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Abstract 

The aim of this study was to compare the effect of pre-exercise and exercise 
ingestion of fructose and glucose during prolonged cycling exercise. The primary 
purpose was to determine if ingesting fructose before and during exercise was as 
beneficial or more beneficial than glucose ingestion. Seventeen trained subjects 
performed a control cycle to exhaustion. At least one week later, each subject 
performed a second ride to exhaustion ingesting either fructose or glucose before 
and during exercise. Blood was drawn before and at timed intervals during 
exercise to determine blood glucose, lactate and free fatty acid (FFA) levels for all 
three conditions (control, fructose, glucose). Gas measurements (Beckman 
Metabolic Measurement Cart) were taken at approximately 10 minute intervals, 
to ensure each subject was cycling at 75% VOg max. and to determine respiratory 
exchange ratio (RER). 

Exercise time to exhaustion for the control group was significantly less («= = .05) 
than either the fructose (p < .02) or glucose (p < .001) group, but the fructose and 
glucose groups were not significantly different from each other. Blood glucose 
levels in the fructose group remained more stable than the glucose group and 
actually increased throughout the exercise test to exhaustion. Prior to the onset 
of exercise, the blood lactate level of the control group was significantly (<»= = .05) 
lower than either the fructose (p < .002) or the glucose (p < .01) group. The 
fructose and glucose groups did not show any significant differences in blood 
lactate over time. There were no significant differences in blood FFA between the 
treatment groups during the exercise test to exhaustion, but the control group 
FFA level was significantly («: = ,05) higher than that of the fructose group (p < 
.02) prior to the onset of exercise. All three groups demonstrated gradual declines 
in RER throughout the exercise test to exhaustion. 

In this study it was established that fructose and glucose are of equal value in 
prolonging exercise time to exhaustion in endurance cycling performance. 
Ingesting fructose before and during exercise allowed for a more constant supply 
of glucose to be available to the working muscles than glucose ingestion. The 
more stable blood glucose levels with fructose ingestion may be beneficial in 
reducing perceived exhaustion, increasing mental alertness and postponing the 
athletes' perception of 'hitting the wall’, thereby allowing for an enhancement in 
exercise performance. 

V 
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Chapter 1 

INTRODUCTION 

Purpose 

Seventeen endurance athletes were studied to compare the effect of pre- 

exercise and exercise ingestion of fructose and glucose during prolonged 

cycling exercise. The primary purpose of this experiment was to determine if 

ingesting fructose before and during exercise is as beneficial or more beneficial 

than glucose ingestion before and during exercise. A control condition was 

included to establish a baseline. Exercise time to exhaustion as well as other 

dependent variables were measured to compare the effectiveness of these 

dietary manipulations. 

Significance of Study 

Ingesting glucose before an endurance event is a method utilized by 

many athletes. Many problems are evident with this regimen. Ingesting 

glucose before an endurance event results in the stimulation of an insulin 

response, thereby producing h5^erinsulinemia (Hasson & Barnes, 1987). This 

overproduction of insulin retards the process of glycogenolysis, inhibits free 

fatty acid mobilization and may result in an insulin-induced h5^oglycemic 

condition. The actively contracting skeletal muscle will quickly become 

depleted of muscle glycogen, commonly reducing performance (Costill, Coyle, 

Dalshy, E^ans, Fink & Hoopes, 1977; Foster, Costlll & Fink, 1979). 
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Various studies (Fielding et al. 1985; Murray et al. 1987; Okano et al. 

1988) have shown fructose ingestion to be of benefit during endurance events. 

Fructose ingestion may overcome some of the adverse side effects observed 

following ingestion of a large dose of glucose (Hasson & Barnes, 1987), 

Fructose does not require insulin to enter the cell (Hasson & Barnes, 1987; 

Schwarz et al. 1989), therefore hypoglycemia does not occur. Furthermore, 

fructose ingestion has been shown to increase free fatty acid (FFA) mobilization 

(Addington & Grunewald, 1987; Guezennec et al. 1989; Hargreaves, Costill, 

Katz & Fink, 1985) thereby offering an alternative energy source to the working 

muscles, possibly postponing fatigue. Some studies (Hargreaves et al. 1985; 

Koivisto, Karonen & Nikkila, 1981; Levine, Eivans, Cadarette, Fisher & Bullen, 

1983) also show glycogen sparing with fructose ingestion. 

The advantages of fructose ingestion may suggest endurance 

performance enhancement and therefore warrant further investigation. To 

date, it would not appear that the effects of fructose ingestion have been 

directly compared to the effects of glucose ingestion under the procedure 

outlined in the present investigation. Questions pertaining to fructose 

ingestion as an ergogenic aid can be more clearly answered in an experiment 

comparing the effects of fructose ingestion to glucose ingestion on endurance 

exercise performance. 

Delimitations 

1. - the subjects consisted of 17 trained endurance athletes (mean VO2 max = 
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61 ml/kg) with an average age of 23 years. 

2. - the independent variables include the dieteiry manipulation before and 

during prolonged cycling exercise by means of glucose ingestion, fructose 

ingestion or the ingestion of an artificially sweetened placebo. 

3. - the dependent measures include the performance variable of exercise time 

to exhaustion, blood levels of glucose, lactate, free fatty acids (FFA), and gas 

measurements of respiratory exchange ratio (RER), 

4. - an alpha (<«) level of .05 was used for the statistical analysis of the various 

measured parameters. 

5. - subjects were aweure of the methodology of the experiment, however the 

subjects were not informed of the experimenter's hypothesis, nor were they 

aware of which supplement they ingested. 

6. - verbal encouragement was equally given to all subjects, although the only 

indicator used for assessing maximal work efficiency was exercise time to 

exhaustion for each subject. 

Limitations 

1. - genetic endowment and psychological components (ie. motivation, 

competitiveness) cannot be controlled in this study. 

2. - diet was not controlled in the present study. All subjects were advised to 

continue their normal dietary habits. Subjects were required to keep a 

detailed dietary diary for the seven days preceding each cycling ride to 

exhaustion in order to monitor individual diets as precisely as possible. 
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3. - individual exercise programs were unable to be controlled as many of the 

subjects were highly trained endurance athletes, competing at provincial and 

national levels. Tlie subjects were required to keep an exercise diary for the 

duration of the study and were asked to refrain from physical activity for 24 

hours preceding the cycling ride to exhaustion. 

4. - a learning effect may have occurred during the second exercise test to 

exhaustion. Subjects were not informed of the duration of their first cycle to 

exhaustion, nor were they permitted to record exercise duration. 

5. - respiratory exchange ratio cannot be statistically analysed since 

measurements were not taken at predetermined intervals. 
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Definitions 

Absorption. The movement of a particular substance through a cellular wall. 

Anaerobic Threshold (ATI. The point at which the metabolic demands of 

exercise can no longer be met by available aerobic sources and at which an 

increase in anaerobic metabolism occurs, reflected by an increase in blood 

lactate concentration. 

Cori Cycle. The process by which liver and muscle glycogen contribute to the 

increase in blood sugar brought about by epinephrine. 

Gluconeogenesis. The metabolic process by which glucose is formed from non- 

carbohydrate precursors, which include lactate, p5o*uvate, glycerol and the 

amino acids. It is a specialized function of the liver and kidneys and involves 

the Cori and the Glucose-Alanine Cycles. 

Glvcogenolvsis. TTie metabolic breakdown of glycogen. 

Glycogen Synthetase. The rate limiting enzyme for glycogen S5mthesis, 

responsible for the addition of one molecule of glucose to the glycogen chain. 

Glycolysis. The metabolic pathway of glucose breakdown in mammalian cells 

that proceeds by a specific route, involving specific steps (intermediate 

products), in which each step is catalyzed and regulated by a specific enzyme. 

Lactate Threshold (T^^^t^. The point where lactic acid metabolization cannot 

keep up to lactic acid production, so a non-linear increase in blood lactate 

occurs. 
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Metabolism. All of the chemical reactions that occur within a living organism. 

Onset of Blood Lactate Accumulation fOBLAl. The exercise intensity that 

elicits a blood lactate concentration of 4 mM. It is a good means of predicting 

performance in various forms of endurance exercise. 
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Chapter 2 

REVIEW OF LITERATURE 

Introduction 

Fructose has been a human dietary food from the time when prehistoric 

humans first tasted honey and found enjoyment in the sweet substance. Since 

then, sugars in one form or another have become an increasing component of 

the human diet (Chen & Whistler. 1977). Recent changes in the use of 

commercial sweeteners has increased the fructose levels in manufactured 

foods and has increased the availability of fructose or fructose-containing 

sweeteners for home use (Crapo & Kolterman, 1984). This is due to recent 

commercial availability of pure crystalline fructose and the increased 

commercial use of high fructose com symps. 

The major sources of natural fmctose are fmits and honey. Dried figs, 

dates, prunes and grapes contain the largest amounts of fmctose (Ravich, 

Bayless & Thomas, 1983). In recent years, fmctose has been produced and 

offered not only as a very sweet sugar but as a beneficial sweetening agent for 

people with certain metabolic disorders. Fmctose is also beneficial due to its 

ease of metabolism. Many athletes claim it provides a quick source of energy 

(Chen & Whistler, 1977). Numerous scientific articles (Guezennec et al. 1989; 

Hargreaves et al. 1985; Koivisto et al. 1981; Levine et al. 1983) have 

documented the beneficial effects of fructose in endurance activities. 
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A Comparison of Glucose and Fructose 

Fructose is a six-carbon monosaccharide and is the sweetest of aU 

natural sugars (Niewoehner, Gilobe, Nuttal & Nuttal, 1984). Fructose is an 

isomer of glucose, having the same chemical formula (Cg Hj2 Og), but a 

different structure. The differences in these related molecules are enough that 

fructose ingestion does not initiate an insulin response from the pancreas 

(Bohannon, Karam & Forsham, 1980; Koivisto et al. 1981; MacDonald, Keyser 

& Pacy, 1978), however fructose is readily converted to glucose in the liver 

(Chen & Whistler, 1977; Nilsson & Hultman, 1974). Since fructose does not 

initiate an insulin response, glycogenolysis of liver glycogen can occur to meet 

the energy requirements during exercise when blood glucose levels decline. 

This allows blood glucose to become available to the exercising skeletal 

muscles. Ingesting fructose may overcome some of the adverse side effects (ie. 

hypoglycemia) observed following ingestion of a large dose of glucose (Hasson 

& Barnes, 1987). These unique characteristics (ie. fructose uptake into 

skeletal muscle tissue is insulin independent, and can be utilized by skeletal 

muscle tissue and metabolized similarly to glucose) provide a basis for fructose 

utilization as an ergogenic aid (Chen & Whistler, 1977; Gammeltoft, Kruhohher 

& Lundsgasird, 1944; Hasson & Barnes, 1987; Nilsson & Hultman, 1974). 

When blood circulates past the liver, fructose is taken up by liver cells, 

where enzymes rearrange the carbon, hydrogen and oxygen atoms to make 

compounds similar to those derived from glucose and also to make glucose 
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itself (Coggan & Swanson, 1992; Whitney & Hamilton, 1987), When glucose 

enters the liver cell it is converted to glucose-6-phosphate, with the aid of the 

enzyme glucokinase, and enters the glycolytic pathway where it is ultimately 

converted to glycogen (Van den Berghe, 1986). Fructose, on the other hand, is 

converted to fructose-1-phosphate by the enzyme fructokinase when it enters 

the liver cell. With the help of fructose bisphosphate aldolase, fructose-1- 

phosphate is converted into two triose molecules prior to conversion to 

glucose-6-phosphate and then enters the glycol)dic pathway with glucose 

(Nuttall, Gilboe, Gannon, Niewoehner & Tan, 1988). WTien compared with 

glucose, fructose is more rapidly metabolized by the liver (Chen & "Whistler, 

1977; Heinz, Lamprecht & Kirsch, 1968;) through the specific fructose-1- 

phosphate pathway (Heinz et al. 1968; Van den Berghe, 1986). 

Fructose and glucose are not used by the body in exactly the same 

manner. A problem with ingesting glucose before an endurance event is that 

increased blood glucose concentrations can stimulate an insulin response from 

the pancreas, resulting in h5^erinsulinemia (Hasson & Barnes, 1987). An 

overproduction of insulin retards the process of glycogenolysis, inhibits free 

fatty acid (FFA) mobilization, and ultimately may result in an insulin-induced 

hypoglycemic condition (Hasson and Barnes, 1987). The actively contracting 

skeletaljnuscle will auicklv become depleted of muscle filvcofien. commonlv 

As discussed, fructose does not stimulate insulin secretion nor require 
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the presence of insulin to gain access to the intracellular compartment 

(Schwarz et al. 1989). Consequently, fructose does not produce the 

hyperinsulinemic effect found with glucose. 

During endurance events, blood glucose is increasingly utilized as the 

primary fuel source (Hultman, 1967). Following glucose ingestion, blood 

glucose concentration is initially elevated, but falls rapidly below normal levels 

due to an exponential over-compensation of insulin production. Following the 

ingestion of fructose, blood glucose concentration is initially elevated and 

remains elevated during exercise through glycogenolysis. Therefore, a greater 

supply of blood glucose will be available during the critical time frame when 

both exercising skeletal muscle and brain tissue compete for available 

carbohydrate fuel sources. As a result, fructose ingestion might eliminate 

many s5nnptoms of fatigue (weakness, dizziness and disorientation) observed 

during endurance exercise activities (Hasson & Barnes, 1987). 

Blood Glucose Response to Exercise 

Exercise alters circulating levels of blood glucose (Brooks & Fahey, 

1984). In short duration, high intensity exercise, blood glucose rises above 

resting levels due to the stimulation of hepatic glycogenolysis by the autonomic 

nervous system (Brooks & Fahey, 1984). The ability of the liver to maintain a 

high rate of glucose release during exercise is limited by the amount of stored 

glycogen and by the activities of glycogenol5dlc and gluconeogenic enzymes 

(Brooks & Fahey, 1984). 
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During prolonged exercise, glucose production may be limited because of 

glycogen depletion, resulting in a reduced availability of blood glucose for the 

working muscles. The glucose that is available is directed to essential tissues, 

such as the brain and the central nervous system (CNS). When blood glucose 

levels fall, the exercise becomes more difficult due to CNS starvation and a lack 

of energy sources to the exercising muscles (Brooks & Fahey, 1984). 

Absorption and Metabolism of Fructose and Glucose 

Taken orally, fructose is absorbed by the small intestine at rates that are 

roughly half of those of other monosaccharides such as glucose or galactose 

(Chen & Whistler, 1977; Dencker, Lunderquist, Meeuwisse, Norryd & 

Tranberg, 1972). Since fructose is absorbed slowly from the small intestine, it 

does not cause abrupt changes in the serum levels of carbohydrates, resulting 

in little, if any, effect on insulin secretion. 

The pathway of fructose absorption into the small intestine differs from 

that of glucose. Glucose is actively transported across the intestinal 

epithelium, whereas fructose is absorbed via facilitated diffusion fVan den 

Berghe, 1986). As a result, fructose is absorbed from the proximal small 

intestine at a rate slower than that of glucose, resulting in comparatively 

slower fluid absorption rates (Coggan & Swanson, 1992; Holdsworth & 

Dawson, 1964). This slower rate of fructose absorption is considered to be the 

cause of the gastrointestinal distress and diarrhea that often accompanies the 

ingestion of large amounts of this sugar (Coggan & Swanson, 1992; Ravich et 



12 

al. 1983). 

Fructose is transported to the liver from the small intestine by way of the 

hepatic portal system. In healthy individuals, 70 to 90% of ingested fructose 

enters the portal circulation as fructose (Levine et al. 1983). Similarly, in a 

fasted state, most of the glucose formed in the liver is converted to glycogen 

and consequently there is no significant rise in plasma glucose or insulin 

levels. The liver is the principal site of fructose metabolism (Chen & Whistler, 

1977). 

From the circulation, fructose is taken up by the liver (Van den Berghe, 

1986). Up to 85% of orally administered fructose undergoes metabolism in the 

liver (Adelman, Spolter & Weinhouse, 1966). The metabolism of fructose 

begins when the molecule is acted upon by enzymes. When fructose is 

metabolized in the liver, the first step involves a phosphorylation to fructose 1- 

phosphate by fructokinase (Cori, Ochoa, Skein & Cori, 1951; Hers & Kusaka, 

1953; Newsholme & Leech, 1983). This en2yme is about ten times more active 

than the combined activities of the two enzymes, glucokinase and hexokinase, 

necessary for glucose phosphorylation (Mayer & Laker, 1986). Fructose 

metabolism also bjqrasses the first regulatory enzyme of the glycolytic pathway 

(phosphofructokinase), therefore metabolizing fructose faster than glucose, as 

well as providing lactate, a precursor for glycolysis and gluconeogenesis (Van 

den Berghe, 1986). 

Following phosphorylation, fructose-1-phosphate is split by fructose- 
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bisphosphate aldolase into two triose molecules, glyceraldehyde and 

dihydroxyacetone phosphate (Hers & Kusaka, 1953). Glyceraldehyde is 

phosphorylated to glyceraldehyde 3-phosphate by the enz3nne triokinase. The 

activity of these enzymes is subject to dietary composition and hormonal 

control. After 48 to 72 hours of fasting, fmctokinase, fmctose-bisphosphate 

aldolase and triokinase decrease to at least half their normal activity but are 

restored to normal after 24 hours upon fructose administration. Adelman et 

al. (1966) found that long term feeding of fructose resulted in the maintenance 

of a considerably higher level of all three enz5nnes, an effect also seen with rats 

maintained on a high fat or high protein diet. Depending on the honnonal 

control of the pathways, the triose phosphates are further metabolized to 

glucose (gluconeogenesis) or to pyruvate (glycolysis) (Newsholme & Leech, 

1983). 

Glyceraldehyde is then usually metabolized to lactic acid, whereas 

dihydroxyacetone phosphate is t5rpically metabolized in the Citric Acid Cycle to 

produce carbon dioxide and water (Hers & Kusaka, 1953). 

Fructose is taken up directly in muscles (Bergstrom & Hultman, 1967) 

and adipose tissue (Froesch & Ginsberg, 1962). In humans, the uptake of 

administered fructose into the muscles occurs directly from the blood stream, 

whereas administered glucose will not pass the membrane barriers from blood 

to muscle. Bergstrom et al. (1972) proposed that fructose is taken up by 

skeletal muscle tissue and used without first being metabolized in the liver or 
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other tissues. Various studies (Bergstrom & Hultman, 1967; Miller, Drucker, 

Owens, Craig & Woodward, 1952; Weichselbaum, Elman & Lund, 1950) have 

revealed that fructose is more rapidly metabolized, resulting in a lower total 

sugar concentration in the blood than when an equal amount of glucose is 

given. Fructose has been reported (Thoren, 1964) to have a less irritant effect 

on peripheral veins than glucose, implying that fructose solutions for 

intravenous use can be given in higher concentrations. 

Crapo and Kolterman (1984) studied the metabolic effects of a 2-week 

feeding of fructose (63 to 99 grams/day) and found that large amoimts of 

fructose are rapidly taken up by the liver and are converted to lactate and 

pyruvate, which are subsequently released into the peripheral circulation. 

This enhanced lactate response is probably due to the substrate flux exceeding 

the capacity of p5n^vate dehydrogenase to oxidize p3n*uvate to acetyl-CoA 

(Schwarz et al. 1989). 

Froesch (1972) studied the metabolism of fructose in adipose tissue and 

concluded that fructose is transported by a different mechanism than that of 

glucose and by a system that is not insulin-dependent. As in the liver, adipose 

tissue metabolism of fructose is rapid and is accomplished with the 

participation of fructokinase (Adelman et al. 1966) and a non-specific 

hexokinase (Froesch & Ginsberg, 1962; Gromova, 1965). 

Decombaz et al. (1985) discovered that alter fructose ingestion, some 

fructose is absorbed in the blood since the concentration of blood fructose 
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increased fourfold. This indicated that fructose is utilized for energy as 

efficiently as glucose and contributed significantly to the energy supply. 

The stimulation of the insulin release with glucose ingestion has an 

inhibitory effect on lipolysis {Carlstrom, 1969; Galbo, Holst & Christensen, 

1979). This inhibitory effect decreases the utilization of free fatty acids (FFA) 

as an energy source, thereby further depleting carbohydrate stores. 

Furthermore, a h5^erinsulinemic decline of blood glucose wiU not initiate 

glycogenolysis because high concentrations of insulin retard the release of 

glucagon from the pancreas (Bohannon et al. 1980). As stated previously, 

fructose ingestion does not result in an increased insulin secretion as does 

glucose (Koivisto et al. 1981). It therefore follows that the anti-lipol5dic effect 

observed with glucose feedings should not occur with fructose feedings. In a 

recent study on rats (Addington & Grunewald, 1987), the fructose fed animals 

had the greatest increase in circulating FFA compared to rats fed glucose or 

sucrose. The results of two studies (Koivisto et al. 1985; McMurray, Wilson & 

Kitchell, 1983) found that fructose ingestion did not reduce the levels of 

circulating FFA as dramatically as glucose ingestion. In fact, free fatty acid 

utilization was actually enhanced following fructose ingestion. Glycogen 

sparing, attributable to enhanced FFA mobilization and utilization, exerts a 

beneficial effect on endurance performance (Hickson, Rennie, Conlee, Winder & 

Holloszy, 1977; Ivy, Costill, Fink & Lower, 1978; Rennie, Winder & Hollos^, 

1976). 
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Bergstrom and Hultman (1967) reported that during fructose infusion, 

splanchnic lactate output may be converted to lactic acid in the liver. 

However, in the four experiments performed by Bergstrom and Hultman 

(1967), the lactate production was much less than the fructose uptake, 

suggesting that a large part of the fructose supplied to the splanchnic region is 

stored in the liver as glycogen, or converted in some other way. Previously, 

Mendeloff and Weichselbaum (1953) reported similar results. 

The relationship between administered fructose and lactate may be 

explained as follows. Fructose is transported by a specific carrier into the 

absorptive cells of the intestine, where it may be metabolized to lactate in the 

epithelial cells, or enter the hepatic portal circulation as fructose (Newsholme 

& Leech, 1983). The results presented by Decombaz and coworkers (1985) 

confirm that lactate is released into the circulation after fructose ingestion. 

Fructose administration has also been associated with lactic acidosis (Woods & 

Alberti, 1972). 

Insulin and Glucagon Response to Exercise 

In order to understand the mechanism by which exogenous 

carbohydrate is used as an energy source during prolonged exercise, the 

response of insulin and glucagon should be discussed. Insulin and glucagon 

are protein hormones which provide the immediate control of blood glucose 

levels. Insulin is secreted by the Islets of Langerhans (beta cells) that 

stimulate glucose uptake by many cells, of which muscle and adipose tissue 
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are most important (Brooks & Fahey, 1984). The alpha cells of the pancreas 

secrete glucagon. When blood glucose levels are high, insulin is secreted, 

promoting the removal of glucose from the blood, whereas glucagon is secreted 

when blood glucose levels are low, acting to raise blood glucose levels. 

Glucagon has two effects on hepatic metabolism: 1) enhanced glycogenolysis 

and 2) increased gluconeogenesis (Brooks & Fahey, 1984), 

Brain cells and erythrocytes depend on glucose for fuel, however they do 

not depend on insulin for glucose uptake. Increased glucose uptake usually 

stimulates glycogen synthesis in muscle, and fat synthesis in adipose tissue. 

Glucose uptake from blood causes a reduction in blood glucose levels (Brooks 

& Fahey, 1984). 

Insulin is primarily affected by the time at which glucose is ingested. In 

an attempt to provide carbohydrates to contracting muscles, it has been 

observed that glucose ingestion 30 to 60 minutes before exercise causes an 

increased blood glucose concentration, resulting in an increased insulin 

secretion (Foster et al. 1979: Koivisto et al. 1981). This h5^erinsulinemia is 

followed by a rapid exercise- and insulin-induced decrease in blood glucose 

concentration and greater depletion of muscle glycogen (Newshobne, 1979), 

The stimulation of the insulin release has an inhibitory effect on lipolysis 

(Galbo et al. 1979). With glucose ingestion, this inhibitory effect on lipolysis 

decreases the utilization of FFAs as an energy source, thereby further depleting 

carbohydrate stores and hindering endurance performance. 
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When glucose is ingested during exercise, the insulin response is 

different. Exercise leads to a decrease in plasma insulin levels, in preparation 

for the increased glucose needs of the exercising muscles (Coyle & Coggan, 

1984). Coyle and Coggan (1984) concluded that hyperglycemia and 

h5rperinsulinemia following carbohydrate ingestion is prevented if the 

carbohydrate is given during rather than 30 minutes before exercise. 

Requirements for glucose in muscle during even moderate intensity 

exercise tend to cause a decline in blood glucose. This decline is compensated, 

at least partly, by the release of glucose from the liver and also from the 

kidney. During exercise, blood glucose levels may actually rise as a result of 

this accelerated release. Due to the increased glucose needs during exercise, 

glucose uptake eventually exceeds release and blood glucose levels fall, with a 

similar decline in insulin levels (Brooks & Fahey, 1984). 

The decline in blood glucose and insulin levels helps minimize glucose 

uptake by non-active tissue, thereby sparing blood glucose for active muscle 

and brain. Falling glucose and insulin levels help to spare blood glucose and 

muscle glycogen by enhancing lipolysis and making FFA available in the 

circulation for both active and non-active tissues (Brooks & Fahey, 1984) 

Endurance training affects the secretion of various hormones (Brooks & 

Fahey, 1984). The hormonal response is reduced during exercise. 

Glucoregulatory hormones released during exercise (ie. insulin, glucagon and 

catecholamines) are released to a lesser extent in trained individuals. During 
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exercise, insulin does not fall as far as in the untrained and results in higher 

insulin levels in trained athletes during exercise (Brooks & Fahey, 1984). In 

trained athletes, the increase in FFA utilization and gluconeogenesis results in 

better control of blood glucose levels (Brooks & Fahey, 1984) 

During prolonged exercise, the blood glucagon level rises as glucose and 

insulin levels fall (Brooks & Fahey, 1984). In trained athletes, the plasma 

glucagon levels are greatly reduced, allowing blood glucose levels to be 

maintained at a more constant level throu^out the duration of exercise. 

Therefore, both the insulin and glucagon responses help to maintain blood 

glucose homeostasis (Brooks & Fahey, 1984). 

Fructose Ingestion and Endurance Performance 

Numerous studies have examined carbohydrate ingestion and endurance 

performance. Fructose ingestion may prove beneficial during prolonged 

intense physical activity. The reduced insulin response (Hasson & Barnes, 

1987; Schwarz et al. 1989), elevated blood glucose levels (Koivisto et al. 1981), 

increased availability of FFAs as an energy source (Addington & Grunewald, 

1987; Guezennec et al. 1989; Hargreaves et al. 1985; Koivisto et al. 1981), and 

lower muscle glycogen depletion (Hargreaves et al. 1985; Koivisto et al. 1981; 

Levine et al. 1983) all point to the possibility that fructose may be a preferred 

carbohydrate source during prolonged exercise. 

Positive Results with Fructose Ingestion 

Hargreaves et al. (1985) examined the effects of pre-exercise glucose and 
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fructose ingestion on muscle glycogen usage during exercise. The exercise 

consisted of 30 minutes of cycling exercise at 75% VO2 max. The results 

revealed a trend for muscle glycogen use to be lower during fructose rather 

than glucose ingestion. They concluded that the adverse effects of pre-exercise 

glucose ingestion do not appear to be observed with fructose ingestion. Due to 

the blunted glucose and insulin responses with fructose, this carbohydrate 

may be suitable for pre-exercise ingestion. 

Perhaps the major benefit of fructose feeding is the maintenance/ 

supplementation of liver carbohydrate stores (Hargreaves et al. 1985). 

Therefore, fructose may be of benefit prior to prolonged exercise by providing a 

carbohydrate source for later use, without stimulating muscle glycogenolysis 

during the early stages of exercise. The authors (Hargreaves et al. 1985) 

concluded that the relationship between fructose ingestion, muscle glycogen 

use and prolonged exercise performance deserves further investigation. 

Levine and coworkers (1983) compared the effects of pre-exercise 

glucose, fructose and placebo ingestion on 30 minutes of treadmill running at 

75% VO2 max. Each test was preceded by 3 days of a high carbohydrate diet. 

Muscle glycogen depletion, as determined by pre- and post-exercise muscle 

biopsies, was significantly less during the fructose trial than during the 

glucose or placebo trials (Levine et al. 1983). This glycogen sparing during the 

fructose trial occurred while similar levels of carbohydrate oxidation appeared 

to occur in both fructose and glucose trials, as evidenced by respiratory 
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exchange ratio (RER) values. The authors state that fructose ingested 45 

minutes before a 30 minute bout of submaximal exercise will maintain stable 

blood glucose and insulin concentrations, which may lead to the observed 

sparing of muscle glycogen. Levine et al. (1983) suggested that the mechanism 

for the observed glycogen sparing, as well as the extent to which this sparing 

would continue during more prolonged (1 hour +) exercise (ie. when glycogen 

reserves become critical) deserves further investigation. 

Pre-exercise glucose, fructose and a placebo were compared during 30 

minutes of cycling exercise at 75% VO2 max (Koivisto et al. 1981). Glucose 

ingestion prior to exercise resulted in h5rpoglycemia during exercise, causing a 

depletion of muscle glycogen stores. Conversely, fructose ingestion was 

associated with only a modest rise in plasma insulin and hypoglycemia did not 

occur during exercise. After fructose ingestion and before exercise, the rise in 

plasma insulin was only one-third of that observed after the ingestion of 

glucose (Koivisto et al. 1981). The fall in blood glucose during exercise in the 

fructose group was less than one-fifth of that after glucose feeding. These 

findings emphasize that elevated insulin levels can cause a decline in blood 

glucose during exercise. 

In the study by Koivisto et al. (1981), it was demonstrated that plasma 

FFA levels were lower after glucose ingestion when compared to ingestion of 

fructose or a placebo. Since FFA uptake by the working muscle is dependent 

on substrate availability (Ahlborg & Felig, 1977; Ahlborg, FeUg, Hagenfeldt, 
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Hendler & Warren, 1974), decreased FFA concentrations after glucose 

ingestion may result in decreased FFA utilization (Randle, Garland, Hales & 

Newsholme, 1963) and enhanced glucose uptake during exercise. This 

increased glucose uptake could possibly result in earlier depletion of muscle 

glycogen, thereby decreasing exercise time to exhaustion. 

Guezennec et al. (1989) examined the oxidation of com starch, glucose 

and fmctose ingested 60 minutes before cycling exercise at 60% VO2 max for 

120 minutes. The plasma glucose and insulin concentration significantly 

increased in response to glucose and com starch feedings. These high plasma 

insulin values resulted in a significant transient reduction in plasma glucose 

in the first hour of exercise and blunted plasma FFA and glycerol 

concentrations when compared to the values observed with fmctose ingestion, 

Fmctose did not modify plasma glucose or insulin concentrations. This study 

demonstrated higher FFA utilization during the last hour of exercise with 

fmctose and also reflected higher glycerol levels during the last 1.5 hours with 

fmctose as compared to glucose and com starch. Furthermore, during the 

final 30 minutes of exercise, the amoimt of substrate oxidation with fmctose 

was significantly less than with com starch or glucose. The lower rate of 

exogenous fmctose utilization could be associated with an increased fat 

utilization (Bjorkman, Sahlin, Hagenfeldt & Wahren, 1984; Hargreaves et al. 

1985) resulting from enhanced lipolysis due to the low plasma insulin level 

(Ahlborg & Felig, 1977) and/or to a reduction of glycerol conversion into 
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glucose (Hodges & Krehl, 1965). The enhanced plasma FFA and glycerol levels 

associated with pre-exercise fructose feedings in the study by Guezennec et al. 

(1989) suggest an increased fat mobilization. 

Other researchers (Okano et al. 1988) compared pre-exercise fructose 

ingestion to a placebo during cycling exercise to exhaustion with 12 trained 

male subjects. For all subjects, exercise began 60 minutes after the ingestion 

of 60 or 85 grams of fructose or a sweet placebo at an intensity that required 

62% VO2 max. At 90 minutes into the exercise, the intensity was increased to 

72%, then 81% of VO2 max at 120 minutes. Exercise time to exhaustion was 

significantly increased after fructose ingestion compared to the sweet placebo 

(Okano et al. 1988). Tfie results also illustrated an increase in exercise time to 

exhaustion of the 85 gram fructose group over the 60 gram group. They 

concluded that fructose ingestion is of benefit before prolonged exercise 

because it provides a carbohydrate source to contracting muscles without 

temporary h5q)oglycemia and a depression in fat utilization, thereby dela5dng 

fatigue. 

Fasted rats were studied to determine the effects of pre-exercise feedings 

of glucose, fructose, sucrose or water on substrate depletion (Addington & 

Grunewald, 1987). The water fed rats had the highest increase in FFA 

(215.4%) followed by fructose (120.8%), sucrose (69.2%) and glucose (57.5%). 

The fructose fed rats showed the greatest depletion of liver glycogen and the 

smallest decline in soleus and vastus lateralis muscle glycogen compared to 
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the rats fed other carbohydrates. This indicates that exercise-induced changes 

in substrate levels can be modified by the type of carbohydrate given before 

exercise. Utilization of muscle glycogen can be altered by the type of 

carbohydrate fed before exercise (Addington & Grunewald, 1987). As stated 

previously, the fructose fed rats demonstrated a smaller decline in soleus and 

vastus lateralis glycogen concentrations than those fed glucose or sucrose. 

The sparing of muscle glycogen in the fructose fed rats may be attributed to an 

increased utilization of alternative energy sources (ie. liver glycogen and FFAs) 

during exercise of this intensity (18 meters/min for 2 hours). 

Hasson and Barnes (1987) studied the effects of pre-exercise glucose, 

fructose and placebo ingestion during rest versus 30 minutes of cycling 

exercise at 80% VO2 max. Following the fructose exercise trial, blood glucose 

declined initially in the first 10 minutes, then increased significantly as the 

exercise continued. This increase in blood glucose concentration, resulting 

from the combined effect of fructose ingestion and exercise may be attributable 

to liver glycogenolysis (Hasson & Barnes, 1987). Fructose ingestion does not 

initiate an insulin response. Therefore, during exercise-induced declines in 

blood glucose, glycogenolysis of liver glycogen can occur. This will allow blood 

glucose to become available during the critical period when both exercising 

skeletal muscle and brain tissue compete for available carbohydrate fuel 

sources. 

Murray et al. (1987) studied the effect of various ingested carbohydrate 
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solutions (5% glucose polymer, 6% sucrose/glucose, 7% glucose 

pol5rmer/fructose, placebo) during the performance of intermittent submaximal 

(55 to 65% VO2 max) cycling, followed by a sprint bout. The mean time to 

complete the 480 pedal revolutions (sprint trial) was significantly faster for the 

glucose pol5nner/fructose trial as compared to the glucose poljmier trial, 

su^esting that the fructose may have been responsible for the faster 

performance bout at the end of 1.6 hours of intermittent cycling. 

Although much of the scientific literature supports the superiority of 

fructose ingestion on endurance performance, some of the research literature 

proves to be contradictory. 

Similar Results with Fructose and Glueosa Ingestion 

Hargreaves, Costill, Fink, King and Fielding (1987) examined the effects 

of pre-exercise carbohydrate feedings on a cycle ride to exhaustion at 75% VOg 

max. Forty-five minutes before exercise, the subjects ingested 75 grams of 

glucose, fructose or a sweet placebo, all in liquid form. No significant 

differences were observed between treatments for o^gen uptake, RER, heart 

rate or exercise time to exhaustion (Hargreaves et al. 1987). Muscle glycogen 

use during the first 30 minutes of exercise and total glycogen use were similar 

in the three trials. Despite more stable blood glucose and insulin levels with 

fructose compared to glucose, no advantage to endurance performance or 

muscle glycogen utilization during prolonged exercise was provided 

(Hargreaves et al. 1987). Furthermore, subjects in the exhausted state had as 
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much as 50 to 55 mmol/kg wet weight of glycogen remaining in their muscles 

which supports the view that factors other than glycogen depletion may have 

contributed to fatigue. Since endurance exercise of this type predominately 

depletes the slow twitch fibres of glycogen (Gollnick, Piehl & Saltin, 1974), it is 

possible that the remaining glycogen may have been present in the relatively 

non-depleted fast twitch fibres. 

Decombaz et al. (1985) studied the effect of 1 g/kg fmctose versus 

glucose ingestion, one hour before exercise. Ten trained subjects exercised on 

a cycle ergometer at 61% VO2 max for 45 minutes, followed by 15 minutes of 

all out effort (100% VO2 max). During the rest hour, blood glucose and insulin 

were lower and RER and blood lactate higher after fructose ingestion. During 

the exercise trial, the differences disappeared aside from a brief but moderate 

hypoglycemia after glucose compared to fructose ingestion. During exercise, 

no differences were observed for uric acid, glycerol, FFA or glucagon between 

^ucose and fructose as well as no glycogen differences in the vastus laterzilis 

(Decombaz et al. 1985). Although the findings do not suggest more beneficial 

results with fructose over glucose, fructose ingestion prior to exercise allowed a 

more stable glycemia although it did not increase performance. 

Furthermore, Decombaz et al. (1985) reported higher blood lactate 

values at rest with fructose ingestion. Lactate was released into the circulation 

after fructose ingestion since blood fructose concentration increased four fold. 

One cause of exhaustion during strenuous activity is thought to be lactic 
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acidosis produced by anaerobic work (Hermansen, 1981). Since a rise in blood 

lactate is well documented after fructose ingestion (Chen & Whistler, 1977; 

Koivisto et al. 1981), the question arises as to whether fructose intake 

encourages earlier exhaustion, thereby reducing work output. Although 

lactate levels were elevated at rest, there was no sign of combined action 

between fructose-induced and exercise-induced lactacidemia (Decombaz et al. 

1985). Since the workload remained predominately aerobic, it is possible that 

the circulating lactate served as a fuel for the working muscles (Ahlborg & 

Felig, 1977). The risk of earlier onset of fatigue due to fructose-induced 

lactacidemia in conjunction with anaerobic acidosis seems unlikely. 

Two studies (Chen & Whistler, 1977; Moran & McHugh, 1981) have 

indicated that large doses of fructose may cause osmotic diarrhea due to a 

faster gastric release and slower intestinal absorption than glucose. These 

problems were not observed in the study by Decombaz et al. (1985) and the 

authors state that individuals not unusually sensitive should be able to ingest 

up to 0.8 g/kg body weight of fructose without gastrointestinal problems. 

In 1987, Fielding and coworkers studied the effect of pre-exercise 

carbohydrate feedings on muscle glycogen use during 30 minutes of treadmill 

running at 70% VOg max in six well-trained runners. Thirty minutes prior to 

exercise, each runner Ingested either 75 grams of glucose, fructose or a 

sweetened placebo. During exercise no differences were reported in oxygen 

uptake, heaurt rate or perceived exertion (Fielding et al. 1987). Muscle glycogen 
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utilization in the first 15 minutes of exercise was similar as was glycogen use 

in all three groups. The results suggest that feedings of glucose or fructose 

prior to 30 minutes of treadmill running do not effect the rate of muscle 

glycogen utilization. The most significant finding was that the rate of muscle 

glycogen utilization was not affected by glucose or fructose feedings, despite 

the rapid drop in serum glucose during the first 15 minutes of exercise in the 

glucose trial. 

Slama and associates (1989) recently compared oral administration of 50 

grams of glucose or fructose in six healthy subjects during 90 minutes of 

exercise at 50% VOg max. Fructose was oxidized to approximately the same 

overall extent as glucose, yet with a significant difference in the kinetics of 

utilization. TTiis faster rate of glucose utilization may be explained in several 

ways. Firstly, in rats (Niewoehner et al. 1984) and in humans (Ravich et al. 

1983), the speed of fructose absorption by the gut is known to be only half that 

of glucose absorption. Secondly, skeletal muscle lacks the specific eruymes 

(fructokinase, aldolase B and triose kinase) required for fructose oxidation 

(Niewoehner, 1986). Since exercise promotes fuel consumption in muscle, it 

may favour glucose over fructose utilization (Slama et al. 1989). Hilrdly, the 

main fate of ingested fructose may be glycogen s5mthesis rather than glycogen 

combustion (breakdown), as fructose has been shown to be superior to glucose 

as a glycogen precursor in man (Nilsson & Hultman, 1974). 
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Negative Results with Fructose Ingestion 

Some of the studies in the literature dealing with the influence of 

fructose ingestion on endurance performance have reported negative results. 

Koivisto et al. (1985) examined glycogen depletion during 2 hours of 

cycling exercise at 55% VO2 max in eight healthy males. Seventy-five grams of 

glucose, fructose or placebo were given orally, 45 minutes before the 

commencement of exercise. Serum FFA levels were 1.5 to 2 folds higher after 

the placebo compared to the glucose or fructose ingestion. In the same study, 

quadriceps femoris concentration of muscle glycogen fell by 60 to 65% during 

exercise in all three groups. TTiese findings appear to indicate that fructose 

ingestion was no more effective than glucose or the placebo in sparing glycogen 

during long term exercise. 

An important phenomenon discovered by Koivisto et al. (1985) was that 

after fructose ingestion, FFA levels were reduced. It was speculated (Koivisto 

et al. 1985) that this may be the result of a small (two-fold) rise in insulin. 

Furthermore, it is possible that the increased availability of fructose's three 

carbon metabolites, such as alpha-glycerophosphate, may have facilitated FFA 

re-esterification (Huttunen, 1971). As a result, glucose may have been used as 

an energy source more than FFAs. Since the placebo group did not have the 

carbohydrate supply to rely on, the level of FFAs increased to meet the energy 

requirements (Koivisto et al. 1985); therefore the placebo group utilized more 

FFA and the glucose and fructose groups utilized more carbohydrate. Hence, 
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it is probable that the exercising muscle is able to utilize either carbohydrate 

or fat as an energy source, depending on both substrate availability and 

exercise intensity. 

Massicotte, Peronnet, Brisson, Bakkouch and Hillaire-Marcel (1989). 

compared the oxidation of glucose, glucose pol5nner, fructose and a water 

placebo during 120 minutes of cycling exercise at 53% VO2 max. Six healthy 

males ingested a total of 1.4 litres of a 7% carbohydrate solution at 6 intervals 

throughout the exercise. The oxidation of exogenous glucose and glucose 

polymer were similar and significantly greater than exogenous fructose 

oxidation. Endogenous carbohydrate utilization was significantly lower with 

glucose, glucose pol5nner and fructose than with water (Massicotte et al. 1989). 

Exogenous fructose appeared to be less readily available for oxidation than 

glucose or glucose polymer and provided only 13% of the total energy 

requirements. This is most likely the result of the slow conversion of fructose 

into glucose by the liver before peripheral oxidation of fructose occurs, 

Tlie plasma insulin levels were similar with glucose and glucose pol5rmer 

ingestions and significantly higher than with water or fructose ingestions 

despite similar peripheral plasma glucose values (Massicotte et al. 1989). This 

could be due to the fact that gastrointestinal and/or portal gluco-receptors 

appear to be less sensitive to fructose than to glucose (Mei, 1985). 

Despite the differences between plasma insulin responses to exercise 

with fructose versus glucose or glucose polymer, no significant differences were 
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observed in fat utilization (Massicotte et al, 1989). The only evident difference 

in substrate utilization was a greater use of endogenous carbohydrate stores 

with fructose than with glucose or glucose polymer ingestions. This may have 

been related to the lower rate of exogenous fructose utilization, compared with 

the other two exogenous carbohydrates (Massicotte et al. 1989). To 

summarize, the results seem to suggest that fructose ingested during exercise 

is less readily available for oxidation than glucose and glucose pol5nner 

ingestion over 2 hours of cycling exercise at 53% VO2 max. 

The influence of glucose and fructose ingestion on the capacity for long- 

term exercise was studied in eight well-trained men (Bjorkman et al. 1984). 

The subjects exercised on a cycle ergometer at 68% VO2 max until exhaustion 

on three separate occasions, ingesting 250 ml of a 7% glucose, fructose or 

water solution every 20 minutes. Total work time to exhaustion was 

significantly longer with glucose (137 minutes) than with fructose (114 

minutes) or water (116 minutes) ingestion. Glucose, but not fructose, 

postponed fatigue during heavy exercise by 20% compared to water ingestion. 

Also, the rate of glycogen depletion was significantly lower with glucose than 

with fructose ingestion. It was concluded that intermittent glucose ingestion 

during prolonged cycling at about 68% VO2 max postponed exhaustion and 

exerted a glycogen-conserving effect in the active skeletal musculature. 

Fructose ingestion during exercise, in contrast, maintained the glucose 

concentration at the basal level but failed to influence either muscle glycogen 
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degradation or endurance performance (Bjorkman et al. 1984). 

Another study which did not demonstrate positive results with fructose 

ingestion was conducted in 1989 by Murray, Paul, Seifert, Eddy and Halaby. 

The physiological, sensory and exercise performance responses were compared 

for 6% glucose, fructose or sucrose solutions during 115 minutes of 

intermittent cycling exercise at 65 to 80% VO2 max. The intermittent cycling 

exercise was followed by a timed bout requiting the completion of 600 pedal 

revolutions. The test solutions were consumed during each of the five 4 

minute rest periods. The fructose fed group experienced lower plasma glucose 

and semm insulin, a larger loss of plasma volume, greater gastrointestinal 

distress (slower absorption) and higher perceived exertion ratings than the 

other carbohydrate beverages. Higher plasma and semm concentrations of 

FFAs, fructose and cortisol values were found in the fructose group during the 

performance bout than in either the glucose or sucrose groups. The average 

time required to complete the 600 pedal revolutions was significantly slower for 

fructose (488 seconds) than for glucose (424 seconds) or sucrose (419 seconds) 

ingestion (Murray et al. 1989). 

In addition, Murray et al, (1989) reported that RER values remained 

similar for all trials, thereby revealing little evidence of a shift to FFA oxidation 

with fructose feeding. Previously, Ravussin and coworkers (1986) suggested 

that the increase in FFA levels with fructose feeding may not be large enough 

to substantially increase the contribution of fat to energy metabolism. 
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Production and Utilization of Lactate 

In order to discuss the mechanism by which lactate can be utilized as an 

energy source, the production of lactate must first be reviewed. Under 

anaerobic conditions, no oxygen is available to accept electrons in the 

cytochrome c oxidase reaction and the electron carriers in the electron transfer 

chain become almost totally reduced (Newsholme & Leech, 1983). As a result, 

cytosolic NADH cannot be oxidized in the mitochondria and glycolysis must 

proceed because it is the only pathway capable of generating energy under 

these conditions (Newsholme & Leech, 1983). For glycolysis to continue, the 

NAD+/NADH ratio must be maintained at the high values characteristic of the 

cytosol. The most important process for reoxidation of NADH is the reduction 

of pyruvate to lactate in the reaction catalyzed by lactate dehydrogenase 

(p5n*uvate + NADH + H+  > L-lactate + NAD+) (Newsholme & Leech, 1983). 

This reduction reaction keeps the concentration of NAD+ higher than that of 

NADH, allowing glycolysis to proceed and thereby permitting exercise to 

continue. 

A second reaction that plays a role in this re-oxidation is the cytosolic 

glycerol-3-phosphate dehydrogenase reaction (Newsholme Sc Leech, 1983). 

Dihydrojqracetone phosphate is reduced to glycerol 3-phosphate 

(dihydroxyacetone phosphate + NADH + H+  > glycerol 3-phosphate + 

NAD+). It is possible that this reaction plays a significant role in the re- 

oxidation of NADH in the initial stages of anaerobiosis. 
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It follows that the concentration of glycerol 3-phosphate and lactate 

increase in the muscle during anaerobic conditions. Since lactate is released 

from the muscle into the bloodstream, its production is continuous. 

Conversely, glycerol 3-phosphate cannot cross the cell membrane so it 

increases rapidly to a high concentration which remains within the muscle 

(Newsholme & Leech, 1983). However, once oxygen is available (aerobic 

exercise), the concentration of glycerol 3-phosphate decreases. This is most 

likely due to its oxidation via p5nruvate conversion. The lactate that diffuses 

into the bloodstream is carried to the liver where it is taken up and is 

reconverted to glucose, a process known as gluconeogenesis and is 

accomplished via the Cori Cycle, under aerobic conditions (Newsholme & 

Leech, 1983). 

Lactate as Energy 

The primary substrate for lactate production in muscle is the glucosyl 

units derived from the local glycogen stores (Gollnick, Bayly & Hodgson, 1986). 

Glycogenolysis supplies most of the glucosyl residues of the glycolytic pathway 

in muscle during heavy exercise (Brooks & Fahey, 1987). The net production 

of ATP from the breakdown of glucosyl units to lactate releases only about 10% 

of the total energy stored in the glucose molecule (Brooks, 1988). Although 

this percentage appears small, it can mean the difference between average and 

elite performance. Lactate is produced as an emergency source of ATP or to 

supplement the normal aerobic production of ATP when the oxygen uptake of 
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the body is near maximum (Gollnick et al. 1986). 

Lactate can increase in the cell by one of two mechanisms. Firstly, when 

glycolysis increases so rapidly that the mitochondria cannot utilize pjrruvate 

fast enough to prevent its elevation in the cytosol (low mitochondrial/glycolytic 

capacity), the amount of lactate increases by mass action, without a change in 

the lactate/p3n*uvate ratio (Wasserman et al. 1985). The second way lactate 

can increase in the cell is by way of the mitochondrial membrane proton 

shuttle. This shuttle normally oxidizes c5d;osolic NADH + H+ as it transfers 

protons and electrons to mitochondrial oj^gen. If the system is too slow to 

reoxidize the reduced cytosolic NAD+, p50-uvate is converted to lactate with a 

resultant change in the lactate/p5rruvate ratio, as illustrated by the altered 

redox state (Wasserman et al. 1985). 

Lactic acid can be formed under fully aerobic conditions or as part of the 

Cori Cycle mechanism (Brooks, 1988). Lactic acid is actively and continually 

formed during submaximal exercise, and is removed as exercise continues. 

Eiven during steady state exercise that elevates blood lactate several times 

above rest values, almost all of the lactate is removed by direct oxidation and 

the lactate shuttle mechanism during exercise itself (Brooks & Gaesser, 1980). 

Lactate production permits the release of some of the energy incorporated in 

the glucose molecule and transfers this energy to ADP for the production of 

ATP (Gollnick et al. 1986). 

Tile lactate produced during exercise is not necessarily a hinderance to 
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the athlete. During mild exercise, lactate can be utilized as a fuel (Gollnick et 

al. 1986). "During exercise, lactate represents a fuel source which is 

quantitatively more important than blood glucose" (Brooks, 1988. p. 2). At 

intensities ranging from 40 to 75% VO2 max, approximately 85% of lactate 

formed is oxidized, whereas only about 15% undergoes gluconeogenesis. Close 

to 50% of the lactate is removed by oxidation within the active muscle tissue, 

while the heart and inactive skeletal muscle account for the remainder of 

lactate removal by oxidation (Brooks, 1988). 

Blood and Muscle Lactate Changes During Exercise 

Generally, as the intensity of exercise increases, VO2 increases linearly. 

Conversely, changes in blood lactate levels are very slight until approximately 

60% of VO2 max is reached (Brooks & Fahey, 1987), at which point, blood 

lactate increases nonlinearly. This inflection point on the blood lactate curve 

has been given many names including lactate threshold (T,act). anaerobic 

threshold (AT) and the onset of blood lactate accumulation (OBLA) (Brooks, 

1988, Gollnick et al. 1986, Brooks & Fahey, 1987). Changes in blood lactate 

concentration cannot be taken as truly reflective changes in muscle lactate 

production for a number of reasons (Brooks & Fahey, 1987). Lactate is 

produced in the muscles and enters the blood to be oxidized. At rest and 

during exercise, the lactate concentration in muscle is higher than in the blood 

(Diamant, Karlsson & Saltin, 1968; Stanley, Gertz, Wisneski, Neese & Brooks, 

1985). At the cessation of exercise, lactate levels in the blood rise, as the 
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lactate is shunted from muscle to the blood (Hermansen & Osnes, 1972). 

These findings suggest that the lactate moves from the muscles into the blood 

by a mechanism of facilitated transport (Deuticke, Beyer & Forst, 1982; 

Newsholme & Leech, 1983; Gollnick et al. 1986). 

A sudden rise in blood lactate can signify a rapid rate of muscle 

glycogenolysis. When glycogenolysis is accelerated during exercise, glycogen 

depletion and muscle fatigue may result (Brooks & Fahey, 1987; Brooks, 

1988). A rise in blood lactate concentration during exercise suggests that 

lactate enters the blood faster than it can be removed. The failure to contend 

with lactate production during exercise results in blood acidosis and muscle 

fatigue (Brooks & Fahey, 1987). It has been suggested that complete fatigue 

may occur when lactate concentrations of between 20 and 25 mmol/kg wet 

tissue are obtained in muscle (Malnwood & Renaud, 1985), although 

Hermansen and Stensvold (1972) and Hermansen and Vaage (1977) reported 

blood lactate concentrations above 30 mmol/litre following multiple bouts of 

dynamic exercise in humans. 

Fructose rngftstion and Lactate Production 

The results presented by Decombaz and colleagues (1985) verify that 

lactate is released into the circulation after fructose ingestion. Fructose 

administration has also been associated with lactic acidosis (Woods & Alberti, 

1972). 

As forementioned, fructose ingestion has been found to increase free 
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fatty acid mobilization (Addington & Grunewald, 1987; Guezennec et al. 1989; 

Hargreaves et al. 1985), thereby offering an alternative energy source to the 

working muscles and may result in postponed fatigue. However when the 

lactate concentration of the blood increases (pH decreases), the mobilization of 

free fatty acids (FFA) is reduced (Bagby, Green, Katsuta & Gollnick, 1978; 

Boyd, Gianber, Mager & Lebovitz, 1974; Green, Houston, Thomson, Sutton & 

Gollnick, 1979). Fructose ingestion results in an increase in FFA mobilization 

as well as an increase in lactate production. At present, it is not clear whether 

the FFA or lactate demonstrates a larger influence when fructose is ingested 

during exercise. 

Respiratory Exchange Ratio Changes During Exercise 

Respiratory exchange ratio (RER) analyses the ratio of carbon dioxide 

produced to oxygen consumed (VCO2/VO2) and provides an indication of the 

fuel being metabolized during exercise (Brooks & Fahey, 1984). During high 

intensity exercise, an individual's RER approaches 1.0. During prolonged 

periods of subrnsiximal exercise, the RER goes down steadily towards 0.7, 

indicating the increased reliance upon fat as a fuel source. 

During high intensity exercise, the amount of oxygen an individual can 

consume may be limited, CO2 ejq)ended will be higher, resulting in a higher 

RER, and thereby oxidizing carbohydrate more than fat (Brooks & Fahey, 

1984). During prolonged periods of submaximal exercise, more oxygen can be 

utilized. Therefore, the RER will be lower than 1.0, indicating the metabolism 
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of fat as a fuel source. 

Endurance trained individuals have lower respiratory exchange ratio 

values than untrained at comparable percentages of their VO2 max, during 

submaximal exercise. Trained persons are able to derive a greater percentage 

of their fuel sources from fat and less from carbohydrate than do sedentary 

individuals. Furthermore, during prolonged exercise to exhaustion, RER 

values gradually decline for both trained and untrained subjects, illustrating 

an increased reliance on fat as submaximal exercise continues (Hermansen, 

Hultman & Saltin, 1967). 

Since the ingestion of fructose has been foimd to increase FFA 

mobilization (Addington & Grunewald, 1987; Guezennec et al. 1989; 

Hargreaves et al. 1985) it follows that lower RER values may be observed 

foUowing fructose ingestion, when compared to the ingestion of glucose or a 

control solution. 

Gastric Emptying 

It has been demonstrated that one consequence of ingesting large doses 

of fructose may be gastrointestinal distress and diarrhea (Coggan & Swanson, 

1992; Murray et al. 1989; Ravich et al. 1983). In order to utilize fructose as an 

ergogenlc aid during endurance exercise, a dose must be prescribed that will 

not cause distress in the athlete. Tlie effectiveness of hydration and 

supplementation is dependent upon transit time and absorption in the 

gastrointestinal tract (Rehrer, Beckers, Brouns, Ten Hoor & Saris, 1989). The 
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rate of gastric emptying is one of the factors limiting the effectiveness of 

drinking a nutrient containing fluid during endurance activities (Costill, 

Kammer & Fisher, 1970). It is therefore important to ingest a solution that will 

not inhibit gastric emptying. The efficacy of a given drink is limited by the rate 

of absorption, which is in turn limited by gastric emptying (Rehrer et al. 1989). 

Various factors affect gastric emptying. The caloric content appears to 

be the primary determinant of the gastric emptying rate (Brener, Hendrix & 

McHugh, 1983: Case, Phillips, Lewis & Connolly, 1981a: Case, Lewis, Phillips 

& Clark, 1981b), Murray et al. (1987) observed that gastric emptying slows as 

the glucose concentration (energy density) of the ingested solution increases. 

Previously, glucose solutions greater than 2.5% carbohydrate have been shown 

to empty more slowly than water as a function of concentration (Costill & 

Saltin, 1974). Ffyan, Bleiler, Carter and Gisolfi (1989) concluded that ingesting 

350 ml of a 5% carbohydrate solution every 20 minutes at 60% VO2 max 

resulted in over 90% of the consumed beverage being emptied by the end of 

the three hour cycling exercise bout. Another study has shown that a 6 to 8% 

carbohydrate solution is beneficial (Sherman, CostiU, Fink & Miller, 1981). It 

is proposed that when exercise continues for more than two hours, a dietaiy 

supplement is required during exercise. The gastric emptying rate was also 

dependent on time. Calories appear to be emptied from the stomach at a 

significantly faster rate from 0 to 30 minutes (4,5 kcal/min), than from 30 to 

120 minutes (2.6 kcal/min) (Sherman et al. 1981). 
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Gastric emptying is also related to the volume of beverage ingested. The 

rate is related to the pressure exerted on the stomach (Rehrer et al. 1989). A 

linear increase in amount emptied has been shown with an increase in gastric 

content (Hunt & Spurrel, 1951) up to a maximum of 600 ml of ingestate 

(Costill & Saltin, 1974). 

Five to 25% glucose solutions are emptied from the stomach in two 

phases (Brener et al. 1983): 1) an initial, rapid phase primarily dependent 

upon volume or intragastric pressure and 2) a slower, relatively constant phase 

primarily dependent upon caloric content and presumably due to feedback 

from duodenal receptors responding to glucose (Brener et al. 1983). 

The temperature of the ingested beveraige also affects gastric emptying. 

A cold beverage tends to leave the stomach more quickly than a warm one 

(Costill & Saltin, 1974; Gershon-Cohen, Shay & Pels, 1940). 

Exercise intensity plays a role in gastric emptying. Exercise below 65% 

VO2 max had no significant influence on either gastric emptying or intestinal 

absorption of glucose, fluid or electrolytes (Costill & Saltin, 1974). Fordtran 

and Saltin (1967) found that exercise at a high intensity level (70% VO2 max +) 

may inhibit gastric emptying. 

The type of exercise also affects gastric emptying. Exercise induced 

influences on gastrointestinal function and regulation may differ due to 

different types of body movements (Brouns, Saris & Rehrer, 1987). It would 

appear that most studies on gastric emptying have been conducted with 
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cycling exercise (Costill & Saltin, 1974; Fordtran & Saltin, 1967). During 

running, the movement of fluid in the stomach may increase gastric emptying 

(Murray et al. 1987). This possibility makes generalizations from cycling to 

running questionable. 

The type of solution consumed may affect gastric emptying as well. 

Fructose solutions have been shown to empty from the stomach at faster rates 

than equimolar glucose solutions in resting humans (Elias, Gibson, 

Greenwood, Hunt & Tripp, 1968). As discussed, fructose is absorbed by way of 

facilitated diffusion, a process not associated with glucose transport and 

unaffected by sodium or other electrolytes (Holdsworth & Dawson, 1964). The 

activity of a separate facilitated diffusion mechanism for fructose uptake 

across the duodenal villae, which increases linearly with increasing fructose 

concentration in the ingested solution, might explain the increased gastric 

emptying effect (Crane, 1968; Fordtran & Ingelfinger, 1968). Therefore, 

fructose stimulates somewhat less water absorption than equimolar glucose 

absorption (Sladen, 1972). 

From the information presented, an ideal carbohydrate solution can be 

designed that will maximize gastric emptying. This will allow the athlete to 

utilize the ingested carbohydrate and also maintain proper hydration for the 

duration of exercise. The solution should be between 6 and 8% (Shermzm et 

al. 1981) of a cold (CostiU & Saltin, 1974; Gershon-Cohen et al. 1940) fructose 

solution, administered during cycling exercise at an exercise intensify of no 
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greater than 70 to 75% VO2 max. (Fordtran & Saltin, 1967). 
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Chapter 3 

METHODS AND PROCEDURES 

Subjects 

The subjects consisted of 17 trained endurance athletes who volunteered 

to participate in the study. All subjects were residents of the Tliunder Bay 

area. The experimental treatments included glucose and fructose trials. A 

control condition was included to establish baseline data on the various 

dependent measures and to match subjects on exercise time to exhaustion. 

All subjects were informed of the methodology of the experiment and gave full 

consent to participate. None of the subjects had a history of glucose or 

fructose intolerance and none of the subjects were diabetic. 

Research Design 

The research design for the present study involved a true experiment 

with no random selection, as the subjects were volunteers. The treatment 

period involved the dietary manipulation (ie. fructose ingestion, glucose 

ingestion, control). The posttest included the measurement of the various 

dependent measures. 

Procedures 

The VO2 max test, the exercise test to exhaustion and the various 

experimental procedures were approved by the Senate Ethics Committee on 

Human Testing at Lakehead University. At least one week before the dietary 
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manipulation was to begin, each subject underwent a VO2 max test in order to 

determine the workload to be maintained for each of the experimental 

sessions. The exercise tests were conducted on a calibrated Monarch Bicycle 

Ergometer, model 868 (Monarch, Stockholm, Sweden). 

At least one week after the VO2 max test, all subjects performed the 

cycling exercise to exhaustion under the control condition. The control 

condition involved the ingestion of a sweetened placebo before and during the 

exercise session. All subjects in the control condition ingested 80 mg of 

saccharine in a 500 ml solution (Fielding et al. 1987) and 250 ml of the same 

saccharine solution at 20, 50 and 90 minutes during exercise. The results of 

the control condition were ordered from longest to shortest on the dependent 

measure of exercise time to exhaustion. All subjects were matched and placed 

into either the fructose or the glucose group. This procedure allowed the 

subjects to be balanced on the dependent variable of exercise time to 

exhaustion. 

The investigator met with each subject to discuss his or her role in the 

next part of the study. In both the fructose and glucose treatment groups, all 

subjects were instructed that they would take part in a second cycling test to 

exhaustion. The investigator ensured that the test was scheduled at least one 

week after the control test and at the same time of day. Subjects in the 

fructose and glucose treatment groups ingested 1 gram per kg body weight 

(Decombaz et al. 1985) of fructose or glucose in 500 ml of water one hour 
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before exercise and 0.4 grams per kg body weight (Decombaz et al. 1985) in 

250 ml water at 20, 50 and 90 minutes during exercise. 

Prior to the second exercise test, the subjects were instructed to follow 

similar dietary patterns and exercise participation patterns as during the first 

test. By keeping a detailed list of all foods consumed, the percentage of 

carbohydrate, protein and fat in each subjects’ diet could be determined. This 

dietary analysis was conducted using the software programme Mosby Diet 

Simple (N-Squared Incorporated, 1989). During the experimental exercise 

trials, the beverages were ingested before emd during the exercise test to 

exhaustion. 

All three trials involved cycling exercise at a workload to elicit 75% of 

each subject's VO2 max until exhaustion. The subjects were instructed to ride 

at 80 rpm. Exhaustion was defined as the time when they could no longer 

maintain 70 rpm (Hargreaves et al. 1987). Cycling cadence was continually 

monitored by the investigator to ensure each subject was riding at 80 rpm. 

The subject was told to correct their cadence if it was above 90 or below 75 

rpm. All subjects were instructed to exercise to total exhaustion and were 

motivated to the same extent by the investigator. 

Prior to the onset of the exercise tests to exhaustion, an Indwelling 

catheter was inserted into the median cubital vein of each subject by a 

registered nurse or a trained technician. Blood was drawn from the catheter at 

rest, at 30, 60 and 90 minutes of exercise and immediately post exercise (T = 
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Exh.). The blood was slowly injected into three different vacutubes for future 

analysis. The amount of blood drawn from each subject during each exercise 

test to exhaustion was approximately 93 mis. The blood sampling guidelines 

and procedures are discussed in Appendix B. 

The subjects were connected to the Beckman Metabolic Measurement 

Cart (MMC Horizon Systems) at approximately 10 minute intervals for 

measurement of oxygen and carbon dioxide levels. Each subject informed the 

investigator when he or she was approaching exhaustion to ensure a gas 

sample was taken within one minute of exhaustion. 

Measures 

The independent variables were dietary manipulation before and during 

exercise. Condition A was fructose ingestion and condition B was the ingestion 

of glucose. 

Various measures were taken before and during the experimental 

exercise sessions. These dependent measures included exercise time to 

exhaustion, glucose, lactate and free fatty acid (FFA) concentrations and 

respiratory exchange ratio (RER). Plasma glucose and lactate were determined 

colorimetrically at a wave length of 540 nm emplo3dng the Kodak Ektachem 

(E700). Serum free fatty acids were measured colorimetrically at a wave length 

of 436 nm (Laurell & Tibbling, 1967; Noma, Okabe & Kita, 1973), as described 

in Appendix E. 

Blood was drawn with an indwelling catheter from the median cubital 
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vein 5 minutes before the commencement of exercise (rest), at 30, 60 and 90 

minutes during exercise, with a final blood sample taken immediately post 

exercise (exhaustion). In all trials, the final solution was ingested after the 90 

minute blood sample. The dependent measures observed from blood sampling 

included glucose, lactate and free fatty acid concentrations. 

Gas measurements (Beckman MMC) were taken at various intervals 

during the exercise session. This permitted the analysis of RER, thereby 

illustrating the predominance of carbohydrate or fat as a fuel source utilized 

throughout each of the experimental trials. 

Data Analysis 

The independent and dependent variables were analyzed and presented 

in a variety of ways. Exercise time to exhaustion was represented by way of a 

bar graph comparing the duration of exercise for fructose ingestion, glucose 

ingestion, and the ingestion of a control solution. Blood glucose, blood lactate, 

blood free fatty acids and respiratory exchange ratio (RER) were depicted by 

line graphs comparing the three dietary measures. 

Exercise time to exhaustion was statistically analyzed via a paired t-test 

to determine if a significant difference existed between the dietary 

manipulations. The remainder of the dependent parameters were analyzed 

using an analysis of variance (ANOVA). Each set of data points were analyzed 

independently (treatment, time), allowing for the location of significant 

differences. All statistical analyses were completed using the statistical 
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analysis package in Microsoft Excel, version 4.0a. 
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Chapter 4 

RESULTS 

Physical Characteristics of Subjects 

The mean age (23.8 years, ±4.7), height (177,3 cm, ±9.2), weight (70.7 

kg, ±9.9) and VO2 max (60.65 ml/kg, ±8.1) are listed in Table 1. Fifteen 

subjects were male and two were female. 

Composition of Subject Diets 

The dietary composition of the subjects for the two, one week sessions 

preceding the exercise tests to exhaustion were analysed for 16 of the 17 

subjects. The average diet of the subjects consisted of 52% (±8%) 

carbohydrate, 15% (±2.5%) protein and 33% (±8.1%) fat (Mosby Diet Simple, N- 

Squared Inc. 1989) and is listed in Table 2. 

Exercise Time Rxtiaustion 

The mean exercise time to exhaustion for the control trial (122.8 

minutes, ±26), the fructose trial (167.7 minutes, ±46.3) and the glucose trial 

(162.8 minutes, ±21.7) is listed in Table 3 and depicted in Figure 1. 

The exercise time to exhaustion for the control group was significantly 

less (oc = .05) than both the fructose (p < .02) and glucose (p < .001) groups. 

Furthermore, the exercise time to exhaustion for the fructose group was not 

significantly different from the time for the glucose group. 
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Table 1: 

Variable 

Age 

Height 

Weight 

VO2 max 

Physical Characteristics of Subjects 
(n = 17) 

Mean S.D. 

23.80 years ±4.65 

177.30 cm. ±9.20 

70.64 kg. ±9.86 

60.65 ml/kg ±8.10 

Minimum Maximum 

18.0 

155.2 

51.0 

51.0 

31.0 

195.2 

84.8 

82.9 
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Table 2: Composition of Subiect Diets 
(n = 16) 

Minimum Maximum 

41 65 

12 19 

20 44 

(Mosby Diet Simple, N-Squared Inc. 1989) 

Variable Mean S.D. 

Carbohydrate 52 % ±8.05 

Protein 15 % ±2.53 

Fat 33% ±8.13 
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Table 3: 

Variable 

Control 
(n = 17) 

Fructose 
(n = 9) 

Glucose 
(n = 8) 

Exercise Time to Exhaustion 

Mean S.D. Minimum Maximum 

122.82 min. ±25.95 93 180 

167.72 min. ±46.31 116 245 

162.75 min. ±21.69 120 193 
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Figure 1: Exercise Time to Exhaustion 

Glucose 

* significantly different from Control (p<0.02) 

**significantly different from Control (p<0.001) 
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Blood Values During Exercise Test To Exhaustion 

Blood Glucose - TTiere was a significant difference (<>= = .05) between treatments 

with the blood glucose levels of the fructose condition remaining more stable 

and actually increasing throughout the exercise test to exhaustion. 

Prior to the onset of exercise (T = 0), the blood glucose levels in the 

glucose treatment group were significantly higher (p < .04) than the control 

group. TTie blood glucose levels of the glucose treatment group continued to 

show dramatic shifts throughout the duration of the exercise sessions (see 

Figure 2), including a significant decrease (p < .02) at 90 minutes of exercise 

when compared to the fructose treatment group. The blood glucose level of the 

fructose treatment group was also significantly higher (p < ,0005) than the 

control group at 90 minutes of exercise. 

Significant differences in blood glucose levels were also noted over time 

(oc = .05). In the control group, the highest levels of blood glucose were 

observed at 30 minutes of exercise fT = 30) and were significantly higher than 

T = 0 (p < .03), T = 90 (p < .00005) and T = Exh. (p < .0002). The blood glucose 

levels in the control group increased from the onset of exercise to peak at 30 

minutes (5.2 mmol/1), then declined to exhaustion (4,4 mmol/1). 

The fructose treatment allowed for a more constant supply of glucose to 

the blood. As stated, in the fructose treatment group, the blood glucose levels 

increased gradually from the onset of exercise, peaked at 90 minutes (5.1 

mmol/1) and gradually declined at exhaustion (4.9 mmol/1). No significant 
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Figure 2: Blood Glucose vs. Time 
* significantly different from Control (p<0.0005) and Glucose (p<0.02) 
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differences were observed over time. 

The blood glucose levels of the glucose treatment group demonstrated 

significant («= = .05) shifts throughout the exercise test to exhaustion. The 

blood glucose levels were highest at T = 0 (5.6 mmol/1) and were significantly 

higher (p < .04) than the blood glucose level at T = 90 (4.3 mmol/1). 

Blood Lactate - The blood lactate response during exercise illustrated an 

increase for all conditions at T = 30, decreasing to just over resting values at T 

= 60 and showing very gradual increases to exhaustion (see Figure 3). 

A significant difference (<»: = .05) between treatment groups was noted at 

T = 0. The blood lactate level in the control group was significantly lower than 

either the fructose (p < .002) or the glucose treatment groups (p < .01). 

Significant differences in blood lactate levels were noted over time (oc = 

.05) for the control group. Blood lactate levels peaked in the control group at 

30 minutes of exercise (4.8 mmol/1) and were significantly higher than at the 

onset of exercise (p < .00002), T = 60 (p < .02), T = 90 (p < .007) and T = Exh. 

(p < .03). 

The fructose and glucose treatment groups did not show any significant 

differences in blood lactate levels over time. 

Blood Free Fattv Acids (FFA) - Prior to the onset of exercise fT = 0), blood FFA 

levels in the control group were significantly higher (p < .02) than the fructose 

treatment group. No other significant differences between treatment groups 

were noted with respect to blood FFA levels. 
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Fructose 
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Figure 3: Blood Lactate vs. Time 
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Significant differences in blood FFA levels were noted over time («= = .05) 

(see Figure 4). TTie fructose and glucose treatment groups showed gradual 

increases in blood FFA levels throughout the duration of the exercise test to 

exhaustion. The fructose treatment group showed significant increases in 

blood FFA at T = 90 (p < .01) and T = Exh. (p < .01) when compared to the FFA 

levels prior to the onset of exercise. The glucose treatment group showed a 

significant increase in blood FFA at T = Exh. (p < .01) over the FFA level at T = 

0. The control group showed gradual decreases in blood FFA over the duration 

of the exercise test with a very gradual increase at exhaustion, although no 

significant differences in the control group were noted. 



B Control 

■— Fructose 

 Glucose 

Time (min.) 

Figure 4: Blood Free Fatty Acids vs. Time 
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Chapter 5 

DISCUSSION 

Many studies support the belief that fructose may be of benefit during 

endurance activities (Addington & Grunewald, 1987; Guezennec et al. 1989; 

Hargreaves et al. 1985; Koivisto et al. 1981; Levine et al. 1983). In the present 

study, the ingestion of a fructose solution before and during endurance cycling 

performance allowed for the postponement of fatigue over a control solution, 

but did not demonstrate a significant difference from a glucose solution on the 

dependent variable of exercise time to exhaustion. 

As was discussed in the Review of Literature, many studies have been 

conducted to examine the effect of fructose ingestion on exercise performance, 

but none have followed the protocol of the current study. Some studies 

(Decombaz et al. 1985; Guezennec et al. 1989; Hasson & Barnes, 1987; 

Koivisto et al. 1985; Koivisto et al. 1981; Massicotte et al. 1989; Okano et al. 

1988) have examined fructose utilization during cycling exercise of a certain 

duration (ie. 30, 60 minutes). Other studies have analyzed fructose utilization 

with treadmill running (Fielding et al. 1987; Levine et al. 1983), which cannot 

be directly compared to cycling due to the increased upper body movement 

with running. Exercise intensities have also varied in the examination of 

fructose utilization. Some studies (Decombaz et al. 1985; Murray et al. 1989; 

Murray et al. 1987; Okano et al. 1988) have examined exercise performance 
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above or below the anaerobic threshold, which will influence substrate 

utilization. 

These different protocols make it difiicult, and even impossible, to 

compare past findings to the present study. To this researcher's knowledge, 

there have not been any studies conducted following the protocol of the 

present experiment. Therefore, this is the first study of its kind to examine 

exercise time to exhaustion with an analysis of substrate utilization, upon the 

ingestion of fructose and glucose solutions. 

Exercise Time To Eachaustion 

The results of the present study show that both glucose and fructose 

solutions were equally more effective than a control solution in postponing 

fatigue in an exercise test to exhaustion. 

There are two possible explanations for these results. First, it is possible 

that both glucose and fructose were similar in their effectiveness in prolonging 

exercise time to exhaustion. It has been demonstrated that blood glucose 

oxidation can reach very high levels late in prolonged, moderately intense 

exercise when muscle and liver glycogen levels are low, but blood glucose is 

maintained by exogenous supplementation (Burgess, Robertson, Davis & 

Norris, 1991). Although the test protocols were not identical to the present 

study, some researchers (Decombaz et al. 1985: Fielding et al. 1987; 

Hargreaves et al. 1987) have found fructose and glucose to be of equal benefit 

as an aid for prolonged exercise performance. 
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Secondly, it is possible, although unlikely, that the subjects underwent a 

learning effect. Each subject participated in a control ride to exhaustion prior 

to the treatment (glucose, fructose) trial. This may have allowed the subjects 

to be more comfortable on the second ride, as they knew more of what to 

ejq)ect. During the second ride, they may have been better able to focus on 

the task at hand. Although the subjects were not informed of the duration of 

their first cycle to exhaustion, they would have a good idea of how long they 

have been participating in the experiment. As discussed, aU of the subjects 

were trained endurance athletes, with the motivation to better subsequent 

performances. 

Blood Values During Exercise Test to Exhanstinn 

1) Blood Glucose 

It has been demonstrated that following glucose ingestion, the 

concentration of glucose in the blood is elevated (Nishibata, Sadamoto, Mutoh 

& Miyashita, 1993), but falls rapidly below normal levels due to an exponential 

over-compensation of insulin production (Hultman, 1967). As is evident in 

Figure 2, this insulin effect with glucose ingestion led to dramatic blood 

glucose shifts throughout the exercise test to exhaustion. However, fructose 

does not require insulin to enter the cell (Hasson & Barnes, 1987; Schwarz et 

al. 1989), and thereby allows the blood glucose to remain at a more constant 

level throughout the exercise test to exhaustion. The blood glucose levels 

remained more stable and actually increased throughout the exercise test to 
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exhaustion. Therefore, fructose allowed for a more constant supply of glucose 

to be available to the working muscles throughout the exercise test. 

Several researchers have shown that the maintenance of blood glucose 

can be a critical factor in delaying the onset of fatigue during prolonged 

exercise (Davis, Burgess, Slenty, Bartoli & Pate, 1988a; Davis et al. 1988b). In 

the present study, blood glucose levels in the glucose treatment group fell 

dramatically between 60 to 90 minutes of exercise, but following glucose 

ingestion at 90 minutes blood glucose levels steadily increased until 

exhaustion was reached. It is therefore surprising that the more stable glucose 

levels in the fructose treatment group did not produce significant differences in 

performance time to exhaustion. Perhaps the blood glucose levels in the 

glucose treatment group remained sufficiently high to maintain adequate 

glucose uptake to the working muscles. Recently, McConell, Fabris, Proietto 

and Hargreaves (1994) demonstrated that glucose ingestion during prolonged 

exercise resulted in a suppression of hepatic glucose production and increased 

glucose uptake mediated mainly by increased plasma glucose and insulin 

levels. 

It has been explained in the literature (Chen & Whistler, 1977) that 

fructose allows for glycogenolysis of liver glycogen to occur. This process of 

glycogen breakdown may have helped to keep blood glucose levels elevated in 

the fructose treatment group. An alternative possibility is that the delay in the 

onset of fatigue, late in prolonged exercise, is largely due to the oxidation of 
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blood-borne glucose and not necessarily the sparing of muscle glycogen 

(Burgess et al. 1991). 

The control group began within normal blood glucose levels, increased at 

30 minutes of exercise, steadily declined at 90 minutes and gradually 

decreased at exhaustion. This pattern demonstrated a normal exercise 

response. TTiroughout the first 30 minutes, the body makes glucose available 

to the working muscles. As exercise continues, this supply of blood glucose is 

reduced, as no external energy sources are administered. It is interesting to 

note that muscle and liver glycogen did not appear to be broken down, which 

would have allowed for a more constant supply of blood glucose to be available 

to the working muscles. Brooks and Fahey (1984) have illustrated that during 

prolonged endurance exercise, muscle and liver glycogen are converted into 

blood glucose, and thereby allow an energy source to be available to the 

working muscles. The blood glucose level in the control group did not appear 

to follow this trend, as it fell quite rapidly throughout the exercise test to 

exhaustion. 

2) Blood Lactate 

As is evident in Figure 3, all trials demonstrated an elevation in blood 

lactate during the first 30 minutes of exercise. At the onset of exercise, lactate 

production exceeds lactate removal (Brooks & Fahey, 1984), thereby causing 

lactate to accumulate in the blood. Houston, Waugh, Green and Noble (1976) 

foimd similar results in that the major increases in blood concentrations of 
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lactate occur early in exercise. 

Recently, Burgess and coworkers (1991) demonstrated, in both a control 

and glucose fed group, a steady decline in plasma lactate concentration with 

prolonged endurance exercise. However, no significant differences between 

conditions were observed. In the present study, after 30 minutes of exercise, 

the concentration of lactate in the blood declined steadily and achieved a 

steady state of lactate production and lactate removal. In this experiment, 

there were no significant differences between the fructose and glucose 

treatment groups, although the fructose treatment group showed higher blood 

lactate values at each sample time. It is possible that the subjects in the 

fructose treatment group were better able to utilize the lactate as an energy 

source. Studies (Brooks, 1988; Gollnick et al. 1986) have shown that lactate 

can be used as an energy source during exercise, a fuel that may be of more 

importance than blood glucose. 

3) Blood Free Fatty Acids (FFA) 

In the control group, the pre-exercise FFA levels were significantly higher 

than both treatment groups, but dropped quickly at 30 minutes of exercise 

and remained stable throughout the exercise test to exhaustion. Both the 

fructose and glucose treatment groups showed gradual increases in blood FFA 

levels throughout the duration of the exercise test to exhaustion (see Figure 4). 

Significant increases in blood FFA were observed in the fructose treatment 

group at 90 minutes of exercise and at exhaustion, whereas the glucose 
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treatment group had significant increases in blood FFA at exhaustion. 

Both the fructose and glucose treatment groups had similar FFA levels 

throughout the exercise test to exhaustion. The inhibitory effect on lipolysis 

following glucose ingestion (Carlstrom, 1969; Galbo et al. 1979) did not appear 

to occur in the present study. Nishibata et al. (1993) found FFA levels to be 

significantly higher during endurance exercise with the ingestion of a placebo 

over the ingestion of a glucose solution. Similarly, Deuster, Singh, Hofmann, 

Moses & Chrousos (1992) reported that the mobilization of FFA was reduced 

with carbohydrate ingestion before and during prolonged exercise. 

Although studies have shown that fructose ingestion allows for an 

increase in FFA mobilization (Addington & Grunewald, 1987; Guezennec et al. 

1989; Hargreaves et al. 1985), thereby offering an alternative energy source to 

the working muscles, possibly postponing fatigue, this increase was not 

significant in the present study. It should be noted that although the levels 

were not significantly different from the control group, both the fructose and 

glucose treatment groups increased throughout the exercise test to exhaustion. 

This increase in blood levels of FFA possibly allowed FFA to be used as an 

energy source to the working muscles and aided in the postponement of 

fatigue. However, it is more likely that the postponement of fatigue was largely 

due to the maintenance of blood glucose in the fructose treatment group and 

the RER values lend support to this contention. 
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Respiratory Exchange Ratio 

As mentioned in Chapter 3 (Methods and Procedures), gas readings for 

each subject were recorded on the Beckman Metabolic Measurement Cart 

(MMC) at approximately 10 minute intervals for measurement of oxygen and 

carbon dioxide levels, during the exercise test to exhaustion. Since this 

analysis was not conducted at predetermined intervals, a statictical analysis of 

the values was not possible. Trends in the exercise tests will be addressed. 

The respiratory exchange ratio (RER) values are illustrated in Figure 5. 

All three groups (control, fructose, glucose) demonstrated gradual declines in 

RER throughout the exercise test to exhaustion, depicting a reliance on both 

fat oxidation as well as carbohydrate oxidation during endurance cycling 

exercise. This gradual decline in RER throughout the exercise test to 

exhaustion has been supported in the literature. Hermansen et al. (1967) 

found that during prolonged periods of submaximal exercise, the RER 

decreases towards 0.7, indicating the increased reliance on fat as a fuel 

source. 

The only observable difference between the three groups occurred prior 

to the onset of exercise. TTie fructose and glucose treatment groups had RER 

values greater than 1.0 at the onset of exercise due to the ingestion of fructose 

or glucose one hour prior to the exercise session. Over the first 30 minutes of 

exercise the RER of the fructose and glucose treatment groups dropped below 

1.0 and demonstrated similar fuel utilization as the control group throughout 



Figure 5: Respiratory Exchange Ratio (RER) vs. Time 
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the remainder of the exercise test to exhaustion (see Figure 5). Similar 

findings were reported by Nishibata et al. (1993) who found no significant 

differences in respiratory exchange ratio values between a glucose and a 

control group during endurance cycling exercise. 

The RER values revealed that the fructose group did not demonstrate an 

increase in FFA mobilization or utilization. Therefore, an increased reliance on 

fat as a fuel source did not occur in the present investigation, as was 

previously reported in various research investigations (Addington & 

Gnmewald, 1987; Guezennec et al. 1989; Hargreaves et al. 1985). 

The final data points on the RER graph deserve explanation. By 

examining Figure 5, it appears that the fructose group had the longest exercise 

time before exhaustion and the RER of the glucose group appears to increase 

at exhaustion. In calculating the data points for Figure 5, the average RER 

value of the group was used at each time interval (30 minutes). As the 

exercise test to exhaustion continued, fewer data points were available as 

subjects in each of the groups reached exhaustion. Therefore, at the last data 

point for the fmctose and glucose treatment groups, the value of only one 

subject was available. This results in unusual RER readings (glucose) and the 

appearance of the fmctose treatment group having the longest exercise time to 

exhaustion. 
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Chapter 6 

SUMMARY. CONCLUSIONS & RECOMMENDATIONS 

Summary 

The purpose of the present investigation was to determine if ingesting 

fructose before and during exercise is as beneficial or more beneficial in 

Increasing exercise time to exhaustion than glucose ingestion before and 

during exercise. Seventeen endurance athletes from the Thunder Bay area 

were studied to compare the effects of fructose to glucose ingestion. 

Each subject underwent two cycling rides to exhaustion at 75% VOg 

max. The first cycle involved the ingestion of a control solution. At least seven 

days later, each subject participated in a second ride to exhaustion, ingesting 

either a glucose or a fructose solution. Blood was sampled at pre-determined 

intervals to examine glucose, lactate and free fatty acids (FFA). These values 

were plotted against time, comparing the glucose to fructose ingestions. The 

subjects were occasionally connected to the Beckman MMC at various 

intervals to record RER values. 

It was established in this study, that fructose and glucose are equally 

effective in prolonging exhaustion in endurance cycling performance. It was 

noted that fructose ingestion allowed for a more constant supply of blood 

glucose to be available to the working muscles. TTiis eliminated the 

fluctuations in blood glucose, noted with glucose ingestion, that have been 

demonstrated in the literature (Hultman, 1967). 
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Conclusions 

The ingestion of fructose and glucose postponed fatigue in a cycling ride 

to exhaustion. However, fructose allowed for a more stable blood glucose 

response throughout the exercise test to exhaustion. TTie more stable blood 

glucose levels attained with fructose ingestion may be beneficial over glucose 

ingestion in several ways. First, stable blood glucose levels may allow the 

athlete to perceive less physical exhaustion, thereby increasing his or her 

exercise performance. Second, higher blood glucose levels may increase 

mental alertness and precision required in some physical activities (ie. 

biathlon, triathlon). Also, higher blood glucose levels during endurance 

exercise activities may postpone athletes' perception of 'hitting the wall', 

thereby allowing for an increase in exercise performance. 

Recommendations 

Although fructose ingestion allowed for more stable blood glucose levels 

throughout the duration of the exercise test to exhaustion, the psychological 

effects are unclear. It would be interesting to examine psychological 

characteristics of the subjects during various stages of the test to examine if 

blood glucose levels influenced their subjective feelings of exertion and fatigue, 

including weakness, dizziness and disorientation. Due to fructose ingestion 

maintaining blood glucose at more stable levels than glucose ingestion, 

fructose may help to eliminate some of these symptoms, as explained by 

Hasson and Barnes (1987). This may point to beneficial effects of ingesting 



73 

fructose during prolonged events requiring mental alertness and focusing (ie. 

biathalon, triathlon). 

Conducting muscle biopsies during exercise would allow for a more 

accurate picture of what is occurring in the muscle. As has been discussed, 

blood values are not an accurate indication of what is occuring in the muscle 

cell. By the time lactate enters the blood, the levels may not be representative 

of lactate activity in the muscle. Furthermore, as noted in the Review of 

Literature, the reduction in lactate activity in fast glycolytic muscle with 

endurance training has been observed (Brooks and Fahey, 1984). Conducting 

a muscle biopsy would allow for an analysis of skeletal muscle lactate activity 

and the ability to examine the relationship between substrate utilization and 

lactate activity. Muscle biopsies would also allow for an analysis of muscle 

glycogen levels to determine the extent of substrate utilization and furthermore 

illustrate the depletion of muscle glycogen in Type I versus Type II fibres. 

Since this study found that fructose was of equal benefit to glucose in 

prolonging exercise time to exhaustion, it may be of benefit to diabetic athletes, 

as an alternative energy source to glucose. As has been discussed, fructose 

does not require insulin to gain access to the intracellular compartment 

(Schwarz et al. 1989), and may therefore act as a suitable alternative to 

glucose ingestion for diabetic athletes. 

As with any scientific study, the findings would be more significant with 

a larger subject sample. This would allow for a more accurate indication of the 
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effects of the various ingested solutions. A larger subject sample would assist 

in highlighting areas of significant differences. It is difficult to observe 

significant differences with samples of only 8 and 9. Also, it would be 

beneficial for all subjects to undergo each treatment condition, to more 

accurately compare the effects of the various ingested solutions with each 

subject. 
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APPENDIX A 

Exercise Test To Exhaustion - Experimental Protocol 

1. Subject ingests test solution (500 ml). 

2. Subject rests for 1 hour. 

3. Prepare bicycle (ie. adjust seat height, calibrate, etc.). 

4. Enter subject data into Beckman MMC. 

5. Insert indwelling catheter. 

6. Blood sample # 1 (T = 0). 

7. Begin exercise at 75% VO2 max. 

8. Ingest test solution (T = 20); (250 ml). 

9. Blood sample # 2 (T = 30). 

10. Ingest test solution (T = 50); (250) ml. 

11. Blood sample # 3 (T = 60). 

12. Blood sample # 4 (T = 90). 

13. Ingest test solution (T = 90); (250 ml). 

14. Blood sample # 5 (T = Exh.). 

 > ensure subject is pedalling at 75% VO2 max 
 > record RER when subject is connected to Beckman 
 > ensure subject feels fine before he or she leaves the test site (ie. ensure 
food/beverage ingestion) 
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APPENDIX B 

BLOOD SAMPLING GUIDELINES AND PROCEDURES 

Blood Sampling 

Large green vacutainers containing sodium heparin (7 ml) - FFA 
Small green vacutainers containing sodium heparin (4 ml) - glucose and 

lactate 
Small purple vacutainers containing EDTA (3 ml) - hemoglobin (don't spin) 

1. Time = 0 - take - 2 large green vacutainers 
1 small green vacutainer 
1 small purple vacutainer 

2. Time = 30 - take - 2 large green vacutainers 
1 small green vacutainer 

3. Time = 60 - take - 2 large green vacutainers 
1 small green vacutainer 

4. Time = 90 - take - 2 large green vacutainers 
1 small green vacutainer 

5. Time = Exh. - take - 2 large green vacutainers 
1 small green vacutainer 

Blood Sampling Procedures 

1. Prior to the onset of exercise, an indwelling catheter was inserted into the 
median cubital vein of each subject by a registered nurse or a trained 
technician. 

2. At each sample time, approximately 18 mis. of blood were slowly injected 
into 3 different vacutainers. 

3. Prior to the onset of exercise, an additional 3 ml. sample was drawn to 
determine the hemoglobin level of each subject. 

4. The hemo^obin vacutainer was not spim and was kept at room 
temperature. Hemoglobin analysis was completed at Port Arthur General 
Hospital by the lab technician (Donna Newhouse) using the Coulter Automated 
technique. 
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5. A serum/plasma separator was put into the 7 ml. and the 4 ml. 
vacutainers. 

6. The samples were spun for 10 minutes. 

7. The plasma from each 7 ml. vacutainer was put into 2 blue tubes (x2). 

8. The 4 blue tubes were immediately put into the freezer for free fatty acid 
(FFA) analysis. Analysis was completed at Lakehead University by Dr. Bob 
Thayer. For procedure see Appendix E. 

9. The 4 ml. tube was put into the refrigerator (after it was spun) for glucose 
eind lactate analysis. Analysis was completed at Port Arthur General Hospital 
by the lab technician using the Kodak Ektachem (E700). 
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APPENDIX C 

SUBJECT INFORMATION SHEET - VO2 MAX TEST 

I,  , have an appointment to undergo 
a VO2 max test on the cycle ergometer at on . 
The duration of the test will be about 1 /2 hour. 

Subject Information Prior to VO2 Max Test. 

1. Refrain from any exercise for 24 hours prior to the test. 
2. Refrain from eating 4 hours prior to the test. 
3. Refrain from alcoholic beverages 24 hours prior to the test. 
4. Consume a normal mixed diet on the day of the test. 

If you have any questions about the VO2 max test, or any other 
concerns, please do not hesitate to contact me at: 

683-8195 - home 
or 

343-8544 - P.E. Office - to leave a message. 

Thank you. 

Sandy Brundle 
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APPENDIX D 

INFORMED CONSENT FOR ENDURANCE CYCLING EXERCISE TEST, 
CARBOHYDRATE INGESTION AND BLOOD SAMPLING 

Experimenter: Miss Sandy Brundle 

Advisor; Dr. Robert Thayer 

1. All subjects are to be informed that they have the right to withdraw from 
the study, at any time, if they so choose. 

2. All subjects will be given exercise and dietary information pertaining to the 
study before the commencement of the experimental session. 

3. Each subject will be required to pairticipate in an exercise session whereby 
VO2 max will be determined. 

4. The experimental protocol will involve two weeks of dietary and exercise 
modification. The specific dates of each session will be arranged to 
complement each subjects' training and personal schedules. 

5. The exercise sessions will involve cycling exercise to exhaustion at 75% of 
VO2 max. 

6. Each subject will participate in two cycling exercise sessions to exhaustion 
coinciding with two dietary regimens. 

7. Beverages must be consumed during the experimental session, in order to 
hydrate subjects, at predetermined times. 

8. The subjects wlU be connected to the Beckman MMC (metabolic 
measurement cart) gas analyzer for very short periods during the exercise 
sessions. 

9. Riafcg and Discomforts. Usually no problems or complications arise after 
an exercise test to exhaustion. However, there exists the possibility of certain 
changes occurring during the test (ie. episodes of transient lightheadedness, 
fainting, abnormal blood pressure, chest discomfort, leg cramps and nausea). 

10. Blood Analysis. Small samples of blood will be drawn from the median 
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cubital vein of each subject 60 minutes before the commencement of exercise 
and at various intervals during exercise until exhaustion. Blood analysis will 
be performed and monitored by qualified personnel. Blood work will be 
performed using up-to-date scientific techniques, utilizing the utmost sanitary 
care. Blood samples may be slightly uncomfortable but are not painful. 

11. All subjects will be given a summary of their individual results as well as 
the results, conclusions and recommendations developed by the experimenter. 

12. By participating in this study, the subject has the ability to gain an 
understanding of how various carbohydrate ingestions affect their athletic 
performance, thereby offerring training possibilities and potential dietary 
manipulations to enhance endurance performance. 

13. All procedures subjected to are well accepted procedures which will not, in 
any way, lead to harmful or potentially harmful side effects. 

14. Inquiries. Any questions about the procedures used in the exercise test, 
in the blood sampling techniques or in the estimation of VOg max are welcome. 
If you have any concerns or questions, please do not hesitate to ask. 

I,  , have read, underst€Jod and completed 
the Physical Activity Readiness Questionnaire (PAR-Q), and understand 
the test procedures that I will perform and I agree to participate in the 
proposed study. 

Signature of Subject 

Date Witness 
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APPENDIX E 

FREE FATTY ACID ANALYSIS - SERUM PROTOCOL 

PRINCIPLE: 

Lipids exist in the serum in the most part, in the form of neutral fats, 
phospholipids, cholesterol esters, and free cholesterol. The neutral fats, or 
triglycerides, may be relieved of their fatty acid component by the action of 
lipases. The free fatty acid (FFA) concentration is, however, normally very low. 

Thus, removing the FFA from their aqueous environment to a solvent in which 
they may be colorimetrically quantified requires a rather sensitive procedure. 

In order to best extract the FFA, methanol is mixed in low concentration with 
the highly nonpolar solvents choloroform and heptane. This solvent can then 
be used as an environment where FFA can form copper salts when added to a 
copper - TEA solution. 

The copper salts of the FFA can then form a colored product upon reacting 
with the sodium salt of diethyldithiocarbamic acid (DDC). 

FFA + Cu"*  > FFA - Cu 

FFA — Cu + DDC  > colored product 

REAGENTS: 

Extraction reagent 

choloroform - heptane methanol 
1 : 1 2% 

Copper reagent (fresh biweekly) 

10 ml 0.5 M Cu (NOgla 

10 ml 1.0 M TEA pH 8.3 

3.5 ml 1.0 N NaOH 

Bring to 100 ml volume with saturated NaCl in H2O 
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Color reagent (fresh before use) 

sodium diethyldlthlocarbamate 22 mg / 10 ml butanol 

Standard FFA (palmitate) 

1 mM in serial dilutions in CHM reagent 

PROCEDURE: 

Add 200 ul serum to large diameter capped test tubes. 

Add 3 ml extraction reagent, jiggle gently to break up emulsion. 

Add one (1) ml copper reagent - shake mechanically for 10 minutes. 
DO NOT VORTEX 

Centrifuge for 20 minutes @ 3000 rpm 

Transfer 2 ml of the upper phase to a clean culture tube 
(13 mm X 100 mm or 12 X 75 mm). 
DO NOT TOUCH SIDE OF TUBE WITH PIPETTE. 

Add 0.5 ml color reagent in a timed sequence and vortex. 

Read absorbance @ 436 nm, 10 minutes after addition of color reagent. 

CALCULATIONS: 

Use the standard serial dilutions to obtain a linear regression equation 
(y = ax + b) and calculate mM concentration of the sample. It might be found 
that the regression line is not linear, but parabolic. Thus, we suggest that the 
standard curve be treated by parabolic analysis (y = a + bx + o^). 


