Genetic and environmental variation in seed, cone and progeny characteristics of black spruce clones in a northern Ontario seed orchard

Stoehr, Michael U.

GENETIC AND ENVIRONMENTAL VARIATION IN SEED: CONE AND PROGENY CHARACTERISTICS OF BLACK SPRUCE CLONES IN A NORTHERN ONTARIO SEED ORCHARD

Br

MICHAEL M. STAEHF C

A Master's Thesis Submitted

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Forestry

$$
\begin{aligned}
& \text { LAKEHEAD UNIVERSITY } \\
& \text { SCHODE OFPRESTYY }
\end{aligned}
$$

ProQuest Number: 10611724

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611724
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

```
Stoetir, M. U. 1985. Genetic and ervironmental
    variation in seed; cone and progeny
    characteristics of black spruce clones in a
    northern Ontario seed orchard. 105 pp. Major
    Advisor: Dr. R. E. Farmer Jr.
```

Keywords: Pi드르 mariana (Mill.) B.S.P., broad-sense
heritability, germination, seed yield, clorial
variation, progeny test, quantitative genetics.

Genetic and environmental variance in cone and seed properties and early progeny growth of Piceea mariana (Mill.) B.S.P. clones were evaluated using cones and seed from two to three ramets of 19 clones each growing in a northern Ontario grafted clonal seed orchard. A cone analysis and a germination test were conducted to estimate variation among clones and among ramets within clones. Variation in growth of 19 open-pollinated families growing under two fertilizer regimes in a greenhouse was evaluated after three, four and five months of test establishment. Mean cone volume and mean cone length were found to be $2.2 \mathrm{~cm}^{3}$ and 24.4 mm , respectively. The mean for number of seed per cone was 71 ; although only 18% of these seeds were filled. Nested analyses of variance indicated that clones accounted for 23% to 39% of the total variation in cone size and seed yield per cone. Variation among ramets within clones for these characteristics accounted for 13% to 19% of total variance. The average germination percent, based on filled seed, was 68% and was completed (90%) after 11 days. Genetic variance in germination percent and germination speed acccounted for 67% and 21% of the total variance, respectively. For germination percent and germination speed, 18% and 33% of the total variation, respectively, were due to ramets within clones. In the progeny test, family heights were highly significant at all three ages. At five months family height means ranged from 30 cm to 34 cm and from 11 cm to 14 cm at the low and high fertilizer level, respectively. Ramet-within-clone effects were only significant after three and four months, when seedling heights were significantly correlated with seed weights. Family-fertilizer interactions were not significant at all three ages, although the variance component for this source of variation increased substantially towards the end of the test period.

TABLE OF CONTENTS

Page
ABSTRACT ii
LIST OF TABLES v
LIST OF FIGURE $v i$
ACKNOWLEDGEMENTS vii
INTRODUCTION 1
REVIEW DF LITERATURE 3
CLONAL SEED ORCHARDS IN FOREST TREE BREEDING 3
ENVIRONMENTAL PRECONDITIONING 5
Envirormental Preconditioning Of Vegetative Fropagules 6
Environmental Preconditioning Of Seeds 8
MATERNAL EFFECTS 12
QTHER FACTGRS AFFECTING RAMET-WITHIN-CLONE VARIATION. 16
CLONAL VARIATION IN CONIFERS 17
MATERIALS AND METHODS 22
MATAWIN SEED ORCHARD 22
COLLECTION OF MATERIALS 23
TEST 1: CONE ANALYSIS 25
TEST 2: GERMINATION 26
TEST J: PROGENY TEST 27
DATA ANALYSIS 29
Cone Analysis 29
Germination Test 31
Progeny Test 33
RESULTS 37
CONE ANALYSIS 37
GERMINATION TEST 40
PROGENY TEST 42
DISCUSSION 49
CONCLUSION 55
LITERATURE CITED 56
APPENDIX A LIST OF PICEA MARIANA RAMETS USED IN THIS STUDY 64
APPENDIX B RESULTS OF ISOENZYME ANALYSIS. 66
APPENDIX C gERMINATIQN TEST DATA. 68
APPENDIX D FERTILIZER SCHEDULE FQR PROGENY TEST. 72APPENDIX EAPPENDIX FAPPENDIX GAPPENDIX H
SAMPLE CALCULATIONS OF COEFFICIENTS OF VARIANCE COMPONENTS 73
SEEDLING HEIGHTS AND ANALYSES OFVARIANCE OF PARTIAL REPLICATIONSUSED TO ESTIMATE EXPERIMENTAL ERRORIN PROGENY TEST.....................75
CONE ANALYSIS RAW DATA. 77
PROGENY TEST RAW DATA. 96
Table 1. Clone means and ranges for several cone and seed traits obtained from black spruce (Picea mariana (Mill.) B.S.P.) clones growing in the Matawin seed orchard 21
Table 2. Aralysis of variance table associated with the cone analysis 30
Table 3. Analysis of variance table associated with germination test. 32
Table 4. Analysis of variance table associated with seed weight test 33
Table 5. The analysis of variance table associated with the progeny test 35
Table 6. Outline of analysis of variance used to estimate experimental error. 36
Table 7. Clone means and ranges in ramet means for cone volume and cone length for nineteen black spruce clanes 38
Table B. Clone means and ranges in ramet means for total number of seeds per cone and percent filled seed for nineteen black spruce clones. 39
Table 9. Analyses of variance and estimated components of variance for cone and seed characteristics for rimeteen black spruce clones 40
Table 10. Analyses of Variance and estimated components of variance for germination percent and germination speed of seed from nineteen black spruce clares 42
Table 11. Clorie means and ranges in ramet means of germination percent and germination speed of seed from nirieteen black spruce clones 43
Table 12. Mean weight of seeds from ramets of nineteen grafted black spruce clones. 44
Table 13. Analysis of variance and estimated components of variance for seed weight of nineteen black spruce clones 44
Table 14. Mear heights of black spruce progery growing under two levels of fertilizer. 46

```
Table 15. Linear correlation for seed weight of individual black spruce ramets and progeny
```
```46
```

Table 16. Amalyses of variance for heights of progeny from three ramets of nineteen black spruce clones 47
Table 17. Summary of pertinent variarice components ottained from three analyses of variance for height shown in Table 16................ 43
LIST OF FIGURE
Page

Figure 1. Location of Matawin Seed Orchard and lay-out of black spruce blocks......... 24

ACKNOWLEDGEMENTS

```
    My sincerest thanks must go to Dr. Robert Farmer
for his energetic and enthusiastic support of this thesis.
He was always available for advice and guidance. I also wish
to extend a thank you to Dr. Kenneth Brown and Dr. William
Parker for their help and suggestions they put inta this
study.
```

Ron Reinholt was of great assistance in all stages of this thesis and I want to thank him especially for his valuable help. Other persons I owe a thank you are: Dr. Peggy Knowles for running the isozyme analysis of my ramets; Meher Shaik for her dedicated work during the cone analysis and Ian Burgess, the greeriouse manager, for always supplying me with the best materials available. John Barrett was of great help to me during my absence from Lakehead as a middle man between the University and myself. The suggestions and comments of the outside reader, Dr. Tom Perry, North Carolina State University, are greatly appreciated. Firially, my wife Draga was of great moral support to me during the writing of this paper.

This study was partially funded by the Ontario

Ministry of Natural Resources through an ORRRF award.

INTRODUCTION

A fundamental goal in forest genetics is to analyze variation in quantitative traits to determine the sources of this variation. The geneticist needs to know how much of the total (phenotypic) variance (V_{p}) in a trait is attributable to genetic or non-genetic sources (Falconer 1981).

Genotypic variance and environmental variance can be estimated in a test population by growing a group of randomly arranged clones in a normal set of environmental circumstances. In such tests, the phenotypic variance can be partitioned into genetic and envrionmental components (Falconer 1981). Once the genotypic variance $\left(V_{G}\right)$ is estimated, the degree of genetic control over the phenotypes can be estimated through the ratio of $U_{G} / V_{P}, ~ c a l l e d$ broad-sense heritability.

Many clonal trials of this kind have been established to investigate the genetic make-up of many plant species (Libby 1969). For this purpose, several ramets (e.g.: rooted cuttings or grafts of one ortet) representing several clones are outplanted on one or more plantation sites. In these trials, the variance associated with clones is an estimate of genetic variance, and the remainder of the phenotypic variance is an estimate of environmental variance (Falconer 1981). Howevers instead of establishing clonal trials exclusively for experimental use, many workers have used already established clonal seed orchards to estimate genetic and environmental variances.

Clonal seed orchards are established for the purpose of seed production for operational use or progeny testing. These

REVIEW OF LITERATURE

This review of literature describes the processes that	
lead to geneti	ic and environmental variation in conifers with
asis on c	clonal seed orchards. The review is composed
four parts: 1	1) the place of seed orchards in forest tree
breeding, 2)	the role of environmental preconditioning
easing var	ariation among and within clones, 3) the role
her factors 1	leading to increased within-clone variation, su
5 rootstock	effects and maternal effects on early seedling
th and, 4)	general aspects of clonal variation in

CLONAL SEED ORCHARDS IN FOREST TREE BREEDING

Seed orchards are established for the production of genetically improved seed in quantity. Clonal seed orchards are composed of vegetatively reproduced (grafted or rooted) trees that are selected from natural stands or plantations for their phenotypic superiority (Wright 1976). The improvement of quantity and genetic quality of seed in seed orchards is achieved through some or all of the following means (Morgenstern et al. 1975):

1. Selection of a seed orchard location with favourable climate and soil conditions.
2. Presence of pollen barriers to minimize contamination of pollen cloud within seed orchards.
3. Minimizing of inbreeding through randomization of clones.
4. Stimulating seed yield through cultural practices such as fertilization, irrigation, thinning, removal of competition and root pruning.
5. Protection from fires insect attack and disease.

Stern (1959) recommended the use of 20 to 30 clones per seed orchard to avoid inbreeding. However, a larger number may be needed if the flowering period is long and sufficient overlap among clones in sexual phenology is not present. The recommended spacing between clones ranges from 10° by 10^{\prime} to 30' by 30' (Wright 1976).

To test the genetic quality of the parent trees in the seed orchard, the performance of their offspring is evaluated in progeny tests. Thus, the results of progeny tests can be used to eliminate undesirable mother trees from the orchard and to estimate genotypic and environmental variances needed to calculate narrow-sense heritability. Open-pollinated progeny tests using some of the clones growing in the Matawin seed orchard were established by the Ontario Ministry of Natural Resources (OMNR) in northern Ontario (Rauter 1977), but results have not been published yet.

Progeny tests are usually conducted on more than one site to obtain an estimate of family-environment interactions (Morgenstern 1979). Half-sibling (wind-pollinated) familyenvironment interactions have been reported by Johnstone (1973) with Scots pine (Pinus sylvestris L.) growing at three different elevations in Great Britain. Full-sibling familyenvironment interactions have been demonstrated by Roberds et al. (1976) and Jahromi et al. (1976). in loblolly pine (Pinus taeda L.) and slash pine (Pinus eligttii Engelm.) respectively by growing seedlings under different fertilizer regimes. Similar interactions have been reported by Bell et al. (1979) with one year old full-sibling families of Douglas fir (Pseudgtsuga menziesii (Mirb.) Franco.). Significant familyfertilizer interactions were detected after 14 weeks for stem diameter, height, dry weight and shoot/root ratio. Burdon
(1971) established a clonal test with cuttings of Monterey pine (Pinus radiata D. Don) on four different locations and found significant genotype-environment interactions due to a change in the performance ranking of clones on a phosphorus-deficient site.

In practice, the presence of family-environment interactions could be utilized to match planting stock with the most suitable site conditions $1 e .9 . \%$ nitrogen deficient sites, dry sites etc.l to achieve higher yields.

ENVIRONMENTAL PRECONDITIONING.

Environmental preconditioning or "C-effects" can be defined as heritable morphological andfor physiological changes induced by the environment in which a genotype is growing. For example, if identical (i.e., cloned) genotypes are growing in a range of environments, the phenotypic expression of these genotypes will vary with environment. If environmental preconditioning is present, these differences will be passed on to sexual or vegetatively propagated offspring, for one or more generations.

Lerner (1958) defines "C-effects" as the effect of an environment that is common to members of particular subgroups, such as half-siblings in sexual progeny or scions from one ortet. He states that "C-effects are present when the environment of members of a family is more alike than that of a group of individuals picked at random from a given population." For example, the environment of a parent may directly influence the phenotype of the offspring; e.9., the nutritional status of a dam, which can be assumed to be partly environmentally determined, has a great influence on the body weight of its
nursing offspring. The offspring's body weight will be lower than that of its contemporaries nursed by better-fed mothers (Lerner 1958).

Environmental Preconditioning of Vegetative Propagules

The accurrence of environmentally induced heritable effects in asexually propagated material has been shown by went (1959) with tuber production in potatoes. From previous work (Gregory 1956) it was known that potato plants grown under low night temperatures $\left(12{ }^{\circ} \mathrm{C}-14^{\circ} \mathrm{C}\right)$ produce more and heavier potatoes. Went found that "seed" potatoes that were grown under ideal temperatures (i.e., night temperatures around $13^{\circ} \mathrm{C}$) also produced plants that yielded more and heavier potatoes than plants from seed potatoes that were grown under warmer night temperatures. This trend held for several generations, indicating long-lasting effects of environmental preconditioning.

Significant "C-effects" associated with cloning have been demonstrated by Libby and Jund (1962) with Mimulus guttatus Fisch. (yellow monkey flower). They grew genetically identical cuttings (primary mamets from one ortet) in (i) a sand mixture, (2) in water as hydroponics in (3) a greenhouse and (4) on an outside bench. After three months, primary ramets from these four environments were recloned and rooted runners of these secondary ramets were placed in a uniform environment. During the three months in the non-uniform environments, primary ramets had time to respond internally to their unique envirorment. By evaluating the variation among primary ramets within a clone, Libby and Jund estimated c-effects. They found significant (p<0.05) c-effects in traits measured early after
recloning such as four-week height and "days to first flower". However, for traits measured after six to sixteen weeks after cloning, such as height tofirst flower and six-internode length, $C-e f f e c t s$ vanished and the largest component of the variation was due to clones. Wilcax and Farmer (1968) also used two-stage cloning to test for c-effects in Populus deltoides Bart. (eastern cottonwood). They found significant (p<0.05) Ceffects in foliation date, shoot weight, root numbers and root weight.

If C-effects are present in a clonal seed orchard; the variation due to clones will not only include differences due to genotypes but also effects due to the specific ortet environment that were transmitted to all descendants of a clone (Falconer 1981). Thus, broad-sense heritabilities estimated through clonal tests might be overestimated as the clonal (genetic) component of the total variation may include environmentally induced variation associated with the original ortets (Varnell et al. 1967, Zsuffa 1975). For example; in the study of Wilcox and Farmer heritability estimates for root number and root weight would have been overestimated by 8% and 6\% respectively, had they not separated genetic effects from C effects. However, there is some indication that c-effects are not long-lasting \{Libby and Jund 1962), especially if cuttings of uniform age and size are used to derive the test population (Wilcox and Farmer 1968). Because of this possible overestimation of broad-sense heritability through the presence of C-effects, many forest geneticists le. g., Burdon and Low 1973a,b, Burdon 1971, Shelbourne and Thulin 1974, Griffin 1982) use the term "clonal repeatability" as proposed by falconer (1981).

As early as 1919, when $k i d d$ and West wrote their review on the effects of conditions during seed germination upor subsequent growth and final yield, it was recognized that the seed environment can influence the growth pattern of a resulting plant. Rowe (1964) cites several studies that demonstrated long-1asting effects of pregermination and germination treatments on the growth of several species. For example, Flemion (1934) showed that some insufficiently chilled fruit tree seeds resulted in dwarfed plants, and knapp (1957) reported that Senecio vulgaris seeds when germinated at $10^{\circ} \mathrm{C}$, $14^{\circ} \mathrm{C}, 23^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ and subsequently grown at $17^{\circ} \mathrm{C}$ yielded shoot dry weights after 80 days of $147,775,1078$ and 390 mg respectively.

Baskin and Baskin (1973) question the validity of many genecology studies of dormancy and germination characteristics, since population differences could be induced by the environment under which the seed matured and, therefore, may not have a genetic basis. The study by Nelson et al. (1970) showed such environment-induced variation in medusahead (Taeniatherum asegerum (Simonkai) Nevski). They collected medusahead seed from 20 locations in the northwestern United States and sowed the seed in two nurseries in Washington. In the following year, when they harvested the seed from the two nurseries and sowed it in one nuresry, significant differences due to nurseries where the seed ripened were observed in seed weight, germination capacity, winter survival and date of anthesis. Koller (1962) demonstrated environmental preconditionirg of "Grand Rapids" lettuce (Lㅡㅡ드느들 sa $a t i \underline{i}$)
seed. He grew his lettuce plants in a uniform greenhouse environment ($26^{\circ} \mathrm{C} / 16$ hours light, $20^{\circ} \mathrm{C} / 8$ hours darkness) until flower buds developed. The lettuce plants were then assigned to various temperature/photoperiod combinations to complete their reproductive growth phase. Substantial differences in seed yield and germination capacity were observed. continuous light inhibited seed set, whereas high temperatures (26 ${ }^{\circ} \mathrm{C}$) during seed maturation increased germination capacity. Variation in progeny performance due to the environment of the pollen parent has been observed in peas (Pisum sativa) by Highkin (1958). He grew the designated male parent plants of two highly inbred lines under a range of temperatures and found significant differences in progeny growth rate due to these temperatures. Stearns (1960) investigated the effects of different growing temperatures during seed maturation on early growth of Plantago arista Michx: (bracted plantain). The parent plants were grown to maturity at $60^{\circ} \mathrm{F}$, $70^{\circ} \mathrm{F}$ and $80^{\circ} \mathrm{F}$. Seedling performance (height, vigour, leaf area) was positively correlated with increasing temperatures during seed maturation. This relationship persisted for 120 days.

Some evidence of environmental preconditioning that lasted more than one generation is given by Hill (1965) and Durrant (1958). Hill grew three highly inbred lines of Nicotiana rustica under the eight N-P-K fertilizer combinations. Seeds from each treatment combination were then grown under identical conditions. Height differences among the offspring of one line whose parent plants were grown under different fertilizer levels did not diminish in three subsequent generations (Hill 1967). Durrant also used the eight fertilizer treatment combinations to grow an inbred line of flax plants. The environment-induced differences in progeny
weight were still apparent after four generations, but were not reflected in seed weight and germination capacity and energy.

Evidence of environmental preconditioning of conifer seeds was shown in the study by Bjornstad (1981). He used clones of Norway spruce (Piceaz abies (L.) Karst.) that were grown in their native habitat at $63^{\circ} N-66^{\circ} N$ and in a more southern seed orchard ($58^{\circ} \mathrm{N}$) in Norway. Open-pollinated seeds from the northern habitat and seeds from the seed orchard that were control-pollinated with a northern pollen mix were callected and grown in a phytotron and in a tree rursery. Significant differences in time of budset were observed between seedlings from the two locations. Budset in the seed orchard progeny was delayed by up to three weeks. In Shear and Perry's study (1982) with loblolly pine, environment-induced carry-over effects were evident in 35 day-old progeny. Mean progeny dry weights of ramets within orie clone ranged from 49.6 to 58.5 mg . Verheggen and Farmer (1983) worked with three ramets each of nine clones growing in the Matawin seed orchard. They found significant differences associated with ramets within clones in germination capacity. Ramet-within-clone variation accounted for 17% of the total variation in this trait. o

It is not possible to explain ramet-within-clone variation in traits that are not measured in the next generation in terms of environmental preconditioning, as there is no way of knowing whether the environmentally induced ramet-Within-clone differences will be passed on to the progeny. The ramet-within-clone variation in such traits (e. g., cone length, cone volume, number of female and male strobili, seed yield) may be caused by erivironmental differences within the test site that alter the phenotypic expression of genetically
identical plants without necessarily affecting these traits in the next generation. However, regardless of what causes ramet-within-clone variation, the total phenotypic variance can be partitioned into a genetic and environmental component (Falconer 1981).

The precise mechanisms of transmitting the effects of environmental preconditioning from generation to generation is not known yet. Darlington and Mather (1949) suggest that "dauermodifications" play an important role. Dauermodifications are environment-induced long-lasting changes in the cytoplasm which are not permanent (Grant 1975). In this sense, environmental preconditioning would be manifested through maternal effects. Jinks (1964) and Grun (1976) postulate that selection of plants that are under stress may lead to such dauermodifications. An alternative explanation of the transmission of environment-induced heritable changes is given by Hill (1967). He hypothesizes that a genetic switching mechanism may operate on the chromosomes under certain conditions under which labile genotypes respond. If this is the case, the previously cited work by Highkin (1958) could be explained. However, "the evidence at present tends to suggest that neither the chromosomes operating alone nor the cytoplasm by itself can satisfactorily explain these results and (the precise mechanism) must remain a matter of speculation..." (Hill 1967).

In summary, environmental preconditioning of vegetative propagules, such as scions used to establish a clonal seed orchard, can lead to C-effects, if the response of the ortets to their unique environment is passed on to the ramets. These C-effects associated with the original ortets may increase the clonal variance, causing an overestimation of broad-sense

Abstract

heritability. However, the studies by Libby and Jund (1962) and Wilcox and Farmer (1968) suggest that this variance associated With cloning is short-lived. The evidence of environmental preconditioning of seeds and its effects on germination and early seedling performance suggests that some of the variance in the sexual offspring of ramets within clones is caused by environmental factors whose effects were passed on. However, it is important to realize that much of the variation in the early performance of the progeny is associated with other factors such as rootstock effects on the mother tree or paternal influences and maternal effects as described below.

MATERNAL EFFECTS

Generally, maternal effects arise when the mother contributes to the phenotype of her offspring over and above that which results from genes she contributes to the zygote (Mather and Jinks 1982). According to the same authors these contributions may take one or more of the following forms:

1. Cytoplasmic inheritance
2. Maternal nutrition via the egg or via pre- and post-natal supplies of food.
3. Transmission of pathogens and antibodies through the prenatal blood supply or by post-natal feeding.
4. Imitative behaviour.
5. Interaction between siblings either directly with one another or through the mother.

In plant genetics maternal effects through the latter three contributions do not occur and need not to be discussed
here. Most characteristics are inherited via genes borne on chromosomes, but there are cases where characteristics are transmitted through cytoplasmic factors (Wright 1976). As most of the cytoplasm is contributed by the female parent, this mode of inheritance is referred to as cytoplasmic or maternal inheritance. Cytoplasmic inheritance is evident if the result of reciprocal crosses are not identical. According to Sager (1972) 34 species of angiosperms show a cytoplasmic inheritance pattern, as evident, for example, in the male sterility in corn (Zea mays) (Duvick 1965), the variegated form of Mirabilis ialapa (Correns 1909) and the leaf shape and petal size of Epilobium hirsitum (Michaelis 1954). Cytoplasmic transmissions of the genetic information are usually long-lasting and therefore; these types of maternal effects get passed on generation after generation (Lerner and Libby 1976). In contrast, maternal effects through the mother's supply of food to the young affect only one or at most a few generations (Lerner and Libby 1976). Such nutritional maternal effects in conifers are very common and are mainly attributable to differnces in seed weight (Perry 1976). In his review on maternal effects; Perry demonstrated that 88\% of the total variation in seed weight in controlled crosses with loblolly pine was associated with the female parent. This variation in seed weight likely will lead to increased levels of variation in the early performance of seedlings, as demonstrated for the relationship between seed weight and early growth by Righter (1965) and Nanson (1965). A simple way of influencing seed weight was shown by Mergen and Vaigt (1960). They fertilized a seed production area of $51 a s h$ pine and found an increase of 55% in the seed weight, resulting in an increase in one-year-old seedling weight by 40%. This is an example where the effects of
envimonmental preconditioning are confounded with maternal effects, as the enviromment-induced changes were carried over to the next generation through an increase in seed weight.

The presence of maternal effects has also been reported by Kriebel et al. (1972) with an incomplete diallel cross with Pinus strobus L. (eastern white pine). They found that maternal factors accounted for 52% of the genetic variance in total height of six year-old white pine seedlings. Greathouse (1966) evaluated the course of germination of seeds obtained from a six-parent diallel matirg design (excluding selfing) with Douglas fir. Germination speed was under significant (p<0.01) maternal influence. Bramlet et al. (1983), working with loblolly pine in a similar studys obtained comparable results. For germination speed, measured as the time to reach 95% of the final germination, 14% of the total variation was due to maternal effects. They stated that this variation is caused by the "special environment" of the female parent, which included differences in mutrition, micro-climate and other edaphic factors.

The differences between environmental preconditionin and maternal effects are not ciear cut. If changes a manifested through dauermodificationsg ten environmental preconditioning is confounded with cytoplasmic inheritances which is a maternal effe t. If environment effects cause a change in the gename, then environmental preconditioning and maternai effects are not related. However, as maternal efferts are mainly nutritional (faiconer 1981) and, therefore, may last only a relatively short times a distinction between erivionmental preconditioning and maternal effects on the basis ct longevity of the effects may be made. with respect to progeny testing clonal seed orchard material, it is probably

```
safe to assume that if the within-clone variation in progeny
performance li.e., differences in progeny due to ramets within
a clone) is short-lived, nutritional maternal effects are the
basis of this envirommental variation, especially if prczeny
heights are correlated with seed weight in the early stages of
the test. If, however, the ramet-nithin-clone variation in
growth is long-lasting, presence of environmental
preconditioning or differences in male parenthood can be expected.
```


Abstract

To establish a grafted seed orchard, scions are usually grafted to rootstock of uriknown genetic quality. In fruit trees it has long been known that rootstocks can affect yield and quality of fruit (Sax 1958). In forest trees; the effects of rootstocks on survival, height growth, fruitfulness and vegetative and reproductive phenology have jeen irivestigated (Krusche and Melchior 1977, Ahigren 1972, Schmidtiing 1973). From these studies t can be concluded that rootstocks can have a great inf:uence on the parameters mentioned above. It is noteworthy to point out that in Krusche ard Melchior's work, the rootstocks were either a cloned variety of Norway spruce dwarfs or "normal" Norway spruce seedlings. The within-clone variation in mean height was higher when the clones were grafted to normally growing seedling rootstock than when grafted to dwarfed, cloned rootstock. This effect of genetically non-uniform rootstock on height growth may also be present in other traits, thus potentially increasing ramet-within-clone variation in cone and seed properties and consequently lowering broad-sense heritability estimates (Schmidtling 1983).

Other non-genetic sources possibly increasing variation among ramets of the same clone are differences in time of establishment of ramets, differences in quality of planting of ramets and other site differences such as localized preserice of root diseases and micro-climate differences.

In open-pollinated progenys the male parent is unknown and the offspring from one mother tree is considered a halfsibling familys although some seedlings are probably fullsiblings. For example, o'Reillyet al. (1982) in their study

with 12 clones of black spruce growing in the Matawin seed orchard, found that just two clones would contribute over half the male gametes in a hypothetical seed crop. Thus, the genetic composition of the progeny of one ranet close to a potent pollen producer might be substantially different than the genetic composition of the offspring of a ramet of the same clone that is surrounded by average pollen producers. This in turn may lead to increased ramet-within-clone variation that is genetic in nature, especially in the absence of seed weight efferts; or after seed weight effects vanished.

From the fast three sections of this chapter, it is clear that there are several causes of an increase in ramet-within-clone variation in a grafted clonal seed orchard. Further, these sources of variation may often be related or confounded with each other; thus making it difficult to identify Each source precisely.

CLONAL VARIATION IN CONIFERS

In this section of the review of literature, evidence is presented of clonal variation in conifer 1) phenology, 2) cone and seed properties, 3) wood characteristics and 4) growth characteristics. Finally, in the last part, the published papers on some aspects of clonal variation iri the Matawin seed orchard are summarized.

Clonal variance is the part of the phenotypic variance that is associated with clones. According to Falcorier (1981) the differences among clones is mainly due to their difference in geriotype and can be regarded as an estimate of the genetic variance. However, certain non-genetic effects that are due to the ortet (i.e., Lerner's "C-effects") may cause an inflation
in the estimate of the genetic component of the total variance.
In a Swedish trial with Norway spruce, Eriksson et al. (1973) found that 62.9% and 41.6% of the total variation in the numbers of female and male strobili respectively were associated with clones. Schmidtling (1983) reported similar results from a study of a loblolly pine seed orchard in southerr Mississippi. He calculated broad-sense heritability for number of female flowers per ramet to be 0.50 and 0.63 for 1976 and 1977 respectively. Further, he determined the total number of seeds per cone of ten ramets each of 18 clones for three consecutive years. In 1976, the clonal means for number of sound seed per cone ranged from 0 to 53 ; broad-sense heritability was 0.25. Heritabilities for this trait based on 1977 and 1973 data were 0.30 and $0.31, ~ r e s p e c t i v e l y$. Clonal means in cones per ramet ranged from 0.1 to 50.3 in 1976 and the heritability estimate was 0.45. This value is in close agreement with the heritability of mean annual cone production for 51 ash pine of 0.50 (Varnell et al. 1967). In another study with loblolly pine, Shear and Perry (1982) found substantial variation among clones in seed weight ard seed quality. Mean seed weights for clones ranged from 25.5 to 32.7 mg; mean percent of unsound seed ranged from 5.2\% to 22.5%.

In a series of tests with Morterey pire (Pirus radiata D. Don) in New Zealard, Burdon and Low (1973a,b) evaluated the effects of four different sites on clonal repeatability in some core ard seed properties. The repeatability values for the four sites for cone length and cone volume ranged from 0.56 to 0.85 and from 0.48 to 0.66 , respectively (Burdon and Low 1973a). Repeatability estimates for number of filled seed per cone ranged from 0.00 to 0.33 , and the repeatability for percent filled seed ranged from 0.04 to 0.23 (Burdon and Low 1973b).

Griffin (1982), working with 30 clones of Monterey pine in a seed orchard in Australia, calculated repeatability for rumber of seed per cone, $100-5 e e d$ weight and cone weight ibefore extracting) to be $0.40,0.54$ and 0.53 respectively. In his study, these values indicate a clonal component of the total variance of $40 \%, 54 \%$ and 53% for the traits mentioned above. Clonal variation in several growth parameters has been reported as well. For example, Zsuffa (1975) evaluated some growth and branching characteristics for Pinus griffithil x Pinus strobus clones. He obtained broad-sense heritability estimates for tree height ard diameter at breast height of 0.62 and 0.45 ; respectively. For branch length and branch angle, heritability was 0.76 and 0.71, respectively. Burdon (1971) found high repeatability values or different sites (0.50-0.75) for total height, stem straightness and frequency of branch clusters in Monterey pine. In the same study, he also reported high clone-site interactions for stem straightness and branching sharacteristics. More moderate repeatability estimates for growth and branching habits were obtained by Shelbourne and Thulin (1974). They used rooted cuttings of 216 Monterey pines and evaluated crown diameter and height at six years. The repeatability estimates for height and crown diameter were 0.40 and 0.39 respectively. For number of branch clusters and branch angle, the repeatability was 0.41 and 0.24. Differences in phenology among clores have also been reported. Eriksson et al. (1973), working with Norway spruce, found significant differences among clones in onset of pollen dispersal, duration of pollen dispersal and duration of the receptive period of female flowers. Vegetative growth patterns are also reported to be under strong gerietic control fienstadt 1974, Warral 1975).

In his review of earlife :ork, Zobel (1951) concluded that the genetic conterol over many wood properties is moderate to high. Broad-sense heritability estimates of some southern pines for specific gravity ranged from 0.50 to 0.84 (Einspatir et al. 1964, Van Buijtenen 1962). In Monterey pine heritability for specific gravity was estimated to be 0.74 (Dadswell et al. 1961), and in Norway spruce it ranged from 0.51 to 0.70 (Warral 1975). Similar estimates for fibre length and fibre strength have been reported in some of the studies cited above. Substantially higher heritability estimates (0.89-0.99) have been found for some gum characteristics in slash pine (Squillace 1971, Peters 1971).

In the Matawin seed orchard, where this study was corducted, studies of clonal variation in black spruce arid white spruce (Pi드르 glau들 (Moench.) Vass.) have been carried out. O'Reilly and Parker (1982) found highly significant (p<0.01) clonal differences in degree-day requirement for bud break in both species. In black spruce, the early-flushing clones had significantly greater leader growth than lateflushing ones. In another study in the same black spruce orchard, highly significant clonal differences were found in the number of male and female strobili per ramet, ramet heights and rumber of ovuliferous scales per corie foreiliy et al. 1982). Verheggen and Farmer (1983) worked with three ramets each of nine black spruce clones growing in this orchard. They reported significant (p<0.05) clonal differences in germination capacity, percent filled seed content, cone volume and number of seed per cone. Between 20% and 26% of the total variation for the characteristics was associated with clones. Some of the pertinent observations of black spruce clones growing in the Matawin seed orchard are summarized in Table 1.

Abstract

The evidence of clonal variation in conifers is well documented for several characteristics. Of particular interest to this study are the studies conducted on cone and seed properties, which seem to be under moderate genetic contral as evident from the heritablity estimates generally ranging from 0.20 to 0.60. The studies conducted in the Matawin seed orchard on phenology and on some cone and seed properties have already revealed the presence of genetic differences among clones there. Thus, variation due to clones in the characteristics evaluated in this study can be expected.

Table 1. Clone means and ranges for several cone and seed traits obtained from black spruce (Piceaz mariana (Mill.) B.S.P.) clones growing in the Matawin seed orchard.

Traits
Clone Mean
Grand
Clonal Component

No. ovuliferous

scales/cone*

$27.9-45.9 \quad 33.5$
N / A
one Volume ${ }^{* *}$ ($\mathrm{cm} \mathrm{m}^{3}$)
No. of Seed**
per Cone
$14-4933$
26

Filled Seed ${ }^{* *}$ per Cone (\%)

23-59
46
20

Germination ${ }^{* *}$
Capacity (\%)
86-100 94
94
21

[^0]In this study, data from a cone analysis, germination test and progeny test were used to estimate variation among clones and among ramets within clones growing in a northern Ontario black spruce seed orchard. Following is a description of this orchard and cone collection. Each test (cone analysis, germination test, progeny test) is then deseribed separately with the applied statistical procedures outlined in the section on data analysis.

MATAWIN SEED ORCHARD

The Matawin seed orchard, established by the Ontario Ministry of Natural Resources, is located about 60 km to the west of Thunder Bay, Ontario in the Fort William Crown Management Unit. It is situated in Hills' (1960) Site Region 4 W at a latitude of $48^{\circ} 23^{\prime} \mathrm{N}$ and a longitude of $90^{\circ} 03^{\prime} W^{\circ}$ and contains black and white spruce clones that originated from ortets growing between latitudes 48° and $50^{\circ} \mathrm{N}$ ard longitudes 88° and $91^{\circ} \mathrm{W}$. All scions were collected from tops of mature ortets $(\geqslant 30$ years) and grafted to white spruce rootstock.

The total area of the seed orchard is 10 ha, and it is surrounded by a mature, even-aged Pinus banksiana Lamb. (jack pine) stand functioning as a pollen barrier. The orchard is divided into two units, one containing 18 blocks of white spruce and the other containing 18 blocks of black spruce (Figure 1). Each block has an area of approximately 0.2 ha and contains 12 ramets for each of 12 clones. The spacing is 3.6 m by 3.6 m (12, by 12'). The arrangement of the ramets within the blocks is random with the condition that ramets of the same
clone could not be adjacent. The first blocks were established in 1966, the last ones in 1972. A total of 61 black spruce clones and 39 white spruce clones were outplanted. In the younger blocks, mortality has been high due to recurring frost damage, root diseases and/or poor planting. The seed orchard is not well maintained, and efforts to increase seed yields are currently not being undertaken. Judging by informal evaluationg the cone crop in 1933 was below average in the black spruce blocks and poor in the white spruce blocks.

COLLECTION OF MATERIALS

On September 24, 1983 three cone-bearing ramets each of 19 clones were selected from six black spruce blocks (Figure 1 , Appendix A). The selection of the ramets was random with respect to the variables measured in this study. However, the selected ramets had to have at least 30 cones in the 1933 cone erop.

Between 30 and 50 randomly picked cones of the current crop were collected from each selected ramet outlined in Appendix A. At this stage, all cones were still closed. Cones were kept separately by ramets in sealed glass jars. The jars were placed in a cold storage room until January of 1984 at an average temperature of $4^{\circ} \mathrm{C}$.

As it was essential to have all ramets properly identified; Dr. Peggy Knowles (Assistant Professor Biology/ Forestry Lakehead University) used an electrophoretic isozyme analysis on foliar tissue to genotype all selected ramets. Her interpretations of the results revealed that one ramet each in Clone 284 (R4-TI-67A) and 492 (R12-T4-G7A) have been improperly tagged. The results of this arialysis are outlined in Appendix

BLACK SPRUCE BLOCKS					
1966 B	1967 X	1958 B	1968 D	1971 A	1972 A
1966 A	1967 A	$\begin{array}{rrr}1968 & A \\ X\end{array}$	1968 C	1971 B	1972 B
1969 A	1969 B	1970 A	1970 B	1971 C	1971 D
WHITE SPRUCE BLOCKS					

Figure 1. Location of Matawin Seed Orchard (*) and lay-out of black spruce blocks. Ramets from marked blocks (X) were used in this study (lay-out not to scale).
B. Unfortunately, the isazyme analysis was conducted in the spring of 1984, at a time when most tests of this study were already in progress: Consequently, the two mislabelled ramets could not be replaced, but they were excluded from the analysis.

TEST 1: CONE ANALYSIS

Originally, the cone analysis procedure was developed by Bramlett et al. (1977) to evaluate seed production efficiency in southern pine seed orchards. Under this procedure individual cones are assessed with respect to cone and seed characteristics, such as extraction efficiency, total seed yield per cone, and percent of filled and sound seed per cane. In this study, cone analysis data were used to analyze clonal and ervironmental variation in cone and seed properties of black spruce clones growing in the Matawin seed orchard.

In January of 1984, ten cones of each ramet were selected at random from cones collected as described in the previous section. At this stage, the cones were still closed. The volume and length of each cone were measured. Core volume was measured to the nearest $0.1 \mathrm{~cm}^{3}$ by the water displacement method (Panshin and $D e$ Zeuw 1980). Cone length was measured to the nearest 0.1 mm using calipers.

Cones were prepared for seed extrantion as outlined by Safford (1974). This procedure $\because a s$ as follows:

1. Individual cones :uセń plemed in small glass jars.
2. Cones !uers Eqaked ir cold water for three to four hours.
3. The weter was then drained and the cones were airdried in their jars for 20 hours.
4. Cones were placed in a cold oven and the temperature was
increased gradually to $55^{\circ} \mathrm{C}$ over a period of three to four hours.
5. Cones were left in the oven at $55^{\circ} \mathrm{C}$ for five to 11 hours.
6. Cones were placed at room temperature for several hours to cool before extracting the seed.

Seeds were extracted by tumbling each cone in a small container for 30 seconds. Extracted seeds of each cone were counted and put into small paper envelopes. The envelopes were placed into sealed glass jars and stored at $4^{\circ} \mathrm{C}$. This extraction procedure (including steps 1 to 6) was repeated three times as recommended by Safford (1974). Seeds from the second and third extraction were counted, recorded and added to the seeds from the first extraction. To determine the total number of seeds per cone (in addition to the seeds from three extractions), all cones were dissected and the remaining seeds counted, recorded and added to the respective paper envelopes. Seeds were dewinged and placed in a 95% ethanol solution. Empty seeds floated and were discarded. The number of filled seed per cone were counted. The filled seed from each ramet were then combined and used in the germination test described below.

TEST 2: GERMINATION

The filled seed of each ramet obtained from cone analysis test were divided into three replicate seed lots. The number of seeds per replicate ranged from 15 to 50 due to variation in the number of filled seed per ramet lsee Appendix C for details). Seeds in each replicate were placed on two layers of square Whatman No. 2 filter paper in 9 cm by 9 cm
plastic petri-dishes. Each petri-dish was randomly assigned to one of six plastic flats, holding between 27 and 30 petridishes each. Filter paper and seeds were thoroughly soaked with distilled water before the plastic flats were put in polyethylene bags which were then sealed. All flats were stored at $4^{\circ} \mathrm{C}$ for 14 days. After this stratification periodg the flats (still in their polyethylene bags) were placed in one incubator which was programmed for 16 hours with 1 ight at $20^{\circ} \mathrm{C}$ and 8 hours of darkness at $10^{\circ} \mathrm{C}$. The seeds were checked daily for 21 days and the number of germinants recorded and removed from the petri-dishes: A seed was judged to have germinated if the radicle was longer than 2 mm . After the termination of the germination test, ungerminated seeds were dissected and classified into the following groups: 1) filled and sound, 2) empty; and 3) filled but decayed.

TEST 3: PROGENY TEST

The purpose of the progeny test was to evaluate clone and ramet variance in early seedling growth. Further, familyenvironment interactions were evaluated.

In early January 1984, seeds from cones that were not used in the cone analysis (Test 1) were extracted several times as outlined for Test 1. The seeds of each ramet were bulked, dewinged and culled of empty seed by ethanol floatation. The filled seed of each ramet were randomly divided into seed lots containing ten seeds each. Ten or fewer seed lots per ramet (Appendix E) were used as some ramets yielded less than 100 filled seeds. All seed lots of each ramet were weighed with an analytical balance to determine the mean seed weight for each ramet. All seed lots of each ramet were then bulked and
stratified in petri-dishes at $4^{\circ} \mathrm{C}$ for 14 days as outlined for Test 2.

On February 14, 1934, the progeny test was started in a greenhouse. The seedlings were grown under a photuperiau úf 16 hours at around $25^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ diriring the dark. The photoperiod was extended furimg the winter and spring with sodiurn lights.

AS gne \quad f the aims of this test was to evaluate familyenvironment interactions, the seedlings were grown under two drastically different fertilizer regimes. For this reason, the test was conducted using a split-plot design. Four blocks were subdivided into two main plots each. The main plots received one of the two fertilizer treatmerits: 25 ppm or 200 ppin 20-2020 N-P-K fertilizer (Soluble Fertilizer Concentrate, Plant Products, Bramalea, Ont. . A mixture of peat and vermiculite at a ratio of $1: 1$ by volume was used as a growing medium.

In the main plots, each ramet was represented by four seedlings in one Tinus container book. Tinus books are a type of Spencer-Lemaire container with four cells per book each holding $500 \mathrm{~cm}^{3}$ of soil per cell. All books $\{\mathrm{i} . \mathrm{e} . \mathrm{g}$ individual ramet plots) were randomly placed in the main plots. Two randomly selected seeds from the stratified seed lots were planted in each cell. Thirty-five days after seeding, the cells were thinned to one seedling. To avoid personal bias, the seedling closest to the centre of the cell was left standing. Empty cells were planted with a seedling that had been thinned from another cell of the same ramet. The fertilizer treatment was started three weeks after thinning according to the schedule outlined in Appendix D. Height measurements of all seedlings were taken on May 17, June 19, and July 16, 1984 about three, four and five months respectively after establishment of the test.

Abstract

Collection of cones from two improperly labelled ramets resulted in the discarding of two ramets of two clones isee Collection of Materials). This resulted in samples of unequal size in all three tests. Consequently, 17 clones were represented by three ramets, and two clones had only two ramets. The coefficient associated with the variance component associated with ramets was calculated according to the equation outlined by Snedecor and Cochran (1967, p. 289). Coefficients of variance components in the seed weight test (part of Test 3) had to be calculated as outlined by Sokal and Rohlf (1981, p. 294) sirice unequal ramet numbers, coupled with uriequal seed lot numbers (replicates), had to be used. The calculations of all variance component coefficients are shown in Appendix E.

Cone Analysis

Nested analyses of variance were used to test differences in cone volume, cane length, total number of seed per cone and percent filled seed per cone. The last variable was transformed using the inverse sine transformation; as the percentages covered a wide range of values (Steel and Torrie 1980, p. 236). The null hypothesis for each test was that there is no difference among and within clones for the measured variables. The linear model of this design is as follows:

$$
\begin{aligned}
Y_{i j k} & =u+c_{i}+R_{(i) j}+e_{(i j) k} \\
\text { where } i & =1,2,3 \ldots 19 \\
j & =1,2,3 \text { or } j=1,2 \\
k & =1,2,3 \ldots 10
\end{aligned}
$$

```
        Y ijk = the response variable, ie. the volume or
                        length or number of seed or the percent of
                        filled seed of cone k of ramet j of clone i;
            u = the population mean;
            Ci
                clones were selected at random);
                    R (i)j = the effect of ramet j of clone i (a random
                effect);
                    e(ij)k}=\mp@code{the random error due to cone k of ramet j of
                        clone i;
The analysis of variance table for this design is presented in
``` Table 2.

Table 2. Analysis of variance table associated with the cone analysis.

Germination Test
Nested analyses of variance were used to test
differences in germination percent and germination speed
associated with clones and ramets within clones. The null
hypothesis was, that no differences among and within clones are
present in the two germination characteristics.
Final germination percents were based on both is all
filled seed that were ungerminated at the end of the test and
2) only sound seed, that were ungerminated at the end of the
test. All germination percents were transformed with the
inverse sine transformation and subjected to an analysis of
variance. The linear model for this desigh is follows:
\[
\begin{aligned}
& Y_{i j k}=u+c_{i}+R_{(i) j}+e_{(i j) k} \\
& \text { where } i=1,2,3 \ldots 19 \\
& j=1,2,3 \text { or } j=1,2 \\
& k=1,2,3 \\
& Y_{i j k}=\text { the response variable, } i \text {.e.s the germination } \\
& \text { percent or germination energy of replicate k } \\
& \text { of ramet } j \text { of clone i; }
\end{aligned}
\]

The analysis of variance table resulting from this design is outlined in Table 3.

Table 3. Analysis of variance table associated with germiration test.

Germination energy was analyzed by evaluating the number of days to reach \(90 \%\) of the final germination in each replicate. The values were determined from germination curves. The 1 inear model and the analysis of variance table are the same as for germination percerit. Variance comporients to estimate broad-sense heritability were calculated for both germination parameters.

Broad-sense heritability (\(h^{2}\)) estimates for come, seed and germination characteristics were calculated according to the following formula:
\[
n^{2}=s_{c}^{2} /\left(5_{C}^{2}+s_{R}^{2}+5_{R}^{2}\right)
\]

A nested analysis of variance was performed on the seed weight data to test the null hypothesis of no difference in seed weight among clones and among ramets within clones. The linear model for the design is as follows:
```

        Y (ijk}=u+\mp@subsup{C}{i}{}+\mp@subsup{R}{(i)j}{(}+\mp@subsup{e}{(ij)k}{(
    where i = 1,2,3 ... 19
            j = 1,2,3 or j = 1,2
            k=1,2,3 ...a
        Y ijk}=\mathrm{ the weight of replicate k of ramet j of clone i
            u = overall mean
            Ci}=the effect of clone i {a random effect)
        R(i)j}=\mp@code{the effect of ramet j of clone i;
        e(ij)k}=\mathrm{ the random error due to replicate k of ramet j of
                clone i;
    ```

The resulting analysis of variance table is presented in Table 4.

Table 4. Analysis of variance table associated with seed weight test.
Source
after test establishment. The null hypothesis for each test was that there is no difference in seedling heights regardless of blocks, fertilizer level, clones and ramets within clones. The experimental design was of a split plot type, with the split plots receiving the different levels of fertilizer. The linear model is as follows:
```

    \(Y_{i j k 1 m n}=u+B_{i}+d_{(i)}+F_{j}+B F_{i j}+W(i j)+C_{k}+B C_{i k}+F C_{j k}\)
            \(+B F C_{i j k}+R_{(k) 1}+B R_{(k) 1 i}+F R_{(k) l_{j}}+B F R_{(k) 1 i j}\)
            \(+e_{(i j k l) m}+{ }^{5}(i j k 1 m) n\)
        where \(i=1,2,3,4\)
            \(j=1,2\)
            \(k=1,2,3 \ldots 19\)
            \(1=1,2,3\) or \(1=1,2\)
            \(m=1\)
            \(n=1,2,3,4\)
            \(Y_{i j k l m n}=\) height of individual seedling;
            \(u=\) overall mean;
            \(B_{i}=\) effect of block \(i\) (a fixed effect);
            \(d_{(i)}=\) the restriction error associated with the
                        randomization of the fertilizer treatment in the
                i-th block. For a complete discussion of restriction
                    errorss see Anderson and McLean (1974);
            \(F_{j}=\) the effect of fertilizer level \(j, ~(a f i x e d e f f e c t) ;\)
                        \(w_{(j i)}=\) the restriction error associated with the
                        randomization of the clones within the fertilizer -
                        block combination;
            \(C_{k}=\) the effect of clone \(k\), (a random effect);
            \(R_{(k) 1}=\) the effect of ramet 1 of clone \(k\), (a random effect);
    ```

```

                                    effects of the indicated interactions;
                                    \(e_{(i j k l) m}=\) the random error due to the m-th plot in the ijkl-th
                                    treatment combination (experimental error);
                                    \(S_{(i j k l m)}=\) the random error due to the \(n\)-th seedling in plot \(m\)
    ```
of the \(i j k l-t h\) treatment combination (sampling error);
The analysis of variance table for this design is outlined in Table 5.

Table 5. The analysis of variance table associated with the progeny test.
\begin{tabular}{|c|c|c|}
\hline Source & \(d f\) & EMS \\
\hline \(\mathrm{B}_{\mathrm{i}}\) & 3 & \[
5{ }_{5}^{2}+45{ }^{2}+8 s_{B R}{ }^{2}+23.15{ }_{B C}{ }^{2}+439.35{ }_{d}{ }^{2}+439.3 \phi_{B}
\] \\
\hline (i) & 0 & \[
s_{5}^{2}+4 s_{B}^{2}+8 s_{B R}^{2}+24 s_{B C}^{2}+439.3 s_{d}^{2}
\] \\
\hline \(F_{j}\) & 1 & \[
s_{5}^{2}+4 s_{e}^{2}+16 s_{F R}^{2}+46.2 s_{F C}^{2}+304 \not \phi_{F}
\] \\
\hline \[
\mathrm{BF}_{i j}
\] & 3 & \[
5_{5}^{2}+45{ }_{B}^{2}+45_{B F R}^{2}+11.65_{B F C}^{2}+219.65_{n}^{2}+219.6 \phi{ }_{B F}
\] \\
\hline \[
{ }^{W}(i j)
\] & 0 & \[
5_{5}^{2}+45_{\mathrm{g}}^{2}+45_{\mathrm{BFR}}^{2}+11.65_{B F C}^{2}+219.65_{n}^{2}
\] \\
\hline \(c_{k}\) & 18 & \[
s_{5}^{2}+4 s_{R}^{2}+32 s_{R}^{2}+92.5 s_{C}^{2}
\] \\
\hline \[
\mathrm{BC}_{i k}
\] & 54 & \[
5_{5}^{2}+45_{f}^{2}+8 s_{B R}^{2}+23.1 s_{B C}^{2}
\] \\
\hline \[
\mathrm{FC}_{j k}
\] & 18 & \[
5_{5}^{2}+45_{e}^{2}+165_{F R}^{2}+165_{F C}^{2}
\] \\
\hline \(\mathrm{BFC}_{i j k}\) & 54 & \[
5_{5}^{2}+45_{\mathrm{e}}{ }^{2}+45_{B F R}^{2}+11.65_{B F C}^{2}
\] \\
\hline \(\mathrm{R}_{\text {(k) } 1}\) & 36 & \[
s_{5}^{2}+4 s_{E}^{2}+32 s_{R}^{2}
\] \\
\hline \[
\mathrm{BR}_{i(k) 1}
\] & 108 & \[
5_{5}^{2}+45_{f}^{2}+8 s_{g R}{ }^{2}
\] \\
\hline \[
F R_{j}(k) 1
\] & 36 & \[
s_{5}^{2}+4 s_{E}^{2}+16 s_{F R}^{2}
\] \\
\hline \[
\operatorname{BFR}_{i j}(k) 1
\] & 108 & \[
s_{s}^{2}+4 s_{f}^{2}+4 s_{B F R}^{2}
\] \\
\hline \[
{ }^{e}(i j k l) m
\] & 0 & \[
5_{5}^{2}+45_{2}^{2}
\] \\
\hline \[
\mathrm{s}(\mathrm{i} j k \ln) n
\] & 1320 & \[
5_{5}^{2}
\] \\
\hline Total & 1759 & \\
\hline
\end{tabular}

As there was no estimate of experimental error (o df), six randomly selected ramets in each main plot were replicated once when the prageny test was established. For this purpase, one Tinus container book (four seedlings) per selected ramet was placed randomly in the mainplots. From these partial replicationss an estimate of experimental error was obtained for each analysis of, variance (Anderson and McLean 1974). Table 6 outlines the anelysis of variance used to estimate experimental error.

Table 6. Outline of analysis of variance used ta estimate experimental error.
\begin{tabular}{|c|c|c|c|}
\hline Source & \(d f\) & \multicolumn{2}{|r|}{EMS} \\
\hline Ramets & 47 & \[
5_{5}^{2}
\] & \({ }^{2}\) \\
\hline Experimental Error & 48 & \[
s_{s}^{2}
\] & \({ }^{2}\) \\
\hline Sampling Error & 288 & \(5_{5}^{2}\) & \\
\hline
\end{tabular}

Total
483

The estimated error was used to test the approriate interactions for the purpose of pooling. This preliminary testing was done at the \(75 \%\) level of confidence (Winer 1971, p. 378 ff.). The error estimate from the side test was rot used in the main test as recommended by Anderson and McLean (1974).

Linear correlation aralyses were carried out with ramet mean seed weight as the independent variable and the mean progeny performance of each ramet as the dependent variable. Separate analyses were conducted for high and low fertilizer levels and for each of the three height measurements. All statistical procedures were carried out with spss (Stat stical Package for the Social Sciences) on a VAX \(11 / 780\) computer at Lakehead University.

The results of the cone analysis are shown in Table 7 and Table 8. Significant (p<0.01) differences due to clones and to ramets within clones were observed for all variables measured in this test (Table 9).

Mean cone volume was found to be \(2.2 \mathrm{~cm}^{3}\) and ranged from \(1.3 \mathrm{~cm}^{3}\) for clone 493 to \(3.5 \mathrm{~cm}^{3}\) for clorie 492. The largest within-clone range was observed for clone 291 (1.9 cm to \(3.6 \mathrm{~cm}^{3}\)). Variation in cone length showed a pattern similar to that of cone volume. Clone 492 had the lorigest cones on the average (30.6 mm); cones of Clone 493 were shortest (18.9 mm). Clone 291 again showed the widest range in ramet means for this trait. The proportions of the total variance associated with clones and ramets within clones were also of similar magnitude for the two cone characteristics. The clonal component of the total variance in cone volume and cone length were \(37.1 \%\) and \(39.4 \%\) respectively (Table 9). The ramet-withinclone proportion of the total variance was \(19.4 \%\) and \(18.0 \%\) for cone volume and cone length, respectively (Table 9).

The average number of seed per cone was 71.2 (Table 8); however, only \(18.2 \%\) of these seeds were filled. clone 492 yielded the most seed per cone (102.2), and. Clone 493 'yielded the lowest number of seed per cone (48.7). For the tatal sample, individual ramet means ranged from 43.1 seed per cone to 109.0 seed per cone (Table 8). Thirty-one percent of the total variation of the number of seed per cone was due to clones; the ramet-within-clone variation accounted for \(18.2 \%\)
(Table9).

Table 7. Clone means and ranges in ramet means for cone volume and cone length for nineteen black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Clone Na.} & \multicolumn{2}{|l|}{Cone volume (cm³)} & \multicolumn{2}{|l|}{Cone Length (mm)} \\
\hline & clori
Mean & Range i Ramet & Clore Mean & \begin{tabular}{l}
Range \\
Ramet Mea
\end{tabular} \\
\hline 283 & 2.0 & 1.6-2.4 & 24.3 & 23.2-26.2 \\
\hline 284 & 2.3 & 1.9-2.7 & 24.7 & 22.7-26.7 \\
\hline 288 & 1.3 & 1.0-1.6 & 21.8 & 19.0-23.1 \\
\hline 290 & 1.8 & 1.7-2.0 & 22.3 & 21.7-23.3 \\
\hline 291 & 2.8 & 1.9-3.6 & 27.3 & 23.5-31.2 \\
\hline 303 & 2.2 & 1.8-2.5 & 25.3 & 23.5-26.7 \\
\hline 304 & 2.6 & 2.3-3.1 & 25.4 & 24.8-26.2 \\
\hline 354 & 1.6 & 1.5-1.7 & 22.3 & 22.1-22.5 \\
\hline 355 & 1.6 & 1.5-1.8 & 23.4 & 22.8-24.0 \\
\hline 367 & 2.3 & 2.1-2.6 & 27.1 & 26.4-23.4 \\
\hline 369 & 2.5 & 2.4-2.6 & 26.2 & 26.0-26.4 \\
\hline 370 & 2.4 & 2.2-2.6 & 26.0 & 25.1-27.1 \\
\hline 383 & 2.9 & 2.1-3.4 & 25.1 & 22.6-26.8 \\
\hline 385 & 2.3 & 2.2-2.5 & 25.4 & 24.9-26.4 \\
\hline 387 & 2.1 & 2.0-2.2 & 23.1 & 22.8-23.5 \\
\hline 393 & 1.6 & 1.3-2.0 & 21.6 & 20.1-24.2 \\
\hline 491 & 2.1 & 1.6-2.4 & 22.7 & 19.6-24.6 \\
\hline 492 & 3.5 & 3.1-4.0 & 30.6 & 28.8-32.3 \\
\hline 493 & 1.3 & 1.2-1.4 & 18.9 & 17.8-19.8 \\
\hline Mean & 2.2 & & 24.4 & \\
\hline \[
n^{2}
\] & . 37 & & . 39 & \\
\hline
\end{tabular}

The percent of filled seed, calculated as the proportion of sinking seed in the floating test, was low. Clone means ranged from 8.5 to 27.2, and individual ramet means ranged from \(7.5 \%\) to \(32.3 \%\) (Table 8). The clonal component of the total variance in the two seed properties was smaller than in the cone properties. For the number of seeds per cone it was \(31.2 \%\) for the percent filled seed it was \(23.1 \%\). The ramet
effects for those two traits accounted for \(18.2 \%\) and \(12.6 \%\) of the total variance respectively (Table 9).

The broad-sense heritability estimates (\(h^{2}\)) for cone volume, cone length, total number of seed per cone and percent filled seed per cone were. 37, .39, . 31 and .23 , respectively (Tables 7 to 9).

Table 3. Clone means and ranges in ramet means for total number of seeds per cone and percent filled seed per cone for nineteen black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Clone No.} & \multicolumn{2}{|l|}{Number of seed per cone} & \multicolumn{2}{|l|}{Percent of seed filled} \\
\hline & Clone Mean & Range in Ramet Means & \begin{tabular}{l}
Clone \\
Mean
\end{tabular} & Range in Ramet Means \\
\hline 283 & 62.1 & 57.4-65.2 & 14.0 & 12.3-16.3 \\
\hline 284 & 79.6 & 77.1-82.1 & 24.4 & 16.0-32.8 \\
\hline 283 & 61.5 & 58.1-64.9 & 19.3 & 11.4-28.2 \\
\hline 290 & 77.0 & 73.1-81.1 & 10.9 & 8.4-13.6 \\
\hline 291 & 84.2 & 81.5-87.1 & 12.7 & 3.3-15.3 \\
\hline 303 & 87.6 & 76.4-94.3 & 8.5 & 7.5-9.6 \\
\hline 304 & 65.4 & 55.1-70.7 & 26.4 & 23.7-28.2 \\
\hline 354 & 59.2 & 54.1-61.7 & 14.4 & 12.4-16.8 \\
\hline 355 & 70.0 & 64.1-74.9 & 14.6 & 13.9-15.6 \\
\hline 367 & 81.7 & 76.9-86.0 & 16.0 & 11.6-21.8 \\
\hline 369 & 90.1 & 87.1-93.7 & 10.1 & 8.4-12.5 \\
\hline 370 & 64.5 & 58.6-68.4 & 19.1 & 11.8-27.8 \\
\hline 383 & 63.2 & 49.7-71.4 & 23.7 & 17.6-31.5 \\
\hline 385 & 73.6 & 71.7-75.1 & 22.7 & 18.8-26.9 \\
\hline 387 & 69.9 & 65.5-74.0 & 27.2 & 20.4-31.3 \\
\hline 393 & 64.9 & 57.3-74.1 & 11.8 & 11.2-12.9 \\
\hline 491 & 53.3 & 40.0-60.2 & 27.2 & 18.9-31.5 \\
\hline 492 & 100.2 & 91.5-109.0 & 26.1 & 25.2-27.0 \\
\hline 493 & 48.7 & 43.1-51.3 & 16.1 & 9.3-23.4 \\
\hline Mean & 71.2 & & 18.2 & \\
\hline \[
n^{2}
\] & . 31 & & . 23 & \\
\hline
\end{tabular}

Table 9. Arialyses of variance and estimated components of variance for cone and seed characteristics for nineteen black spruce clones.

\section*{GERMINATION TEST}

The separation of filled seed from empty seed through alcohol floatation was effective. The cutting test at the end of the germination trial revealed that out of 1353 ungerminated seeds, 67 (or less than \(5 \%\)) were empty (Appendix C).

Germination percent, based on all filled seed, was
generally low. The overall mean for the whole test was \(67.8 \%\). Clonal means ranged from \(27.6 \%\) (Clone 304) to \(88.1 \%\) (clone 303). Germination percent of individual ramets ranged from \(3.4 \%\) (Ramet 3 of Clone 304) to \(94.4 \%\) (Ramet 1 of clone 393) (Table 11). Wide within-clone variation was observed in many clones, with Clone 304 having the largest within-clone range \(13.4 \%\) to 52. \(7 \%\)). Clone and ramet effects were highly significant, accounting for \(66.8 \%\) and \(18.2 \%\) of the total variation, respectively (Table 10). When germination percents were based on sound seed only, the overall mean was \(90.3 \%\) (Appendix C). An additional analysis of variance of germination percent based on sound seed only revealed that \(29: 3 \%\) and \(20.7 \%\) of the total variation were associated with clones and ramets within clones, respectively (Table 10). These estimates are both lower than those obtained for germination percent based on all filled seed.

Germination speed was evaluated by analyzing the number of days to reach \(90 \%\) of the firal germination in each replicate, \(0 n\) the average, \(90 \%\) of all germinable seeds germinated after 11 days (Table 11). Clone 367 germinated most rapidly (7.9 days to reach \(90 \%\)), and Clone 491 germinated slowest, reaching \(90 \%\) of the final germination after 15.3 days. Maximum ramet-within-clone variation was again observed in Clone 304, with ramet means ranging from 6.9 days to 15.7 days to reach \(90 \%\) of final germination. Differences due to clones in germination speed were significant (p<.05), accounting for 20.7\% of the total variation. Differences due to ramets within clones were highly significant, accounting for \(33.2 \%\) of the phenotypic \(\operatorname{variation~}\{T a b l e 10)\).

Broad-sense heritabilities for germination percent and germination energy were. 67 and 21 ; respectively (Table 11).

Table 10. Analyses of variance and estimated components of variance for germination percent and germination speed of seed from nineteen black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Response \\
Variable and Source of Variation
\end{tabular} & df & Mean Square & \begin{tabular}{l}
Variance \\
Component
\end{tabular} & Proportion of total Variation \\
\hline \multicolumn{5}{|l|}{Germination Percent} \\
\hline \multicolumn{5}{|l|}{(filled seed only)} \\
\hline clones & 18 & 1627.43 & 167.58 & 66.8\% \\
\hline Ramets/Clones & 36 & 174.47 & 45.58 & 18.2\% \\
\hline Replicates/Ramets & 110 & 37.74 & 37.74 & 15.0\% \\
\hline
\end{tabular}

Germination Percent
(sound seed only)
\begin{tabular}{lrrrr}
Clones & 13 & \(713.60^{* *}\) & 57.13 & \(29.3 \%\) \\
Ramets/Clones & 36 & \(218.29^{* *}\) & 40.32 & \(20.7 \%\) \\
Replicates/Ramets & 110 & 97.34 & 97.34 & \(50.0 \%\)
\end{tabular}

Germination Energy
\begin{tabular}{lrccc}
Clones & 18 & \(41.90^{*}\) & 2.67 & \(20.7 \%\) \\
Ramets/Clones & 36 & \(18.78^{* *}\) & 4.28 & \(33.2 \%\) \\
Replicates/Ramets & 110 & 5.93 & 5.93 & \(46.1 \%\)
\end{tabular}

\section*{*}
** Significant at the \(95 \%\) level of confidence
significant at the \(99 \%\) level of confidence
The germination test data, including the results of the cutting test, are outlined in Appendix \(C\).

\section*{PROGENY TEST}

The mean seed weight for all clones was 11.8 mg per ten seeds. Clone 291 produced the heaviest seeds with 15 mg per ten seeds, and the lightest seeds were harvested from clone 355 with 9.4 mg per ten seeds (Table 12). Clone and ramet-withinclone effects were highly significant, accounting for \(74.6 \%\) and \(17.9 \%\) of the total variance, respectively (Table 13).

Table 11. Clone means and ranges in ramet means of germination percent and germination speed of seed from nineteen black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Clone No.} & \multicolumn{2}{|r|}{Germination Percent} & \multicolumn{2}{|r|}{Germination Energy} \\
\hline & Clone Mean & Range in Ramet Means & Clone Mean & Range in Ramet Means \\
\hline 283 & 59.2 & 50.6-67.5 & 9.5 & 3.2-i1.9 \\
\hline 284 & 71.4 & 64.7-78.0 & 12.4 & ii.7-12.8 \\
\hline 298 & 79.8 & 74.0-35.4 & 10.0 & 8.8-10.8 \\
\hline 200 & 70.8 & フ0.7-74.0 & 9.9 & 8.8-11.0 \\
\hline 291 & 50.0 & 49.1-72.1 & 10.4 & 9.4-11.0 \\
\hline 303 & 88.1 & 79.9-93.0 & 10.6 & 6.9-15.7 \\
\hline 304 & 27.6 & 3.4-52.7 & 12.1 & 8.9-17.2 \\
\hline 354 & 37.2 & 28.0-51.1 & .14.6 & 9.8-17.3 \\
\hline 355 & 44.7 & 43.3-46.4 & 13.6 & 10.9-17.4 \\
\hline 367 & 42.2 & 32.7-49.5 & 7.9 & 7.0-8.9 \\
\hline 369 & 47.1 & 36.2-54.7 & 14.8 & 10.7-17.5 \\
\hline 370 & 86.6 & 83.3-92.0 & 9.1 & 7.6-11.4 \\
\hline 383 & 79.3 & 70.7-85.9 & 9.3 & 8.4-10.3 \\
\hline 385 & 89.8 & 83.5-93.3 & 10.4 & 9.8-11.6 \\
\hline 387 & 82.7 & 76.7-91.3 & 11.1 & 10.7-11.7 \\
\hline 393 & 86.7 & 76.1-94.4 & 9.2 & 8.6-9.7 \\
\hline 491 & 55.7 & 46.0-61.7 & 15.3 & 12.3-18.8 \\
\hline 492 & 85.7 & 80.7-90.7 & 8.5 & 7.5-9.5 \\
\hline 493 & 84.6 & 78.7-88.9 & 10.4 & 9.3-12.0 \\
\hline Mean & 67.8 & & 11.0 & \\
\hline & . 61 & & . 21 & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
based on filled seed only \\
days to reach \(90 \%\) of final germination
\end{tabular}} \\
\hline
\end{tabular}

Table 12. Mean weight of seeds from ramets of nineteen grafted black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Clone} & \multicolumn{3}{|l|}{Mean Weight of Ten Seeds (mg)} \\
\hline \multicolumn{5}{|l|}{No.} \\
\hline & Clone & Ramet 1 & Ramet 2 & Ramet 3 \\
\hline & Mean & & & \\
\hline 283 & 10.7 & 9.7 & 11.5 & 10.8 \\
\hline 284 & 10.0 & 9.8 & 10.2 & N/A \\
\hline 288 & 10.6 & 9.2 & 12.7 & 9.9 \\
\hline 290 & 9.7 & 10.0 & 9.6 & 9.4 \\
\hline 291 & 15.3 & 15.7 & 17.1 & 13.2 \\
\hline 303 & 10.3 & 10.1 & 10.0 & 10.7 \\
\hline 304 & 10.6 & 10.1 & 10.6 & 11.1 \\
\hline 354 & 11.4 & 11.2 & 11.7 & 11.4 \\
\hline 355 & 9.4 & 8.7 & 9.8 & 9.7 \\
\hline 367 & 12.5 & 12.6 & 12.5 & 12.3 \\
\hline 369 & 11.3 & 11.5 & 11.7 & 12.6 \\
\hline 370 & 13.9 & 13.9 & 14.0 & 13.7 \\
\hline 383 & 13.1 & 13.3 & 12.6 & 13.3 \\
\hline 385 & 13.2 & 12.0 & 13.8 & 13.7 \\
\hline 387 & 12.9 & 12.9 & 12.7 & 13.1 \\
\hline 393 & 11.3 & 11.6 & 11.7 & 10.5 \\
\hline 491 & 11.8 & 12.3 & 11.4 & 11.7 \\
\hline 492 & 14.6 & 14.9 & 14.4 & N/A \\
\hline 493 & 11.2 & 11.1 & 11.4 & 11.1 \\
\hline Mean & 11.8 & & & \\
\hline \(n^{2}\) & .75 & & & \\
\hline
\end{tabular}

Table 13. Analysis of variance and estimated components of variance for seed weight of nineteen black spruce clones.
\begin{tabular}{|c|c|c|c|c|}
\hline Source of & df & \begin{tabular}{l}
Mean \\
Square
\end{tabular} & Estimated Variance & Proportion of total \\
\hline Variation & & & Component & Variation \\
\hline Clones & 18 & \(74.69^{* *}\) & 2.50 & 74.6\% \\
\hline Ramets & 36 & \(5.90{ }^{* *}\) & . 60 & 17.9\% \\
\hline Error & 467 & . 25 & . 25 & 7.5\% \\
\hline Total & 521 & & & \\
\hline
\end{tabular}

The clonal means of progeny heights at the three measured ages are summarized in Table 14. After three moriths under the high fertilizer level, the family mean heights ranged from 8.5 cm to 10.5 cm . After four and five months, family means ranged from 17.3 cm to 20.9 cm and from 29.6 cm to 33.9 cm, respectively. The height difference between the smallest and largest family after five months was \(12 \%\).

At the low fertilizer level after three and four months, family means ranged from 7.5 cm to 8.0 응 an from 10.9 cm to 12.5 cm , respectively. After five in̄ithis, family mean heights ranged from 11.2 cm te 13.8 cm , a difference of \(19 \%\). Generzily; progeriy from clones yielding heavy seeds performen hetter after three months, (e.9., Clone 291, 367 and 492), but this effect on early growth disappeared after five months (Table 15). At three months, \(26 \%\) and \(41 \%\) of the total variation at the low and high fertilizer level, respectively, was associated with differences in seed weight. After five months of test establishment these values decreased to \(3 \%\) and \(1 \%\) in the low and high fertilizer regime, respectively \{Table 15).

Family variance in progeny height was significant (p<O.O1) at all three measurement dates (Table 16), but ramet effects were significant (p<0.01) only after three and four months of test establishment. Fertilizer effects continually increased in importance. The fertilizer-family interaction was not significant on any of the three measurement dates, although the relative importance of the term increased with time \(\{T a b l e\) 17).

Table 14. Mean heights of black spruce progeny growing under two levels of fertilizer.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Clone No.} & \multicolumn{6}{|c|}{Mean Seediing Height (cm)} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
3 Months \\
Fertilizer
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4 Months \\
Fertilizer
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5 Months Fertilizer}} \\
\hline & & & & & & \\
\hline & Low & High & Low & High & Low & High \\
\hline 283 & 8.1 & 8.9 & 12.3 & 19.6 & 13.8 & 32.6 \\
\hline 284 & 3.4 & 9.2 & 12.4 & 19.6 & 13.0 & 30.8 \\
\hline 288 & 7.8 & 9.1 & 11.7 & 19.5 & 12.8 & 31.7 \\
\hline 290 & 7.8 & 8.8 & 11.7 & 18.9 & 12.2 & 31.6 \\
\hline 291 & 8.8 & 10.5 & 12.5 & 20.9 & 13.1 & 33.4 \\
\hline 303 & 8.2 & 9.0 & 12.3 & 20.1 & 13.4 & 33.3 \\
\hline 304 & 7.5 & 8.5 & 11.0 & 17.8 & 12.0 & 30.3 \\
\hline 354 & 8.1 & 9.4 & 12.1 & 20.3 & 13.0 & 33.9 \\
\hline 355 & 7.8 & 9.0 & 11.4 & 19.6 & 11.8 & 32.8 \\
\hline 367 & 8.8 & 9.8 & 11.7 & 20.6 & 11.9 & 31.6 \\
\hline 369 & 7.5 & 8.7 & 10.7 & 18.9 & 11.7 & 31.2 \\
\hline 370 & 7.9 & 9.5 & 11.6 & 19.7 & 13.2 & 33.1 \\
\hline 383 & 8.3 & 9.3 & 11.6 & 19.5 & 11.9 & 31.8 \\
\hline 385 & 8.4 & 9.4 & 12.1 & 20.5 & 12.4 & 33.6 \\
\hline 387 & 8.2 & 9.1 & 11.0 & 18.2 & 11.2 & 29.6 \\
\hline 393 & 7.8 & 8.9 & 11.8 & 18.3 & 12.3 & 30.4 \\
\hline 491 & 8.3 & 9.3 & 12.4 & 19.2 & 13.7 & 31.6 \\
\hline 492 & 8.7 & 9.5 & 12.5 & 19.4 & 13.3 & 32.9 \\
\hline 493 & 7.5 & 8.8 & 11.2 & 19.7 & 11.9 & 32.5 \\
\hline
\end{tabular}

Table 15. Linear correlation for seed weight of individual black spruce ramets and progeny heights at three ages.
\begin{tabular}{|c|c|c|c|}
\hline Progeny Аяе & Fertilizer Level & Correlation Coefficient (\(r\)) & Coefficient Determination (\(r^{2}\)) \\
\hline 3 Month & Low & . 51 & . 26 \\
\hline & High & . 64 & .41 \\
\hline 4 Month & Low & . 26 & .07 \\
\hline & High & . 27 & . 07 \\
\hline 5 Month & Low & . 18 & .03 \\
\hline & High & .09 & .01 \\
\hline
\end{tabular}

Table 16. Aralyses of variance for heights of progeny from three ramets of nineteen black spruce clones.

Table 17. Summary of pertinent variance components obtained
from three analyses of variance for height shown in Table 16.

\section*{Source}

Variance Components
З Months

Family

Family \(x \quad .0\) .01
.08 .47

\section*{Fertilizer}
Ramet .08 .14 . 10

Ramet
\(x\)
0
0
0

Fertilizer

The raw data for the progeny test are summarized in Appendix \(H\).

The results of this study demonstrate that between \(23 \%\) and \(39 \%\) of the total variation in seed and cone properties are associated with clones. The ramet-within-clone component in these traits ranged from \(13 \%\) to \(19 \%\) of the phenotypic variance. Germination percents based on filled seed, was under substantially greater genetic control as \(67 \%\) of the total variance was associated with clones. For germination speed 21\% of the total variance was due to clones. The ramet effects in both germination parameters were highly significant, accounting for \(18 \%\) and \(33 \%\) of the total variance in germination percent and germination speed, respectively. In the progery test, highly significant family differences in progeny heights were observed at all three ages. The ramet effects were highly significant at the beginning of the test, but did not have a lasting influence on progeny performance. Family-fertilizer interactions were not detected, although the variance component for this source of variation increased substantially towards the end of the test period.

It is probably safe to assume that the variance associated with clones in the individual tests of this study is an estimate of the genotypic variance, as "C-effects" associated with the original ortets probably have vanished.

The genetic control over the measured cone and seed properties is moderate and may vary from year to year. In a similar study using some of the same clones, Verheggen and Farmer's (1983) clonal components of the total variation were all smaller and ranged from \(20 \%\) to \(26 \%\). One explanation for these differences may be the fact that they used a much smaller sample size. Another reason for the differences in the two
studies could be the natural yearly fluctuations in reproductive features, such as those already observed by Schmidtling (1983) in loblolly pine. Generally, it is evident that the degree of genetic determination in cone and seed characteristics in this population of black'spruce clones is lower than in loblolly pine and Monterey pine Schmidtling 1983, Burdon and Low 1973a, Griffin 1982).

Another estimation of a genetic variance in a cone characteristic was obtained by Kahlil (1975) in a provenance study of black spruce in Newfoundland. He showed that \(46 \%\) of the total variation in cone length was associated with "trees within provenance: His trees within provenance are probably comparable to clones used in this study, where genetic variance was \(39 \%\) of the total variation in cone length. Other genetic variance estimates for cone and seed properties of black spruce have not been published. However, some results of my cone analysis can be compared with data from other studies. For example, the average number of seed per cone in this study (11) is in close agreement with o'Reilly et al.'s (1982) estimate of 38.5 ovuliferous scales per cone, potentially resulting in 77 seeds per cone on the average. McPherson et al. (1932) found that the mean number of filled seed per cone from a grafted clonal black spruce seed orchard was 11; a figure slightly lower than the 13 observed in this study.

The ramet-within-clone variation, highly significant in all four tests of the cone analysis; is probably caused by a combination of micro-site differnces in the orchard and variable rootstock effects. Differences in the pollen cloud unlikely would affect traits such as cone volume or cone length, although the number of seeds and the percent filled seed could be influenced by the abundarice and source of pollen
during the receptive period of the female strobili.
The relatively low germination percent compared to other published reports needs to be explained. Germination tests are usually conducted with seedlots containing both filled and unfilled seed. At the end of these tests, ungerminated seeds are classified as 1) filled and sound, 2) filled but decayed and 3) empty. Total germiriation is then calculated based on all filled sound seed. Thus, germination percent is usually fairly high in black spruce (around \(95 \%\)) (McPherson et al. 1982, Farmer et al. 1983, Verheggen and Farmer 1983). In this germination trials germination percents were calculated in two ways: 1) Based on all filled seeds (including the decayed) and 2) based on sound seed only. The results of the two evaluation methods vary greatly, being \(68 \%\) and \(90 \%\) for the first and second method respectively (Table 6, Appendix C). It is important to point out, that out of 100 filled seed one would not get 90 germinants, but a number that is substantially lower, as some (low-vigour) seeds will decay during the test.

A substantial difference in the genetic component of the total variation is evident for the two evaluations. When the calculated germination percent was based on all filled seeds, \(67 \%\) of the total variance was associated with clones. In contrast, when the germination percent was based on sound seed only, \(29 \%\) of the total variation were due to clones. Therefore, clonal variation in germination percent based on all filled seed, includes clonal differences in the ability of sound seed to germinate completely within three weeks and clonal variation in the portion of filled but unsound seed. Clonal differences in the number of decayed seed may also be related to clonal variation in germination speed and genotype
differences in the number of recessive lethal genes, whose effects are apparent after self-pollination.

Further indications of clonal variation in germination vigour are the significant differences among clones in germination speed. Schell (1960) and Barnett (1972) found that germination speed is mainly a function of seed coat thickness, a maternal characteristic. Thus, the wide ramet-within-clone variation in germination speed is probably due to maternal effects, although genetic differences due to variance in pollen parents cannot be excluded.

The fact that germination percent is under higher genetic control than germination speed in black spruce has been reported by Morgenstern (1969). He showed that the "family within subpopulation" component accounted for \(51 \%\) and \(23 \%\) of the total variation in germination percent and germination speed, respectively.

In summary, clonal differences in germination percent and germination speed may be the result of genetic variation in pre-germination requirement to break dormancy and variation in the respond to germination conditions. The highly significant ramet-within-clone effects in both germination properties suggest that ervironmental factors play an important role in influencing the germination pattern of seeds. However; differnces in male parenthood may also increase clone and ramet effects in germination characteristics.

The results of the progeny test indicate that much of the height differences among the progeny of genetically identical mother trees are probably caused by differences in seed weight. When the mean seedling performance was significantly correlated with mean seed weight lafter three and four months), highly significant ramet effects were observed.

After five months, seed weight influences and ramet effects disappeared. This lack of correlation between seedling height at five months and seed weight indicates that within-clone variation in this case may have been caused by rutritional maternal effects, which lasted only a short time. family differences were highly sighificant in all three tests, although after five months mean family heights in the high and low fertilizer regime rariged only from 30 cm to 34 cm ard from 11 cm to 14 cm , respectively. It is possible that family differences will increase in importance when forces that are under strong genetic control, such as growth cessation and flushing timeg start to operate on height growth. If one looks at the family differences in the low and high fertilizer regime separatelys such a possible ircrease in family variation is evident. In the low fertilizer blocks, some seedlings of some families stopped growing and set a terminal bud before the five-month data were collected. The height differences between the smallest and largest families were \(19 \%\), whereas in the high fertilizer blocks, where all seedlings were actively growing, the difference between seedlirigs of the smallest and largest family were only \(12 \%\). It is also possible, that fertilizerfamily interaction will become more important as the end of the growing season approaches. The variance comporient of this interaction increased substantially in the five-month test (Table 17), but was still not statistically significant (Table 16).

It is noteworthy to point out the implications of the combined results of the cone analysis and germination test. First, out of the average of 71 seed per cone, only 8.8 germinants were observed on the average, a number rather low for seed that was collected in an area especially set up for
the production of quality seed. In a tree nursery, the number of germinants probably would have been even lower due to more unfavourable conditions during the germination process. Secondlys if the seed of this orchard were bulked and used on an operational basis for forest regeneration, some mother trees would contribute very few seedlings to the crop. This potential reduction of the genetic base is a combination of wide clonal variation in percent filled seeds germination percent; germination speed and culling practices in the nursery. If O'Reilly et al.'s (19S2) hypothesis that only two out of twelve clones contribute over \(50 \%\) of the male gametes is correct, the problem of a reduction of the gerietic base is even more serious. One way to prevent this reduction is to rogue the orchard of clones with low germination percent and low filled seed content and to replace them with clones that have seed with more desirable germination properties. Griffin (1972) even suggested eliminating clones that produce small seeds, since their seediings remain small and will be culled in the rursery. Seed weight seems to be under high enough genetic control (broad-sense heritability, .75) in black spruce to make selection for this trait effective.

Yearly fluctuations in numbers of male and female strobili per ramet, conelet survival and seed yield per cone have been observed in other conifers (e. G., Eriksson et al. 1973, Schmidtling 1983). Therefore, the results of this study may not be representative for other years. Also, as ortets growing only in northern Ontario were used to establish the Matawin seed orchard and as the genotypes used in this study are only growing in a single orchard, these results may not apply to the black spruce population as a whole.

To better identify the precise nature of the wide
```

within-clone variation observed throughout this study, diallel
crosses should be conducted to separate the true environmental
effects from possible variance in male parenthood.

```

CONCLUSION
In summary, it can be concluded that:
1. Wide clanal differences in cone volume, number of seed per cone and percent of filled seed are under moderate genetic cantral.
2. Ramets within clones accounted for 13 to 19 percent of the phenotypic variance in corie and seed properties.
3. Germination percent (based on all filled seed) and germination energy varied widely among clones.
4. Ramet effects accounted for significant variance in these germination characteristics.
5. Family variance in seedling height increased during the fivemonth period after test establishment.
6. Variance due to ramets within families decreased to a nonsignificant level during the five-month period after test establishment.

Ahlgren, C. E. 1972. Some effects of inter- and intraspecific grafting on growth and flowering of some five-needled pines. Silvae Genet. 21:122-126.

Anderson, \(V . L\). and R. A. Mclean. 1974. Design of experiments. A realistic approach. Marcel Dekker, Inc. New York. 418 pp.
Barnett, J. P. 1972. Seedcoat influences dormancy of loblolly pine seeds. Can. J. For. Res. 2:7-10.

Baskin, J. M. and C. C. Baskin. 1973. Flant population differences in dormancy and germination characteristics of seeds: Heredity or environment. Amer. Midland Naturalist 90:493-498.

Bell; H. E.; R. F. Stettler and R. W. Stonecypher. 1979. Family \(x\) fertilizer interaction in one-year old Douglas-fir. Silvae Genet. 28(1):1-5.

Bjornstad, A. 1981. Photoperiodical after-effects of parent plant enviromment in Norway spruce i Piceea abies (L.) Karst.) seedlings. Medd. Nor. Inst. Skogforsk. 36(6):1-30.

Bramlett, D. L.: E. W. Belcher Jr., G. L. DeBarr, G. D. Hertel, R. P. Karrfalt, C. W. Lantz; T. Miller, K. D. Ware and H. O. Yates III. 1976. Cone analysis of southern pines. A guidebook. USDA For. Serv. Gener. Tech. Rep. SE-13. 28 pp.

Bramlett, D. L.; T. R. Dell and W. D. Pepper. 1983. Genetic and maternal influences on Virginia pine seed germination. Silvae Genet. 32(1-2):1-4.

Burdon, R. D. 1971. Clonal repeatability and site-clone interactions in Pinus radiata . Silvae Genet. 20:33-39.

Burdon, R. D. and C. B. Low. 1973a. Effects of site on expression of cone characters in radiata pine. N. \(Z\). J. For. Sci. 3(1):110-119.

Burdons R. D. and C. B. Low. 1973b. Seed production in radiata pine clones for four different sites. N. Z. J. For. Sci. 3(2):211-219.

Correns, \(C .1909\). Vererbungsversuche mit blass (gelb) gruerien und buntblaettrigen Sippen bei Mirabilis ialaga, Utrica pilulifera und Lunaria annuag. \(Z\). Vererbungslefire 1:291-329.

Dadswell, H. E., J. M. Fielding, J. W. P. Nicholls and A. G. Brown. 1961. Tree to tree variation arid gross heritability of wood characteristics of Pinus radi르ta . Tappi 44:174-179.

Darlington; \(C, D\), and K. Mather. 1949. The elements of genetics. Allen and Unwin, London, England.

Durrant, A. 1958. Environmental conditioning in flax. Nature 181:928-929.

Duvick, D. N. 1965. Cytoplasmic pollen sterility in corn. Advan. Genet. 13:1-56.

Einspahr, D. W., R. E. Goddard and H. S. Gardner. 1964. Slash Pine, wood and fiber property study. Silvae Genet. 13(4):103-103.

Erikssong G:, A. Jonsson and D. Lindgren. 1973. Flowering in a clone trial of Pi드트 abies . Karst. Studia Forestalia Suecica. No. 110, 45 pp.

Falconer; D. S. 1931. Introduction to quantitative genetics. 2nd ed. Longman Group Ltd.s New York. 340 pp.

Farmer, R. E. Jr.; P. Charette, I. E. Searle, and D. P. Tarjan. 1984. Interaction of light, temperature, and chilling in the germination of black spruce. Can. J. For. Res. 14:131-133.

Flemion, F. 1934: Dwarf seedlings from non-after ripened embryos of peach, apple, and hawthorne. Contribs. Boyce Thomson Inst. 6:205-209. (cited in Rowe 1964)

Grant, V. 1975. Genetics of flowering plants. Columbia Univ. Press. N. Y. 514 pp.

Greathouse, T. E. 1966. Inheritance of germinative energy and germinative capacity in Douglas-fir. Joint Proc. 2nd Genetics Workshop of the SAF and ti? フth Lake States For. Tree Impr. Conf., Oct. 21-23, 1965. USDA For. Serv. Res. Pap. NC-1:60-62.

Gregory, L. E. 1956. Some factors for tuberization in ine pot to plant. Amer. J. Bot. 43:281-283.

Griffin, A. R. 1972. The Effects of seed size, germination time, and sewing density on seedling development in rauiāta pine. Aust. For. Res. 5: 25-28.

Griffin, A. R. 1982. Clonal variation in radiata pine seed orchards. I. Some flowering, cone and seed production traits. Aust. For. Res. 12:295-302.

Grun, P. 1976. Cytoplasmic genetics and evolution. Columbia Univ. Press, N. Y. 435 pp.

Highkin, H. R. 1958. Transmission of phenotypic variability withir a pure line. Nature 182:1460.

Hill; J. 1965. Environmental induction of heritable changes in Ni드느크를 rustica . Nature 207:732-754.

Hills J. 1967. The envirornental induction of heritable changes in Nicotiana russtica parental and selection 1ines. Genetics 55:735-754.

Hills; G. A. 1960. Regional site research. For. Chron. 36:401-423.

Jahromi, S. T., R. E. Goddard and W. H. Smith. 1976. Genatyp= x fertilizer interactions in slash pine: grouth and nutrient relations. For. Sci. 22:211-2:\%.

Jinks, J. L. 1964. Extrachromosomal irheriterá. Prenti』eーhailg Englewood Heights: N. J. 177 pr :

Johnstone. R. C. B. 197; Ar Eprrgent ta selection for second phase clonal seed orchards. IUFRO Working Party 52.03.5 Warsaw; Poland.

Kahlil: M. A. K. 1975. Genetic variation in black spruce (Pi틀 mariana (Mill.) B.S.P.) in Newfoundiand. Silvae Genet. 24(4):88-96.

Kidd, F. and C. West. 1919. Physiological pre-determination: The influerice of the physiological condition of the seed upon the course of subsequent growth and upon the yield. II. Review of Literature. Ch. 1. Ann. Appl. Biol. 5:112-142.

Knapp, R. 1957. Ueber den Einfluss der Temperatur waehrend der Keimung auf die spaetere Entwicklung eiriger annueller Pflanzenarten. Zeit. Naturforsch. 12b:564-563.

Koller, D. 1962. Preconditioning of germination in letture at time of fruit ripening. Amer. J. Bat. 49:841-844.

Nanseit, A. 1965. The value of early tests. I. International Pi드르 abies provenance trial 1938. For. Abstr. 27(4):650-675.

Nelson, J. R., G. A. Harris, and C. J. Goebel. 1970. Genetic vs. environmentally induced variation in medusahead (Iaeniatherum a三seerum (Simonkai) Nevski.). Ecol. 51:526-529.

Nienstaedt, H. 1974. Genetic variation in some physiological characteristics of forest trees. Pp. 389-400 In: Phenology and seasonality modeling. Springer Verlag, N. Y.

O'Reilly, C. and W. H. Parker. 1982. Vegetative phenology in a clonal seed orchard of Pi들 glauca and Piceㅡㄹ marizana in northwestern Ontario. Can. J. For. Res. 12(2):408-413.

O'Reilly, C., W. H. Parker and J. E. Barker. 1982. Effect of pollination period and strobili number on random mating in a clonal seed orchard of Piceag mariana Silvae Genet. \(31(2-3): 90-94\).

Panshing A. J. and \(C\). De Zeuw. 1980. Textbook of wood technology. McGraw-Hill Book Comp. New York. 722 pp.

Perrys T. 0. 1976. Maternal effects on the early performance of tree progenies. Pp. \(473-481\) in Cannell, M. G. R. and F. T. Last, eds. Tree Physiolagy and Yield Improvements. Acad. Press, Londori.

Peters, W. J. 1971. Variation in oleoresin yielding potential of selected slash pines. For. Sci. 17:306-307.

Rauter, R. M. 1977. The genetic improvement program of spruce and larch for Ontarios 1975-1976. In: Proc. 16th CTIA meet. Winnipeg, June 27-30, 1977.

Righter, F. I. 1965. Pinus : The relationship of seed size and seedling size to inherent vigor. J. For. 43:131-137.

Roberds; J. H., G. Namkoong, and C. B. Davey. 1976. Family variation in growth response of loblolly pine to fertilizing with urea. For. Sci. 22:291-298.

Rowe, J. S. 1964. Environmental preconditionings with special reference to forestry. Ecol. 45(2):399-403.

Safford, L. 0. 1974. Piceea A. Dietr. Spruce. Pg. 587-597 In Seed of Woody Plants in the United States. USDA For. Serv. Agri. Handbook No. 450.

Sager; R. 1972. Cytoplasmic genes and oraganelles. Acad. Press. N. Y. 405 pp.

Sax, K. 1953. Experimental control of tree growth and reproduction. Pp. 601-610 in Thiman, K. V. ed. The Physiolagy of Forest Trees. Ronald Press, N. Y.

Schell, G. 1960. Keimschnelligkeit als Erbeigenschaft. Silvae Geriet. 9(1):48-53.

Schmidtling, R. C. 1973. Rootstock influences early fruitfulness, growth, and survival in loblolly pine grafts. Pp. 86-90. In: Proc. 12th South. For. Tree Impr. Conf. Baton Rouge, Louisiana.

Schmidtling, R. C. 1983. Genetic variation in fruitfulness in a loblolly pine (Pinus tageda L.) seed orchard. Silvae Genet. 32(3-4):76-80.

Shear, T. H. and T. O. Perry. 1982. Variation in seed properties among clones and among ramets of the same clone in the same and different seed orchards. Pp. 267-271. In Proc. 7th North American Furest Biology Worksiop. July 26-23, 1902. Lexington, Kenntucky.

Shelbourne; C. J. A. and I. J. Thulin. 1974. Early results from a clonal selection and test programme with radiata pine. N. Z. J. For. Sci. 4(2):387-398.

Snedecor, G. W. and W. G. Cochran. 1967. Statistical methods. Gthed. Iowa State Univ. Press, Ames, Iowa. 593 pp.

Sokal; R. R. and F. J. Rohlf. 1981. Biometry. 2nd ed. W. H. Freeman and Comp. New York. 859 pp.

Squillace, A. E. 1971. Inheritance of monoterpene composition in cortical oleoresin of slash pine. For. Sci. 17:381-367.

Stearns; F. 19ड0. Effects of seed environment during seed maturation on seedling growth. Ecal. 41:221-222.

Steel, R. G. D. and J. H. Torrie. 1980. Principals and procedures of statistics. A biometrical approach. McGraw-Hill Book Comp. New York. 633 pp.

Stern, K. 1959. Der Inzuchtgrad in den Nachkommenschaften von Samenplantagen. Silvae Genet, 8:37-42.

Van Buijtener, J. P. 1962. Heritability estimates of wood density in loblolly pine. Tappi 45: 602-605.

Varnell, R. J., A. E. Squillace, and G. W. Bengston. 1967. Variation and heritability of fruitfulness in slash pine. Silvae Geret. 16:125-128.

APPENDICES
\begin{tabular}{|c|c|c|c|}
\hline Clone & Ramet Location \({ }^{2}\) & Block & Ortet Origin \\
\hline 283 & R1- T1 & 1967 A & Kimberly-Clark Camp 35 \\
\hline 283 & R7-T2 & 1967 A & Geraldton District \\
\hline 283 & R11-T4 & 1967 A & \\
\hline 284 & R4 - T6 & 1967 A & Kimberly-Clark Camp 35 \\
\hline 284 & RB-T2 & 1976 A & Geraldton District \\
\hline 288 & R5-T12 & 1966 B & Black Sturgeon Lake \\
\hline 288 & R7 - T9 & 1966 A & Thunder Bay District \\
\hline 288 & R10- T7 & 1966 B & \\
\hline 290 & R4-T1 & 1966 A & Black Sturgeon Lake \\
\hline 290 & R4 - T6 & 1966 A & Thunder Bay District \\
\hline 290 & R11-T7 & 1966 A & \\
\hline 291 & R9 - T6 & 1967 B & Black Sturgeon Lake \\
\hline 291 & R10- T3 & 1968 D & Thunder Eay District \\
\hline 291 & R11-T1 & 1967 A & \\
\hline 303 & R10- T12 & 1966 - & Aujixibi-Price \\
\hline 303 & R1:- TS & 1966 B & Freehold Black 3 \\
\hline 303 & R12- T5 & 1967 B & Thunder Bay District \\
\hline 304 & R4-T2 & 1966 B & Abitibi-Price \\
\hline 304 & R12- T1 & 1966 B & Freehold Block 3 \\
\hline 304 & R12- T6 & 1966 B & Thunder Bay District \\
\hline 354 & R2-T8 & 1968 A & Kimberly-Ciark Camp 57 \\
\hline 354 & R7-T7 & 1968 D & Geraldton District \\
\hline 354 & R12. T6 & 1968 D & \\
\hline 355 & R2 - T9 & 1968 A & Kimberly-clark Camp 57 \\
\hline 355 & R3 - Ti1 & 1968 A & Geraldton District \\
\hline 355 & R7-T7 & 1968 A & \\
\hline 367 & R1 - TS & 1968 A & Kimberly-Clark \\
\hline 367 & R4 - T9 & 1968 A & McKay Road Area \\
\hline 367 & R6 - TS & 1968 A & Geraldton District \\
\hline 369 & R6-T11 & 1966 B & St. Lawrence Corp. Co. \\
\hline 369 & R10- T4 & 1966 B & Camp 95 Area \\
\hline 369 & R11-T1 & 1966 B & Geraldton District \\
\hline 370 & R5-T1 & 1966 B & St. Lawrence Corp. Co. \\
\hline 370 & R12- T5 & 1966 B & Camp 95 Area \\
\hline 370 & R12- T8 & 1966 B & Geraldton District \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Clone & Ramet Location & B100 & & Ortet Origin \\
\hline 383 & R4 - T3 & 1966 & A & Kimberly-Clark \\
\hline 383 & R9 - T3 & 1966 & A & Club Lake Road Area \\
\hline 383 & R9 - T7 & 1966 & A & Geraldton District \\
\hline 385 & R2-T2 & 1966 & B & Kimber 1 y-clark \\
\hline 385 & RS - TS & 1966 & B & Clut Lake Road Area \\
\hline 385 & R11-T2 & 1966 & B & Geraldton District \\
\hline 387 & R7-T6 & 1966 & A & Kimber 1 y-Clark \\
\hline 387 & R8 - T3 & 1966 & \(A\) & Club Lake Road Area \\
\hline 387 & R9 - T1 & 1966 & A & Geraldton District \\
\hline 393 & R6-T10 & 1966 & \(A\) & Kimberly-Clark Camp 35 \\
\hline 393 & R10- T6 & 1966 & \(A\) & Geraldton District \\
\hline 393 & R11- T6 & 1966 & A & \\
\hline 491 & R6-T10 & 1967 & B & Leonard Lake Area \\
\hline 491 & R7-T12 & 1967 & A & Geraldton District \\
\hline 491 & R10- TG & 1967 & A & \\
\hline 492 & R7-T6 & 1967 & A & Leonard Lake Area \\
\hline 492 & R12- T7 & 1967 & A & Geraldton District \\
\hline 493 & R3 - T9 & 1967 & B & Beardmore Area \\
\hline 493 & R5-T5 & 1967 & A & Nipigon District \\
\hline 493 & R11- T6 & 1967 & A & \\
\hline
\end{tabular}

\section*{APPENDIX B}

In the table below, the genotypes at five enzyme loci are listed for the ramets used in this study. Identical numbers, (e. 9 . 11,22) indicate a homozygote at that locus, as alleles are expressed in bands moving at same speed during electrophoresis. Variable numbers, (e.g., 13, 23), indicate heterazygote with the two alleles being expressed as bands travelling at different speeds. Ramets within clones must have the same genotypes at all laci analyzed to be considered genetically identical.
```

SIMMMARY OF RESULTS OF ISOENZYME ANALYSIS
CONDIJCTED TO VERIFY PROPER IDENTIFICATION
OF RAMETS USED IN THIS STUDY

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|r|}{Enzyme Systems Arialyzed} \\
\hline Ramet Number & PGI & PGM & SKDH & AAT & G2D \\
\hline 283-R1-T1 & 12 & & 12 & 11 & 23 \\
\hline -R7-T2 & 12 & & 12 & 11 & 23 \\
\hline -R11-T4 & 12 & & 12 & 11 & 23 \\
\hline 284-R4-T1* & 11 & 12 & 11 & 11 & 33 \\
\hline -R4-T6 & 12 & & 22 & 11 & 33 \\
\hline -R8-T2 & 12 & & 22 & 11 & 33 \\
\hline 288-R5-T12 & 12 & 11 & 12 & 11 & 33 \\
\hline -Rフ-T9 & 12 & 11 & 12 & 11 & 33 \\
\hline -R10-T7 & 12 & 11 & 12 & 11 & 33 \\
\hline 290-R4-T1 & 11 & 33 & & 11 & 33 \\
\hline -R4-T6 & 11 & 33 & & 11 & 33 \\
\hline -R11-T7 & 11 & 33 & 12 & 11 & 33 \\
\hline 291-R9-T6 & 12 & 13 & 12 & 11 & 33 \\
\hline -R10-T3 & 12 & 13 & 12 & 11 & 33 \\
\hline -R11-T1 & 12 & 13 & 12 & 11 & 33 \\
\hline 303-R10-T12 & 11 & & 22 & 11 & 33 \\
\hline -R11-T5 & 11 & 22 & 22 & 11 & 33 \\
\hline -R12-T5 & 11 & & 22 & 11 & 33 \\
\hline 304-R4-T2 & 11 & & 22 & 12 & 33 \\
\hline -R12-T1 & 11 & & 22 & 12 & 33 \\
\hline -R12-T6 & 11 & & 22 & 12 & 33 \\
\hline 354-R2-T8 & 11 & 23 & 12 & 11 & 33 \\
\hline -R7-T7 & 11 & 23 & 12 & 11 & \\
\hline -R12-T6 & 11 & & 12 & 11 & 33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ramet Number & PGI & PGM & SKDH & AAT & G2D \\
\hline 355-R2-T9 & 11 & & 22 & 11 & 22 \\
\hline -R3-T11 & 11 & & 22 & 11 & 22 \\
\hline -R7-T7 & 11 & & 22 & 11 & 22 \\
\hline 367-R1-T8 & 11 & & 22 & 11 & 13 \\
\hline -R4-T9 & 11 & & 22 & 11 & 13 \\
\hline -R6-T8 & 11 & & 22 & 11 & 13 \\
\hline 369-R6-T11 & 11 & & 12 & 11 & 33 \\
\hline -R10-T4 & 11 & & 12 & 11 & 33 \\
\hline -R12-T8 & 11 & & 12 & 11 & 33 \\
\hline 370-R5-T1 & 01 & 23 & 12 & 11 & 33 \\
\hline -R12-T5 & 01 & & 12 & 11 & 33 \\
\hline -R12-T8 & 01 & 23 & 12 & 11 & 33 \\
\hline 383-R4-T3 & 01 & 13 & 22 & 11 & 33 \\
\hline -R9-T3 & 01 & 13 & 22 & 11 & 33 \\
\hline -R9-T7 & 01 & 13 & 22 & 11 & 33 \\
\hline 385-R2-T2 & 11 & 11 & & 11 & 33 \\
\hline -R8-T5 & 11 & 11 & 11 & 11 & 33 \\
\hline -R11-T2 & 11 & 11 & 11 & 11 & 33 \\
\hline 387-R7-T6 & 11 & 11 & 11 & 11 & 33 \\
\hline -RS-T3 & 11 & 11 & 11 & 11 & 33 \\
\hline -R9-T1 & 11 & 11 & 11 & 11 & 33 \\
\hline 393-R6-T9 & 11 & 11 & & 11 & 33 \\
\hline -R10-T8 & 11 & 11 & & 11 & 33 \\
\hline -R11-T6 & 11 & 11 & & 11 & 33 \\
\hline 491-R6-T10 & 12 & 13 & 22 & 11 & 33 \\
\hline -R7-T12 & 12 & 13 & 22 & 11 & 33 \\
\hline -R10-T6 & 12 & 13 & 22 & 11 & 33 \\
\hline 492-R7-T6 & 11 & 22 & 11 & 12 & 33 \\
\hline -R12-T4* & 11 & 12 & 12 & 11 & 33 \\
\hline -R12-T7 & 11 & 22 & 11 & 12 & 33 \\
\hline 493-R3-T9 & 11 & 11 & 12 & 01 & 33 \\
\hline -R5-T5 & 11 & 11 & 12 & 01 & \\
\hline -R11-T6 & 11 & 11 & 12 & 01 & 33 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
1PGI=Phosphoglucose Isomerase, \\
PGM=Phosphoglucomutase, SKDH=Shikimic Acid \\
Dehydrogenase, \(A A T=A s p a r t a t e\) Aminotransferase, \\
G2D=G1ycerate-2-Dehydrogenase \\
* Ramets that were excluded from this study, as some of their genotypes did not correspond to genotypes of other two ramets of the same clone.
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{GERMINATION TEST DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Raset & Replicate & Seed in Sample & Seed Gersinated & - Seed Cut & \[
\begin{aligned}
& \text { Sound } \\
& \text { Seed }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Decay- } \\
& \text { ed } \\
& \text { Seed }
\end{aligned}
\] & Enpty Seed & Germination: based an all filled Seed & Gernination \(:\) based on sound Seed only & \begin{tabular}{l}
Days to 5 \\
908 of \(f i\) \\
Gerninati
\end{tabular} \\
\hline \multirow[t]{3}{*}{283-1} & 1 & 25 & 10 & 10 & 0 & 9 & 1 & 42.6 & 100 & 7 \\
\hline & 2 & 25 & 11 & 10 & 0 & 10 & 0 & 44 & 100 & 6.8 \\
\hline & 3 & 35 & 15 & 10 & 3 & 5 & 2 & 65.2 & 83.3 & 11.8 \\
\hline \multirow[t]{3}{*}{283-2} & 1 & 30 & 18 & 10 & 0 & 9 & 1 & 62.5 & 100 & 9.6 \\
\hline & 2 & 30 & 24 & 6 & 2 & 4 & 0 & 80 & 92.3 & 12.8 \\
\hline & 3 & 30 & 18 & 10 & 0 & 10 & 0 & 60 & 100 & 13.2 \\
\hline \multirow[t]{3}{*}{283-3} & 1 & 25 & 16 & 9 & 0 & 9 & 0 & 64 & 100 & 8.5 \\
\hline & 2 & 25 & 15 & 10 & 1 & 8 & 1 & 62.5 & 93.8 & 6.5 \\
\hline & 3 & 25 & 13 & 10 & 0 & 10 & 0 & 52 & 100 & 9.7 \\
\hline \multirow[t]{3}{*}{284-1} & 1 & 45 & 28 & 10 & 1 & 9 & 0 & 62.2 & 94.2 & 14.2 \\
\hline & 2 & 45 & 34 & 6 & 0 & 6 & 0 & 75.6 & 100 & 9.2 \\
\hline & 3 & 40 & 19 & 10 & 2 & 5 & 3 & 56.4 & 81.9 & 12.2 \\
\hline \multirow[t]{3}{*}{284-2} & 1 & 50 & 41 & 9 & 5 & 4 & 0 & 82 & 89.1 & 13.3 \\
\hline & 2 & 50 & 36 & 10 & 2 & 8 & 0 & 72 & 92.8 & 12.2 \\
\hline & 3 & 50 & 40 & 10 & 8 & 2 & 0 & 80 & 83.3 & 13 \\
\hline \multirow[t]{3}{*}{288-1} & 1 & 20 & 15 & 5 & 0 & 5 & 0 & 75 & 100 & 8.5 \\
\hline & 2 & 20 & 16 & 4 & 0 & 4 & 0 & 80 & 100 & 9.4 \\
\hline & 3 & 20 & 14 & 6 & 1 & 2 & 3 & 82.4 & 93.3 & 8.6 \\
\hline \multirow[t]{3}{*}{288-2} & 1 & 50 & 42 & 8 & 3 & 5 & 0 & 84 & 93.3 & 10.3 \\
\hline & 2 & 50 & 35 & 10 & 0 & 10 & 0 & 70 & 100 & 10.5 \\
\hline & 3 & 50 & 34 & 10 & 2 & 8 & 0 & 68 & 91.4 & 11.6 \\
\hline \multirow[t]{3}{*}{288-3} & 1 & 40 & 32 & 8 & 2 & - & 0 & 80 & 91.4 & 10.8 \\
\hline & 2 & 40 & 34 & 6 & 0 & 6 & 0 & 85 & 100 & 8.6 \\
\hline & 3 & 35 & 32 & 3 & 1 & 1 & 1 & 94.1 & 97 & 11.8 \\
\hline \multirow[t]{3}{*}{290-1} & 1 & 20 & 20 & 0 & 0 & 0 & 0 & 100 & 100 & 9 \\
\hline & 2 & 20 & 18 & 3 & 0 & 1 & 2 & 94.4 & 100 & 9.7 \\
\hline & 3 & 20 & 16 & 6 & 1 & 2 & 3 & 87.5 & 94.1 & 7.6 \\
\hline \multirow[t]{3}{*}{290-2} & 1 & 25 & 20 & 5 & 4 & 1 & 0 & 80 & 8 85. 5 & ij \\
\hline & 2 & 25 & 14 & 10 & 0 & 3 & 7 & 60.7 & 100 & 8.7 \\
\hline & 3 & 25 & 12 & 10 & ! & 7 & 2 & 53.6 & 90.2 & 10.1 \\
\hline \multirow[t]{3}{*}{290-3} & 1 & 25 & 19 & \(\leq\) & 0 & 4 & 2 & 82.6 & 100 & 10.1 \\
\hline & \(?\) & 25 & 16 & 9 & 0 & 7 & 2 & 69.6 & 100 & 12.4 \\
\hline & \(\underline{1}\) & 25 & 12 & 10 & 0 & 6 & 4 & 60.6 & 100 & 10.4 \\
\hline \multirow[t]{3}{*}{291-1} & 1 & 35 & 18 & 10 & 1 & 9 & 0 & 51.4 & 91.4 & 9.2 \\
\hline & 2 & 30 & 16 & 10 & 0 & 10 & 0 & 53.3 & 100 & 8.5 \\
\hline & 3 & 30 & 12 & 10 & 0 & 9 & 1 & 42.6 & 100 & 15.1 \\
\hline \multirow[t]{3}{*}{291-2} & 1 & 40 & 21 & 10 & 3 & 7 & 0 & 52.5 & 78.7 & 10.9 \\
\hline & 2 & 40 & 20 & 10 & 0 & 9 & 1 & 52.6 & 100 & 10.7 \\
\hline & 3 & 35 & 25 & 10 & 0 & 10 & 0 & 71.4 & 100 & 6.5 \\
\hline \multirow[t]{3}{*}{291-3} & 1 & 20 & 13 & 7 & 0 & 6 & 1 & 68.4 & 100 & 5.9 \\
\hline & 2 & 20 & 14 & 6 & 2 & 4 & 0 & 70 & 87.5 & 15.6 \\
\hline & 3 & 20 & 14 & 6 & 1 & 3 & 2 & 77.8 & 93.3 & 11.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ranet & Replicate & \[
\begin{aligned}
& \text { Seed } \\
& \text { in Sample }
\end{aligned}
\] & \begin{tabular}{l}
- Seed \\
Gerain- \\
ated
\end{tabular} & \[
\begin{aligned}
& \text { Seed } \\
& \text { Cut }
\end{aligned}
\] & \begin{tabular}{l}
Sound \\
Seed
\end{tabular} & \[
\begin{gathered}
\text { Decay- } \\
\text { ed } \\
\text { Seed }
\end{gathered}
\] & Enpty Seed & Gernination: based on all filled Seed & Gernination: based on sound Seed only & Days to r 908 of 1 i Gerninati \\
\hline \multirow[t]{3}{*}{303-1} & 1 & 19 & 16 & 3 & 0 & 2 & 1 & 88.9 & 100 & 18.2 \\
\hline & 2 & 20 & 20 & 0 & 0 & 0 & 0 & 100 & 100 & 15.7 \\
\hline & 3 & 20 & 18 & 2 & 0 & 2 & 0 & 90 & 100 & 13.2 \\
\hline \multirow[t]{3}{*}{303-2} & 1 & 20 & 18 & 2 & 0 & 2 & 0 & 90 & 100 & 10.2 \\
\hline & 2 & 20 & 20 & 0 & 0 & 0 & 0 & 100 & 100 & 9 \\
\hline & 3 & 20 & 16 & 4 & 0 & 3 & 1 & 84.2 & 100 & 8.4 \\
\hline \multirow[t]{3}{*}{303-3} & 1 & 29 & 26 & 3 & 0 & 3 & 0 & 89.7 & 100 & 2.4 \\
\hline & 2 & 30 & 24 & 6 & 1 & 5 & 0 & 80 & 96 & 6.5 \\
\hline & 3 & 30 & 21 & 9 & 0 & 9 & 0 & 70 & 100 & 6.7 \\
\hline \multirow[t]{3}{*}{304-1} & 1 & 50 & 23 & 25 & 0 & 22 & 3 & 49.2 & 100 & 7.4 \\
\hline & 2 & 50 & 25 & 25 & 0 & 22 & 3 & 53.2 & 100 & 10.5 \\
\hline & 3 & 40 & 17 & 25 & 4 & 16 & 5 & 55.6 & 82.2 & 8.8 \\
\hline \multirow[t]{3}{*}{304-2} & 1 & 50 & 11 & 25 & 0 & 25 & 0 & 22 & 100 & 10 \\
\hline & 2 & 50 & 16 & 25 & 3 & 21 & 1 & 32.9 & 79.7 & 11.4 \\
\hline & 3 & 50 & 12 & 25 & 3 & 21 & 1 & 24.8 & 72.5 & 8.9 \\
\hline \multirow[t]{3}{*}{304-3} & 1 & 50 & 3 & 25 & 2 & 22 & 1 & 6.2 & 44.4 & 15.7 \\
\hline & 2 & 50 & 0 & 25 & 2 & 22 & 1 & 0 & 0 & 17.2 \\
\hline & 3 & 50 & 2 & 25 & 1 & 24 & 0 & 4 & 51 & 18.8 \\
\hline \multirow[t]{3}{*}{354-1} & 1 & 30 & 20 & 10 & 0 & 10 & 0 & 66.7 & 100 & 9 \\
\hline & 2 & 30 & 15 & 10 & 3 & 7 & 0 & 50 & 76.9 & 9.5 \\
\hline & 3 & 30 & 11 & 10 & 1 & 9 & 0 & 36.7 & 85.3 & 10.9 \\
\hline \multirow[t]{3}{*}{354-2} & 1 & 25 & 10 & 10 & 1 & 9 & 0 & 40 & 87 & 15 \\
\hline & 2 & 25 & 7 & 10 & 2 & 8 & 0 & 28 & 66 & 15.3 \\
\hline & 3 & 25 & 4 & 10 & 2 & 8 & 0 & 16 & 48.8 & 18.6 \\
\hline \multirow[t]{3}{*}{354-3} & 1 & 20 & 6 & 10 & 2 & 8 & 0 & 30 & 68.2 & 19.4 \\
\hline & 2 & 20 & 7 & 10 & 1 & 8 & 1 & 37.4 & 84.3 & 14.4 \\
\hline & 3 & 20 & 6 & 10 & 3 & 7 & 0 & 30 & 58.8 & 19.4 \\
\hline \multirow[t]{3}{*}{355-1} & 1 & 30 & 12 & 10 & 1 & 9 & 0 & 40 & 87 & 17.8 \\
\hline & 2 & 30 & 13 & 10 & 2 & 8 & 0 & 43.3 & 74.7 & 19.7 \\
\hline & 3 & 30 & 14 & 10 & 1 & 9 & 0 & 46.7 & 89.7 & 14.8 \\
\hline \multirow[t]{3}{*}{355-2} & 1 & 30 & 16 & 10 & 1 & 9 & 0 & 53.3 & 92 & 14.2 \\
\hline & 2 & 30 & 10 & 10 & 3 & 7 & 0 & 33.3 & 62.5 & 8 \\
\hline & 3 & 30 & 14 & 10 & 1 & 9 & 0 & 46.7 & 89.7 & 10.6 \\
\hline \multirow[t]{3}{*}{355-3} & 1 & 30 & 17 & 10 & 1 & 8 & 1 & 59.2 & 92.9 & 13.5 \\
\hline & 2 & 30 & 10 & 10 & 1 & 9 & 0 & 33.3 & 83.3 & 11 \\
\hline & 3 & 30 & 14 & 10 & 0 & 10 & 0 & 46.7 & 100 & 12.6 \\
\hline \multirow[t]{3}{*}{367-1} & 1 & 50 & 16 & 10 & 1 & 9 & 0 & 32 & 82.5 & 5 \\
\hline & 2 & 50 & 14 & 10 & 0 & 10 & 0 & 28 & 100 & 16.6 \\
\hline & 3 & 50 & 19 & 10 & 0 & 10 & 0 & 38 & 100 & 5.1 \\
\hline \multirow[t]{3}{*}{367-2} & 1 & 30 & 14 & 10 & 3 & 7 & 0 & 46.7 & 74.5 & 5.9 \\
\hline & 2 & 30 & 10 & 10 & 1 & 9 & 0 & 33.3 & 83.3 & 4 \\
\hline & 3 & 25 & 12 & 10 & 0 & 8 & 2 & 53.6 & 100 & 11.1 \\
\hline \multirow[t]{3}{*}{367-3} & 1 & 35 & 19 & 10 & 1 & 9 & 0 & 54.3 & 92.2 & 7.1 \\
\hline & 2 & 35 & 17 & 10 & 4 & 6 & 0 & 48.6 & 70.2 & 9.3 \\
\hline & 3 & 35 & 16 & 10 & 3 & 7 & 0 & 45.7 & 73.7 & 7.2 \\
\hline \multirow[t]{3}{*}{369-1} & 1 & 35 & 19 & 10 & 3 & 7 & 0 & 54.3 & 79.8 & 18.4 \\
\hline & 2 & 35 & 17 & 10 & 3 & 7 & 0 & 48.6 & 75.9 & 16.1 \\
\hline & 3 & 35 & 17 & 10 & 2 & 8 & 0 & 48.6 & 82.5 & 17.9 \\
\hline \multirow[t]{3}{*}{369-2} & 1 & 25 & 6 & 10 & 1 & 9 & 0 & 24 & 75.9 & 20.4 \\
\hline & 2 & 25 & 8 & 10 & 2 & 8 & 0 & 32 & 70.2 & 17.2 \\
\hline & 3 & 20 & 10 & 10 & 2 & 7 & 1 & 52.6 & 83.3 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Raset & Replicate & Seed in Sample & - Seed Gerninated & - Seed Cut & Bound Seed & & \[
\begin{aligned}
& \text { Eapty } \\
& \text { Seed }
\end{aligned}
\] & Gernination based on all filled seed & Gerninations based on sound seed only & \begin{tabular}{l}
Days to \(r\) \\
908 of fi \\
Gerninati
\end{tabular} \\
\hline \multirow[t]{3}{*}{369-3} & 1 & 25 & 17 & 8 & 3 & 5 & 0 & 68 & 85 & 8.3 \\
\hline & 2 & 25 & 11 & 10 & 2 & 8 & 0 & 44 & 79.7 & 7 \\
\hline & 3 & 25 & 13 & 10 & 1 & 9 & 0 & 52 & 91.5 & 16.7 \\
\hline \multirow[t]{3}{*}{370-1} & 1 & 35 & 28 & 7 & 0 & 6 & 1 & 82.4 & 100 & 7.7 \\
\hline & 2 & 35 & 32 & 3 & 1 & 2 & 0 & 91.4 & 97 & 8.8 \\
\hline & 3 & 35 & 28 & 7 & 3 & 4 & 0 & 80 & 90.3 & 8.2 \\
\hline \multirow[t]{3}{*}{370-2} & 1 & 50 & 48 & 2 & 0 & 1 & 1 & 98 & 100 & 3.6 \\
\hline & 2 & 50 & 43 & 7 & 4 & 3 & 0 & 86 & 91.5 & 8.4 \\
\hline & 3 & 50 & 46 & 4 & 0 & 4 & 0 & 92 & 100 & 6.8 \\
\hline \multirow[t]{3}{*}{370-3} & 1 & 20 & 17 & 3 & 2 & 1 & 0 & 85 & 89.5 & 17.6 \\
\hline & 2 & 20 & 16 & 4 & 0 & 4 & 0 & 80 & 100 & 8.4 \\
\hline & 3 & 20 & 17 & 3 & 0 & 3 & 0 & 85 & 100 & 8.3 \\
\hline \multirow[t]{3}{*}{383-1} & 1 & 50 & 34 & 10 & 0 & 10 & 0 & 68 & 100 & 8.9 \\
\hline & 2 & 50 & 37 & 10 & 0 & 10 & 0 & 74 & 100 & 8.8 \\
\hline & 3 & 50 & 35 & 10 & 1 & 9 & 0 & 70 & 95.9 & 7.5 \\
\hline \multirow[t]{3}{*}{383-2} & 1 & 25 & 21 & 4 & 0 & 4 & 0 & 84 & 100 & 6.7 \\
\hline & 2 & 25 & 20 & 5 & 1 & 4 & 0 & 80 & 95.2 & 9 \\
\hline & 3 & 25 & 20 & 5 & 0 & 5 & 0 & 80 & 100 & 12 \\
\hline \multirow[t]{3}{*}{383-3} & 1 & 45 & 37 & 8 & 1 & 7 & 0 & 82.2 & 97.4 & 9.3 \\
\hline & 2 & 45 & 39 & 6 & 3 & 3 & 0 & 87.7 & 92.9 & 9.5 \\
\hline & 3 & 45 & 40 & 5 & 2 & 3 & 0 & 88.9 & 97.5 & 12 \\
\hline \multirow[t]{3}{*}{385-1} & 1 & 45 & 39 & 6 & 1 & 5 & 0 & 86.7 & 97.4 & 8.7 \\
\hline & 2 & 45 & 38 & 7 & 1 & 6 & 0 & 84.4 & 97.2 & 10.1 \\
\hline & 3 & 45 & 35 & 10 & 1 & 8 & 1 & 79.5 & 100 & 10.5 \\
\hline \multirow[t]{3}{*}{385-2} & 1 & 50 & 49 & 1 & 0 & 1 & 0 & 98 & 97.8 & 10.1 \\
\hline & 2 & 50 & 45 & 5 & 1 & 4 & 0 & 90 & 95.7 & 10.6 \\
\hline & 3 & 50 & 45 & 5 & 2 & 3 & 0 & 90 & 91.7 & 8.8 \\
\hline \multirow[t]{3}{*}{385-3} & 1 & 50 & 44 & 6 & 4 & 2 & 0 & 88 & 98 & 8.8 \\
\hline & 2 & 50 & 48 & 2 & 1 & 1 & 0 & 96 & 100 & 9.8 \\
\hline & 3 & 50 & 48 & 6 & 0 & 6 & 0 & 96 & 100 & 16.2 \\
\hline \multirow[t]{3}{*}{387-1} & 1 & 50 & 39 & 10 & 0 & 10 & 0 & 78 & 81.9 & 12.1 \\
\hline & 2 & 50 & 38 & 10 & 7 & 3 & 0 & 76 & 88.8 & 10.3 \\
\hline & 3 & 50 & 38 & 10 & 4 & 6 & 0 & 76 & 61.7 & 10.2 \\
\hline \multirow[t]{3}{*}{387-2} & 1 & 40 & 31 & 9 & 3 & 6 & 0 & 77.5 & 63.4 & 9.5 \\
\hline & 2 & 40 & 32 & 8 & 1 & 7 & 0 & 80 & 65.3 & 11.8 \\
\hline & 3 & 40 & 33 & 7 & 2 & 5 & 0 & 82.5 & 71.6 & 13.8 \\
\hline \multirow[t]{3}{*}{387-3} & 1 & 50 & 45 & 5 & 1 & 4 & 0 & 90 & 71.6 & 9.2 \\
\hline & 2 & 50 & 45 & 5 & 1 & 4 & 0 & 90 & 75.8 & 8.7 \\
\hline & 3 & 50 & 47 & 3 & 1 & 2 & 0 & 94 & 90 & 14.3 \\
\hline \multirow[t]{3}{*}{393-1} & 1 & 30 & 30 & 0 & 0 & 0 & 0 & 100 & 75 & 8 \\
\hline & 2 & 30 & 28 & 2 & 0 & 2 & 0 & 93.3 & 71.6 & 7.7 \\
\hline & 3 & 30 & 27 & 3 & 1 & 2 & 0 & 90 & 75.6 & 10.1 \\
\hline \multirow[t]{3}{*}{393-2} & 1 & 16 & 15 & 1 & 0 & 1 & 0 & 93.8 & 67.2 & 10.8 \\
\hline & 2 & 20 & 17 & 3 & 0 & 3 & 0 & 85 & 71.6 & 9.3 \\
\hline & 3 & 20 & 18 & 2 & 0 & 2 & 0 & 90 & 67.2 & 7.7 \\
\hline \multirow[t]{3}{*}{393-3} & 1 & 20 & 17 & 3 & 1 & 2 & 0 & 85 & 65.9 & 12.3 \\
\hline & 2 & 19 & 15 & 4 & 3 & 0 & 1 & 83.3 & 50.8 & 7.9 \\
\hline & 3 & 20 & 12 & 8 & 1 & 7 & 0 & 60 & 43.9 & 8.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Raset & Replicate & \begin{tabular}{l}
- Seed \\
in Sasple
\end{tabular} & \begin{tabular}{l}
Seed \\
Gervinated
\end{tabular} & \[
\begin{aligned}
& \text { Sed } \\
& \text { cat }
\end{aligned}
\] & - Sound Seed & Decayed Seed & Eapty
Seed & Gerninations based on all filled Seed & Gerniation based on sound Seed only & \begin{tabular}{l}
Days to 90\% of \\
Gernina
\end{tabular} \\
\hline \multirow[t]{3}{*}{491-1} & 1 & 50 & 24 & 10 & 5 & 5 & 0 & 48 & 51.9 & 10.3 \\
\hline & 2 & 50 & 31 & 10 & 1 & 9 & 0 & 62 & 55.6 & 12.4 \\
\hline & 3 & 50 & 34 & 10 & 3 & 7 & 0 & 68 & 42.1 & 14.2 \\
\hline \multirow[t]{3}{*}{491-2} & 1 & 20 & 9 & 10 & 3 & 7 & 0 & 45 & 53.7 & 15.1 \\
\hline & 2 & 20 & 13 & 7 & 4 & 3 & 0 & 65 & 60 & 14.8 \\
\hline & 3 & 20 & 15 & 5 & 3 & 2 & 0 & 75 & 45 & 14.5 \\
\hline \multirow[t]{3}{*}{491-3} & 1 & 50 & 25 & 10 & 5 & 5 & 0 & 50 & 43.9 & 18.8 \\
\hline & 2 & 50 & 24 & 10 & 7 & 3 & 0 & 48 & 39.2 & 18.5 \\
\hline & 3 & 50 & 20 & 10 & 8 & 2 & 0 & 40 & 68 & 19 \\
\hline \multirow[t]{3}{*}{492-1} & 1 & 50 & 43 & 7 & 3 & 4 & 0 & 86 & 60.7 & 10.7 \\
\hline & 2 & 50 & 38 & 10 & 3 & 7 & 0 & 76 & 63.4 & 9.7 \\
\hline & 3 & 50 & 40 & 10 & 0 & 10 & 0 & 80 & 73.6 & 8 \\
\hline \multirow[t]{3}{*}{492-2} & 1 & 50 & 46 & 4 & 1 & 3 & 0 & 92 & 69.7 & 6.8 \\
\hline & 2 & 50 & 44 & 6 & 3 & 3 & 0 & 88 & 73.6 & 9.8 \\
\hline & 3 & 50 & 46 & 4 & 0 & 4 & 0 & 92 & 60.7 & 6 \\
\hline \multirow[t]{3}{*}{493-1} & 1 & 25 & 19 & 6 & 3 & 3 & 0 & 76 & 66.4 & 13.1 \\
\hline & 2 & 25 & 21 & 4 & 1 & 3 & 0 & 84 & 60.7 & 12.9 \\
\hline & 3 & 25 & 19 & 6 & 3 & 3 & 0 & 76 & 70.3 & 10.1 \\
\hline \multirow[t]{3}{*}{493-2} & 1 & 35 & 31 & 4 & 1 & 3 & 0 & 88.6 & 59 & 9.5 \\
\hline & 2 & 35 & 25 & 10 & 3 & 6 & 1 & 73.5 & 80.2 & 8.8 \\
\hline & 3 & 35 & 34 & 1 & 1 & 0 & 0 & 97.1 & 63.4 & 10.9 \\
\hline \multirow[t]{3}{*}{493-3} & 1 & 15 & 12 & 3 & 0 & 3 & 0 & 80 & 75 & 10.8 \\
\hline & 2 & 15 & 14 & 1 & 0 & 1 & 0 & 93.3 & 75 & 9.6 \\
\hline & 3 & 15 & 14 & 1 & 1 & 0 & 0 & 93.3 & 93.3 & 7.6 \\
\hline \multirow[t]{2}{*}{} & totals & 5678 & 3758 & 1353 & & & 66 & & & \\
\hline & MEAMS & & & & & & & 67.8 & 90.3 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Fertilizer Concentration (ppm of 20-20-20 NPK)} \\
\hline & Low Fertilizer & High Fertilizer \\
\hline Date & Blocks & Blocks \\
\hline March 23 & 25 & 25 \\
\hline March 27 & 25 & 100 \\
\hline March 30 & 25 & 200 \\
\hline Apris 14 & 25 & 200 \\
\hline April 23 & 25 & 200 \\
\hline May 1 & 25 & 200 \\
\hline May 6 & 0 & 200 \\
\hline May 11 & 25 & 200 \\
\hline May 15 & 0 & 200 \\
\hline May 18 & 25 & 200 \\
\hline May 25 & 0 & 200 \\
\hline May 30 & 25 & 200 \\
\hline June 2 & 0 & 200 \\
\hline June 9 & 25 & 200 \\
\hline June 16 & 0 & 200 \\
\hline June 24 & 25 & 200 \\
\hline July 1 & 25 & 200 \\
\hline
\end{tabular}

\[
\begin{aligned}
& M_{\text {clones }}=74.69=5 e^{2}+n{ }_{0}{ }^{5} R^{2}+(n b){ }_{0}^{5} C^{2} \\
& M S_{\text {ramets }}=5.90=5_{e^{2}+n_{0} S_{R}^{2}} \\
& M S_{\text {error }}=.25=s_{e}^{2}
\end{aligned}
\]

\section*{Calculations:}

Quantity \(1=\) sum of seed lots per ramet
\[
=10+10+10+\ldots+10+10+9=522
\]

Quantity \(2=\) sum of squares of seed lots per ramet
\[
=100+100+100+\ldots+100+100+81=5012
\]

Quantity \(3=\) sum of squares of seed lots per clone
\(=30^{2}+17^{2}+28^{2}+\ldots+25^{2}+20^{2}+29^{2}=14578\)
Quantity \(4=\) sum of squares of seed lots per ramet divided by number of seed lots per clome
\[
=\left(10^{2}+10^{2}+10^{2}\right) / 30+\left(7^{2}+10^{2}\right) / 17+\ldots+\left(10^{2}+10^{2}+9^{2}\right) / 29
\]
\[
=181.31
\]
\[
\begin{aligned}
n_{0}^{\prime} & =(181.31-(5012 / 522) / 18=9.54 \\
n_{0} & =(522-181.31) / 36=9.46 \\
(n b)_{D_{0}} & =(522-(14578 / 522)) / 18=27.45
\end{aligned}
\]

Calculation of variance components:
\[
\begin{aligned}
& 5_{e}^{2}=.25 \\
& S_{R}^{2}=\left(M S_{R}-M S_{\text {error }}\right) / n_{0}=(5.90-.25) / 9.46=.60 \\
& { }_{5} C^{2}=\left(M S_{C} M_{\text {error }}-9.545_{R}^{2}\right) /(n b)_{0} \\
& =(74.69-.25-9.54 * .60) / 27.45=2.50
\end{aligned}
\]

\section*{SEEDLING HEIGHTS AND ANALYSES OF VARIANCE OF PARTIAL REPLICATIONS USED TO ESTIMATE EXPERIMENTAL ERROR IN PROGENY TEST}

Seedling Heights (ral
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Blck & Fert. & Ramet No. & & Tree Mo & Months & Mean & & our Mo & Onths & & Mean & & ve Ho & anths & & Mean \\
\hline \multirow[t]{12}{*}{1} & high & 39381176 & 8.6 & 8.7 & 7.2 & 7.78 .05 & 14.6 & 14.3 & 18.4 & 16.3 & 15.9 & 28.1 & 24.5 & 31.2 & 22.5 & 26.6 \\
\hline & & 493R1IT6 & 8.4 & 8.4 & 7.2 & 7.77 .93 & 14.7 & 14.6 & 17 & 15.6 & 15.5 & 27.2 & 28.3 & 29.5 & 29.5 & 28.6 \\
\hline & & 493R3T9 & 9.6 & 6.9 & 8.8 & 9.28 .63 & 19.8 & 16.6 & 15.5 & 20.6 & 18.1 & 33.7 & & 27.8 & 36.5 & 32.3 \\
\hline & & 35583T11 & 8.9 & 8.6 & 10.1 & 7.58 .78 & 17.1 & 19.3 & 18.4 & & 18.7 & 30.3 & & 34.1 & 23.6 & 30.1 \\
\hline & & 4928776 & 10 & 11.3 & 11.7 & 11.711 .2 & 22 & 20 & 25.2 & 19.5 & 21.7 & 29.9 & & 31.7 & 29.8 & 30.5 \\
\hline & & 393R10T8 & 8.7 & 8.8 & 7.8 & 9.88 .78 & 19.4 & 18.1 & 19.3 & 18 & 18.7 & 34.7 & 33.1 & 34 & 30.9 & 33.2 \\
\hline & \multirow[t]{6}{*}{10\%} & 385R3T2 & 11.1 & 8.5 & 8.2 & 88.95 & 14.2 & 10.3 & 12.4 & 10.5 & 11.9 & 14.5 & 10.4 & 12.9 & 10.4 & 12.1 \\
\hline & & 288R1057 & 6.1 & 7.5 & 7.1 & 9.47 .53 & 10.3 & 10.6 & 10.6 & & 11.4 & 13.4 & 11 & 10.8 & 14.6 & 12.5 \\
\hline & & 492R12T7 & & & 3.́s & 10.58 .95 & & 12.7 & 12.5 & 14.6 & 12.4 & 10.1 & 13 & 13.1 & 14.7 & 12.7 \\
\hline & & 387R9T1 & 8.4 & 8.8 & 9 & 7.78 .48 & 12 & 11 & 11 & 10 & 11 & 12.3 & 10.7 & 11.1 & 10.3 & 11.1 \\
\hline & & 49186710 & 8.4 & 8.5 & 9.2 & 9.38 .85 & 12.2 & 12.8 & 13.2 & 13.2 & & 14.4 & 14.7 & 14.6 & 15.6 & 14.8 \\
\hline & & 2918976 & 7.6 & 9 & 8.5 & 9.78 .7 & 13.4 & 12.7 & 11 & 13.7 & 12.7 & 17.3 & & 11.3 & 13.8 & 13.8 \\
\hline \multirow[t]{12}{*}{2} & \multirow[t]{6}{*}{high} & 304R12T1 & 7.6 & 9.2 & 8.6 & 8.58 .48 & 18.7 & 18.7 & 19.1 & 16.6 & 18.3 & 29.2 & & 31.1 & 30.3 & 29.8 \\
\hline & & \(303 \mathrm{R1175}\) & 8.1 & 8.6 & 8.3 & 11.59 .13 & 25.8 & 18.4 & 20.3 & 19.4 & 21.0 & 30.2 & & 30.7 & 42 & 34.6 \\
\hline & & \(36786 T 8\) & 10 & 9.1 & 10.7 & 9,8 9.9 & 22.2 & 22.3 & 19.6 & 20.2 & 21.1 & 37.5 & 37.7 & 26.8 & 34.9 & 34.2 \\
\hline & & 290R4T1 & 10.2 & 8.2 & 10.4 & 5.48 .55 & 23.6 & 19.5 & 21.4 & 8.3 & 18.2 & 38.8 & 31.4 & 34.7 & 8.6 & 28.4 \\
\hline & & 370R12T8 & 8.2 & 11 & 8.6 & 9.59 .33 & 15.6 & 21.4 & 18.6 & 19.2 & 18.7 & 24.6 & 37.8 & 33.2 & 32.3 & 32.0 \\
\hline & & 3878971 & 10.4 & 9.4 & 9.7 & 10.49 .98 & 21.2 & 18.7 & 18.5 & 19.1 & 19.4 & 34.1 & & 32 & 19.6 & 28.8 \\
\hline & \multirow[t]{6}{*}{low} & 354R3T7 & 8.9 & 8.1 & 9 & 8.68 .65 & 13.2 & 11.6 & 12 & 12.5 & 12.3 & 14.2 & 11.5 & 14.6 & 12.5 & 13.2 \\
\hline & & 354R278 & 9 & 6.5 & 6.7 & 8.17 .58 & 11 & 9 & 7.8 & 11.6 & 9.85 & 11.5 & 9.3 & 8.1 & 11.6 & 10.1 \\
\hline & & \(355 R 7 T 7\) & 9.1 & 8.1 & 7.4 & 7.58 .03 & 13.1 & 12.1 & 10.8 & 10.2 & 11.6 & 13.5 & 12.6 & 10.9 & 10.6 & 11.9 \\
\hline & & 492R12T4 & 5.6 & 6.7 & 8.1 & 9.17 .38 & 9.8 & 9.5 & \(5 \quad 12\) & 11.6 & 10.7 & 10.4 & 9.9 & 12.3 & 12.2 & 11.2 \\
\hline & & 284R4II & 8.1 & 7 & 5 & 9.47.38 & 11.5 & 9.5 & 6.7 & 11.7 & . 85 & 12 & 9.7 & 7 & 12 & 10.2 \\
\hline & & 3878813 & 8.2 & 6.7 & 7.2 & 87.53 & 11 & 8.6 & 10.1 & 11.1 & 10.2 & 11 & 8.6 & 10.5 & 1 & 10.3 \\
\hline \multirow[t]{12}{*}{3} & \multirow[t]{6}{*}{high} & 369R1171 & 9.7 & 8.9 & 8.9 & 9.29 .18 & 21.8 & 19.7 & 21 & & 21.1 & 38.3 & 33.7 & 23.7 & 36.6 & 33.1 \\
\hline & & 29081177 & 8.9 & 8.2 & 7.9 & 10.48 .85 & 19.3 & 19.2 & 217.7 & 18.4 & 18.7 & 38 & 33 & 31.8 & 31.1 & 33.5 \\
\hline & & 370812T5 & & 10.3 & 9.1 & 9.19 .63 & & 22.5 & 18.5 & 20.2 & 20.8 & 37.7 & 39.7 & 33.1 & 37.2 & 36.9 \\
\hline & & 303R10ti2 & 10.6 & 7 & 10.5 & 10.79 .7 & 25.4 & 18.3 & 34.1 & 23.7 & 22.9 & 40.1 & & 39 & 35.5 & 36.2 \\
\hline & & 291R1IT1 & 13.1 & & 9.4 & 12.711 .5 & 26.7 & 22 & 22 & 36.9 & 24.4 & 44.3 & & 36.4 & 45.3 & 39.8 \\
\hline & & 354R12T6 & 10.5 & & 10 & 10.110 .2 & 22.7 & 20.3 & 322.3 & 23.2 & 22.1 & 35.6 & & 40.4 & 41 & 38.1 \\
\hline & \multirow[t]{6}{*}{lon} & 2908476 & 7 & 7.2 & 6.1 & 7.66 .98 & 11.2 & 9.6 & 8.3 & 11.9 & 10.3 & 14.3 & 9.9 & 8.8 & 12.6 & 11.4 \\
\hline & & 367R4T9 & 6.6 & 8 & 9.2 & 7.27 .75 & 11.8 & 11 & 10.5 & 8.8 & 10.5 & & 11.1 & 10.4 & & 10.6 \\
\hline & & 387R7T¢ & 6.6 & 8.2 & 7.3 & 9.77 .95 & 8.5 & 10.3 & 9 & 13.6 & 10.4 & & 10.4 & 9.2 & 13.7 & 10.6 \\
\hline & & 385R11T2 & 8 & 6 & 7.4 & 8.17 .38 & 11.4 & 9.3 & 310.5 & 12.1 & 10.8 & 11.2 & 10.1 & 10.7 & 12.2 & 11.1 \\
\hline & & 491 101076 & 7 & 7.1 & 7 & 8.17 .3 & & 12.2 & 11.1 & 11.5 & 11.2 & 10.6 & 16.6 & 11.8 & 12.1 & 12.8 \\
\hline & & 37085T1 & 7.5 & 8.5 & 8.6 & 8.18 .18 & 14.1 & 11.5 & 511.7 & 10.2 & 11.9 & 14.7 & 14.6 & 11.9 & 10.8 & 13 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{6}{*}{g}} & 355R2T9 & 9.1 & 7.5 & 6 & 9.68 .05 & 20.1 & 14.1 & 10.6 & 21.6 & 16.6 & 36.1 & 26.1 & 11.4 & 37.2 & 27.7 \\
\hline & & 383R9T3 & 7.8 & 8.5 & 7.9 & 8.38 .13 & 17.1 & 19.1 & 19 & 17.8 & 18.3 & 30.4 & 31.1 & 35.2 & 32.6 & 32.3 \\
\hline & & 304R12T6 & 6.5 & 8.5 & 8.5 & 8.17 .9 & 12.9 & 17.7 & 17.6 & 16.7 & 16.2 & & 34.1 & 31.2 & 27.4 & 29.2 \\
\hline & & 493R5T5 & 10.1 & 7.9 & 8.6 & 8.58 .78 & & 18.2 & 219 & 17.6 & 19.5 & & 30.7 & 30.4 & 30.3 & 31.4 \\
\hline & & 284R4T6 & & 10.1 & 7.4 & 9.68 .78 & 16.6 & 20.5 & 15.3 & 19.6 & 18 & 30.4 & 36.4 & 16 & 33.7 & 29.1 \\
\hline & & 283RTT2 & 9.3 & 8.5 & 8.8 & 9.69 .05 & 20.2 & 18.7 & 18.4 & 18.8 & 19.0 & 33.6 & 32.8 & 29.1 & 33.9 & 32.4 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{6}{*}{fon}} & 369R1074 & 6.6 & 6.3 & 7.1 & 87 & 10.5 & 10.2 & 10.2 & & 10.5 & 10.7 & 10.5 & 14.9 & 11.7 & 12.0 \\
\hline & & 283 R 1 TI & 8.3 & 6.7 & 8.8 & 7.17 .73 & 12.6 & & 10.5 & 11.1 & 11.3 & 13.7 & 11.4 & 11 & 11.5 & 11.9 \\
\hline & & 383R4T3 & 7.5 & 7.5 & 9,3 & 8.88 .28 & 13.1 & 12 & 10.1 & 9.5 & 11.2 & & 12.1 & 10.4 & 9.9 & 11.4 \\
\hline & & \(288 \mathrm{R5T12}\) & 9.9 & 8.7 & 8.2 & 7.88 .65 & 13.3 & 14.1 & 12.7 & 11.5 & 12.9 & 13.5 & 14.7 & 12.9 & 12.1 & 13.3 \\
\hline & & 3838917 & 6.7 & 9.4 & 6.1 & 8.87 .75 & 9.6 & 13 & 8.6 & 11.2 & 10.6 & 10.3 & 13 & 8.3 & 11.4 & 10.8 \\
\hline & & 304R4T2 & 8.5 & 7.1 & 7.5 & 6.97 .5 & 12.8 & 11.6 & . 11.8 & 10.6 & 11.7 & 16.9 & 12.1 & 12.3 & 12.1 & 13.4 \\
\hline
\end{tabular}

Analyses of variance used to obtain estimates of experimental error from partial replications in progeny test.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & & & NUABER & OF SEED & OBTAINED & & TOTAL MO. & 1 SEED & \% FILLED \\
\hline NUMBER & VOL. (CCH) & \[
\begin{aligned}
& \text { LENGTH } \\
& \text { (NK) }
\end{aligned}
\] & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTION & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{283-R1-T1} \\
\hline 1 & 2.20 & 25.50 & 1 & 3 & 21 & 45 & 70 & 14 & 20.00 \\
\hline 2 & 1.80 & 24.50 & 0 & 2 & 24 & 41 & 67 & 8 & 11.94 \\
\hline 3 & 1.70 & 23.20 & 0 & 9 & 14 & 39 & 62 & 8 & 12.90 \\
\hline 4 & 1.40 & 22.30 & 0 & 3 & 4 & 59 & 66 & 6 & 9.09 \\
\hline 5 & 1.50 & 23.50 & 0 & 7 & 9 & 42 & 58 & 11 & 18.97 \\
\hline 6 & 2.00 & 25.00 & 0 & 1 & 19 & 49 & 69 & 3 & 4.35 \\
\hline 7 & 1.30 & 21.30 & 0 & 5 & 12 & 41 & 58 & 4 & 6.90 \\
\hline 8 & 1.70 & 23.70 & 0 & 11 & 10 & 44 & 65 & 11 & 16.82 \\
\hline 9 & 1.40 & 24.20 & 0 & 3 & 15 & 49 & 67 & 9 & 13.43 \\
\hline 10 & 0.90 & 18,80 & 0 & 2 & 13 & 40 & 55 & 10 & 18.18 \\
\hline MEAM & 1.59 & 23.20 & 0.10 & 4.60 & 14.10 & 44.90 & 63.70 & 8.40 & 13.27 \\
\hline \multicolumn{10}{|l|}{283-R7-T2} \\
\hline 1 & 2.10 & 26.10 & 3 & 9 & 15 & 41 & 68 & 12 & 17.65 \\
\hline 2 & 2.00 & 23.40 & 0 & 7 & 21 & 35 & 63 & 12 & 19.05 \\
\hline 3 & 2.70 & 28.20 & 0 & 0 & 20 & 49 & 69 & 10 & 14.49 \\
\hline 4 & 1.50 & 18.20 & 0 & 2 & 12 & 32 & 46 & 6 & 13.04 \\
\hline 5 & 1.80 & 24.30 & 0 & 6 & 14 & 38 & 58 & 13 & 22.41 \\
\hline 6 & 1.60 & 21.40 & 0 & 8 & 11 & 26 & 45 & 13 & 28.89 \\
\hline 7 & 2.40 & 26.40 & 1 & 10 & 15 & 44 & 70 & 9 & 12.86 \\
\hline 8 & 1.70 & 23.70 & 0 & 2 & 8 & 44 & 54 & 6 & 11.11 \\
\hline 9 & 1.70 & 21.30 & 0 & 8 & 12 & 34 & 54 & 7 & 12.96 \\
\hline 10 & 1.60 & 22.50 & 0 & 6 & 14 & 27 & 47 & 5 & 10.64 \\
\hline MEAM & 1.91 & 23.55 & 0.40 & 5.80 & 14.20. & 37.00 & 57.40 & 9.30 & 16.31 \\
\hline \multicolumn{10}{|l|}{283-R11-T4} \\
\hline 1 & 2.40 & 26.10 & 0 & 2 & 19 & 43 & 64 & 10 & 15.63 \\
\hline 2 & 3.30 & 29.30 & 0 & 3 & 16 & 51 & 70 & 9 & 12.86 \\
\hline 3 & 1.90 & 23.20 & 0 & 4 & 14 & 33 & 51 & 4 & 7.84 \\
\hline 4 & 2.90 & 27.80 & 0 & 6 & 9 & 62 & 77 & 9 & 11.69 \\
\hline 5 & 1.40 & 24.00 & 0 & 3 & 10 & 38 & 51 & 6 & 11.76 \\
\hline 6 & 2.30 & 24.50 & 0 & 5 & 8 & 58 & 71 & 5 & 7.04 \\
\hline 7 & 2.50 & 27.10 & 0 & 4 & 11 & 54 & 69 & 9 & 13.04 \\
\hline 8 & 2.70 & 27.50 & 0 & 5 & 13 & 54 & 72 & 11 & 15.28 \\
\hline 9 & 1.80 & 24.10 & 0 & 4 & 7 & 47 & 58 & 11 & 18.97 \\
\hline 10 & 2.80 & 28.50 & 0 & 3 & 16 & 50 & 69 & 6 & 8.70 \\
\hline MEAM & 2.40 & 26.21 & 0.00 & 3.90 & 12.30 & 49.00 & 65.20 & 8.00 & 12.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET NMMBER & \begin{tabular}{l}
CONE \\
VOL. \\
(CCM)
\end{tabular} & cone LENGTH (MN) & \[
\begin{aligned}
& \text { NUMBER } \\
& \text { EXTR. } 1
\end{aligned}
\] & OF SEED EXTR. 2 & \[
\begin{gathered}
\text { OBTAIMED } \\
\text { EXTR. } 3
\end{gathered}
\] & FRR: DISSECTIOM & TOTAL NO. SEED & \begin{tabular}{l}
SEED \\
FILLED
\end{tabular} & \[
\begin{aligned}
& \text { \$ FILLED } \\
& \text { SEED }
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{284-84-T6} \\
\hline 1 & 1.60 & 21.50 & 2 & 8 & 9 & 43 & 62 & 17 & 27.42 \\
\hline 2 & 2.70 & 26.80 & 23 & 0 & 27 & 33 & 83 & 23 & 27.71 \\
\hline 3 & 1.90 & 22.20 & 4 & 1 & 13 & 64 & 82 & 6 & 7.32 \\
\hline 4 & 2.30 & 23.20 & 11 & 1 & 11 & 61 & 84 & 16 & 19.05 \\
\hline 5 & 1.50 & 21.30 & 1 & 5 & 8 & 63 & 77 & 5 & 6.49 \\
\hline 6 & 2.10 & 24.50 & 24 & 0 & 10 & 43 & 77 & 20 & 25.97 \\
\hline 7 & 2.00 & 23.40 & 3 & 0 & 13 & 60 & 76 & 4 & 5.26 \\
\hline 8 & 1.10 & 19.00 & 1 & 2 & 18 & 54 & 75 & 10 & 13.33 \\
\hline 9 & 1.80 & 23.20 & 12 & 1 & 10 & 58 & 81 & 9 & 11.11 \\
\hline 10 & 1.60 & 21.90 & 4 & 10 & 12 & 48 & 74 & 12 & 16.22 \\
\hline MEAN & 1.86 & 22.70 & 8.50 & 2.80 & 13.10 & 52.70 & 77.10 & 12.20 & 15.99 \\
\hline \multicolumn{10}{|l|}{284-R8-T2} \\
\hline 1 & 2.80 & 27.50 & 13 & 0 & 23 & 50 & 86 & 12 & 13.95 \\
\hline 2 & 3.20 & 27.80 & 13 & 0 & 31 & 51 & 95 & 36 & 37.89 \\
\hline 3 & 2.60 & 26.00 & 8 & 1 & 34 & 34 & 77 & 26 & 33.77 \\
\hline 4 & 2.90 & 28.20 & 0 & 0 & 37 & 53 & 90 & 23 & 25.56 \\
\hline 5 & 2.60 & 26.00 & 5 & 0 & 26 & 42 & 73 & 27 & 36.99 \\
\hline 6 & 3.10 & 28.00 & 2 & 0 & 35 & 56 & 93 & 34 & 36.56 \\
\hline 7 & 2.50 & 25.20 & 9 & 0 & 20 & 45 & 74 & 25 & 33.78 \\
\hline 8 & 2.50 & 26.50 & 10 & 4 & 17 & 47 & 78 & 25 & 32.05 \\
\hline 9 & 2.70 & 26.50 & 17 & 0 & 23 & 41 & 81 & 27 & 33.33 \\
\hline 10 & 2.30 & 25.50 & 8 & 0 & 18 & 48 & 34 & 33 & 44.59 \\
\hline - & ---- & ----- & ---- & ---- & --.- & ---- & ---- & ---- & ----- \\
\hline MEAM & 2.72 & 26.72 & 8.50 & 0.50 & 26.40 & 46.70 & 82.10 & 26.80 & 32.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & CONE & cone & Munber & OF SEED & Obtained & FOR: & total mo. & \# SEED & * FILLED \\
\hline MUMBER & VOL. & LENGTH & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTION & SEED & FILLED & SEED \\
\hline & (c¢) & (\%M) & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & COME & CONE & WUMBE & OF SEED & OBTAINED & & TOTAL MO. & - SEED & 1. FILLED \\
\hline MUHEEP & VOL. (CCM) & LENGTH (M) & EXTR. 1 & EXTR. 2 & EXTR. 3 & Bissection & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{290-84-51} \\
\hline 1 & 2.10 & 22.30 & 4 & 17 & 8 & 52 & 81 & 1 & 1.23 \\
\hline 2 & 2.30 & 25.50 & 0 & 0 & 25 & 57 & 82 & 7 & 8.54 \\
\hline 3 & 2.10 & 24.10 & 7 & 1 & 24 & 45 & 77 & 6 & 7.79 \\
\hline 4 & 2.40 & 25.40 & 5 & 14 & 15 & 64 & 98 & 11 & 11.22 \\
\hline 5 & 1.80 & 22.40 & 4 & 1 & 3 & 54 & 62 & 4 & 6.45 \\
\hline 6 & 2.40 & 25.70 & 4 & 3 & 1 & 76 & 84 & 1 & 1.19 \\
\hline 7 & 1.90 & 23.50 & 5 & 3 & 11 & 54 & 73 & 11 & 15.07 \\
\hline 8 & 1.90 & 22.50 & 7 & 1 & 7 & 55 & 70 & 12 & 17.14 \\
\hline 9 & 1.80 & 21.20 & 4 & 12 & 0 & 53 & 69 & 6 & 8.70 \\
\hline 10 & 1.70 & 20.50 & 4 & 11 & 11 & 46 & 72 & 5 & 6.94 \\
\hline MEAM & 2.04 & 23.31 & 4.40 & 6.30 & 10.50 & 55.60 & 76.80 & 6.40 & 8.43 \\
\hline \multicolumn{10}{|l|}{290-R4-T6} \\
\hline 1 & 1.50 & 20.20 & 0 & 0 & 9 & 67 & 76 & 5 & 6.58 \\
\hline 2 & 2.10 & 23.20 & 4 & 0 & 2 & 76 & 82 & 5 & 6.10 \\
\hline 3 & 1.90 & 23.10 & 10 & 5 & 6 & 54 & 75 & 22 & 29.33 \\
\hline 4 & 1.70 & 22.30 & 0 & 2 & 13 & 54 & 69 & 10 & 14.49 \\
\hline 5 & 0.80 & 18.40 & 0 & 0 & 0 & 47 & 47 & 12 & 25.53 \\
\hline 6 & 1.60 & 20.70 & 0 & 6 & 1 & 65 & 72 & 8 & 11.11 \\
\hline 7 & 1.90 & 22.70 & 4 & 6 & 0 & 74 & 84 & 7 & 8.33 \\
\hline 8 & 1.80 & 22.30 & 1 & 0 & 0 & 76 & 77 & 7 & 9.09 \\
\hline 9 & 2.00 & 22.70 & 1 & 1 & 0 & 80 & 82 & 9 & 10.98 \\
\hline 10 & 1.60 & 21.50 & 9 & 3 & 1 & 54. & 67 & 10 & 14.93 \\
\hline MEAM & 1.69 & 21.71 & 2.90 & 2.30 & 3.20 & 64.70 & 73.10 & 9.50 & 13.65 \\
\hline \multicolumn{10}{|l|}{290-R11-77} \\
\hline 1 & 2.00 & 23.10 & 4 & 0 & 6 & 79 & 89 & 1 & 1.12 \\
\hline 2 & 1.50 & 20.30 & 6 & 13 & 2 & 52 & 73 & 6 & 8.22 \\
\hline 3 & 2.20 & 24.00 & 3 & 1 & 20 & 66 & 90 & 19 & 21.11 \\
\hline 4 & 1.90 & 23.00 & 3 & 6 & 0 & 69 & 78 & 12 & 15.38 \\
\hline 5 & 1.90 & 22.00 & 9 & 10 & 3 & 68 & 90 & 4 & 4.44 \\
\hline 6 & 1.90 & 22.10 & 4 & 14 & 2 & 69 & 89 & 20 & 22.47 \\
\hline 7 & 2.20 & 25.00 & 0 & 13 & 0 & 72 & 85 & 15 & 17.65 \\
\hline 8 & 1.30 & 19.90 & 6 & 21 & 11 & 29 & 67 & 5 & 7.46 \\
\hline 9 & 1.60 & 20.00 & 0 & 6 & 3 & 67 & 76 & 3 & 3.95 \\
\hline 10 & 1.50 & 20.40 & 3 & 10 & 2 & 59 & 74 & 4 & 5.41 \\
\hline MEAM & 1.80 & 21.98 & 3.80 & 9.40 & 4.90 & 63.00 & 81.10 & 8.90 & 10.72 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ramet & COME & COME & number & OF SEED & OBTAINED & FOR: & TOTAL NO. & \# SEED & \$ FILIED \\
\hline NUMBER & \[
\begin{aligned}
& \text { VOL. } \\
& \text { (CCN) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LENGTH } \\
& \text { (MM) }
\end{aligned}
\] & EXTR. 1 & EXTR. 2 & EXTR, 3 & BISSECTIOM & SEED & FILIED & SEED \\
\hline \multicolumn{10}{|l|}{303-R10-T12} \\
\hline 1 & 1.90 & 23.30 & 39 & 19 & 7 & 16 & 81 & 4 & 4.94 \\
\hline 2 & 2.00 & 23.70 & 49 & 21 & 3 & 10 & 83 & 11 & 13.25 \\
\hline 3 & 1.70 & 22.30 & 38 & 14 & 6 & 15 & 73 & 7 & 9.59 \\
\hline 4 & 1.90 & 23.70 & 35 & 14 & 12 & 15 & 76 & 6 & 7.89 \\
\hline 5 & 1.80 & 23.70 & 52 & 14 & 1 & 11 & 78 & 4 & 5.13 \\
\hline 6 & 1.70 & 22.50 & 49 & 13 & 3 & 11 & 76 & 2 & 2.63 \\
\hline 7 & 2.10 & 24.80 & 42 & 20 & 7 & 16 & 85 & 10 & 11.76 \\
\hline 8 & 1.70 & 23.30 & 39 & 15 & 5 & 15 & 74 & 9 & 12.16 \\
\hline 9 & 2.00 & 25.00 & 41 & 20 & 2 & 14 & 77 & 5 & 6.49 \\
\hline 10 & 1.50 & 23.00 & 45 & 6 & 3 & 7 & 61 & 6 & 9.84 \\
\hline MEAM & 1.83 & 23.53 & 42.90 & 15.60 & 4.90 & 13.00 & 76.40 & 6.40 & 8.37 \\
\hline \multicolumn{10}{|l|}{303-R11-T5} \\
\hline 1 & 2.30 & 27.00 & 65 & 6 & 3 & 13 & 87 & 7 & 8.05 \\
\hline 2 & 2.30 & 25.70 & 51 & 19 & 6 & 23 & 99 & 6 & 6.06 \\
\hline 3 & 2.50 & 27.00 & 64 & 12 & 3 & 20 & 99 & 11 & 11.11 \\
\hline 4 & 1.70 & 24.30 & 44 & 15 & 7 & 13 & 79 & 5 & 6.33 \\
\hline 5 & 2.40 & 26.80 & 45 & 18 & 6 & 30 & 99 & 4 & 4.04 \\
\hline 6 & 2.10 & 24.80 & 30 & 35 & 5 & 23 & 93 & 9 & 9.68 \\
\hline 7 & 2.60 & 27.20 & 39 & 28 & 13 & 18 & 98 & 18 & 18.37 \\
\hline 8 & 2.40 & 26.60 & 55 & 21 & 8 & 17 & 101 & 7 & 6.93 \\
\hline 9 & 2.00 & 25.00 & 50 & 17 & 1 & 24 & 92 & 3 & 3.26 \\
\hline 10 & 1.50 & 22.30 & 37 & 12 & 7 & 17 & 73 & 1 & 1.37 \\
\hline HEAN & 2.18 & 25.67 & 48.00 & 18.30 & 5.90 & 19.80 & 92.00 & 7.10 & 7.52 \\
\hline \multicolumn{10}{|l|}{303-R12-T5} \\
\hline 1 & 1.40 & 22.00 & 0 & 1 & 0 & 48 & 49 & 0 & 0.00 \\
\hline 2 & 2.20 & 25.70 & 45 & 10 & 2 & 42 & 99 & 8 & 8.08 \\
\hline 3 & 2.70 & 27.80 & 55 & 17 & 13 & 19 & 104 & 11 & 10.58 \\
\hline 4 & 2.20 & 25.20 & 38 & 12 & 3 & 26 & 79 & 7 & 8.86 \\
\hline 5 & 2.70 & 28.00 & 40 & 22 & 2 & 43 & 107 & 5 & 4.67 \\
\hline 6 & 3.30 & 29.60 & 39 & 37 & 5 & 34 & 115 & 11 & 9.57 \\
\hline 7 & 3.00 & 29.30 & 41 & 30 & 6 & 28 & 105 & 13 & 12.38 \\
\hline 8 & 3.10 & 28.50 & 43 & 25 & 7 & 32 & 107 & 13 & 12.15 \\
\hline 9 & 2.30 & 25.60 & 16 & 19 & 3 & 58 & 96 & 14 & 14.58 \\
\hline 10 & 2.20 & 25.30 & 13 & 17 & 4 & 48 & 82 & 12 & 14.63 \\
\hline MEAN & 2.51 & 26.70 & 33.00 & 19.00 & 4.50 & 37.80 & 94.30 & 9.40 & 9.55 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & cone & COHE & NUMBE & OF SEED & OBTAIMED & FOR: & TOTAL NO. & - SEED & \% FILLED \\
\hline NUXBEER & vOL. (CCH) & \[
\begin{aligned}
& \text { LEMGTH } \\
& \text { (NW) }
\end{aligned}
\] & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTION & SEED & FILLED & SEED \\
\hline 304-84 & & & & & & & & & \\
\hline 1 & 2.50 & 25.60 & 14 & 0 & 7 & 36 & 57 & 12 & 21.05 \\
\hline 2 & 2.60 & 26.60 & 13 & 0 & 13 & 36 & 62 & 15 & 24.19 \\
\hline 3 & 2.50 & 25.90 & 0 & 0 & 6 & 43 & 49 & 19 & 38.78 \\
\hline 4 & 2.10 & 24.10 & 20 & 11 & 6 & 23 & 60 & 11 & 18.33 \\
\hline 5 & 2.70 & 26.00 & 5 & 0 & 14 & 44 & 63 & 27 & 42.86 \\
\hline 6 & 2.40 & 25.70 & 10 & 4 & 11 & 29 & 54 & 10 & 18.52 \\
\hline 7 & 2.10 & 23.30 & 13 & 0 & 10 & 22 & 45 & 7 & 15.56 \\
\hline 8 & 2.50 & 23.40 & 4 & 0 & 7 & 46 & 57 & 16 & 28.07 \\
\hline 9 & 1.90 & 23.00 & 17 & 0 & 6 & 23 & 46 & 21 & 45.65 \\
\hline 10 & 2.10 & 24.50 & 7 & 0 & 7 & 44 & 58 & 17 & 29.31 \\
\hline MEAK & 2.34 & 24.81 & 10.30 & 1.50 & 8.70 & 34.60 & 55.10 & 15.50 & 28.23 \\
\hline 304-R12 & & & & & & & & & \\
\hline 1 & 2.20 & 25.10 & 5 & 15 & 3 & 43 & 66 & 13 & 19.70 \\
\hline 2 & 3.40 & 28.30 & 0 & 0 & 1 & 75 & 76 & 28 & 36.84 \\
\hline 3 & 2.20 & 23.70 & 1 & 0 & 10 & 5c. & 67 & 15 & 22.39 \\
\hline 4 & 1.90 & 22.20 & 14 & 0 & 8 & 35 & 57 & 10 & 17.54 \\
\hline 5 & 3.10 & 27.20 & 11 & 2 & 2 & 75 & 90 & 12 & 13.33 \\
\hline 6 & 3.50 & 28.00 & 1 & 0 & 17 & 74 & 92 & 23 & 25.00 \\
\hline 7 & 1.90 & 23.80 & 9 & 0 & 2 & 50 & 61 & 15 & 24.59 \\
\hline 8 & 2.50 & 25.7\% & \(\hat{0}\) & 0 & 9 & 58 & 67 & 19 & 28.36 \\
\hline 9 & 2.20 & 24.08 & 0 & 0 & 30 & 38 & 68 & 20 & 29.41 \\
\hline 10 & 2.20 & 24.70 & 3 & 0 & 0 & 58 & 61 & 12 & 19.67 \\
\hline MEAM & 2.51 & 25.36 & 4.40 & 1.70 & 8.20 & 56.20 & 70.50 & 16.70 & 23.68 \\
\hline 304-R12 & & & & & & & & & \\
\hline 1 & 2.40 & 23.40 & 3 & 0 & 9 & 41 & 53 & 25 & 47.17 \\
\hline 2 & 3.80 & 29.30 & 0 & 0 & 8 & 60 & 68 & 26 & 38.24 \\
\hline 3 & 3.00 & 26.70 & 0 & 0 & 6 & 67 & 73 & 13 & 17.81 \\
\hline 4 & 2.60 & 24.30 & 13 & 0 & 3 & 43 & 59 & 18 & 30.51 \\
\hline 5 & 3.30 & 26.20 & 1 & 0 & 11 & 63 & 75 & 8 & 10.67 \\
\hline 6 & 4.20 & 29.30 & 1 & 0 & 22 & 82 & 105 & 28 & 26.67 \\
\hline 7 & 2.70 & 25.50 & 3 & 0 & 2 & 66 & 71 & 10 & 1.08 \\
\hline 8 & 3.00 & 25.50 & 1 & 0 & 4 & 62 & 67 & 25 & 37.31 \\
\hline 9 & 2.30 & 23.50 & 3 & 0 & 8 & 49 & 60 & 15 & 25.00 \\
\hline 10 & 3.30 & 27.80 & 0 & 0 & 17 & 59 & 76 & 19 & 25.00 \\
\hline MEAM & 3.1 ; & 26.15 & 2.50 & 0.00 & 9.00 & 59.20 & 70.70 & 18.70 & 27.25 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & COME & COME & number & OF SEED & OBTAINED & & TOTAL NO. & - SEED & \% FILLED \\
\hline number & \[
\begin{aligned}
& \text { VOL. } \\
& \text { (CCM) }
\end{aligned}
\] & LENGTH (MM) & EXTR. 1 & EXTR. 2 & Extr. 3 & DISSECTION & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{355-R2-T2} \\
\hline 1 & 1.60 & 22.10 & 12 & 13 & 2 & 44 & 71 & 9 & 12.68 \\
\hline 2 & 1.90 & 24.50 & 4 & 1 & 12 & 64 & 81 & 8 & 9.88 \\
\hline 3 & 2.60 & 27.40 & 37 & 0 & 9 & 37 & 83 & 16 & 19.28 \\
\hline 4 & 2.30 & 26.50 & 12 & 0 & 16 & 67 & 95 & 11 & 11.58 \\
\hline 5 & 1.80 & 23.80 & 3 & 3 & 17 & 53 & 76 & 9 & 11.84 \\
\hline 6 & 1.50 & 23.00 & 5 & 10 & 5 & 44 & 64 & 14 & 21.88 \\
\hline 7 & 1.40 & 21.30 & 4 & 6 & 16 & 43 & 69 & 4 & 5.80 \\
\hline 8 & 1.70 & 23.30 & 3 & 0 & 11 & 55 & 69 & 6 & 8.70 \\
\hline 9 & 1.90 & 25.10 & 6 & 1 & 19 & 56 & 82 & 15 & 18.29 \\
\hline 10 & 1.40 & 22.60 & 8 & 2 & 11 & 38 & 59 & 11 & 18.64 \\
\hline MEAN & 1.81 & 23.96 & 9.40 & 3.60 & 11.80 & 50.10 & 74.90 & 10.30 & 15.86 \\
\hline \multicolumn{10}{|l|}{355-R3-T11} \\
\hline 1 & 2.00 & 26.50 & 5 & 0 & 14 & 65 & 34 & 12 & 14.29 \\
\hline 2 & 1.40 & 23.20 & 7 & 4 & 14 & 45 & 70 & 7 & 10.00 \\
\hline 3 & 1.40 & 20.30 & 8 & 9 & 7 & 43 & 69 & 8 & 11.59 \\
\hline 4 & 1.50 & 24.20 & : & 4 & 4 & 48 & 57 & 13 & 22.81 \\
\hline 5 & 1.50 & 22.30 & 13 & 8 & 7 & 46 & 74 & ¢ & 10.81 \\
\hline 6 & 1.60 & 22.80 & 13 & 8 & 14 & 35 & jo & iz & 17.14 \\
\hline 7 & 1.50 & 23.30 & 8 & 15 & 3 & \(4 \sqrt{2}\) & 73 & 7 & 9.59 \\
\hline 8 & 1.60 & 23.70 & n & \(\hat{v}\) & 23 & 43 & 74 & 13 & 17.57 \\
\hline 9 & 1.50 & 23.10 & is & \(\hat{v}\) & 12 & 38 & 61 & 13 & 21.31 \\
\hline : 8 & : . 7 n & 25.00 & 11 & 8 & 11 & 48 & 78 & 16 & 20.51 \\
\hline & -..... & --.-- & ---- & - & ---- & ---- & ----- & --- & --- \\
\hline HEAM & 1.57 & 23.48 & 8.50 & 5.60 & 11.80 & \(45 . \mathrm{iv}\) & 21.00 & 10.90 & 15.56 \\
\hline \multicolumn{10}{|l|}{355-R7-17} \\
\hline 1 & 1.20 & 21.10 & 6 & 4 & is & 37 & 61 & 7 & 11.48 \\
\hline 2 & 1.70 & 20. 20 & © & v & 21 & 36 & 65 & 8 & 12.31 \\
\hline 3 & 1.20 & i6.3î & , & 6 & 8 & 30 & 45 & 6 & 13.33 \\
\hline 4 & 1.30 & 23.00 & 4 & 2 & 16. & 33 & 55 & 11 & 20.00 \\
\hline 5 & 2.00 & 25.60 & 17 & 0 & 13 & 59 & 89 & 21 & 23.60 \\
\hline 6 & 1.80 & 24.60 & 5 & 13 & 12 & 51 & 81 & 8 & 9.88 \\
\hline 7 & 1.50 & 22.80 & 15 & 2 & 13 & 34 & 64 & 14 & 21.88 \\
\hline 8 & 1.60 & 24.10 & 17 & 12 & 13 & 24 & 66 & 10 & 15.15 \\
\hline 9 & 1.60 & 23.20 & 10 & 9 & 6 & 36 & 61 & 9 & 14.75 \\
\hline 10 & 1.10 & 19.50 & 4 & 6 & 6 & 38 & 54 & 1 & 1.85 \\
\hline HEAM & 1.50 & 22.82 & 8.90 & 5.40 & 12.00 & 37.80 & 64.10 & 9.50 & 14.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & CONE & COME & number & OF SEED & OBTAIMED & FOR: & TOTAL MO. & 1 SEED & \% FILLED \\
\hline number & \[
\begin{aligned}
& \text { VOL. } \\
& \text { (CCM) }
\end{aligned}
\] & LENGTH (MM) & ExTR. 1 & EXTR. 2 & ExTR. 3 & dissection & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{367-RI-T8} \\
\hline 1 & 3.40 & 32.50 & 24 & 1 & 34 & 49 & 108 & 29 & 26.85 \\
\hline 2 & 2.20 & 25.30 & 7 & 16 & 12 & 49 & 84 & 26 & 30.95 \\
\hline 3 & 3.20 & 30.80 & 18 & 3 & 24 & 46 & 91 & 22 & 24.18 \\
\hline 4 & 2.50 & 27.30 & 10 & 1 & 32 & 27 & 70 & 14 & 20.00 \\
\hline 5 & 1.90 & 25.50 & 22 & 9 & 24 & 25 & 80 & 8 & 10.00 \\
\hline 6 & 2.50 & 27.30 & 31 & 6 & 25 & 24 & 86 & 14 & 16.28 \\
\hline 7 & 2.10 & 26.10 & 6 & 2 & 34 & 38 & 80 & 24 & 30.00 \\
\hline 8 & 3.10 & 31.20 & 11 & 1 & 50 & 38 & 100 & 27 & 27.00 \\
\hline 9 & 2.50 & 29.50 & 14 & 6 & 30 & 27 & 77 & 16 & 20.78 \\
\hline 10 & 2.50 & 28.40 & 10 & 0 & 30 & 44 & 84 & 10 & 11.90 \\
\hline MEAM & 2.59 & 28.39 & 15.30 & 4.50 & 29.50 & 36.70 & 86.00 & 19.00 & 21.79 \\
\hline \multicolumn{10}{|l|}{367-R4-19} \\
\hline 1 & 2.30 & 27.30 & 17 & 19 & 11 & 34 & 81 & 5 & 6.17 \\
\hline 2 & 2.10 & 27.10 & 19 & 10 & 27 & 32 & 88 & 6 & 6.82 \\
\hline 3 & 2.00 & 25.50 & 10 & 5 & 30 & 39 & 84 & 14 & 16.67 \\
\hline 4 & 2.40 & 27.60 & 13 & 15 & 30 & 31 & 89 & 9 & 10.11 \\
\hline 5 & 2.10 & 28.00 & 16 & 22 & 20 & 28 & 86 & 7 & 8.14 \\
\hline 6 & 1.50 & 22.20 & 11 & 7 & 5 & 45 & 68 & 10 & 14.71 \\
\hline 7 & 2.20 & 27.50 & 30 & 0 & 21 & 28 & 79 & 11 & 13.92 \\
\hline 8 & 1.90 & 25.70 & 14 & 0 & 32 & 35 & 81 & 9 & 11.11 \\
\hline 9 & 2.10 & 25.90 & 11 & 11 & 22 & 35 & 79 & 6 & 7.59 \\
\hline 10 & 2.30 & 27.60 & 19 & 18 & 20 & 29 & 86 & 18 & 20.93 \\
\hline MEAM & \(\cdots\) & ----.-- & 16.00 & 10.70 & 21.80 & 33.60 & 82.10 & \(\cdots\) & 11.62 \\
\hline \multicolumn{10}{|l|}{367-R6-78} \\
\hline 1 & 1.90 & 24.00 & 18 & 14 & 14 & 22 & 68 & 6 & 8.82 \\
\hline 2 & 1.60 & 23.70 & 17 & 12 & 18 & 16 & 63 & 9 & 14.29 \\
\hline 3 & 1.80 & 25.30 & 21 & 9 & 13 & 25 & 68 & 13 & 19.12 \\
\hline 4 & 2.90 & 30.40 & 24 & 11 & 32 & 25 & 92 & 9 & 9.78 \\
\hline 5 & 3.10 & 29.60 & 29 & 10 & 22 & 42 & 103 & 20 & 19.42 \\
\hline 6 & 2.30 & 28.00 & 35 & 6 & 17 & 21 & 79 & 22 & 27.85 \\
\hline 7 & 2.10 & 25.80 & 30 & 2 & 20 & 25 & 77 & 12 & 15.58 \\
\hline 8 & 1.80 & 23.70 & 6 & 3 & 17 & 48 & 74 & 5 & 6.76 \\
\hline 9 & 2.50 & 28.40 & 22 & 3 & 27 & 38 & 90 & 17 & 18.89 \\
\hline 10 & 1.90 & 25.40 & 1 & 2 & 7 & 45 & 55 & 3 & 5.45 \\
\hline HEAN & --..-9 & 26.43 & 20.30 & 7.20 & 18.70 & 30.70 & 76.90 & 11.60 & 14.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & COME & COME & munger & OF SEED & OBTAINED & FOR: & total no. & - SEED & \% FILLED \\
\hline M \({ }_{\text {HMBER }}\) & \[
\begin{aligned}
& \text { yOL. } \\
& \text { (CCM) }
\end{aligned}
\] & LEMGTH (H) & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTION & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{369-R6-T11} \\
\hline 1 & 2.40 & 25.20 & 10 & 7 & 15 & 65 & 97 & 8 & 8.25 \\
\hline 2 & 3.20 & 29.40 & 11 & 3 & 20 & 75 & 109 & 19 & 17.43 \\
\hline 3 & 2.30 & 25.00 & 13 & 9 & 18 & 60 & 100 & 8 & 8.00 \\
\hline 4 & 1.70 & 23.00 & 11 & 14 & 8 & 49 & 82 & 5 & 6.10 \\
\hline 5 & 2.40 & 25.90 & 9 & 5 & 20 & 58 & 92 & 9 & 9.78 \\
\hline 6 & 2.60 & 26.10 & 17 & 0 & 21 & 52 & 90 & 10 & 11.11 \\
\hline 7 & 3.30 & 29.30 & 23 & 0 & 15 & 74 & 112 & 17 & 15.18 \\
\hline 8 & 2.00 & 23.70 & 14 & 0 & 17 & 45 & 76 & 9 & 11.84 \\
\hline 9 & 2.20 & 25.30 & 1 & 0 & 8 & 78 & 87 & 11 & 12.64 \\
\hline 10 & 2.70 & 27.30 & 15 & 6 & 18 & 53 & 92 & 23 & 25.00 \\
\hline & ------ & ------ & ---- & -..- & ---- & --- & -- & -- & ----- \\
\hline MEAN & 2.48 & 26.02 & 12.40 & 4.40 & 16.00 & 60.90 & 93.70 & 11.90 & 12.53 \\
\hline \multicolumn{10}{|l|}{369-R10-74} \\
\hline 1 & 1.60 & 23.00 & 11 & 6 & 10 & 49 & 76 & 1 & 1.32 \\
\hline 2 & 2.80 & 27.50 & 24 & 1 & 20 & 42 & 87 & 9 & 10.34 \\
\hline 3 & 2.00 & 25.00 & 7 & 2 & 24 & 62 & 95 & 5 & 5.26 \\
\hline 4 & 2.50 & 26.80 & 7 & 0 & 25 & 61 & 93 & 2 & 2.15 \\
\hline 5 & 2.20 & 25.20 & 17 & 0 & 19 & 38 & 74 & 9 & 12.16 \\
\hline 6 & 2.30 & 26.80 & 11 & 6 & 28 & 95 & 88 & 6 & 6.82 \\
\hline 7 & 2.00 & 24.60 & 7 & 7 & 23 & 42 & 77 & 2 & 2.53 \\
\hline 8 & 3.10 & 27. 20 & 14 & 2 & 21 & 58 & 53 & 21 & 22.11 \\
\hline 9 & 2.70 & 27.80 & 7 & 1 & 15 & 77 & 101 & 3 & 2.97 \\
\hline 10 & 2.60 & 27.80 & 14 & 1 & 21 & 45 & 83 & 15 & 18.07 \\
\hline Mes! & 2.38 & 26.37 & 12.10 & 2.60 & 20.70 & 51.70 & 87.10 & 7.30 & 8.37 \\
\hline \multicolumn{10}{|l|}{TK9-R11-T4} \\
\hline 1 & 2.10 & 24.30 & 18 & 0 & 15 & 43 & 76 & 6 & 7.89 \\
\hline 2 & 3.10 & 28.20 & 30 & 0 & 15 & 62 & 107 & 18 & 16.82 \\
\hline 3 & 1.90 & 22.60 & 8 & 0 & 8 & 52 & 68 & 2 & 2.94 \\
\hline 4 & 2.40 & 25.70 & 11 & 0 & 11 & 59 & 81 & 12 & 14.81 \\
\hline 5 & 3.00 & 28.00 & 30 & 5 & 17 & 52 & 104 & 11 & 10.58 \\
\hline 6 & 3.00 & 28.60 & 20 & 0 & 9 & 68 & 97 & 16 & 16.49 \\
\hline 7 & 2.80 & 27.80 & 26 & 0 & 24 & 44 & 94 & 6 & 6.38 \\
\hline 8 & 2.90 & 27.30 & 19 & 1 & 24 & 58 & 102 & 4 & 3.92 \\
\hline 9 & 2.50 & 26.60 & 21 & 3 & 18 & 55 & 97 & 8 & 8.25 \\
\hline 10 & 1.80 & 23.50 & 6 & 5 & 10 & 49 & 70 & 4 & 5.71 \\
\hline MEAM & \(\cdots\) & ------ & 18.90 & 1.40 & 15.10 & ---- & ----- & ----- & ----- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & CONE & COME & NUABER & OF SEED & OBTAINED & & TOTAL NO. & \# SEED & \% FILLED \\
\hline number & val. (CCM) & LENGTH (H) & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTIOM & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{370-85-T1} \\
\hline 1 & 2.50 & 26.70 & 14 & 17 & 13 & 21 & 65 & 15 & 23.08 \\
\hline 2 & 1.90 & 23.20 & 14 & 10 & 10 & 13 & 47 & 9 & 19.15 \\
\hline 3 & 2.70 & 27.10 & 14 & 25 & 7 & 23 & 69 & 10 & 14.49 \\
\hline 4 & 1.70 & 22.60 & 10 & 9 & 6 & 26 & 51 & 11 & 21.57 \\
\hline 5 & 2.30 & 26.50 & 17 & 22 & 3 & 27 & 69 & 11 & 15.94 \\
\hline 6 & 3.00 & 27.50 & 16 & 17 & 0 & 39 & 72 & 24 & 33.33 \\
\hline 7 & 3.30 & 30.70 & 29 & 20 & 6 & 33 & 88 & 26 & 29.55 \\
\hline 8 & 1.10 & 19.50 & 0 & 0 & 0 & 9 & 9 & 0 & 0.00 \\
\hline 9 & 2.80 & 27.90 & 9 & 21 & 12 & 27 & 69 & 3 & 4.35 \\
\hline 10 & 2.20 & 26.00 & 0 & 17 & 6 & 24 & 47 & 7 & 14.89 \\
\hline MEAM & 2.35 & 25.77 & 12.30 & 15.80 & 6.30 & 24.20 & 58.60 & 11.60 & 17.63 \\
\hline \multicolumn{10}{|l|}{370-R12-15} \\
\hline 1 & 2,70 & 28.60 & 38 & 20 & 10 & 11 & 75 & 15 & \(18.4 y\) \\
\hline 2 & 2.20 & 25.00 & 26 & 21 & 5 & 9 & 61 & 15 & 24.54 \\
\hline 3 & 3.20 & 29.40 & 17 & 24 & 2 & 20 & 7i & 26 & 36.62 \\
\hline 4 & 1.00 & 18.90 & \% & 1 & 0 & iô & j\% & 5 & 26.32 \\
\hline 5 & 2.00 & 23.70 & 25 & 'í & 3 & io & 65 & 16 & 24.62 \\
\hline 6 & 1.90 & 25.10 & 27 & i3 & 13 & 18 & 66 & 10 & 15.15 \\
\hline 7 & 2.20 & 29.20 & 31 & 17 & 9 & 5 & 62 & 19 & 30.65 \\
\hline 2 & 3.00 & 30.00 & 35 & 22 & 9 & 6 & 72 & 26 & 36.11 \\
\hline \(?\) & 4.40 & 33.70 & 35 & 24 & 4 & 34 & 97 & 30 & 30.93 \\
\hline 10 & 2.80 & 28.00 & 35 & 14 & 14 & 11 & 74 & 25 & 33.78 \\
\hline MEAN & 2.58 & 27.06 & 26.40 & 17.20 & 7.40 & 15.60 & 66.60 & 18.70 & 27.77 \\
\hline \multicolumn{10}{|l|}{370-R12-T8} \\
\hline 1 & 2.40 & 26.70 & 11 & 13 & 12 & 29 & 65 & 14 & 21.54 \\
\hline 2 & 2.80 & 28.70 & 24 & 25 & 1 & 31 & 81 & 14 & 17.28 \\
\hline 3 & 1.30 & 20.60 & 0 & 0 & 1 & 21 & 22 & 1 & 4.55 \\
\hline 4 & 1.90 & 24.20 & 20 & 18 & 7 & 25 & 70 & 10 & 14.29 \\
\hline 5 & 1.80 & 23.20 & 14 & 12 & 9 & 20 & 55 & 8 & 14.55 \\
\hline 6 & 3.10 & 29.40 & 25 & 21 & 6 & 33 & 85 & 7 & 8.24 \\
\hline 7 & 2.40 & 27.00 & 20 & 29 & 3 & 27 & 79 & 13 & 16.46 \\
\hline 8 & 2.00 & 24.30 & 16 & 17 & 14 & 18 & 65 & 7 & 10.77 \\
\hline 9 & 1.90 & 22.30 & 12 & 19 & 7 & 19 & 57 & 4 & 7.02 \\
\hline 10 & 2.00 & 24.40 & 21 & 24 & 49 & 11 & 105 & 4 & 3.81 \\
\hline MEAN & 2.16 & 25.08 & 16.30 & 17.80 & 10.90 & 23.40 & 68.40 & 8.20 & 11.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ramet & CONE & COME & mumber & OF SEED & obtained & OR: & TOTAL MO. & - SEED & \% FILLED \\
\hline MUMBER & VOL. & LENGTH & EXTR. 1 & EXTR. 2 & EXTR. 3 & dissection & SEED & FILIED & SEED \\
\hline & (cch) & (MM) & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{383-R4-T3} \\
\hline 1 & 3.10 & 25.70 & 4 & 10 & 2 & 46 & 62 & 20 & 32.26 \\
\hline 2 & 3.40 & 24.30 & 7 & 7 & 1 & 58 & 73 & 34 & 46.58 \\
\hline 3 & 2.90 & 25.70 & 20 & 16 & 0 & 29 & 65 & 29 & 44.62 \\
\hline 4 & 3.70 & 27.50 & 6 & 6 & 2 & 62 & 76 & 16 & 21.05 \\
\hline 5 & 3.10 & 23.70 & 5 & 7 & 1 & 45 & 58 & 18 & 31.03 \\
\hline 6 & 3.10 & 26.00 & 4 & 11 & 8 & 44 & 67 & 19 & 29.36 \\
\hline 7 & 3.50 & 27.00 & 7 & 11 & 0 & 62 & 80 & 13 & 16.25 \\
\hline 8 & 3.50 & 26.30 & 3 & 8 & 4 & 53 & 68 & 24 & 35.29 \\
\hline 9 & 3.70 & 27.00 & 5 & 8 & 1 & 45 & 59 & 15 & 25.42 \\
\hline 10 & 4.20 & 29.30 & 11 & 10 & 7 & 49 & 77 & 26 & 33.77 \\
\hline MEAM & - 3.42 & --...- & 7.20 & 9.40 & -..- & \[
49.30
\] & \[
\begin{aligned}
& -\cdots-- \\
& 68.50
\end{aligned}
\] & ----- & ----- \\
\hline \multicolumn{10}{|l|}{383-R9-T3} \\
\hline 1 & 1.20 & 17.00 & 0 & 1 & 0 & 11 & 12 & 1 & 8.33 \\
\hline 2 & 2.30 & 23.00 & 1 & 3 & 1 & 29 & 34 & 10 & 29.41 \\
\hline 3 & 2.30 & 24.20 & 8 & 0 & 9 & 34 & 51 & 14 & 27.45 \\
\hline 4 & 2.00 & 22.30 & 7 & 0 & 8 & 34 & 49 & 9 & 18.37 \\
\hline 5 & 2.60 & 23.30 & 10 & 0 & 7 & 48 & 65 & 10 & 15.38 \\
\hline 6 & 2.40 & 23.70 & 7 & 0 & 8 & 43 & 58 & 6 & 10.34 \\
\hline 7 & 1.60 & 19.40 & 7 & 0 & 12 & 24 & 43 & 9 & 20.93 \\
\hline 8 & 2.80 & 24.60 & 6 & 4 & 4 & 60 & 74 & 15 & 20.27 \\
\hline 9 & 2.00 & 23.00 & 16 & 0 & 6 & 37 & 59 & 13 & 22.03 \\
\hline 10 & 2.00 & 22.20 & 7 & 1 & 5 & 39 & 52 & 2 & 3.85 \\
\hline HEAK & ------ & ------- & ---- & -0.90 & ---- & ----
35.90 & ----- & ----- & 17.64 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{383-R9-17} \\
\hline 1 & 3.00 & 27.10 & 11 & 8 & 3 & 43 & 65 & 32 & 49.23 \\
\hline 2 & 3.20 & 27.80 & 16 & 9 & 4 & \(5!\) & 80 & 11 & 13.75 \\
\hline 3 & 3.10 & 27.00 & 4 & 5 & 4 & 56 & 69 & 12 & 17.39 \\
\hline 4 & 2.70 & 26.30 & 15 & 10 & 6 & 38 & 69 & 17 & 24.64 \\
\hline 5 & 3.00 & 26.00 & 5 & 7 & 2 & 60 & 74 & 8 & 10.81 \\
\hline 6 & 2.40 & 24.40 & 12 & 5 & 5 & 28 & 50 & 10 & 20.00 \\
\hline 7 & 2.30 & 22.70 & 5 & 10 & 7 & 35 & 57 & 14 & 24.56 \\
\hline 8 & 4.50 & 30.30 & 8 & 15 & 5 & 62 & 90 & 25 & 27.78 \\
\hline 9 & 3.50 & 28.40 & 12 & 10 & 2 & 57 & 81 & 8 & 9.88 \\
\hline 10 & 3.30 & 27.60 & 13 & 5 & 3 & 58 & 79 & 18 & 22.78 \\
\hline MEAK & \(\cdots\) & --->--7 & \(\cdots\) & ---- & ---- & 48.80 & ----- & ----- & --1.- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & COME & CORE & muaber & OF SEED & OBTAIMED & & TOTAL NO. & - SEED & 1 FILIED \\
\hline nunger & VOL.
\[
(\mathrm{CCM})
\] & \begin{tabular}{l}
LENGTH \\
(M)
\end{tabular} & EXTR. 1 & EXTR. 2 & EXTR. 3 & dissection & SEED & FILIED & SEED \\
\hline \multicolumn{10}{|l|}{385-R2-T2} \\
\hline 1 & 1.80 & 22,70 & 18 & 13 & 4 & 20 & 55 & 10 & 18.18 \\
\hline 2 & 3.20 & 29.60 & 35 & 10 & 6 & 47 & 98 & 17 & 17.35 \\
\hline 3 & 2.20 & 25.40 & 24 & 5 & 4 & 46 & 79 & 10 & 12.66 \\
\hline 4 & 2.50 & 26.00 & 20 & 11 & 7 & 51 & 89 & 19 & 21.35 \\
\hline 5 & 2.00 & 24.40 & 36 & 4 & 7 & 29 & 76 & 14 & 18.42 \\
\hline 6 & 1.90 & 23.40 & 27 & 5 & 8 & 29 & 69 & 15 & 21.74 \\
\hline 7 & 3.00 & 27.70 & 25 & 12 & 0 & 49 & 86 & 26 & 30.23 \\
\hline 8 & 1.20 & 21.00 & 0 & 1 & 3 & 31 & 35 & 6 & 17.14 \\
\hline 9 & 2.90 & 27.30 & 27 & 9 & 2 & 56 & 94 & 9 & 9.57 \\
\hline 10 & 1.70 & 23.10 & 15 & 14 & 10 & 31 & 70 & 15 & 21.43 \\
\hline MEAM & 2.24 & 25.06 & 22.70 & 8.40 & 5.10 & 38.90 & 75.10 & 14.10 & j0.6i \\
\hline \multicolumn{10}{|l|}{385-R8-75} \\
\hline 1 & 2.70 & 26.90 & 33 & 20 & 4 & 31 & 98 & 23 & 26.14 \\
\hline 2 & 2.40 & 25.00 & 25 & 9 & 5 & 44 & 83 & 17 & 20.48 \\
\hline 3 & 2.30 & 26.30 & 28 & 19 & 9 & 31 & 87 & 17 & 19.54 \\
\hline 4 & 2.40 & 26.48 & 28 & 10 & 6 & 27 & 71 & 27 & 38.03 \\
\hline 5 & !.20 & 18. 50 & 0 & 1 & 0 & 25 & 26 & 2 & 7.69 \\
\hline 6 & 1.90 & 24.00 & 12 & 8 & 7 & 41 & 68 & 20 & 29.41 \\
\hline 7 & 1.90 & 24.00 & 33 & 10 & 7 & 28 & 68 & 18 & 26.47 \\
\hline 8 & 2.30 & 24.70 & 26 & 12 & 1 & 31 & 70 & 27 & 38.57 \\
\hline 9 & 2.40 & 25.90 & 35 & 9 & 5 & 29 & 78 & 28 & 35.90 \\
\hline 10 & 2.70 & 27.00 & 33 & 10 & 9 & 26 & 78 & 21 & 26.92 \\
\hline MEAN & 2.22 & 24.87 & 24.40 & 10.80 & 5.30 & 31.20 & 71.70 & 20.00 & 26.92 \\
\hline \multicolumn{10}{|l|}{385-R11-T2} \\
\hline 1 & 2.10 & 24.20 & 24 & 12 & 3 & 27 & 66 & 21 & 31.82 \\
\hline 2 & 2.80 & 28.20 & 28 & 6 & 10 & 37 & 81 & 24 & 29.63 \\
\hline 3 & 1.80 & 24.10 & 15 & 8 & 7 & 28 & 58 & 16 & 27.59 \\
\hline 4 & 2.60 & 28.00 & 26 & 4 & 8 & 43 & 81 & 14 & 17.28 \\
\hline 5 & 2.40 & 26.00 & 25 & 9 & 8 & 39 & 81 & 19 & 23.46 \\
\hline 6 & 2.80 & 28.40 & 34 & 9 & 8 & 32 & 83 & 17 & 20.48 \\
\hline 7 & 2.80 & 27.60 & 26 & 7 & 7 & 39 & 79 & 21 & 26.58 \\
\hline 8 & 1.70 & 22.30 & 0 & 2 & 0 & 40 & 42 & 0 & 0.00 \\
\hline 9 & 1.90 & 24.80 & 32 & 9 & 7 & 31 & 79 & 15 & 18.99 \\
\hline 10 & 3.80 & 30.30 & 38 & 9 & 2 & 40 & 89 & 24 & 26.97 \\
\hline MEAM & 2.47 & 26,39 & 24.80 & 7.50 & 6.00 & 35.60 & 73.90 & 17.10 & 22.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RAMET \\
NUMBER
\end{tabular} & \begin{tabular}{l}
COME \\
VOL. \\
(CCM)
\end{tabular} & \[
\begin{aligned}
& \text { CONE } \\
& \text { LENGTH } \\
& \text { (MM) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { NUMBER } \\
& \text { EXTR. } 1
\end{aligned}
\] & BF SEED EXTR. 2 & OBTAINED EXTR. 3 & FOR: DISSECTION & TOTAL MO. SEED & \# SEED FILLED & \[
\begin{aligned}
& \text { \& FILLED } \\
& \text { SEED }
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{387-R7-T6} \\
\hline 1 & 2.50 & 24.10 & 8 & 0 & 14 & 53 & 75 & 38 & 50.67 \\
\hline 2 & 2.40 & 24.40 & 7 & 0 & 3 & 58 & 68 & 26 & 38.24 \\
\hline 3 & 2.10 & 23.30 & 10 & 0 & 28 & 39 & 77 & 15 & 19.48 \\
\hline 4 & 2.00 & 22.70 & 6 & 0 & 17 & 43 & 66 & 20 & 30.30 \\
\hline 5 & 2.60 & 25.50 & 6 & 0 & 6 & 71 & 83 & 29 & 34.94 \\
\hline 6 & 2.70 & 26.30 & 7 & 0 & 10 & 61 & 78 & 31 & 39.74 \\
\hline 7 & 2.30 & 24.80 & 12 & 1 & 25 & 44 & 82 & 25 & 30.49 \\
\hline 8 & 2.00 & 22.40 & 2 & 0 & 16 & 58 & 76 & 10 & 13.16 \\
\hline 9 & 2.30 & 24.00 & 6 & 0 & 1 & 71 & 78 & 24 & 30.77 \\
\hline 10 & 1.10 & 17.60 & 0 & 1 & 0 & 17 & 18 & 2 & 11.11 \\
\hline MEAN & 2.20 & 23.51 & 6.40 & 0.20 & 12.00 & 51.50 & 70.10 & 22.00 & 29.89 \\
\hline \multicolumn{10}{|l|}{387-88-73} \\
\hline 1 & 2.30 & 24.30 & 5 & 1 & 8 & 69 & 83 & 36 & 43.37 \\
\hline 2 & 2.20 & 24.20 & 14 & 0 & 12. & 53 & 79 & 26 & 32.91 \\
\hline 3 & 2.30 & 23.50 & 6 & 0 & 14 & 55 & 75 & 44 & 58.67 \\
\hline 4 & 1.80 & 21.60 & 4 & 0 & 4 & 62 & 70 & 35 & 50.00 \\
\hline 5 & 2.60 & 25.70 & 9 & 0 & 7 & 75 & 91 & 1 & 1.10 \\
\hline 6 & 0.50 & 14.20 & 0 & 0 & 4 & 22 & 26 & 1 & 3.85 \\
\hline 7 & 3.00 & 27.20 & 13 & 2 & 18 & 59 & 92 & 33 & 35.87 \\
\hline 8 & 1.80 & 23.50 & 9 & 0 & 1 & 59 & 69 & 14 & 20.29 \\
\hline 9 & 2.10 & 23.10 & 4 & 0 & 13 & 63 & 80 & 25 & 31.25 \\
\hline 10 & 2.10 & 23.70 & 6 & 0 & 4 & 65 & 75 & 27 & 36.00 \\
\hline MEAN & \(\cdots\) & 23.10 & 7.00 & 0.30 & 8.50 & ---- & ----- & ----- & ----- \\
\hline \multicolumn{10}{|l|}{387-R9-T1} \\
\hline 1 & 2.90 & 26.40 & 7 & 1 & 23 & 58 & 89 & 17 & 19.10 \\
\hline 2 & 3.00 & 26.60 & 6 & 0 & 4 & 73 & 83 & 18 & 21.69 \\
\hline 3 & 0.90 & 16.40 & 0 & 0 & 0 & 87 & 87 & 10 & 11.49 \\
\hline 4 & 2.60 & 26.50 & 10 & 0 & 8 & 54 & 72 & 25 & 34.72 \\
\hline 5 & 1.70 & 21.00 & 5 & 7 & 17 & 35 & 64 & 10 & 15.63 \\
\hline 6 & 1.10 & 18.50 & 0 & 1 & 3 & 23 & 27 & 5 & 18.52 \\
\hline 7 & 1.20 & 19.00 & 0 & 1 & 2 & 12 & 15 & 1 & 6.67 \\
\hline 8 & 2.70 & 26.30 & 11 & 0 & 4 & 66 & 81 & 22 & 27.16 \\
\hline 9 & 2.40 & 24.60 & 13 & 0 & 16 & 42 & 71 & 22 & 30.99 \\
\hline 10 & 1.90 & 22.70 & 3 & 16 & 6 & 41 & 66 & 12 & 18.18 \\
\hline HEAM & ------ & \(\cdots\) & ---- & ---- & ---- & ---- & ----- & ----- & ----- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RaMET & COME & COME & number & OF SEED & OBtaimed & FOR: & TOTAL NO. & - SEED & \% FILLED \\
\hline munber & voL. (CCM) & \[
\begin{aligned}
& \text { LENGTH } \\
& \text { (MM) }
\end{aligned}
\] & EXTR. 1 & EXTR. 2 & ExTR. 3 & DISSECTIOM & SEED & FIUED & SEED \\
\hline \multicolumn{10}{|l|}{393-R6-19} \\
\hline 1 & 2.40 & 25.50 & 14 & 33 & 19 & 30 & 96 & 18 & 18.75 \\
\hline 2 & 1.40 & 20.70 & 0 & 0 & 6 & 42 & 48 & 3 & 6.25 \\
\hline 3 & 2.60 & 28.20 & 29 & 15 & 2 & 39 & 85 & 15 & 17.65 \\
\hline 4 & 1.70 & 23.00 & 6 & 9 & 14 & 44 & 73 & 4 & 5.48 \\
\hline 5 & 1.90 & 23.40 & 19 & 17 & 17 & 27 & 80 & 13 & 16.25 \\
\hline 6 & 2.70 & 28.20 & 17 & 22 & 7 & 48 & 94 & 18 & 19.15 \\
\hline 7 & 1.60 & 22.40 & 0 & 0 & 0 & \(3{ }^{\text {a }}\) & 56 & 5 & 8.93 \\
\hline 8 & 1.70 & 21.80 & 13 & 8 & 11 & \$2 & 74 & 10 & 13.51 \\
\hline 9 & 1.90 & 24.50 & 17 & 7 & 2 & 47 & 73 & 12 & 16.44 \\
\hline 10 & 2.00 & 24.50 & 3 & 10 & 13 & 36 & 62 & 4 & 6.45 \\
\hline HEAN & 1.97 & 24. 22 & 11.80 & 12.10 & 9.10 & 41.10 & 74.10 & 10.20 & 12.89 \\
\hline \multicolumn{10}{|l|}{3n3-2ic-i6} \\
\hline i & 1.00 & 17.00 & 2 & 5 & 7 & 49 & 63 & 3 & 4.76 \\
\hline 2 & 4.20 & 29.00 & 26 & 12 & 4 & 42 & 84 & 26 & 30.95 \\
\hline 3 & 0.90 & 17.10 & 5 & 15 & 6 & 29 & 55 & 2 & 3.04 \\
\hline 4 & 1.10 & 18.40 & 4 & 13 & 11 & 29 & 57 & 2 & 3.5i \\
\hline 5 & 1.10 & 19.00 & 4 & 11 & 10 & 35 & 61 & 2 & 3.28 \\
\hline 6 & 1.30 & 21.00 & 8 & 6 & 11 & 32 & \(5 ?\) & 7 & 12.28 \\
\hline 7 & 1.60 & 22.30 & - & ! & 8 & 44 & 77 & 5 & 6.49 \\
\hline 9 & !. 98 & 21.80 & 0 & 2 & 0 & 25 & 25 & 10 & 40.00 \\
\hline \(?\) & 1.10 & 17.50 & 5 & 4 & 12 & 30 & 51 & 0 & 0.00 \\
\hline 19 & 1.10 & 18.80 & 4 & 8 & 6 & 25 & 43 & 4 & 9.30 \\
\hline HEAK & 1.52 & 20.11 & 6.70 & 9.00 & 7.50 & 34.10 & 57.30 & 6.10 & 11.42 \\
\hline \multicolumn{10}{|l|}{393-R11-76} \\
\hline 1 & 1.50 & 22.50 & 16 & 13 & 11 & 38 & 78 & 7 & 8.97 \\
\hline 2 & 1.30 & 20.50 & 15 & 13 & 12 & 35 & 75 & 10 & 13.33 \\
\hline 3 & 1.00 & 18.80 & 0 & 0 & 0 & 26 & 26 & 6 & 23.08 \\
\hline 4 & 1.60 & 22.50 & 11 & 16 & 16 & 34 & 77 & 9 & 11.69 \\
\hline 5 & 1.60 & 24.00 & 11 & 22 & 16 & 27 & 76 & 11 & 14.47 \\
\hline 6 & 1.40 & 20.70 & 5 & 8 & 19 & 37 & 69 & 6 & 8.70 \\
\hline 7 & 0.90 & 17.50 & 0 & 0 & 1 & 41 & 42 & 4 & 9.52 \\
\hline 8 & 1.40 & 21.50 & 15 & 20 & 10 & 29 & 74 & 10 & 13.51 \\
\hline 9 & 1.20 & 20.50 & 0 & 8 & 15 & 40 & 63 & 4 & 6.35 \\
\hline 10 & 0.80 & 17.30 & 1 & 3 & 17 & 31 & 52 & 1 & 1.92 \\
\hline neam & 1.27 & 20.58 & 7.40 & 10.30 & 11.70 & 33.80 & 63.20 & 6.80 & 11.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
RAMET \\
number
\end{tabular}} & COME & & nuxber & OF SEED & obtained & & total mo. & - SEED & 1 FILled \\
\hline & \begin{tabular}{l}
vol. \\
(CCM)
\end{tabular} & LENGTH (MM) & EXTR. 1 & EXTR. 2 & EXTR. 3 & DISSECTIOM & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{491-R6-T10} \\
\hline 1 & 1.90 & 23.10 & 4 & 7 & 4 & 38 & 53 & 21 & 39.62 \\
\hline 2 & 2.30 & 25.30 & 9 & 6 & 3 & 36 & 54 & 25 & 46.30 \\
\hline 3 & 2.40 & 25.10 & 6 & 5 & 3 & 40 & 54 & 21 & 38.89 \\
\hline 4 & 2.10 & 22.70 & 5 & 12 & 3 & 37 & 57 & 9 & 15.79 \\
\hline 5 & 2.30 & 24.30 & 18 & 4 & 3 & 37 & 62 & 25 & 40.32 \\
\hline 6 & 2.00 & 22.70 & 8 & 5 & 1 & 41 & 55 & 11 & 20.00 \\
\hline 7 & 2.20 & 23.80 & 18 & 8 & 4 & 34 & 64 & 24 & 37.50 \\
\hline 8 & 2.30 & 25.10 & 12 & 6 & 9 & 35 & 62 & 16 & 25.81 \\
\hline 9 & 2.90 & 25.60 & 9 & 16 & 7 & 40 & 72 & 6 & 8.33 \\
\hline 10 & 3.10 & 28.00 & 19 & 10 & 5 & 30 & 64 & 27 & 42.19 \\
\hline MEAN & 2.35 & 24.57 & 10.80 & 7.90 & 4.20 & 36.80 & 59.70 & 18.50 & 31.47 \\
\hline \multicolumn{10}{|l|}{491-R7-T12} \\
\hline 1 & 1.50 & 19.90 & 0 & 3 & 3 & 44 & 50 & 3 & 6.00 \\
\hline 2 & 2.10 & 22.00 & 6 & 3 & 2 & 29 & 40 & 14 & 35.00 \\
\hline 3 & 1.00 & 16.20 & 0 & 0 & 0 & 10 & 10 & 3 & 30.00 \\
\hline 4 & 1.00 & 16.20 & 0 & 0 & 2 & 26 & 28 & 4 & 14.29 \\
\hline 5 & 1.60 & 19.50 & 2 & 10 & 3 & 37 & 52 & 9 & 17.31 \\
\hline 6 & 1.20 & 19.00 & 0 & 3 & 1 & 29 & 33 & 4 & 12.12 \\
\hline 7 & 1.90 & 21.30 & 5 & 5 & 4 & 37 & 51 & 8 & 15.69 \\
\hline 8 & 1.92 & 21.30 & 0 & 4 & 4 & 37 & 45 & 11 & 24.44 \\
\hline 9 & 1.50 & 19.30 & 1 & 2 & 3 & 28 & 34 & 5 & 14.71 \\
\hline 10 & 2.00 & 21.70 & 2 & 9 & 5 & 41 & 57 & 11 & 19.30 \\
\hline HEAM & 1.57 & 19.64 & 1.60 & 3.90 & 2.70 & 31.80 & 40,00 & 7.20 & 18.88 \\
\hline \multicolumn{10}{|l|}{491-R10-76} \\
\hline 1 & 2.50 & 24.80 & 3 & 5 & 2 & 47 & 57 & 35 & 61.40 \\
\hline 2 & 2.50 & 25.10 & 4 & 8 & 2 & 51 & 65 & 24 & 36.92 \\
\hline 3 & 3.00 & 26.80 & 5 & 4 & 6 & 58 & 73 & 24 & 32.88 \\
\hline 4 & 2.30 & 23.40 & 5 & 13 & 2 & 39 & 59 & 14 & 23.73 \\
\hline 5 & 1.70 & 20.60 & 3 & 4 & 6 & 28 & 41 & 10 & 24.39 \\
\hline 6 & 2.50 & 24.30 & 6 & 2 & 2 & 66 & 76 & 20 & 26.32 \\
\hline 7 & 2.10 & 23.10 & 3 & 12 & 0 & 43 & 58 & 15 & 25.86 \\
\hline 8 & 2.80 & 25.10 & 2 & 7 & 3 & 48 & 60 & 21 & 35.00 \\
\hline 9 & 2.70 & 26.30 & 7 & 8 & 4 & 39 & 58 & 24 & 41.38 \\
\hline 10 & 1.50 & 20.00 & 0 & 1 & 7 & 47 & 55 & 3 & 5.45 \\
\hline & ---..- & ---.-- & ---- & ---- & --.- & ---- & -...- & --.-- & ----- \\
\hline MEAM & 2.36 & 23.95 & 3.80 & 6.40 & 3.40 & 46.60 & 60.20 & 19.00 & 31.33 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RAMET & COME & CONE & NUNEER & OF SEED & OBTAINED & & TOTAL NO. & - SEED & \% FILLED \\
\hline number & VOL.
(CCN) & LEMGTH (HM) & EXTR. 1 & EXTR. 2 & EXTR. 3 & dissection & SEED & FILLED & SEED \\
\hline \multicolumn{10}{|l|}{493-83-19} \\
\hline 1 & 1.20 & 18.20 & 0 & 4 & 9 & 29 & 42 & 9 & 21.43 \\
\hline 2 & 1.20 & 18.30 & 0 & 0 & 0 & 14 & 14 & 0 & 0.00 \\
\hline 3 & 0.80 & 16.10 & 0 & 0 & 0 & 11 & 11 & 2 & 18.18 \\
\hline 4 & 1.90 & 23.20 & 11 & 8 & 0 & 43 & 62 & 8 & 12.90 \\
\hline 5 & 2.00 & 21.90 & 15 & 4 & 0 & 47 & 66 & 16 & 24.24 \\
\hline 6 & 1.30 & 20.00 & 3 & 10 & 6 & 27 & 46 & 3 & 6.52 \\
\hline 7 & 1.80 & 22.80 & 9 & 7 & 0 & 44 & 60 & 7 & 11.67 \\
\hline 8 & 2.00 & 22.90 & 10 & 3 & 2 & 54 & 69 & 19 & 27.54 \\
\hline 9 & 1.00 & 17.80 & 0 & 0 & 0 & 15 & 15 & 1 & 6.67 \\
\hline 10 & 1.10 & 17.20 & 3 & 8 & 2 & 33 & 46 & 13 & 28.26 \\
\hline & ---- & -- & ---- & ---- & - & ---- & --- & --- & - \\
\hline MEAM & 1.43 & 19.84 & 5.10 & 4.40 & 1.90 & 31.70 & 43.10 & 7.80 & 15.74 \\
\hline \multicolumn{10}{|l|}{493-R5-15} \\
\hline 1 & 1.40 & 20.40 & 5 & 10 & 3 & 37 & 55 & 13 & 23.64 \\
\hline 2 & 1.20 & 18.30 & 1 & 3 & 6 & 40 & 50 & 6 & 12.00 \\
\hline 3 & 1.30 & 18.40 & 3 & 8 & 4 & 38 & 53 & 9 & 16.98 \\
\hline 4 & 1.60 & 21.60 & 8 & 9 & 2 & 38 & 57 & 15 & 26.32 \\
\hline 5 & 1.10 & 17.80 & 0 & 6 & 4 & 36 & 46 & 6 & 13.04 \\
\hline 6 & 1.40 & 19.50 & 3 & 12 & 0 & 37 & 52 & 14 & 26.92 \\
\hline 7 & 1.30 & 19.60 & 2 & 6 & 4 & 39 & 51 & 17 & 33.33 \\
\hline 8 & 1.10 & 17.90 & 0 & 14 & 1 & 30 & 45 & 8 & 17.78 \\
\hline 9 & 1.40 & 20.30 & 10 & 3 & 0 & 39 & 52 & 18 & 34.62 \\
\hline 10 & 1.30 & 17.90 & 10 & 9 & 1 & 32 & 52 & 15 & 28.85 \\
\hline MEAM & 1.31 & 19.17 & 4.20 & 8.00 & 2.50 & 36.60 & 51.30 & 12.10 & 23.35 \\
\hline \multicolumn{10}{|l|}{493-R11-16} \\
\hline 1 & 1.00 & 16.40 & 0 & 4 & 13 & 33 & 50 & 3 & 6.00 \\
\hline 2 & 1.10 & 17.20 & 0 & 2 & 1 & 40 & 43 & 3 & 6.98 \\
\hline 3 & 1.00 & 17.40 & 0 & 8 & 8 & 30 & 46 & 2 & 4.35 \\
\hline 4 & 1.40 & 20.00 & 0 & 6 & 4 & 46 & 56 & 5 & 8.93 \\
\hline 5 & 0.90 & 18.00 & 0 & 1 & 9 & 39 & 49 & 4 & 8.16 \\
\hline 6 & 1.30 & 19.10 & 0 & 6 & 5 & 42 & 53 & 3 & 5.66 \\
\hline 7 & 1.10 & 8.00 & 0 & 9 & 4 & 30 & 43 & 3 & 6.98 \\
\hline 8 & 1.20 & 19.10 & 6 & 9 & 9 & 31 & 55 & 10 & 18.18 \\
\hline 9 & 1.10 & 19.10 & 1 & 7 & 2 & 40 & 50 & 9 & 18.00 \\
\hline 10 & 1.90 & 23.90 & 4 & 11 & 10 & 48 & 73 & 7 & 9.59 \\
\hline & ------ & ----- & --- 10 & ---- & ---- & ---- & ----- & ---- & ----- \\
\hline MEAK & 1.20 & 17.82 & 1.10 & 6.30 & 6.50 & 37.90 & 51.80 & 4.90 & 9.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{14}{|c|}{Seedling Heights (ca)} \\
\hline Ranet Mo. & ck & Fert. & \multicolumn{3}{|r|}{Three Months} & Mean & \multicolumn{4}{|c|}{Four Months} & Hean & \multicolumn{3}{|r|}{Five Hoaths} & \multicolumn{2}{|r|}{Mean} \\
\hline \multirow[t]{8}{*}{283RITI} & 1 & high & 6.2 & 9.3 & 9.2 & 7.58 .05 & & 1819.3 & & 13.6 & 18.2 & 28.2 & 32.6 & & 27.6 & 30.9 \\
\hline & & low & 8.9 & 8.2 & 7.6 & 7.78 .1 & 14.5 & 513 & 11.5 & 12.4 & 12.9 & 17.3 & 13.2 & & 13.5 & 14.2 \\
\hline & 2 & high & 4.8 & 7.6 & 8.4 & 9.17 .48 & 17.9 & 9 16 & & 19.5 & 18.1 & 30.6 & 29.2 & & 33 & 31.1 \\
\hline & & 18M & 8.5 & 6.8 & 5.9 & 8.17.33 & 12.3 & 311.4 & 10.2 & 11.6 & 11.4 & 12.4 & 10.5 & 12 & & 12 \\
\hline & 3 & high & 10.3 & 7.6 & 9.5 & 9.29 .15 & 23.2 & 217.6 & 22 & & 21.0 & 36.2 & 30.6 & 30 & 35.2 & 34.5 \\
\hline & & lom & 6.4 & 8.5 & 7.4 & 7.67 .48 & & 611.5 & 10.5 & 10.6 & 10.6 & 11.1 & 12 & 11.4 & 13.1 & 11.9 \\
\hline & 4 & high & 9.6 & 7.7 & 11.1 & 89.1 & 21.2 & 216.3 & 23.2 & 15.3 & 19 & 35.4 & 31 & & 15.6 & 30.1 \\
\hline & & lom & 6.4 & 8 & 9 & 27.9 & 10.7 & 713.3 & 14.2 & 12.7 & 12.7 & i3.2 & 19.5 & & 13.2 & 16.3 \\
\hline \multirow[t]{8}{*}{283R7T2 :} & 1 & High & 10.1 & 9.2 & 7.6 & 98.98 & & 815.6 & <iv.1 & 20.ó & i8ิ.8 & & 26.1 & & 32.8 & 30.7 \\
\hline & & lom & 9.6 & 9.4 & 8.4 & 7.48 .7 & & 514.2 & 13.1 & 11.8 & 13.5 & 17.1 & 14.7 & & 13.6 & 15.5 \\
\hline & 2 & hig. & 9.7 & & & 77.46 & 18.6 & 623.1 & & 21.7 & 21.4 & 30.3 & 36.8 & 38 & 34.6 & 34.9 \\
\hline & & ب10 & 8.2 & & 7.5 & 7.68 .43 & 11.1 & 111.8 & 14.5 & & 12.1 & 11.6 & 12.4 & 15.3 & 1.4 & 12.7 \\
\hline & 3 & high & 8.5 & 9.2 & 9.4 & 10.59 .4 & & 320.3 & 18.5 & 22.9 & 21 & & 37.6 & 32.4 & 38.7 & 36.2 \\
\hline & & lom & 7.9 & \[
8
\] & \[
10.8
\] & \[
9.39
\] & \[
12.8
\] & \[
.811 .6
\] & 15.2 & 12.5 & \[
13.0
\] & 13.8 & 12.6 & & 12.4 & 13.9 \\
\hline & 4 & high & 9.3 & 8.8 & 11 & 9.59 .5 & 20.7 & \(7 \quad 17\) & 15.7 & 18.2 & 17.9 & 34.3 & 28.7 & 29 & 29.2 & 30.3 \\
\hline & & lom & 7.5 & 8 & 8.1 & 6.67 .55 & & 212.3 & & 10.5 & 12.0 & 12.6 & 16.4 & 18 & 11.3 & 14.6 \\
\hline \multirow[t]{8}{*}{283R1174} & 1 & High & 7.7 & 8.4 & 9 & 10.38 .85 & 21.7 & 718.3 & 17.8 & 19.1 & 19.2 & 33.6 & 29 & & 27.2 & 29.7 \\
\hline & & 10w & 9.2 & 9.5 & 9 & 9.29 .23 & 14.1 & 113.7 & 15.1 & 13.1 & 14 & 14.6 & 15.2 & & 13.5 & 15.5 \\
\hline & 2 & high & 8.6 & 7 & 7.7 & 9.68 .23 & 10.6 & 618.2 & 18.7 & 22.4 & 19.7 & 39.7 & 32 & 31.6 & 23 & 31.6 \\
\hline & & Iow & 6.6 & 7.1 & 7.3 & 6.56 .88 & & 310.6 & 11.6 & 9.5 & 10.8 & 16.5 & 11 & 12.3 & 10.4 & 12.6 \\
\hline & 3 & high & 9.6 & 9.5 & 8.4 & 8.69 .03 & & 2222.3 & 19.1 & 20.2 & 20.9 & 35.6 & 36.3 & 35 & 36.7 & 35.9 \\
\hline & & low & 8 & 8 & 7.3 & 9.18 .1 & 13.5 & 510 & 11.8 & 13.5 & 12.2 & 14.4 & 12.1 & & 13.2 & 12.5 \\
\hline & 4 & high & 7.1 & 3 & \[
8.7
\] & \[
10.79 .13
\] & & \[
.118 .5
\] & 20.2 & 21.3 & 20.0 & 34.3 & 33.7 & & 34.6 & 35.0 \\
\hline & & lon & 9 & 6.9 & 8.2 & 8.78 .7 & & 111.2 & & 13.5 & & 13.6 & 14.7 & & 15 & 14.1 \\
\hline \multirow[t]{8}{*}{2848476} & 1 & high & 9.6 & 9.5 & 8.6 & 12.610 .1 & 25.3 & 31.5 & 19.8 & 22.5 & 21.8 & 36.1 & 32.3 & 32.3 & 32.6 & 33.3 \\
\hline & & lom & 9.9 & & 9.2 & 8.69 .6 & 15.6 & 614.5 & 14.7 & & 14.5 & 16.7 & 14.5 & 14.8 & 13.5 & 14.9 \\
\hline & 2 & isgh & 8.1 & 7.5 & 9.2 & 8.18 .23 & 18.1 & 120.3 & 15.4 & 16 & 17.5 & 27.6 & 17.4 & 36.5 & 33.7 & 28.8 \\
\hline & & lom & 7 & 8.9 & 8 & 7.77 .9 & 11.6 & \(6 \quad 12\) & 13.4 & 11.7 & 12.2 & 11.9 & 13.5 & & 12.7 & 12.5 \\
\hline & 3 & high & 7.2 & 9.7 & 7.7 & 8.28 .2 & 16.8 & 822.5 & & 18.3 & 18.7 & 29.4 & 37.7 & & & 30.1 \\
\hline & & lom & 7.6 & 8.1 & 6.3 & 8.17 .53 & 11.4 & 410.6 & & 11.8 & 10.9 & & 11.1 & 10.3 & 11.7 & 12.0 \\
\hline & 4 & high & 8.4 & 8.7 & 9.3 & 8.78 .78 & 19.4 & 418.2 & 19.1 & 17.2 & 18.5 & 33.3 & 32.1 & 22.2 & 21.6 & 27.3 \\
\hline & & low & 8.6 & 8.7 & 6.4 & 7.67 .83 & & 312.6 & & 11.6 & 11.6 & 17.5 & 12.8 & 8 & 13.2 & 12.9 \\
\hline \multirow[t]{8}{*}{\(284 \mathrm{R972}\)} & 1 & high & 8.8 & 11 & 8.2 & 8.69 .15 & 19.1 & 114.7 & 22.1 & & 18.2 & 3 u .2 & 17.1 & & 30.1 & 29.2 \\
\hline & & Iow & 8.3 & 9.2 & 9.5 & 9.19 .03 & 11.3 & 311.7 & 14.7 & 12.8 & 12.7 & 11.6 & 11:8 & & 13:6 & 13 \\
\hline & 2 & high & 9 & 9 & & 12.27 .98 & 19.7 & 718.1 & 19.8 & 25.4 & 20.8 & 30.6 & 2h. 1 & & & 3].1 \\
\hline & & low & 7.9 & 7.4 & 0. \({ }^{\text {c }}\) & 7.87 .93 & & 911.6 & 11.9 & 1:.6 & 12:3 & 14.3 & 12.2 & \(1!.7\) & 12.] & 12.6 \\
\hline & 3 & high & 10.5 & 9.9 & 9.8 & 11.410 .4 & & 222.6 & & 21.4 & 22.3 & & 39.! & 23.5 & 32.? & 35.0 \\
\hline & & Iom & 7.1 & 8.9 & 9.9 & 6.43 .08 & & \(5: 2.6\) & & 10.6 & 11.9 & 11.2 & 14.3 & 13.1 & 11.1 & 12.4 \\
\hline & 4 & high & 10.4 & 7.6 & 8.5 & 7.78 .55 & & 419.4 & 17.5 & ! 16.6 & 19.1 & 37.6 & 32.5 & 18.6 & 30.2 & 29.7 \\
\hline & & lom & 10.9 & 9. & 8.3 & 7.79 .13 & 15.9 & 914.1 & 12.4 & 11.9 & 13.6 & 15.2 & 14.8 & 12.9 & 12.4 & 13.8 \\
\hline
\end{tabular}

Seedling Keights (cn)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Raset No. & & Fert. & & ree M & Months & Mean \\
\hline \multirow[t]{8}{*}{\(288 \mathrm{RST12}\)} & 1 & high & 6.9 & 8.2 & 9.7 & 88.2 \\
\hline & & lom & 8.8 & 8.3 & 6.6 & 8.17 .95 \\
\hline & 2 & high & 8.7 & 9.4 & 8.3 & 9.38 .93 \\
\hline & & lan & 6.1 & 6.6 & 7 & 7.26 .73 \\
\hline & 3 & high & 10.1 & 6.2 & 8.6 & 7.68 .13 \\
\hline & & lam & 6.5 & 7.5 & 6.7 & 8.77 .35 \\
\hline & 4 & high & 6.5 & 7.6 & 9 & 98.03 \\
\hline & & 100 & 7.7 & 8.5 & 6.5 & 7.17 .45 \\
\hline \multirow[t]{8}{*}{288R7T9} & 1 & high & 9 & 5.6 & 10.6 & 10.18 .83 \\
\hline & & low & 7.6 & 5.3 & 8.2 & 9.27 .58 \\
\hline & 2 & high & 10 & 8.7 & 12.5 & 9.510 .2 \\
\hline & & 104 & 9.5 & 8.2 & 8.2 & 8.89 .68 \\
\hline & 3 & high & 9.4 & 11.5 & 11.2 & 10.110 .6 \\
\hline & & lan & 7.8 & 8.6 & 10.1 & 9.59 \\
\hline & 4 & high & 12.7 & 9.4 & 12.7 & 10.711 .4 \\
\hline & & low & 10.2 & 8.4 & 9.2 & 99.2 \\
\hline \multirow[t]{8}{*}{\(288 \mathrm{R1017}\)} & 1 & high & 9 & 9 & 7.4 & 7.68 .25 \\
\hline & & lon & 7.5 & 7.2 & 8 & 67.18 \\
\hline & 2 & bigh & 7.9 & 8.8 & 9.5 & 98.8 \\
\hline & & lom & 8 & 6.6 & 7.5 & 8.27 .58 \\
\hline & 3 & high & 9.7 & 9.6 & 9.7 & 9.79 .68 \\
\hline & & 10 n & 7.1 & 8 & 6.4 & 7.87 .33 \\
\hline & 4 & high & 6.6 & 8.1 & 9 & 108.43 \\
\hline & & lon & 8.4 & 7.8 & 5.1 & 7.27 .13 \\
\hline
\end{tabular}
\(\begin{array}{lll}16.6 & 20.6 \quad 17.5 \quad 13.217 .0\end{array}\)
\(14.3 \quad 10.410 .411 .7 \quad 11.7\)
19.52119 .7 20.6 70.?
\(8 \quad 8.8 \quad 8.6 \quad 10.79 .03\)
\(22.214 .6 \quad 20.319 .519 .2\)
\(12.9 \quad 11.5 \quad 10.7 \quad 10.5,11.4\)
\(14.1 \quad 16.3 \quad 16.6 \quad 15.4 \quad 15.6\)
\(10.5 \quad 12.3 \quad 9.6 \quad 10.2 \quad 10.4\)
\(20.720 .9 \quad 10.519 .417 .9\)
\(11.3 \quad 8.3 \quad 11.8 \quad 12.6 \quad 11\)
21.823 .819 .522 .321 .9

19.623 .124 .221 .422 .1

\(27 \quad 18.6 \quad 2720.323 .2\)
\(\begin{array}{lllllllllll}13.2 & 16.6 & 12.4 & 14.4 & 14.2\end{array}\)
\(\begin{array}{lll}15.8 & 16.7 & 14.3 \\ 19.4 & 16.6\end{array}\)
\(10.6 \quad 10.7 \quad 10.7 \quad 8.8 \quad 10.2\)
\(20.8 \quad 22.519 .517 .520 .1\)
\(\begin{array}{llll}14.2 & 10.8 & 13 & 13\end{array} 12.8\)
\(22.124 .1 \quad 2021.321 .7\)
\(12.211 .5 \quad 10.1 \quad 11.2 \quad 11.3\) 15.420 .821 .218 .719 .0

23.621 .918 .221 .921 .4
\(1311.7 \quad 9.611 .811 .5\) 20.919 .521 .318 .120 .0
910.710 .212 .510 .6 18.419 .523 .721 .220 .7 \(\begin{array}{llllll}12.5 & 9.6 & 12.1 & 9.2 & 10.9\end{array}\) \(\begin{array}{llllll}21.3 & 20 & 15.7 & 12.9 & 17.5\end{array}\)
\(\begin{array}{llllll}12 & 11.6 & 9.7 & 12.9 & 11.6\end{array}\) \(\begin{array}{lllll}15.4 & 16.6 & 16.5 \quad 19 & 16.9\end{array}\) \(\begin{array}{lllllllllll}15.2 & 11.6 & 14.3 & 14.1 & 13.8\end{array}\) 18.116 .717 .718 .517 .8 \(9.7 \quad 8.6 \quad 11.8 \quad 9.9 \quad 10\) 19.421 .820 .723 .521 .4 \(\begin{array}{llllllllll}11.3 & 9.6 & 11.7 & 12.5 & 11.3\end{array}\) \(\begin{array}{lllllll}16.2 & 16.2 & 17.6 \quad 19 & 17.3\end{array}\) \(\begin{array}{llll}12.8 & 9.7 & 15 & 11.212 .2\end{array}\)
 13.513 .411 .111 .412 .4 \(10.815 .6 \quad 23.723 .5\);0.2 14.: 12.5 12. \(20.319 .423 .8 \quad 2321.6\) \(\begin{array}{lllllllllllll}12.7 & 13 & 10.8 & 13.1 & 12.4\end{array}\)
 \(10.7 \mathrm{13.2} \mathrm{ij.5}\) 7.2 \(\mathrm{ii.j}\)
29.734 .929 .521 .228 .8 \(\begin{array}{llll}14.7 & 10.4 & 13.4 & 12.412 .7\end{array}\) 2435.532 .633 .231 .3 \(\begin{array}{lllll}8.1 & 9 & 9.1 & 11.4 & 9.4\end{array}\) 38.217 .136 .135 .431 .7 \(13.1 \quad 15.7 \quad 11.1 \quad 12.313 .1\) 27.528 .831 .629 .229 .3 \(\begin{array}{lll}11.1 & 15.8 & 10.1 \\ 10.5 & 11.9\end{array}\) 3433.211 .532 .327 .8 \(\begin{array}{llllllllll}11.5 & 8.6 & 12.2 & 12.8 & 11.3\end{array}\) \(38.5 \quad 3733.935 .736 .3\) \(15.7 \quad 12.7 \quad 14.2 \quad 21.115 .9\) 31.536 .839 .236 .636 .0 \(11.8 \quad 13.6 \quad 14.112 .413 .0\) 38.622 .841 .530 .333 .3 \(14.812 .7 \quad 2115.316 .0\) \(16.4 \quad 2927.630 .125 .8\)
\(10.8 \quad 1111.1 \quad 9.310 .6\) \(35.3 \quad 3733.628 .133 .5\) \(14.7 \quad 11.1 \quad 18 \quad 13.514 .3\) 36.939 .134 .332 .735 .8
 26.837 .937 .221 .530 .9 \(\begin{array}{llll}18.5 & 14.9 & 8.6 \quad 12 & 13.5\end{array}\)
\(34.731 .2 \quad 3231.332 .3\) \(\begin{array}{lllllllll}13.6 & 11.4 & 9.8 & 12.2 & 11.8\end{array}\) 30.635 .435 .535 .334 .2 \(12.810 .210 .6 \quad 910.7\) \(33.733 .139 .6 \quad 35.5\) \(\begin{array}{llllll}13.1 & 12.6 & 14.7 & 9.2 & 12.4\end{array}\) 38.833 .127 .222 .130 .3

2628.229 .534 .129 .5 \(11.7 \quad 11.1 \quad 14.414 .6 \quad 12.8\) 30.530 .429 .432 .630 .7 \(10.2 \quad 9 \quad 12.1 \quad 10 \quad 10.3\) 33.336 .234 .436 .535 .1 \(13.410 .6 \quad 12.413 .7 \quad 12.5\) 27.330 .430 .431 .529 .9 \(\begin{array}{lllllllllll}12.8 & 10 & 15.4 & 11.3 & 12.4\end{array}\)

 \(20.2 \quad 2737.438 .330 .7\) \(\begin{array}{llllllllllllllll}18.8 & 12.6 & 11.6 & 13.4 & 14.1\end{array}\) \(33.633 .640 .1 \quad 29.5 \mathrm{J4} . \overline{2}\) \(12.213 .110 .9 \quad 13.2 \quad\) i2. 4 3j.7 27.5 jü. \(3 \quad 2529.6\)

Seedling Heights (ca)

Seedling Heights (cu)

Ranet Mo. Blck, Fert. Three Months Mean Four Months Mean Five Months Mean

\(20.5 \quad 21.2 \quad 15.3 \quad 18 \quad 18.8\) \(\begin{array}{lllllllllllll}12.4 & 12.7 & 11.8 & 11.3 & 12.1\end{array}\)
\(\begin{array}{lllllllllll}18 & 19.4 & 15.6 & 18.3 & 17.8\end{array}\)
 \(20.2 \quad 22.5 \quad 25 \quad 20.3 \quad 22\) \(9.6 \quad 9 \quad 8.5 \quad 12.69 .93\) \(27.8 \quad 24.8 \quad 19.421 .3 \quad 23.3\) \(\begin{array}{llllllllllll}11.2 & 10.3 & 10.2 & 13.6 \quad 11.3\end{array}\) \(20.521 .215 .3 \quad 18 \quad\) id. 8 \(\begin{array}{llllll}14.5 & 11.5 & 11.6 & 9.8 & 11.9\end{array}\) 16.418 .720 .320 .919 .1 \(\begin{array}{lllllllllll}8.9 & 9.6 & 10.7 & 12.1 & 10.3\end{array}\) \(22.818 .1 \quad 23.718 .6 \quad 20.8\) \(12.4 \quad 10.6 \quad 10.5 \quad 0.7 .19 .9\) ! \(0.617 .419 .414 .7!7.9\) 9.7 !2.9 \(1!.510 .2 \quad 11.1\) 23.521 .421 .222 .122 .1 \(\begin{array}{llllllllllll}12.6 & 11.2 & 12 & 11.5 & 11.8\end{array}\) \(20.714 .5 \quad 20.3 \quad 2018.9\)
 \(20.622 .3 \quad 11 \quad 2720.2\) \(\begin{array}{lllllllll}11.6 & 11.9 & 9.8 & 11.1 & 11.1\end{array}\) \(\begin{array}{lllllllll}16.5 & 13.7 & 15.4 & 17.6 & 15.9\end{array}\) 9.9 \(\mathbf{1 2 . 3} 11.1\) ! :

1ć.4
12.0 i3.9 jó 11.313 .3
24.222 .819 .721 .622 .1
\(10.4 \quad 11.1 \quad 11.1 \quad 10.510 .8\)
24.823 .520 .721 .522 .6
\(\begin{array}{llll}13.2 & 11.1 & 11.9 & 11.612 .0\end{array}\)
20.114 .818 .523 .219 .2
\(\begin{array}{llllllllll}12.3 & 12.8 & 14.9 & 13.1 & 13.3\end{array}\)
19.218 .420 .121 .719 .9
\(\begin{array}{lllllll}11.1 & 15.4 & 12.8 & 12.3 & 12.9\end{array}\)
\(\begin{array}{llll}18 & 21.6 \quad 19.6 \quad 21 & 20.1\end{array}\)
\(11.18 .9 \quad 9 \quad 12.2 \quad 10.3\)
21.724 .628 .320 .223 .7
\(12.7 \quad 10.610 .7 \quad 10.411 .1\)
20.622 .316 .716 .519 .0
\(\begin{array}{llllll}12.5 & 12.8 & 12 & 14.9 & 13.1\end{array}\) \(22.314 .4 \quad 22 \quad 2220.2\)
\(9.1 \quad 9.7 \quad 10.7 \quad 12.3 \quad 10.5\)
22.924 .124 .719 .122 .7
\(\begin{array}{lllll}13.5 & 11.2 & 9.4 & 9.9 & 11\end{array}\)
24.623 .823 .618 .722 .7
\(\begin{array}{lllllllllllllll}10 & 10.7 & 11.8 & 13.1 & 11.4\end{array}\)
\(14.7 \quad 19.6 \quad 19.2 \quad 1116.1\)
\(\begin{array}{llllllllllll}10 & 10 & 14.1 & 10.9 & 11.3\end{array}\)
36.228 .726 .929 .130 .2 \(\begin{array}{llllll}13.6 & 13 & 12 & 11.2 & 12.5\end{array}\) \(32.235 .3 \quad 27.631 .731 .7\)
 \(\begin{array}{llll}36 & 39.7 & 43.2 & 29 \\ 37.0\end{array}\) \(\begin{array}{lllll}10.1 & 9.3 & 8.2 & 13 & 10.2\end{array}\)
\(46.9 \quad 4435.1 \quad 37.7 \quad 40.9\) \(11.2 \quad 10.3 \quad 10.6 \quad 14 \quad 11.5\)
3729.434 .427 .332 .0 \(\begin{array}{lllll}16.5 & 11.5 & 11.9 & 9.8 & 12.4\end{array}\) 34.932 .533 .322 .230 .7

9 9.6 :1..: :2.: 12.5 39.2 ㅈ‥: \(39.232 . ? 33.2\) 12.2 19.210 .410 .210 .8 \(32.4 \quad 33 \quad 22 \quad 2528.1\)

40.536 .337 .133 .836 .9

2952.127 .430 .529 .8
\(12.6 \quad 12.9 \quad 10.2 \quad 12.4 \quad 12.0\)
\(3635.8 \quad 14.342 .9 \quad 32.3\)
\(\begin{array}{llll}11.6 \quad 12.2 & 12 & 21.5 & 11.8\end{array}\)
\(30.628 .1 \quad: \quad 3327.7\)

30.590 .513 .518 .425 .7 10.916 .616 .111 .113 .7 36.126 .930 .630 .231 .0 10.711 .111 .210 .811 .0 \(44.424 .5 \quad 22 \quad 3832.2\) \(13.111 .212 .1 \quad 1212.1\) 21.115 .231 .436 .626 .1 \(\begin{array}{llll}11.7 & 13 & 15.1 & 13 \\ 13.2\end{array}\) \(30.219 .5 \quad 3432.129 .0\) \(11.9 \quad 15.5 \quad 13.212 .6 \quad 13.3\) 32.125 .135 .137 .532 .5 \(\begin{array}{llllllllllll}10.8 & 8.8 & 9.2 & 12.1 & 10.2\end{array}\) 37.842 .747 .536 .741 .2 12.710 .710 .810 .311 .1 \(22.5 \quad 40 \quad 17.418 .3 \quad 24.6\) \(1313.112 .1 \quad 1513.3\) 34.825 .137 .228 .131 .3 \(9.2 \quad 10.1 \quad 1112.310 .7\) 38.238 .937 .625 .235 .0 \(\begin{array}{llllllllllll}13.6 & 11.5 & 9.2 & 10.4 & 11.2\end{array}\) 41.342 .443 .221 .737 .2 \(\begin{array}{llllllllllll}10.4 & 11.1 & 11.7 & 13 & 11.6\end{array}\) \(\begin{array}{llll}38.2 & 39 & 37.4 & 20\end{array} 33.7\) \(\begin{array}{llllllllllll}10.2 & 9.9 & 14.1 & 10.6 & 11.2\end{array}\)

Seedling Heights (cr)

Seedling Heights (ca)


```


[^0]:    taken from O'Reilly et al. (1982)
    taken from Verheggen and Farmer (1983)

