
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1998

Compiling Prolog to Logic-inference

Virtual Machine

Wang, Yifei (Fred)

http://knowledgecommons.lakeheadu.ca/handle/2453/3087

Downloaded from Lakehead University, KnowledgeCommons

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9* black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compiling Prolog to
Logic-Inference Virtual Machine

by

Yifei (Fred), Wang ©

A thesis submitted to
the Faculty of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science
in Mathematical Sciences

Department of Computer Science
School of Mathematical Sciences

Lakehead University
Thunder Bay, Ontario

September 10,1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Sen/ices
385 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothdque nationals
du Canada

Acquisitions et
sen/ices bibliographiques
395. rue Wellington
Ottawa ON K1A0N4
Canada

Your t i t Votro ritorwoco

Our Do Noim rM ranc*

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-52084-6

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The Logic-inference Virtual Machine (LVM) is a new Prolog execution model
consisting of a set of high-level instructions and memory architecture for handling control
and unification. Different from the well-known Warren's Abstract Machine [1], which uses
Structure Copying method, the LVM adopts a hybrid of Program Sharing [2] and
Structure Copying to represent first-order terms. In addition, the LVM employs a single
stack paradigm for dynamic memory allocation and embeds a very efficient garbage
collection algorithm to reclaim the useless memory cells. In order to construct a complete
Prolog system based on the LVM, a corresponding compiler must be written.

In this thesis, a design of such LVM compiler is presented and all important
components of the compiler are described. The LVM compiler is developed to translate
Prolog programs into LVM bytecode instructions, so that a Prolog program is compiled
once and can run anywhere.

The first version of LVM compiler (about 8000 lines of C code) has been
developed. The compilation time is approximately proportional to the size of source
codes. About 80 percent of the time are spent on the global analysis. Some compiled
programs have been tested under a LVM emulator. Benchmarks show that the LVM
system is very promising in memory utilization and performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii

ACKNOWLEDGMENTS

I would like to express my thanks and appreciation to my supervisor, Professor

Xining Li, for his guidance, advice and help.

I would like to thank to my wife (Huai-Rong, Hu) and my mother (Xue-Mei, Sun)

for their understanding, encouragement and support.

Also I am grateful to the Natural Science and Engineering Council of Canada for

the financial support.

Finally, I would like to thank my external examiner Dr. A. Nayak (Carleton

University) and internal examiner Professor L.D. Black (Lakehead University) for their

comprehensive comments.

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ili

List of Figures and Tables

Figure 1.1 Structure of LVM compiler 2
Figure 2.1 A tagged cell 5
Figure 2.2 Term representation in Structure Copying 5
Figure 2.3 Term representation in Structure Sharing 6
Figure 2.4 WAM data areas 7
Figure 2.S Environment frame in WAM 7
Figure 2.6 Choice point frame in WAM 8
Figure 2.7 Term representation in Program Sharing 9
Figure 2.8 LVM memory architecture 10
Figure 2.9a V-frame format in LVM 11
Figure 2.9b C-frame format in LVM 12
Figure 2.9c B-frame format in LVM 12
Figure 3.1 Interface to the lexical analyzer 19
Figure 3.2 Role of parser in the compiler 20
Figure 4.1 Order of stub and variable allocation on stack 22
Figure S. I Simulation of expression evaluation 48
Figure 8.1 Memory layout in case of BB below AF 76
Figure 8.2 Memory layout for BB above AF 76
Figure 9.1 Execution model of LVM bytecode 81

Table 3.1 Specifiers of operators 17
Table 3.2 Predefined operator table 17
Table 4.1 Code segment labeling rules 21
Table 4.2 Stack cell assignment and offsets of objects 29
Table 4.3 LVM unification instructions 32
Table 4.4 Memory layout of objects for p(+,-,+)/3 clause 33
Table S. 1 Integer arithmetic instructions 46
Table 5.2 Data load/store instructions 47
Table 5.3 Branching instructions 49
Table S.4 Special comparison instructions 50
Table 5.5 Variable and stub initialization instructions 51
Table 5.6 Object allocation for p(+,-)/2 clause 51
Table 5.7 Opcode matrix of list initialization instructions 52
Table 5.8 Memory allocation for p(-,-)/2 54
Table 9.1 Execution time (sec) 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f
i

Contents

Acceptance Sheet i
ABSTRACT ii
ACKNOWLEDGMENTS iii
List of Figures and Tables iv

Chapter 1. Introduction I
1.1 Logic Programming and Prolog 1
1.2 Motivation 1
1.3 Prolog Compiler Design 2
1.4 Outline 4

Chapter 2. Overview of Prolog Implementation 5
2.1 Structure Term Representation 5
2.2 Warren Abstract Machine (WAM) 6
2.3 Logic-Inference Virtual Machine (LVM) 8

Chapter 3. Lexical and Syntax Analysis 13
3.1 Syntax of Prolog Text 13
3.2 Token Generator 19
3.3 Syntax Analysis 19

Chapter 4. Clause Analysis and Translation 21
4.1 Structure Argument Representation and Flattening 21
4.2 Variable Classification and Index Calculation 24
4.3 Register Allocations and Conflict in Parameter Passing 29
4.4 Unification Code of a Clause 31
4.5 Control Code of a Clause 34

4.5.1 Fact 35
4.5.2 Chain Call 37
4.5.3 Rule 38
4.5.4 Query 40

f
I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter S. Built-in Predicates, Arithmetic Expressions and Initializations 42
5.1 Built-in Predicates 42
5.2 Cut 43
5.3 Arithmetic Expressions 45

5.3.1 Arithmetic Operations 46
5.3.2 Register Allocation 47
5.3.3 Arithmetic Comparison 49

5.4 Initializations SO
Chapter 6. Predicate Determinacy Analysis and Indexing 55

6.1 Last Argument Dispatching 55
6.2 Guarded Dispatching 58
6.3 Nondeterministic Predicates 62

Chapter 6. Compilation Optimization 65
7.1 Variable, Stub and SCI Object Initialization Delay 65
7.2 Unnecessary Unification Instruction Elimination 66
7.3 Stub and Variable Initialization Instruction Compression 67
7.4 Combination of Frame Allocation and Unification Instructions 68
7.5 Special Optimization 69

Chapter 8. Assistance to Garbage Collection 73
8.1 Survey of Garbage Collection 73
8.2 Chronological Garbage Collector in the LVM 75
8.3 Garbage Level Estimation 77
8.4 GC Root Set Collection and GC Point Setting 78

Chapter 9. Conclusions 81
9.1 LVM Performance 81
9.2 Compiler Features 83
9.3 Future Work 84

Appendix A. LVM Instruction Set 85
Appendix B. LVM Built-in Instructions 88
Bibliography 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction
1.1 Logic Programming and Prolog

The motivation of logic programming is to separate the problem solving process
into two parts: (1) a logical specification and (2) execution description [S]. The
programmers only focus on the logic specification of the problem. The logic systems
automatically provide the execution control. Therefore, logic programming is a higher
level of abstraction than the imperative programming in languages like Ada, C or Pascal.

A logic program is a set of logic sentences (clauses) written in Horn clause logic.
A group of clauses with the same name and arity (number of arguments), called a
predicate is used to define a relation, like a procedure in the imperative languages. Hence,
a logic program can be defined as a set of predicates.

Logic programming has four main features as follows:

(a) Logic variable can be instantiated only once.
(b) Logic variable can hold value of any type, which is so called dynamic typing.
(c) Unification is a pattern matching operation for binding variables, building and
accessing compound term.
(d) Backtracking is a searching operation for finding out all satisfying clauses in a
predicate.

Prolog is an approximate logic programming language with two constraints on its
implementation model for the balance between implementation efficiency and logical
completeness. They are:

(a) The clause listed lexically ahead in a predicate is tried first.
(b) The goals in each clause are invoked from left to right.

Prolog has been applied in a variety of fields like expert systems, natural language
understanding, theorem proving, deductive databases, CAD tool design, compiler writing,
and applications of artificial intelligence with coded knowledge.

1.2 Motivation

Many Prolog systems are often an order of magnitude slower than imperative
language systems like C. To optimize system performance, a heavy global static analysis
based on abstract interpretation has been performed in some high performance Prolog
compilers, such as Aquarius [3] and Parma [4]. But all these Prolog systems are built on
the principle of Warren Abstract Machine (WAM) execution model [1].

To achieve the same goal, we approach the problem in a different way. A new
Prolog system based on a new abstract machine, called Logic-Inference Virtual Machine *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(LVM), has been developed. In the next chapter, the important features of WAM and
LVM will be briefly described and compared. The LVM adopts a hybrid of Program
Sharing and Structure Copying to represent first-order terms. Also, the LVM employs a
single stack paradigm for dynamic memory allocation and embeds a very efficient garbage
collection algorithm to reclaim the useless memory cells. In order to construct a complete
Prolog system based on the LVM, a corresponding compiler has to be written.

1.3 Prolog Compiler Design

The main objective of this thesis is to write a compiler for the LVM system. The
LVM compiler (LVMC) is to translate Prolog source code into LVM bytecode. The
driving force in the LVMC design is to encode as many LVM features as possible. To
generate the high quality of LVM bytecode, the compiler implements several optimizations
and carefully considers the code execution performance. The structure of the LVM
compiler is shown in Figure 1.1.

Prolog source code

lexical and syntax analysis

global analysis last argument reorder

determinacy analysis

i garbage estimation

variable analysis

clause analysis and translation

register allocation

\
v^eoalopSmuaSon

post-optimization and code output

♦
LVM bytecode

Figure l.l Structure of LVM compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The LVMC consists of four phases: (1) lexical and syntax analysis, (2) global
analysis, (3) clause analysis and code generation, and (4) post-optimization and code
output.

In the phase (1), source code is converted to parse trees. Meanwhile the syntactic
errors in source code are detected.

In global analysis, the LVMC will collect or generate the argument input mode,
then reorder the last arguments of clauses if necessary, and further extract determinacy
information of each predicate as well as determine garbage estimation. If a predicate has
the mode declaration, the mode analysis of this predicate will be ignored. Although LVM
uses the last argument as the first-order discriminator for the purpose of partial unification
and control dispatching, there is no constraint on the programmer's programming style.
The compiler will dynamically reorder the clause arguments in the reference to LVM
based on the mode information. During the determinacy analysis, redundant or
unreachable clauses are eliminated.

The clause analysis is the key component of the LVMC. The clause analysis
involves the variable analysis, frame allocation and register allocation. The variable
analysis has three major tasks:

(a) Each variable must be classified into one of two types: stack variable and
register variable. A stack variable is one, which resides on stack and possibly
outlives the procedure call. A register variable is a temporary variable, which does
not survive across procedure calls. Register variables are mainly used in fact
clauses, arithmetic computation or deterministic clause chain-calls. However, they
must not occur in any constructor.

(b) The status of variables inside all arguments must be analyzed. A variable may
be used in two ways: uninitialized (V-type) or instantiated (L-type). In order to
eliminate the unnecessary dereferencing or trailing operations, the V-type variables
are bound by destructive assignment.

(c) Since a stack variable may be referenced by several structural terms, the
different address offsets of this variable must be calculated according to the stub
location in stack.

To speed up the arithmetic computation and term unification of deterministic
clauses, soft registers must be scheduled carefully. Register allocation is done using a
simple algorithm and register conflict is avoided.

The code generation for each clause is straightforward based on four basic
formats. But the initialization of some constructor objects can be delayed until the
unification. For a special set of predicates, a special translation algorithm is applied to
produce optimized code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

In the final phase of LVMC, post-optimization on the intermediate code is done
before the final LVM bytecode output. For example, several consecutive instructions are
compacted into one instruction. The arithmetic computation strength is reduced as much
as possible. Redundant instructions are removed.

1.4 Outline

The rest of the thesis is organized as follows: Chapter 2 gives a brief overview of
Prolog term representation methods: Structure Sharing, Structure Copying and Program
Sharing. Then, two virtual machines: WAM and LVM are compared. Chapter 3 describes
the lexical and syntax analysis of the LVM compiler. Chapter 4 presents the clause analysis
and translation methods. Chapter S discusses how to handle arithmetic operations and
built-in predicates, and how to specify the initialization instructions. Chapter 6 shows how
to use the indexing technique to generate bytecode for a predicate. Chapter 7 discusses
some optimizations on the generated bytecode. It includes a special optimization on a set
of predicates. Chapter 8 describes how to assist the LVM memory management system at
compilation time. Chapter 9 gives conclusions.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

Chapter 2. Overview of Prolog Implementation

2.1 Structure Term Representation

The term representation is one of the core parts of any Prolog system. The term
representation determines the unification implementation technique in Prolog. Since
Prolog is a dynamically typed language, the type and value of a variable is determined
only at rim time. Therefore, a variable cell is represented in general by a tagged value cell
as shown in Figure 2.1.

I TAG 1 VALUE

Figure 2.1 A tagged cell

All Prolog terms are classified into three basic types: variable, constant and
structure term. A variable is further categorized into two types: unbound or bound. An
unbound variable is self-reference pointer with REF as its tag. In our current LVM
system, there are three kinds of constant terms, which are represented as follows

INT value 1
CON value2
NIL

where INT denotes an integer, CON a string and NIL a null list.

At the abstract level, two methods are used to represent a structure term, that is,
structure copying (SC) and structure sharing (SS). The structure copying technique was
introduced by Maurice Bruynooghe [6] and Christopher Mellish [7]. In SC Prolog
systems, all terms of different types are fitted into the size of a machine word/register (a
tagged value cell). When a variable comes to stand for a structure term during unification,
the entire structure including all arguments is copied to a new allocated heap. After the
copying, the information about the structure name (functor) and arity becomes indirectly
accessible, the knowledge of this structure instance is concealed. For example, the term
of dsg(X, g(X,Y,a), Y) could be represented in Figure 2.2 by the SC method

FUNC dsgtf
REF X
STR -----
REF Y
FUNC g/3
REF ___
REF -----
CON a

Figure 2.2 Term representation in Structure Copying

The SS method was first introduced by Boyer and Moore [8] and used in earlier

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Prolog systems. The SS method takes advantage of the fact that all different instances of
a same structure term share a single prototype and differ only in their variable bindings.
Therefore, a structure term is divided into two components: skeleton and environment.
The skeleton contains the constants and the offsets of environment. The skeleton is stored
in the code area. The environment contains the variables and is stored in the heap. Two
pointers are needed to represent a structure term, one to the skeleton and other to the
environment. Two successive machine words have to be allocated to instance a structure
term. For example, the term of dsg(X, g(X,Y,a), Y) could be represented in Figure 2.3 by
the SS method

SKE KO
ENV

heap

REF X
REF Y

KO

K l

FUNCdsg/3
VAR 0
SKE K l
VAR 1

FUNCg/3
VAR 0
VAR I
CON a

code area

Figure 2.3 Term representation in Structure Sharing

Both structure term representation methods have been thoroughly investigated
[6,7]. In general, the SS method is faster than the SC method in creating terms, but the
SC method is faster in accessing and unifying terms because the SS method needs more
time in decoding skeletons. Also the SC method consumes less memory than the SS
method. Only the earlier Prolog system [9] used the SS method. Now the structure
copying is the standard implementation method in various Prolog systems. In 1983,
David Warren [1] presented a new abstract Prolog instruction set, now called Warren
Abstract Machine (WAM), which adopts the SC method as the basic component for the
efficient structure term unification. After 1983, most of high performance Prolog systems
have been developed on WAM or WAM-like abstract machine for further efficiency
improvement.

2.2 Warren Abstract Machine (WAM)

Normally, a Prolog abstract machine is divided into two components as follows:

An abstract machine 3 instruction set + memory model

2.2.1 Memory Model of WAM

The stack-based memory model of WAM is shown in Figure 2.4. The local stack
is used to store the environment and choice point frames. The structure terms are
allocated on the global stack, called heap. The trail is used to save the address of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

bounded variables that have to be unbound during backtracking. The PDL (push-down
list) is used to perform the unification of nested compound terms.

PDL

♦

Stack

 i___

heap
 i ____

code area

Figure 2.4 WAM data areas

2.2.2 Unification and Parameter Passing

The WAM embeds the unification instructions within the control sequences.
Therefore, a single engine is employed for both control and unification. Two steps carry
out the unification: (a) the copying of the arguments of the calling goal into arguments
registers, and (b) the unification of the arguments registers with the arguments of the
head of the called clause. Three types of instructions {PUT, GET, UNIFY} are available
to handle unification. The instruction {UNIF} is executed in two modes. In the write
mode, a new structure is created, while in the read mode the true unification is performed.
As mentioned before, the SC method conceals the skeleton information of a structure
term, a general unification algorithm is carried out when both objects are instances of the
same structure term. For increasing the efficiency, a unification call is encoded into a
sequence of special unification instructions if one of operands is known at compilation
time.

2.2.3 Backtracking and Stack Management

The WAM uses two kinds of frames to store the information associated with
predicate calls, that is, environment frame and choice-point frame. The environment
frame has the following fields:

Parent parent environment frame
CP continuation prosram point
Yl,...,Ym permanent variables

Figure 2.S Environment frame in WAM

An environment frame is pushed on the (local) stack before any deterministic clause is
executed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The choice point frame is used to handle the backtracking of a nondeterministic
predicate, which has multiple candidates of clauses to try. The choice point frame has the
following fields:

BP alternative program point
CP continuation prosram point
E current environment frame
B most recent choice point

TR top of trail
H top of heap
Xl,...»Xn argument registers

Figure 2.6 Choice point frame in WAM

After a new choice point frame is pushed on the stack, the choice point pointer is set to
point to the new choice point so that a linked chain of choice points is formed. To
increase the WAM efficiency, the clause indexing including conditional branching is
necessary to avoid the creation of choice points if possible.

The WAM simulates the conventional procedure call to control Prolog program
execution. The two steps of parameter passing result in a bottleneck of its performance.
The argument registers have to be saved and restored for the backtracking. The
information associated with a predicate call is stored in possibly two frames. A full tail
recursion elimination is difficult to implement. Two alternatives to the WAM have been
developed. The Vienna Abstract Machine (VAM) [11,12] eliminates the parameter
passing bottleneck of WAM by performing the unification of each pair of a goal and a
head argument in a single step without the register interface. Another abstract machine,
called ATOM (yet Another Tree-Oriented Abstract Machine) [13,14] uses one frame for
each predicate call and arguments are passed directly into stack frames. These new
abstract machines successfully minimize the inefficiencies of WAM.

2.3 Logic-Inference Virtual Machine (LVM)

Apart from exploring the efficiency of parameter passing and frame allocation,
the new abstract machine, called Logic-Inference Virtual Machine (LVM), blends a new
structure term representation method - Program Sharing (PS) with SC to represent and
handle structure terms. The unification instructions are defined and implemented in a
totally different way. A brief introduction to LVM is given in the following.

2.3.1 Program Sharing

Program Sharing is a new method of Prolog structure term representation. This
method was introduced by X. Li[2,lS,16]. The PS method originating from SS method
shares the same idea that the static information of a structure term is separated from its
dynamic environments. But the PS method has three main features different from SS:

8I
j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1) A structure skeleton is stored in the code area as executable code or a segment of a
program. There is no data in a Prolog program. All terms in a Prolog program are
compiled into instruction code.

(2) Only one pointer (called a structure code stub) is used to solve the two-cell problem in
SS method. The stub content is the entry of a structure code and the stub address is the
environment base for executing the structure code. There are three types of structure code
stubs: DCI (direct copied instance), SSI (static shared instance) and SO (static copied
instance).

(3) The environment variable indices in the structure code are calculated relative to each
stub. In a nested structure term, a variable with multiple occurrences has multiple index
values. In SS method, a variable has a unique index value, and variable indices are
calculated against a common frame base.

For example, the term of dsg(X, g(X, Y,a), Y) with (-) type of input mode is represented
in Figure 2.7 by the PS method.

S5T 1+ KO (stub-1) KO FUNC dsg/3
K l (stub-2) VAR 2

REF X SSI 1
REF Y VAR 3

Kl FUNCg/3

code area

Figure 2.7 Term representation in Program Sharing

Where {VAR, FUNC, SSI and CON} are unification instructions. The variable (X) has
the indices of 2 relative to the stub < , K0> and 1 relative to another stub < , Kl>.
Similarly, the variable (Y) has two indices (3,2) relative to each stub, respectively. These
relative indices are specified in the unification instruction code shown in Figure 2.7. For
the structure unification, by accessing a stub we have the entry to the code segment,
which defines the structure unification instruction code, and by the stub address we get
the environment, which will be consulted to access stack variables and nested stubs.

The PS method has the advantage of both SC and SS methods. It represents terms
of different types in the size of a machine word, and also translates the static information
into executable instruction code and spends much less overhead for handling dynamic
environment.

2.3.2 LVM Architecture and Instruction Set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LVM is a virtual machine based on the mixture of PS and SC methods. The
choice between PS and SC to represent a structure term depends on the input mode of the
term. For the efficiency, the LVM strongly supports and encourages mode declaration.
The mode information of head arguments of clauses can be obtained from the user
declaration or through a global analysis [18], In our current version of LVM, four types
of input modes of arguments are defined. They are (-) for out, (?) for in_or_out, (+) for
in, (++) for in and̂ ground. If a head argument is a compound term, all nested subterms
inherit the same mode. For simplicity, all structure arguments in goals are assumed to
have (?) mode.

The LVM classifies structure terms into selectors and constructors based on their
modes. A structure term is a selector if it can’t be bound to any variable outside the
clause; otherwise, it is a constructor. Therefore, structure terms with (+) mode are always
translated as selectors, and with (-) or (?) mode as constructors. Furthermore, all ground
structure terms are treated as selectors, regardless of their input modes. A selector is
represented by an instruction <DCI, code_entry>. Since we experience the high
efficiency of list manipulation in WAM, LVM uses PS for all non-list constructors and
SC for all list constructors. Correspondingly, two more unification instructions are
provided. <SSI, stub_offset> represents a static shared constructor of a non-list term.
<SCI, stub_offset> represents a static copied instance of a list term.

The LVM memory architecture is shown in Figure 2.8. The major difference from
the WAM memory layout in Figure 2.4 is that LVM uses one stack to hold both dynamic
objects and control frame information. Also the PDL stack is eliminated.

Trail
— r

I

Stack

_L _
Codearea

Figure 2.8 LVM Memory Architecture

Appendix A shows the complete instruction set of LVM. They cover unification,
arithmetic computation, branching, frame allocation and object initialization. The details
were given in X. Li’s technical report [17].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.3.3 Other Features of LVM

Except that LVM uses PS and SC methods to represent structure terms, LVM has
other features in the following aspects:

(1) Unification and Parameter Passing

LVM consists of two coordinating processors: a IP processor for control and a 2P
processor for unification. The 2P engine sequentially executes pairwise unification
instruction codes. It fetches two instructions simultaneously. Since the type of each
operand is known at compilation time and LVM sees terms as executable instructions, the
unification algorithm is much cheaper without loss of type information. The LVM
compiler generates code segments for the control and unification, which can be loaded in
separate locations. For example, with a caller of f(Y,a) and a callee of f(X,X), the
unification codes for the caller are:

VARY
CON value,

and unification codes for the callee are:
VARX
VARX.

The 2P engine first unifies two unification instructions: {VAR Y} and (VAR X}, the
variable Y becomes bound to the variable X. Then, it fetches next two unification
instructions {CON value) and {VAR X). The constant {value) is directly assigned to the
variable X. Therefore after the unification, the variable Y becomes a constant cell.

LVM eliminates the parameter passing bottleneck by unifying caller and callee
arguments in one step. Unlike the Vienna abstract machine (VAM2P) [11,12], the LVM
unification instructions are neutral. Also LVM delays the structure full unification until it
is necessary in order to enhance the system efficiency.

(2) Backtracking and Stack Management

LVM implements procedure invocation and backtracking by allocating different
chains of control frames on the stack. There are three kinds of control frames in the
LVM: V-frame, C-frame and B-frame. Separation of V-frame from C-frame is for the
minimization of memory usage and the speed up of frame reallocation.

(a) V-frame: It only consists of dynamic objects without control information. It is used
for fact or chain-call clauses involving constructors.

Variables
Stubs

Figure 2.9a V-frame format in LVM

II
j
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) C-frame: It has three cells for control information and other cells for dynamic
objects. It is used for any clause with more than one user defined goals in its body.

Variables
Stubs
ST current stack top
CP continuation program entry
AF continuation frame

Figure 2.9b C-frame format in LVM

(c) B-frame: It contains all information needed for backtracking shown in Figure 2.9c. A
B-frame is allocated at a new choice point.

NT: alternative program entry
TT: trail top
GP: caller’s unification code
GF: caller’s unification frame
RO: RO register
CP: continuation program entry
AF: continuation frame
BB: most recent choice point

Figure 2.9c B-frame format in LVM

(3) Garbage Collection and Memory Reclaim

Since LVM uses one stack to hold both frames and dynamic objects, an efficient
garbage collection (GC) algorithm is very important to the LVM implementation. In
Chapter 9, a chronological garbage collection algorithm will be discussed. The LVM
needs the compiler to generate GC instructions to tell the execution system when, where
and what should be collected, so that garbage estimation must be carried out in the earlier
phase of compilation. The experimental LVM system showed that the GC algorithm has
very low runtime overhead.

In summary, several advantages of the current LVM are:

(a) Memory usage is minimized for the structure term representation.
(b) It is easy to allocate/reallocate stack frames.
(c) The environment management is simple due to one stack policy.
(d) There is no cost in parameter passing from a stack frame to another frame.
(e) During backtracking, it is unnecessary to check binding directions, such as
from local objects to global objects and from young generation to old generation,
and the trailing/detrailing operation is cheap.
(f) A natural generation line of procedure calls exists for the implementation of
garbage collection.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Lexical and Syntax Analysis

In this chapter, the first phase of the LVMC, which is the lexical analysis and
syntax analysis of Prolog source code, is described. A simple error handler is used in the
LVMC. When this phase is successful, a parse tree is generated for each clause. This
chapter is organized as follows. First, the syntax of Prolog texts in standard Prolog is
described. Then, the detailed method of lexical analysis and syntax analysis is shown.

3.1 Syntax of Prolog Text

A Prolog text is a sequence of directives and clauses in an order which is specified
by directives. Directives and clauses are represented by terms. In standard Prolog [19],
terms are written in function notation. Therefore, the structure of a term is specified
without any ambiguity. The syntax of terms defines the syntactic rules for writing terms
correctly. Here the syntax is presented using the context free grammar. The context free
grammar has the form:

nonterminal --> sequences of nonterminals and terminals

terminal —> sequences of characters

3.1.1 Prolog Character Set

Terminal symbols, called tokens, consist of sequence of Prolog characters. There are
five types of Prolog characters defined as:

prolog_char —> alphanumchar
| graphic_char
| solochar
I layout_char
| metachar

(1) Alphanumeric characters

alphanumchar --> _ | digitchar | letterjchar

letter char --> capitalletter | small letter
capitalletter --> [A-Z]
smalljetter -> [a-z]

digitchar ~>decimal_digit_char
| binarydighchar
| octal_digit_char
j hexa_digit_char

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decimaljiigit_char --> [0-9]
binarydigitchar —> 0 [1
octaljdigit_char -> [0-7]
hexa digit char --> [0-9] |[A-F]|[a-f]

(2) Graphic characters

graphic_char —> # | $ | & | * | + | - | . | / | ;
| < | > | = | ? | @| A | ~

(3) Solo characters

solo_char ~> 1 I (I) I [I] I { I } I I I , I ; I &

(4) Layout characters

layout jchar -> SP // space character in ASCII
| NL // new-line character in ASCII
| HT //tab character in ASCII

(5) Meta characters

meta_char ~> \ | ‘ | ’ | ”

3.1.2 Syntax of Term

term ->var |atom |integer|floating point |compound_term

The floating point number is not implemented in current version of the LVM system, but
the compiler still parses the floating point numbers.

(1) Variables

Variables are strings of letters, digits and underscore starting with capital letter or
underscore.

var —> named_var| anonymous_var

named var ~> capital letter (alpha num char)*
| _ (alphanumchar)̂

anonymous_var--> _

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) Atoms

Atoms can be constructed in three ways:

(a) Strings of letter, digits and underscore starting with a lower-case letter,
(b) Strings of characters enclosed in single quotes;
(c) Strings of special characters

atom -> letterdigittoken
| quoted_token
I graphictoken
| semicolontoken
| cuttoken

letter digit token—> smallJetter (alpha num char)*
quotedtoken --> ‘ charstring ‘
graphicjtoken —> \

| graphic _char_string
semicolon token —> ;
cutjtoken —> !

(3) Numbers

There are two types of numbers: integer and floating point.

integer ~> integerconstant
| binaryconstant
| octalconstant
| hexaconstant

integerconstant—> decimal_digit_char
| decimal_digit_char integer constant

binary constant—> Ob binary digit char (binary digit char) *
octalconstant -> Oo octaljdigit_char (octaldigitchar)*
hexa constant -> Ox hexa_digit_char (hexa digit char) *

floating point -> integer constant. integer constant [exponent | e]

exponent -> [e| E] sign integer constant
sign -> + | - |e

Here e is an empty string.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4) Compoundjerm

Compound terms can be written in one of four notations. They are:

(4.1) Function notation (bracketed expression)

compoundterm --> atom (arglist)

arglist -> term (, term)*

where the name of function is called functor, and the number of arguments called arity.
The outer-most functor is called its principal functor, e.g., .(al,.(a2, (a3,[]))).

(4.2) List notation

The principal functor is \72, and the first argument is a term and the second a list.

compound term -> [term items]

items --> (, term)"
| | term
| N ILlist

NILJist --> []

where a special case of NIL list is treated as a special atom in LVMC. For example,
[al,a2,a3], [al,a2|a3] and [al,a2|[bl,b2]] are list terms.

(4.3) Curly notation

compound term --> { term}
| (term)

(4.4) Operator notation

Some terms are written as unbracketed expressions using functors in operator
notation. Each operator is characterized by three parameters: name (an atom), specifier (
one of x£y£xfx,xfy,yfx,fx,fy) and priority (an integer between I and 1200).

The specifier of an operator defines its arity (1 or 2), class(prefix,infix,postfix) and
associativity (left-,right-,non-assodative). Table 3.1 lists all types of specifier.

The priority of a term is 0 if it is written in functional, list notation, or it is a
bracketed expression or atomic term. If a term is written in operator notation, its priority
is the priority of the principal functor. The predefined operators are listed in Table 3.2.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifier arity class associativity
fx 1 prefix non-
fy 1 prefix right-

xfic 2 infix non-
xfy 2 infix right-
yfit 2 infix left-
xf I postfix non-

_____ 1 postfix left-

Table 3.1 Specifiers of operators

Operator specifier priority
:— > xfx 1200
> ?- 6c 1200

xfy 1100
-> xfy 1050
9 xfy 1000

\+ fy 900
= \= xfic 700
= \= =: xfx 700
@< @=< @> @>= xfic 700
is =:= =\= <<=>>= xfx 700
+ - A V yfic 500
*111 rem mod « » yfic 400
** xfic 200
A xfy 200
- \ _ 200

Table 3.2 Predefined operator table

compoundjerm --> atom_preop term
| term atom_postop
| term atom inop term

3.1.3 Clauses

clause ~> head > body
| predication

where the first grammar defines a rule with ‘>72 as the principle functor, the second
grammar defines a fact.

head —> predication

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

body (body, body) // conjunction: principal functor ‘,72
| (body; body) // disjunction: principal functor ‘;72
((body -> body) // implication: principal functor ‘->/2’
| variable
j predication

where the functor name of predication must be different from ‘,72, ‘;72 and ‘->72.

predication ~>atom | compound term
where the compoundjerm must be callable term with arity >= 0.

3.1.4 Directives, Query and Declarations

The principal functor of directives is(:-)/l.

directive —> :- directiveJerm
directiveJerm --> directiveatom (predication)

directive_atom --> discontinuous
(dynamic |ensureJoaded
(include (initialization
{multifile

query --> ?- predication

declaration --> modejdeclaration
| determinacydeclaration
| gc_declaration

modedeclaration —> :- mode atom (modetype (,mode_type)*).
modeJype ~> + + 1 + 1 - 1 ?

determinacy declaration—> :- determinacy atom/arity (integerjconstant)
arity ->[0-9]

gc_declaration --> :- garbage atom/arity (integer constant)

3.1.5 Comments

There are two types of comments: single line and multiple line comments.

comment --> singleJine_comment | bracket edcomment

singlejinecomment --> % comment je x t newJinejcharacter
bracketedcomment --> /* comment je x t */

commenttext ~> prologchar comment Jext | s

In summary, the Prolog text is defined by the following grammar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prolog_text —> (com m ent|query|declaration jclause jd ircctive)*

3.2 Token Generator

The role of the lexical analyzer is to scan characters of program text and convert
the input into a stream of tokens. The token with its attribute is passed to the parser.
Therefore, the lexical analyzer and parser form a token producer-consumer pair shown in
Figure 3.1.

characters
input buffer/*- token generator

tokens
parser

Figure 3.1 Interface to the lexical analyzer

The lexical analyzer is implemented by a token generator. An input buffer is set up
for reading and pushing back characters. A block of 2S6 characters is read into the buffer
from the file at a time. A pointer keeps track of the input position. A lookahead character
is checked. It should be noted that all atoms including the operators belong to the
nametoken. The numbertokens are further classified into integertoken and float_token.

3.3 Syntax Analysis

In the compiler design, the syntax analysis of Prolog programs is implemented by a
parser. The parser accepts a stream of tokens from the token generator and verifies that
the stream of tokens can be generated from the Prolog grammar specified in Section 3.1.
The output of the parser is a representation of the parse tree, which will be used in the
next phase of the compiler. Meanwhile, a collection of information about a predicate is put
into a symbol table. The interface of the parser is shown in Figure 3.2. In the current
version of LVMC, the syntax error is handled in three steps:

(a) reporting the presence of errors,
(b) printing out the reason of errors, and then
(c) terminating the compiler.

A better syntax error handler would be implemented in the future version of the compiler.

parse tree
parser global analysis

Figure 3.2 Role of parser in the compiler

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the grammar of Prolog is relatively simple, an unambiguous grammar for
Prolog is reconstructed so that no production right side has two adjacent nonterminals.
Therefore, an easy-to-implement form of bottom-up syntax analysis method, called
operator-precedence parsing [20], is employed in the parser. In the implementation, a
stack with elements, of which data structure is defined as

typedef struct stacktype {
int tokentype;
int priority;
int specifier,
argument..information ’ term;
structure stacktype *next;
} stacktype;

is used to hold the input tokens. The priority and specifier of some predefined operators is
listed in Table 3.2. The basic parsing strategy of LVMC is

(a) Initially, the parser sets up an empty stack, and accepts tokens one by one
until an endtoken is reached. When the endtoken arrives, the parser outputs
the parse tree of the clause if there is only one term remaining on the stack.
Otherwise, it invokes syntax error handler.

(b) For each token, if the token is one of the set of operators, then the parser
invokes a corresponding reducing function to reduce the top elements on the
stack. Otherwise, it simply shifts or pushes the token onto the stack.

20
i

!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Clause Analysis and Translation

The clause analysis is the crucial part of the LVMC. It involves the structure
argument classification, variable analysis, register scheduling and V/C-frame allocation.
They will be discussed in detail in Section 4.1-4.3.

The translation of a clause generates two streams of instruction code: control
instruction code and unification instruction code, in separate segments. In general, the
control instructions for a clause include instructions of stack allocation, object
initialization, unification code invocation, procedure invocation and garbage collection.
The unification instructions represent all arguments of the head and the bodies in a clause.
During the compilation, various code segments are labeled uniquely and systematically.
The name conventions are listed in Table 4.1. The clause translation will be discussed in
Sections 4.4 and 4.5.

labeling Meaning Code type
name/arity predicate code entry control code
name/arity.i clause code entry control code
name/arity.i.i branching code entry control code
name/arity.i.u.0 head unification code entry unification code
name/arity.i.u.i goal unification code entry unification code
name/aritv.i.s.i. selector or constructor code unification code

Table 4.1 Code segment-labeling rules

4.1 Structure Argument Representation and Flattening

The LVMC classifies the structure arguments of a clause into three types: selector,
constructor and dual. A structure argument is a selector if it is ground or its input mode is
(+, ++). A structure argument is a constructor if its input mode is (- or out) and it contains
at least one variable. If a structure argument has input mode of (? or in./out), it may be
used as either a selector or a constructor, and also contains at least one variable, then it is
a dual. Here, we can see that the types of structure arguments of a clause really depend
on the input modes of the arguments. The input mode of a structure argument is obtained
either from mode declaration or from mode global analysis.

If a compound structure has a certain mode, then all nested substructures inherit
the same mode. The mode declaration applies to head arguments only. For the goals of a
clause, we assume that all structure arguments are duals. It is enforced that a ground
structure argument is always a selector regardless of its input mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

The LVM uses instruction: PCI c entry to represent a selector. Here cjentry
specifies the code entry of the whole structure unification in code area. A constructor is
represented either by instruction: SSI| offset if it is a non-list structure or by instruction:
SCI offset jf it is a list. Here offset denotes a relative position of this stub with respect to a
LVM stack frame of the clause. Since a pure constructor will be bound to an arbitrary
variable during execution, the stub must be allocated inside its associated stack frame to
represent a dynamic instance creation. For a clause, a V-frame or C-frame may need to be
allocated (See Section 4.5). The order of stub and variable allocation is shown in Figure
4.1.

frame-iniormation
Stubs

t Stack variables

Figure 4.1 Order of stub and variable allocation on stack

During compiling a clause, all nested structure arguments must be flattened in
order to determine the number of stubs and their offsets. A stack with element defined as

typedef struct fstack {
charftype,
boolean delayable,
char * functor,
unsigned index,
unsigned arity,
arginf *arg_list,
struct fstack *next
} fstack;

is used to implement the flattening algorithm. The flattening algorithm is:
(a) scan arguments of a clause from left to right. For each structure argument,
push an element with data structure of “fstack” on the stack. The field of “ftype”
of the element depends on its input mode, it may be one of types {SSI,SCI,DCI}
The field of “delayable” is reserved for {SCI ,SSI} elements to implement
initialization delay optimization. Only if a structure argument appearing in head
of a clause has (?)-type of input mode, the “delayable” is set to “No”. In all other
cases, the field “delayable” of {SSI,SCI} elements is set to “YES”.
(b) scan all elements of the stack from top to bottom. If its “argjist” has
substructure, an element of “fstack” type for the substructure is inserted upon its
parent in the stack.
(c) repeat (b) until there is no nested structure in the field of “arg_list”.

j
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

(d) index all SSI elements from top to bottom and then index SCI elements from
top to bottom by second pass. A SSI element requires one cell in LVM stack
frame, but a SCI element needs two cells for copying its structure term.

Example 4.1 Let’s assume we have the following clause with mode declaration.

:-pss mode(+,-,+).
pss(X, h(Y,g(a,b)), f(X,g(Z,b))):-qs(j(Z,k(a,b)>W)),rs(X,Y,Z).

After the flattening procedure (a), we have the following working stack:

type index delayable arg list

SSI 0 Y h(Y,g(a,b))

DCI I • fTX,«(Z.b))

SSI 1 Y i(Z.k(a,b),W)

After all nested structures are completely flattened, the contents of the working stack are:

type index Delayable arg list

SSI 0 Y h(Y, DCI:1)

DCI 1 • g(a,b)

DCI 2 • ffX,DCI:3)

DCI 3 m g(Z,b)

SSI 1 Y i(Z, DCI:4, W)

DCI 4 • k(a,b)

For clause pss/3, the number of stubs is 2. The indexing of (SSI}elements starts from 0.

Example 4.2 This example has list arguments. The LVM uses Structure Copying
method to represent them. The cells of {SCI} type need to be allocated on LVM stack
frame.

:-psc mode
Psc([X|Y], [X,a,b],[[Y],d]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

After the first procedure (a) of the algorithm, we have the following working stack:

type index delayable arg list

DCI I m [X|Y]

SCI 0 Y [X|[a,b]]

SCI 2 Y [LY14J__
After completely flattening all nested lists and indexing all SCI elements again, the
working stack becomes:

type index delayable arg list

DCI 1 [X|Y]

SCI 0 Y [X|DCI:2]

DCI 2 |a[DCI:3]

DCI 3 • [bim
SCI 2 Y rSCI:4|DCI:4]

SCI 4 Y [vim
DCI 4 - [d|[]]

For this clause psc/3, three SCI elements need to be copied to LVM stack frame through
special initialization instructions (See Section 4.4).

4.2 Variable Classification and Index Calculation

4.2.1 Classifications of Variables

The LVMC classifies the variables of a clause into two types:

(1) stack variable (S-type): A stack variable is one which possibly outlives a
procedure call and must reside in the LVM stack frame. A stack variable is
represented by an offset to its dynamically allocated stack frame and is accessed by
“base plus index” method.

(2) register variable (R-type): A register variable is a temporary variable which
does not survive across procedure calls. A register variable is used in a fact
clause, arithmetic computations or a deterministic chain call. A register variable
never occurs in any constructor.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Except above two types of variables, a special variable, called “void” variable, may
exist in a clause. A void variable is a variable which occurs once and only in the argument
with (+) input mode of head of a clause. A void variable must be declared by in a
clause. The LVMC treats a void variable as constant term by an instruction:

VOID

A stack or register variable may be used in two ways: uninitialized (V-type) or
instantiated (L-type). The LVMC uses {RGV and RGL} to represent the two states of a
register variable respectively, and {VAR and VAL} to represent the two states of a stack
variable respectively. A V-type variable is a variable without initial value. A L-type
variable is a variable with initial value, but may be unbound. Here, unbound means that the
variable is initialized as a self-referential pointer. Binding a L-type variable is expensive
because the variable must be dereferenced. One of the major sources of inefficiency of
early WAM implementations arises from that V-type variables are created as self-
referential pointers and then unified soon afterward. Beer [21] first noticed this problem,
and proposed a solution that the V-type variables are bounded via destructive assignments
without dereferencing. In other word, the initialization of V-type variables can be
canceled. The LVM bounds the V-type variable by destructive assignment. The analysis of
variable status in a clause is important to improve the efficiency of any implementation.

Naturally, the next question is how to identify status of variables in a clause. Van
Roy [22] used a global analysis algorithm to extract the uninitialized variable from a
clause. Lindgren [23] detected the uninitialized variables by a syntactic transformation
method. In the LVMC, we supposed that the input modes of arguments of predicates are
known before the clause analysis, the algorithm of variable analysis becomes simple. Our
algorithm also takes the LVM unification method into account.

The unification method of LVM system is quite different from all others. Most
Prolog systems implement unification in the depth-first order, but the LVM invokes the
unification code segments in the reverse depth-first order. When two unification
instructions represent both structure terms (either selector or constructor), the unification
of deeper-level structure terms is delayed unless those two instructions are the last pair in
the current code segments. In other word, partial unification is performed.

In the variable analysis, a linked list “xlist” with node data structure defined as

typedef struct varinfo{
char *var-name,
char RS-type,
char used,
char first-occurred,
char delayable,
struct varinfo *next
} varinfo;

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is used to hold the variable information in a clause in order to decide variable R/S-type
and necessity of variable initialization as well as possible initialization delay. The LVMC
uses four rules to set first-occurred and delayable flags:

(1) If a stack variable occurs in plain argument list of head, its first-occurred flag
is set to true;

(2) If a stack variable occurs in any head structure argument of selector before any
constructor argument during scanning and flattening the head argument lists, its
first-occurred flag is set to true;

(3) If a stack variable occurs in arguments of goals before any constructor
argument during scanning and flattening the goal argument lists, its first-occurred
flag is set to true.

(4) If a stack variable doesn’t appear in structure arguments of head with (?) mode
, then its delayable flag is true.

After the analysis, the R/S-type of all variables is set correctly. For a stack variable
in the “xlist”, if its first-occurred flag is false, this variable must be initialized.
Furthermore, if its delayable flag is true, this variable initialization can be delayed until
after head unification control instruction.

The V/L-type information is associated with each variable. A variable may appear
in the argument lists of head and goals or inside structure argument terms. Assuming that
the clause is

H(..):-GI(...),G2(...),...,Gn(...),

the LVMC uses the following algorithm to determine the V/L-type of a variable:

(1) Scan the argument lists of head and flatten its structure terms. Then
do the same for each goal argument in order of Gl->G2->...->Gn.

(2) following (I) process, if a variable appears first time and the current
argument is plain argument or selector, then it is V-type; otherwise it is L-type.

Actually, the variable analysis is naturally embedded into the structure term flattening
process. The void variables always are of V-type.

Example 4.3 To see how the variable V/L type identification works, let’s consider
the following clause. All variables in this clause are stack variables. The V/L type of
variables is listed in the right side.

26
i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-mode p(+,-,+).

P(X, X: V-type
Y: L-type, Z: L-type(*)
X: L-type, Y: V-type

h(Y, g(Z)),
*X,g(Y))

qO'(Z,W)),
«X,Y,Z).

Z: L-type, W:L-type(*)
X: L-type, Y: L-type, Z: L-type

The LVMC scanning order of arguments is:
X->f(X,g(Y))->h(Y,g(Z))->j(Z,W)-> X->Y->Z.

Here, variables {Z,W} need to be initialized.

4.2.2 Indexing of Variables

At each clause invocation point, a stack frame (V/C-frame) and registers are used
to hold dynamic objects generated from the called clause. The stack frame is allocated in
the LVM stack area. Although the size of a V/C-frame varies from one clause to another,
the stack frame is an integral memory in the LVM working stack. Later on, any object on
the stack can be accessed using the base plus offset addressing method. Normally, the
LVM uses the bottom of going allocated frame as the consulting base. The offset is the
distance of location of the object inside the stack frame from the frame bottom in units of
machine words.

A stack frame may contain environment parameters, stubs, SCI objects and stack
variables. In order to prevent negative offsets in nested unification instructions, the LVMC
assigns the stack cells by the following rule:

(1) Cell assignment starts from the relative location 0;
(2) Cells are assigned by the order of environment parameter->stubs->SCI
objects—>stack variables;
(3) Stub arrangements are consistent with their flattening order to guarantee the
correct accessing scope of the nested stubs and stack variables;
(4) Stack variables, which need initialization, are assigned with lower indices than
those uninitialized.

In the LVMC, there are two types of offsets: S-offset and C-offset. The S-offset is
an offset against the base of the allocated frame. The S-offset is used to generate the
unification instructions for the head and goal arguments, and also to access the variables in
the structure term of a selector. Therefore, the following objects have S-offsets:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

(1) stack variables, which directly are plain arguments of the head and goals;
(2) stack variables, which occur in structure terms of selector or DCI objects;
(3) stubs/SCI objects, which are arguments of the head and goals.

For a constructor stub or SSI object, since it will be bound to a variable and then
be carried to any place during execution, so its environment is created to associate with
the stub. Therefore, the absolute address of the stub serves as the base of the unification
code environment and its content as the unification code entry pointer. A C-offset is an
offset against the location of a constructor stub. The following objects have C-offset:

(1) stack variables, which occur inside structure terms of constructor;
(2) stubs/SCI objects, which are substructures of a structure term of constructor.

Since all stubs, SCI objects and stack variables have been assigned locations in the
stack frame during compilation, the offset calculation becomes easy. Let X be any object
in C and C a constructor stub, then

C-offset (X in C) = location(X) - location (C).
The S-offset of an object is its relative location with respect to the stack frame.

Example 4.4 Let’s consider the following clause:

:-mode p(-,?,-).
pd(Y,g(Z)),Xh(Y,g(W))):-q(X,Y), r(X £).

After nested structure flattening and variable analysis, we find that there are four stubs and
4 stack variables {X,Y,Z,W}. Stack variables {X,Y,Z} have first occurrence, so they don't
need initialization. The variable W must be initialized. A C-frame is used to hold all
objects. Thus a total of eleven cells will be allocated as the execution environment of the
clause on the LVM stack area. The cell assignments are listed in the Table 4.2.

In the head unification codes of clause p/3, we use S-offset: offset 3 to refer to C l,
offset 8 to X and offset S to C3. The variable Y has three offsets: one S-offset and two
C-offsets. Since variable Y occurs in constructors C1 and C3, the two C-offsets are:

C-offset (Y in C l) = location (Y) - location (C l) = 9-3=6
C-offset (Y in C3) = location (Y) - location (C3) = 9-5=4

Therefore, in the unification code segment of C l, we use C-offset 6 to refer to Y and C-
offset 1 to refer to C2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Location Object S-offset C-offset
0 c-frame env
l c-frame env

42 c-frame env
3 Cl=flY,C2) Cl:3 Y :6 C2:1

4 C2=g(Z) C2:4 Z.6

5 C3=h(Y,C4) C3:5 Y: 4 C4:1

6 C4=g(W) C4:6 W: 1

7 W 7

8 X 8

9 Y 9

10 Z 10

Table 4.2 Stack cell assignment and offsets of objects

Since the LVM uses the Structure Copying method to represent the list
constructors, it is possible that several copied list instances share a single variable.
Therefore, a special set of list initialization instructions are designed to handle the shared
occurrence problem. The detail will be discussed in Section 4.4.

4.3 Register Allocations and Conflict in Parameter Passing

In the LVM, there are 64 general purpose registers emulated by memory, which
can be directly accessed without indirection. Eight of them labeling from RO to R7 are
dedicated to pass parameters between the caller and the callee. Others from R8 to R63 are
used to store the intermediate results in arithmetic computation. Here, we only discuss the
parameter passing registers.
4.3.1 Magic Register: RO

The role of RO register is quite different from that of other registers (R1..R7). RO
register is used to speed up last argument dispatching. Although Prolog programmers have
a natural tendency to write the codes using discriminating patterns as first arguments, the
LVM does not depend on this tendency. Since the LVM implements unification delay
algorithm, the LVMC chooses an appropriate argument from the head arguments of a
clause and swaps it with the last argument, if one or more head arguments have (+) input
mode. In such cases, the clauses of a predicate may be dispatched by their last arguments.
To speed up the dispatching, the LVM uses RO register to store the last argument before
issuing a procedure call. Two control instructions {SWT and SHS} are designed to
implement the dispatching based on the RO value.

29
i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If a predicate is last argument dispatchable, the LVMC uses the following conditions
to select a variable from the last argument of a head for each clause to be the RO register
variable:

(1) In the head, the variable occurs in the last argument once.
(2) Since the RO represents a dereferenced value of the corresponding variable in
the goal side of the clause, the variable may be used in any arithmetic expression
before the first user defined goal. The variable can only appear in the first user
defined goal but not other goals, and can also be used as its last argument.

Example 4.5 To illustrate the selection, let us consider the following two clauses,
which are last argument dispatchable.

:-mode p!(-,+,+).
pl([X|Xs],Y,Z):-Y>Z, W is Z+l,pl(Xs,W,Z).
:-mode p2(-,+).
p2([X|Xs], f(Y,X)):-p2(Xs,Y).

In the first clause, variable Z is selected as RO register variable. The variable Z is the last-
argument of the head, also the last argument of user defined goal pi/3. Before the
invocation of the goal call pl/3, the variable Z is used in two arithmetic expressions. In the
second clause, variable Y is selected as RO register variable.

Except speeding up the dispatching, RO register can help to pass parameters faster
between the caller and callee. When the callee is last argument dispatchable, the caller can
directly store its last argument in RO regardless of the properties of the caller predicate,
then the later-on unification process directly involves RO register. If the caller predicate is
nondeterministic, RO is protected in choice point or B-frame. To implement this
optimization, the LVM designs two sets of procedure invocation instructions {CAL, CCL,
LAC} as follows:

CAL ucodeentry predicatecodeentry
CALRi/Vi u_code_entry predicate_code_entry
CCL u_code_entry predicatecodeentry
CCLRi/Vi ucodeentry predicatecodeentry
LAC u_code_entry predicatecodeentry
LACRi/Vi ucodeentry predicatecodeentry

30

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the first operand of the procedure invocation instructions is of Ri/Vi, it means that the
specified register (Ri) or stack variable (Vi) is dereferenced and its final value is saved in
RO. Then the last instruction in the goal unification code segment is replaced by
instruction: “RGL 0”. The LVMC arranges the RO register to pass the last argument of a
goal call when the goal predicate is last argument dispatchable.

4.3.2 R1...R7 Registers

R1...R7 register variables can only be used in fact, deterministic chain clause to
pass parameters. Unlike RO, those register variables can’t be used in nondeterministic
chain clause and normal rule clause. If these register variables are not enough to represent
the parameter passing variables in a clause, then the remainder of parameter variables will
be treated as stack variables. In this case, extra stack cells need to be allocated on the
LVM stack frame.

During register allocation, a conflict may happen. To demonstrate this problem, let
us check the following deterministic clause p/2:

p(X, Y, Z) > q(Y, W, X).

After variable analysis, the clause is first transformed into:
p(Rl,R2,R3):-q(R3,R4, R l).

Here, p/3 passes its parameters to q/3 goal via registers in the order of R3->R4->R1. If
the predicate q/3 uses “q(Rl,R2,R3)>.. ” to accept these parameters, after the caller’s R3
unifies with the callee’s R l, the caller’s Rl information has been lost, therefore the register
conflict occurs. To avoid this conflict, the LVMC uses the following strategies to schedule
R1..R7 registers in register allocation:

(1) Registers (Rl ..R7) are allocated incrementally by the order of index to the head
and goal arguments from left to right.
(2) If the current register variable index is less than the left-hand register variable
index, a new register variable with a greater index will replace this register
variable, and a register to register assignment will be inserted before this goal call.

Thus, in the above example, the LVMC will change the clause to be in the form of
p(Rl, R2, R3):- R5=R1, q(R3, R4, R5).

4.4 Unification Code of a Clause

For a clause, there may be several independent unification code segments for the
head and its goal arguments respectively. Each unification code segment consists of
several unification instructions. These unification instructions have a single format of

31
i
i
l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Opcode Operand
Totally twelve unification instructions are defined in LVM and listed in Table 4.3.

Opcode Operand Meaning
INT value an integer
CON value a constant
NIL a null list
VOID a void variable
VAR offset an uninitialized stack variable
VAL offset an instantiated stack variable
RGV index an uninitialized register variable
RGL index an instantiated register variable
DCI entry a direct/dynamic-copied instance
SSI offset a static shared instance
SCI offset a static copied instance

FUN name/arity a functor with name/arity
Table 4.3 LVM unification instructions

Unification code segments of a clause can be generated in any order, provided that
they are properly labeled. The LVMC uses the name conventions listed in Table 4.1.
Inside each code segment the order of unification instructions must obey the lexical order
of the objects in the argument list.

After the clause analysis, the unification code generation method is simple. It
simply describes the argument lists of head and goals from left to right. For a flattened
structure stored in “fstack” (See Section 4.1), it starts with a FUN instruction and follows
with a sequence of instructions to match its arguments. But a selector list is treated as a
structure without functor so that the FUN instruction is omitted.

Example 4.6 Suppose that we have the following clause p/3:

mode p(+,-,+).
p(Y,f(X,Y^),[X|Xs]):-p(Y^,Xs).

32

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the clause analysis, we find that there are three stack variables {X,Y,Z}, a RO
register variable {Xs}, and one structure stub as shown in Table 4.4.

Object Object type S-offset C-offset
KX,Y,Z) SSI 0
[X|Xs] DCI -

X Stack var 1 1
Y stack var 2 2
Z Stack var 3 3
Xs Register var 0

Table 4.4 Memory layout of objects for p(+,-,+)/3 clause

For this clause, four unification code segments should be generated. One is for the clause
head arguments, one is for the goal arguments and other two segments are for the nested
structure terms in head arguments. The unification code segments are labeled as follows:

U-code Labeling Meaning

p/3.u.O head unification

p/3.s.l constructor f(X,Y,Z)
p/3, s. 2 selector |X|Xsl

p/3.u.l goal unification

These unification code segments are:

p/3.u.O:

p/3.u.l:

VAR 2

SSI 0
DCI p/3.s.2

VAL2

VAL 3
RGLO

// Y
a m stub

// [X|Xs]
//Y
H Z

//Xs

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p/3.s.l: FUN 03
VAL1 //X
VAL 2 //Y
VAL 3 H Z

p/3.s.2: VAR 1 //X
RGVO //Xs

In this example, a FUN instruction for the list [X|Xs] is omitted from the unification code
segment of p/3.s.2, since the list is a selector.

4.5 Control Code of a Clause

In the LVM, each clause has one corresponding control code segment. The
control code specifies possible stack frame allocation, necessary initialization, and
unification invocation and consecutive goal calls. It may also contain arithmetic
computation instructions and garbage collector trigger. The initialization includes stub
initialization, SCI object initialization and V-type variable initialization.

Two types of LVM stack frames may be allocated to each clause: V-frame and C-
frame. They have been discussed in Section 2.3. A V-frame is allocated by instruction:

ALV n

and a C-frame is allocated by instruction:

ALC n

where n is the total number of cells of this frame in machine word. For a V-frame, if n=0,
then the ALV instruction is omitted. For a C-frame, the value of “n” must be equal to or
greater than 3, since it contains three environment parameters. The LVMC uses two
simple conditions to identify the stack frame type for a clause:

(1) A V-frame is used for a fact or chain-call.

(2) A C-frame is used for a rule clause, which has more than one goal.

The control code generation for a clause is straightforward. It follows four basic
translation formats:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
f

i

(1) Fact:

[ALV] -> {initialization} *->[UNI] ->{initialization}*->PCD.

(2) Chain call:

[ALV]-> {initialization} *->[UNI]-> {initialization} *->CCL.

(3) Rule:

ALC-> {initialization} *->[UNI] ^{initialization} *->{CAL}+ ->LAC
or

ALC -̂ {initialization}* ->[UNI] -> {initialization}* ->{CAL}+
->builtin’s ->RET

(4) Query:

STA->{initialization}*->{CAL}+ ->FIN.

where * denotes zero or more occurrence, + means at least one occurrence and []
indicates optional. The symbol represents “followed by”. The meaning of LVM
instructions {PCD, UNI, CCL, CAL, LAC, RET, FIN, STA} are described in Appendix
A. The SCI object initialization will be discussed in Chapter 4. The variable and stub
initialization are specified by LVM instructions:

IVn starting_position for variables

and ITn starting position code entry address for stubs. In the following,

each translation format is discussed.

4.5.1 Fact

For a fact clause, if there is a constructor or dual in its head arguments, then a V-
frame must be allocated, some of the stack variables and copied list instances as well as
stubs should be initialized. The delay of the initialization depends on the input modes of
the arguments. If the fact only has ground arguments, the translation format degenerates
to a format: UNI -> PCD. Furthermore, if the fact is a proposition, it has no unification
code, the control instruction code degenerates to a single instruction PCD. In the
following, some fact definitions and their corresponding LVM code are shown.

(1) A proposition:
P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

The LVM bytecode is
p/0: PCD

(2) A fact with constant arguments:

q(a,b).
The LVM code is:

q/2: UNI 2 q/2.u.O
PCD

q/2.u.O: CON a
CONb

Here label q/2 is the control code entry and q/2.u.O is the unification code entry of head.

(3) A fact without stack variables:
r(X,X,Y).

After variable analysis, it has the form of
r(Rl,Rl,R0).

The LVM code is:
r/3: UNI 3 r/3.u.O

PCD
r/3.u.O: RGV 1

RGL 1
RGV 0

Since there are no stubs, SCI objects and stack variables, a V-frame is not needed.

(4) A fact with constructor

:- mode u(-,?).
u(f(X),Y).

After clause analysis, we know that variable X is a stack variable with index of 1, the fact
has the form of

u(SSI:0, RO).
The stub must be allocated in the stack frame via initialization instruction: IT l, also the
stack variable X must be initialized via initialization instruction: IV1. The LVM code of
the fact is shown as follows:

u/2: ALV 2
UNI 2 u/2.u.O
IT l 0 u/2.s.l / / initialize a stub at position 0
IV1 I // initialize variable X
PCD

36
i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u/2.u.O: SSIO
RGV 0

u/2.s.l: FUN <71 / / static shared structure
VAL 1

4.5.2 Chain Call

For a chain call, if the callee is a deterministic predicate, registers (R0..R7) can be
allocated to pass some parameters, otherwise stack variables and RO register must be
used to pass all parameters. The LVM uses instruction CCL to invoke the goal call
procedure.

Example 4.7 To illustrate these cases, let’s check two examples by assuming that
goal q/1 is a deterministic predicate, and app/3 is a nondeterministic predicate.

(1) A chain call with a deterministic goal call:

:-mode p(-,-).
P(X,Y):-q(f(X),Y).

After clause analysis, the clause becomes:
p(Vl,Rl):-q(SSI:0,Rl).

The Rl register is used to pass parameter {Y }. A V-frame with one stub and one variable
{X} has to be allocated. The stub at position 0 needs to be initialized. The LVMC will
generate the following code:

ALV 2
IT l 0 p/l.s.l
UNI I p/l.u.O
CCL p/l.iu.l q/1
p/l.u.O: VAR 1

RGV 1
p/l.u.l: SSI 0

RGL 1
p/l.s.l: FUNffl

VAL 1

(2) A recursive chain call:

:-mode app(-,-,+).
app(Ll,[XiL2],[XlL3]):-app(Ll,L2,L3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37 f
i

The clause is first transformed to the form of
app(V2,[V0|Vl],[V0|R0]):-app(V2,Vl,R0).

Here RO register is used to pass a variable in the last argument. All variables in this clause
are classified as stack variables plus RO register variable. A V-frame with 3 cells needed to
be allocated in the LVM stack area. The LVM code is:

app/3: ALV 3
UNI 3 app/3.u.O
CCL RO app/3.u.l app/3

app/3.u.0: VAR 2
SCI 0 //a SCI object
DCI app/3.s. 1

app/3 .u.l: VAL 2
VAL 1
RGLO

app/3.s.l: VARO
RGV 0

4.5.3 Rule

For a rule clause, a control frame containing three local environment parameters
needs to be kept on the LVM stack, so a C-frame must be allocated. A rule clause can’t
use the register variables, except RO, hence all parameters are passed via stack variables.

If the last goal is a user defined goal, then an instruction: LAC is used to issue the
last call. The LAC instruction does not implement the so called last call optimization [10].

Example 4.7 Suppose that we have the following clause and t/2 is an user
defined predicate,

p< X,Y/):-q(U,V,W),r(Y^,U),S(U,W),t(X,V).
From the clause analysis, we know that no parameter can pass by registers (R0..R7), so all
six parameters are allocated inside the C-frame as stack variables. Therefore, totally nine
cells are needed for the C-frame. The LVM code is shown as follows:

ALC 9
UNI 3 p/3 .u.0
CAL p/3 .u.l q/3
CAL p/3.u.2 r/3
CAL p/3.u.3 s/2
LAC p/3.u.4 t/2

!
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

p/3 ,u.O: VAR 3
VAR 4
VAR 5

p/3 .u.l: VAR 6
VAR 7
VAR 8

p/3.u.2: VAL 4
VAL 5
VAL 6

p/3.u.3: VAL 6
VAL 8

p/3.u.4: VAL 3
VAL 7

If the last goal is a built-in predicate or an arithmetic computation, then an
alternative translation format is applied. The instructionrRET is used to return the control
to its parent continuation point. Let’s demonstrate this case with the second clause of
predicate length/2:

:-mode length(-,+)
length(0,[]).
length(N,[_|LJ):-length(Nl,L),N is Nl+1.

In this clause, a built-in arithmetic predicate “is” is used as the last goal. Also this
predicate is deterministic by last argument dispatching. After the clause analysis, the
second clause becomes:

length(V3,[VOID|RO]) :-length(V4,R0),V3 is V4+1.
The generated code is:

length/2.2: ALC 5
UNI 2 length/2.2.u.O
CAL RO length/2.2.u.l length/2
LOD 4 8 // move V4 to R8
INC 8
STI 8 3 // load R8 to V3
RET

length/2.2.u.O: VAR
DCI

3
length/2.2.s.l

length/2.2.u.l: VAR 4
RGL 0

length/2.2.s.l: VOID
RGV 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

4.5.4 Query

For a query, the LVMC assumes that its predicate name is “main” without head
arguments by default. All variables must be stack variables. A special frame is allocated to
store these variables by the instruction (<STA n”, where n is the number of variables. A
special instruction: FIN signals the LVM system to exit.

The LVMC handles queries with a single goal, and also queries with multiple
goals. Two examples are given as follows:

Example 4.8 A query with one goal call:

?-p(Y,Z,123).

The LVMC transforms the query into the form:

main:- p(V0,Vl,INT:123).

Therefore, the LVM code is:

main: STA 2
CAL main.u.0 p/3
FIN

main.u.O: VAR 0
VAR 1
INT 123

Example 4.9 A query with multiple goals:

?-p(X),q(f(Y)),r(X,Y).

After clause analysis, the query becomes:

main:-p(V2),q(SSI:0),r(V2, V I).

where the stub must be initialized. The LVM code is:

main: STA 3
IT l 0 maims. 1 //stub initialization
CAL main.u.0 p/1
CAL main.u.1 q/1
CAL main.u.2 r/2
FIN

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

main.u.0: VAR 2
main.u.1: SSI 0
main.u.2: VAL2

VAR 1
main.s.1: FUNf/l

VAL2
// static shared structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Built-in Predicates, Arithmetic Expressions
and Initializations

In this chapter, the code generation of a clause involving built-in predicates and
arithmetic expressions is discussed. Also, the initialization of variables, stubs and
especially SCI objects is described.

5.1 Built-in Predicates

The built-in predicates are defined in Appendix B (also in [19]). There are nine
classes of built-in predicates in Prolog. They are:

(1) unification, e.g., =, \=
(2) arithmetic comparison, e.g., =:=, =\=, <, =<, > and >=,
(3) term test, e.g., atom(X), integer(X) and compound(X),
(4) term comparison, e.g., @>, @>=, @< @<=, = = and \= =,
(5) term manipulation, e.g., functor/3, arg/3 and copy_term/2,
(6) all solutions, e.g., findall/3, bagof/3 and setof/3,
(7) character-string operations, e.g., atom_codes/2 and char_code/2,
(8) I/O operations, e.g., get_char/l, read/1 and open/3,
(9) miscellaneous, e.g., halt/1, throw/1 and repeat/0.

Although the implementation of these built-in predicates in current LVM has not
been completed, the corresponding LVM instructions calling these built-in predicates are
specified in Appendix B. During compilation, the LVMC loads these predicates into a
special predicate table. The convention for calling a built-in predicate is that arguments
passing to a built-in must be through the registers in order of (R1 ..R7).

Example 5.1 For example, if a clause calling integer/1 is defined as follows:
p(X):-integer(X), q(X).

the LVM code for this clause is:

p/1: UNT1 p/l.u.0
B24
CCLROp/l.u.l q/1

p/l.u.O: RG Vl

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p/1.u. 1: RGL I

where the built-in predicate integer/1 accepts the argument from R1 register.

5.2 Cut

The cut (!) predicate is a built-in predicate (labeled as B84) which is used to trim
the search tree. The operational semantics of cut (!) is that when it is passed, the execution
control can not go back to any other alternative clause in the current predicate and any
preceding body goal in the current clause. Therefore in the view of implementation, all
choice frames that were created after the choice frame corresponding to the current
predicate should be discarded.

There are two types of cuts in Prolog: neck and deep cuts. A neck cut is the cut as
the first body goal in the clause, i.e.,

h e a d !, bodyl, body_2,...body_n.
while any other clause with cut inside its body goal list is a deep cut case, i.e.,

head :- body l , ...,!,...body_n.

The LVM uses the instruction NCT for the neck cut and two instructions LCT and
DCT for the deep cut. As shown in Figure 1.9c, BB register is used as the choice frame
pointer. In the neck cut case, the NCT instruction will remove the current choice frame
created by the current predicate via the TRY instruction, BB is reset to point to its
preceding choice frame. The LVMC only generates NCT code for neck cut when the
current predicate is nondeterministic.

Example 5.2 Suppose that the first clause of a nondeteminisdc predicate p/1 is:
P(X):-!, b(X).

A choice frame (B-frame) is allocated for first calling this predicate via instruction TRY,
p/1.1: TRY p/1.2 //p/1.2 is code entry of next clause

the other code for this clause is:

UNI I p/l.l.u.0
NCT
CCL RO p /l.l.u .l b/1

p/l.l.u.O: RGVO

p /l.l.u .l: RGLO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

I

The deep cut is little complex. All choice frames between a choice frame upon
calling this clause's predicate and this deep cut may be discarded. The LVM defines two
instructions to handle this case. The first instruction

H T T
is to save the current BB register to stack variable n, so that an extra cell must be
allocated for this special variable (BB register) in the current C-frame, and also the LCT
instruction must be located before the invocation of any body goal. The second
instruction

DCT n
restores the BB register from the saved stack variable n to trim the choice frame linked
list.

Example 5.3 Assume that we have the following clause in a nondeterministic
predicate p/1:

p(X):-b(X),!,c(X).
the LVM code generated by LVMC is:

p/1: ALC 5
UNI 1 p/l.u.O
LCT 4 // save BB register into stack cell (V4)
CAL V3 p/l.u.l b/1
DCT 4 // restore BB value from V4
LAC V3 p/l.u.l c/1

p/l.u.O: VAR 3

p/l.u.l: RGLO

where two stack cells (V3 and V4) are allocated. The first cell (V3) is used by the stack
variable X, the second cell (V4) is used to save the BB value of current predicate p/1.

Except the roles as neck cut and deep cut in nondeterministic predicates, cut (!)
may be used as a guarded condition in deterministic predicates. The LVMC explores the
new functionality of cut by replacing the cut with a guarded condition in order to make the
determinism explicit.

Example 5.4 For example, we have the following predicates:

-mode p(+,+).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p(X,X):-!.
p(X,Y):-q(X,Y).
>mode fat(+,+,-).
fat(X,Y^):-X<Y,!,q(XZ).
fat(X,Y,Z):-q(Y,Z).

The LVMC rewrites them in the following form:

p(X,Y):-X =Y.
P(X,Y):-X \=Y,q(X,Y).

fat(X,Y,Z):-X<Y,q(X^).
fat(X,Y,Z):-X >=Y,q(Y,Z).

The neck cut in predicate p/2 and deep cut in predicate fat/3 is removed, but the semantics
of these predicates remains unchanged during the compilation. The guarded conditions
{X=Y, X\=Y and X>=Y} are inserted into the clauses.

5.3 Arithmetic Expressions

An arithmetic expression is a term built from numbers, variables, and the following
functors of two types:

(1) arithmetic computation,

X+Y addition
X-Y subtraction
X*Y multiplication
X /Y division
X //Y integer division
XmodY modulo
X » Y bit shift right
X « Y bit shift left
X AY bitwise and
X VY bitwise or
X A Y bitwise exclusive or
-X sign reversal
X is 1+2 is/2 predicate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

(2) arithmetic comparison

X=:=Y equal to
X=\=Y not equal to
X > Y greater than
X>=Y greater than or equal to
X < Y less than
X=<Y less than or equal to

The current LVMC explicitly generates LVM code for any integer arithmetic expression
defined as above without referencing the LVM built-in instructions (B03-B09).

5.3.1 Arithmetic Operations

The current LVM defines a set of arithmetic instructions for the integer arithmetic
expressions, which are listed in Table 5.1. There are three features of these definitions:

(1) All arithmetic operations are register actions;
(2) A special hard-register, namely R8, is used to implicitly store the result after
an arithmetic operation except "DEC and INC" instructions. It should be noted
that RO is not allowed in arithmetic calculation, since the main purpose of RO is for
last argument dispatching.
(c) Any register of R9... R63 can be used to store the intermediate result of any
arithmetic expression.

Operator Operandl Operand! Meaning

ADO j (RiH(Ri)->R8

SUB J (RiMRi)-> R8

MUL i (Ri)*(Rfl->R8

DIV j (RiV(Ri>>R8

MOD j (Ri) mod (Ri)->R8

SFL j (Ri)«(R|)->R8

SFR j (RiV»(Rn->R8

AND j (Ri) & (Ri)->R8

ORR i (Ri) 1 (Rj)->RS

XOR j (R i)A(Ri)->R8

INC (Ri)+l->Ri

DEC (RiM->Ri

Table 5.1 Integer arithmetic instructions

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For arithmetic computation, all static or dynamic objects are loaded into registers
before the calculation begins, and the result is stored after the calculation. For this, the
LVM defines a set of load/store instructions for the data movement as listed in Table 5.2.

Operator Operandl Operand2 Meaning

CLD n/c i load integerfn) or constant (c) to Ri

LOD v i load VAL variable v to Ri

LOI v i load VAR variable v to Ri

MOV i i move RCL Ri value to Ri

MOI i i move RGV Ri value to Rj

STO i v store Ri value to VAR variable v

STI i v store Ri value to VAL variable v

MDC v i create <dc,addr(v)> to Ri

MDS v i create <ds, addr(v)> to Ri

Table 5.2 Data load/store instructions

5.3.2 Register Allocation

In the LVM, a total of 64 registers are simulated by physical memory addresses,
and registers (R8. .R63) are reserved for the storage of intermediate results of arithmetic
computation. Although theoretically we need infinite registers to store the intermediate
result for an arithmetic expression in Prolog, experiments showed that expression
calculations are not so complex to require five registers for intermediate results.
Therefore, many compilers allocate only four registers for expression evaluation. Since 56
registers could be used in the LVM, the LVMC does not implement the register spill.

To optimize the register allocation and generate the register code of an arithmetic
expression, the LVMC uses a virtual stack to simulate the execution of arithmetic
computation. The main strategies are as follows:

(1) set register[8..63]=l as a register pool. When a register (i) is used in the stack,
then set register[i]=0.
(2) push two items from the expression tree into the stack in postorder. If these
two hems are not register variables, use LVM load instruction to load them into
unused registers. If register R8 has been used in the stack, move the content of
R8 into an unused register.
(3) pop two items from stack for an arithmetic operator and then place R8 on the
top of stack.

(4) only one item, R8 should be left on the stack after the completion of
calculation.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 5.5 To illustrate the register allocation, assume that we have the
expression tree for (Rl+R2)*(Vl-3). The code generation procedure from the simulation
execution of this expression is shown in Figure S.l. The LVMC generates the following
code for this expression:

ADD 1 2
LOD I 9
CLD 3 10
MOV 8 11
SUB 9 10
MOV 8 9
MUL 11 9

V IR2RI

expression tree

-------------» »
IN T3

" R T V 1 -
R 1 R 8 push "R 8

ADD 1 2 LOD I 9
CLD 3 10
MOV 8 11

R 10 • 9
m

» »II 0 n a R 4
£ 1 1 R 11. R 11 R 8

SUB 9 10 MOV 8 9 MUL119

Figure 5.1 Simulation of expression evaluation

i
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

5.3.3 A rithm etic Com parison

The LVM defines five branching instructions to handle arithmetic comparison
operators, which are listed in Table 5.3. In these instructions, all registers including RO
and R8 can be used as the first operand.

Operator Operandl Operand2 Semantics
JNE i e if Ri value is negative, jump to e
JPO i e if Ri value is positive, jump to e
JZE i e if Ri value is zero, jump to e
JLE i e if Ri value is negative or zero, jump to e
JGE i e if Ri value is positive or zero, jump to e

Table 5.3 Branching instructions

The LVMC uses the following formats to generate the LVM bytecode for an
arithmetic comparison:

Expression Codes

...,Rl<R2,... SUB I 2
JGE 8 fail

...,R1=<R2,... SUB 1 2
JPO 8 fail

...,R1>R2,... SUB 1 2
JLE 8 fail

...,R1>=R2,... SUB 1 2
JNE 8 fail

...,Rl~=R2,... SUB I 2
JPO 8 fail
JNE 8 fail

...,R1=\=R2,... SUB 1 2
JZE 8 fail

For an arithmetic expression, if one operand is an integer or constant, the integer
or constant needs to be loaded into an unused register first, and then follow the above
formats to generate the code. To increase the LVM speed, an extra instruction CMP is
available to handle comparison of this type. Also a generic comparison instruction CMG is
provided. The definition of these two instructions is listed in Table 5.4. For instance, a
body goal, Rl>123, in a clause is compiled into the code:

CMP 123 1
JGE 8 fail

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

And the goal, R1-:=R2, can also be compiled into

CMG 12
JPO 8 fail
JNE 8 fail

Operator Operandl Operand2 Meaning
CMP n/c i if n /0(R i), R8=l;

or n/c =:=(Ri), R8=0;
or n/c<(Ri), R8=-l.

CMG i j if (Ri)>(Rj), R8=l;
or (Ri)=:=(Rj), R8=0;
or (Ri)<(Ri). R8=-l.

Table 5.4 Special comparison instructions

Except these instructions for arithmetic expressions, the LVM defines one
instruction to handle term unification operation (=) as follows:

CUF i j

where Ri and Rj registers must be not R8 and RO. If contents of Ri and Rj are unifiable,
the result (R8) >0, otherwise (R8) <= 0. Therefore, LVMC uses the following two
instructions to cover another unification operator. \=.

CUF i j
JPO 8 fail

5.4 Initializations

The non-ground structure constructor is a new object bom from invoking a clause.
It may survive fo r a long time. The LVM allocates all potential objects before issuing a
clause unification through certain initialization instructions. Since the LVM uses the SC
method to represent list constructors and the PS method to all other constructors, the
LVMC needs to generate the following types of initialization instruction code:

(1) unbound stack variable initialization
(2) stub initialization
(3) SCI object initialization

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

50

5.4.1 Stub and Unbound Stack Variable Initialization

For non-ground and non-list structure constructors, the LVMC generates a static
code segment for the skeleton of the structure, but the dynamic environment (variables) is
allocated on the LVM stack frame. To associate the shared static code to an instance of
structure, the corresponding stub on the frame must be specified through an assignment
instruction, e.g., 1T1, IT2, IT3 and 1TN. Also the variables inside the structure should be
set to unbound via initialization if they do not have first occurrence, and they are indexed
by their C-offsets. The set of stub and variable initialization instructions are listed in Table
S.5. Normally, these initializations are carried out before the head unification inside
control code of a clause.

oncode oncnuid meaning
1V1 set the i-th cell unbound
IV2 set the i-th and (i+l)-th cells unbound
IV3 set three successive cells unbound
IVN n set n successive cells unbound
IT1 e assign e to the i-th cell
IT2 el e2 assign el, e2 to the i-, (i+l)-th cells
m el e2 e3 assign el,e2, e3 to the i-,(i+l)-,(i+2)-th cells
UN e assign a table of stubs (e) to the cells

starting from the i-th cell

Table S.5 Variable and stub initialization instructions

Example 5.6 As an example, let us consider a fact clause:

:- mode p(-,+).
p(f(Y,g(a,X),X).

Among the head arguments, there is a non-ground structure constructor f/2, which has to
be flattened. After clause analysis, aU object allocation on the stack V-frame is shown in
Table 5.6.

Location Object S-offset C-offset
0 Cl=f(Y,C2) 0 Y: 2
1 C2=g(a,X) 1 X. 2
2 Y 2
3 X 3

Table 5.6 Object allocation for p(+,-)/2 clause

For this clause, two stubs (C l, C2} and one variable Y must be initialized. The variable X
has its first occurrence as the first argument of p(..)/2. The control and unification code
segments of the clause are listed as follows:

51
i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p/2.s.l:FUN02
VAL 2 //Y
SSI 1 // C2 stub

p/2.s.2: FUN g/2
CON a
VAL 2 //X

p/2: ALV 4 // control codes
IT2 0 p/2.s.l p/2.s.2 / / initialize two stubs
IV1 2 //initialize Y
UNI 2 p/2.u. 0
PCD

p/2.u.O: SSI 0 //unification codes
VAR 3

5.4.2 SCI Object Initialization

In the LVM, there is no static code for non-ground list constructors. The non
ground list object is dynamically created by initialization instructions. Since there are 41
possible types of list [H|T], each type of list has a corresponding initialization instruction,
all of these instructions are listed in Table S.7. The definitions of list initialization
instructions are shown in Appendix A2. They have the formats of

opcode base j operandl
or

opcode base operandl operand2

>ase is the starting location of the list constructor in t lie stack frame.
[HIT] ssi sci dci cn nil u var e var f var
ssi - ISL ISG . ISN ISU ISE ISF
sci - ILL ILG - ILN ILU HE ILF
dci . IGL X X X IGU IGE IGF
cn - ICL X X X ICU ICE ICF
nil - INL X X X INU INE INF
u var - IUL IUG - IUN IUU IUE IUF
e var - IEL IEG - IEN IEU IEE IEF
f var - IFL IFG - IFN IFU IFE -

Table S.7 Opcode matrix of list initialization instructions

In Table 5.7, the head (H) and tail (T) of a list [HIT] may be an element of the following
types:

52

permission of the copyright owner. Further reproduction prohibited without permission.

ssi: a static shared instance
sci: a static copied list
dci: a ground copied list
cn: a constant or an integer
nil: a null list
u var: an unbound variable
e var: an equated variable
fvar. a first-occurred variable

The symbol "x" means that the LVM has treated them as a selector, not as a constructor,
and the symboldenotes a case of Prolog syntax prohibition.

It should mention that in the ILL initialization instruction:

ILL II 12

U indicates the starting position of this list initialization in LVM stack frame and 12 is
head initialization location. This list initialization instruction must obey certain order by
setting the {U, 12} values properly. The flattening algorithm of LVMC guarantees that
this order is set appropriately.

Example 5.7 Suppose that we have the following fact clause p/2:

:- mode p(-,-)
P([X|Y],[f(X,Y),a]).

After flattening the arguments, we have the following objects:

C1=[X|Y]
C2=f(X,Y)
C3=[C2| SI]
Sl=[a|[]]

The Cl is a list constructor of IEE type, and C3 is a list constructor of ISG type. But the
C2 is a non-ground structure constructor. The SI is a ground list selector. The stack cell
allocation is shown in Table S.8. The stub {C3} must be allocated before the list
constructors {C1.C2}. Each list constructor occupies two successive cells. Also variables
{X.Y} must be set to unbound by initialization. Therefore, a total of seven cells need to be
reserved by the compiler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Location Object S-offset C-offset
0 C3=*X,Y) 0 X:5 Y:6
1 C1=[X|Y] 1 X: 5 Y:6
2 2
3 C2=rC3|Sll 3
4 4
5 X 5
6 Y 6

Table S.8 Memory allocation for p(-,-)/2

The unification code segments and initialization instructions are listed as follows:

p/2.u.O: SCI 1 //Cl
SCI 3 I/C2

p/2.s.l: FUN f/2
VAL 5 //X
VAL 6 //Y

p/2.s.2: CON a
NIL

initializations:
IV1 0 p/2.s. 1 // stub C3 initialization
IEE 1 5 6 // SCI C l initialization
ISG 3 0 p/2.s.2 / / SCI C2 initialization
IV2 5 // (X, Y) initialization

Here, variab!es{X,Y} are shared by two types of constructors {SSI:0 and SCI.1}. The
instruction:

IEE 1 5 6

indicates that the list is initialized at cell of location = 1, its head is an equated variable
(VS) and the tail is another equated variable (V6). The instruction:

| ISO 3 0 pITsT]

denotes to initialize the SCI at third cell with a head, which is a shared object at cell of 0
and a tail, which is a ground list with the code entry: p/2.s.2.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Predicate Determinacy Analysis
and Indexing

Determinacy analysis of predicates is very important for the LVMC to generate
optimized control codes. Currently, the LVMC defines four levels of determinacy:

(1) Determinacy-O: A predicate consists of a single clause.
(2) Determinacy-1: The clauses are type/value mutual-exclusive.
(3) Determinacy-2: The clauses are conditional mutual-exclusive.
(4) Determinacy-3: The predicate is nondeterministic.

A predicate is deterministic if it has Determinacy-0/1/2; otherwise it is nondeterministic.
Only for a nondeterministic predicate, WAM-like choice frame (B-frame) is allocated, and
the control sequence of try, retry and trust is used.

The determinacy of a predicate could be declared using the following declaration:

:-determinacy atom/arity (integer_constant).

In order to verify the declaration and determine the best determinacy level, the LVMC still
does the determinacy analysis for the predicate. In this chapter, we will discuss the
predicates with Determinacy-1/2/3, respectively.

6.1 Last Argument Dispatching

As mentioned in Chapter 1, since the LVM implements unification in the reverse
depth-first order, the LVMC reorders the arguments of heads and goals of clause in all
predicates according to their input modes regardless of their original order in its earlier
phase. An argument of head in a clause, which is chosen as the last arguments of head,
must have (+) or (++) input mode. If two or more head arguments at different positions in
a predicate with multiple clauses have (+) or (++) input mode, then the most dispersed
argument in term of its type or value is chosen as the last argument. Naturally, the clause
head’s last argument is the indexing key of the predicate in such a case.

The LVMC checks if the types or values of last arguments of clauses in a
predicate are mutually exclusive. If it is true, the determinacy level of this predicate is
Determinacy-1 and the predicate is called last argument dispatchable. Here, the type of an
argument is one of {constant/integer, variable, null list, structure term}, the value of an
argument means character constant and integer number. Suppose that a predicate is
defined by two clauses, which accept an argument of Q and [X(Y] respectively, and the
input mode to this argument is (+), this argument is mutually type exclusive. This case
happens in many practical predicates.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During the compilation, two indexing methods are applied to last argument
dispatchable predicates. The first dispatching method is performed according to the last
argument types. The second dispatching method is used to discriminate different constant
or integer values.

6.2.1 Switch Table

If the last arguments of a callee (predicate) are type dispatchable, the callee will
check the type of last argument of the caller and branch the caller to a correct clause entry.
The LVMC implements this dispatching technique by using the LVM instruction:

SWT el e2 e3 e4

to switch on a switch table. Here “el e2 e3 e 4” are code entries for the last argument
type of callee to be variable, structure, null list and constant/integer, respectively.

Since the LVM defines a special register RO for the fast dispatching, the instruction
SWT uses the content of RO to carry out the switching. Therefore, if the callee (predicate)
is last argument type dispatchable, the LVMC will enforce that the caller (goal call)
passes its last argument into RO, then the call invocation instructions such as CAL,CCL
and LAC use the first operand to mark the RO, and the last unification instruction in this
call unification code segment is replaced by instruction: RGL 0

Example 6.1 To illustrate the use of switch table, let’s check the following
predicate nrev/2, where predicate append/3 is last argument dispatchable.

:-mode nrev(-,+)

nrev(n,0).
nrev(Y s,[X|Xs]):-nrev(Zs,Xs),append(Ys,[X],Zs).

After clause analysis, the predicate is transformed to

nrev(NIL,NIL).
nrev(V5,[V3|R0]):-nrev(V6,R0),append(V5,[V3[NIL]>V6).

The control code of predicate nrev/2 is
nrev/2: SWT fail nrtv/2.2 nrev/2.1 fail

where nrev/2.1 and nrev/2.2 are control code entries of two clauses, respectively.

nrev/2.1: UNI I nrev/2.1.u.O
PCD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

nrev/2.1.u.O: NIL

nrev/2.2: ALC 7
UNI 2 nrev/2.2.u.O
IFN 3 // SCI initialization
CAL RO nrev/2.2.u.t nerv/2
LAC V6 nrev/2.2.u.2 append/3

nrev/2.2.u.O: VAR 5
DCI nrev/2.2.u.3

nrev/2.2.u.l: VAR 6
RGLO

nrev/2.2.u.2: VAL 5
SCI 3
RGLO //replaceVAL 6

nrev/2.2.u.3: VAR 3
RGVO

In the control code segment of clause nrev/2.2, V6 is marked in the goal append/3
invocation instruction: “LAC V6 .. and the unification instruction: “VAL 6 “ is
replaced by instruction: “RGL 0 “ in the unification code segment of nrev/2/2.u.2.

6.2.2 Hash Table

If the last arguments of a callee (predicate) are value dispatchable, the callee will
hash the value of last argument of caller and branch the caller to a correct clause entry.
The LVMC implements this dispatching technique by using the LVM instruction:

SHS hash_table_entry

to hash on a hash table. The hash table is defined by a macro of THS:

hashtableentry: THS n con/int-1 el con/int-2 e2 .. con/int-n en

where “con/int-i” is the value and “ei” is the corresponding the code entry of clause.

In the same way as the instruction SWT, SHS uses the content of RO to carry out
the switching. Therefore, if the callee (predicate) is last argument value dispatchable, the
LVMC will arrange that the caller (goal call) passes its last argument into RO, then the
call invocation instructions such as CAL,CCL and LAC use the first operand to mark the
RO, and the last unification instruction in this call unification code segment is replaced by
instruction: 1 RGL 0

Example 6.2 Let’s examine the following predicate ftable/2:

57

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mode ftable(?,++).

ftable(a,c).
ftable(a,b).
ftable(e,f)

The control code of predicate ftable/2 is:
ftable/2: SHS ftablehash

where ftable hash specifies the hash table as follows:

ftable_hash: THS 3 c ftable/2.1 b ftable/2.2 f ftable/2.3

Again, ftable/2.1, ftable/2.2 and ftable/2.3 are control code entries of three fact clauses,
respectively, as shown below:

ftabie/2.l: UNI 1 ftable/2.l.u.O
PCD

ftable/2.l.u.O: CON a

ftable/2.2: UNI 1 ftable/2.2.u.O
PCD

ftable/2.2.u.O: CON a

ftable/2.3: UNI 1 ftable/2.3 .u.O
PCD

ftable/2.3.u.O: CONe

6.2 Guarded Dispatching

A predicate may have explicit conditions as the first body goals of its clauses or
include implicit conditions in its head arguments. If these conditions are mutually
exclusive, then the predicate has a determinacy level of Determinacy-2. The LVMC
implements the guarded dispatching method to differentiate between the clauses of such
kind of predicates.

6.2.1 Guarded Conditions

The current LVMC exploits five types of guarded conditions in a predicate:

(1) The last argument of clause head is a variable with input mode (+), and the
first goal of the clause defines the condition on data type of the variable.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 6.3:

:-mode p(?,+).

p(...,X)> constant(x),...
p(...,X)> integer(X),...
p(...,X):- compound(X),...

(2) The last argument of clause head is a variable with input mode (+), and the
first goal of the clause is an arithmetic comparison of this single variable with a constant or
an integer.

Example 6.4:

:-mode p(-,+).

p (X ,N)N X),...
P<1,0).

The first clause contains an explicit condition (N>0) and the second clause has an implicit
condition (N=:=0). The LVMC rewrites the second clause in the following form:

p(l,N)> N=:=0.

(3) The guarded condition involves a single variable argument implicitly with cut
(!) as its first goal of a clause.

Example 6.5:

:-mode q(-,+).

q(l,0)> L
q (K N)> p(..),...

The cut (!) in the first clause implicates the N =\= 0 condition for the second clause. The
LVMC rewrites the predicate into the form:

q(l,N):-N=:=0.
q(X,N):-N=\=0,p(..),...

(4) The guarded condition involves an explicit comparison of two head variables
arguments as the first goal of a clause. The two arguments have (+) or (++) input mode.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 6.6:

:-mode p(+,+).

p(X,Y):-X<Y,...
p(X,Y):-X>Y,...

Example 6.7:

-mode q(+,+).

q(X,Y):-X>Y,...
q(X,X)> p(..),...

The predicate p/2 has two explicitly guarded conditions involving two variables (X and
Y). The second clause in predicate q/2 implicitly holds the relationship: X=:=Y. Therefore,
the LVMC transforms this clause into:

q(X,Y)> X=:=Y,p(..),...

(S) The cut (!) goal in the previous clause implicates a compliant condition for all
of the following clauses and the condition involves two variables.

Example 6.8:

:-mode r(+,+).

r(X,X):-!,p(..),...
r(X,Y):-q(..),...

The predicate r/2 is transformed into the following form by the LVMC:

r(X,Y)> X = Y,p(..),...
r(X,Y)> X \= Y,q(..),....

6.2.2 Code Optimizatioii

For a predicate containing guarded condition, the LVMC uses a mutually exclusive
table of all comparison operators to determine if all the conditions are mutually exclusive.
For the predicate with Determinacy-2, the LVMC performs guarded dispatching technique
to generate the optimized control code. As shown above, the LVMC inserts in-line testing
to make all implicit conditions explicit. The callee (predicate) uses the in-line test to
branch the caller so that any shallow backtracking is avoided.

60
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actually, the implementation has three steps:
(1) All clauses are rewritten into an unified format with the same head and also to
make any implicit condition explicit so that only a single entry exists for the
whole predicate,
(2) A block of testing/branching code is created after head unification of the
unified clause,
(3) Each clause has a distinct entry for its subsequent control code of its body
calls.

Example 6.9 The predicate delete/3 is to delete an element X from a given list,
and returns the resulting list.

:-mode delete/3(+,-,+).

delete(X,L,[X|L]):-!
delete(X,[Y|L 1],[Y|L2]): -delete(X,L 1 ,L2).

First, the predicate is transformed into the following form:

delete(Rl ,R2,[R3 |R0]):-R1=R3,R2<=R0.
delete(Rl ,R2,[R3 |R0]):-R1\=R3,R2<=[V0|V1], V0<=R3,

delete(Rl,Vl,RO).
The generated code is:

ddete/3: SWT fail ddete/3.0 faU fail

delete/3.0: UNI 3 ddete/3. l.u.O

delete/3.l.u.O RGV 1
RGV 2
DCI delete/3.l.u.2

delete/3, l.u.2: RGV 3
RGV 0

delete/3.1.u.l: RGL 1
VAL 1
RGLO

CUF 1 3
JZE 8 delete/3.2

delete/3.1: ALV 2

//unifiable(rl,r2)

MDC02
STO 3 0

// codes for second clause
// <dc,addr(V0)>=>R2
// R3=>V0

CCL RO delete/3.l.u.l delete/3

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delete/3.2: MOV 0 2
PCD

// codes for first clause

The single entry of the predicate: “delete/3.0” is shared by two clauses with one
unification control instruction “UNI 3 delete/3.u.O”. After the unification, one test
instruction: CUF 1 3 is used to branch the control to an entry either delete/3.1 or
delete/3.2. The two entries don’t have unification instructions.

6.3 Nondeterministic Predicates

The control instructions for nondeterministic predicates are similar to those in the
WAM. A choice frame (B-frame) is allocated by the TRY instruction in the first clause
entry of the predicate. However, LVM does not save all registers except RO in the choice
frame, so the choice frame has a fixed size. No register variables are allowed to be used in
the clauses of a nondeterministic predicate except facts. If there are more than two
clauses in the predicate, the first instruction for the second clause will be “ RTY e ”
instruction. The RTY instruction restores control environment from the B-frame and
retry the next alternative entry “e”. For the last clause, “TST” is the first instruction,
which restores the control environment from the B-frame and discards the B-frame.
Therefore, the LVMC uses the following format for the code generation of a
nondeterministic predicate.

first_clause: TRY second_clause
control code segment of first clause

second_clause: RTY third_clause
control code segment of second clause

third_clause: RTY fourth_clause
control code segment of third clause

fourth clause: ...

last_clause: TST
control code segment of last clause

Example 6.10 The nondeterministic version of predicate append/3 is:

:-mode append(?,?,?).

append(L,L,Q).
append(L,[X|Y],[X|Z]):-append(L,Y,Z).

62
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the list arguments are declared to be dual, the code of this predicate must
cope with different cases. During clause analysis, the predicate becomes:

append(Rl ,R1 ,NIL).
append(V4,[V0|Vl],[V0|V3]):-append(V4,Vl,V3).

In the second clause, five stack cells must be allocated. The first SCI object: [X|Y] is
initialized by instruction IUU. The second SCI object:[X|Z] is initialized by instruction

The LVM code for append/3 is:

append/3: TRY append/3.2
UNI 3 append/3.l.u.O
PCD

append/3. l.u.O: RGV 1
RGL 1
NIL

append/3.2: TST
ALV 5
IUU0
IEU20
UNI 3 append/3.2.u.O
CCL append/3.2.u.l append/3

append/3.2.U.0: VAR 4
SCIO
SCI 2

append/3.2.u.l: VAL 4
VAL 1
VAL 3

Since the predicate append/3 has only two clauses, no RTY instruction is needed.

Although some predicates are nondeterministic, the clauses of those predicates can
partially be discriminated by last argument dispatching and guarded dispatching method.
The LVMC actually handles it by partitioning the clause sequences of a predicate into
several subsequences and analyzing the determinacy of each subsequence [10,24,25],
Therefore, a mixture of control instructions of (SWT, SHS, TRY .RTY .TST} can be
seen.

Example 6.11:

> mode fac(?,++).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

fac(a,c).
fac(a,b).
fac(d,c).

The predicate fac/2 is nondeterministic, but the values of the last argument are partially
dispatchable, so the LVMC generates the following code:

fac/2: SHS fac hash
fac_hash: THS 2 b fac/2.1 c fac/2.2

fac/2.1:... //fo r fec(a,b).

fac/2.2: TRY fac/2.2.1 // for fac(a,c).

fac/2.2.1: TST // for fac(d,c).

64
itI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Compilation Optimization
The optimization is an important step to improve the quality of generated code. It

includes initialization delay, common subexpression elimination, dead code elimination,
code compression, unnecessary unification code elimination and special optimizations.
Some optimizations are carried out during the preliminary code generation, other are
performed on the intermediate code. In this chapter, they will be discussed in detail.

7.1 Variable, Stub and SCI Object Initialization Delay

Generally speaking, the LVM allocates all possible useful objects, i.e., stack
variables, stubs and SCI objects, before starting the head unification of a clause. In some
cases, the initializations of these objects can be delayed until after the head unification in
the control code.

Example 7.1 Suppose that we have the following fact clause,

.-mode p(-,?).

p(f(X),a).

The LVMC generated code for this clause is:

delayed initializations

PCD

p/2.u.O: SSIO
CON a

p/2.u.l: FUN 171
VAL 1

In this example, the stub of “p/2.u.l” and variable X initialization is delayed until the
unification control instruction “UNI 2 p/2.u.O” succeeds. If the unification fails, the
execution of these two initialization instructions is skipped. However, when the input
mode of the predicate is ":-mode p(?,?).n, the initializations must be done before the
unification control instruction.

The LVMC uses a flag in the clause analysis to mark whether an object
initialization can be delayed. The conditions for the initialization delay are:

p/2: ALV 2
UNI 2 p/2.u.O
IT1 0 p/2.u.l
IV ! 1_______

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

(1) if unbound variables only appear inside constructors with (-) mode, they can
be delayed;
(2) only non-ground constructors with (-) mode can be delayed.

7.2 Unnecessary Unification Instruction Elimination

Besides removing the dead clauses and eliminating the duplication of unification
code segments of a predicate, the LVMC further eliminates unnecessary unification
instructions from the head unification code segment for each clause.

Normally, the number of head unification instructions of a clause is equal to the
number of head arguments. No matter whether a predicate is deterministic or
nondeterministic, the last argument unification instruction of a clause could be removed if
the value of the last argument is used in dispatching. In this case, the number of head
unification instructions of a clause is less than the number of head arguments.

Eumple7.2 The source code of predicate filter/2 is:

-mode filter(-,+).

filter([],[]).
filter(Z,[a|Y]):-filter(Z,Y).

The LVMC generates the following control code for the predicate and complete code for
the first clause: filter/2.1.

filter/2: SWT fail filter/2.2 filter/2.1 fail

filter/2.1: UNI 1 filter/2.l.u.O
PCD

filter/2. l.u.O: NIL

filter/2.2: ... // second clause

The predicate filter/2 is deterministic. When the callee (predicate) uses the last argument
type to dispatch the call to the null list [] entry: filter/2.1, only one unification instruction
corresponding to the first head argument of this clause is needed, so the second unification
instruction NIL is removed. Therefore, the unification control instruction for this clause is
“UNI 1 filter/2.1.u.0”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the instruction SHS is used to branch a call to an entry according to the
value of the last argument, the number of head unification instructions of each clause may
also be reduced by 1.

Example 7.3 We have an example using hashing table as follows:

-mode const(-,+).

const(a,l).
const(b,2).

The LVMC generates the following control code for the predicate and complete code for
the first clause: const/2.1.

const/2: SHS consth
const h: THS 2 1 const/2.1 2 const/2.2

const/2.1: UNI 1 const/2.1.u.O
PCD

const/2.l.u.O: CON a

const/2.2: //second clause

The predicate const/2 uses the RO content to select the code entry with referencing the
hash table “const h” . Once the entry point (e.g., const/2.1) is chosen, the unification
instruction of unifying the last argument of the clause head ,i.e., INT 1, is removed. The
unification control instruction of this clause is “ UNI 1 const/2.1 .u.O”.

7.3 Stub and Variable Initialization Instruction Compression

In order to increase the efficiency of LVM bytecode loader, the LVM defines extra
six instructions for stub and unbound stack variable group initialization, except the IV 1
and IT1 instructions. The instructions for stack variable group initialization are:

IV2
IV3
IVN

where IV2 is used to initialize 2 successive unbound cells at location i and i+l, IV3
initializes 3 successive unbound cells starting from the location I, and IVN initializes n
successive unbound cells starting from i-th location.

, 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The instructions for the stubs group initialization are:

IT2 i el e2
IT3 i el e2 e3
ITN i e

where IT2 is used to assign two code entries “el” and “e2” to the i-th and (i+l)-th cells
respectively, IT3 assigns three code entries to 3 successive cells starting from the
location i and ITN initializes stubs starting from i-th location using “e” as the stub table.

The LVMC performs this optimization on the intermediate code. When several
unbound stack variables or stubs occupying the continuous cells have to be initialized, the
group initialization instructions are used instead of single variable or stub initialization
instructions.

Eumple 7.4 The LVMC uses the right side instructions to replace the left side
instructions as follows:

IV 1 3
IV1 4
IV1 5

< = > IV3 3

and
IT1 2 el
IT1 3 e2
IT1 4 e3
m 5 e4

< = >
ITN 2 stub table

stub table: TSB 4 el e2 e3 e4

where the macro TSB defines the stub initialization table.

7.4 Combination of Frame Allocation and Unification Instructions

In the control instruction set of LVM, two instructions {ACU and ACV} are
designed to combine the frame allocation instructions {ALV and ALC} and unification
instruction UNI. Their equivalent relations are displayed as follows:

ACV nl n2 e <=> ALVnl
UNI n2 e

<=> ALC nl
UNI n2 e

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The LVMC performs this optimization when there isn’t any instruction between
the ALC/ALV instruction and UNI instruction in the control code segments of clauses.
For the same purpose of the group initialization, the instruction folding can reduce the
decoding time of LVM bytecode emulator.

7.5 Special Optimization

7.5.1 Features of a Set of Special Predicates

Except for the above optimizations, the LVMC does a special optimization on a
set of special predicates. First, let us examine the predicate member/2,

:-mode member(+,+).

member(X,[X|J).
member(X,[JL]):-member(XJL).

The function of member(X^) is to check if X is the member of list L. This is a
nondeterministic predicate with RO dispatching.

Without optimization, the LVMC generates the following code:

member/2: SWT fail member/2.1 fail foil // RO-dispatching

member/2.1: TRY member/2.2
UNI 2 member/2.1 .u.O
PCD

member/2.1 u.O: RGV 1 // member(X,
DCI member/2, l.u .l // [XU)

member/2, l.u.l :RGL 1
VOID

member/2.2: TST
ACU 4 2 member/2.2.u.O
CCL RO member/2.2.u.2 memeber/2 // recursive call.

member/2.2.u.O: VAR 3
DCI member/2.2.u. 1

// member(X,
// LIL])

member/2.2.u. 1: VOID
RGV 0

member/2.2.u.2:VAL 3
RGLO

//member(X,
L)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case, each time member/2 is called, a B-frame will be allocated via TRY
instruction. If the first clause (member/2.1) fails, the B-frame is discarded by the TST
instruction of the second clause (member/2.2). The second clause first creates a C-frame
with one local variable (X) before the head unification, and calls member/2 recursively,
therefore the B-frame must be allocated again. The B-frame allocation-deallocation loop
really slows down the execution. In the imperative language like C, a pointer to a list is
advanced to do the element comparison, so the execution space and time is minimal.

A set of this type of nondeterministic predicates exists. We list a few of them here:

right_of(A,B,L): to check if A is on the right side of B in list L.
:-mode right_of(+,+,+).
:-garbage right_of73(0).

right_of(A,B,[A3IJ).
right_of(A,B,[JL]):- right_of(A,B,L).

neighbor(A>B,L): to check if A and B are neighbor in list L.
:-mode neighbor(+,+,+).
:-garbage neighbor/3(0).

neighbor(A3,[A3IJ).
neighbor(A,B,[B,A|J).
neighbor(A3,L|L]):" neighbor(A3,L)-

subset(A3,C,L): to check if (A3,C) is a subset in list L.
:-mode subset(+,+,+).
:-garbage subset/3(0).

subset(A3,C,[A3,CLJ).
subset(A3»C,L|L]):- subset(A,B,C,L).

They are selection and checking predicates frequently used in the Prolog application as
built-in library predicates.

In summary, these predicates have the four main features:
(1) There is no (- or ?) input mode in their head arguments.
(2) A predicate consists of one or more facts and a recursive clause as the last
clause.
(3) The predicate is nondeterministic.

(4) Only one argument is a list or structure and others are flat variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

7.5.2 V/B Frame Reuse

The LVMC optimizes the LVM code for the above predicates by sharing one V-
frame and one B-frame. The principles of the optimization are:

(1) A working V-frame is allocated to store all the shared variables before the
choice B-frame is allocated by TRY instruction. The V-frame is shared by all
clauses of this predicate.
(2) The choice B-frame is reused with minimum initialization with OTR
instruction when the last recursive call is issued. Two entry points are set up for
the first fact clause: one for the outside call and another for the recursive call.
(3) The unification instructions with the same variable index are eliminated.

The LVMC implements this optimization by a three-step algorithm:

STEP-1: Assert a new deterministic chain clause before the predicate, which allocates an
appropriate V-frame for the predicate invocation, and rename the original predicate. For
example,

member(V0, RO):- new_member(V0,R0).
new_member(X,[X|J).
new_member(X,[JL]):-new_member(X^).

STEP-2: Set up two entry points for the first fact clause of original predicate in the
following format:

new_member/2.1.1: SWT fail label 1 fail fail
label l: TRY newjnember/2.2

JMP label_3

new_member/2.1.2: SWT fail label_2 fail fail
label_2: OTR new_member/2.2
label_3: control code for first clause

new_member/2.2: OST
control code for last clause

where new_member/2.1.1 is the first code entry for outside call and new_member/2.1.2 is
the second entry for itself recursive call. The first entry will pass the program control flow
through TRY instruction, but the second entry will pass through OTR instruction.

STEP-3: Change RTY instruction to ORT, and change TST instruction to OTS for other
facts and the last clause of original predicate. Eliminate unnecessary unification
instructions.

71

// first entry for outside call
// allocate B-frame

// second entry
// share B-frame

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 7.S The optimized code for the predicate member/2 generated by the
LVMC is:

member/2: AVU 1 2 member/2.u.O
CCLRO member/2.u.l new_member/2 // first call new_member/2

member/2.u.O: VARO
RGV 0

member/2.u.l: RGL 0 // eliminate 1 unification instructions

new_member/2: SWT fail labeM fail fail
label_I: TRY new_member/2.2

JMP label_3

new_member/2.1: SWT fail label_2 fail fail
label_2: OTR new_member/2.2
label_3: UNI I new_member/2.l.u.O

PCD

new_member/2.l.u.O: DCI new_member/2.l.u.l
new_member/2.l.u.l: VAL 0

VOID

newjnember/2.2: OTS
UNI I new_member/2.2.u.O
CCL RO member/2.u. 1 newmember/2.1 //second call

new_member/2.2.u.O: DCI new_member/2.2.u.2
new_member/2.2.u.2: VOID

RGV 0

This special optimization has three advantages:
(1) it saves working memory because only one V-frame is used.
(2) it saves execution time, since one OTR instruction has 6 assignment statements
less than one TRY instruction, and eliminates B-frame’s allocation/deallocation.
(3) it uses less unification instructions, because variable unifications with the same
variable index are eliminated.

However, this optimization can't be generalized to predicates with constructors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. Assistance to Garbage Collection
Dynamic memory management is an extremely important issue in the

implementation of logic programming systems. Since Prolog is a symbolic language, it
usually requires more memory than the imperative languages like C. The Prolog systems
often manipulate large data structures with complex inter-dependence. Although the
advances in the computer hardware technique have made memory chips more and more
cheap, memory always is a precious and limited resource. During the execution of a
Prolog program, a dynamic object may outlive the procedure that creates it. The dynamic
objects which are not live but not freed yet, are called garbage. Therefore, an efficient
garbage collector has to be designed for the success of a Prolog system.

A well-designed garbage collector should have the following features [25]:
(1) Garbage collection (GC) must be safe. Live data must never be erroneously
reclaimed.
(2) GC should be comprehensive such that the locality of memory is taken into
account.
(3) GC should be cost-effective. The ratio of GC execution time to overall
execution time should be as low as possible.
(4) GC should minimize the pause time to facilitate the interactive system.

Since the LVM uses one stack policy, it is impossible to run practical Prolog
programs without an efficient garbage collector. In this chapter, we will first survey the
existing GC algorithms, and then introduce the idea of chronological GC used in the
LVM. After that, the LVMC assistance to the chronological garbage collector will be
described.

8.1 Survey of Garbage Collection

In the WAM, most dynamic objects are stored on a global stack (called the heap),
while the choice points and environments are stored on a local stack (called the stack). A
trail stack records all bindings to be undone on backtracking. The WAM saves the state of
the machine on the choice point frame when a choice point is created. Using this
information, stacks can be reset and storage reclaimed. The choice point frame delimits
the heap into several segments. Creating a new choice point creates a new segment.
Backtracking removes segments and performs the segment cutting and merging. The
dynamic objects are allocated in the topmost segment of heap. Variable bindings are
implemented by assigning a cell address of the heap to the variable. The bindings are
recorded on the trail stack when the variable’s cell is not in the topmost segment. When
two variables are unified, a pointer from one cell of the heap to the other cell is created.
Therefore, pointer chains may arise.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
ii
I The garbage collection is done by starting at a set of root pointers, which are
| registers and the local stack variables, and discovering what objects on heap are reachable
I from these pointers. These reachable objects are live, otherwise are garbage. The memory

of garbage is reclaimed.
!
| Many different GC algorithms are available for searching dead objects and

recovering the memory in Prolog. The common methods are:
(I) Reference Counting algorithm [26]: Each cell of heap has an additional field as

the reference counter. The counter is updated when a pointer to this cell is created or
| deleted. When the counter drops to zero, the ceil is garbage.

The advantages of this algorithm are: (a) GC overheads are distributed throughout
■ the computation; (b) Performance does not degrade with heap residency. But the

algorithm has two disadvantages: (a) The maintenance of the counter is expensive; (b) It
I can’t reclaim cyclic structures.

(2) Mark-Sweep algorithm [27]: It is performed in two phases. The first phase is
to mark all live cells. The second phase, called sweep, scans the heap linearly from bottom
to top, and puts the dead cells onto the free list.

The advantages of this algorithm are: (a) Cycling is handled naturally, (b) No
I overhead is placed on pointer manipulation. But this algorithm has four drawbacks: (a)
! The algorithm is stop/start type, unsuitable for real-time and interactive systems, (b) The

complexity of this algorithm is proportional to the size of heap, (c) It tends to fragment
memory, (d) GC becomes more frequent as the heap residency of a program increases. To
overcome the memory fragmentation, a compact phase is used in the following algorithm.

(3) Mark-Compact algorithm [28]: This algorithm works in three phases. The first
phase is the same as the Mark-Sweep algorithm, that is, marking the live data structure. It
adds two phases: compact the live cells and update the values of pointers for these moved
cells.

(4) Copy algorithm [29]: The algorithm divides the heap equally into two semi
spaces, one of which contains current objects and the other obsolete objects. It traverses
the live objects in the old space and copies each live cells into the new space. Then the
roles of the two spaces are flipped.

The advantages of the copy algorithm are: (a) Live objects are compacted into the
bottom of the new space; (b) Allocation costs are extremely low. The disadvantages are:
(a) Two semi-spaces are used, (b) Performance will degrade as the residency of a program
increases.

(5) Generation GC algorithms [30,31]: It relies on the observation that most
newly created objects tend to be short-lived. The GC should concentrate on the young
objects. Thus, the heap is split into two or more generations. When the youngest
generation fills up, a collection spanning more generations is done, and the survivors move
to the older generations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74 f
I

Usually, the implementations use two generations delimited by some choice points.
Memory space is reclaimed in the new generation only. All objects in the old generation
are potentially useful. Therefore, the collection roots must include the pointers from the
older to the younger generation. To avoid exhaustively searching all areas for pointers into
the new generation, all cross generation bindings are recorded by carefully setting the trail
condition. The trail stack is used as the write barrier. This results in some extra trailing.
Also another drawback is that the write barrier may be in such a state that old generation
is almost empty for some Prolog programs, then this type of generation GC fails. A
solution is to create artificial choice point.

In summary, an ideal GC collector should have low CPU and space overhead,
good virtual memory and cache performance, short pause time. Also, it should be
ecological. The memory reclaim is a natural way of “life” of the execution system, not as
a deliberate garbage collection. In the following section, it will show that an ecological GC
collector is possible for Prolog under the LVM architecture.

8.2 Chronological Garbage Collector in the LVM

As well known, a Prolog procedure is defined as a set of selected clauses, where
each clause can be rewritten to involve no further branching. With the input mode
declaration or analysis, the number of objects created in each clause can be determined at
compilation time. Under one stack policy of the LVM, all dynamic objects (short lived and
long-lived) of a clause are stored in the C-frame or V-frame. The V/C frames are allocated
on the LVM stack area by following the chronological order of procedure invocation. For
a nondeterministic predicate, a B-frame is inserted before the V/C frame. Therefore, a
natural and dynamic generation line, called C-line, is established. The C-line splits the
entire LVM stack into two generations: the part above the C-line is the younger
generation and the part below the C-line is the older generation. The location of C-line
dynamically moves up and down as a new C/B frame is pushed on the stack.

Under the LVM architecture, there are two possible stack layouts of the C-line,
which are illustrated in Figure 8.1-8.2, where AF is the current active V/C frame, BB is
the most recent choice frame (B-frame), TT is the top of trail, and ST is the top of stack.
In the case of BB below AF, the C-line is the top of the current active frame (AF) as
shown in Figure 8.1. These variables in the current active frame are called C-variables. In
the other case of BB above AF, the C-line is determined by BB + sizeof(B-frame).

The C-variables are most important to distinguish useful objects from the garbage
inside the young generation above C-line. Since no globally scoped variables exist in
Prolog and all variables are local to their clauses, the only way of passing an old variable
to a young procedure is through the parameter passing mechanism. The G-variables are
the unique bridges to connect the old objects to the young objects. If any dynamic object
above the C-line can’t be reached via these C-variables, then this object is treated as
garbage. Furthermore, the LVMC can distinguish useful variables from these C-variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Hence, the implementation of the GC becomes simple. The GC collector collects all useful
old-to-young cross generation references via these useful C-variables. The cost of this GC
method is proportional to the number of useful C-variables, which is extremely low by
comparison with other GC algorithms [31]. It also can be seen that this GC collector is
incremental.

trail

dynamic
objects

C/V-framt

-TT

-ST

-C-line

■AF
BB

young generation

old generation

Figure 8.1 Memory layout in case of BB below AF

trail

dynamic
objects

B-frame

ST

-C-line

-BB
AF

young generation

old generation

Figure 8.2 Memory layout for BB above AF

The chronological GC algorithm could be described as follows:
(1) get the initial root from the instruction code inserted by the LVMC.
(2) search its binding (r’) of each root (r):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

(2.1) If r’ is atomic, then assign r’-> r;
(2.2) If r’ is an unbound variable in younger generation, create a copy;
(2.3) If r’ is a SCI /SSI object, in older generation, scan the instance for
new roots or in younger generation, copy the instance.
(2.4) Skip other cases.

A stack is used in the GC algorithm implementation. More details are presented in
reference [32].

8.3 GC Level Estimation

The above GC algorithm in the LVM system strongly depends on the LVMC
guidance. The GC point setting is determined on the GC level estimation of predicates.
Clearly, it is impossible to do quantitative analysis of garbage at compilation time.
However, a qualitative estimation is possible. In the global analysis phase, the LVMC
performs a qualitative analysis of garbage for each predicate. For simplicity, the current
LVMC distinguishes the amount of garbage of a predicate in three levels:

(1) Garbage-0: no garbage.

(2) Garbage-1: linear dependence on the number of stack variables.

(3) Garbage-2: quadratic dependence or high dependence.

For example, if a predicate only generates one list as output and uses two or more
intermediate lists as its working space, then its garbage level is ranked as 2. After
examining clause definitions of different types, we can find that only a deterministic and
recursively defined predicate may generate a linear or high degree amount of garbage.
Therefore, the garbage estimation process becomes very simple.

Example 8.1 To illustrate the GC level estimation, let’s use the predicate of
quicksort/3 as an example:

:mode qsort(-,+,+).
:mode partition(+,-,-,+).

qsort(X,X,d).
qsort(Z,X,[Y|L]):-partition(Y,Ll,L2,L), qsort(ZI,X,L2), qsort(Z,[Y|Zl],Ll).

The qsort/3 is deterministic predicate due to the last argument dispatching. Its first clause
is a fact. A fact has no garbage. The second clause is a recursively defined rule. All
variables in the rule represent lists. In the first goal, two variables {LI and L2}
simultaneously are used as its working variables, therefore, the GC level of qsort/3 is 2.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.4 GC Root Set Collection and GC Point Setting

In order to cope with the GC along the execution path, the LVMC must insert
instruction to mark where the GC collector should be trigged and provide an initial root
set to indicate which useful objects should be collected for keeping. Since the GC
collector of LVM system is totally passive, the success of GC collector implementation
depends on the LVMC assistance.

First, the LVM defines a macro to set up an initial root table, whose format is:

TGC n il i2 ... i„

where n is the length of the root table, and (il, i2, .. in) are the indices of some stack
variables to be collected during GC.

The question is how the LVMC selects a root set from the stack variables of a
clause. From the LVM’s view, for a clause H:-Gl,G2,..Gn, only VAL-type variables in the
proceeding goals (G i+ i ..Gn) are useful after the current goal (Gi) invocation. These VAR-
type variables are uninitialized variables, which we do not collect unless they are in the
head arguments. Therefore, the identification of useful objects becomes straightforward.
The LVMC uses two rules to extract the root variables from a clause:

(1) All VAL-type variables which appear proceeding the current goal must be
collected.
(2) All stack variables in head arguments must be collected.

Example 8.2 Let’s use the second clause of predicate qsort/3 as the example. After
the clause analysis, the index and types of stack variables are:

qsort(V5,V6,[V3|R0]):- // V3,V5,V6~VAR type
partition(V3,V7,V8,R0), // V3—VAL type, V7.V8-VAR type
qsort(V4,V6,V8), // V4-VAR type, V6,V8-VAL type
qsort(V5,[V3|V4],V7). // V3,V4,V5,V7-VAL type

Since the garbage level of qsort/3 is 2, let’s insert a GC instruction after the second
goal qsort/3. The variables {V3,V4,V5,V7} in the last goal are of VAL-type. Therefore,
after the execution of second goal call qsort/3, only objects reachable from these variables
need to be kept for further reference. Also, since the stack variables {V3,V5,V6} appear
in the head arguments, the root set includes five variables {V3,V4,V5,V6,V7}. The
variable V8 is excluded. The root table is set up by the instruction:

TGC 5 3 4 5 6 7

where five stack variables from V3 to V7 are specified in the TGC table.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Secondly, the LVM defines two types of garbage collection instructions, that is,

MGC gcjentry
and

CGC gc_entr\|

where MGC means "must collect", CGC means "test and collect if necessary", and
gc_entry gives the entry of initial root table defined by the macro TGC. For the CGC
instruction, the LVM system can set a constant memory limit to determine if the collection
is necessary.

The location and type of GC points depends on the GC levels of the body goals in
a clause. The LVMC uses four rules to set the GC points in a clause:

(1) The clause must be a rule with C-frame allocation.
(2) If a goal with GC level greater than 0 has a different name from the current
clause, a MGC point is set after the goal call.
(3) If a body goal with GC level =2 is a recursive call, a CGC point is set after the

call.

(4) No GC point is set after the last call.

Example 8.3 To illustrate the GC point setting, let’s continue the analysis of the
predicate qsort/3. For the first clause, it is a fact and there is no stack variable. The second
clause is a rule with six stack variables. After clause analysis, the qsort/3 is transformed
into the form

qsort(Rl,Rl,D).
qsort(V5,V6,[V3|R0]):-partition(V3,V7,V8,R0),qsort(V4,V6,V8),qsort(V5,[V3|V4],V7).

From the above GC setting rules, only one CGC instruction needs to be inserted after the
second goal call qsort/3 of the second clause. From the root analysis of the second clause,
we know that after invoking qsort(V4,V6,V8), these variables {V3,V4,V5,V6,V7} must
be collected. The LVMC generates the following code for qsort/3:

qsort/3: SWT fail qsort/3.2 qsort/3.1 fail

qsort/3.1: UNI 2 qsort/3.l.u.O // first clause
PCD

qsort/3.l.u.O: RGV 1
RGL1

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

qsort/3.2: ACU 9 3 qsort/3.2.u.O //second clause
CAL RO qsort/3.2.U.1 partition/4 / / call partition/4
CAL V8 qsort/3.2.u.2 qsort/3 // call qsort/3
CGC qsort/3.2.g.I // set CGC point
LAC V7 qsort/3.2.U.3 qsort/3 //lastcaU

qsort/3.2.U.0: VAR 5
VAR 6
DCI qsort/3.2.S.1

qsort/3.2.U.1: VAL3
VAR 7
VAR 8
RGLO

qsort/3.2.u.2: VAR 4
VAL 6
RGL 0 // V8=>R0

qsort/3.2.U.3: VAL 5
SCI 3
RGL 0 // V7=>R0

qsort/3.2.S.1: VAR 3
RGV 0

qsort/3.2.g.l: TGC 5 3 4 5 6 7 //G C root set

In this example, an instruction: "CGC qsort/3.2.g. 1” is arranged after the goal call:
“CAL V8 qsort/3.2.U.2 qsort/3”. The entry “qsort/3.2.g.l” specifies the initial root table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Chapter 9. Conclusions

The first version of LVM compiler (LVMC) has been designed. About 8000 lines
of C code have been written. The compilation time is approximately proportional to the
program size. About 80 percent of the time is spent in the global analysis. If the source
code includes mode declarations, the total compilation time could be greatly reduced.
Some compiled programs have been tested under a LVM emulator. In the following
sections, the performance of the LVM will be discussed, and then the main features of the
current LVMC will be summarized. Finally, some future improvements on LVMC will be
proposed.

9.1 LVM Performance

A Prolog program is translated into LVM bytecode by the LVM compiler. LVM
bytecode programs are portable to any computer platform. There are three ways to
execute these LVM bytecode programs, which are shown in Figure 9.1. The first
implementation method includes an interpreter for the LVM instruction set. The
interpreter sees the compiled LVM bytecode as an input stream of bytes and interprets
them as LVM instructions. The inner loop of this interpreter is

do {
fetch a LVM instruction;
execute an action according to its opcode value;

} while (there is more to do);

LVM bytecode

CompilerInteroreter

Native code

General CPU LVM CPU

Figure 9.1 Execution model of LVM bytecode

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second method is to compile the LVM bytecode further into native machine
code. This compilation is straightforward. Each LVM instruction is expanded by a set of
native code. Therefore, the total size of code will be increased by several times before the
loader loads the code into RAM.

Another alternative method is to rewrite a set of macro machine instructions so
that the machine (LVM CPU) can identify the LVM bytecode and directly execute them
on CPU. This method is costly but fastest.

At present, a LVM emulator (in C) has been implemented. A SPARC workstation
with 8MB RAM and 64KB virtual cache is used to run the test. Four benchmark programs
have been used to test the LVM system performance. For the “traveling salesman
problem”, tours of 30 cities are computed (tsp30). The dna20 program implements a
dynamic algorithm for comparing DNA sequences. One sequence of length 32 is
compared with other 20 sequences. The tak22 program performs a recursive arithmetic
computation with input (22,16,8). In the execution of this program, no-long lived (heap)
objects are involved. The qsnvJOOO is a program of quick-sorl followed by naive reverse
for a list of 1000 integers. This benchmark is very interesting because a fraction of
collected objects may survive through many garbage collections. Table 9.1 gives the
statistics of these benchmarks.

program gc-enabled gc-disabled

tsp30 9.35 10.63
dna20 7.23 7.45
tak22 22.1 22.9
qsnvlOOO 5.57 5.50

Table 9.1 Execution time (sec)

In Table 9.1, the execution time is the user elapsed times in second, measured by
the UNIX timing facility. All listed values are the average values of execution time over
100 runs. The gc-disabled run is to execute a program with CGC instructions disabled. To
fit the capacity of the virtual memory of the SPARC workstation, the proper inputs for
these programs are chosen. From the Table 9.1, we can find that the execution times of
the first three programs running under gc-enabled are shorter than those under gc-
disabled. These results are beyond our usual expectation. In other words, their
performance with CGC is better than, or at least as good as that when they run on a
machine with infinite virtual memory. This result indicates that the memory management
system in LVM is highly successful.

There are several factors to explain the excellent behavior of the LVM memory
management system. First, the GC algorithm is very efficient. By contract to traditional

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

idea, this algorithm collects useful objects instead of garbage with respect to dynamically
partitioned generations. More than 85% of all objects in young generation die within one
GC cycle. Secondly, the single stack paradigm incorporated with GC collector improves
the data locality during execution so that the program cache performance is improved by
greatly reducing the cache misses. A detailed analysis of the cache performance during GC
process is presented [32]. This study shows that the cost of GC could be paid by the
saving from cache performance improvement.

For full evaluation of the performance of LVM system, the comparison between
LVM system and other Prolog systems should be carried out. Unfortunately, these results
are not yet available. At present, work continues on the project.

9.2 Compiler Features

There are seven main features in the LVMC design [33]:
(1) Global analysis. In order to generate optimized LVM code, the LVMC

extracts the necessary properties from the source programs such as input mode,
determinacy and garbage estimation. Alternatively, the input mode and determinacy
could be declared by programmers.

(2) Last argument dispatching. At the implementation level, the LVM uses the last
argument as the first-order discriminator for the purpose of partial unification and control
transfer. There is no constraint on the programmer's programming style. The LVMC
automatically reorders the clause arguments in the reference to LVM.

(3) Determinism transformation. During compilation, shallow backtracking is
replaced by conditional branching when it is possible, and the implicitly deterministic
predicates are rewritten to make its determinism explicit.

(4) Garbage collection assistance. The LVMC inserts some special LVM
instructions into the compiled codes to trigger the garbage collector and also specifies the
initial root set to guide the collector.

(5) Uninitialized variable identification. In order to eliminate the unnecessary
dereferencing or trailing operations, the LVMC distinguishes the variables in a clause into
L-type and V-type. The variables of V-type are bound by destructive assignment.

(6) Register allocation. To speed up the arithmetic computation and term
unification of deterministic clauses, soft registers are scheduled in calculation and
parameter passing. The register conflict is avoided.

(7) Special optimization. For a special set of nondeterministic recursive predicates,
the LVMC provides two code entries (nonrecursive and recursive entry) for the purpose
of stack frame reuse.

83

iI
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.3 Future Work

Although the current LVM compiler implements a series of optimizations on the
generated bytecode, there are many possibilities for future improvement. For example,
they are:

(1) better mode analysis;
(2) multiple argument dispatching;
(3) using matching tree for conditional dispatching;
(4) garbage estimation refinement and root set minimization.
The mode analysis of program arguments plays an important role for the

optimized code generation. A better algorithm of mode analysis will reduce the number of
(?) mode. If (?) mode of a structure argument could be reduced to (-) mode, it would
save the initialization operation of these variables of the structure. On the other hand, if (?)
mode of a structure argument becomes (+) mode, the selector codes of the structure will
be generated instead of constructor code. The registers may be used instead of stack
variables and the code efficiency will be increased. Furthermore, the (+) mode of structure
arguments can be classified into a deeper level, i.e., +/0, +/1, + /2,... +/n modes [34]. Here
(+/0) mode is designed to the ground structure. The index (n) denotes the minimum depth
of variables inside the structure tree. This extra information can speed up the unification
process through comparing two selector depths before full unification.

The indexing method is critical to determine whether a choice point needs to be set
up in some cases. At present, only one head argument with (+) mode is used as the clause
dispatching discriminator. When there is more than one selector in the head argument,
multiple argument dispatching algorithm can be implemented. Classifying a program from
nondeterministic predicate to deterministic can really shorten the program execution time.
The LVMC explores the first body goal in a clause as the conditional dispatching
discriminator, but there is still more work to do. A more sophisticated indexing technique
could be applied to determine the predicate determinacy.

In order to reduce the number of GC instructions, two practical issues require
further investigation: how to minimize the initial root sets of clauses and how to refine the
garbage estimation of predicates. If the amount of garbage of a predicate may be classified
into more than three levels, then the rules of setting GC points will be subtler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Appendix A. LVM Instruction Set

Table A l.l LVM instruction set (I)

VAR v 1 an uninitialized stack variable with relative offset v
VAL v ; an initialized stack variable with relative offset v

| RGV r i an uninitialized register variable with numbering r
I RGL r : an initialized register variable
| SSI v ; static shared instance with offset v relative to stub
! SCI v i static copied instance with offset v relative to code entry
: DCI e • direct instance with code entry e
! FUNC f/n | functor f with arityn
! VOID ! void variable
; n il ! null list
j INT n | integer n
! CON c ! constant c

! ALC n i allocate a n-cells of C-frame including 3 environment
j > parameters
i ALV n I allocate a n-cells of V-frame

UNI n e ' unify the number of instruction (n) with code entry e
i ACU nl n2 e ! equal to two successive instructions: ALC nl and UNI n2 e
: AVU nl n2 e i ALV nl and UNI n2 e

: call procedure (e) with head U-code (u) and dispatching flag
I r/v

; CAL r/v u e

j CCL r/v u e chain call
i LAC r/v u e i last call

PCD i return to a continuation entry
i SW Tele2e3e4 ! dispatch on the type of RO value type (el-var, e2-con/int, e3- i
i1 : nil, e4-structure)
! SHS e ! dispatch on (CON/INT) value of RO with hash table e_____ j
; THS n al/el..an/en e 1 marco for hashing table
' CGC e 1 collect garbage if necessary with root set entry e
; MGCe : must collect garbage with root entry e
; TGC n v l ...vn ; macro for gc root set
! TRY e ! create a B-frame, try this else e (code entry)
j RTY e [retry this else e (code entry)
i TST i last alternative
i OTRe > recursive try with optimization of reusing choice frame
! ORTe i optimized re_try instruction
f OTS j optimized lastja ll instruction
| STA n 1 start execution with n-cells for query

FIN | terminate execution
sue ! gctffj
FAL ! fail

, NCT [neck cut 1

j LCTv j set up deep cut level to v
i DCTv i deep cut with cut level (v)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A1.2 LVM instruction set (II)
I—jm tJ n w t ie ttiM

! LOD v i j dereferencing v-ih cell and loading it to register Ri
! STO v i j store (Ri) tov-dtcell
j MOV i i 1 move (Ri) to Rj
j ADD i j ! (Ri) + (Rj) => R8i sum? » j ________________ i
j SUB i i__________ 1 (Ri) - (Ri) => R8
i MUL i j (Ri) * (Rj) => R8
i DIV i i________ i (R i)/(R i)=>R 8

MOD i j (Ri) mod (Rj) => R8
SFL i j i (R i)«(R j)=>R 8
SFR i j
INC i

! (R i)»(R j)=>R 8
r (Ri) + 1 => Ri

DEC i (Ri) - I => Ri
AND i i : (Ri) &. (Ri) =>R8 (bitwise)
ORR i j
XOR i j
CMP n i

| (Ri) | (Rj) => R8 (bitwise)
(Ri) A (Rj) => R8 (bitwise)__

1 n=(R i) =>R8
CMG i i i generic comparison of (Ri) and (Rj)=>R8 (-1,0,1)
MIN n i
MDC v i

n=> Ri (making an integer)
: (address(v),dc) =>Ri

MDS v i j (address(v),ds) *> Ri_________________________________

JMI e i
JMCe i

| jump to entry code (e) if (Ri) is an integer
jump to entry code (e) if (Ri) is a constant

JMNe i i jump to entry code (e) if (Ri) is a null list
JMSe i i jump to entry code (e) if (Ri) is a structure
JZE e i
JNE e i

| jump to entry code (c) if (Ri)==0
jump to entry code (e) if (Ri)<0

JPO e i ! jump to entry code (e) if (Ri)>0
JLE e i jump to entry code (e) if (Ri)<=0
JGE e i
JMP e

! jump to entry code (e) if (Ri)>=0
j jump to entry code (e) unconditionally_____________________

IV1 n ! initialize a n-th cell unbound
IV2 n
IV3 it

i initialize two successive cells starting n-th cell unbound
1 initialize three successive cells starting n-th cell unbound

IVN k a i initialize n successive cells starting k-th cell unbound
m k e 1 assign entry point (e) to k-th cell
IT2 k e l e2
U3 k e l c2 e3

i assign entry points(cl,c2) to two successive cells starting k-th cell

ITN k n e l... en i assign el...en ton successive cells starting k-th cell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A2. List Initialization Instructions

Operator Operands Meaning
ISL 1112 rssnscn
ISC I1 I2 E rssiiDcn
ISN 1112 ISSIINEl
ISU 1112 rssiiu VARI
ISE 111213 ISSUE VARI
ISF I I 12 ISSIIF VAR]
ILL 1112 ISC1ISC1I
ILG 1112 E tsc iid c ii
ILN 1112 fSCIINILl
ILU 1112 1SCIIU VAR]
ILE 111213 TSCIIE VARI
ILF 1112 1SCIIF VARI
IGL IE pciiscn
IGU IE IDCIIU VARI
IGE I1 E 12 [DCIIE VARI
IGF IE IDCIIF VAR]
ICL IC ICNISCn
ICU IC rCNIU VARI
ICE I1 C 12 ICN1E VARI
ICF IC ICNIF VARI
INL I INEISCI1
INU I INEIU VARI
INE 1112 (NILIE VARI
INF I INEIF VAR]
IUL I ru v a r isen
IUG IE fU VARIDCI1
IUN I ru VARINEI
IUU I fU VARJU VARI
IUE I I 12 tU VARIE VARI
IUF I [U VARIF VAR]
IEL 1112 E vari sen
EG 1112 E IE VARIDCn
E N 1112 E VARINEI
EU 1112 E VARJU VARI
EE 111213 IE VARIE VARI
IEF 1112 IE VARIF VAR]
IFL I if v a r i sen
EG IE IF VARIDCn
EN I E VARINEI
IFU I IF VARIU VARI
EE 1112 E VARIE VARI

j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B. LVM Built-in Instructions

Table B.l LVM built-in instructions for built-in predicates (I)

predicate (name/arity) LVM instruction

bagof/3 BOO
findall/3 B01
setof/3 B02
=:=, xfit, 700 B03
=\=, xfx, 700 B04
>, xfx, 700 BOS
>=. xfit, 700 B06
<, xfit, 700 B07
=< xfit, 700 B08
is, xfit, 700 B09
@>, xfit, 700 BIO
@>=, xfit, 700 B ll
@<, xfit, 700 B12
@<=, xfit, 700 B13
= , xfit, 700 B14
\= , xfit, 700 BIS
\=. xfit, 700 B16
=, xfx, 700 BI7
unify_with_occurs_checlt/2 B18
atom/1 B19
atomic/1 B20
compound/1 B21
number/1 B22
float/1 B23
integer/1 B24
nonvar/1 B2S
var/1 B26
atom_char/2 B27
atom_codes/2 B28
atom_concat/3 B29
atom_length/2 B30
char_code/2 B31
numberjchars/2 B32
numberjcodes/2 B33
sub_atom/5 B34
gct-byte/1 B3S
gct-bytc/2 B36
pcek_byte/l B37
peek_byte/2 B38
put_byle/l B39
put_byte/2 B40
get_char/l B41
get_char/2 B42
get_code/l B43
get_code/2 B44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.2 LVM built-in instructions for built-in predicates (II)

predicate (name/arity)

peek_char/l
peekchar/2
pcck_codc/l
peek_codc/2
put_char/l
put_char/2
put_codc/I
put_codc/2
nl/0
nl/1
char_conversion/2
cunent_char_conversion/2
cunent_op/3
op/3
read/1
nad/2
readjenn/2
read_term/3
write/1
write/2
write_term/2
write_term/3
write_canonical/l
write_canonical/2
writeq/1
writcq/2
arg/3
copy_term/2
functor/3
abolish/1
asserta/1
assertz/1
retract/1
clause/2
current_predicate/l
current_prolojL_flag/2
set_prok>g_flag/2
fail/0
tnie/0
call/l
catch/3
once/1
repeat/O
thiow/1
halt/O
halt/1
open/3
open/4

LVM instruction

B45
B46
B47
B48
B49
B50
B51
B32
B53
B54
BS5
B36
B57
B38
B39
B60
B61
B62
B63
B64
B6S
B66
B67
B68
B69
B70
B71
B72
B73
B75
B76
B77
B78
B79
B80
B81
B82
B89
B90
B91
B92
B93
B94
B93
B96
B97
BAD
BA1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.3 LVM built-in instructions for built-in predicates (HI)

predicate (name/arity)

close/l
dose/2
at_end_of_stream/0
at_end_of_stream/1
set_input/l
set_output/l
current_input/l
current_output/l
set_stream_position/2
stream_property/2
flush_output/0
flush_output/L

LVM instruction

BA2
BA3
BA4
BA5
BAfi
BA7
BA8
BA9
BBO
BBl
BB2
BB3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

1. D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI
International, Menlo Park, CA, 1983.

2. X. Li, A New Term Representation Method for Prolog, J. Logic Programming, Vol.
34(1), 43-58(1998).

3. P. Van Roy and A M. Despain, High-Performance Logic Programming with the
Aquarius Prolog Compiler, IEEE Computer,Vol.25(l), 54-68(1992).

4. ATayler, Parma-Bridging the Performance Gap between Imperative and Logic
Programming, J. Logic Programming, Vol.28, 5-16(1996).

5. L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, Mass., 1986.
6. M. Bruynooghe, An Interpreter for Predicate Programs: Part 1, Technical Report, CW

16, Katholieke Universiteit Leuven, 1976.
7. C. S. Mellish, An Alternative to Structure Sharing in the Implementation of a Prolog

Interpreter, Logic Programming, Academic Press, 1982.
8. R. S. Boyer and J. S. Moore, The Sharing of Structure in Theorem Proving Programs,

Machine Intelligence 7, Edinburgh University Press, 101-116 (1972).
9. D. H. D. Warren, Logic Programming and Compiler Writing, Technical Report, DAI

44, University of Edinburg, 1977.
10. H. Ait-kaci, Warren’s Abstract Machine: A Tutorial Reconstruction, MIT Press,

Cambridge. Mass., 1991.
11. A Krall, The Vienna Abstract Machine, J. Logic Programming, Vol.29,95-106

(1996).
12. A Krall, Implementation Techniques for Prolog, Workshop Logische

Programmierung, Berchit,l-15,1994.

13. N. F. Zou,T. Takagi and K. Ushijima, A Matching Tree Oriented abstract Machine for
Prolog, In Logic Programming:Proceedings of the Seventh International
Conference, MIT Press, Cambridge, Mass.,159-173,1990.

14. N. F. Zou, Parameter Passing and Control Stack Management in Prolog
Implementation Revisited, ACM Trans, on Programming Languages and Systems,
Vol.18, 752-779(1996).

15. X. Li, Structure Sharing and Structure Copying Revisited, Proceedings of 1996
Computer and Net Workshop on Parallelism and Implementation Technologies for
(Constraint) Logic Languages,119-130,1996.

16. X. Li, Program Sharing: A New Implementation Approach for Prolog, PLILP’96,
LNCS, Springer,1140,259-273,1996.

91

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17. X. Li, The LVM Specification, Technical Report, Lakehead University, 1997.
18. C. S. Mellish, Some Global Optimizations for a Prolog Compiler, J. Logic

Programming, Vol. 1,43-66(1985).
19. P. Deransart, L. Cervoni and A. Ed-dbali, Prolog: The Standard: Reference Manual,

Springer-Verlag, New York,1996.
20. A. V. Aho, R. Sethi and J. D. UUman, Compilers, Principles, Techniques, and Tools,

Addison-Wesley, 1988.
21. J. Beer, The Occur-Check Prolem Revisited, J.Logic Programming Vol.5,243-

261(1988).
22. P. Van Roy, Can Logic Programming Execute as Fast as Imperative programming?,

Ph.D. Thesis, University of California at Berkeley, 1990.
23. T. Lindgren, Polyvariant Detection of Uninitialized Arguments of Prolog Predicates,

J. Logic Programming, Vol.28,217-229(1996).
24. R. M. Colomb, Enhancing Unification in Prolog through Clause Indexing, J. Logic

Programmimg, Vol. 10(1), 23-44(1991).
25. B. Demoen, A. Marien and A. Callbaut, Indexing prolog clauses, North American

Conf. on Logic Programming, 1989.
26. R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic Dynamic

Memory Management, John Wiley and Sons.,1996.
27. H. Schorr and W. M. Waite, An Efficient Machine-Independent Procedure for

Garbage Collection in Various List Structures, Communications of the ACM,
Vol. 10(8), 501-506 (1967).

28. C. J. Cheney, A Nonrecursive List Compacting Algorithm, Communications of the
ACM, Vol. 13(11), 677-678(1970).

29. J. Bevemyr and T. Lindgren, A Simple and Efficient Copying Garbage Collector
for Prolog, Proceedings of Programming Language Implementation and Logic
Programming, LNCS 844:88-101, Springer-Verlag (1994).

30. H. Lieberman and C. Hewitt, A Real-Time Garbage Collector Based on the Lifetimes
of Objects, Communications of the ACM, Vol.26(6), 419-429(1983).

31. A. W. Appel, Simple Generational Garbage Collection and Fast Allocation, Software-
Practics and Experience, Vol. 19(2), 171-183 (1989).

32. Y. Ding and X. Li, Cache Performance of Chronological Garbage Collection, IEEE
Canadian Conference on Electrical and Computer Engineering, Waterloo, Vol. 1,
1-4(1998).

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

33. Y. Wang and X. Li, Compiling Prolog to Logic Virtual Machine, IEEE Canadian
Conference on Electrical and Computer Engineering, Waterloo, Vol.l,
317-320(1998).

34. J. Tan and I.-P.Lin, Compiling Dataflow Analysis of Logic Programs, Proc. of ‘92
ACM/SIGPLAN Conf. on Programming Language Design and Implementation,
San Francisco, June 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

