/w)--23 FOR A RESTRICTED OSCILLATOR WIT!" 

DIPOLAR INTERACTION. 

NOTE S IF V (Y) == (Y/2)'-'C THEN THE STATEMENT # 4900 SHOULD BE 
ACTIVATED !!! ELSE THE STATEMENT # 4950 SHOULD BE 
ACTIVATED. 

2300 REM 
2850 REM 

2900 REM 
2950 REM 

TO SOLVE THIS EQUATION BY COMPUTER, WE FIRST DISCRETIZE THE 
DIFFERENTIAL EQUATION, THEN USE BOUNDARY CONDITION, THAT ARE 
Z-^O AT THE END POINTS <Y=Y1, LEFT END POINT, Y=«Y2, RIGHT END POINT). 

SI MCE (wp / w) ••‘••2=9. 0335506E0B/ C Y2--3*w- 0.51 

A1 



3000 REM 

30!D0 REM 

3100 REM 
3150 REM 
3200 REM 
3250 REM 

THEREFORE, WE LET V (Y) < Y/2) •■•2* ( 1 -903355060#/ < (Y2- '3) -«-w -„ 5) ) ) ) 

MOTE THE ABOVE POTENTIAL IS FOR A RESTRICTED OSCILLATOR WITH 
DIPOLAR INTERACTION. 

THEN , 
-I UZi-l) - (2*Zi ) + (Zi + l) >/H-23+V (Yi ) *Zi «=E*Zi 

3300 
3350 
3400 
3450 
3500 
3550 
3600 

3650 
3700 
3750 
3800 
3850 
3900 
3950 
4000 
4050 
4100 
4150 

4200 
4250 
4300 
4350 
4400 
4450 
4500 
4550 
4600 
4650 
4700 
4750 
4800 
4850 
4900 
4950 
5000 
5050 
5100 

REM 
REM 
REM 
REM 
REM 
REM 
REM 

AND < Y2-Y1) / < N+1) 

WHERE, N IS THE NUMBER OF POINT BETWEEN TWO END POINTS, 

BY SETTING Z (O) =Z (N+1 ) , WE OBTAIN. 
C A 3 ! Z >===£* I Z > 

!Z> IS A EIGENVECTOR WITH ENTRIES Zi <i~-0 to M) 

Ai i =2!/H''-2*+-V < Y;i. > , i = l to N 

Ai+1 , i “Ai 3 i •+■! ——1/H '’'2 , i=l to N-1 

AND OTHERS ARE ZEROS. 

WHERE 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
DEFDBL A,B,C3S,R,Q,L,Z.,M,T, V,H, Y,X,D,E,P,W ^ DECLARE DOUBLE; PRECISION. 
DEFINT I,J,K,N SREM DECLARE INTEGER. 
PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER" 

INPUT "THE NUMBER OF POINT IS"?N SREM N IS THE NUMBER OF POINT 
BETWEEN THE BOUNDARY POINTS 

INPUT "THE VALUE OF Yl"ilYl 
INPUT "THE VALUE OF Y2"§Y2 
PRINT " IF THE SYSTEM IS RESTRICTED OSCILLATOR ONLY THEN THE SYSTEM " 
PRINT " IS INDEPENDENT OF ANGULAR FREQUENCY" 
INPUT "THE ANGULAR FREQUENCY" § UJo REM w==WO 
PRINT 
PRINT "THE NUMBER OF POINT BETWEEN BOUNDARY POINTS IS" N 
PR I NT 
PRINT "THE LEFT HAND SIDE LIMIT IS ••==" Yl 
PR I NT 
PRINT "THE RIGHT HAND SIDE LIMIT IS =" Y2 
PRINT 
PRINT "THE ANGULAR FREQUENCY IS"§WO 
PRINT 
REM DEF FNV(Y)=(Y/2) 
DEF FNV (Y>::••= <. 5*Y > •••••2* (1 - (903355060#/ ( (Y2--3> * (WO"-. 5) ) ) ) 
WVZ^^N 
H=- <Y2-l-«-Yl) / (N+1) SREM H IS LENGTH BETWEEN Yi AND Yi-+-1„ 
REM 

MATRIX CA3 IS A TRIDIAGONAL MATRIX,THEN WE CAN USE 3 VECTORS FOR 
REPRESENTING MATRIX LA3. 

5150 DIM A<0O) B(SO) ,Q(80) 
5200 FOR I==-i TO N 
5250 Y*Yl +-I-«-H 
5300 VY-FNV<Y> 

SREM THIS LOOP IS USED TO FIND 
S REM THE VALUES OF Yi AND THE 
SREM ENTRIES OF Aii. 

A2 



5350 A (I) ==^2/ (H ••’■2) 4-VY 
5400 NEXT I 
5450 B<i)=---0 
5500 Q<N)-=0 
5550 FOR I==2 TO N 
5600 Ba)=-:l./ 
5650 Q ( I -1) 1 / (H--2) 
5700 NEXT I 
5750 REM 
5800 BZ====B(2) 
5850 REM 
5900 FOR 1^1 TO IM 
5950 PRINT BCD , Ad) ,Q<I) 
6000 NEXT I 
6050 REM 
6100 REM 
6150 DIM C(80) 
6200 DIM S<80) 
6250 DIM R(SO) 
6300 REM 
6350 REM 
6400 REM 

6450 IF N==2 GOTO 10350 
6500 REM 
6550 GOSLiB 11400 
6600 FOR I==l TO N 
6650 A d ) ==A (I) -LMD 
6700 C <I)-O 
6750 Sd)=:0 

: REM 
S REM 

Bi IS THE SUBDIAGONAL OF CA.1, 
Qi IS THE BUPERDIAGONAL OF CA3. 

0 

FROM STATEMENT #6150-#10450 
AND THEIR SUB-PROGRAMS<GOSUB) 

::REM IS A PROGRAM TO DIAGONALIZE MATRIX 

5 REM HA!! USING QR ALGOR ITHM (REF: PAGE 

SREM 425-427 OF NUMERICAL ANALYSIS BY 

BURDEN ET-AL). 

THE QR PROGRAM THAT WE WR'OTE IS A SLIGHT 
MODIFICATION OF QR ALGORITHM(REFERENCE BOOK), 
THIS IS DUE TO THE NATURE OF OUR PROBLEM, 

GOSUB 11400 TO 11800 IS REFERRED TO STEP:3. 

:REM FROM STATEMENT #6600~#6900 IS STEP:4 

6800 FM I)”0 
6850 Qd)==0 
6900 NEXT I 
6950 PI=A(1) 
7000 R0=B(2> 
7050 
‘./'loo f^:EM 
7150 A (J -1 ) (PI --2+B C J ) 
7200 C(J)==PI/A(J-1) 

:REM INITIALIZ ATION 
:: REM INITI AL I Z AT I ON 
:REM REFER TO STEP:5, 

FROM STATEMENT #7150-7350 REFERRED TO 
5 :REM STEPS 6- 

7250 S (J ) =--=B (J ) / A (J-1 ) 
7300 Q (J -1) ==C (J ) -K-RO+S (J ) ■«• A (J ) 
7350 PI 1 *S (J ) -«-RO-+-C (J > -f«-A (J ) 
7400 IF J=N GOTO 7650 SREM 
7450 R(J-1)(J)*B(J +1) :REM 
7500 RO====C (J ) (J +■ 1 > S REM 
7550 J=:=:J + 1 SREM 
7600 IF JON GOTO 7150 : REM 
7650 A(N)-==PI SREM 
7700 DIM L(2, 2) , M (2,2) , ML (2, 2) , Z (2,2) 
7750 J=2 SREM 
7800 IF J==2 GOTO 8650 SREM 
7850 L(1,1)(J-2) S REM 
7900 L <1,2 > =R(J-2) S REM 
7950 L<2,1)==^0 SREM 

REF'ER TO STEPS 7, 
#7450-7500 REFER TO STEPS 8 
STEP:9 AND STEP:10 ARE INSIDE STEPS 6. 
REFER TO STEP:11, 
REFER TO STEP:12, 
THE LAST ENTRY OF VECTOR A 

,T(2,2) 
FROM #7750“#9600 IS STEP:13 
THE MATRIX FORM UP TO STEP:12 IS 
UPPER TRIANGULAR MATRIX WITH VECTOR 
A,a,R AS ITS ENTRIES- SINCE THE 
MATRIX IS REDUCED INTO DIAGONAL 



8000 L(2,2)»«>0 
8050 FOR TO 2 
8100 FOR K^l TO 2 
8150 ML(IsK>«==L a,K) 
8200 NEXT K 
8250 NEXT 1 
8300 za,i>=c<j) 
8350 Z(2,1)=S<J) 
8400 Z (1,2)= 1*S(J) 
8450 Z(2p2)=:C(J) 
8500 GOSUB 10850 
8550 Q(J~-2)--=T<l, i> 
8600 R (J--2) =T < 1 j 2) 
8650 Ma,l)=A(J-l) 
8700 M(1H 2)<J- i) 
8750 M(2,l)==0 
8800 M(2,2)=^A(J) 
8850 FOR 1=1 TO 2 
8900 FOR K=i TO 2 
8950 ML <13 K> =M(I,K) 
9000 NEXT l< 
9050 NEXT I 
9100 Z(1,1)=C(J) 
9150 Z(2,1)=S<J) 
9200 Z (l32)=-"l*B(J) 
9250 Z<2;,2)=C<J) 
9300 GOSUB 10850 
9350 A(J“1>=T<1,i> 
9400 B(J)=T(2,1) 
9450 GHJ--1)==T(1., 2) 
9500 A(J)=T(2,2) 
9550 J^J+1 
9600 IF J<=N GOTO 7850 
9650 FOR 1=1 TO N 
9700 A ( I) =A (I > 4-LMD 
9750 NEXT I 
9800 REM 
9850 REM 
9900 REM 
9950 REM 

SREM MATRIX BY ORTHOGONAL TRANSFORMATION, 
::REM BO BY TAKING ADVANTAGE OF "*"HE PROPERTY 
::REM OF ORTHOGONAL MATRICES WHICH ARE 
SREM DISCRIBED BY STEPS9(TEXT-BOOK),WE 
SREM CAN BREAK THESE ORTHOGONAL MATRICES 
SREM INTO PARTITION MATRICES AND THEN, 
."REM MULTIPLY THESE ORTHOGONAL MATRICES 
2 REM ONE BY ONE- 

-REM WHY DO WE USE 2 BY 2 MATRICES IN 
-*REM THESE MULTIPLICATION ? 
HREM TO ANSWER THIS QUESTION,WE HAVE TO 
:REM REFER TO DEFINITION OF ORTHOGONAL 
:REM MATRIX WHICH IS DEFINED IN STEP:9, 
:REM FROM STEP:9(TEXT),WE CONCLUDE THAT 

:REM THE MATRIX NEEDED FOR THE MULTIPLICATION 

:REM IS 2 BY 2 MATRICES (SINCE L’QI^L" I 3==CQI) , 

:REM WHERE, CQ3 IS ANY KIND OF MATRIX AND LX3 

:REM IS IDENTITY MATRIX. 

:REM FROM #9650-#9750 IS STEP:14 

-REM FROM #9800-#10300 IS STEPS 2 

THIS STEP IS NOT EXACTLY THE SAME AS 
STEP;2 IN THE TEXT BUT IT IS A SLIGHT 

DIFFERENT FROM TEXTBOOK,THIS DUES TO THE 
10000 REM NATURE OF OUR PROBLEM. 
10050 REM CHECK B(N) IS LESS THAN 1-E-lO 
lOlOO REM 
10150 BN1=B(N-1) 
10200 BN=B<M> 
10250 IF ABS (BN)01E-10 THEN N=N-1 : GOTO 6400 
10300 IF ABS(BNl>OlE-10 THEN GOSUB 11400 :A(M)=XL1 :A(N-1)=XL2 

:N=N-2 :GOTO 6400 ELSE GOTO 6400 
10350 FOR 1=1 TO NZ 
10400 fHRINT "THE VALUE OF DIAGONAL MATRIX IS =A ( " I " ) " Ad) 
10450 NEXT I 
10500 REM 
10550 OPEN "0",#1,"EIGENERG" ;REM THE RESULT OF QR PROGRAM IS 
10600 FOR 1=1 TO NZ :REM STORED IN THE DISC WITH THE 
10650 PRINT#1,A(I) :REM SEQUENT IAL FILE. 
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:i 0700 
10750 
10800 
t0850 
J. 09C>0 
i0950 
1 1 oc>c> 
1 1050 
;i 1100 

111 50 
1 1200 
11250 
1 1 300 
11350 

1 1400 
11450 

11500 

11550 
11600 

11650 
I 1700 
11750 
II 800 

NEXT I 
CLOSE#1 
END 
FOR' :C^:=:1 TO 2 

FOR Jl==l TO 2 
SUN===^0 

FOR H;>1 TO 2 
SUM====^SUH+ML (I, K) *Z (l< 
NEXT K 
T (1,, J 1 ) =SUM 

NEXT J1 
NEXT I 

Ji > 

SREN # 10850™# 1 1300 IS A SUBFTHIOGRAN 

HREN OF 2 BY 2 MATRIX MULTIPLICATION 

:REM OF MATRIX ML AND MATRIX Z. 

RETURN 
REM FROM #11400 TO #11800 IS A SUBPROGRAM TO CALCULATE THE 

EIGENVALUES OF THE LAST 2 BY 2 MATRIX OF MATRIX CAI. 
SO THE EIGENVALUES WILL BE THE ROOTS OF QUADRATIC EQN» 

AN==A(N)-J-A(N~1) SREM AN AND ABN IS THE COEFFICIENT OF THE 
ABN:=== A (N) *A < N--1) --B (N) *Q < N~ 1 > : REM QUADRAT IC EQN SUCH THAT 

X--2“AN*X-+-ABN=0- 
RN=AN--2™4-«-ABN S REM THEORITICALLY, RN>=0, AND COMPUTER 

DO APPROXIMATION,SO WE EXPECT 
RN<0,AND IT NEGLIGIBLE COMPARE TO 

REM THE ROOTS„ 
IF RN<0 THEN PRINT "THE D IS ==" RN, "THE ROOT ="AN/2 

SPRINT "B("N")=" B(N) , "B<"N--1")=" B(N~1) 
; IF ABS(RNX„09 THEN LMD=AN/2 S GOTO 11800 

XLX=(AN+-(RN--,5) )/2 S REM XLl AND XL2 IS THE ROOTS 
XL2==MAN-<RN--, 5) )/2 S R:EM LMD IS THE NEW EIGENVALUE^ 
IF ABS(A<N)--XLl ) <=ABS (A(N)-“XL2) THEN LMD=XL1 ELSE LMD=XL2 
RETURN 
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APPENDIX B 
1 000 

1050 
1100 

1150 

1200 

1250 

1:3<I>0 
1350 

1400 

1 450 

1500 

1550 

1 c'aOO 

1 \450 
1700 

1750 

18C>0 

1850 

1 90C) 

:i. 950 

2000 
2050 
2100 

2150 

2200 
2250 

2300 

^ ^ <4i if) $ 1|> ^ $ ij) lf> ^ $ iji ^ ^ ^ ^^ 

THIS F‘ROGF"<AM IS WRITTEN IN MICROSOFT BASIC FOR NORTH STAR 
HORIZON COMPUTER- THIS PROGRAM RUN IN COMPILED BASIC.. 

THIS PROGRAM CALCULATES AND STORES THE FIRST EIGHT EIGEN- 
ENERGIES AND EIGEN-VECTORS OF THE RESTRICTED OSCILLATOR 
WITH OR WITHOUT DIPOLAR INTERACTION. 

ACTUALLY, FOR A GIVEN EIGEN-ENERGY, WE CAN CALCULATE THE 
CORRESPONDING EIGEN-VECTOR, HOWEVER, THE CALCULATED EIGEN- 
ENERGIES FROM PROGRAM WHICH IS LISTED IN APPENDIX A ARE NOT 
ACCURATE, AND THE EXACT EIGEN-ENERGY WILL BE SOMEWI-tERE IN 
THE NEIGBOURHOOD OF THE CALCULATED EIGEN-ENERGY. 
THUS, BY SHIFTING CALCULATED EIGEN-ENERGY TO LEFT AND RIGHT, 
ONE CAN OBTAIN THE NEARLY EXACT EIGEN-ENERGY AND ITS 
CORRESPOND EIGEN-VECTOR. 
HERE, WE USE THE SAME MATRIX I All AS USED IN THE PROGRAM WHICH 
IS LISTED IN APPENDIX A AND ALSO USE THE CALCULATED EIGEN- 
ENERGY TO GET A BETTER APPROXIMATION OF EIGEN-ENERGY, 

NOTE.“ THIS PROGRAM IS INSEPERABLE FROM PROGRAM WHICH IS 
LISTED IN APPENDIX A, THAT IS, AFTER WE GET THE 
CALCULATED EIGEN-ENERGY FROM PROGRAM (APPENDIX A), 
WE USE THIS RESULT AS OUR INPUT IN THIS PROGRAM, 

REM 
2350 DEFDEL A, B, C, E, Q, R, Y, W, D, V, X , H, M, S, Z 
2400 DEFINT I,J.. K,N 2 REM DECLARE INTEGER. 
2450 PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER" 
2500 INPUT "THE NUMBER OF POINT IS"§N “REM N IS THE NUMBER OF POINT 

BETWEEN THE BOUNDARY POINTS 
2550 INPUT "THE VALUE OF Y1"5Y1 
2600 INPUT "THE VALUE OF Y2"|iY2 
2650 PRINT "IF THE SYSTEM IS RESTRICTED OSCILLATOR WITHOUT DIPOLAR" 
2700 PRINT "INTERACTION THEM THE STATEMENT #3450 SHOULD BE " 
2750 PRINT "ACTIVATED AND #3500 SHOULD BE DEACTIVATED" 
2800 PRINT "ALSO, THE DIMENSIONLESS POTENTIAL ENERGY INDEPENDENT" 
2850 PRINT "OF FREQUENCY WO, SO WE CAN WRITE WOESOME VALUE" 
2900 INPUT "THE ANGULAR FREQUENCY IB"; WO H REM w*-===WO 
2950 PRINT 
3000 PRINT "THE NUMBER OF POINT BETWEEN BOUNDARY POINTS IS" N 
3050 PRINT 
3100 PRINT "THE LEFT HAND SIDE LIMIT IS =" Y1 
3150 PRINT 
3200 PRINT "THE RIGHT HAND SIDE LIMIT IS =" Y2 
3250 PRINT 
3300 PRINT "THE ANGULAR FREQUENCY IS"5 WO 
3350 PRINT 
3400 PRINT 
3450 REM DEF FIMV (Y) = (Y/2) •-■2 
3500 DEF FNV (Y) = („ 5*Y) •■•2* (1 - (903355060#/ ( (Y2--3) * (WO •••. 5 > ) ) ) 
3550 NZ^N “REM NZ WILL BE USED LATER. 
3600 H== < Y2-1»-Y1 ) / (N-i-1) :: REM H IS LENGTH BETWEEN Y;i. AND Y;i.+ 
36!50 REM 
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3700 

3750 
3800 
3050 
3900 
3950 
4000 
4050 
4 :l 00 
4 i 50 
4200 
4250 
4300 
4350 
4400 
4450 
4500 
4550 
4000 
4650 
4700 
4750 
4000 
4850 
4900 
4950 
5000 
5050 
5100 
5;i.50 
5200 
5250 
5300 
5350 
540Q 
5450 
5500 
5550 
5600 
5650 
5700 
5750 
51800 
5850 
5900 
5950 
6 O O O 
6050 
6 100 
6;l.50 
6200 
6250 
63CHI) 

6350 

REM 

REM 

MATRIX UM IS A TRIDIAGONAL MATRIX,THEN WE CAN USE 3 VECTOR 
REPRESENT ING M ATRIX t! A :i „ 

DIM A (SO) ,, B < 00 > , Q (80) , A1 
DIM WN < BO) ., D Z (80 > , DP < 80) 
FOR I ;l. TO N 
Y“ Y1 +1 
VY=::FNV<Y) 
A( I) s=2/ (H'-2) ->-VY 
NEXT I 
B < 1 ) ==0 
Q(N)=0 
FOR I==2 TO N 
B (I ) ==^-"1/(H--2) V 
Q < I - .1, ) ==- 1 / < H '-2 > 
NEXT I 
REM 
FOR 1=^1 TO NZ 
A1 (I):==A(I) 
NEXT I 
HZ=H 
BZ==B <2) 
REM 
FOR I-l TO N 
PRINT B(I),A<I),Q(I) 
NEXT I 
OPEN “ I # 1 , EIGENERG " 
FOR 1=1 TO N 
INPUT#1,A <I) 
NEXT I 

(80) , A2 (SO) , WF (80) , WG < 80) EG (10) 
,X Z(80) ,YZ CSO),ZJ <10) 

SREM THIS LOOP IS USED TO FIND 
SREM THE VALUES OF Yi AND THE 
SREM ENTRIES OF Aii« 

REM Bi IS THE SUBDIAGONAL OF CA3. 
REM Qi IS THE SUPERDIAGONAL OF CAT 

REM THIS Aid) IS NEEDED LATERLIEH 

REM FOR CALCULATE THE WAVE FUNCTION 

REM AFTER THE EIGENVALUE ARE OBTAINED 

SREM ACCESS TO THE FILE WHICH CONTAINS 
S •- El GEN-ENERGY „ THIS EIGEN-ENERGY 
2 =■ WAS CALCULATED BY THE COMPUTER 
d (SEE APPENDIX A) 

I = 1 
GOSUB 11850 
IF IFLAG=1 GOTO 5400 
IF IND=0 THEN GOSUB 14350 ELSE GOSUB 17400 
IF IFLAG=0 THEN PRINT "NO RESULT" STOP 
FOR J=0 TO NZ+1 
WF(J)=WN(J > 
NEXT J 
A < I) =ERG :: STORE NEARLY EXACT EIGENVALUE IN A (I ) 
PRINT "THE VALUE OF I IS="I 

THIS SECTION STORES THE NEARLY EXACT GROUND STATE WAVE 
^ FUNCTION. 

OPEN "O",#2,"WAVEFCN1" 
FOR J=0 TO NZ-Hl 
PRINT #2,WF(J) 
NEXT J 
CLOSE #2 

FOR I ====2 TO NZ 
ITSl=I/2 
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640<“) 
6450 
6500 
6550 
6600 
6650 
6700 
6750 
6000 
6050 
60O<J 
6950 
7000 
7050 
7100 
7150 
7200 
7250 
7300 
7350 
7400 
7450 
7500 
7550 
7600 
7.650 
7700 
'7750 
7S00 
7850 
7900 

ITB2=‘==2'«ITS1 
IF" I™ITS2 TF-IEM GOSUB 12750 ELSE GOSUB 11050 
IF IFLAG==i GOTO 6650 
IF IND=:0 THEN GOSUB 14350 ELSE GOSUB 17400 
IF IFLAB=0 THEN PRINT "NO RESULT" SSTOP 
FOR J^==0 TO NZ + 1 
NG(J)===WNCJ) 
NEXT J 
A (I) =ERG :: STORE EIGEN-ENERGY IN VECTOR A(I) 
PRINT "THE VALUE OF I IS="I 
IF 
IF 
IF 
IF 
IF" 
IF 
IF 
1F 

I~2 

1=4 
1=5 
I =6 
1=7 
1=B 
1=8 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
GOTO 

GOSUB 
GOSUB 
GOSUB 
GOSUB 
GOSUB 
GOSUB 
GOSUB 

21000 
21300 
21600 
21900 
22200 
22450 
22750 

NEXT I 
GOSUB 24200 
END 

’ THIS SECTION CALCULATE THE UN-NORMALI ZED EIGEN-VECTOR 
BY ASSIGNING THE FIRST ENTRY OF El GEN-VECTOR NN(1)=1 OR -1.. 

^ N0TE3' NN(1)=1 WHEN THE WAVE FUNCTION HAS EVEN PARITY AND 
WN(1)=-1 WHEN THE WAVE FUNCTION HAS ODD PARITY^ 

REM 
FOR K=i TO NZ 
A2<K)=A1(K)-ERG 
NEXT K 

7950 ITSl=I/2 SITS2=2*ITS1 
8000 IF ITS2=I THEN S1=-1 S S2=A2(1)/BZ S GOTO 8150 
8050 Sl=l 
8100 S2=-1 (A2 < 1) / BZ ) 
8150 WN ( 1 > =S 1 :: WN < 2) =S2 
0200 K=2 
8250 S3=-l-«* (BZ-«^Sl"i"A2 <K) *S2) /BZ 
8300 WN(K>1)=S3 
8350 S1=S2 
8400 S2=S3 
8450 K=K+1 
0500 IF l«=(WZ”l) GOTO 8250 
8550 WN(0)=0 :WN(NZ +1)=0 
8600 RETURN 
8650 
8'700 
8750 " 

8850 " THIS SECTION CALCULATE THE INTEGRAL USING SIMPSON^’S RULE. 
8900 
8950 K=1 
900C> AR=DZ < 0) H-DZ (NZ-H 1 ) •f“4*DZ (l<) 
9050 NN=(NZ+1)72 
9100 FOR K=2 TO WWW 

AS 



9150 

9200 

9250 

93t:)0 

9350 

9400 

9450 

9500 

9550 

9600 

965u 

9700 

9750 

9000 

9050 

9900 

9950 

10000 
10050 

101OO 
10150 

10200 

10250 

10300 

1 0350 

1 0400 

10450 

10500 

10550 

10600 

10650 

10700 

10750 

10800 

10850 

10900 

10950 

1 1000 

11050 

1 1100 

1 1 1 50 

1 1200 

1 1250 

1 1300 

1 1350 

1 1 400 

11450 

1 1500 

11550 

1 1600 

11650 

1 1700 

1 1750 

11800 

1 1850 

KZ==^2*K 
ARH=4*DZ <KZ""1) -+-2*DZ <KZ 
AR:::=AR + ARH 
IMIEXT K 
ARE'^" (HZ/3) *AR 
RETURN 

) 

REN 
I ( I t I ( I I I I i i I i I t I t I I I I I I I I I { i I ! I I I i I I I < I I I ) i I I I I t I I i I I I I I I ) I t 

THIS SECTION CALCULATE THE PROBABILITY DENSITV« 
REN 
F"OR J=0 TO NZ+l 
DZ(J)>=:WN(J)*WN(J> 
NEXT J 
RETURN 

•" ) i i I I I I I I I t I I I i i I I I I I t t I I ! i I I I I t t ) I I I i I ( I I I I I I I I I I I t I I I t t t i i I 

^ ############################################################# 
THIS SECTION CALCULATE THE NORMALIZED WAVE FUNCTION^ 

ARA===ARE 
CN=ARA---“.. 5 2 REN CN IS NORMALIZED CONSTANT 
FOR J==^0 TO NZ + l 
WN <J)=CNKWN(J) 
YZ <J)=WNCJ) 
NEXT J 
RETURN 

^ ############################################################# 

THIS SECTION DETERMINE WHEATHER THE NEARLY EXACT EIGEN- 
ENERGY IS ON THE LEFT/RIGHT HAND SIDE OF THE CALCULATED 
EIGEN-ENERGY WHICH IS COMPUTED BY PREVIOUS PROGRAM 
(APPENDIX A). 
HEREp WE ASSUME THAT THE WAVE FUNCTION HAS SYMMETRY 
ABOUT THE ORIGIN^ FOR EVEN FUNCTION, CP IS THE DIFFERENT 
OF THE WAVE FUNCTION WHICH ARE EVALUATED AT POINTS 
yl AND ylM.. FOR ODD FUNCTION, CP IS THE WAVE FUNCTION WHICH 
IS EVALUATED AT THE ORIGINn 
IFLAG AND IND ARE INDICATORSu 
WHEN IFLAG==^1 INDICATES THAT THE NEARLY EXACT EIGEN-ENERGY 
AND ITS WAVE FUNCTION HAVE BEEN OBTAINED^ 
WHEN IND=0 INDICATES THE EXACT EIGEN-ENERGY LIES ON THE 
LEFT HAND SIDE OF THE CALCULATED EIGEN-ENERGY (APPENDIX A)„ 
WHEN IND=-“-=^l INDICATES THE EXACT EIGENVALUE LIES ON THE RIGHT 
HAND SIDE OF THE CALCULATED EIGEN-ENERGY (APPENDIX A)« 

"############################################################## 
THIS SUBSECTION FOR THE WAVE FUNCTION HAS EVEN PARITY. 

I FI... AG=0 
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11.900 ERG=^==A (I) 
11950 GOSUB 7800 S GOSUB 9750 :: 0QSLIB 8950 : GOSUB 10250 
12000 CP~ABS(WN(1)-WN(N)) 
12050 IF CP<0====1E"08 THEN IFLAG=1 i: GOTO 12400 
12100 CP1==CP 
12150 EF^G:=«EFi:0-+-. 000005 
12200 GOSUB 7800 ;GOSUB 9750 SGOSUB 8950 iGOSUB 10250 
1 2250 CP== ABS (WN C1 ) •”WN (N) ) 
12300 IF CP<=lE-08 THEN IFLAG=1 :GOTO 12400 
12350 IF CP>CP1 THEN IND™0 ELSE IND==--1 
12400 RETURN 
12450 
12500 =• ############################################################# 
12550 

12650 " THIS SUBSECTION FOR THE WAVE FUNCTION HAS ODD PARITY^ 
12'700 
12750 IFLA0==O 
12800 ERG-.==:=A < I) 
12850 GOSUB 7800 1; GOSUB 9750 :: GOSUB 8950 2 GOSUB 10250 
12900 Nl== (N-+-1)/2 
12950 CP=WN(N1) 
13000 IF ABS<CP>01E“-08 THEN IFLAG=1 S GOTO 13500 
13050 CP1=CP 
13100 ERG-ERG -i" „ 000005 
13150 GOSUB 7800 i: GOSUB 9750 :: GOSUB 8950 S GOSUB 10250 
13200 CP=WN(N1) 
13250 
13300 
13350 
13400 
13450 
13500 
13550 
13600 
13650 

IF <CP<0) XOR (CPKO) THEN IND==1 S GOTO 13500 
IF CP<0 GOTO 13450 
IF CP <CP1 THEN IND=1 ELSE IND=0 
GOTO 13500 
IF ABS(CP) < ABS<CPi> THEN IND=-1 ELSE IND=0 
RETURN 

* 

13750 
13800 
1 3850 
139C)0 
13950 
14000 
14050 
1.41 C>0 
14150 
142.00 
14250 
14300 
14350 
14400 

14450 
14500 
14550 
14600 

'‘BttttnunuttMttnttUttU ttttuaittuuiaefiuMRUituiittouunasiBuunttUKttuttouuftBaaatjaatttatin 
RAttunsiiunauautscnnutinuunoHituuetsaflennnnniiBitcansaiiuiiiiitnuiiaaanusiitaiiai 

MOST OF THE CALCULATION OF FINDING THE NEARLY EXACT EIGEN- 
VALUE AND ITS ElGEN-VECTOR ARE IN THIS SECT ION„ 

HERE, WE ASSUME THAT FOR A RANGE OF ENERGIES WHICH ARE IN 
THE NEGHBDURHOOD OF CALCULATED EIGENVALUE, THE CC^S OR CP=’S 
VALUES FORM A CONCAVE CURVE, 

-I- -4- -j.. 4. ..4 M}» .4 4.4.4.4...f» 4. 4. 4.4.4. 4.4...(».4.4. -j.. M|.. 4.4.4. .4 4.4.4.4.M|.. 4.4.4. >|. .4 4.4.4.4.4- 4. .f....(»..j.. 4 

FOR IMD===0 

IFLAG==0 
I NC===0 
ITSl==<i:/2 
ITS2=2’«-ITS1 
Nl==: (N-Hl ) /2 
IF Y2 > 3,6 GOTO 14850 
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14650 TT:===„01 
14700 IF I••=3 THEN TT=.. 0001 TT IB A DE-V INCREMENT 
14750 IF I>™4 THEN TT--000001 
14800 GOTO 15250 
14850 IF Y2 > 5 GOTO 15100 
14900 TT=,001 
14950 IF I"-■-•3 THEN TT=.. 00001 
15000 IF I>=4 THEN TT™.. 000001 
15050 GOTO 15250 
15100 TT'™.. 0001 
15150 IF I ===3 THEN TT=. 000001 
15200 IF I >==4 THEN TT=„ 0000001 

SINCE THE EIGEN-EMERGY 
WHICH CALCULATED BY 
PREVIOUS PROGRAM HAS 
BETTER ACCURACY AS I 
INCREASES, THEREFOREp TT 
BECOMES SMALLER AS I INCREASES 

15250 EL=A(I>“TT 
15300 EhNA(I) 
15350 ERG===EL 
15400 IF INOIOOO THEN PRINT "EXIT THE LIMIT" :: STOP 
15450 HE-=“- (EH“ EL) / 10 
15500 FOR J8===0 TO 10 
15550 ERG^=ERG+J8^HE 
15600 EG (J8> ^:=4IRG 
15650 GOSLIB 7800 U GOSUB 9750 :: GOSUB 8950 ^ GGSUB 10250 
15700 IF I=ITS2 THEN GOSUB 23550 SGOTO 16000 
15750 CP=--ABS < WN < 1) -WN (N) ) 
15800 IF CPOlE-08 THEN IFLAG^l SGOTO 17000 
15350 ZJ(J8>--:=CP 
15900 PRINT "CP <"J8")^"ZJ(JS> 
15950 GOTO 16200 
16 C> C) 0 C C=W N < N1 > 
16050 IF ABS<CC>< lE-OS THEN I FLAG-1 .I GOTO 17000 
16100 ZJ < J8)=ABS(CC) 
16150 PRINT "CC<"Je")-"ZJ<J8> 
16200 NEXT J8 
16250 CMIN-ZJ<0) 
16300 Jl-0 
16350 FOR K-1 TO 10 
16400 IF ZJ<K) < CMIN THEN CMIN-ZJ<K) SJl-K 
16450 NEXT 1< 
16500 PRINT "INC IS=="INC 
16550 KW-Ji 
16600 K0™KW-“1 
16650 KP™KW+1 
16700 IF Jl-0 THEN EH-EL S EL-EL--TT : IIMD=^INC+1 .‘i GOTO 15350 
16750 EL=EG(KQ> 
1 6 EB 0 O E H E G (K F') 
16850 IF (EH~ELX1E-15 THEN PRINT "THE ASSUMPTION IS WRONG" n STOP 
16900 ER6==EL 
16950 GOTO 15450 
17000 RETURN 
17050 
1 7 !l. 0 '* "1“ "I" •+• H- H- "i" “i” "I" "1“ H" -j- -j- •+• ■+H* -l“ "fr- H" + •+• ~l" -f- -f- -f- -j- -f- ..j- -.f" -j- ~f- -I- -j- -f- 

17200 
17250 
17300 
17350 

FOR IND-1 

All 



rJ
 K

! 

17400 INC~«0 
174S0 IFLAG^O 
;i.7S00 ITSl=*I/2 
171550 ITS2««2*ITS1 
17600 wn^~- asH-l) /2 
17650 IF Y2 > 3,6 GOTO 17900 
17700 TT«,01 
17750 IF I===:=3 THEN TT=:=«,0001 
17000 IF I>-4 THEN TT=«„ 000001 
17850 GOTO 18300 . 
17900 IF Y2 > 5 GOTO 18150 
17950 TT===„ 001 
18000 IF I==3 THEN TT-, 00001 
18050 IF I>-4 THEN TT^^„ 000001 
18100 GOTO 18300 
18150 TT-..0001 
1S200 IF 1=3 THEN TT=„000001 
10250 IF I>=4 THEM TT=„0000001 
18300 EL=A(I) 
18350 EH=A<I)+TT 
18400 ERG=EL 
10450 IF INC > 1000 THEN PF<INT "EXIT THE LIMIT " i: STOP 
18500 HE*(EH-EL)/lO 
10550 FOF< J7*0 TO 10 
18600 ERG*EF*<G-+-J7-«-HE 
18650 EG(J7)=ERB 
18700 eOSLIB 7800 i: GOSUB 9750 S GOSUB 8950 S GOSUB 10250 
18750 IF I = ITS2 THEN GOSUB 23550 :: GOTO 19050 
18800 CP*ABS (WN ( 1 ) -iAlN (N) ) 
18850 IF CP< = 1E"08 THEN I FLAG* 1 GOTO 20050 
18900 ZJ<J7)*CP 
18950 PRINT "CP <"J7")*"ZJ C J7 > 
19000 GOTO 19250 
19050 CC*WN(N1) 
19100 IF ADS(CC) < 1E~08 THEN IFLAG*1 ^GOTO 20050 
19150 Z J < J7) *ABS (CO 
19200 PRINT "CC("J7")*"ZJ<J7) 
19250 NEXT J7 
19300 CMIN*ZJ(0> 
19350 FOR K=1 TO 10 
19400 IF ZJ(K) < CMIN THEN CMIN=ZJ (K) ;:J1*K 
19450 NEXT K 
19500 PRINT "INC IS*"INC 
19550 KA*J1--1 
19600 KB*J1+1 
19650 IF Jl*10 THEN EL=EH S EH*EHH-TT INC*INC+1 S GOTO 18400 

19700 

19750 EL*EG(KA) 
19800 EH*E8(KB> 
19850 IF (EH“-ELX1E-15 THEN PRINT "NEED SMALLER TOLERANCESTOP 
19900 ERG*EL 
19950 GOTO 18500 
0000 =• 

0050 RETURN 
20100 
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20 :l. 50 
20200 
20250 
20300 
20350 
20400 
20450 
20500 
20550 
20600 
20650 
20700 
20750 
20000 
20850 
20900 
20950 
2 :l. 000 

23.050 
21 100 
21150 
21200 
21250 
21300 
21350 
21400 
21450 
21500 
21550 
21600 
21650 
21700 
21750 
21SOO 
21850 
21900 
21950 
22000 
22050 
22100 
22150 
22200 
22250 
22300 
22350 
22400 
22450 
22500 
22550 
22600 
22650 
22700 
22750 
22000 
22850 

iii! lifi! H @ fill000000000000000000000000000001«!000000000000000000000000!‘i 0 0 8 0 
!■ ' \ 

^ I I i I I I I I I I I I I I I I I I I I I I I I 1 I t I I I I I I I I t I i I I I I I I t I I ) I I i I I 1 I i I I t I I I I I 

THIS SECTION STOFilES THE NEARLY EXACT WAVE 

’’ THE 1=’ST EXCITED STATE EIGENVECTOR STORED 
“ THE 2-'ND EXCITED STATE EIGENVECTOR STORED 
^ THE 3'TH EXCITED STATE EIGENVECTOR STORED 
=■ THE 4n“H EXCITED STATE EIGENVECTOR STORED 

THE 5--TH EXCITED STATE EIGENVECTOR STORED 
=• THE 6’TH EXCITED STATE EIGENVECTOR STORED 

THE 7''TH EXCITED STATE EIGENVECTOR STORED 

OPEN " 0 •' #3, WAVEFGN2 " 
FOR IO--0 TO NZ4-1 
PRINT #3,WG<K) 
NEXT K 
CLOSE #3 
RETURN 
OPEN ” O 'S #4, ” WAVEFCN3 '• 
FOR K==0 TO N2+1 
PRINT #4,WG<K) 
NEXT K 
CLOSE #4 
RETURN 
OPEN " 0'' , #5“ WAVEFCN4 " 
FOR l■••.>0 TO NZ + 1 
PRINT #5,WG<K) 
NEXT K 
CLOSE #5 
RETURN 
OPEN "O",#6,”WAVEFCN5" 
FOR K>0 TO NZ+1 
PRINT #6,WG<I<> 
NEXT K 
CLOSE #6 
RETURN 
OPEN "0”,#7, "WAVEFC1M6" 
FOR K=0 TO NZ-+-1 

PRINT #7HWG<K) 

NEXT K 
RETURN 
OPEN ■■ O #8, " WAVEFCN7 “ 
FOR TO WZ + 1 
PRINT #8,WG<K) 
NEXT K 
CLOSE #8 
RETURN 
OPEN “0’%#9, "WAVEFCNe** 
FOR K=0 TO NZ+1 
PRINT #9jWG(K.’> 

FUNCTIONS 

IN WAVEFCN2 FILER’S 
IN WAVEFCN3 FILE'S 
IN WAVEFCN4 FILE'S 
IN WAVEFCN5 FILE'S 
IN WAVEFCN6 FILE'S 
IN WAVEFCN7 FILE'S 
IN WAVEFCN8 FILE'S 
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22900 
22950 
23000 
23050 
23 100 
23 ;i. 50 
23200 
'7.’ '■? Q 

23300 

23400 
23450 
23500 
23550 
23600 
23650 
23700 
23750 
23800 
23f350 
23900 
23950 
24000 
24050 
24100 
24150 
24200 
24250 
24300 
24350 
24400 
24450 
24500 
24550 

NEXT l< 
CLOSE #9 
RETURN 

^ I I I I I I I I I I I I I I I I I I 

SINCE THE ODD PARITY WAVE-FUNCTION IS ODD FUNCTION THEN 
, IN ORDER TO COMPARE THE ENTRIES OF THE ElBENVECTOR, WE 
NEED TO NEGATE THE HALF ENTRIES OF THE ElBEN-VECTOR„ 
THIS PROCESS IS DONE IN THIS SECTION 

NPl^riM+l 
NH==NPl/2 ’ . 
FOR H;>1 TO NH 
WF (NP1 “K) 1 «-WF (NP1 -K) 
NEXT K 
RETURN 

=■ THIS SECTION STORE THE NEARLY EXACT EIGEN-ENERGY IN NEWERG 
FILE. 

OPEN " O " # :l. O, " NEWERG " 
FOR h;>=l TO 8 
PRINT #:I.O,A<K> 
NEXT l< 
CLOSE #10 
RETURN 
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APPFNniX c 

:l. 000 =' 

:1050 =• 
:U.00 
U50 
1200 =* 

1250 =’ 
1300 =• 
1350 
1400 =’ 
1450 =■ 
1500 '■ 
1550 =■ 

THIS PR0GF=;:AM CALCULATES THE RELATIVE POLARIZABILITIES 
OFGROUND STATE AND HIGHER STATES OF THE RESTRICTED 

OSCILLATORS WITH/WlfHOUT DIPOLARINTERACTION. 

THIS PROGRAN IS WRITTEN IN MICROSOFT BASIC AND MUST BE 
COMPILED IN ORDER TO SPEED UP THE CALCULATION- 

THIS RELATIVE POLARIZABILITY IS DEFINED BY EQUATION <IV::l) 
:• IN THE THESIS- 

> WHERE n=0 IS THE GROUND STATE POLARIZABILITY^ 
n==l IS THE FIRST EXCITED STATE POLARIZABILITY-ETC- 

1600 =■ 
1650 WE, OF COURSE, USE THE CALCULATED EIGENVALUES AND El GEN- 
1700 VECTORS WHICH ARE COMPUTED BY COMPUTER ( REFER TO APPENDIX A 
1750 •- AND B> TO CALCULATE THE RELATIVE POLAR IZ ABILITY- 
1800 =• 
1050 =■ 
1900 LPRINT 
1950 REM 
2000 DEFDBL AD, H, M, W, Y 
2050 DEFSNG B,P 
2100 DEFINT I,J,K,N 
2150 FRTNT "THE NUMBER OF POINT MUST BE AN 
2200 INPUT "THE NUMBER OF POINT IS";N 

2250 =* 
2300 INPUT "THE VALUE OF Y1"5Y1 
2350 INPUT "THE VALUE OF Y2"?Y2 
2400 LPRINT 

S REM DECLARE INTEGER. 
ODD NUMBER" 

SREM N IS THE NUMBER OF POINT 
BETWEEN THE BOUNDARY POINTS 

SREM Yi IS REFERRED TO -YO 
:REM, Y2 IS REFERRED TO +Y0 

2450 LPRINT "THE NUMBER OF POINT BETWEEN BOUNDARY POINTS IS" N 
2500 LPRINT 
2550 LPRINT "THE LEFT HAND SIDE LIMIT IS " Yl 
2600 LPRINT 
2650 LPRINT "THE RIGHT HAND SIDE LIMIT IS " Y2 
2700 LPRINT 
2750 LPRINT 
2800 NZ«=-N SREM NZ WILL BE USED LATER. 
2850 H:=-<Y2“i*Yl)/<N+l) SREM H IS LENGTH BETWEEN Yi 
2900 HZ=H : =• AND Yi+1- 
2950 REM 
3000 DIM A (10) MD (10) , DP (SO) , DZ (SO) , WF (80) , WG (SO) , B (10) 
3050 GOSUB 18300 
3100 LPRINT 

3200 =• THIS SECTION CALCULATE THE RELATIVE POLARIZABILITY OF 
3250 •- GROUND ST ATE- 
3300 
3350 GOSUB 13100 S GOSUB 18850 
3400 FOR I==2 TO 8 
3450 IF 1=2 THEN GOSUB 13750 
3500 IF 1=3 THEN GOSUB 14400 
3550 IF 1=4 THEN GOSUB 15050 
3600 IF 1=5 THEN GOSUB 15700 
3650 IF 1=6 THEN GOSUB 16350 
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3700 IF 1=^=7 THEN GOSUB .1.7000 
3750 IF 1*8 THEN GOSUB 17650 
3800 FOR J«0 TO NZ+1 
3850 DP(J)*WG < J > *WF(J)*(Y1+J*HZ) 
3900 DZ(J)*DP(J) 
3950 NEXT J 
4000 GOSUB 12250 
4050 MD(I)=ARE 
4100 NEXT I 
4.1.50 GOSUB 18300 
4200 MD(1)*0 :MTX*0 
4250 FOR K=2 TO 8 
4300 MTX*MTX+(MD <K>) 
4350 NEXT K 
4400 P«MTX 
4450 
4500 

SREM CALCULATE THE INTEGRAND OF 
:REM DIPOLE MATRIX- 

SREM MD<I) IS A MATRIX 0IPOLE- 

REM MTX IN HERE IS THE RELATIVE 
POLARIZABILITY OF GROUND 
STATE- 

2/ <A(H::)-A(1) ) 

LPRINT 
LPRINT “THE RELATIVE POLARIZABILITY AT T*0 KELVIN IS*" P 

4550 LPRINT 
4600 LPRINT "THE REL POL IN DOUBLE PRECISION IS*"MTX 
4650 ^ 

4750 =• 
4800 **-«****#*******#*-«”«-»(-***-»"«")(-#-^-«-«"»(-***#****-)f#*#>«-**-)f*)f-)f #****•«•■«•■»•*•«•***•«•**# 
4850 •- THIS SECTION CALCULATES 
4900 =• FIRST EXCITED STATE- 
4950 
5000 LPRINT 
5050 GOSUB 13750 S GOSUB 18850 
5100 FOR 1*1 TO 8 
5150 IF 1*1 THEN GOSUB 13100 
5200 IF 1*2 THEN I*H-1 
5250 IF 1*3 THEN GOSUB 14400 
5300 IF 1*4 THEN GOSUB 15050 
5350 IF 1=5 THEN GOSUB 15700 
5400 IF 1*6 THEN GOSUB 16350 
5450 IF 1*7 THEN GOSUB 17000 
5500 IF 1*8 THEN GOSUB 17650 
5550 FOR J*0 TO NZ+1 
5600 DP < J ) = WG < J > WF < J ) ■«• < Y1 •+• J *H Z ) 
5650 DZ(J)*DP(J) 
5700 NEXT J 
5750 GOSUB 12250 
5800 MD(I)*ARE 
5850 NEXT I 
5900 GOSUB 18300 
5950 MD<2)*0 SMTX*0 
6000 FOR K=1 TO 8 
6050 IF K*2 GOTO 6150 
6100 MTX*MTX +(MD(K)> /(A <K)-A <2) > 
6150 NEXT l< 
6200 P*MTX 
6250 LPRINT 
6300 LPRINT 
6350 LPRINT "FilELATIVE POLARIZABILI 
6400 LPRINT 

RELATIVE POLARIZABILITY OF 

SREM CALCULATE THE INTEGRAND OF 
:REM MATRIX DIPOLE- 

SREM MD<I) IS A MAtRIX DIPOLE- 

SREM MTX IN HERE IS THE RELATIVE 
S =• POLARIZABILITY OF THE FIRST 
S’ EXCITED STATE. 

OF THE 1=*ST EXCITED STATE IS*" P 
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6450 LF-^RINT "THE REL POL OF ABOVE IN DOUBLE PRECISION IS«"MTX 
6500 LPRINT 
6550 =■ 
6600 
6650 
'6700 
6750 
6000 
6850 
6700 
6950 
7000 
7050 
7100 
7150 
7200 
7250 
7300 
7350 
7400 
7450 
7500 
7550 
7600 
7650 
7700 
7750 
7800 
7850 
7900 
7950 
8000 
0050 
8100 
8150 
8200 
8250 
8300 
8350 
8400 

THIS SECTION CALCULATE THE RELATIVE POLARIZABILITY OF 
SECOND EXCITED STATE„ 

GOSUB 14400 60SUB 18850 
FOR 
IF I 
IF I 
IF I 
IF I 
IF I 
IF 
IF 
IF 
r-"OR 

1=1 TO 8 
= 1 

:4 
•O 
=6 
:~7 

1 = 
1 = 
1=8 
J=0 

THEN 
THEN 
THEM 
THEN 
THEN 
THEN 
THEN 
THEN 

GOSUB 
GOSUB 
1 = 14-1 
GOSUB 
GOSUB 
GOSUB 
GOSUB 
GOSUB 

13100 
13750 

15050 
15700 
16350 
17000 
1 7650 

TO NZ4-1 
DP (J) =WG < J) *WF (J) * <Y14-J*HZ) 
DZ (J)=DP<J) 
NEXT J 
GOSUB 12250 
MD(I> =ARE 
NEXT I 
GOSUB 18300 
MD<3)=0 SMTX=0 
FOR K=1 TO 8 
IF l<=3 GOTO 8000 
MTX=MTX4- <MD (K) ) --2/ < A (K> ~A <3) ) 
NEXT K 
P=MTX 
LPRINT 
LPRINT 
LPRINT 
LPRINT 
LPRINT 

REM THIS LOOP 
REM INTEGRAND 

CALCULATE 
OF DIPOLE 

THE 
MATRIX 

REM MD(I) IS THE DIPOLE MATRIX 

REM MTX IN HERE IS 
POLARIZABILITY 

=• EXCITED STATE. 

THE RELATIVE 
OF THE SECOND 

RELATIVE POLARIZABILITY OF THE ND EXCITED STATE IS^ 

"THE REL POL OF ABOVE IN DOUBLE PRECISION IS="MTX 

8450 ■* 
R500 I t I ) I ) I i ( I I t I I I I I < I I ) I I I I ( I I I I I i I I i I i I t i I I I I > I I 1 i t I ( I I I t I i I ) I i I 

8550 THIS SECTION CALCULATE THE RELATIVE POLARIZABILITY OF 
8600 =■ THIRD EXCITED STATE. 
8650 =■ 
8700 
8750 
8800 
3850 
8900 
8950 
9000 
9050 
9100 
9150 

GOSUB 1 
FOR 1=1 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 

1 = 1 
1=2 

1=4 
1=5 
1=6 
1=7 
1=8 

5050 
TO 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

GOSUB 18850 
8 

GOSUB 
GOSUB 
GOSUB 
1 = 1 + 1 
GOSUB 
GOSUB 
GOSUB 
GOSUB 

13100 
13750 
14400 

15700 
16350 
17000 
17650 

I 
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9200 FOR TO NZ + l 
9250 OF--* < J ) = WG < J ) *WF (J > # (Y .1 •+• J -H-H Z ) 
9300 DZ(J)=«DP(J) 
9350 NEXT J 
9400 GOSUB 12250 
9450 MD<I):=ARE 
9500 NEXT I 
9550 GOSUB 18300 
9600 MD(4>-0 :MTX=0 
9650 FOR K=1 TO 8 , 
9700 IF K-^4 GOTO 9800 
9750 M T X=M T X H- < M D < K > ) 2 / (A < l<) -■ A (4) ) 
9800 NEXT K 
9850 F--MTX 

IREN THIS L.GOF^' CALCULATES THE 
INTEGRAND OF DIPOLE MATRIX 

:REM MD(I) IS THE DIPOLE MATRIX.. 

SREM MTX IN HERE IS THE RELATIVE 
; POLARIZABILITY OF THIRD 
S" EXCITED STATEu 

9900 LPRINT 
9950 LPRINT "RELATIVE POLARIZABILITY OF THE 3=‘RD EXCITED STATE IS=” P 
10000 LPRINT 
10050 LPRINT "THE REL POL OF ABOVE IN DOUBLE PRECISION IS====^"MTX 
10100 " 

j ("} 150 ^ I I I t t I I I I t I I I I t t I I t I I I I I i I I t 1 I I i I I I I i I I I I I I I i I I I i i i I I I I I I I ( I I i 

10200 

10300 " THIS SECTION CALCULATE THE RELATIVE POLARIZABILITY OF 
10350 FOURTH EXCITED STATE. 
10400 ■” 
10450 GOSUB 15700 S GOSUB 18850 
10500 FOR I==l TO S 
10550 IF L==^l THEN GOSUB 13100 
10600 IF 1=2 THEN GOSUB 13750 
10650 IF" 1=3 THEN GOSUB 14400 
10700 IF 1=4 THEN GOSUB 15050 
10750 IF 1=5 THEN I = H-1 
lOSOO IF 1=6 THEN GOSUB 16350 
10850 IF 1=7 THEN GOSUB 17000 
10900 IF 1=8 THEN GOSUB 17650 
10950 FOR J=0 TO NZ-i-l 
11000 DP (,.7 ) =NG < J ) M4F (J ) * (Y1 •+• J-s-i-iZ ) 
11050 DZ(J)=DP(J) 
11100 NEXT J 
11150 GOSUB 12250 
11200 MD<I)=ARE 
11250 NEXT I 
11300 GOSUB 18300 
11350 MD(5)=0 ::MTX=0 
11400 FOR K=1 TO 8 
11450 IF l<=5 GOTO 11550 
11500 MTX=MTX+(MD <K) ) • ■2/(A <K)-A(5) ) 
11550 NEXT l< 

TREM THIS LOOP CALCULATE THE 
INTEGRAND OF DIPOLE MATRIX. 

"REM MD(I) IS THE DIPOLE MATRIX. 

SREM MTX IN HERE IS THE RELATIVE 
; POLARIZABILITY OF FOURTH 
S ^ EXCITED STATE. 

11600 P=MTX 
11650 LPRINT 
11700 LPRINT "RELATIVE POLARIZABILITY OF THE 4^TH EXCITED STATE IS=" P 
11750 LPRINT 
11800 LPRINT "THE REL POL OF ABOVE IN DOUBLE PRECISION IS="MTX 
11850 =* 
1 1 900 
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1 :l. 950 END 
12000 REM 
12050 " 
1 2 1 0 (,“) " * X- * -X- -X' X- -X- * * X- -X- X- X- ■«• W- •«• X- X- X * X- X' X- X- X- X- X- X- X- X- X- X- X X X X X X X- X- X- X X X X X X X- X X X X X X X' X X X X X X 
12150 THIS SECTION CALCULATE THE INTEGRAL USING SIMPSON'S RULE. 
12200 ■■ 

12250 K>==1 
1 2300 AR====DZ < 0) -i-DZ (NZ 1 > x4xDZ (K) ^ REM DZ <I ) IS THE INTEBRAND 
12350 NN==MNZ -i- i)/2 S =* AT POINT Yi „ 
12400 FDR l=;>:=2 TO NN 
12450 KZ==2*K 
12500 ARH=:==4xDZ <KZ-1 > +2xDZ (KZ--2) 
12550 AR=AR4-ARH 
12600 
12650 
12700 
12750 
12800 
12S50 
12900 
12950 
13000 
13050 
13100 
13150 
13200 
13250 
13300 
13350 
1 34<;>0 
13450 
13500 
13550 
13600 
13650 
1 3700 
13750 
13800 
13850 
13900 
13950 
14000 
14050 
:l. 41 <:>o 
14150 
14200 
14250 
14300 
14 5 

;| 4400 

14450 
14500 
14550 
14600 
14650 

NEXT i< 
ARE==- <HZ/3> *AR 
RETURN 

THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE GROUND 
STATE ElGEN-VECTOR« 

OPEN " I '■ 5 #2, " WAVEFCM1 " 
FOR lO^-O TO NZ”«"1 
INPUT #2,14(3 (K> 
NEXT K 
CLOSE #2 
RETURN 

** !* 9 9 9 ? ? ? n ? 9 9 9 9 

THIS SECTION ACCESnSES THE FILE WHICH CONTAINS THE FIRST 
EXCITED STATE EIGEN-VECTOR„ 

□PEN "I",#3,”WAVEFCN2" 
FOR !<--=0 TO NZ~M 
INPUT #3,WG(K) 
NEXT K 
CI....QSE #3 
RETURN 

■■’ xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx 

I I i j t I I 1 I I I I t I I I I I ( I I I I ) I I I I I 1 I I t I ) I t ) I I I I I I I I I 1 ! I I I I I I I I t i I I i 

^ THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE SECOND 
EXCITED STATE El GEN-VECTOR „ 

□ PEN "I"H #4,”WAVEFCN3" 
FOR 1-0=0 TO NZ-hl 
INPUT #4,, WG(K) 
NEXT K 
CLOSE #4 
RETURN 
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I 4700 
;l. 4750 
:l. 4B00 
:l. 4850 
1 4900 
:l. 4950 
;i. 5000 
15050 
151.00 
15150 
15200 
15250 
15300 
15350 
15400 
15450 
15500 
15550 
15600 
15650 
15700 
15750 
15800 
15B50 
15900 
15950 
16000 
16050 
16100 
16 i. 

16200 
16250 
16300 
16350 
16400 
16450 
16500 
16550 
16600 
1665<..> 
16700 
16750 
16 Sou 
16 S 5 O 
16900 
16950 
1 7000 
17050 
17100 
17150 
17200 
17250 
17300 
17350 
17400 

^ I I I I I I I i 1 I I I I t I I I 1 I i I f I i ( i t I t t I I I t I i t t I I f i ) I I I i I I I i I I 1 ) t i I i I ! ! ) 

=■ THIS ‘SECTION ACCESSES THE FILE WHICH CONTAINS THE THIRD 
=• E XCI TED STATE EIGEN--VECTOR „ 

OPEN " I ■■, #5, "WAVEFCN4" 
FOR K-0 TO NZ+1 
INPUT #5,W8(K) 
NEXT K 
CLOSE #5 
RETURN 

$ 5^ 1$ f^ 1|> $«{) $ $ $ i|» f Ji $ <{i ^ ^ ^ ^ ^ ^*4>^ ^ 5|> ^ T> ^ 

THIS SECTION ACCESSES THE FILE 
EXCITED STATE ElGEN-VECTORS 

WHICH CONTAINS THE FOURTH 

OPEN ”I",#6,"WAVEFCN5" 
FOR K==-0 TO NZ + 1 
INPUT #6,WG(K) 
NEXT K 
CLOSE #6 
RETURN 

" THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE FIFTH 
EXCITED STATE EIGEW--VECTOR- 

OPEN " I ■'#7, " WAVEFCN6 ” 
FOR lOO TO NZ + 1 
INPUT #7.. WG<K) 
NEXT l< 
CLOSE #7 
RETURN 

^ I I ( I I I ( I i I I I I I I I I I I I I I I I I I I I I i I i I I I t I I I ! I 1 i I t t I I t ! t t I I I I i t i I ) I 

THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE SIXTH 
EXCITED STATE EIGEN-VECTOR» 

OPEN “ I ” , #8, ■■ WAVEFC1M7 ” 
FOR K--.--0 TO NZ + 1 
INPUT #B,WG(K> 
NEXT K 
CLOSE #8 
RETURN 

•*< ) I 1 I I I t I I I I I I I I I I I t C I I I I i I I t ) I I ) I { f I t I i i t 1 I I t I i ( 1 I 1 I I t I I 1 I I I 1 I 
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17500 =■ THIS S3ECTIDM ACCESSES THE F^LE WHICH CGNTAINB THE SEVENTH 
17550 =' EXCITED STATE EIGEN-VECTOR.. 
17600 =* 
17650 GREIIM ” I " , #9, ”WAVEFCN8” 
17700 FOR K-=--=0 TO NZ + 1 
17750 I NF“'UT #9, WG (K ) 
17800 NEXT K 
17850 CLOSE #9 
17900 RETURN 
17950 =■ 

18050 " 
18 ;l. 00 =■;: 2 s :;::::; s :; s 2 s 2 s :;;;:: s ^ s :: i: s s s s «;: s s s s : s :; ^ s s s s s 2 1! ; s s s s s s : :: 
18150 ^ THIS SECTION ACCESSES THE F-ILE WHICH CONTAINS THE 
18200 ^ CALCULATED EIGEN-ENERGIES„ 
18250 =■ 
18300 OPEN " r ■,, # 10 p " NEWERG " 
18350 FOR K>1 TO 8 
:l. 8400 INPUT # 10, A < l<) 
18450 NEXT K 
18500 CLOSE #10 
18550 RETURN 
1 8600 =• 2 2 2 2 2 2 2 2 :: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 S S 2 2 2 2 2 2 2 2 2 2 2 2 :: 2 ::: 2 2 
18650 ^ 
18 7 O O C§ 0 00000»1 Eli! (fi!0000000000@00000000000000©00000il 0 @ 0 0000000<100000000 
1ET750 =• THIS SECTION ASSIGNS WF <K) ===WG (K) -for to n+1 C El GEN- 
1880O •- ••- V E C T 0 R 3-. 
18850 FOR K>0 TO NZ-+1 
18900 WF (K) ===WG (K) 
18950 NEXT K 
19000 RETURN 
19050 '@00000000000000000000000000000000000000000000000000000000000000 
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APPENDIX n 
1000 
;i. 0'50 
1 :i, 00 
I ;i.50 

1200 
:l 250 
1300 
1350 
14C>0 
1450 
1500 
1550 
1600 
1650 
1 700 
1750 
1000 

1850 
1900 
1950 
2000 
2050 
2100 
2150 
2200 
2250 
2300 
2350 
2400 
2450 
2500 
2550 
2600 
2650 
2700 
2750 
2000 
2850 
2900 
2950 
3000 
3050 
3100 

3150 
3200 
3250 
3300 
3350 
3400 
3450 
3500 
3550 

^ THIS PF^GGRAM IS WRITTEN IN NICROBOF"!' BASIC FOR NORTH STAR 
HORIZON COMPUTER,, THIS PROGRAM RUN IN COMPILED BASIC. 

$ 1|> l|i <4> I|> Hi Hi Hi Hi Hi Hi Hi Hi Hi ^ti Hi Hi Hi Hi Hi Hi iFi $ Hi Hi $ Hi Hi Hi Hi Hi Hi Hi Hi Hi $ $ Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi $ Hi Hi Hi Hi Hi Hi ^ Hi Hi Hi Hi Hi Hi Hi Hi 

PURPOSE TO CHECK THE COMPUTED EIGEN-ENERGY 
AND EIGEN FUNCTION ARE CORRECT OR NOT ( WITHIN 
THE LIMIT )« 

S REM DECLARE INTEGER 
DEFDBL A,B,E,Y,WMD,H,Z 

DEFINT I.J.KpN 
REM 
PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER" 
PRINT 
INPUT "THE NUMBER OF POINT IS",N HREM N IB THE NUMBER OF POINT 

BETWEEN THE BOUNDARY POINTS 
INPUT "THE VALUE OF Y1"?Y1 
INPUT "THE VALUE OF Y2";Y2 
PRINT "IF THE SYSTEM IB A RESTRICTED OSCILLATOR ONLY THEN THE" 
PRINT "SYSTEM IS INDEPENDENT OF ANGULAR FREQUENCY" 
PRINT 
INPUT "THE ANGULAR FREQUENCY IS"?WO 
PRINT 
PRINT "THE NUMBER OF POINT BETWEEN BOUNDARY POINTS IS" N 
PRINT 
PRINT "THE LEFT HAND SIDE LIMIT IS= 
PRINT 
r-'RINT "THE RIGHT HAND SIDE LIMIT IS 
PRINT 
PRINT "THE ANGULAR FREQUENCY IS"5 WO 
PRINT 
•- DEF FNV(Y)===(.5-f«-Y)--2 S REM POTENTIAL ENERGY FUNCTION- 
DEF FNV < Y) < Y/2) ■■••2* (1- (903355060#/ ( (Y2--3) «• (WO'-- 5) ) ) ) 

IF THE SYSTEM IS RESTRICTED OSCILLATOR WITHOUT DIPOLAR INTERACTION 
•- THEN #2600 SHOULD BE ACTIVATED ELSE #2650 SHOULD BE ACTIVATED. 

Y1 

Y2 

NZ==N 
F“|:==:: (Y2-1*Y1 ) / (N+l ) 
REM 
DIM A (BO) H WF<eO) E(10) ^ Z (80) 

SREM NZ WILL BE USED LATER- 
2 REM H IS LENGTH BETWEEN Yi AND Yi+1 

REM 

2 F\'EM THIS LOOP IS USED TO FIND 
2 REM THE VALUES OF Yi AND THE 
2 REM ENTRIES OF Aii. 

!>600 

MATRIX CA-l IS A TRI DIAGONAL MATRIX, THEN WE CAN USE 3 VECTORS FOF 
REPRESENTING MATRIX f:A3. 

REM 
FOR TO N 
Y=Y1+I*H 
VY=FNV(Y) 
A(I>=2/(H-;2)-+-VY 
NEXT I 
B^“l/(H-2) 2REM Bi IS THE SUBDIAGONAL OF CA3- 
GOSUB 9200 
FOR I===l TO 8 
IF 1=^1 THEN GOSUB 5600 
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S6>'5V 
3700 

3750 

3000 

ZB30 
":S900 

3950 

4000 

4050 
4 1 C>0 

4:1.50 

4200 
4250 

4300 
4350 

4400 

4450 

4500 

4550 
4600 

4650 

4700 

4750 

4000 

4850 

4900 

4959 

500C> 

5050 

5100 

5150 

5200 

5250 

5300 

5350 

5400 

5450 

5500 

5550 

5600 

5650 

5/^00 

5750 

5B00 

5850 

5900 

5950 

6000 

6050 

6 ;L 00 

6150 

6200 

6250 

IF THEN GOSUB 6250 
IF THEN GOSUB 6900 
IF 1=^4 THEN GOSUB 7550 
IF THEN GOSUB 7950 
IF I=>«6 THEN GOSUB 0250 
IF 1^7 THEN GOSUB 0550 
IF I-^e THEN GOSUB 0850 

IN THIS SECTION, WE FIRST MULTIPLY THE MATRIX A WITH 
VECTOR WF.. THIS YIELDS A VECTOR Z„ ( CAi j 3*WFj Zj ) 
MOW, DIVIDE THE VECTOR 2 WITH SOME COMMON NUMBER, 
IN HERE, WE CHOOSE ENERGY E<I>, WE GET A NEW VECTOR Z. 
BY COMPARING THIS VECTOR WITH EIGEN-VECTOR, AND IF THE 
DIFFERENT (DFR) IS A SMALL NUMBER THEN THE EIGEN-VECTOR 
WF AND EIGEN-ENERGY E CAN BE THOUGHT AS A NEARLY EXACT 
SOLUTION OF THIS EIGENVALUE PROBLEM„ 

Z < O)=0 
Z < 1 > ===A (1) *WF < 1 ) +B*WF (2) 
FOR J=2 TO N~1 
Z < J ) :==-B*WF < J -1 ) 4-A < J ) *WF (J > 4-B*WF ( J •+• 1 ) 
NEXT J 
Z <N) =B«-WF (N-1 ) 4-A <N) *WF <N) 
Z (NH-1 ) ~0 
FOR J=====0 TO N+1 
Z(J)=Z(J>/E<I> SREM DIVIDE EACH ENTRY OF VECTOR Z BY A NUMBER, 

FOR CONVENIIENT, WE CHOOSE ENERGY ECI). 
DFR=ABS(Z(J)-WF < J)) 
IF DFR > ..OOOOl THEN PRINT "THE DIFFERENCE OF ITS COORDINATE IS"5DF 

ELSE PRINT "Z ("J")-WF("J")«"?DFR 
NEXT J 

NEXT I 
END 

THIS SECTION ACCESSES THE FILES WHICH CONTAINS THE 
GROUND STATE El GEN-VECTOR „ 

OPEN "I",#2,"WAVEFCN1" 
FOR K==0 TO NZ^-l 
INPUT #2,WF<!<) 
NEXT K 
t:;LOSE #2 
RETURN 

•’ ******-« *-«-*****-«--»f-}(-***-K-******-Jf* K-4f**********-J< -«-******^f-« **•«•*****■»•**•>(■ 

THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE 
=■ FIRST EXCITED STATE EIGEN-VECTOR- 

OPEN "I",#3,"WAVEFCN2" 
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6300 FOR K==0 TO N2+-1 
6350 :tMF'UT #3,WF(K) 
6400 NEXT K 
6450 CLOSE #3 
6500 RETURN 
6550 
6600 •' ^•Jf***-}^-***ifi-jf**-^-#******-^-******•«••«••»*■** 
6650 •- 
6 7 0 0 ■’ @0 0000@00000000000000000000000000000000000000000000000000© © 0 0 0 
6750 THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE 
6800 =■ SECOND EXCITED STATE EI GEN-VECTOR. 
6850 ^ 
6900 OPEN •’ I 3 #4, '• WA VEFCN3 ” 
6950 FOR K=0 TO NZ+1 
7000 INPUT # 4,W F(K) 
7050 NEXT K 
7100 CLOSE #4 
7150 RETURN 
7200 
725O 0000000000000000001Ji!000000©0000000000000J 0000000000000000000000 
7300 
7350 ################################################################ 
7400 THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE 
7450 THIRD EXCITED STATE El GEN-VECTOR. 
7500 
7550 OPEN "I",#5,"WAVEFCN4” 
7600 FOR K=0 TO N2+1 
7650 INPUT #5,WF(K) 
7700 NEXT K 
7750 CLOSE #5 
7800 RETURN 
7850 
7900 ################################################################ 
7950 OPEN "I“,#65"WAVEFCN5" 
8000 FOR K=0 TO NZ+l 
8050 INPUT #63WF(K) 
8100 NEXT K 
8150 CLOSE #6 
8200 RETURN 
8250 OPE'N " I '*, #7, " WAVEFCN6 " 
8300 FOR 100 TO NZ + 1 
8350 INPUT #7,'WF(K) 
8400 NEXT K 
8450 CLOSE #7 
8500 RETURN 
8550 OPEN " I % #8, ■•WAVEFCN7" 
8600 FOR K==0 TO NZ + 1 
8650 INPUT #e,WF(K) 
8700 NEXT K 
8750 CLOSE #8 
8800 RETURN 
8850 OPEN "I"3 #9, "WAVEFCN8” 
8900 FOR K=0 TO NZ+1 
8950 INPUT #9j,WF(K) 
9000 NEXT K 
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9050 CLOSE" #9 
9100 I-;:Eli:TURN 
9150 
9200 GF-'EN " I " #10.,‘'NEWERB*' 
9250 FOR K«1 TO 8 
9.300 INPUT #10,E(K) 
9.350 NEXT K 
9400 CLOSE #10 
9450 RETURN 
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