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ABSTRACT

The primary objective o f this study was to document changes in Chironomidae 

density, depth distribution, and taxon richness, associated with experimental upland and 

riparian deforestation of L42, a small boreal forest lake, 250 km northwest of Thunder 

Bay Ontario. Insects were collected in floating emergence traps (0.28 m^) in July and 

August 1995 before logging, and in May to September 1997 and 1998 following 74 % 

and 61 % clearcut logging o f the upland catchment and riparian zone. A total of 738 

tnq)s set over twenty-three days collected 4,013 insects from 10 families emerging from 

lake benthos, with the Chironomidae comprising > 9 5 %  each year.

Chironomid density declined after logging. Mean chironomid density (no. 

individuals » 0.28 m*̂  • d*‘ ± S.E.) was higher in 1995 at the pre-logging sites (12.1 ± 1.2) 

than in 1997 and 1998 (one and two years following clearcut logging, 7.0 ± 0.7 and 5.4 ± 

0.5 respectively). Density also differed between sites among years. Mean May through 

September emergence was lowest in 1998 at the clearcut with riparian buffer strip 

treatment (west site) (3.3 ± 0.3) and highest during July and August 1995 at the west site 

(16.2 ±  2.9). No change in non-chironomid aquatic insect density was detected between 

timber harvest treatments and years.

Chironomid depth distribution was variable among sites, between years and may 

have been affected by logging. Chironomid density declined after cutting at littoral 

depths (0.5 and 1.0 m) and increased at sublittoral depths (3.0 and 4.5 m), possibly due to 

a documented increase in littoral zone aeolian sediment deposition ̂ c h  peaked in 1997.

Chironomidae taxon richness decreased after watershed deforestation (21 genera 

(41spp.) vs. 19 (36) and 16 (32)), 1995,1997 and 1998 respectively. Chironominae was

a
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the most abundant subfamily in each year. After logging, the density of Tanypodinae 

increased and Ofthocladiinae decreased. The ratio of male to female emergence was 

2q>proximately 1:1 each year. Differences in chironomid community composition could 

be influenced by voltinism, and potentially to climate.

[
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INTRODUCTION

Boreal forest timber harvest of white spruce (Picea glaucal. black spruce (Picea mariana^ 

and jackpine fPinus banksianal is widespread in northwestern Ontario. Beginning in 1988, 

Ontario logging companies were required to leave a buffer strip (ranging in width from 30 m on 

level terrain to 90 m on slopes) around lakes and along streams following watershed 

deforestation to protect the aquatic environment from timber harvest practices (OMNR1988). 

The extent to which boreal lake environments are affected by terrestrial disturbance has recently 

received increased attention (Steedman et al. 1999).

Biomonltoring with chironomids

To effectively detect subtle changes to lake ecosystems following experimental 

perturbations, impact studies must take into consideration the chemical, physical and biological 

components of the terrestrial and aquatic environments. It is particularly useful to document the 

effects of clearcut logging in the boreal forest with the use of indicator species.

Chironomids form an important link between primary producers and secondary 

consumers. In freshwater ecosystems, chironomids process phytoplankton and algae, and recycle 

nutrients, particularly phosphorous (Bilyj and Davies 1989). Titmus and Badcock (1980) 

reported that chironomid production (40-70 kg ha 'yr ') was the limiting factor in mallard 

duckling early development. As well, Chura (1961) has shown that chironomid pupae and adults 

constitute 60 % o f the diet o f 0-6 day old mallard chicks. Invertebrate and vertebrate predators, 

including watermites (Wiles 1982), the chironomid Procladius (Kajak 1980), dragonfly larvae 

(Benke 1978), sculpins (Hershey and Dodson 1985) and coho salmon (Mundie slsL  1990) feed

■ I
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on chironomids at some point in their life cycle. A significant change in chironomid productivity 

may therefore influence organisms belonging to trophic levels both higher and lower than 

Chironomidae.

The development o f Chironomidae as biological indicators began in Europe early in the 

20th century following two different paths: 1) identification of species indicative of 

anthropogenic degradation of lakes and streams (Kolkwitz and Marsson 1909) and 2) biological 

classification of lakes (Thienemann 1922; Cairns and Pratt 1993). There are many advantages to 

using chironomids in biomonitoring of environmental disturbances in freshwater. At the global 

(8,000 to 20,000 chironomid species) and regional (2,000-3,000 chironomid species) scale, the 

number of chironomid species present accounts for at least 50% of the total macroinvertebrate 

species recorded (Armitage et al. 1995). Chironomids are also ubiquitous and exhibit extensive 

ecological diversity throughout their worldwide distribution (Resh and Rosenberg 1984).

Chironomids emerging from benthos have previously been used as biomonitors to detect 

changes in water quality following large-scale rotenone treatments (Aagaard and Hanssen 1997), 

agricultural runoff and industrial waste from chemical and oil enterprises (Zinchenko 1997), 

altered thermal regimes by hydropeaking dam reservoirs (Brabec 1997), pulp and paper mill 

effluent (Paasivirta 1997) and experimental acidification (Davies 1980). After experimental 

additions of carbon, nitrogen, and phosphorous, Bilyj and Davies (1989) detected a 

Chironomidae species shift and species substitution that replaced pre-treatment common species 

with opportunistic species.

Experimental acidification increased chironomid emergence density at the Experimental 

Lakes Area, Kenora, Ontario (Schindler and Fee 1974, Schindler gt gf. 1985, Schindler gt g[. 

1980). From 1981 to 1983, a t lake pH of 5.0 to 5.1, the number of species declined to half o f the
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original population. The most significant decline occurred in the number of common species. In 

1975 there were seven to ten common species. By 1983, there was only one common emerging 

chimnomid- Cladotanytarsus aeiparthenus (Schindler et gl. 1985). Species indicative of 

acidification appeared in 1981 to 1983. Sensitive assemblages included seven new species; 

Cladotanytarsus muricatus. Ç. tribelos. Ç  elaensis. Q. daviesi. C. niimaticomis. C. fusiformis and 

C. aeiparthenus (Bilyj and Davies 1989). Cladotanytarsus daviesi. C. pinnaticomis. and Ç. 

fusiformis were present at the lowest pH recorded in L223 (Bilyj and Davies 1989). 

Cladotanvtarsus aeiparthenus was the most tolerant of all species; it was consistently present at 

low pHs (Bilyj and Davies 1989).

Effects of logging around boreal forest lakes

The aquatic environment is directly affected by terrestrial disturbance. Logging of 

riparian and upland forest around boreal forest lakes has been associated with increased wind 

energy and thermocline deepening (France 1997 a), increased autumn mixing depth, increased 

phytoplankton biomass and production (Rask gt g[. 1993), reduced inputs of terrestrial plant 

material (France 1997 b), and increased littoral insolation and diumal temperature fluctuations 

(Steedman gt gl. 1998). Steedman and France (1999) indexed upland catchment sediment 

mobility via floating litter tnq>s and showed that sediment was transported by wind following 

catchment logging into nearby lakes, hi addition, a  five-fold increase in inorganic aquatic 

sediment deposition was seen on tiles placed within the littoral zone o f L42. However, even this 

deposition rate in L42 was less than background levels in two nearby undisturbed lakes. 

Paleoecological studies in and around the Coldwater Lakes Experimental Watersheds area 

suggest that long-term sedimentation rates in northwestern Ontario lakes appear to be more

I  •  '  ^
■ i
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strongly associated with regional precipitation and runoff trends than with catchment disturbance 

by clearcut logging (Blais et al. 1998, and Paterson et al. 1999a).

Sedimentation

Substrate is a limiting factor in chironomid abundance and richness. Erosion o f 

undisturbed watersheds releases small amounts of particulate material (Bormann et al. 1969), 

whereas forestry practices may result in the introduction of substantial amounts o f water-borne 

sediment Chironomids can be affected directly when food collection or respiration is obstructed. 

Suspended or sedimented material can be deleterious because these substances reduce light 

penetration and consequently plant growth, bury hard surfaces, and fill interstices within the 

substrate.

Sedimentation has been associated with reduced Chironomidae species richness after 

large-scale watershed deforestation. Warwick (1975,1980 a, b) extracted head capsules of 

chironomid larvae from sediment cores to evaluate the response to historical clearcut logging, 

including climatic change, at the Bay of (Quinte, Lake Ontario. Sediment cores corresponding to 

the period of most intensive logging in the watershed (about 1850-1860), revealed that 

chironomids representative o f oligotrophic conditions increased relative to the abundance of 

chironomids that are more typical of eutrophic conditions. The rapid accumulation o f mineral 

sediments during large-scale deforestation and erosion of the watershed resulted in a high input 

ofclaytothelake.

Sediment deposition in freshwater lakes reduces the availability o f chironomid food 

resources. Warwick (1975,1980 a, b) identified a reduction in benthic food materials by an 

increase in the organic matter ; organic carbon profile obtained from 100 year old sediment cores.
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A Chironomidae species shift resulted with a more oligotrophic trophic community 

(Microspectra and Tanytarsini type 7) replacing species characteristic of eutrophication 

fAblabesmvia peleensis. Polvpedilum simulans gr. and Chironomus).

Wind velocity

High winds (velocity 9-10 ms'‘) on Lake Myvatn, Iceland frequently suspended bottom 

sediment Gardarsson et al. (1993) identified Tanvtarsus eracilentus as the most abundant 

benthic chironomid in Lake Myvatn. They speculated that T. gracilentus was able to persist at 

high densities during periods of high wind and decreasing water depths because it had ad^ted to 

live in littoral zones undergoing continued re-suspension of sediment, by virtue o f its tube 

building activity.

Light intensity and temperature

Littoral light intensity and temperature are two important environmental factors that 

dictate chironomid emergence. Light intensity controls the transformation from larva to pupa 

whereas temperature is more important in the development of the pupa to adult (Banks 1978). 

Watershed deforestation has the potential to alter light intensity by eliminating shaded littoral 

zones. Logging o f buffer strips may also result in increased littoral zone water temperatures 

attributed to increases in light intensity associated with deforestation.

Independent o f light intensity, larval development continues under the influence of water 

temperature (Rempel and Harrison 1987, Banks 1971a), food supply (Jonasson 1965) and 

stagnation o f the habitat (Banks 1971 b). Banks (1978) reared newly hatched chironomid larvae 

from a shallow eutrophic pond near St. Catherines, Ontario. An 8-hour daily photoperiod

Ky pr»v«»nriiip piipatinn f tf  final îngtar larvae, in nigricaiM
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and Chironomus staeceri at IS °C and 20 "C. Through replicated trials. Banks (1978) determined 

that interspecific variation in life history response to temperature also exists among chironomids. 

Normal development to emergence took 26 days at 20 °C and 37 days at 1S°C for Chironomus 

decorus: 35 and 48 davs for Endochironomus nigricans: and 68 davs at 20”C for Chironomus 

Stasggn.

Objective

The primary objective of this study was to document changes in density, depth 

distribution and richness o f chironomids emerging fiom benthos following experimental 

watershed deforestation. The results o f two surveys between 1995 and 1998 are presented here. 

The first survey (Pariter 1996) was conducted in 1995 to provide baseline data on the aquatic 

insect community prior to the proposed experimental timber harvest of 1996. The second survey 

was collected one (1997) and two (1998) years post watershed deforestation. These data will be 

used to test three null hypotheses: 1) Chironomidae density will not differ between pre-and 

post-cut shoreline treatments, 2) Chironomidae depth distribution will not differ between pre- 

and post-cut shoreline treatments, and 3) Chironomidae taxon richness will not differ between 

pre- and post-cut shoreline treatments. This aquatic insect research is one component o f a 

comprehensive ecosystem monitoring program, the Coldwater Lakes Experimental Watersheds.
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MATERIALS AND METHODS

Coldwatcr Lakes study area

The Coldwater Lakes study involves five small (30 ha) boreal forest headwater, 

oligotrophic lakes (49°S’ latitude, 92°9’ longitude) and their catchments, 250 km northwest of 

Thunder Bay, Ontario, Canada (Figure 1). From July to September 1996, after five years of pre

disturbance monitoring (1991-1995), the catchments of three lakes (L26, L39 and L42) were 

harvested by Atikokan Forest Products using a tracked feller buncher, chainsaws and cable 

slddders; L39 and L42 were clearcut to the shoreline, while L26 retained riparian buffer strips o f 

30 to 90 m width, proportional to shoreline slope. The catchments of one intermittent tributary 

stream on each of L26 and L39, and a temporary 30 m wide riparian buffer on the southwest 

shore of L42 were left undisturbed in 1996. These areas were used for geochemical and 

hydrodynamic studies from 1996 - July 1998. In the 1996 harvest, 33-71 % of the lake 

catchments were deforested. A skidder pulling chains and barrels scarified these clearcuts in July 

and August 1997. Remaining slash piles were burned late October 1997. Two nearby 

undisturbed lakes (L20, L80) have also been monitored since 1991 for regional reference 

purposes (Steedman et aI.1999).

The Coldwater Lakes Experimental Watersheds program is the first long-term, multi

disciplinary study to evaluate the effectiveness o f riparian buffer strips on oligotrophic lakes in 

Canada (Steedman g  gf. 1999). Since 1991, biological, chemical and physical monitoring has 

been phased in; including catchment mapping (soil depth and nutrient capital, vegetation 

biomass, lake bathymetry, and high-resolution topogr^hic models), upland and lake sur&ce 

climate monitoring, upland and outflow hydrology, iq>land geochemistry, regional paleoecology.
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n o . 1. Coldwater Lakes Experimental Watersheds study area, 250 km northwest of Thunder 
Bay, Ontario.
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lake hydrodynamics, water chemistry, profundal and littoral sedimentation, oxygen, light and 

temperature profiles, periphyton, phytoplankton, zooplankton, and population characteristics of 

lake trout fSalvelinus namavcushV white sucker fCatostomus commersonil and small littoral 

fishes (Cyprinidae, Culaea. Etheostoroa. Cottusl (Steedman et al. 1999).

Short-term changes at the Coldwater Lakes Watersheds area were reviewed by Steedman 

et (1999). Studies of sediment cores cover the history of logging (Paterson et 1999a), 

climatic changes (Paterson et aL 1999b), and fire events (Blais et al. 1998). Movement of 

aeolian inorganic sediment and aquatic sediment deposition was measured in and around riparian 

and upland clearcuts by Steedman gt (1999). Wind energy and thermocline deepening (France 

1997 b), autumn mixing depth, inputs o f terrestrial plant material, and insolation and diumal 

temperature fluctuations were also monitored (Steedman et al. 1998).

Meteorological data

Mid-lake surface water temperature and meteorological data (air temperature, 

precipitation, relative humidity, solar radiation, wind speed and direction) were obtained from the 

Coldwater Lakes Experimental Watersheds climate monitoring network. These data were 

collected at five second intervals by a Campbell Scientific data logger and sensors mounted on a 

raft in the middle of L42 or at an upland site. A 24 hour mean was calculated for each 

meteorological datum which coincided with the exact length of time in which an emergence trap 

was deployed (Tables 1 and 2).

In 1997 (first year post-deforestation) April to October rainfall was 409 mm, 70 % o f the 

1994 to 1996 annual average o f587.1998 rainfall was 506 mm, or 86 % of the 1994 to 1996 

average. The 20 year average (1969 to 1988) April to October rainfall at Atikokan, 70 km SE of
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TABLE 1. July to August pre-cut (1995) and post-cut (1997 and 1998) climate data for L42. Data are averages for periods that 
emergence trag» were deployed.______________________________________________________________________________
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Year Relative 
humidity (%)

Wind velocity 
(m/s)

Wind direction 
(degrees)

Precipitation
(mm)

Water surface Ambient air 
temperature (°C) temperature (°C)

Whole sky 
radiation 
(KW/m^)

1995
(pre-cut)

66 2.2 234 (sw) 0.3 21.6 18.5 0.29

1997 
(1 yr. Post-cut)

72 2.0 170 (se) 4.8 21.7 17.4 0.25

1998 
(2 yrs. Post-cut)

72 2.4 191 (sw) 0.0 22.2 19.7 0.23
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TABLE 2. May to September 1997 and 1998 post-deforestation climate data for L42. Data are averages for the period that 
emergence traps were deployed.__________________________________________________________________________

8■D
Year Relative 

humidity (%)
Wind velocity 

(m/s)
Wind direction 
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Ambient air 
temperature 

(°C)

Whole sky 
radiation 
(KW/m^)

1997 
(1 yr. Post-cut)

69 2.3 199 (sw) 234 17.9 15.0 0.23

1998 
(2 yrs. Post-cut)

72 2.3 194 (sw) 69 19.8 16.5 0.22
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L42, was 550 mm (Beaty 1998). Maximum daily rainfall in 1997 and 1998 (50 mm, with 

several days greater than 25 mm) was similar to the 1994 to 1996 pre-logging period. Wind 

velocity averaged 4 ms ' during the study.

L42 characteristics

Upland characteristics

In general, upland soils are shallow, with abundant Precambrian bedrock outcrops. 

Catchment relief is about 60 m. In 1995 the forest cover consisted of 75 to 100 year-old mixed 

wood stands of jack pine (Pinus hanksianal. trembling aspen fPooulus tremuloidesl. black spruce 

fPicea marianal and white birch (Betula naovriferal. with some eastern white cedar (Thuja 

occidentalisé red pine (Pinus resinosal and white pine (Pinus strobusV

Lake level characteristics

Lk 42 basin and catchment morphometry were measured commencing in 1991 by the 

Coldwater Lakes Ecosystem Monitoring Watersheds field crew (Table 3). The crew was also 

responsible for collecting lake water samples that were analyzed by either the Ontario Ministry of 

the Environment and Energy or Lakehead University Center for Analytical Services. Epilimnetic 

water chemistry medians before and after catchment deforestation are reported in Table 4.

ExpfnmmWlpggmg
Experimental logging commenced in 1996 when 71 % of the upland catchment and 42 % 

o f the riparian zone were clearcut leaving a temporary 30 m wide buffer on the southwest shore 

and some residual riparian forest at various places around the lake, hi 1998, the temporary buffer
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TABLE 3. L42 basin and catchment morphometry (Steedman et al. 1999)

14

Number of Tributary Lakes 0

Maximum Depth (m) 18

Mean Depth (m) 6.4

Elevation (m) 440

Surface Area (ha) 26

Lake Volume (lO^m^) 165.7

Perimeter (km) 3.2

Total Catchment Area Ota) 70

Probability (%) o f Complete Mixing in Spring/Fall (1991 to 199S) 100/100

Ratio Terrestrial Catchment Area / Lake Sur&ce Area 1.6

Water Renewal Time tyears) 13

Percent Catchment Deforested (1996 /1998 total) 71/74

Percent Riparian Zone Deforested (1996 /1998 total) 42/61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

TABLE 4. Epilimnetic water chemistry medians, before and after summer 1996 
catchment deforestation o f L42. Most post-deforestation anayises were conducted by a 
different laboratory than was used in the pre-deforestation period (Steedman e| al. 1999)

Parameter Units Pre-cut* Post-cut

Conductance (25 °C) umho cm*l 14.0 13.9

Calcium mgL'l 1.3 1.2

pH 6.7 6.7

Total Alkalinity mgL'l 5.0 4.8

Sulphate mgL'l 2.8 2.0

Dissolved Organic Carbon mgL'l 2.5 2.3

Total Phosphorous ugL'l 4.0 0

Total Nitrogen mgL'l 0.23 0.20

Silicate mgL'l 0.04 0.00

Aluminum UgL'l 7.30 7.58

* Pre-deforestation analyses based on May 1991 to August 1996 sampling.
 ̂Post-deforestation analyses based on August 1996 to November 1997 sampling.
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was cut, bringing the total to 74 % of the upland catchment and 61 % of the riparian zone. Insect 

monitoring was conducted on L42 along the north, west and east shores (Figure 2). The west and 

east sites were chosen because they exhibited similar littoral sediment composition (Table 5).

The north site was selected to contrast with the west and east sites because of its high organic 

sediment composition. In 1995, all sites represented pre-logging conditions.

In 1997 and 1998, two timber harvest treatments were iq>piied to three sites. The north 

site was clearcut to the shoreline, the west site was clearcut leaving a 30 m wide riparian buffer 

strip intact, and the east site was clearcut to the shoreline (Table 6).

North site

This site was located in a shallow embayment a few meters west of the lake outflow. 

Water depths in the embayment were uniform on any given day but they fluctuated between 0.2 

and 1.0 m from May through September. Pitcher plant (Sarracenia purpurea) was the dominant 

marsh species around the fringes o f the bay. Other vegetation consisted of yellow pond lily 

fNuphar variegatumV v4iite water lilv (Nvmohaea odoratal. water arum fCalla ualustris). water 

shield (Brasenia schreberié pondweed (Potamogeton). bladderwort fUtricularia vulgarisé leather 

leaf (Chamaedaphne calvculataé labrador tea (Ledum groenlandicumé sweet gale (Myricg @ k), 

bog rosemary (Andromeda glauccphvllaé bog laurel (Kalmiapolifoliaé and mosses (Sphagnum). 

Fine dark brown organic material compised more than 80 % of the substrate. The organic mat 

was greater than one meter in depth. At least two beavers occupied a lodge along the northwest 

shore during the 1997 and 1998 insect sampling seasons.
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FIG 2. Coldwater Lakes Experimental Watersheds aquatic insect study sites (north, west, and 
east) at L42.
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Site Length of Depth profile Composition of substrate %)• Dominant Subdominant Average
shoreline (m) measured at (m)

O
g I 1 i I | i

substrate substrate substrate

North 61.0 1.1 80 0 0 0 0 20 0 Fine organic Rubble Sand

West 153.0 3.0 40 0 0 0 30 30 0 Fine organic Cobble Sand

East 97.0 1.1 0 0 0 0 30 70 0 Rubble Cobble Fine organic

'  Substrates were recorded in the order of their abundance with the most abundant type recorded first. Substrate was classified by particle-size 
measured along the shortest axis diameter: fine organic (fine particulate organic material is discernable), silt (<0.2 mm), sand (G.2-6.3 mm), 
gravel (6.4-76.0 mm), cobble (76.1-149.9 mm), rubble (150.0-303.9 mm), small boulder (304.0-509.9 mm).
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TABLE 6. Summary of disturbance types at the north, west and east site at L42.

Site 1995 1997 1998

North Undisturbed Clearcut to shoreline Clearcut to shoreline

West Undisturbed Clearcut with 30 m wide 
riparian buffer strip

Clearcut with 30 m wide riparian 
buffer strip until end of June, then 

clearcut to shoreline

East Undisturbed Clearcut to shoreline Clearcut to shoreline
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West site

This site was on the main basin of L42 and had a mean slope of 0.26 to the shoreline 

(Table 7). Rubble was the dominant substrate. Riparian vegetation consisted of leather leaf 

rChamfled^pl f̂^y calvculata). sweet gale (Mvrica gale), moss (Sphagnum), and labrador tea 

(Ledum groenlandicum).

East site

This site was in a small embayment and had a mean slope of 0.10 to the shoreline 

(Table 7). An access road to the shoreline was built in 1997. Patches of intact riparian 

vegetation consisted of leather leaf (Chamaedaphne calvculata). sweet gale (Mvrica gale), moss 

(Sphagnum), labrador tea (Ledum groenlandicum) and honey suckle (Lonicera). Cobble and silt 

were the most abundant substrata.

Monitoring design

Pre-disturbance emergence was measured in ninety tr^ s  over six days from the north, 

west and east site at L42 during July and August 1995 (Parker 1996). Post-disturbance 

emergence was monitored from the same sites, one year (1997) and two years (1998) later during 

May to September, following the experimental timber harvest Subsamples from 1997 (2,9,23, 

30 July and 6,19 August) and 1998 (2,16,29 July and 5,13,19 August) insect collections, 

which approximate the temporal span of sampling in 1995 (7,9,22 July and 4 ,6 ,19  August) 

were identified. Chironomidae taxon richness was only determined using these equal effort July 

and August samples at 0.5,1.0,3.0,4.5, and 7.0 m depths.
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TABLE 7. Distance and slope from shore for the distribution of aquatic insect emergence traps 
onL42.

Depth of water (m) Westsite East site
Distance 

trap set from 
shore (m)

Mean slope 
to shore

Distance 
trap set from 

shore (m)

Mean slope 
to shore

0.5 1.0 0.50 2.2 0.23
1.0 3.4 0.29 7.8 0.13
2.0 8.1 0.25 15.0 0.13
3.0 12.9 0.23 28.0 0.11
4.5 19.3 0.23 60.0 0.08
7.0 28.3 0.25 84.0 0.08
9.0 49.5 0.18 108.7 0.08
12.0 77.5 0.15 133.8 0.09
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Field Methods

In 1997 and 19981 set traps between 1200 Mrs and 1630 hrs, and retrieved them 24 hours 

later from a 14’ boat with a 9.9 hp outboard motor. The motor was adjusted to its highest tilt 

position when sampling the littoral zone to prevent mixing of benthos. At the beginning of each 

season, I measured water depth along the west and east sites with a portable depth sounder 

mounted at the stem of the boat. In the spring of 1997,1 used a rangefînder to measure the 

distance from shore that each trap was set (Table 7). During spring 1998,1 used these distances 

to re-position traps.

1995pre-deforestation sampling (Parker 1996)

In 1995, fifteen emergence tnqis were deployed on each of six days. Five traps, one at 

each water depth (0.5,1.0,3.0,4.5,7.0 meters) were stationed perpendicular to the west and east 

shoreline in linear transect lines extending into the littoral zone and profundal zones. Five 

additional tnq>s were randomly deployed at the north site at a uniform depth. Chironomidae 

density, taxon richness and depth distribution were estimated during July and August in the 1995 

baseline survey. These data were used to describe the pre-disturbance insect community at L42.

1997 and 1998post-deforestation sampling

In 1997,336 emergence trtqis were deployed over 14 days from 27 May through 15 

September. In 1998,312 emergence traps were deployed over 13 days fix>m 3 May through 9 

September. Tnqps were deployed on either a weekly or bi-weekly basis. The post-deforestation 

experimental design consisted of two factors: water depth (0.5,1.0,2.0,3.0,4.5,7.0,9.0,12.0 

meters), and timber harvest shoreline treatment (clearcut with riparian buffer strip intact (west
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site), and clearcut to shoreline (east site)). Inter-trap variability was estimated at the clearcut 

littoral embayment (north site) where traps were deployed at a uniform depth.

Emergence trap construction

Emergence traps were made from Vivac® plastic, a heat moldable, ultra violet resistant 

plexi-glass type material bonded with “Weld-on-Three®” solvent (Parker 1996). Traps were 

designed after Davies (1984) but we increased the basal area from 0.1 m  ̂to 0.28 m  ̂to increase 

the likelihood of collecting rare species. Rubber cement, contact cement, silicone, and ABS 

plumbing cement did not bond Vivac®.

Five emergence traps were constructed from one 4 X 8  foot sheet of Vivac®. Each trap 

was formed into a funnel shape and held together with two C-clamps, one at the neck and one at 

the base. Bonding solvent was applied to the 1.0 cm overlapping seam using a glass-stirring rod. 

Traps dried outdoors for one hour before clamps were removed. I cut a 0.5 m diameter hole into 

a 1.0 X 1.0 m piece o f plywood to hold each trap for neck molding. With the trap inverted, I 

molded the neck of each trap using a 500 mL PET sample bottle with attached pipe clamp and a 

household paint stripper gun. As the Vivac® cooled, I trimmed the necks of each trap until the 

bottle fit snugly. Each t r ^  neck was fitted with a stainless steel pipe clamp, two 15 inch lengths 

of 125 lbs. test monofilament, a 63 mm diameter hollowed out plastic PET jar Ud and two 

sections o f polyester cord anchor line. À polyester float line with fluorescent green or yellow 

spray-painted styrofoam buoys, and two bricks were attached to each anchor line (Figure 3).

Techniques o f trtq> setting and sanqtle retrieval

I deployed and collected traps upwind of the boat to decrease the likelihood o f driving 

over float and anchor lines. I set traps by screwing the sample bottle into the removable plastic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

FIG. 3. Deployment of aquatic insect lentic emergence trsq) (basal area -  0.28 m )̂
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lid and tightened it within the pipe damp with a Phillips screwdriver attached to my watchstrap. 

While reversing in lowest throttle position, I dropped one anchor line overboard and set it taut at 

45 ° from the surface of the water. After shifting into neutral I filled the trap with water leaving 

half the volume of the sampling jar with an air bubble to provide buoyancy. While in reverse, I 

tossed the second anchor overboard, dragging the float line until only the sample bottle was 

visible above the water’s surface. I wrapped red electrical tape around the perimeter of each 

sampling jar to alert other researchers that traps were deployed, and to make the bottles easier to 

relocate.

I retrieved traps 24 hrs later by approaching them head on with the boat in lowest forward 

throttle position. On windy days, the forward momentum was counter balanced by reversing. I 

loosened the pipe clamp and unscrewed the sample bottles from the plastic ring under water 

ensuring the bottle was held upright until it was capped. I replaced the plastic ring in the neck of 

the trap and tightened the pipe clamp. With the sample bottle removed, the trap sank to the 

bottom of the lake, and could be retrieved by pulling on a float line for the next setting.

Laboratorv Methods

Upon arrival at the lab I carefully added small amounts of 99.7 % ethyl alcohol (EtOH) to 

each sampling jar by uncapping the PET bottle and raising the lid just wide enough to insert the 

squirt bottle spout into the jar. I gently swirled the bottle to ensure all insects were in contact 

with the alcohol and rendered flightless. I emptied the contents of each sample into a white 

sorting tray. I counted and keyed insects to order under a Wild M3C dissecting microscope at 

16X, using Merritt and Cummins (1996), and B orrorstg . (1989). I then transferred insects into
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25 mL glass scintillation vials filled with 70 % EtOH, and labeled vials according to depth and 

site.

Insects collected in July and August of 1995,1997 and 1998 not belonging to the family 

Chironomidae were isolated fix>m the samples and grouped according to order. Chironomidae 

gender was observed via transmitted light by examining the hypopygium and head tegma in a 

plastic Petri dish containing 70 % EtOH at 40X. I placed two pieces of Kimwipe® beneath the 

Petri dish to absorb EtOH and to facilitate movement across the microscope stage. I identified 

specimens with reduced antennae or those lacking plumose antennae as female (Oliver 1971). I 

meticulously examined and grouped male chironomids into morphogroups according to head, 

thorax and abdomen colour, density of hair on abdomen, morphology of caudal end, total body 

length (head to end abdomen), wing colour and pattern, and gross appearance of legs. A 

reference collection comprised of 52 male morphogroups was created by randomly selecting 2 to 

4 males of each morphogroup fion>the July and August 1995,1997 and 1998 samples.

Chironomidae Identification

Bohdan Bilyj (BIOTAX Consulting, Weston, Ontario) identified the male chironomid 

reference collection. He examined chironomids by making a temporary glycerin mount of the 

hypopygium by a full-body dissection (Figure 4). Bilyj prepared microscope slide museum 

mounts by dehydration, tissue clearing and preservation (Appendix 1). Morphogroups were 

identified to species v^ien possible. Some of my morphogroup vials contained genera belonging 

to more than one subfamily. When this occurred, all genera (example: Tanvtarsus- 

p|gpitendipes-Ni Inthauma'i or all subfamilies (example: Orthocladiinae-Chironominae grp.) were
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FIG. 4. Arrangement of chironomid appendages on microscope slide. Structures were 
positioned with the dorsal side up.
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listed in the identification of the morphogroup although it is not known exactly how many of 

each genus or subfamily were collected.

Microscope slides were examined at up to lOOOX with a high powered Leitz Diaplan 

compound microscope with drawing tube and Wild-Photoautomat MPS4S attachment. I used 

light and dark phase photomicroscopy to record diversity in genitalia.

Dataanalvsis

ANOVA’s were computed, unless stated otherwise, using 2 factors: bathymetric 

distribution and site with five (0.5,1.0,3.0,4.5,7.0 meters) and three (north, west, east sites) 

levels respectively, using two-way factorial analysis of variance (ANOVA) (Appendix 2 and 3). 

Since the treatment combinations are unreplicated, this factorial experiment provides no pure 

estimate of variance (o^) as there are zero degrees of freedom associated with experimental error, 

and as such, there is no test for interaction effects (Appendix 4) (Hurlbert 1984). Following the 

guidelines o f a Conservative Test, a test o f significance for only the main effects is possible 

(Brown 1995). If the F-ratio was less than the F critical value, the null hypothesis was not 

rejected. The chance of committing a Type n  error with a conservative test is rather high (Zar 

1994). This fact was taken into consideration for each conservative test and data were analyzed 

by executing multiple one-way ANOVA’s.

To test the ANOVA assumptions that 1) the population from which the experimental 

units are drawn is normally distributed and 2) all samples fiom the parent populations have the 

same variance, a normal probability plot (Appendix 5A) and y by x dotplot (Appendix 5B) were 

inoduced. The data were then normalized with the squareroot transformation.
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To test the hypothesis that the rate of chironomid emergence did not differ between years, 

a one-way ANOVA with year as the single factor was computed. To test the hypotheses that 

Chironomidae bathymetric distribution and site preference did not differ within each year (1995, 

1997 and 1998) during July and August, and May through September 1997 and 1998, separate 

two-way ANOVA's with bathymetric distribution and site as factors were computed. To 

determine if bathymetric distribution varied within each site, in a given year, separate one-way 

ANOVA’s for the west and east site, with bathymetric distribution as the single factor was 

computed. Least significant difference post-hoc tests were constructed for all significant main 

effects. All differences were considered significant at/KÛ.05. Data were analyzed using Data 

Desk 6.0 for IBM compatible computers. Complete ANOVA tables for the July and August 

1995,1997 and 1998 subsample and May to September 1997 and 1998 post-deforestation period 

are included in the Appendices (Appendices 6 to 16 and 17 to 24 respectively).
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RESULTS

Totals of 1,054,1,672 and 1,287 macroinvertebrates emerging from benthos were 

collected from the littoral and profunda! zones at three sites, over six, fourteen and thirteen 

sampling days during the ice-free seasons of 1995,1997, and 1998, respectively. Sample size 

was increased from 90 traps in 1995 to 336 in 1997 and 312 in 1998. From 2 July to 19 August, 

Chironomidae was the most abundant taxon, comprising 96 %, 95 % and 96 % of the total catch 

in 1995,1997 and 1998, respectively.

Chironomidae density

Chironomid density declined after experimental watershed deforestation. There were 62 

% more chironomids collected during July and August in 1995 (pre-deforestation) than in 1997 

(one year post-deforestation). The number of chironomids collected in 1995 was more than two 

times greater than those collected in 1998 (two years post-deforestation), based on equal 

sampling effort between years (Figure 5). Statistically significant differences are summarized in 

Table 8.

Emergence was not uniform among seasons. In 1995, chironomid median density 

peaked 4 August with a minor peak 7 July (Figure 5). In 1997, emergence peaked on 4 June, 25 

June and 23 July. Chironomidae median density decreased steadily from 6 August until the final 

collection on 16 September 1997. This decrease coincided with cooler air temperatures and high 

winds. In 1998, chironomid median density peaked on 3 May, 21 June and 19 August (Figure 

5). Density was relatively unifonn from 1 July until 13 August The lowest seasonal median 

density o f chironomids emerging from benthos in 1998 was observed in mid 611 when insect 

counts plununeted 27 August (Figure 5).

\
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FIG. S. Boxplot showing pre-harvest (July to August 1995) and post-harvest (May to September 
1997,1998) adult Chironomidae emergence patterns at L42. Depths and sites are pooled. The 
bottom, middle, and top o f each box represent the 25**, 50*, and 75* percentiles of each set of 
observations. The vertical lines at the top and bottom of each box extend to the maximum and 
minimum observations, excluding observations of more than 1.5 box-lengths from the 25* or 
75* percentile. Number of observations in each box is shown along the x-axis.
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TABLE 8. Summary of significant p values from one-way ANOVA tables with year, site or 
depth as factors. The response vaiiiÂle was the squareroot transformation o f the rate of 
chironomid emergence (no. - 0.28 m'̂  • d*'). “X” indicates data subset used in ANOVA 
computation.________________________________________________________________
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Sampling interval Year Site Depth (m)
N w E

July to August ’97y§‘95 p <0.01 X X X N/A
’9 8 y s’95 p < 0.01 X X X N/A

July to August ‘95. ‘97, and‘98 X N/A
p = 0.05

'97 yg '95 p = 0.04 X N/A
'98 y§ '95 p = 0.03 X N/A

July to August ‘95 X All depths p < 0.01
X 1.0 vs 0.5 p = 0.02
X 4.5 vs 0.5 p -  0.02
X 7.0 vs 1.0 p < 0.01
X 7.0 vs 4.5 p < 0.01

July to August ‘97 X All depths p < 0.01
X 4.5 vs 0.5 p < 0.01
X 4.5 ys 1.0 p < 0.01
X 4.5 vs 3.0 p < 0.01
X 7.0 ys 0.5 p = 0.02
X 7.0 vs 4.5 p < 0.01

July to August ‘97 X All depths p = 0.05
X 1.0 ys 0.5 p = 0.03
X 7.0 vs 1.0 p < 0.01

July to August ‘98 X All depths p = 0.15
X 7.0 yg 0.5 p -  0.01
X 7.0 vs 3.0 p = 0.05

May to September '9 7 y s ’98 p<0.01 X X X N/A
May to September '97 v s '98 p*0.03 X N/A

Continued next page:
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Month

May to September

Year

‘97

Site
N W

Depth (m)

All depths p < 0.01
2.0 ys 0.5 p = 0.01
4.5 ys 0.5 p < 0.01
4.5 ys 1.0 p < 0.01
4.5 ys 3.0 p = 0.02
7.0 ys 2.0 p = 0.04
7.0 ys 4.5 p < 0.01
9.0 yg 1.0 p = 0.03
9.0 yg 2.0 p < 0.01
9.0 yg 3.0 p = 0.03
9.0 yg 4.5 p < 0.01
12 .0^0 .5 p < 0.01
12.0 yg 1.0 p < 0.01
12.0 yg 2.0 p < 0.01
12.0 yg 3.0 p < 0.01
12.0 yg 4.5 p < 0.01
12.0 vs 7.0 p < 0.01
All depths p < 0.01
2.0 ys 0.5 p = 0.02
3.0 yg 0.5 p = 0.02
3.0 yg 1.0 p = 0.04
7.0 yg 2.0 p < 0.01
7.0 yg 3.0 p < 0.01
7.0 yg 4.5 p -  0.05
9.0 yg 1.0 p -  0.02
9.0 ̂  2.0 p < 0.01
9.0 yg 3.0 p < 0.01
9.0 yg 4.5 p < 0.01
12.0 yg 0.5 p < 0.01
12.0 yg 1.0 p < 0.01
12.0 yg 2.0 p < 0.01
12.0 yg 3.0 p < 0.01
12.0 yg 4.5 p < 0.01
12.0 ys 7.0 p < 0.01

May to September ‘98

Continued next page:
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Month Year Site
N W

Depth (m)

May to September ‘97 All depths p < 0.01
1.0 ys 0.5 p < 0.01
2.0 ys 1.0 p < 0.01
3.0 ys 1.0 p < 0.01
4.5 ys 1.0 p < 0.01
7.0 vs 0.5 p = 0.02
7.0 ys 1.0 p < 0.01
7.0 ys 2.0 p = 0.03
9.0 ys 0.5 p < 0.01
9.0 ys 1.0 p < 0.01
9.0 vs 2.0 p = 0.02
12.0 ys 0.5 p < 0.01
12.0 ys 1.0 p < 0.01
12.0 vs 2.0 p < 0.01
12.0 vs 3.0 p = 0.02
12.0 vs 4.5 p = 0.02

May to September ‘98 All depths
7.0 ys 0.5
7.0 ys 1.0
7.0 w  3.0
9.0 ys 0.5
9.0 ys 3.0
12.0 ys 0.5
12.0 ys 1.0
12.0 ys 2.0
12.0 ys 3.0
12.0 ys 4.5
12.0 ys 9.0

p < 0.01 
p < 0.01
p = 0.05
p < 0.01 
p = 0.02 
p -  0.02 
p < 0.01 
p < 0.01 
p < 0.01 
p < 0.01 
p < 0.01 
p = 0.02
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Chironomidae mean density was more variable among sites during July and August 

during the pre-deforestation period than in each year following catchment deforestation (Table 

9). O f the three sites, mean density (no. chironomids • 0.28 m*̂  ± S.E.) was higher (16.23 ± 

2.93) at the west site before the commencement o f logging than at the north (10.89 ± 1.57) and 

east (9.41 ± 1.05) site. Variability with respect to chironomid mean density between sites was 

lessened in 1997 (7.00 ± 0.96 ys 6.41 ± 0.99 ys 7.43 ± 1.42; north, west and east sites 

respectively) after 71 % of the upland forest and 42 % of the riparian zone of L42 was clearcut.

In 1998, the riparian buffer strip along the west site was clearcut resulting in a total of 61 % 

riparian zone deforestation. This reduction in vegetation paralleled the decline in chironomid 

mean density from the west (4.89 ± 0.69) and east (3.84 ± 0.48) site (Table 9). When 

chironomids were collected at regular weekly intervals in 1997 and 1998 during May through 

September, annual mean density among sites was not significantly different (Table 10).

Chironomidae depth distribution

The depth of water from which the majority of chironomids emerged after logging 

differed from pre-logging distributions (Tables 9 and 10). Without the influence of logging, July 

and August 1995 mean density o f chironomids emerging from benthos (no. chironomids • 028 

m*̂  ± S.E.) from the west site was more common at 1.0 m (28.4 ± 7.44) and 4.5 m (28.75 ±

8.83) than at 0.5 m (8.67 ± 1.67) and 7.0 m (4.83 ± 1.08) (Table 9). Pre-logging emergence 

fiom the east site was dominant at the littoral depths o f 0.5 m (12.00 ±  3.62) and 1.0 m (12.40 ±

1.69). k  1997, one year post-logging emergence fiom the west site was significantly higher at 

4.5 m (13.67 ± 1.91) than at any other depths (pO.Ol) and emergence from the east site was 

most abundant at 1.0 m (14.67 ± 5.16) (Table 8). In 1998, July and August emergence from the
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TABLE 9. 
and 1998.

Mean density ± S.E. o f chironomids (no. chironomids • 0.28 m^ • d ') emerging from L42 benthos during July and August 1995,1997

Ycai^ Site Depth o f water (m) Mean density with 
depths pooled

0.5 1.0 3.0 4.5 7.0
1995 N“ 10.89 ±1.57

W 8.67 ±1.67 28.40 ±7.44 16.80 ±6.76 28.75 ± 8.83 4.83 ±1.08 16.23 ±2.93
E 12.00 ±3.62 12.40 ±1.69 6.40 ±1.03 7.33 ±1.15 9.33 ±2.87 9.41 ± 1.05

Grand mean density = 12.11 ± 1.17
1997 h r 7.00 ±0.96

w 2.60 ± 1.21 3.00 ±1.05 5.20 ±0.97 13.67 ±1.91 6.17±1.35 6.41 ±0.99
E 6.17 ±3.57 14.67 ±5.16 6.17 ±1.08 7.50 ±1.54 2.67 ±0.56 7.43 ±1.42

Grand mean density = 6.97 ± 0.66
1998 N" 7.10 ±1.03

W 3.40 ±0.81 4.60 ±1.40 4.40 ±0.87 3.67 ±0.99 3.00 ± 1.08 4.89 ±0.69
E 6.83 ±1.42 5.17 ±2.24 5.60 ±1.50 4.33 ± 1.02 2.20 ±0.80 3.84 ±0.45

Grand mean density = 5.37 ± 0.48
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6 emergence traps were deployed at each depth per site per year.
**A11 emergence traps at the north site were deployed in 0.2 to 1.0 m depths of water.
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TABLE 10. Mean density ± S.E. o f chironomids (no. chironomids • 0.28 m^ d ') emerging from L42 benthos during May through September 1997 
and 1998.

Year Site Depth of water (m) Mean density 
with depths 

pooled
0.5 1.0 1 2.0 3.0 4.5 7.0 9.0 ! 12.0

1997“ N** 7.33 ±0.67
W 4.79 ±2.05 7.61 ±2.60 9.36 ±1.67 7.58 ±2.25 13.71 ±2.46 4.57 ±0.94 2.75 ±0.74 1.00 ±0.69 6.51 ±0.73
E 9.08 ±3.10 18.43 ±5.46 8.00 ±2.14 5.07 ±0.86 5.31 ±1.10 2.64 ± 0.64 3.31 ±1.40 1.23 ±0.30 6.70 ±0.99

Grand mean density = 6.85 ± 0.46
1998“ N* 5.38 ±0.47

W 2.62 ±0.56 3.54 ±0.80 6.08 ± 1.12 6.45 ±1.36 4.62 ±0.98 2.23 ± 0.53 1.23 ±0.43 0.31 ±0.17 3.32 ±0.34
E 5.69 ±0.88 5.25 ±1.44 4.17 ±1.50 6.08 ±1.18 3.23 ±0.63 2.62 ±0.76 3.00 ± 0.87 0.62 ±0.18 3.81 ±0.38

Grand mean density = 4.18 ± 0.24
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“In 1997, N=14 emergence traps were deployed per depth per site.
""All emergence traps at the north site were deployed in 0.2 to 1.0 m depths of water. 
“In 1998, N=13 emergence traps were deployed per depth per site.
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west site was relatively equally distributed among all depths (range 3.00 ± 1.08 to 4.60 ± 1.40), 

and more prevalent from the east site in the littoral zone at depths of 3.0 m or less (range 5.60 ± 

1.50 to 6.83 ±1.42) (Table 9).

Independent of timber harvest, chironomid density was higher in the littoral zone (depths 

of water from 0.5 m to 4.5 m) than in the profrmdal zone (depths of water from 7.0 m to 12.0 m) 

during May through September 1997 and 1998 (Table 10). Chironomid depth distribution 

differed between the west and east site (p<O.Gl) (Table 8). In 1997, mean density (no. 

chironomids • 0.28 m'̂  d*‘ ± S.E.) from the west site was highest at 4.5 m (13.71 ± 2.46) and 

lowest at 12.0 m (1.00 ± 0.69). At the east site, emergence was highest at 1.0 m (18.43 ± 5.46) 

and lowest at 12.0 m (1.23 ± 0.30). The trend in 1998 was similar to that in 1997 in which 

chironomid density decreased with a corresponding increase in water depth (Table 10).

Chironomidae taxa richness

Chironomid taxa richness decreased after logging. Three subfamilies were collected in 

each year with Chironominae most abundant (Figure 6). A summary o f trophic relationships for 

each subfamily is reported in Table 11. A shift in chironomid trophic levels was evident after 

catchment deforestation. Tanypodinae was least abundant in 1995 but the percent of each annual 

catch o f this subfamily increased with an increase in catchment deforestation (Figure 6). The 

percent catch of Oithocladiinae, on the other hand, decreased with a corresponding increase in 

timber harvest (Figure 6).

Chironomid subfrmily richness also differed among sites between years during July and 

August Before logging, Orthocladiinae was dominant at the west site followed by 

Chironominae (Figure 7). After the upland catchment was clearcut in 1997, the percent catch of
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FIG. 6 . Chironomidae sub&mily composition (% of catch) during July to August 1995 (pre- 
deforestation), 1997 (1 yr. post-cut), and 1998 (2 yrs. post-cut). All depths and sites are pooled 
(N = 270 traps total). Percent catch is less than 100 % when unidentified or damaged specimens 
were collected. [TP = Tanypodinae; OTP = Orthocladiinae-Tanypodinae complex.; OC = 
Orthocladiinae; (X^H = Oithocladiinae-Chironominae grp.; CH = Chironominae]
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TABLE 11. Summaiyofecological data for Chironomidae collected fiomL42(M eiritt and Cummins 1996).
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Taia Habitat Habit Trophic Rdathmship
Zhironomidae Essentially all types o f aquatic habitats, including littoral Generally burrowers (most are tube builders) 

and proAmdal zones of headwater, oligotrophk lake 42
Generally two types;
1) collectors- Adherers and Alterers
2) predatom (engulfers and piercers)

Tanypodinae All types of lentic and lotk habitats Generally sprawlers- swimmers (very active 
predators, not tube buildem)

Generally predators (engulfers and piercers)

Ablabesmvia

CUngaoym

Ubnm iyya

Lamia
Procladius

Lentic- littoral zone (errosional and depositional)

Lentic-littoral zoiw 

Lentic littoral 

Lentic- littoral
Lentic- profiuidal, some littoral

Sprawlers

Generally burowers

Sprawlem

Sprawlers
Sprawlers

Predators (engulfers and piercers) (rotifera, 
microcrustacea, Chironomidae).
Collectom- gathetem (early instars)
Predators (engulfera; oligochaeta, Ostracoda, 
Chironomidae)
Predatom (engulfem and piercem, Oligochaeta, 
Cladocera, Ostracoda)
Predatom (engulfem)
Predators (engulfera; Protozoa, microcrustacea, 
Ephemeroptera, Ceratopogoni^, Gastrotricha), 
collectors-gatherem (winter and early instars)

Oitfiocladiinae Lentic representatives common in oligotrophic lakes Generally burrowers (tube builders) Generally collectom-gatherera, scrapers
COrvnoneura Lentic- littoral zone (some instar nrimarilv olanktonic) Sorawleis Collectors-eatherem
Cricotopus Lentic- vascular hvdroidivtes (and alsal mats, sediments. Clinaers (tube builders! buirowers (miners and Shredders- herbivores (miners and chewers).

detritus) tube builders) collectors-gatherem (detritus and algae) 
Heterotanvtarsus Lentic- littoral
Nanocladius Lentic- littoral Sprawlers Collectors-gatherers

Psectrocladius
f Lentic- littoral 

Lentic-littoral
Sprawlers
Sprawlers, burrowers

Collectors gatherers
Collectors gatherers, shreddera-herbivores

Otironominae Lentic- littoral and profundal Generally burrowers and dingers Generally collectors-gatherers and collectors-flheren
Chironomini Generally lentic- littoral and profundal Generally burrowers Generally collectom-gatherers
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Continued:

■DCD Tau Habitat Habit Trophic Relationship
3 Chironominae Lentic- littoral and profundal Generally burrowers and dingers Generally collectors-gatherers and collectors-filterers
C/)c/) Chironomini Generally lentic- littoral and profundal Generally burrowers Generally collectors-gatherers
o3
O Çbirvmoi» Lentic- littoral and profimdal Burrowers (tube builders) Collectors-gatherers (a few fUtmes), shredders-
3"CD herbivores (miners)
R Cladopebna Lentic- littoral Burrowers Collectors-gatherers
"O Cryptochiranompus Lentic-littoral and profundal Sprawlers, burrowers Predators (engulfers of Protozoa, microcrustacea,
CQ' Chironomidae and piercers of Oligochaeta)
3" Dkrotendiixs Lentic- littoral (wide range of microhabitats) Burrowers Collectors-gatherers, filterers, scrapers
g üigahmikWm Lentic- littoral and profundal Climbers-sprawlers-dingers, burrowers (portable Collectors-gatherers3CD sand tube builders)

Mierotendioea Lentic- littoral Clingers (net spinners) Collectors-filterers and gatherers
IIC NUodUBD» Lotie depositional

3"rn Paracladonelma Lentic-littoral Sprawlers
" Paralautetbomiella Lentic- vascular hydrophytes Clingers (tube builders on plants) Collectors gatherersCD

■o Polvoedilum Lentic- vascular hydrophytes (floating zone) Climbers, clingers Shredders-herbivores (miners), collectors-
oQ. gatherers, filterers, predators (engulfers)
a Trftktel Lentic Burrowers (wood miners) Collectors-gatherers
o3 Tmytarsini Generally lotie, some lentic- littoral Generally burrowers or clingers (tube builders) Generally collectors-filterers and gatherers
■D3 Cladotanvtarsus Lentic- vascular hydrophytes Collectors-gatherers and filterers
3" Conatcnmcilina Lotie-errosional
<—HCD PintwYiasus Lentic-littoral Sprawlers
Q.
< ^knvçlüosljg Lentic-littoral Sprawlers
1—H“T Tnnyinaa Lentic- vascular hydrophytes (floating zone) and Climbers, clingers (net spiimers) Collectors-filterers and gatherers, a few scrapers
OC profundal
■D
CD

C/)
C/)
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FIG. 7. Pre-deforestation Chironomidae subfamily composition (% of catch) at the north, west, 
and east site, July to August 1995. All depths are pooled (N = 90 traps total). Percent catch is 
less than 100 % when unidentified or damaged specimens were collected. [TP = Tanypodinae; 
OTP = Orthocladiinae-Tanypodinae complex.; OC = Orthocladiinae; OCH = Orthocladiinae- 
Chironominae complex.; CH = Chironominae]
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Oithocladiinae decreased and Tanypodinae increased (Figure 8). The pre-deforestation 

subfamily chironomid composition at the north site shifted in favor of a predominantly 

Tanypodinae and Chironominae community two years after catchment deforestation (Figure 9). 

Although three chironomid subfamilies were present at the east site in each year, it is difficult to 

discern a subfamily shift post-deforestation because subfamily complexes overlapped the percent 

catch o f individual subfamilies.

Chironomid genera and species richness were more diverse before catchment 

deforestation (1995) (Table 12), than one year (1997) (Table 13), and two years (1998) (Table 

14) after experimental cutting. Genus complexes (example: Tanvtarsus-Dicrotentipes- 

tJilothaumat were common in each year and as such, richness may be more important when 

qualified than when quantified. The total number o f each genus and genus complex emerging 

from the north, west, and east site was variable between years (Table 15). However, there were 

only three to five common genera from each site to which 80 % of the total catch belonged 

(Table 15). With the exception o fCladonelma. Clinotanvnus. Larisa. Paracladonelma. and 

Tribelos. there were two or more specimens o f each genus and genus complex collected between 

1995 and 1998. Tables describing chironomid depth distribution and seasonal emergence 

patterns for each genus and genus complex were noted according to site and year (Appendices 25 

to 33).

Natural history observations

Non-chironomid macroinvertebrates

Site and timber harvest treatment did not appear to affect mean density o f non- 

chironomid macroinvertebrates. However, there were seasonal differences among density. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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FIG. 8. Post-deforestation Chironomidae sub&mily composition (% of catch) at the north 
(clearcut littoral embayment), west (clearcut with riparian buffer strip), and east (clearcut to 
shoreline) site July to August 1997. All depths are pooled (N = 90 traps). [TP = Tanypodinae; 
OTP = Orthocladiinae-Tanypodinae complex.; OC = Orthocladiinae; OCH = Orthocladiinae- 
Chironominae complex.; CH = Chironominae]

- ! , • i
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FIG. 9. Post-deforestation Chironomidae subfamily composition (% of catch) at the north 
(clearcut littoral embayment), west (clearcut with riparian buffer strip), and east (clearcut to 
shoreline) site July to August 1998. AU depths are pooled (N = 90 traps total). [TP = 
Tanypodinae; OTP = Orthocladiinae-Tanypodinae complex.; OC = Orthocladiinae; OCH = 
Orthocladiinae-Chironominae complex.; CH = Chironominae]

'  1
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TABLE 12. 1995 male Chironomidae community composition. Fifteen emergence traps were deployed in the littoral and profundal zone o f L42
for six twenty-four hour periods.

Subfamily Tribe No.
genera

Genera No. species Species % of  annmd catch 
(actual no. collected)

Tanypodinae 2 Ablabesmvia.
Procladius

6 A. aspera. A. mallochi. 
A. paraianta. P. sublettei. 
P. bellus. P. denticulatus

7(36)

Orthocladiinae 3 Nanocladius.
Corvnoneura.
Psectrocladius

8 N. rectinervis. C. celeripes. 
C. ftttkaui. C. scutellata.
C. aictica. C. lacustris.
P. limbatellus. P. simulans

27(143)

Chironominae Chironomini • 5 Dicrotendipes.
Crvptochironomous.
Chironomus.
Polvpedilum.
Tribelos

9 D. modestus. D. leucoscelis.
C. sorex. C. longipes. C. maturus 
complex. P. nubeculosum.
P. tritum. P. scalaenum.
T. iucundum

2 (12)

Tanytarsini 3 Paratanvtarsus.
Stempellinella.
Tanvtarsus

8 P. tenuis. S. undescr..
S. bausei. S. leptocelloides. 
T. recurvatus. T. eminulus. 
T. mendax. T. sienatus

18(93)

Chironomini
-Tanytarsini
gip.

9 Tanvtarsus.
Nilothauma.
Dicrotendines.
Constempellina.
Lautefbomiella.
Paralauteibomiella.
Paratanvtarsus.
Psectrocladius.
Cladotanvtarsus

12 T. eminulus. T. mendax.
N. mirabile. N. undescr..
D. modestus. C. rodesta.
L. agravloides.
P. nierohalteralis. P. tenuis.
Ps. limbatellus. Cl. fiisiformis

25(128)
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Subfamily Tribe No.
genera

Genera No. species Species % of annual catch
(actual no. collected)

Orthocladiinae- 
Chironominae grp.

6 Paralauterbomiella
Parakiefferella.
Stempellinella.
Heterotanvtarsus.
Constemnellina.
CricotoDus.
Cladotanvtarsus

7 P. coronata, S. undescr.. S. bausei. 18(94) 
H. nudalus. Co. rodesta.
Cr politus. Cl. fiisiformis.

Unidentified, 
damaged male 
Chironomidae . -  ■■

3(15)
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O
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* Total genera richness for 1995 July and August L42 male chironomid conununity 
 ̂Total species richness for 1995 July and Ar%ust L42 male chironomid community
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Q . TABLE 13. 1997 male Chironomidae community composition. Fifteen emergence traps were deployed in the littoral and profundal zone o f L42 for

six twenty-four hour periods.

CD

3
8
o
3

Subfamily Tribe No.
genera

Genera No. species Species % annual catch 
(actual no. collected)

S Tanypodinae 5 Ablabesmvia. 9 A. aspera. A. mallochi. 16(46)
CD
o Procladius. A. paraianta. P. sublettei.
o

■ D Labrundinia. P. bellus, P. denticulatus.
C5- Larisa. L. piosella, L. canadensis.

Clinotanvnus Ç  oinguis
S Oithocladiinae 4 Nanocladius. 9 N. rectinervis. C. celeripes. 27(78)
CD Corvnoneura. C. ftttkaui, C. scutellata.
"n Psectrocladius. C. arctica, C. lacustris.
3.
3 " Heterotanvtarsus P limbatellus. P. simulans.
CD H. nudalus
CD
■o Chironominae Chironomini 4 Dicrotendipes. 7 D modestus. D leucoscelis. 5(15)

Polvpedilum. P. nubeculosum. P. tritum.C
a Microtendipes. P. scalaenum M. pedellus.
O
3

■ D

Cladopelma C amachaerum.

3 "

cf Tanytarsini 2 Stempellinella. 7 S. undescr.. S. bausei. 20(57)
& Tanvtarsus S. leptocelloides. T. recurvatus.
S T. eminulus. T. mendax.
3 "o T. sienatus
c Chironomini 6 Tanvtarsus. 7 T. eminulus. T. mendax. 28 (80)
CD -Tanytarsini Nilothauma. N. mirabile, D modestus.
3(/>' gip. Dicrotendipes. C rodesta. Pa nierohalteralis.
(/>
o' Constempellina. Po. simulans.
3 Paralauteihomiella.

Polvoedilum

cn
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Subfamily Tribe No.
genera

Genera No. species Species % annual catch 
(actual no. collected)

Orthociadiinae- 
Tanypodinae grp.

2 Procladius.
CricotoDus

3 P. sublettei, P. bellus. 
C. Dolitus.

2(5)

Unidentified, 
damaged male 
Chifonomidae

1(4)
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" Total genera richness for 1997 July and August L42 male chironomid community 
 ̂Total qxecies richness for 1997 July and August L42 male chironomid community
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TABLE 14. 1998 male Chironomidae community composition. Fifteen emergence traps were deployed in the littoral and profundal zone of L42 for
six twenty-four hour periods.

Subfamily Tribe No.
genera

Genera No. species Species % annual catch 
(actual no. collected)

Tanypodinae 2 Ablabesmvia.
Procladius

6 A. aspera. A. mallochi. 
A. paraianta. P. sublettei. 
P. bellus. P. denticulatus

30(60)

Orthocladiinae 2 Corvnoneura.
Psectrocladius

7 C. celeripes. C. fittkaui.
C. scutellata. C. arctica.
C. lacustris. P. limbatellus. 
P. simulans

14(30)

Chironominae Chironomini' 4 Dicrotendines.
Microtendines.
Chironomus.
Paracladoneln»

6 D. modestus. D. leucoscelis.
M. pedellus. C. maturus complex. 
C. loneioes. P. ealantera

5(10)

Tanytarsini 2 Stempellinella.
Tanvtarsus

7 S. undescr.. S. bausei.
S. leotocelloides. T. recurvatus. 
T. eminulus. T. mendax.
T. sienatus

30(64)

Chironomini
-Tanytarsini
grp.

6 Tanvtarsus.
Nilothauma.
Cladotanvtarsus.
Constempellina.
Paralauterbomiella.
Polvoedilum

7 T. eminulus. T. mendax.
N. mirabile. Cl. fiisiformis.
C. rodesta. Pa. nigrohalteralis. 
Po. simulans.

15(33)

Oithocladiinae- 
Tanypodinae grp.

2 Procladius.
CricotoDus

3 P. sublettei. P. bellus. C. nolitus. 6(14)
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Subfamily Tribe No.
genera

Genera No. species Species % annual catch 
(actual no. collected)

Unidentified, 
damaged male 
Chironomidae

«

2(4)
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Q . TABLE 15. Chironomidae genera richness and catch counts during July and August from the north, west and east site at L42.

■D
CD

1993 1997 1998

G a m N W E N W E N W E

Ablabesmvia 14 2 7 1 2 4 8 8 2
Chironom ui 0 1 0 0 0 0 0 1 1
C I>iTW om B -Pigate»dipg 0 3 0 0 0 0 0 0 0
Cbdooelmm 0 0 0 1 0 1 0 0 0

O ia f ly a n s i i 0 0 0 1 0 0 0 0 0
1 19 18 0 0 0 0 0 0

C gaO flB B D 2 0 8 13 21 23 7 13 7
C ricotofm -C loiolinvttnus-C oiB laiiPcilin» 1 1 1 0 0 0 0 0 0
Dicfotendipea 0 0 0 0 2 6 0 0 4
D icroiaidiim <:ivM ochinm oim » 0 3 2 0 0 0 0 0 0
H o c io ta iv ttn u s 0 0 0 0 1 0 0 0 0
H daïQ taiv tM im -P iraliu taboniic lla 4 7 3 0 0 0 0 0 0

jL id a 0 0 0 1 0 0 0 0 0
AiicrolaKliDcs 0 0 0 0 3 0 2 1 0
Nanocladiua.Conmaiieura 18 87 24 1 3 0 0 0 0
Pomclmdooelmm 0 0 0 0 0 0 0 1 0
P ank id faelln -S la iiD elline lli 33 16 28 0 0 0 0 0 0
Panlautabomiella-Polvpcdilum-CoiuieinDeHina 0 0 0 1 7 II 3 0 3
P a n in v ta s u f 30 5 1 0 0 0 0 0 0
P «m iivH fais-N ilo lh iu in»-Pscclroclaliu»C lado»iv ttrsus 9 1 3 0 0 0 0 0 0

PolvM dilum 1 1 0 0 2 0 0 0 0
Procladiui 11 2 0 18 7 2 37 2 3
Pioclidiu»C rtcoiopus 0 0 0 4 0 1 8 0 6
Procladiu*-» Jhrninlm ia 0 0 0 2 1 2 0 0 0

P w flrw M iiB 1 3 0 4 1 7 0 0 1

StBWBrilincWi 7 10 17 10 16 17 7 4 8
T o n a m u : 1 2 0 3 2 7 19 7 19
TamWama^XcMilaMlioea-Nilolbawmm 8 42 27 27 16 27 0 0 0
T aivtw w s-N iloduw n».CIa(lotm vtarsus 0 0 0 0 0 0 6 13 4
Tribelos 0 1 0 0 0 0 0 0 0

Total number o f  Kcncra per site per year: 18 21 18 17 13 14 12 10 14

Total num ber o f  genera per year 21 19 16
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mean density (no. individuals • 0.28 m'̂ - d*') o f macroinvertebrates that emerged from benthos 

during the M y and August subsample period (0.3,0.4,0.2; 1995,1997, and 1998 respectively) 

(Table 16) was higher than the May through September period (0.2,0.1; 1997 and 1998 

respectively) (Table 17).

Protandrv

Logging did not have an effect on chironomid protandry based on 24 hour sampling. 

Approximately one male chironomid emerged for every female chironomid during M y through 

August in 1995,1997 and 1998 (Table 16).

Chironomid egg masses

Chironomid egg masses were collected in both 1997 and 1998 from the submerged 

ventral surface of tn ^  floats, buoy lines, brick anchors and Nuphar varigatum. Eggs were 

enveloped in a clear, transparent gelatinous matrix. Each matrix measured 45 cm in length. 

Within the matrix were successive rings of eight green ovoid eggs. Undeveloped eggs were 

green and mature eggs were brown. On 24 June 1997, egg masses which where attached to 

bricks in 0.5 m water were brought back to the lab. Each mass was placed in a PET jar in lake 

water, with an air stone and battery operated air pump and set on a windowsill. On 8 July 1998, 

chironomid larvae hatched from the brown egg mass. Larvae had two dark eyespots and two 

prominent vertical bands on the dorsum of the head. Black mandibles with a  dark brown comb 

were also present. Larvae were active swimmers and did not build tubes or cases. Some larvae 

were examined live in a Petri dish under 16X using a dissecting microscope and transmitted 

light All larvae lay quiescent after one minute ofexposure to the external light source.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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TABLE 16. Pie- (1995) and post-deforestation (1997 and 1998) insect emergence summaiy during July to August for the north, west, and 
east site on L42. All depths are pooled. Data are averages for die six-day period w*en traps were deployed.________________________
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Year Site No. valid (%) traps* Chironomidae sex ratio 
male: female

Mean density other aquatic 
insects • 0.28 m^

1995 (pre-cut) north 28 (93) 1.0:0.9 0.3

west 26(87) 1.0 : 1.0 0.3

cast 27(90) 1.0 : 0.8 0.2

1997 (1 yr. post-cut) north 30(100) 0 .7 :1.0 0.5

west 27(90) 1.0 : 1.0 0.3

east 30(100) 1.0 : 1.0 0.3

1998 (2 yrs. post-cut) north 30(100) 0.9: 1.0 0.4

west 25 (83) 1.0 : 0.8 0.2

east 28(93) 0 .8 : 1.0 0.1

"D
CD

(/)(/)

* A total of 30 emergence tnq[>s were deployed over six days at each site in each year. Valid tnqts are those which did not ciqpsize in rough 
weather.
 ̂Other aquatic insects include Emphemeroptera, Trichoptera, Corixidae, Gerridae, Ceratopogonidae, and Chaoboridae.
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TABLE 17. Post-defoiestation (1997 and 1998) insect emergence summary during May to September from the north, west and east site on 
L42. AH depths are pooled. Data are averages for the May to September period._______________________________________________

3
CD

8
Year Site No. valid (%) trqrs" Mean no. other aquatic 

insects • 0.28 m'̂ **
■D

CQ
3 " 1997 north 108(96) 0.2

i
3
CD west 106(95) 0.2

"n
c
3.
3 "
CD V

• east 108 (96) 0.1

CD 1998 north 104(100) 0.2
"O
OQ.Ca west 102 (98) 0.1
o3

T 3
east 102 (98) 0.1
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"A total o f 112 emergence traps were deployed at each site over 14 days in 1997. In 1998,104 traps were deployed at each site over 13 
days. Valid traps are those which did not capsize in rough weather.
 ̂Other aquatic insects include Emphemeroptera, Trichoptera, Corixidae, Gerridae, Ceratopogonidae, and Chaoboridae.
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On 9 September 1997,100 cm long transparent gelatinous egg masses were collected. 

Brown ovoid eggs were randomly arranged within the matrix. Egg masses were brought back to 

the lab and hatched after three weeks. These chironomid larvae built cases within three days 

from hatching. Although there was no visible debris in the collected lake water, all larvae built 

sedentary cases that opened anteriorly.

In an attempt to raise both green and brown chironomid eggs to the first, second, third, 

and fourth larval instar, two larvae of each type were transferred to 5 mL vials. This trial was 

unsuccessful after two weeks under laboratory conditions, as all larvae perished.

Mermithid nematodes

The abdomens of a few adult chironomids were infected with a roundworm parasite. At 

40X under the dissecting microscope, mermithid nematodes were located spiraled internally 

along the entire length of the abdomen. Transmitted light permitted easy identification of 

infected larvae. In some cases, the anterior end of the nematode was protruding through the mid- 

dorsal tergites. In all cases, nematodes were opaque white. One parasitized adult specimen 

fChironomusl firom the reference collection had both male and female characteristics. The 

abdomen was broad like that o f a female, lacked antennae, but possessed male genitalia. This 

morphogroup is commonly referred to as an intersex (Rempel 1940).

Watermite infestations

Watermites were abundant in July 1995 and 1997. Adult chironomids were parasitized 

most commonly around the head, antennae and thorax. It was common to see large masses of 

mites encompassing both antennae. Both male and female chironomids were infected, but only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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during early June. General observation suggested that only Corvnoneura were infected. These 

adults were small bodied (-3.0 mm in length) and transparent yellow.

Hvdra colonies

Hvdra was common in 1998 during the end of August and early September. Many Hvdra 

(approximately 200) were collected when submerged traps were recovered from 9.0 and 12.0 

metre depths along the west shore (clearcut with riparian buffer strip).

Specimens were brought back to the lab for general interest purposes. As an experiment, 

1 fed live chironomid bloodworm larvae to the Hvdra. Within a few minutes, larvae were stung 

by the nematocysts from Hvdra tentacles and engulfed. Two days following initial feeding, 

ruptured chironomid haemoglobin was still visible within the Hvdra body cavity.

' I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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DISCUSSION 

Chironomidae density and natural variation

The density of chironomids emerging from lake benthos declined after experimental 

upland and riparian deforestation. After equal sampling effort during July and August, 1995 

emergence was 62 % greater than 1997 emergence, and two and a half times greater than 1998 

emergence abundance. In addition, 1997 May to September weekly emergence was 70 % higher 

than 1998 equal sampling effort This aimual decrease coincided with a progressive increase in 

upland and riparian deforestation. Rosenberg et al. (1995) trapped adult chironomids 200 km 

west o f L42 from May through September (1984 to 1989) from Experimental Lakes Area L239 

fen. They too, found significant yearly differences in adult emergence abundance; 1985 had 

higher emergence than 1986, and 1987 had higher emergence than 1988.

Trap-to-trap variability was significant at L42 in 1995, 1997 and 1998 at the west and east 

site. Patchy distribution of Chironomidae on preferred substrates and depth distributions likely 

caused significant intertrap variability. However, as 1 increased the number of replicate tnq>s 

from 5 to 8 at the north site at 0.5 m depths, intertrap variability decreased significantly.

Temporally, weekly differences in emergence abundance also occurred during July and August.

This was likely due to a decrease in genera richness from 21 in 1995 to 19 in 1997 and to 16 

genera in 1998.

Strong temporal differences in emergence occur naturally over the course of a season and 

I  year-to-year variability may be pronounced (Rosenberg gt gf. 1995). Variation in chironomid 

abundance also exists among other groups of lakes. Harvey and McArdle (1986) found 

chironomid abundance to be nearly five times greater in two o f three acid lakes than in two 

! reference lakes within the same year. Rosenberg gtgL (1995) tnqiped adult chironomids from

i ■ '  i
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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May through September (1984 to 1989) from ELA L239 fen. Trap-to-trap variability was 

significant from 1984 to 1988. The significant year by week interaction term in 1987 and 1988 

data resulted from higher counts early and late in the 1987 season, but higher counts in mid

season in 1988. Air temperatures and precipitation at ELA were highly variable from year-to- 

year (Beaty and Lyng 1988), and likely played a role in emergence abundance.

Catchment deforestation

In 1995, before experimental logging at L42, adult chironomids were more abundant 

when emerging from fine organic substrate (north site) than from a combination of cobbles and 

fine organic material (west and east site). Two years later, after 71 % and 42 % watershed and 

riparian deforestation, chironomid density was nearly uniform among sites. This result was 

unexpected because the lowest densities were found at the west site, which had a clearcut upland 

with riparian buffer strip intact. The two other sites, which had their corresponding shoreline 

clearcut including the removal of the riparian buffer strip had higher chironomid densities. The 

rate of chirononüd emergence continued to decline when an additional 20 % of the riparian 

buffer strip was clearcut the following year. However, for no apparent reason, there was again a 

greater decrease in chironomid density from the shoreline that contained a buffer strip than from 

the two clearcut to shoreline sites.

Sedimentation

Aquatic sediment deposition has been associated with nutrient enrichment (Mattingly gt 

gl. 1981), and species composition in aquatic invertebrates (Rasmussen and Rowan 1997). The 

introduction of particulate material on aquatic insects may be quite serious. The organisms can 

be affected directly, such as when food collection or respiration is obstructed, or indirectly, such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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as when depletion of the resources on which they depend occurs. Suspended or sedimented 

material can be deleterious because these substances reduce light penetration and consequently 

plant growth, bury hard surfaces, and fill interstices within the substrate.

Steedman and France (1999) distributed floating litter traps and terrestrial litterfall traps 

among undisturbed, buffer strip and clearcut riparian zones on four boreal forest lakes in 

northwestern Ontario. Terrestrial litterfall traps averaged 34gm '^'^ from clearcut riparian 

shores compared to only 2 gm'V*' 6 om forested shoreline buffer strips, and 4 gm'V from 

upland forest. Steedman and France (1999) also monitored sediment deposition on L26, which 

retained all riparian forest, 3 km n-w o f L42 (clearcut to the shoreline). Reduced post-logging 

mineral and organic sedimentation was attributed to dry weather and low catchment runoff in 

1997. Long-term sedimentation rates in northwestern Ontario are more strongly associated with 

re^onal precipitation and runoff trends than with catchment disturbance by clearcutting 

(Steedman gt al. 1999) or fire (Blais gî al. 1998).

Steedman and France (1999) demonstrated that elevated sediment deposition at 

experimental L42 (clearcut to shoreline) was correlated with increased littoral wind energy and 

wave turbulence one year following deforestation of 61 % o f the catchment riparian boundary. 

Aquatic sedimentation deposition was measured in L42 from 1995 through 1998, before, during 

and after clearcutting. Mean pre-harvest (1995 and 1996) sediment accumulation on L42 was 

0.5 g per littoral zone granite tile (1 cm thick and 15 cm on a side). Mean post-harvest (1997 

and 1998) sediment accumulation was 2.0 g per tile (Steedman and France 1999). This increase 

in sediment is likely responsible for a shift in chironomid subfamily distribution toward fewer 

Orthocladiinae and more Tanypodinae at L42.
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Overall, Chironominae was the most abundant subfamily at L42, but subfamily 

distribution was variable among sites and year. Before logging, Orthocladiinae was dominant at 

the west site, Wiich was comprised o f cobbles and fine organic material. Chironominae was 

dominant at both the north and east site, which were comprised of fine organic material, and 

rubble and fine organic material, respectively. The first year after logging (1997) revealed a 

decrease in orthoclads at the west site and an increase in Tanypodinae at the north and east site.

In 1998, a total of 74 % of the upland and 61 % of the riparian buffer strip around L42 was 

clearcut The north and east site shorelines were experimentally clearcut including removal of 

riparian vegetation. Coincidentally, there was a significant increase in the number of predatory 

tanypods following deforestation.

Inorganic sediment recovered from the littoral tiles of L42 had particle sizes similar to the 

terrestrial aeolian sediment primarily comprising fine to medium sand, with some silt and coarse 

sand. Tiles showed an increase in post-logging sedimentation (1.6 g / tile ys 0.3 g t tile) 

particularly in sand-sized particles potentially of aeolian origin (Steedman and France 1999).

Tiles with highest sediment content were located towards the north end of L42 (clearcut littoral 

embayment). This is the same area in which a significant increase in predatory fi%e-living 

tanypods was observed in 1998. Organic material was also elevated on tiles post-cut (0.4 g /  tile 

ysO.2 g / tile) (Steedman and France 1999). Organic material may have originated firom aeolian 

deposition o f terrestrial humus particles from the clearcut, firom the logging slash deposited in the 

littoral zone, or firom increased periphyton growth, attributed to loss of shade firom the removal of 

riparian vegetation.

The two species of Chironomidae that were apparently fevored by increased 

sedimentation in the Bay o f Quinte, Stempcllina sp. and Abiskomvia sp., inhabit cases that they
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can transport across the bottom (Warwick 1980 a). A transportable case may enable larvae to 

exploit food resources in the sediment-water interface, whereas the tubes of more sedentary 

chironomid species would be clogged by sedimentation deposits (Grimas and Wiederholm 1979).

Water temperature

Complete loss of littoral shade increased near shore water temperatures in 1997 and 1998 

at L42. Water surface temperatures increased by 0.1 °C in 1997 and by 0.5 °C in 1998 compared 

to the mean pre-logging surface temperature (21.6 °C) during July and August in 1995 when 

trtq>s were deployed. Small changes from 2 to 4 °C in other lakes have been shown to affect lake 

thermal structure and physical properties (Schindler et al. 1980), invertebrate growth, primary 

production, and detrital decomposition (Webster and Waide 1982, and Rempel and Carter 1987).

Steedman et al. (1998) suggest that increases of up to 0.5 to 1.0 °C in daily maximum 

water temperature, and decreases of about 0.2 °C in daily minimum temperatures can be expected 

in small boreal lakes following riparian deforestation. They also suggested that hourly water 

temperature patterns were primarily associated with hourly patterns of solar energy, while day-to- 

day water temperature patterns were associated only with air temperature.

Depth distribution

Depth distribution was variable between site and year and differed among taxa. 

Chironomids preferred littoral depths (0.5,1.0,2.0,3.0 and 4.5) to depths of 7.0,9.0 and 12.0 m. 

Ninety percent o f «nnmil adult Chironomidae emergence from L42 arose from 0.5 m to 4.5 m 

depths o f water in July and August 1995, and from 0.5 to 7.0 m depths during May through 

September 1997 and 1998. Corvnoneura-Ngpncladius was more frequent at 1.0,3.0 and 4.5 m 

depths whereas Tanvtarsus. Parakiefferclla-StemDellinella. and Procladius-Cricotopus were
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collected more often at 3.0,4.5 and 7.0 m depths. Occasionally, only a few individuals of each 

genus (Tribelos. Labrundinia. Cladopelma. Paracladonelma. Larsia. Cladopelmal were collected 

in a year, thus it would be unreasonable to suggest that a particular genus had a depth distribution 

preference.

Davies (1980) collected adult chironomids once weekly for a 24-hr period at ELA at 

different depths and shoreline combinations. Emergence from a given depth was highly variable 

when measured at different locations around each lake on any single collection date. 

Cladotanvtarsus fiisiformis showed the narrowest range o f depth preference (Bilyj and Davies 

1989). More than 80 % o f annual emergence was restricted to 0.5 m and 1.0 m. Other species 

of Cladotanvtarsus emerged sporadically firom 0.5 m to 5.0 m. No Cladotanvtarsus species 

emerged at depths greater than 7.0 m.

L42 chironomid emergence firom the littoral region was usually dominated by small 

individuals, whereas the percentage of larger individuals in the catch increased steadily with 

depth. Although chironomids were not identified from May through September 1997 and 1998 

at 9.0 and 12.0 m depths, casual observation revealed that profundal species were larger than 

littoral species. Small Diptera made iq> the majority of emergence in ELA oligotrophic lakes 

(L223, L224) while larger individuals were more common in eutrophic lakes (L226 NE, L227) 

(Davies 1980).

Bilyj and Davies (1989) suggested that the rate o f chironomid emergence gradually 

declines with increasing water depth. This theory was partially supported at L42. In 1997, the 

mean density (no. individuals * 0.28 m*̂  * d * ± S.E) o f adult chironomids emerging from the east 

site (clearcut to shoreline) at 1.0 m depths was 18 ± 5, compared to 5 ± I at 4.5 m and 11 0.3 at 

12.0 m. However, this was not the trend at the west side o f the lake (clearcut with riparian buffer
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strip intact) where density was lowest at 12.0 m (1 ± 0.7) and highest at 4.5 m (14 ± 2). It is 

important to note that the slope bathymetry at the west site was, however, considerably more 

steep than at the east site, and thus was likely responsible for the difference in adult chironomid 

density.

Larval migration

Cowell and Hudson (1968) determined that chironomid larvae migrate to avoid 

disturbance. Horizontal migration was noted as chironomid density increased firom depths of 1.2 

m to 7.6 m. Post-logging chironomid densities at L42 increased at sublittoral depths of 3 .0 m 

and 4.5 m compared to previous high pre-logging densities at 0.5 m and 1.0 m. This 

phenomenon could possibly be an indication of horizontal movement by larvae in response to 

avoidance of sediment deposition attributed to clearcut logging.

Emergence

Voltinism

Voltinism refers to the number of generations that an insect population completes in one 

year. Oliver (1971) suggested that the majority o f chironomids firom cold temperate regions 

demonstrate two generations per year (bivoltine). In higher taxa, Orthocladiinae include more 

species with multivoltine life cycles, Chironominae have few multivoltine cycles and the 

Tanypodinae have 1 to 3 generations per year. Oliver (1971) characterized orthoclads as being 

cold-adapted, and capable of nqiid development, while species o f Chironominae are warm- 

adapted. A general observation is that species with small body size (Corvnoneura. Nanocladius 

and Tanvtarsus^ tend to complete more generations in ayear than those with a large body 

(Chironomus spp.) (Armitage g  g . 1995).
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Intraspecific variation in voltinism exists within the Chironomidae. Chironomus 

plumosus is multivoltine in the littoral zone but univoltine in the profimdal zone o f lakes (Terek 

and Losos 1979). Interspecific variation in emergence patterns is also common in chironomids. 

Patterns of emergence vary temporally and spatially depending on growth and development of 

the larva. Some of the factors that affect larval development include water temperature, food 

supply, oxygen concentration, pH, and photoperiod (Armitage et al. 1995).

Observation o f adult emergence patterns alone is insufficient to establish the voltinism of 

a particular species (Armitage et aL 1995). The number of emergence peaks observed does not 

necessarily correspond to voltinism if there are different cohorts within a population. Therefore, 

to be able to determine L42 chironomid voltinism, it is necessary to collect information on larval 

chironomid growth and development based on proportions of larval instar stages through each 

year.

June to August is the major period of adult emergence for univoltine chironomid species 

including Psectrocladius limbatellus. Paracladonelma nigritula and Procladius signatus firom 

subarctic Lake Thingvallavatn which is ice boimd from December until April. Spring emergence 

(2-3 weeks after ice-melt in May/Jtme) in a subarctic lake in northwestern Canada (Moore 1979) 

was dominated by univoltine species including Heterotanvtarsus. Paraldefferiella.

Polvnedilum. Micronsectra and Tanvtarstis. All o f these five genera were collected at L42 firom 

1995 to 1998.

Bilyj and Davies (1989) investigated ecological parameters affecting Cladotanvtarsus for 

eleven continuous years at ELA L223. £ . tribelos exhibited a univoltine life cycle with 

synchronous emergence that lasted for 1 to 2 weeks and occurred between mid May and early 

June of each year. Q. fiisiformis emergence extended over a 4 week period annually and usually
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peaked during the last week of June. ELA is approximately 200 km west o f L42, and as such it is 

probable that L42 chironomids exhibit a univoltine cycle as well.

Bivoltine species emerge during spring and summer / early autumn. Dicrotendines 

modestus and Polvpedilum nubeculosum exhibited spring emergence in May / June and summer 

emergence in August, while the second generation emerged in September / October in Lake 

Esrom, Denmark (Jonsson 1985). Similarly, Cladotanvtarsus. Tanvtarsus mendax (Potter and 

Learner 1974), and Cricotonus (LeSage and Harrison 1980) had two emergence periods, first in 

May / June and second in September/October in Salem Creek in southern Ontario. All of these 

genera were sampled sporadically firom L42 during July and August. Emergence was continuous 

at L42 and could be attributed to overlapping generations of univoltine and bivoltine species.

Svnchronicitv

Chironomids exhibited taxon-specific eme^ence patterns at L42. Some species such as 

Stempellinella and Corvnoneura emerged at low densities over a few weeks, while others 

emerged within a few days. Synchronous emergence relates to the duration of the larval period, 

vriiich is affected by temperature, oxygen concentration, photoperiod, water level and food 

resources. Emergence fiom the north site was highly synchronous in 1995 by Paratanvtarsus. in 

1997 bv Procladius and Tanvtarsus. and in 1998 bv Procladius. Chironomid emergence firom the 

west and east site was synchronous in 1995 by Nanocladius-Corvnoneura only. After 

experimental timber harvest, there were no taxa with highly synchronous emergence at the west 

and east site.

Synchronicity increases the chances o f sexual encounters and hence reproductive success. 

In the northern hemisphere, Orthocladiinae emerge during the spring and autumn, udiereas
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Chironominae and Tanypodinae are abundant during summer (Rempel and Harrison 1987) with 

Tanypodinae often dominant in autumn. Within the seasonal patterns of emergence, there are 

also daily rhythms. Few chironomids emerge evenly throughout the day. Environmental cues for 

the timing of emergence have been attributed to changes in light intensity and water 

temperatures.

Diel emergence patterns for Chironomidae tribes have been summarized by Learner and 

Pickering (1990). Chironomini species exhibit a crepuscular or nocturnal pattern, whereas 

Tanytarsini emerge at dusk with less abundant emergence at dawn and early morning, and 

Orthocladiini appear to emerge during daylight hours with peaks in early morning or late 

afternoon / early evening. I deployed traps for a full 24-hrs period to avoid differences in diel 

emergence patterns.

Dispersal bv wind

Most dispersal of chironomids is passive and modified by factors such as wind direction 

and speed (Armitage et ad. 1995). Watershed deforestation and perh^s more importantly 

riparian deforestation, may be detrimental to the formation of swarms. Most male chironomids 

engage in aerial swarming as a typical mating behavior. Swarms are formed almost immediately 

after eclosion but the occurrence and location of swarms is affected by wind speed and direction, 

light intensity and humidity (Armitage gt gf. 1995). Swanns are frequent with wind speeds less 

than 11 k m /h r and temperatures greater than 10 *C. Actual wind speed in excess of 15 km /hr 

prevented swarming (Armitage gt af. 1995). The position of male chironomid swarms is related 

to a marker, or landmark that contrasts against the ground or slty. Trees and riparian vegetation
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are usual markers because they have sharp boundaries (LeSage and Harrison 1980). Catchment 

deforestation may therefore have a  negative impact on the success o f swarm formation.

Summaiy

If logging were detrimental to the aquatic environment, we would expect changes to be 

detected first via water chemistry and secondly by lake biota. Post-logging (May 1991 to August 

1996) epilimnetic water chemistry medians were similar to the post deforestation (August 1996 

to 1997) period at L42. These data suggest that logging did not eutrophicate L42. However, 

there may be a lag effect of the consequences of riparian deforestation on water chemistry.

Given that long-term sedimentation rates in northwestern Ontario are more strongly associated 

with regional precipitation and runoff trends than with catchment disturbance by clearcutting, it 

is probable that it may take more than two years after the commencement of logging to identity 

subtle changes within the stable L42 environment (Steedman et al. 1999).

After monitoring insects on either a weekly or bi-weekly basis I determined that 

chironomid emergence is synchronous and as such, once weekly sampling may not be sufficient 

to estimate density and genus richness. As well, L42 chironomids may be univoltine, bivoltine or 

multivoltine. Pre-logging voltinism was not measured during May through Septeml>er, and as 

such, I could not determine if  post-logging voltinism was affected by logging. We do know that 

chironomid density was significantly lower after riparian and upland deforestation, but we do not 

know what pre-deforestation seasonal variation is for the L42 chironomid community.

Therefore, it is difficult to distinguish natural variation firom the potential impact o f clearcut 

logging on Chironomidae density.
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Chironomids typically emerged soon after ice out in early spring (May) and they 

continued to emerge until late fall (mid September). Chironomids were collected in 1997 and 

1998 during this period but only during July and August in 1995. Post-deforestation genera 

richness could therefore not be compared with the full seasonal pre-deforestation community.

This suggests that genera richness summaries during July and August 1995,1997 and 1998 

should not be extrapolated to conclude that logging does not affect the aquatic insect community.

Should logging companies request to cut around boreal forest lakes, I propose that they 

leave a buffer strip around the perimeter of each lake. The presence of a buffer strip reduces 

wind velocity, prevents water-borne sedimentation of aquatic habitats by protecting soils 

(particularly surficial organic layers), retards the velocity o f overland flow, captures bedload, and 

reduces aeolian sediment transport (France 1997 a). A buffer strip would also enable 

chironomid swarm formations resulting in continued reproduction, and as such, perhaps post

logging chironomid densities and richness would not vary significantly from pre-logging 

communities.

Chironomids can be used as effective indicators of ecosystem health. An ideal scenario 

would include monitoring aquatic insects for multiple years before, during and after catchment 

deforestation. However, it would still be beneficial to continue the aquatic insect monitoring 

component o f the Coldwater Lakes Experimental Watersheds program for an additional five 

years or more, including a study of immature insects. This long-term post-deforestation study 

would be invaluable to entomologists worldwide and at the same time educate foresters about the 

significance of aquatic insects as biological monitors in small boreal forest lakes. Convincing 

evidence has yet to be published about long-term adult chironomid population dynamics in 

undisturbed lakes and no known studies have utilized adult chironomids as indicators of
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ecosystem degradation following experimental upland and riparian deforestation around 

oligotrophic boreal forest lakes.
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APPENDDC1. Preservation series for adult chironomid mounting on microscope slides.

1. Dissect chironomid in 70 % EtOH in glass Petri dish under stereoscope at 16X. Gently 

tease wings, one antenna, three legs (hind, mid and fore), head, abdomen and thorax until 

individual structures are separated from body.

2. Add head with one antenna, thorax with 3 legs and abdomen to 10 % potassium 

hydroxide (KOH). Let sit overnight at room temperature.

3. Place wings, loose antenna, three legs and all structures in (#2) into glacial acetic acid 

(GAA) for twenty minutes.

4. Expose all structures to absolute (anhydrous) ethyl alcohol for fifteen minutes.

5. Apply one drop o f Euparal mounting medium onto microscope slide.

6 . Place one structure onto Euparal and add an additional drop.

7. Cover structure with a 12 mm round cover slip.

8. Repeat steps 6 and 7 with remaining chironomid structures.

9. Dry slide in oven at 40 °C for five days or until Euparal has hardened.

(After Al Weins personal comments April 1997).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

APPENDIX 2. Model equation used in the factorial analysis of variance of the rate of 
Chironomidae emergence and the description o f model parameters.

Model Yjjk = p + Si + Dj +  S D y  +  8(ij)k

where i=  1,2 ,3; j = l , 2 , ..., 5; k =  1

Parameter Definition

Yiik

14

Si

D j

SDij

E(S)k

= the rate o f chironomid emergence

= the overall mean

= the fixed effect of the i* site

= the fixed effect of the j*  depth of water

= the interaction effect of the i"* site and the j* depth of water

= The random effect o f the k*** of 1 experimental unit in the ij'*' site combination. 
The C(jj]k are assumed to be HD N(0, c^)
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APPENDIX 3. Expected mean squares table and associated degrees of freedom used in 
parameter estimation in the factorial analysis o f variance of rate of chironomid emergence

Parameter Expected Mean Squares Degrees of freedom

Si Ĝ  + S *(S ) 1

Dj o^ + 2*(D ) 4

SDij 0^+1 *(SD) 4

®(U)k 0

Total 2 (5 )-1 = 9
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APPENDIX 4. Tests of hypotheses used in the factorial analysis o f variance o f rate of 
chironomid emergence.

Hypothesis Test statistic Reference distribution

*(S) M S(S)/M S(SD ) F (1,4)

4(D) M S(D )/M S(SD ) F (4,4)

4(SD) NO TEST

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

APPENDIX S A-B. A. Normal probability plot using the squareroot transformation of the 
dependent variable (rate of chironomid emergence = no. • 0.28 m'̂  - d '). B. Y x X Dotplot 
(count /  year) to check homogeneity of variance.
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APPENDIX 6. ANOVA table for July to August 1995,1997, and 1998 with rate of 
Chironomidae emergence (no. • 0.28 m*̂  * d'*) as the response variable and year as the main 
effect

Source df Sums o f Squares Mean Square F-ratio probability

Year
Error
Total

2
248

49.09
311.42

24.54
1.26

250 360.50

19.55 < 0.01 ♦

Least significant difference post-hoc tests

Factor (vear’l_____________ Difference std. err. probability

1997 -1995 -0.77 0.17 < 0.0 1 *
1998 -1995 -1.06 0.18 < 0.01 *
1998 -1997 -0.29 0.17 0.10

^denotes significance with a  at 0.05
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APPENDIX 7. ANOVA table for July to August 1995,1997, and 1998 at the north site with 
rate of Chironomidae emergence (no. • 0.28 m'̂  - d‘‘) as the response variable and year as the 
main effect

Source_____ d f  Sum « n f  Squares Vfe^n Squaw» p -ta tio ________probabilitV

Year 2 6.73 3.36 2.85 0.05 *

Error_______85 100.38____________ U 8________

Total 87 107.12

Least significant difference post-hoc tests

Factor fvearl_______ Difference std. err. probability

1997 vs 1995 -0.56 0.28 0.04*

1998 vs 1995 -0.61 0.28 0.03*

1998 vs 1997 -0.04 0.28 0.86

* denotes significance with a  at 0.05
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APPENDIX 8. ANOVA table for M y to August 1995 with rate of Chironomidae emergence 
(no. • 028 m'̂  ■ d*‘) as the response variable and site (west and east) and depth distribution (0.5,
1.0,3.0,4.5,7.0 m) as the main effects.__________________________________ ______

Source df Sums of Squares Mean Square F-ratio

site 
depth 
site*depth 
EsSE_____

I
4
4
47

0.45
9.37
25.23
32.87

0.45 
2.34 
6.31 
0__

0.4/6.3 =0.06 
2.3/6.3=0.37 
NO TEST

Fo.05(1).I,4-7.71 
Fo.o5(I).i.4=7.71

Total 56 70.86
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APPENDIX 9. ANOVA table for July to August 1995 at the west site with rate o f 
Chironomidae emergence (no. • 0.28 m'̂  - d '') as the response variable and with depth 
distribution (0.5,1.0,3.0,4.5,7.0 m) as the main effect.________________________

Source df Sums of Squares Mean Square F-ratio probabilitV
Depth
Error
Total

4
2L

36.94
41.76

25 78.70

9.23
1.99

4.64 < 0.01

Least signifieant differcnee post-hoe tests

Factor Cdeothl Difference std. err. probabilitV
1-0.5 223 0.85 0.0 2 *
3-0 .5 0.83 0.85 0.34
3 -1 -1.40 0.89 0.13
4.5-0.5 222 0.91 0.0 2 *
4.5-1 -0.02 0.95 0.99
4 .5-3 1.38 0.95 0.16
7-0 .5 -0.77 0.81 0.35
7 -1 -3.01 0.85 < 0.01 *
7 -3 -1.60 0.85 0.07
7-4 .5 -2.99 0.91 < 0.01 *

^denotes significance with a  at 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

APPENDIX 10. ANOVA table for July to August 1995 at the east site with rate of 
Chironomidae emergence (no. • 028 m*̂  • d‘‘) as the response variable and depth distribution 
(0.5,1.0,3.0,4.5,7.0 m) as the main effect._______________________________

Source n f Mean Square F-ratio______ probability

Depth 4 3.31 0.83 0.91 0.48

Error________22 19.97_____________ 091________

Total 26 2328
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APPENDIX 11. ANOVA table for July to August 1997 with rate of Chironomidae emergence 
(no. ' 028 m  ̂  - d*') as the response variable and site (west and east) and depth distribution (0.5,
1.0,3.0,4.5,7.0 m) as the main effects._____________________________________________

Source df Sums of Squares Mean Square F-ratio criticil

Site* 1 0.69 0.69 0.69/4.06=0.17 Fo.05(1),1.4=7.71

Depth * 4 13.71 3.42 3.4/4.06=0.84 Fo.o5(1),i .4=7.71

Sitex Depth 4 16.24 4.06 NO TEST

Error 47 39.06 0

Total 56 69.43

^denotes a Conservative Test
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APPENDIX 12. ANOVA table for July to August 1997 at the west site with rate of 
Chironomidae emergence (no. • 028 m'^ • d ') as the response variable and depth distribution 
(O.S, 1.0,3.0,4.5,7.0 m) as the main effect.________________________________________

Source_____ df SuTpgf>fSf|nari»«t Mean Square F-ratio______ ProbabilitV

Depth 4 17.93 4.48 8.75 <0.01*
Error 22 11.28_____________ 051________
Total 26 29.21

Least significant post-hoc tests

Factor (depth)______ Difference std. err. probability.
1-0.5 0.28 0.45 0.53
3-0.5 0.89 0.45 0.06
3 -1 0.61 0.45 0.19
4.5-0.5 2.30 0.43 < 0.01 *
4.5-1 2.02 0.43 < 0.01 *
4.5-3 1.41 0.43 < 0.01 *
7-0.5 1.07 0.43 0.0 2 *
7 -1 0.79 0.43 0.08
7 -3 0.18 0.43 0.67
7-4.5 -1.23 0.41 < 0.01 *

*denotes significance with a  at 0.05
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APPENDIX 13. ANOVA table for July to August 1997 at the east site with rate of 
Chironomidae emergence (no. • 028 m^ - d*‘) as the response variable and depth distribution 
(0.5,1.0,3.0,4.5,7.0 m) as the main effect.________________________________________

Source_____ d f Sums o f Squares Mean Square F-ratin______ probabilitV
Depth 4 12.05 3.01 2.71 0.05 •
Error 25 27.79____________ LU________
Total 29 39.85

Least significant difference post-hoc tests

Factor (depth) Difference std. err. probabilitV.
1-0.5 1.36 0.60 0.03*
3-0 .5 0.28 0.60 0.64
3 -1 -1.08 0.60 0.08
4.5-0.5 0.50 0.60 0.41
4.5-1 -0.85 0.60 0.17
4.5-3 0.22 0.60 0.71
7-0 .5 -0.56 0.60 0.36
7 -1 -1.92 0.60 < 0.01 *
7 -3 -0.84 0.60 0.17
7-4 .5 -1.07 0.60 0.08

^denotes significance with a  at 0.05
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APPENDIX 14. ANOVA table for July to August 1998 with rate of Chironomidae emergence 
(no. • 0.28 m*̂  • d*‘) as the response variable and site (west and east) and depth distribution (0.5, 
l .0 ,3.0,4.5,7.0 m) as the main effects._____________________________ ________________

Source df Sums of Squares Mean Square F-ratio____________ Fentieii

Site* I 0.33 0.33 0.3/0.4=0.75 Fo.osd),1,4-7.71

Depth* 4 320 0.80 0.8/0.4=2 Fo.o5(i).i,4=7.71

Depth X Site 4 1.66 0.41 NO TEST

Error 43 21.92 0

Total 52 27.61

^denotes a Conservative Test
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APPENDIX 15. ANOVA table for July to August 1998 at the west site with rate of 
Chironomidae emergence (no. * 0.28 m'^ > d ') as the response variable and depth distribution 
(0.5,1.0,3.0,4.5,7.0 m) as the main effect________________________________________

Source_____ df Sums of Squares Mean Square F-ratio______ probability

Depth 4 0.60 0.15 0.41 0.79

Error_______20 7.28______________ 0 J6 ________

Total 24 7.89
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APPENDIX 16. ANOVA table for July to August 1998 at the east site with rate of 
Chironomidae emergence (no. • 028 m*̂  • d ') as the response variable and depth distribution

Source_____ df Sums of Squares Mean Square F-ratio______ probabilitV
Depth 4 4.68 1.17 1.84 0.15
Error_______23 14.63_____________ 0J3_________
Total 27 19.32

Least significant différence post-hoc tests

Factor (denth) Difference std. err. nrobabilitv
1-0.5 -0.47 0.46 0.31
3-0.5 -0.25 0.48 0.59
3 -1 0.21 0.48 0.65
4.5-0.5 -0.55 0.46 0.24
4.5-1 -0.07 0.46 0.87
4 .5-3 -0.29 0.48 0.55
7-0.5 -1.25 0.48 0.01 •
7 -1 -0.78 0.48 0.11
7 -3 -1.00 0.50 0.06*
7-4.5 -0.70 0.48 0.15

^denotes significance with a  at 0.05

' I
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APPENDIX 17. ANOVA table for May to September 1997 and 1998 with rate of Chironomidae 
emergence (no. • 0.28 m'^ » d ') as the response variable and year as the main effect.

Source______ d f  Sums n f  Squares Mean Sqiiart» F-ratio______ProbabilitV

Year 1 38.54 38.54 23.79 <0.01*

Error_______628 1017.09___________ L61_________

Total 629 1055.63

* denotes significance with a  at 0.05

! ■ '  I
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APPENDIX 18. ANOVA table for May to September 1997 and 1998 at the north site with rate 
of Chironomidae emergence (no. • 028 m'^ ■ d '‘) as the response variable and year as the main 
effect

Source______df Squares MganSqiian; F-ratio______probabilitV

Year 1 6.81 6.81 4.74 0.03 *

Error 210 301.50____________ 143

Total 211 308.31

* denotes significance with a  at 0.05

!
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APPENDIX 19. ANOVA table for May to September 1997 with rate of Chironomidae 
emergence (no. • 0.28 m*̂  • d‘*) as the response variable and site (west and east) and depth 
distribution (0.5,1.0,2.0,3.0,4.5,7.0,9.0,12.0) as the main effects._________________

Source_____ df Sums of Squares Mean Square F-ratio_______Fcnikmi

Site* 1 0.010 0.01 0.0/5.5=0.01 Foo5(i).i.7=5.59

Depth * 7 122.33 17.47 17.5/5.5=3.2 Fo.o5(i).i,7=5.59

Depth X Site 7 38.50 5.50 NO TEST

Error_______ 198 292.79 0___________

Total 213 456.192

*denotes a Conservative Test
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APPENDIX 20. ANOVA table for May to September 1997 at the west site with rate of
Chironomidae emergence (no. • 0.28 m'̂  * d*̂ ) as the response variable and depth distribution
(0.5,1.0,2.0,3.0,4.5,7.0,9.0 and 12.0 m) as the main effect._________________________
Source df Sums of Squares Mean Square F-ratio probability
Depth

Total

7
98

80.37
136.32

11.48 8.25 < 0.01

105 216.701

Least significant difference post-hoc tests
Factor (denth) Difference std. err. nrobabilitv
1-0.5 0.62 0.45 0.17
2-0.5 1.15 0.44 0.01 •
2 -1 0.53 0.45 0.24
3-0.5 0.68 0.46 0.14
3-1 0.05 0.47 0.89
3 -2 -0.47 0.46 0.30
4.5 - 0.5 1.76 0.44 < 0.01 *
4.5-1 1.14 0.45 0.01 •
4 .5-2 0.60 0.44 0.17
4.5-3 1.08 0.46 0.0 2 *
7-0.5 0.23 0.44 0.60
7-1 -0.38 0.45 0.39
7 -2 -0.92 0.44 0.04*
7 -3 -0.44 0.46 0.33
7-4.5 -1.53 0.44 < 0.01 *
9-0.5 -0.36 0.46 0.437418
9 -1 -0.98 0.47 0.03*
9 -2 -1.52 0.46 < 0.01 *
9 -3 -1.04 0.48 0.03*
9-4.5 -2.12 0.46 < 0 .0 1 *
9 -7 -0.59 0.46 0.20
12-0.5 -1.24 0.45 < 0 .0 1 *
12-1 -1.86 0.46 < 0.0 1 *
12-2 -2.40 0.45 < 0.01 *
12-3 -1.92 0.47 < 0.0 1 *
12-4.5 -3.00 0.45 < 0.0 1 *
12-7 -1.47 0.45 < 0 .0 1 *
12-9 -0.88 0.47 0.06

^denotes significance with a  at 0.05
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APPENDIX 21. ANOVA table for May to September 1997 at the east site with rate of 
Chironomidae emergence (no. < 0.28 m*̂  • d*‘) as the response variable and depth distribution

Source______df Suip«ofS fp iares Mean Square  F-ratio___________ probability
Depth 7 83.01 11.85 7.57 <0.01 ♦
Error_______ 100 156.47_____________ I J 6_______
Total 107 239.48
Least significant difference post-hoc tests

Factor (depth) Difference std. err. probability
1-0.5 126 0.48 < 0.01 *
2 -0 .5 -0.11 0.48 0.80
2 -1 -1.38 0.47 < 0.01 *
3-0 .5 -0.53 0.48 0.27
3 -1 -1.79 0.47 < 0.01 *
3 -2 -0.41 0.47 0.38
4.5 - 0.5 -0.49 0.49 0.31
4.5-1 -1.76 0.48 < 0.01 •
4 .5 -2 -0.37 0.48 0.43
4 .5-3 0.03 0.48 0.94
7-0 .5 -1.15 0.48 0.0 2 *
7 -1 -2.42 0.47 < 0.01 *
7 -2 -1.03 0.47 0.03*
7 -3 -0.62 0.47 0.18
7-4 .5 -0.66 0.48 0.17
9-0 .5 -1.32 0.49 < 0.0 1 *
9 -1 -2.59 0.48 <0.01 *

; 9 -2 -1.20 0.48 0.0 2 *
9 -3 -0.79 0.48 0.10
9-4 .5 -0.83 0.49 0.09

; 9 -7 -0.17 0.48 0.72
12-0.5 -1.71 0.49 < 0.01 *
12-1 -2.97 0.48 < 0.0 1 *
12 -2 -1.59 0.48 < 0.01 *
12-3 -1.18 0.48 0.0 2 *

i 12-4.5 -1.21 0.49 0.0 2 *
; 12-7 -0.55 0.48 0.24

12-9 -0.38 0.49 0.43

^denotes significance with a  at 0.05
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APPENDIX 22. ANOVA table for May to September 1998 with rate of Chironomidae 
emergence (no. • 0.28 m'^ • d'^) as the response variable and site (west and east) and depth 
distribution (0.5,1.0,2.0,3.0,4.5,7.0,9.0,12.0) as the main effects._________________

Source d f  Sutpg n f  Squares Mean Souare F-ratio

Site ♦ 1 1.22

Depth * 7 64.38

Site X Depth 7 10.97

Error 188 160.78

Total 203 237.66

^denotes a Conservative Test

1.22 

9.19 

1.56 

0___

1.2/1.6=0.75 

92/1.6=5.75 

NO TEST

Fo.o5(1),i.7-5.59

Fo.o5(I).i.7=5.59
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APPENDIX 23. ANOVA table for May to September 1998 at the west site with rate of
Chironomidae emergence (no. - 0.28 m'̂  * d*‘) as the response variable and depth distribution
(0.5,1.0,2.0,3.0,4.5,7.0,9.0 and 12.0 m) as the main effect_________________________

Source df Sums of Squares Mean Square F-ratio probability
Depth
g e a r
Total

7
94

45.19
74.46

6.45
0.79

101 119.65

8.15 <0.01

Least significant difference post-hoc tests

Factor (depth) Difference std. err. probability
1-0.5 0.18 0.34 0.60
2-0 .5 0.84 0.34 0.0 2 *
2 -1 0.66 0.34 0.06
3-0 .5 0.90 0.36 0.0 2 *
3 -1 0.72 0.36 0.04*
3 - 2 0.06 0.36 0.86
4.5 - 0.5 0.50 0.34 0.14
4.5-1 0.32 0.34 0.34
4 .5 -2 -0.33 0.34 0.33
4 .5 -3 -0.39 0.36 0.27
7-0 .5 -0.16 0.34 0.64
7 -1 -0.34 0.34 0.32
7 -2 -1.00 0.34 < 0.01 *
7 -3 -1.07 0.36 < 0.01 *
7 -4 .5 -0.67 0.34 0.05*
9 -0 .5 -0.64 0.34 0.06
9 -1 -0.82 0.34 0.0 2 *
9 - 2 -1.48 0.34 < 0.01 *
9 -3 -1.55 0.36 < 0.01 *
9 -4 .5 -1.15 0.34 < 0.01 *
9 - 7 -0.48 0.34 0.17
12-0.5 -1.16 0.34 < 0.01 *
12 -1 -1.34 0.34 < 0.0 1 *
1 2 - 2 -2.00 0.34 < 0.01 *
12-3 -2.06 0.36 < 0.01 *
12-4.5 -1.66 0.34 < 0.01 *
1 2 -7 -0.99 0.34 < 0.01 *
12-9 -0.51 0.34 0.14

^denotes significance with a  at 0.05
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APPENDIX 24. ANOVA table for May to September 1998 at the east site with rate of
Chironomidae emergence (no. • 0.28 m'̂  • d'*) as the response variable and depth distribution
(0.5,1.0,2.0,3.0,4.5,7.0,9.0 and 12.0 m) as the main effect._________________________

Source df Sums of Squares Mean Souare F-ratio probabilitv
Depth
Error
Total

7
94

30.24
86.32

101 116.57

4.32
0.91

4.70 < 0.01

Least significant difference post-hoc tests

Factor (depth) Difference std. err. nrobabilitv
1-0.5 -0.26 0.38 0.49
2-0.5 -0.64 0.38 0.09
2 -1 -0.37 0.39 0.34
3-0.5 0.02 0.37 0.94
3 -1 0.28 0.38 0.45
3 -2 0.66 0.38 0.08
4.5-0.5 -0.69 0.37 0.06
4.5-1 -0.42 0.38 0.27
4 .5-2 -0.05 0.38 0.89
4.5-3 -0.71 0.37 0.06
7-0.5 -1.01 0.37 < 0.01 *
7 -1 -0.74 0.38 0.05*
7 -2 -0.37 0.38 0.33
7 -3 -1.03 0.37 < 0.0 1 *
7-4.5 -0.31 0.37 0.39
9-0.5 -0.87 0.37 0.0 2 *
9 -1 -0.60 0.38 0.11
9 -2 -0.23 0.38 0.54
9 -3 -0.89 0.37 0.0 2 *
9-4.5 -0.18 0.37 0.63
9 -7 0.13 0.37 0.71
12-0.5 -1.71 0.37 < 0.01*
12-1 -1.44 0.38 < 0.01 *
1 2 -2 -1.07 0.38 < 0.01 *
12-3 -1.73 0.37 < 0.01 *
12-4.5 -1.02 0.37 < 0.01 *
12-7 -0.70 0.37 0.06
12-9 -0.84 0.37 0.0 2 *

^denotes significance with a  at 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
'  I



I

i

s

§

I

I
I

§

I
*r\

n

«/%

rs

m

CN

f

I

c s 0 0 0 0 >->nc*t<rt0 t' > 0 0 0 0

o  o  o  o  o

^  o  o  o  o

o  o  e  o  o

o  e  e  o  o

m o  o  o  o

o o r t o o t s o o o o  

o  — o o o —> o o o o  

o —< O V ^ O ^ O O O O

— o o o o o o e o o  

e m  — o o o o e o o

o  o  o  o  — ^ o o o o o o < « >

o  o  o  o  —

o  o  o  e  e

e  e  o  o

o  o  o  e  e

v o m o o o o e o o  — 

e < o ^ o o e o o o - >

(N~ * 0 0 0 0 0 0 0  —

e o e e o o o o e o

p»0 (NO(*) — 0 ( ' t0 0 ~>0 0 — O

o  o  o  o  o

o  o  o  e  e

o  o  o  o  

o  e  o  e  e

o  e  (s e

o m o o o o o o o o  

e m o o o  — o o o o  

- • o o e o o o o o o  

0 0 0 0 0 0 0 0 ^ 0  

o v m o o o o o o o

m o o o o  — o ( s

V o  o  o  — o  o

o  o  o  o  o  o  o

— O O O O O (S

o  o  o  o  o  o  o

« m o o o o o o o

'0 0 0 " " “ f->“*<S rj (N

— w*0 0 0 (S0  — 

m o o o o o o

VP— 0 "»0 0 ^ 0

0 *^0 0 ^  — o*^

CNOOOOOO» {N —

m o o o o o o o

v m o o o o o o

( SVOOOOOO

^ o o o o o o  —

( SmOOOOOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l



1

II
I

m

es

I es

I%
g

t

I

I

m o o  — o c s o p ^ o o o o o o m

e o e o o e o ^ o o o o e e o  

» o o e o - > o < r > o o o o o o o  

( S O O  — o  — O O O O O O O O r ^  

o o o e o o o o o o o o o o o

m » 0 0 0  — ( N o m O t n o v O  —

o  — o o o * ~  — o o o o o o o o  

r ^ o o o o o ^ o * — o * ^ o v o ^  

e o o o o o o o o o  — o o o o  

r 4 0 o e o o o o » o » e o o o  

• - • o o o o o o o  — o o o e o o

V O O O O ' A ' 0 f<̂ — " " O*“ « n O “"

o o o o » r 4 o o o o o  — o o  

( - I 0 0 0 0 c s 0 0 > - 0 0 0 ( s 0 0

m O O O O O O ^ - O ^ O O O O O

o o o e o  — o o e o e  — o o  — 

o e o e o  — v t s o o o o o e o

a 1 £
1 a 3 1

3 1 1
£ 1 1 1

3 — es (S — trt m trv

e s ^ o o e o o o o
es ^

0  0 ^  0  0  0  0 

o ^ o o o e e o

e s m e s o o  — o m  
es -•

<*1 ^ 0 0 0 0 0 0

mQ0 ^ O O * " O ^

« v ^ o o o o o e s

m ^ * * o o o o o

e s « « o e o o o o

t / %r * * o o o o ^ v c  
es es

wn o  e  o  o  •—

>6 0  0  0  0  0  ^  

e n o e o o o o o o  

m ^ o o o o o o  

r ^ r ^ o o o o o c s

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7)
CD

1  :  
c
g
Q .

■D
CD

(/)
o'3

8"D
C5-

3
CD

3.
3 "
CD

CD■D
O
Q .

O
3

"D
O

CD
Q .

OC
%

PPENDIX 26. Post-deforestation aquatic insect taxon richness from July to August, 1997 at the north site (clearcut littoral embayment). The response 
niable is the rate of chironomid emergence (no. - 0.28 m ̂  • d'*)._______________________________________________________________________

Taxon Set # (Date) 1 (July 2) Total 2 (July 9) Total 3 (July 23) Total
Replicate trap 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Cladopehna 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
CUmrtinvnii 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
CorvnoneiMm 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 2 1 5
Ijo ia 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
Nanoclsdius-Corvnoneuni 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
Pandauterboiniella-Polvpediluin-Consteinpellina 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
PrwM ii» 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 5 1 11
Ersfilidiuf-Qrisfiteeys 0 1 0 0 1 2 0 0 0 0 0 0 1 0 1 0 0 2
PiQclsdiut-Ubnmdinw 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0
PsecliDChdius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stfflvellinellt 0 2 1 0 0 3 0 0 0 1 1 2 1 0 0 0 1 2
Tanvtmui 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
Tsnvtaraus-DkrotendiDes-Niloiluuiina 1 1 1 0 2 5 6 1 0 1 1 9 3 0 0 1 2 6
Male Chironomidae 1 5 2 2 6 16 7 1 0 3 3 14 8 0 6 8 5 27
Female Chironomidae 1 4 3 5 1 14 1 3 4 1 1 10 5 1 2 2 1 II
Chironomidae larva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chironomidae pupa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trichoplera 1 1 0 0 2 4 2 0 0 1 0 3 0 0 1 0 0 1
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I  PPENDIX 27. Post-defoiestation aquatic insect taxa richness from July to August, 1998 at the north site (clearcut littoral embayment). The response 
I  riable is the rate of chironomid emergence (no. - 0.28 m^ • d ').________________________________________ _

Taxon Set#(Date) 1 (July 2) Total 2 (July 16) Total 3 (July 29) Total
Replicate trap 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

AbkbwmYi# 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
Cmnmçwa 1 0 0 1 0 2 0 0 0 1 0 1 0 0 1 2 1 4
MkmWiPM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Paialauterboniiella-Polvpediluin-Consteinpelliiia 0 0 0 0 0 0 0 0 1 2 0 3 0 0 0 0 0 0
Procladius 0 0 0 0 0 0 8 3 6 IS 3 35 0 0 0 0 0 0
Procladiut-CricoloiHis 0 0 0 0 0 0 1 1 0 0 0 2 0 0 1 1 0 2
Stempellinella 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
Tanvtanui 3 2 2 2 6 15 0 2 0 0 1 3 0 0 0 0 0 0
Tanvtarsus-NihNhaunHhCladotanvtarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Male Chironomidae 5 2 2 3 6 18 9 6 7 18 4 44 0 1 2 4 2 9
Female Ouronomidae 6 6 3 2 0 17 6 9 3 9 5 32 2 0 4 3 2 II
Unidentified damaged Chironomidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chironomidae larva 0 0 0 I 0 1 0 0 0 0 0 0 0 0 1 0 0 1
Ceratopogonidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Epbemeroplera 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
Tridwptera 1 0 1 0 1 3 0 0 0 0 1 1 0 0 0 0 0 0
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
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Kiffcr strip). The response variable is the rate o f chironomid emeigence (no. • 0.28 m'̂  - d'*)._________________ _________________________________
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Taxon Set# (Date) 1 (July?) Total 2 (July 9) Total 3 (July 22) Total
Depdi(m) 0.5| •1 3| 4.5 7 0.5 1 3 4.5 7 0.5| 1 3 4.5 7

Ablabesmyia 0 0 1 0 1 1 0 0 0 1 0 0 0 0
Chmpnqmia 0 0 0 0 0 0 0 0 1 1 0 0 0 0
Chironomoiu-Pfcrotqidqies 2 0 0 0 2 0 1 0 0 ! 0 0 0 0
Constempellina-Laulefboniiella-ParalauteriioniieUa 0 0 0 0 0 0 0 0 0 0 0 1 0 I
CrM»topus-Cladotanvtarws<:onstenipellina 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dkrotemdioea Înmtochironomow# 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Heterotanvtanus-Paralautefboniiella 0 0 1 0 1 0 0 0 3 3 2 0 1 3
NtMiodaditu-CgnmtMtm 2 9 1 0 12 3 2 0 0 5 0 17 0 17
Pirdüdfaslli-SlanKlliDslIe 3 3 0 0 6 2 5 0 0 7 0 2 0 2

0 0 0 0 0 0 0 0 2 2 0 0 0 0
Pantfanvtanus-Nilolhauina-Psectrocladius-Cladotanvtarsiis 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PcIypWihm 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Procladius 0 0 0 1 1 0 0 0 0 0 1 0 0 1
Psectrocladius 0 0 0 1 1 0 0 0 0 0 0 1 0 1
Stempellinella 0 3 0 0 3 0 0 0 0 0 0 0 0 0
Tanvtarsus 0 2 0 0 2 0 0 0 0 0 0 0 0 0
TanvUvsus-DicrotendiDes-Nilotbauma 0 2 1 0 3 0 0 0 0 0 1 0 0 1
Tribelof 0 1 0 0 1 0 0 0 0 0 0 0 0 0
Male Chironomidae 7 20 8 2 37 6 8 0 6 20 4 21 1 26
Female Chironomidae 3 15 5 4 27 1 9 1 2 13 3 14 0 17
Chironomidae larva 0 0 1 0 I 0 0 0 0 0 0 0 0 0
Chironomidae pupa 2 0 0 1 3 0 0 0 0 0 0 0 0 0
Ephemeropiera 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Other 0 0 0 0 0 0 0 1 0 1 0 1 1 2
Trichoplera 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Continued

Taxon Set#(Date) 4 (August 4) Total 5 (August 6) Total 6 (August 19) Total Grand
Total

Depdi(m) 0.5 :| 3 4.5 7 0.5 1 3 4.5| 7 0.5 1 3 4.5| 7
Ablabesmvia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
CMmmnvf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Çbimmnpys-Piçiipiqidipcf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
ConAemDellina-Lawierbonwella-PandawlerixHniella 0 6 1 1 1 9 0 1 5 3 0 9 0 0 0 0 0 0 19
(>k»toou»<:ladoWvta»us<km#emMHina 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 1 2 0 0 0 0 2 0 0 0 0 0 0 3
Heterotanvtanua-Pandauteiborniella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
NunwMius-COfYiiooçuni 2 II 15 13 I 42 0 3 0 2 0 5 0 1 0 5 0 6 87
Parakieflèfclla-Stempellinella 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 16
PanKanvtarsiu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 5
Paratanvtarsus-Nilothaimia-Psectiocladius-Cladolanvtarsus 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Polvpedihim 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
Procladiui 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Piectrocladiui 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3
StflflUCHmllf 0 0 1 1 I 3 0 0 0 1 1 2 1 1 0 0 0 2 10
Tanvtaraui 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Tanvtanus-Dicrotendipes-Niloiliaunia 8 13 1 1 0 23 0 7 3 t 0 It 2 t 0 1 0 4 42
TribsiM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Male Chironomidae 10 32 18 19 3 82 2 11 8 13 1 35 4 3 3 6 0 16 216
Female Chironomidae 6 19 24 29 4 82 2 20 6 13 2 43 4 5 11 0 4 24 206
Chironomidae larva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
Chironomidae pupa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
Ephemeropiera 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 2
Other 1 0 0 0 0 1 0 1 0 1 0 2 0 0 0 0 0 0 6
Trichoplera 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
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U*PENDIX 29. Post-defoiestation aquatic insect taxon richness and depth distribution from July to August, 1997 at the west site (clearcut with riparian
mffcr strip). The response variable is the rate of chironomid emergence (no. • 0.28 m'̂  • d'*).
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Taxon |Sei#(Date) 1 (July 2) Total 2 (July 9) Total 3 (July 23) Total
|Depih(m) 0.5 1 3 4.5 7 0.5| 1 3 4.5 7 0.5 1 4.5| 7

Ablabesmvia 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0

Cgnofiaaiia 0 1 0 1 0 1 1 0 5 7 1 1 1 2 1 6
PicnnasUp» 0 0 0 0 0 0 1 0 0 I 0 1 0 0 0 1
Heterotnvtarsus 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
MkrpteiMlipes 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
Nanocladius-Corvnoneura 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0
Paralauteiborniella-Polvpedilinii-ConstemDellina 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3
Polvpedilum 1 0 0 I 0 0 0 0 0 0 0 0 1 0 0 I
Procladius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Procladius-Labnmdinia 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Pmtrfidadius 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Stamdlinsll# 1 1 0 2 0 0 0 2 0 2 0 0 3 2 0 5
Tanvtarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tanvtarsus-DicrolendiDes-Nilotliauma 1 1 0 2 0 0 0 2 1 3 2 0 0 1 0 3

Male Chironomidae 3 8 4 15 0 1 2 5 7 15 3 2 5 6 3 19
Female Chironomidae 2 II 3 16 1 0 0 3 5 9 3 0 2 10 1 16
Chironomidae pupa 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
Chaoboridae 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Ephemeropiera 0 0 0 0 1 1 0 0 0 2 0 1 0 0 0 1
Trichoplera 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1
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APPENDIX 30. Post-defoiestation aquatic insect taxon richness and depth distribution from July to August, 1998 at the west site (clearcut with riparian
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Taxon Set#(Date) 1 (July 2) Total 2 (July 16) Total 3 (July 29) Total
Dqidi(ffl) 0.5| •1 4.5 7 0.5| 1 3 4.5 7 0.5 ' 4 4.5 7

AbM am rii 0 0 1 0 0 1 0 0 0 0 0 0 2 0 2
Chirooomus 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
ÇgiyiigQBBi 1 0 1 3 1 6 0 0 2 2 0 1 0 1 2
Miçmendipn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Paracladooetma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rtociidius 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
Stcmpcllinells 0 1 0 0 0 1 0 0 0 0 1 1 0 0 2
Tao{ytanus 0 0 0 0 0 0 I 1 0 2 2 0 0 0 2
Tanvtanus-Nilolhauina-CladQlanvtarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mak Chironomidae 1 1 3 3 1 9 2 1 2 5 3 2 2 1 8
Female Chironomidae 0 2 0 4 2 8 0 1 3 4 0 5 3 0 8
Chironomidae pupa 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
CenUopogonidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
Epbemeroptera 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Trichoptem 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
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PPENDIX 31. Pie-defoiestadon aquatic insect taxon richness and depth distribution from July to August, !995 at the east site (pre - clearcut to shoreline). 
le response variable is the rate of chironomid emergence (no. • 0.28 m'^ • d ').______________________________________________________________

Taxon Set# (Date) 1 (July?) Total 2 (July 9) Total 3 (July 22) Total
Depth (m) o.s| 1 4.5| 7 0.5| I| 3| 4.51 7 0.5 1 3 4.5j 7

Ahbibç$myw 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
Ccnstemoellina-Laiitertiomiella-Paralauteiboniiella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cwynoneuia 0 7 0 0 1 8 0 0 0 0 0 0 0 0 0
Cricolopiis-Ciadotanvtanus-ConsteniDellioa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DicnXendipea-CrYptochironomous 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HeterotanvUvsus-Paralairterbomiella • 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0
Nanocladius-Corvnoneura 0 0 1 0 0 1 0 0 0 0 0 1 0 3 4
Parakiefhreila-StemneMineUa 0 1 0 0 0 1 0 2 0 0 2 1 8 3 12
PmAmYtmw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Parauaivtarsus-Nilolhaunia-Psectrocladius-Cladotanvtarsus 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
StemnellinelU 1 2 2 0 1 6 0 0 0 2 6 0 0 0 0
Tanvtarsus-DierotendipesNilodiamna 0 0 0 1 0 1 4 0 0 0 0 2 0 1 3
Male Chironomidae 1 10 3 4 2 20 2 2 0 2 8 4 9 7 20
Female Chironomidae 0 4 4 4 0 12 0 2 4 0 8 2 3 6 II
Unidentified damaged Chironomidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chironomidae pupa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ephemeropiera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trichoplera 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Taxon Set#(Date) 4 (August 4) Total S (August 6) Total 6 (Augustl9) Total Grand
Total

Dqith(m) 0.5| :| 3| 4.5| 7 0.5| '1 3 4.5 7 0.5| •1 3 4.5| 7
Ablabesmyia 1 0 0 0 0 1 2 0 0 0 0 2 0 0 2 0 0 2 7
Constempellina-Lauterbomiella-Pandauterboniiella 0 0 2 3 6 11 3 2 0 0 0 5 2 0 0 0 0 2 18
Çoiynoneura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
CricotODWŜ kAwmmymnu,.ComsÊempellimm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Dk^otendipes-CiviNochironoinous 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 2
Heterotanvtarsus-Panlauteiboniiella 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3
Nanocladius-Cotynooeura 4 4 1 0 2 II 0 3 0 0 2 5 1 2 0 0 0 3 24
Parakiefferella-Slempellinella 1 0 1 0 3 5 0 1 1 3 3 8 0 0 0 0 0 0 28
e m a y îsa â 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Paratanvtarsus-Nilodiaiima-PsectrocladiusCladotanvtaisus 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 3
Stemoellinella 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 0 0 5 17
Tanvtanus-DkrotendiDea-NikMhauma 0 1 2 0 0 3 0 3 0 1 3 7 6 3 1 0 3 13 27
Maie Chironomidae 6 5 8 3 II 33 9 9 3 4 8 33 II 8 4 0 4 27 141
Female Chironomidae II 8 2 4 8 33 7 7 2 4 6 26 9 5 2 5 2 23 113
Unidentified damaged Chironomidae 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 2
Chironomidae pupa 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 2
Epbemeroptera 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Trkhoptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Other 0 0 2 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 3
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tPPENDIX 32. Post-defoiestation aquatic insect taxon richness and depth distribution from July to August, 1997 at the east site (clearcut to shoreline). The
Bsponse variable is the rate of chironomid emergence (no. • 0.28 m’̂  « d'*),
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Taxon Set # (Date) 1 (July 2) Total 2 (July 9) Total 3 (July 23) Total
Dq*dr(m) 0.51 '1 3 4.5 7 0.5| «1 3 4.5| 7 0.5 '1 3 4.5 7

AblAMAYi# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Ç y r m n m 0 7 1 0 0 8 0 0 0 0 0 0 0 0 0 1 1 2
Pkroteadipes 0 0 0 0 0 0 I 0 0 0 0 1 0 0 0 0 0 0
RssMW 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1
PKÇtr&ÇlüiM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i^lailÈu-crisfiteBys 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Procladius-Labnmdinia 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
Paralauteibomiella-Polvpediluni-Constempellina 0 1 0 0 0 I 0 0 0 0 0 0 0 0 0 1 0 I
SkmpflWI# 0 3 0 0 0 3 0 2 1 3 0 6 1 1 0 0 0 2
Tanvtarsus 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Tanvtarsus-Dkrotendines-Nilothauma 2 5 0 2 0 9 0 2 0 0 0 2 1 0 1 0 0 2
Male Chironomidae 2 19 4 2 1 28 1 4 2 3 0 10 2 1 1 2 2 8
Female Chironomidae 0 14 0 1 2 17 1 5 3 7 2 18 1 6 6 3 1 17
Unidentified damaged Chironomidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chironomidae piqn 1 2 0 2 0 5 1 0 0 1 0 2 1 1 1 0 0 3
Ephemeroptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Ceratopogonidae 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Trkhoptera 0 1 0 0 0 t 2 0 0 0 0 2 0 0 0 0 0 0
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Taxon Set# (Dale)

Dcplh(m)

4 (July 30)

0.5 4.5

Total 5 (August 6)

0.5 I 4.5

Total 6 (August 19) Total

0.5

Grand
Total

4.5
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AbM>wmyi*
Cladooelma 
Coomimam
D kfotendipci 

Procladius
Procladiui-Cricotooui
Precladim-Labnmdinia
EMEttWlailiM
SlanpclliiKlli
Tanvtarsus

Tanvtatsus-Dkrotcndines-Wilothauma

0
0
0
0
0
0
0
0
0
1
0
0

3
0
5
0
0
0
0
0
8
0
0
2
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1
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6
2 
7
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7
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Male Chironomidae
Female Chironomidae
Chironomidae pupa
Unidentified damaged Chironomidae
Ceratopogonidae
Ephemeroptera
Trkhoptera
Other

1
2
0
0
0
0
0
0

18
10
0
0
0
0
I
0

6
4
0
0
0
0
0
0

3
2
0
0
0
0
0
0

29
22
0
0
0
0
I
0

14
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0
0
0
0
I
0

4
5 
0 
0 
0 
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0 
0

2
6
1
0
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0
0
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5
4
0
0
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0
0
0
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26
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tPPENDDC 33. Post-deforestation aquatic insect taxon richness and depth distribution from July to August, 1998 at the east site (clearcut to shoreline). The
eqwnse variable is the rate of chironomid emergence (no. • 0.28 m'̂  • d'*).■D

CD
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Taxon Set#(Date) 1 (July 1) Total 2 (16 July) Total 3 (July 29) Total
Depth (m) 0.5| ll 3| 4.5| 7 0.5l 31 4.5! 7 0.5| »| 3 4.5 7

AbMkffifyta 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2
cNrowmw 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
Corvnonem 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 5
PiavtwMlipg 1 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 3
F^sassMb# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0
Procladius-CricotoDus 0 0 0 0 0 0 0 0 2 2 1 5 0 0 0 1 0 1
Paralautcfboniiella-Polvpediluiii-Coaatempellina 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2 0 2
SKmMllmril# 0 1 0 0 0 I 1 0 0 0 0 1 0 0 0 1 0 1
Tanvtaraui 0 0 0 1 0 1 I 0 0 0 0 I 3 2 3 0 I 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Male Chmmoniidae I 1 1 I 0 4 3 0 5 2 1 II 4 10 3 4 2 23
Female Chironomidae 3 2 1 0 0 6 2 1 1 3 1 8 7 6 1 3 2 19
Unidentified damaged Chironomidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chironomidae pupa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ceratopogonidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ephemeroptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
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