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Abstract

Bio-energy is a clean (containing negligible sulfur and being near-carbon neutral), renewable 

and abundant source o f energy. Bio-energy can be a potential alternative to fossil fuels for the 

production o f energy and chemicals. Due to the world’s increasing energy demands, declining 

petroleum reserves and growing concerns over the detrimental environmental effects o f fossil 

fuels, there is an increased interest in the production of bio-fuels (bio-ethanol, bio-diesel and bio

oils) from biomass feedstocks. The increased production o f bio-diesel by trans-esterification of 

vegetable oils has resulted in a glut o f glycerol as a by-product. Economically beneficial 

utilization o f the glycerol would greatly enhance bio-diesel plant production economics.

Part I o f this research investigated the effectiveness of various catalysts in the conversion of 

glycerol into bio-crude at elevated temperature and pressure. The reactions were carried out in an 

autoclave micro-reactor at a temperature o f 300°C and an initial pressure o f hydrogen o f 5 MPa. 

Gaseous products were collected and analyzed by Micro-GC. The solid products were removed 

by filtration while the liquid products were separated into water soluble products (unreacted 

glycerol, acids, alcohols) and water insoluble products (bio-oil/bio-crude) by extraction with 

water and ethyl acetate. The bio-crude obtained was comprehensively characterized to determine 

its physical/chemical properties.

The support materials; MgO, AC (activated carbon), y-A^Os and X-type zeolite were found 

to have a negligible catalytic effect by themselves, with a maximum bio-oil yield of 3.7 wt.% for 

the zeolite when tested without catalyst metals. Subsequent experiments with catalyst metals 

revealed a positive correlation between support acidity and bio-oil yield. This effect was 

confirmed by upgrading glycerol in the presence o f acidified zeolite which produced a
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remarkably higher yield o f bio-oil (-34 wt.%) even without metal catalyst loading. Co, Ru and 

Mo were found to be the almost equally effective metal catalysts, increasing bio-oil yield to -13 

wt.% when loaded on to AI2 O3 . Ru was found to greatly increase glycerol gasification. The most 

effective combination o f metals and support for the hydrodeoxygenation (HDO) o f glycerol was 

determined to be MoCoP/zeolite achieving a maximum bio-oil yield o f -4 0  wt.%. The role of 

phosphorus as a catalyst promoter was discussed. Sulfidation and reduction o f the 

MoCoP/zeolite catalyst resulted in drastic reductions in bio-oil yield contrary to results reported 

in published literature. The bio-oil products were found to consist mostly o f substituted phenols, 

ketones, and to a lesser extent alcohols, ethers and cycloalkanes. The bio-oil had a higher carbon 

contents and much lower oxygen contents than the glycerol feedstock. The bio-oils reached a 

maximum HHV of 33 MJ/kg.

In Part II of this research, the HDO of glycerol into bio-crude was investigated in order to 

determine the optimum conditions required to produce high quality (low oxygen) bio-oil. These 

experiments were conducted using the best catalyst out o f those tested in Part I (MoCoP/Zeolite) 

and investigated the effects of residence time, reaction temperature, hydrogen pressure, and 

solvent on bio-oil yield. The reaction products of these experiments were characterized in a 

similar manner to Part I. The fresh catalysts were characterized by ICP-AES, N 2 isothermal 

adsorption, XRD and spent catalysts were characterized by XRD and TGA. The optimum 

conditions for the hydrodeoxygenation o f glycerol into bio-crude in the presence of 

MoCoP/zeolite catalyst were found to be: 300°C reaction temperature, 5 MPa initial hydrogen 

pressure, 60 min reaction time and 100% glycerol feed. While dilution o f the glycerol feedstock 

with water had a negative effect on bio-oil yield, HDO of pure glycerol produced the highest bio
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oil yield (40 wt.% at 300°C, 1 h and 5 MPa Hz). The amount of char deposited on the spent 

catalyst decreased with extended reaction time, increased reaction temperature, and elevated 

initial hydrogen pressure.

Keywords: Glycerol; Bio-crude; Hydrodeoxygenation; Hydro-treating, Catalysts
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CHAPTER 1 

Introduction

1.1 Background

1.1.1 Bio-energy and Biomass Conversion Technologies

Over the past century a majority o f the world’s energy demands was met by fossil fuels, 

comprising: 30% petroleum, 23% natural gas, 22% coal, 6% nuclear, and 19% renewable (Song, 

2002). Chemical industries and energy production based on fossil fuel resources is expected to 

gradually phase out over the course o f the 21 century due to the depletion o f the fossil resources 

that these industries rely on (Okkerse and Van Bekkum, 1999). Due to the continuing decline in 

fossil fuel resources and increasing concerns over greenhouse gas emissions and energy security, 

there has been a resurgence o f interest in renewable bio-energy. Biomass feedstocks such as 

agricultural/forestry residues and woodwastes (harvest residues, slash, sawdust, bark, etc.) have 

the potential to be a large source for energy, fuels, chemicals and materials (Karagoz et al., 2005; 

Ogi and Yokohama, 1993). Many countries have legislation set in place to promote the use o f 

biomass energy and bio-fuels. For example, the Canadian federal government has enacted a 

target of 5% ethanol in gasoline by 2010, which will require the production o f more than 300 

million litres o f cellulosic ethanol per year to meet this target. The European Union has set an 

objective to substitute conventional fuels with biomass-derived fuels (bio-fuels) in the transport 

sector with a market share of 5.75% by the end o f 2010 (EU Directive 2003/30/EC). In 

December 2007, then President Bush of the U.S.A. signed into law a Renewable Fuels Standard 

(RES) that calls for at least 36 billion gallons of ethanol and other bio-fuels to be used 

nationwide by 2022, including a minimum of 9 billion gallons in 2008, and 20.5 billion gallons



by 2015 or about 15% replacement of the U.S.A.’s gasoline consumption.

Bio-energy is a blanket term that refers to all forms o f renewable energy that are derived 

from biomass feedstocks. Biomass feedstocks typically have a heating value comparable to that 

o f low rank coal (lignite and sub-bituminous coals). The heating values range from 8 MJ/kg for 

green matter to between 17-23 MJ/kg for dry plant matter. The earth’s natural biomass o f 150 

billion metric tons o f dry biomass replacement represents an energy supply o f around 3000 EJ 

(3x10^’ J) per year, or about 6 times the world’s total energy consumption. Although these 

resources are renewable, carbon-neutral, and remarkably abundant, they are also very bulky and 

difficult to transport, handle, and store. In order to make use o f these resources it is, therefore, 

necessary to develop cost-effective technologies to convert them into liquid bio-fuels of a higher 

energy density and other valuable chemicals (Yamazaki et ah, 2006).

Biomass conversion technologies may be classified into two major categories: bio-chemical 

processes and thermo-chemical processes (Figure 1-1) (Sharma and Bakshi, 1991; Bridgwater, 

1991; Holt and Van der Burgt, 1998). Biologically-based technologies use acid/engineered 

enzymes to break down ligno-cellulosic materials with the aim o f hydrolyzing the cellulose into 

glucose that can be fermented into ethanol. The development o f new enzymes is still at the 

research stage, and most of the enzymes and the microorganisms that have been developed are 

strongly dependent on the chemical composition o f the feedstocks, and are therefore applicable 

only to specific homogenous feedstocks. As a result, current fermentation-based technology does 

not make the cellulosic ethanol production economically viable. In addition, the blending o f high 

ratios of fuel alcohol into gasoline would require the modification o f existing engines and 

delivery systems (Holt and Van der Burgt, 1998).

Thermo-chemical processes for the production o f liquid bio-fuels include indirect



liquefaction processes e.g. gasification combined with various catalytic processes for production 

o f synthetic fuels (e.g., methanol, ethanol and high quality diesel), and direct liquefaction 

technologies mainly pyrolysis and high pressure liquefaction processes.

Fermenlatiou

- Methanol
- Liquid 

fuels
- Chemicals

Liquefaction to 
bioci udes:
1.High pressure 
liquefaction
2. Pyrolysis

BIOMASS:

Wood
Wood wastes
Peat
Grasses
Agricultural
wastes
Municipal
solid wastes

Synthesis of fuels and
chemicals:
1. M ethanol synthesis
2. Fischer-Tropsch 

synthesis
3. MTG (methanol to 

gasoline) process
4. SMDS (SheU 

middle distillate 
synthesis

PRODUCT:COmTRSION
TECHNOLOGY:

PROCESS:

Figure 1-1. Routes from biomass to fuels and chemicals (Sharma and Bakshi, 1991; Bridgwater, 1991; 
Holt and Van der Burgt, 1998}

Direct liquefaction of biomass followed by upgrading and refining is regarded as a promising 

approach in addition to the indirect liquefaction processes such as the MTG process (Mobil 

methanol to gasoline process) and the SMDS process (Shell middle distillate synthesis process), 

currently under development. Direct liquefaction o f biomass for the production o f bio-oil/bio

crude has attracted increasing interest in recent years due to increasing crude oil price and 

increasing concerns over greenhouse gas emissions. The bio-oil/bio-crude products from direct 

liquefaction can be upgraded into high quality liquid transportation fuels (Sharma and Bakshi, 

1991).



Fast pyrolysis (operating at low pressures of 0.1-0.5 MPa but high temperatures >500°C) is 

currently the only industrially realized technology for production of bio-oils from biomass. 

However, pyrolysis oils have high oxygen and water contents and only about half the caloric 

content o f petroleum (<20 MJ/kg,).

High-pressure liquefaction technology, on the other hand, normally operates at moderate 

temperatures <400°C but high pressures o f 5-20 MPa in the presence o f suitable solvents (water 

or organics) and a catalyst and has the potential for producing liquid oils (also called bio-oils or 

bio-crudes) with much higher caloric values (25-35 MJ/kg) (Yamazaki et al., 2006; Xu and 

Etcheverry, 2008).

Bio-oils/bio-crudes are a complex mixture o f oxygen-containing compounds in the form of 

phenol and benzene derivatives, hydroxyketones, carboxylic acids and esters, and aliphatic and 

aromatic alcohols which all contribute to the oxygen content o f the oil (Appel et al., 1969; 

Minowa et al., 1998; Qu et al., 2003). In addition, water originating from both the moisture 

originally present in the feedstock as well as water produced during the pyrolysis and direct 

liquefaction processes adds to the oxygen content in bio-oil or bio-crude (Bridgwater, 2003; 

Czemik and Bridgwater, 2004). The total oxygen content o f bio-oils can be as high as 40-50 wt% 

for pyrolysis oils compared to 20-30 wt% for bio-crudes from high-pressure liquefaction 

processes, depending on the origin o f the biomass and the process conditions, e.g. temperature, 

residence time, heating rate and the catalysts used (Bridgwater, 1994; Furimsky, 2000). The 

presence of high levels o f oxygen in bio-oils is a limitation in their use as liquid transportation 

fuels since high oxygen contents result in high viscosity, low heating value, poor thermal and 

chemical stability, corrosivity (due to organic acids present) and immiscibility with hydrocarbon 

fuels (Bridgwater, 2003; Czemik and Bridgwater, 2004; Yaman, 2004). The bio-cmdes/bio-oils



must therefore be upgraded by reducing or completely eliminating their oxygen content 

(Bridgwater, 1994; Bridgwater, 1996).

Two typical technologies for upgrading o f bio-oils for fuel applications include catalytic 

cracking and catalytic hydro-treating. Catalytic cracking processes, using cracking catalysts 

(zeolites, silica-alumina and molecular sieves), are performed at or near atmospheric pressure 

without the addition o f hydrogen. The advantages o f low-pressure operation without the need of 

hydrogen, i.e. lower equipment costs and lack of expensive hydrogen, have attracted much 

interest in the literature on the upgrading o f bio-oils (Adjave and Bakhshi, 1995a and 1995b; 

Katikaneni et al., 1995; Williams and Home, 1995; Adjave et al., 1996). However, the yield o f 

hydrocarbon oils is very low because o f high yields of both char/coke and tars. In addition, the 

deposition o f these undesirable products on the catalyst results in gradual catalyst deactivation 

and necessitates periodical or continual regeneration of the catalysts. In contrast, catalytic hydro- 

treating processes operate at high pressures under a hydrogen atmosphere and/or in the presence 

o f hydrogen donor solvents (Baker and Elliott, 1996; Craig and Coxworth, 1987; Maggi and 

Delmon, 1993). Over the past 20 years, significant efforts have been made in 

hydrodeoxygenation (HDO) o f biomass-derived oils. Research into the catalytic chemistry and 

kinetics o f the hydrotreating o f various model compounds containing oxygen, such as phenolic 

compounds and aromatic ethers, have been reviewed by Furimsky (2000) and Elliott (2007).

1.1.2 Bio-diesel and By-product Utilization

Bio-diesel is an altemative to petroleum fuels and other bio-fuels that is rapidly increasing in 

popularity. Many countries have legislation set in place to promote the use o f bio-diesel as a 

substitute for the petroleum-derived diesel fuel. For example, the production o f 500 million litres



o f biodiesel is planned in Canada (Valliyappan et al., 2008), and the provinces of Manitoba and 

British Columbia have already mandated blending o f percentages of biodiesel in their provincial 

diesel supplies, 2% and 5% respectively. The province o f Alberta plans to follow this trend with 

its own mandate o f 2% of biodiesel being blended in its diesel supply by the summer o f 2010 

(CRTA, 2009).

Hydro-treatment o f both fresh and spent vegetable oils for the production of bio-diesel has 

been investigated. For example, Murata et al. (2010) produced a synthetic diesel fuel by 

hydrotreating jatropha oil. They obtained -80%  carbon molar yield o f diesel range compounds 

but required a 1:1 ratio o f catalyst to oil. Decreasing the catalyst-to-oil ratio to a more practical 

1:10 ratio decreased the yield to 2.3%. High oil-to-catalyst ratios were also found to occasionally 

produce hydrogenated triglycerides rather than straight-chain alkanes. It is also possible to 

hydro-treat vegetable oils directly, which eliminates the production of glycerol.

Most bio-diesel is produced by trans-esterification o f seed oils with methanol. The process 

produces methyl esters of long chain hydrocarbons and glycerol as a byproduct (as displayed in 

Figure 1-2). Glycerol (1,2,3-propanetriol) is a clear, viscous liquid that freezes at 17°C and boils 

at 290°C. Approximately 1 kg o f glycerol is produced for every 9 kg o f bio-diesel formed 

(Dasari et al., 2005).

(> o

CH^ n  C R, R, C O ClL CIT O l:
I '  t ) ( :)

C H - O  C - 3 C H ^ O H    R , - C  O t H ,  .  C Î L  Oi l
Cs

C H , O - C  R, R , - r  (> C l h  C H ,  0:1
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Increased production o f bio-diesel has led to a drastic increase in the availability o f glycerol, 

100,000 tonnes annually in the U.S.A. alone. As a result the cost of glycerol decreased from 

$2.50/lb. in 2004 to ~30jzS/lb. in 2006 (Yazdani and Gonzalez, 2007). In 2005 the global glycerol 

market was 800,000 tons with 400,000 tons coming from biodiesel in comparison to only 60,000 

tons from biodiesel in 2001 (Pagliaro et al., 2007).

Glycerol has o f course been used in various applications before the recent increase in its 

availability (Figure 1-3). These applications include: polyol-based flexible foams, anti-freeze and 

aircraft de-icers, unsaturated polyester resins, explosives in the form of smokeless gunpowder, 

cordite and dynamite, medical and medicinal uses including heart medication (as glycerol 

trinitrate), the vitrification o f samples for cold storage and the conditioning o f dialysis 

membranes as well as food uses such as a diabetic sweetener, humectant and emulsifier.

O thers
11%

Triacetin
10%

Atkyd resins 
8%

Polyether t 
Polyols

14%

Food

SI
16%

Drugs/
Pharm aceuticals

18%

Tobacco
6%

Detergents
2%

Cellophane
2%

Explosives
2%

Figure 1-3. Industrial uses of glycerol (Novaol, 2002)

As a result o f  its growing availability and decreased cost, there is increasing interest in the 

use o f glycerol as an economical feedstock for various chemicals and bio-fuels. Much o f the 

research involving glycerol has focussed on converting glycerol into hydrogen, syngas for 

subsequent Fisher-Tropsch synthesis, or other value-added products such as propylene glycol, 

acrolein, oxygenates (esters and ethers) for use as fuel additives, and various alcohols (Figure 1-



4). Glycerol as an oxygenated organic compound can be a promising feedstock for the 

production o f liquid transportation fuels by oligomerization and de-oxygenation. However, there 

is no research available in the published literature on this topic.
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In contrast to the current practice o f glycerol gasification into syngas and subsequent 

synthesis into hydrocarbon fuels, or conversion of glycerol into various chemicals, the primary 

objective of this work was to investigate the direct conversion of glycerol into high energy, low 

oxygen bio-crude under moderate conditions via oligomerization and de-oxygenation.

1.2 Research Objectives

As discussed in the previous section, the main objectives of the present work ae summarized 

below;

(I) To produce high quality bio-crude by concurrent dehydration, oligomerization and 

hydrodeoxygenation o f glycerol, and;
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(2) To determine the optimum reaction conditions (type of catalysts, reaction temperature, 

reaction time, hydrogen pressure, and solvent effects) o f the glycerol conversion 

process.

1.3 Organization of the Thesis

This thesis is composed o f five chapters.

Chapter 1 - Introduction. This section provides a general introduction and a brief review 

o f the literature relevant to the present research describing the research 

background, the latest advances in glycerol research, and the objectives o f the 

present work.

Chapter 2 - Literature Review. This is a detailed literature review on the fields o f research 

related to the present study. Specifically these include: direct liquefaction of 

biomass into bio-crude, upgrading of bio-crude/model compounds by catalytic 

hydrodeoxygenation (HDO), and current research into the utilization of 

glycerol.

Chapter 3 - Hydrodeoxygenation of Glycerol into Bio-crude: Catalyst Screening.

Chapter 4 - Hydrodeoxygenation of Glycerol into Bio-crude: Process Optimization.

Chapter 5 - Conclusions. This section presents the overall conclusions of this research and 

recommendations for future work.
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CHAPTER 2 

Literature Review on the Production and Upgrading of Bio-oils/Bio-crude 

from Biomass via Direct Liquefaction and Glycerol Utilization

2.1 Introduction

Direct liquefaction o f biomass for the production of bio-oil/bio-crude has attracted 

increasing interest in recent years due to rising crude oil prices and increasing concerns over 

greenhouse gas emissions. Pyrolysis and high pressure liquefaction are the two main thermo

chemical technologies that have been developed for the direct liquefaction o f biomass into bio

oil or bio-crude products. Fast pyrolysis (operated at a moderate pressures o f 0.1-0.5 M Pa and 

temperatures >500°C) is, so far, the only industrially realized technology for production o f bio

oils from biomass. Ftowever, pyrolysis oils contain high levels o f oxygenated compounds and 

water and therefore have only about half o f the caloric value (<20 MJ/kg) o f petroleum. High- 

pressure liquefaction technology with a suitable solvent (water or organic) plus catalyst, 

operating at moderate temperatures (<400°C) but higher pressures o f 5-20 MPa, has the potential 

to produce liquid oils (also called bio-oils or bio-crudes) with much higher caloric values (25-35 

MJ/kg).

Pyrolysis oils and bio-oils/bio-crudes are composed of a complex mixture o f oxygen- 

containing compounds in the form of phenol and benzene derivatives, hydroxyketones, 

carboxylic acids and esters, aldehydes as well as aliphatic and aromatic alcohols. These 

compounds contribute to the high oxygen content o f bio-oil (up to 30-50 wt.%), and result in not 

only a lower calorific value, but increased viscosity, poor thermal and chemical stability, 

corrosivity (due to organic acids) and immiscibility with hydrocarbon fuels. To produce high-
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quality bio-oils for use as liquid transportation fuels, pyrolysis oils/bio-crudes must be upgraded 

by various means to reduce their oxygen content.

Bio-diesel is a more environmentally friendly and near carbon-neutral alternative to 

petroleum diesel. Its use is increasing as the public and governments become more 

environmentally aware. The rapid increase in bio-diesel production has led to an associated 

increase in the availability o f the glycerol - a byproduct o f the trans-esterification process used to 

produce bio-diesel. The increased availability of glycerol has prompted much research into using 

the glycerol as a novel and cost effective feedstock for the production o f various chemicals.

The objective o f this review is to provide an overview o f the thermo-chemical direct 

liquefaction technologies used in the production o f bio-oils/bio-crudes from biomass, the 

development o f the upgrading technologies to produce high quality liquid transport fuels from 

bio-oils/bio-crudes, as well as the current research into glycerol utilization and the potential 

conversion of glycerol into bio-crude oils.

2.2 Bio-oil Production via Fast Pyrolysis

Thermochemical conversion of biomass into liquid fuels and valuable chemicals can be 

achieved by either pyrolysis or high-pressure liquefaction (Molten et al., 2003; Demirbas, 2000). 

Pyrolysis of biomass is performed in an inert atmosphere at high temperatures, typically 400- 

800°C, and at low pressures around 0.1-0.5 MPa without the addition o f any catalyst. At these 

high temperatures, solid lignocellulosic materials thermally decompose into smaller fragments 

which combine to produce oily compounds, yielding about 50-75 wt.% liquid products (pyrolysis 

oil or bio-oil). As a side note, the yield o f bio-oil (or other liquid or solid products) is usually 

presented as wt.%, i.e. mass o f product as a fraction of the mass o f feedstock. In the case of
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gaseous products, the yield is usually expressed as mol%. Heat is usually added indirectly, 

although partial gasification and combustion o f the feedstock may be employed to give direct 

heating. Gas and char are produced in addition to the liquid products. The relative proportions of 

gas, liquid and solid products depend on the pyrolysis parameters specifically heating rate and 

final temperature. Fast or flash pyrolysis (with a high heating rate and short vapor residence 

time) is used to maximize liquid products (Bridgwater, 1991). Flash pyrolysis produces liquid 

yields up to 75 wt.% at relatively low temperatures, typically 500°C but less than 650°C, and at 

very high heating rates o f 1,000 °C/s, or even 10,000 °C/s, and very short residence times of 

typically less than 1 s. The rapid heating and rapid quenching in fast pyrolysis processes produce 

intermediate liquid products, which condense to form liquid oil products before being further 

broken down into gaseous products. The high heating rates also minimize char formation, and no 

char is formed under some conditions (Demirbas, 2005). Increasing flash pyrolysis temperature 

above 700°C leads to still higher heating and reaction rates but results in very high gas product 

yields o f up to 80 wt.% (Bridgwater, 1992).

Over the past twenty years, research into fast or flash pyrolysis has shown that high yields o f 

liquid and gas products, including valuable chemicals or chemical intermediates and fuels, can 

be obtained from various biomass feedstocks including agricultural/forest residues and waste 

streams (Bridgwater et al.,. 2001). Fast pyrolysis bio-oils are complex mixtures o f compounds 

derived from the depolymerization and degradation o f cellulose, hemi-cellulose and lignin 

(Zhang et al., 2007; Oasmaa and Czemik, 1999; Czemik and Bridgwater, 2004). The typical 

properties of pyrolysis bio-oils and of a petroleum-based heavy fuel oil are shown in Table 2-1. 

Bio-oil from fast pyrolysis is a complex mixture composed o f acids, alcohols, aldehydes, esters, 

furans, guaiacols, ketones, sugars, syringols, lignin-derived phenols and extractible terpenes
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(Guo et al., 2001). Zhang et al. (2001) separated the bio-oil into four fractions: aliphatic, 

aromatic, and polar compounds as well as non-volatiles by using solvent extraction and liquid 

chromatography on an aluminum column. Analysis o f the fractions indicated the presence of 

high levels o f  acetic acid and hydroxyacetones in the aqueous phase, with less polar components 

and aromatic hydrocarbons in the oil phase. In general, fast pyrolysis bio-oils are a complex 

mixture o f highly oxygenated compounds with a broad distribution of oxygenated organics, such 

as esters, ethers, aldehydes, ketones, phenols, carboxylic acids and alcohols (Peng and Wu, 

2000).

Table 2-1. Typical properties of pyrolysis bio-oil (before upgrading) and o f a petroleum-based 
heavy fuel oil (Czemik and Bridgwater, 2004)

Physical property Bio-oil Heavy fuel oil
Moisture content (wt.%) 15-30 0 .1

pH 2.5 -
Specific gravity 1 .2 0.94

Elemental composition (wt.%)

C 54-58 85
H 5.5-7.0 11

0 35-40 1 .0

N 0 -0 .2 0.3
Ash 0 -0 .2 O.I

HHV (MJ/kg) 16-19 40
Viscosity (at 50 °C, cP) 40-100 180

Fast pyrolysis is, so far, the only industrially realized technology for the production o f bio

oils from biomass. A fast pyrolysis process employing circulating fluidized beds, originally 

developed at the University of Western Ontario is now commercialized by Ensyn Technologies 

in Renfrew, Ontario (RTF, rapid thermal processing). Also in Canada, another fast pyrolysis
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technology based on a fluidized bed has been commercialized by Dynamotive Energy Systems 

Corp., which has a demonstration project at Erie Flooring and Wood Products in Ontario. 

However, pyrolysis oils contain high levels o f oxygen/water and therefore have lower caloric 

values only about half o f that of petroleum (<20 MJ/kg). In addition the presence o f organic 

acids makes them strongly acidic and corrosive. As a result, pyrolysis oils are not regarded as an 

ideal liquid fuel for heat or power generation, and without upgrading, cannot be used as a liquid 

transportation fuels.

The water content o f bio-oil can be as high as 15-30 wt.% and comes from moisture initially 

present in the feedstock and also as the product o f dehydration reactions during pyrolysis and 

later storage. The presence of water decreases the heating value o f the oil as well as the 

combustion flame temperature o f the fuel (Scholze and Meier, 2001). The removal of water from 

pyrolysis oil by evaporation is problematic, because heating bio-oil results in the rapid 

polymerization o f components in the bio-oil and the associated increased viscosity.

It is the presence o f high levels o f oxygen in bio-oils that is the principal difference between 

bio-oils and hydrocarbon fuels. The high oxygen content of bio-oil results in its lower energy 

density compared to conventional fossil fuels and is responsible for its immiscibility with 

hydrocarbon fuels. In addition, the presence o f substantial amounts o f carboxylic acids, such as 

formic and acetic acid, contributes to bio-oil pH values as low as 2-3 (Sipilae et al., 1998). This 

makes bio-oils corrosive and the problem is exacerbated at elevated temperatures. This imposes 

more stringent requirements in the choice of construction materials o f bio-oil storage vessels and 

necessitates significant upgrading before it can be used as a transportation fuel (Zhang et al., 

2007).
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2.3 High-pressure Liquefaction Technology for Bio-crude Production

In contrast to fast pyrolysis, high-pressure liquefaction is performed under an inert or, 

preferably, a reducing atmosphere at moderate temperatures less than 400°C, but higher 

pressures ranging between 5 and 20 MPa. In high-pressure liquefaction processes, the macro- 

molecular compounds in the feedstock are decomposed into small fragments in the presence of 

suitable solvent(s) i.e. water, alcohols, alkanes, phenols, or tetralin, etc. and a suitable catalyst. 

The molecular fragments produced in the reaction are unstable and reactive, and tend to re- 

polymerize into oily compounds having various molecular weights (Molten, 1983). The presence 

o f a suitable solvent is critical for a direct liquefaction process, as the solvent can act a diluting 

agent for the products formed and/or fragment stabilization agent to prevent from re

polymerization/condensation reactions to form char or a heavy residuum.

High-pressure liquefaction is a superior direct liquefaction technology compared with fast 

pyrolysis, in that it produces higher quality bio-oil with more desirable chemical and physical 

properties. High-pressure liquefaction technology also has the potential for producing heavy 

liquid oils or bio-crudes with increased heating values and a range of other value-added 

chemicals including vanillin, phenols, aldehydes, and acetic acid etc. Appell et al. (1971) at the 

Pittsburgh Energy Technology Center (PETC) reported effective high-pressure liquefaction o f a 

variety o f lignocellulosic materials into oily products in water at an elevated temperature in the 

presence o f CO and Na2CÜ3 catalyst. The PETC’s research into direct liquefaction o f biomass 

was further advanced by the research group at the Pacific Northwest National Laboratory 

(PNNL) in the U.S.A. led by Dr. D. C. Elliott. During the 1980's, much work on scaling up the 

pioneer work by Appell et al. and on utilizing the direct liquefaction oil products (Elliott, 1980; 

Schirmer et al., 1984) was done at PNNL.
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High-pressure direct liquefaction processes are normally operated at moderate temperatures 

(200-450°C), pressures greater than 1 MPa and using longer residence times (10-60 min) in hot 

compressed water (Qu et al., 2003; Karagoz et al., 2004; Boocock et al., 1979; Yokohama et al., 

1984; Minowa et al., 1998) or organic solvents such as anthracene oil (Appel et al., 1969; 

Crofcheck et al., 2005), alcohols (methanol, ethanol, propanol and butanol) and acetone, etc (EU 

Directive 2003/30/EC; Cemek and Kucuk, 2001; Miller et al., 1999). Typical yields o f liquid 

products for high-pressure liquefaction processes are in the range of 20-60 wt.%. Although high- 

pressure liquefaction processes produce lower yields o f heavy oil (bio-crude) compared with fast 

pyrolysis processes (which yield 40-75 wt.% bio-oil with a HHV o f about 20 MJ/kg), the bio

crude products have much higher caloric values (HHV= ~30 MJ/kg) (Qu et al., 2003; Minowa et 

al., 1998). Higher heating value (HHV) is also known as the gross calorific value or gross energy 

o f a fuel. It is defined as the amount o f heat released by a specified quantity o f fuel (initially at 

25°C) once it is combusted and the products have returned to a temperature o f 25°C. This takes 

into account the latent heat o f vapourization o f any water that is produced during combustion. 

When comparing the gross energy yield (oil yield x HHV), the two types o f direct liquefaction 

processes are comparable. The yields of bio-crude depend on many operating parameters 

including reaction temperature, pressure, residence time, type of solvents and the catalysts 

employed. Alkaline solutions, e.g., NazCOs, NaOH, K2CO3, KOH, LiOH, RbOH, CsOH, and 

Ca(OH)2, etc., have been widely employed as catalysts in direct liquefaction processes to 

suppress the formation o f char while enhancing the yield o f liquid products (Karagoz et al., 

2004). Very little research, however, has been reported on the roles that catalysts play in direct 

liquefaction processes. Appell et al. (1967) proposed the following mechanism for sodium 

carbonate-catalyzed liquefaction o f carbohydrates in the presence of carbon monoxide.
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Sodium carbonate and water react with carbon monoxide, to yield  sodium formate:

Na2C0 3 + 2C 0  + H2O -4 . 2HC00'Na+ + CO2

Dehydration o f  adjacent hydroxyl groups in the carbohydrate to form  an enol, follow ed by 
isomerization to ketone:

OH OH OH O

-CH-CH- -CH = C- + H 2 0 ->  -CH2 -C- + H2O

Reduction o f  the newly form ed carbonyl group to the corresponding alcohol with form ate ion 
and water

O O'
HCOO + -C H 2-C- -CH2-CH- + CO2

O' OH
-CH2-CH- + H2O -4. -CH2- CH- + OH'

Hydroxyl ions react with an additional carbon monoxide molecule to regenerate the form ate 
ion

OH' + C O ^  HCOO

According to this mechanism, deoxygenation o f carbohydrates occurs via decarboxylation of an 

ester formed by hydroxyl groups and formate ions derived from carbonate. In addition, alkali 

salts, such as sodium carbonate and potassium carbonate, can also catalyze hydrolysis o f 

macromolecules, such as cellulose and hemicellulose, into smaller fragments (Chomet, 1985). 

The micelle-like fragments produced by hydrolysis are then degraded to smaller compounds by 

dehydration, dehydrogenation, and decarboxylation.

Glycerine has been used as a solvent for the direct liquefaction o f beech wood with the 

presence of Na2C0 3  or KOH as the catalyst (Demirbas, 2000). The most important variables 

appeared to be temperature, the amount of alkali and the nominal reaction time. In the presence 

o f Na2C0 3 , a very high total oil yield o f 68.4 wt.% was obtained, but the solubility o f the as- 

produced high polarity oil in gasoline was found to be very low (less than 2 wt.%).
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Hot-compressed water (as the most environmentally friendly and safest reagent) has been 

widely researched as the solvent for biomass direct liquefaction. The addition o f an alkaline salt 

such as NaOH, NaiCOg, KOH and K2CO3 has been found to significantly promote oil yields. Qu 

et al. (2003) carried out direct liquefaction o f Chinese fir in water in an autoclave at 280-360°C 

and for 10-30 min, with a maximum heavy oil yield o f 24 wt.% obtained at 320°C after 10 min 

reaction time. The effect o f reaction temperature on the yield o f heavy oil was found to be less 

significant in the range of 280-360°C. However, the addition of catalyst and/or hydrogen, to 

stabilize the intermediate liquid products, were very effective in increasing the yield o f heavy oil. 

Karagoz et al. (2005) performed hydrothermal treatment o f woody biomass at 280°C for 15 min 

in the presence of alkaline solutions (NaOH, Na2CÜ3, KOH and K2CO3). Based on biomass 

conversion levels and the yield of liquid products, the following sequence o f catalytic activity 

was observed: K2CO3 > KOH > Na2C0 3  > NaOH. Generally, the use o f alkaline catalysts hinders 

the formation o f char and favours the formation of oil products. However, the activity o f alkaline 

catalysts appears to depend on the properties and type o f biomass feedstock. Zhong and Wei 

(2004) performed direct liquefaction of different various types o f woody biomass in hot- 

compressed water at 280-360°C. Heavy oil yields o f 30 wt.% and residues o f less than 10 wt.% 

were obtained for all the wood samples tested. However, their results showed that the addition of 

K2CO3 catalyst to feedstocks with lower lignin contents was less effective in producing oil 

products, although the catalyst reduced the residue yield for all the woods tested.

Acids were found to be less effective catalysts for high-pressure liquefaction o f biomass, 

except in some liquefaction processes employing phenol. Zhang et al. (2006) investigated the 

liquefaction o f powdered Chinese fir and poplar in phenol with the presence o f a variety of 

inorganic acids: 85% phosphoric acid, 36% sulfuric acid, 37% hydrochloric acid and 99.5%
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oxalic acid. The results showed that both phosphoric and sulfuric acid were effective in 

enhancing the liquefaction (phenolysis) efficiencies. It was found that an extremely low yield (<5 

wt.%) o f solid residue was obtained after 2 h liquefaction at 150°C when phosphoric or sulfuric 

acid was used.

Hot-compressed or sub-/supercritical water treatment has been studied by many researchers 

for biomass liquefaction (Xu and Donald, 2008; Xu and Lad, 2008; Adschiri et al., 1993; Sasaki 

et al., 2000; S aka and Ueno, 1999; Saka and Konishi, 2000; Matsumura et al., 1999). However, 

the drawbacks o f using water as the solvent for liquefaction o f coal or biomass include the 

following: lower yields o f the water-insoluble oil product (with a greater heating value) 

compared to yields water-soluble product (with a lower heating value), and higher oxygen 

content in the liquefied products, resulting in low liquid product heating values (McDonald et al., 

1983).

Recently, near-critical or supercritical fluids, compressed solvents above their critical 

temperature and pressure, have been investigated as solvents for the direct liquefaction of 

biomass. Supercritical fluids have the unique ability to dissolve materials not normally soluble in 

either a liquid or vapour phase and exhibit complete miscibility with the liquid and vapour 

products, providing a single-phase environment for reactions that would otherwise occur in a 

multiphase system under conventional conditions (Savage, 1999; Demirbas, 2001). Sub-/super

critical water has been used for biomass liquefaction in many studies (Adschiri et al., 1993; 

Sasaki et al., 2000; Saka and Ueno, 1999; Saka and Konishi, 2000). Qian et al. (2007) 

investigated the liquefaction of woody biomass in water with an autoclave reactor operated at 

280-420°C with sodium carbonate as the catalyst. They obtained a maximum yield o f heavy oil 

o f  53.3 wt.% at temperatures around 380°C.
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Sub-/supercritical alcohols have been investigated as reaction media for the liquefaction o f 

lignocellulosic materials in order to improve the yields o f liquid oil products with a greater 

calorific value due to reduced oxygen contents (Xu and Etcheverry, 2008; Minami et a l ,  2003; 

Labreque et al., 1984; Poirier et al., 1987; Cemek and Kucuk, 2001; Ishikawa and Saka, 2001; 

Tsujino et al., 2003). Since alcohols have critical temperatures and pressures lower than those of 

water, much more moderate reaction conditions can be employed. Another advantage in using 

alcohols as reaction solvents for biomass liquefaction is that the alcohols are expected to readily 

dissolve relatively high molecular weight products derived from cellulose, hemicelluloses, and 

lignin due to their lower dielectric constants when compared with that o f water (Yamazaki et al., 

2006). In work by Xu and Etcheverry (2008) hydro-liquefaction o f Jack pine powder was studied 

in sub-/supercritical ethanol with and without iron-based catalysts (5 wt.% FeS or FeSOQ. Very 

high liquid yields o f 63 wt.% were obtained at 350°C for 40 min with the presence o f FeS0 4  and 

5.0 MPa cold pressure o f H2.

2.4 Bio-oil/Bio-crude Upgrading Processes

Biomass-derived oils are very different from crude oils obtained from petroleum sources; the 

sulfur and nitrogen content o f bio-crudes is negligible, but they are rich in oxygen-containing 

molecules (see Table 2-2) (Georget et al., 1999). Bio-oils/bio-crudes are comprised of a complex 

mixture o f oxygen-containing compounds in the form of phenol and benzene derivatives, 

hydroxyketones, carboxylic acids and esters, and aliphatic and aromatic alcohols (Xu and Lad, 

2008; Yang et al., 2009a). These compounds contribute to the oxygen content o f the oil. In 

addition, water originating from both moisture initially present in the feedstock and as a 

pyrolytic product in pyrolysis and direct liquefaction processes adds to the oxygen content in
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bio-oil or bio-crude (Czemik and Bridgwater, 2004; Bridgwater, 2003). The total oxygen content 

o f bio-crudes can be as high as 40-50 wt.% for pyrolysis oils, and 20-30 wt.% for heavy oils 

from high-pressure direct liquefaction process, depending on the origin o f the biomass and 

liquefaction conditions, e.g. temperature, residence time, heating rate and different catalysts used 

(Furimsky, 2000; Bridgwater, 1994). The high oxygen content is a limitation in the utilization

Table 2-2 Elemental composition of bio-oil from wood and of a heavy fuel oil (§enol, 2007).

Composition
(wt.%)

Bio-cmde/Bio-oil

High-pressure
liquefaction

Pyrolysis
rieavy rue i u ii

Carbon 74.8 45.3 85.0

Hydrogen 8 .0 7.5 1 1 .0

Oxygen 16.6 46.9 1 .0

Nitrogen <0 .1 <0 .1 0.3

Sulphur <0 .1 <0 .1 0.5-3.0

HHV (MJ/kg) -3 0 - 2 0 -40

o f bio-crude as liquid transportation fuel since the high oxygen content o f  the oils causes high 

viscosity, poor thermal and chemical stability, corrosivity (due to the organic acids present) and 

immiscibility with hydrocarbon fuels (Czemik and Bridgwater, 2004; Bridgwater, 2003; Yaman, 

2004). Bio-cmde/bio-oils therefore need to be upgraded by reducing their oxygen content 

(Bridgwater, 1994; Bridgwater, 1996).

Technologies for upgrading of bio-oils for fuel applications include physical and 

chemical/catalytic approaches (Zhang et al., 2007; Czemik et al., 2002). Techniques, such as 

émulsification and solvent extraction are physical methods in which bio-oils are mixed with 

diesel oil and solvents, respectively, to extract lower oxygen-containing components from the 

original bio-oil (Czemik et al., 2002). Although the physical mixing of bio-oils with diesel fuel
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directly, aided by the addition o f a surfactant, may be the simplest way to use bio-oil as a liquid 

transportation fuel, the associated problem of corrosion to the engine and related components 

limits its application.

Currently, two main chemical approaches have been proposed and tested for the upgrading 

of both pyrolysis oils and bio-crudes from high-pressure direct liquefaction processes. These are 

catalytic cracking and catalytic hydro-treating and are analogous to the upgrading o f heavy oils 

in a petroleum refinery.

Catalytic cracking processes, using various cracking catalysts (e.g. zeolites, silica-alumina 

and molecular sieves), are performed at atmospheric pressure without the requirement o f added 

hydrogen. The advantages o f low-pressure operation without the need of hydrogen have attracted 

much interest o f studies on upgrading of bio-oils as reported in the literature (Adjave and 

Bakhshi, 1995; Katikaneni et al., 1995; Williams and Home, 1995; Adjave et al., 1996). The 

yield o f desired fuel hydrocarbons is however very low because o f the high yields o f char/coke 

and tar. Deposition of these undesired products on the catalyst results in the serious problem of 

rapid catalyst deactivation. As a result, periodic or continual regeneration o f the catalysts 

becomes necessary.

In contrast to catalytic cracking, catalytic hydrotreating processes operate at high pressures 

in the presence o f hydrogen and/or hydrogen donor solvents (Baker and Elliott, 1988; Craig and 

Coxworth, 1987; Maggi and Delmon, 1993). Significant efforts have been made over the past 20 

years to study the hydrodeoxygenation (HDO) o f biomass-derived oils.

The catalysts used in the hydro-treatment o f bio-oils have been studied extensively and fall 

into two general categories: AlzOg-supported catalysts, typically loaded with NiMo or CoMo, 

(Baker and Elliott, 1988; Sharma and Bakshi, 1993; Sheu et al., 1988; Gevert et al., 1990) and
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zeolite catalysts (e.g. H-ZSM-5) (Baker and Elliott, 1988; Furrer and Bakshi, 1988; Sharma and 

Bakshi, 1991). The supported metal catalysts are more active in hydrogenation and 

deoxygenation reactions while the zeolite and similar acidic catalysts are used to enhance 

cracking reactions (Pindoria et a l, 1998).

2.4.1 Hydro-treating o f  Model Compounds

Review of research efforts to study the catalytic chemistry and kinetics o f hydrotreating 

have focussed on various model compounds containing oxygen, such as phenolic compounds 

and aromatic ethers, as well as various bio-oils (fast pyrolysis oils and bio-crudes from high- 

pressure liquefaction processes) (Furimsky, 2000; Elliott 2007). Pacific Northwest National 

Laboratory (PNL/PNNL) employed a batch reactor to test hydro-treating o f phenolic model 

compounds with various catalysts (Elliott, 1983). Some key results are summarized as follows: 

commercially available catalysts (ALOs-supported CoMo, NiMo, NiW, Ni, Co, Pd, and CuCrO) 

were used to hydrogenate phenol at 300°C or 400°C for 1 h. O f the catalysts tested, the sulfided 

form of CoMo was found to be most active, producing a product containing 33.8% benzene and 

3.6% cyclohexane at 400°C, while the sulfided Ni catalyst produced 8.0% cyclohexane but only 

0.4% benzene. On the basis of other model compound studies involving o-cresol and 

naphthalene, Elliott, et al. (1995) concluded that NiMo with a phosphated alumina support was 

the most active for oxygen removal and hydrogen addition, but the authors pointed out that if 

hydrodeoxygenation is the main goal the CoMo catalyst shall be considered due to its much 

higher selectivity.

The addition o f a small amount o f phosphorus to sulfided NiMo/AEOs catalyst has been 

shown to enhance both hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities,
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with less susceptibility to coke formation (DeCanio et a l ,  1991). The presence o f phosphorus 

was found to induce the formation o f new Brdnsted and Lewis acid sites with intermediate 

strength as was evidenced by FTIR analysis (Ferdous et al., 2004).

One o f the key parameters determining the hydrodeoxygenation (HDO) activity o f Mo, 

CoMo or NiMo catalysts is the type o f support material used. The most common and 

conventional support is solid acid A I 2 O 3 ,  which has been widely used in hydro-treating catalysts 

on an industrial scale (Zdrazil, 2003). Extensive studies have been undertaken on CoMo and 

NiMo catalysts supported on alternative materials such as S1 0 2 , activated carbon, Ti0 2 , Zr0 2 , 

zeolites and various mixed oxides (Breyesse et al., 1991; Luck, 1991; Topsoe et al., 1996; 

Vasudevan and Fierro, 1996; Radovic and Rodriguez-Reinoso, 1997). Centeno, et al. (1995) 

compared the HDO abilities with carbon-supported and alumina-supported CoMo and NiMo 

catalysts using various oxygen-containing and phenolic model compounds including guaiacol, 

catechol, phenol, 4-methyl acetophenone and />ara-cresol, in a />ara-xylene medium. Their 

studies showed that coke formation was an important cause o f catalyst deactivation where 

alumina supports are used, especially with compounds containing two oxygens such as guaiacols 

or catechols.

The use o f MgO as a basic support material has attracted much less attention. Basic supports 

however are interesting for two main reasons as stated by Klicpera and Zdrazil (2002). First, the 

acid-base interaction between acidic M 0 O3 and a basic support in the oxide precursors o f the 

sulfided catalyst may promote dispersion of the Mo species in the catalyst. Second, the basic 

character o f the support may inhibit coking which is rather intensive for conventional AI2O3- 

supported catalysts. It was not until recently that MgO-supported catalysts have been used to 

upgrade bio-oil. Sulfided MgO-supported CoMoP catalyst was used to successfully upgrade both
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phenol (as a model compound) and bio-oil in supercritical hexane. After 1 h at optimum reaction 

conditions o f 450°C and 5.0 MPa hydrogen, the phenol had been converted to reduced products 

comprising -65  wt.% benzene and >10 wt.% cyclohexyl compounds (Yang et al., 2009b).

2.4.2 Hydro-treatment o f Bio-oils

Studies on the hydro-treatment o f bio-oils have mostly focused on conventional petroleum 

hydrotreating catalysts, i.e., sulfided CoMo and NiMo. Elliott and Baker (1984) and Soltes et al. 

(1987) examined hydro-catalytic reactions o f bio-oils obtained from a high-pressure liquefaction 

process using a continuously fed fixed bed reactors. Their results showed the sulfided form o f the 

CoMo catalyst to be much more active than the oxide form. The sulfided nickel catalyst 

exhibited similar activity to the sulfided CoMo catalyst except that the nickel catalyst led to a 

much higher gas yield and much greater hydrogen consumption. More than 95% oxygen removal 

from the wood-derived bio-crude, initially containing about 15 wt.% O, was achieved with the 

sulfided C0 M 0 /AI2O3 catalyst at 573 K (Gevert, 1988). Using the same bio-oil, Gevert et al. 

(1990) studied the effect of pore diameter o f a sulfided C0 M 0 /AI2O3 catalyst on the overall 

HDO. The best performance was achieved at 623 K for a catalyst with narrow pores. A two-step 

hydrotreatment process for upgrading o f pyrolysis oils developed was developed at the PNNL 

(Elliott and Neuenschwander, 1996; Elliott et al., 1988; Elliot and Oosmaa, 1991). The first step 

involves a low temperature and high pressure (270°C, 136 atm) catalytic treatment that 

hydrogenates the thermally unstable bio-oil compounds. The second step involves catalytic 

hydrogenation at higher temperature and the same pressure (400 °C, 136 atm). The same 

catalyst, a sulfided C0 M0 /AI2O3 or sulfided NiMo/Al2 0 3 , was used for both steps. This process 

produced 40 wt.% yields of refined oil containing less than 1 wt.% oxygen from a raw pyrolysis
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phenol (as a model compound) and bio-oil in supercritical hexane. After 1 h at optimum reaction 

conditions o f 450°C and 5.0 MPa hydrogen, the phenol had been converted to reduced products 

comprising -65  wt.% benzene and >10 wt.% cyclohexyl compounds (Yang et al., 2009b).

2.4.2 Hydro-treatment o f Bio-oils

Studies on the hydro-treatment o f bio-oils have mostly focused on conventional petroleum 

hydrotreating catalysts, i.e., sulfided CoMo and NiMo. Elliott and Baker (1984) and Soltes et al. 

(1987) examined hydro-catalytic reactions o f bio-oils obtained from a high-pressure liquefaction 

process using a continuously fed fixed bed reactors. Their results showed the sulfided form o f the 

CoMo catalyst to be much more active than the oxide form. The sulfided nickel catalyst 

exhibited similar activity to the sulfided CoMo catalyst except that the nickel catalyst led to a 

much higher gas yield and much greater hydrogen consumption. More than 95% oxygen removal 

from the wood-derived bio-crude, initially containing about 15 wt.% O, was achieved with the 

sulfided C0 M 0 /AI2O3 catalyst at 573 K (Gevert, 1988). Using the same bio-oil, Gevert et al.

(1990) studied the effect of pore diameter of a sulfided C0 M0 /AI2O3 catalyst on the overall 

HDO. The best performance was achieved at 623 K for a catalyst with narrow pores. A two-step 

hydrotreatment process for upgrading of pyrolysis oils developed was developed at the PNNL 

(Elliott and Neuenschwander, 1996; Elliott et al., 1988; Elliot and Oosmaa, 1991). The first step 

involves a low temperature and high pressure (270°C, 136 atm) catalytic treatment that 

hydrogenates the thermally unstable bio-oil compounds. The second step involves catalytic 

hydrogenation at higher temperature and the same pressure (400 °C, 136 atm). The same 

catalyst, a sulfided C0 M 0 /AI2O3 or sulfided NiMo/AliOs, was used for both steps. This process 

produced 40 wt.% yields of refined oil containing less than 1 wt.% oxygen from a raw pyrolysis
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oil. Catalyst deactivation and gum formation in the lines were found to be the major process 

challenges. Churin et al. (1988 and 1989) conducted upgrading experiments on pyrolysis oil 

produced from olive oil. The authors reported that using sulfided NiMo or CoMo catalysts on 

alumina or silica-alumina supports perform better than noble metal catalysts which were found to 

be more readily deactivated by poisoning, sintering, and fouling. The use o f a hydrogen donor 

solvent (e.g. tetrahydronaphthalene also known as tetralin) was found to lead to a marked 

improvement in the quality o f the hydro-treated product and a reduction in catalyst deactivation 

by coke deposition. Zhang et al. (2005) hydrotreated a pyrolysis oil using sulfided CoMoP/y- 

AI2O3, in tetralin under the optimum conditions of 360°C and 2 MPa of cold hydrogen pressure. 

The oxygen content of the oil was reduced from 41.8 wt.% for the crude oil to 3 wt.% for the 

upgraded product. A pyrolytic lignin, extracted from softwood fast pyrolysis bio-oil, was 

catalytic hydro-treated by Piskorz et al (1989) using pelletized sulfided CoMo catalyst. The 

process produced a light organic oil with 0.46% oxygen content.

Soltes et al. (1987) and Sheu et al. (1988) upgraded pyrolytic oils obtained from pine. 

Twenty catalyst formulations were tested in a batch reactor and an alumina-supported Pd catalyst 

was determined to be most effective with the highest yield o f liquid oil at 400 °C for 1 h. 

Alumina-supported Pt or Re catalyst were found to produce higher gas yields, while Ru and Rh 

were found to be most active in gas formation. Sulfided CoMo, NiMo, and NiW  catalysts were 

found to be o f much lower activity for bio-oil hydro-treating compared to the precious metal 

catalysts, and the Pt catalyst was found to be the most active for oxygen removal.

Although sulfided CoMo and NiMo catalysts are traditionally used in petroleum and bio-oil 

hydro-treatment and have received much o f the focus for HDO processes, other types of 

catalysts, including solid acids, solid bases and precious metal catalysts, have also been
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considered. Upgrading o f fast pyrolysis oil using solid acid (40SiO2/TiO2-SO4^‘) and solid base 

(30K2CO3/Al2O3-NaOH) catalysts at 50°C for 5 h was investigated by Zhang et al. (2006) in 

which the dynamic viscosity o f the bio-oil was markedly decreased. The density o f the upgraded 

bio-oil was decreased from 1,240 to 960 kg/m^, and the gross calorific value increased by 50% 

from 16 MJ/kg for the original bio-oil to 24 MJ/kg for the upgraded bio-oil. The results of 

GC/MS analysis showed that de-carboxylation o f the bio-oil was promoted by both the solid acid 

and solid base catalysts.

A longstanding problem for HDO of bio-oils was associated with catalyst deactivation due 

to coke formation, particularly for alumina-supported catalysts. Gagnon and Kaliaguine (1988) 

reported that bio-oil polymerization occurred during the upgrading o f the vacuum pyrolysis bio- 

oil. The polymerization was more evident during bio-oil upgrading in the presence o f 

NiW 0 /Al2 0 3  catalyst at 598 K and about 18 MPa H2, although significant oxygen removal was 

achieved.

The development o f highly active and stable catalysts for the HDO of bio-oils/ bio-crudes 

will continue to be the great challenge in the advancement of bio-oils and the focus o f much 

future study.

2.5 Glycerol Utilization

Glycerol (1,2,3-propnaetriol) is a clear, viscous liquid that freezes at 17°C and boils at 

~290°C. It is a byproduct o f bio-diesel production (via trans-esterification) and is becoming 

increasingly available as the level of bio-diesel production worldwide increases. Approximately 

1 kg o f glycerol is produced for every 9 kg o f bio-diesel that is produced (Dasari et al., 2005). 

The increasing demand for bio-diesel has produced a glut o f glycerol which has in turn decreased
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the cost o f crude (80%) glycerol from $2.50/lb in 2004 to ~3O0/lb in 2006 (Yazdani and 

Gonzalez, 2007). Due to its growing availability and decreasing cost, much research is being 

conducted to try to make value-added products and bio-fuels from the glycerol obtained from 

biodiesel production instead o f disposal by incineration.

2.5.1 Fuel Production from Glycerol

The literature published on the conversion of glycerol into fuels can be divided into two basic 

processes: thermal conversion processes (i.e. pyrolysis, steam reforming and super-critical water 

reforming) and biological processes. Thermal conversion mainly aims to gasify glycerol feed 

into hydrogen or syn gas, which can be converted into liquid fuels by Fisher-Tropsch synthesis. 

Pyrolysis o f glycerol is similar to the process used to produce pyrolysis oils from woody biomass 

however glycerol is pyrolized at much higher temperatures to promote conversion to gaseous 

products. Valliyappan et al. (2008) reported pyrolysis o f glycerol at temperatures between 650- 

800°C, producing gas products, mostly syngas (CO, FI2) at concentrations ranging from 70-93 

mol% in the gas products. The gas also contained CH4 and C2H4 at concentrations of 3-15 mol% 

and 2-12 mol% respectively. Under the optimum condition of 800°C, a 72 wt.% glycerol stream 

was converted into 93.5 mol% syngas (of total gas produced) with a H2/CO of 1.05. Zhang et al.

(2007) reported effective steam reforming o f glycerol over ceria (Ce0 2 )-supported Ir, Co and Ni 

catalysts. The Ir catalyst proved to be more effective than the other metals tested and showed 

100% glycerol conversion at 400°C with a hydrogen selectivity o f more than 85%. Glycerol has 

also been converted in hydrogen over Ni/MgO catalyst (Adhikari et al., 2008). A maximum 

hydrogen yield o f 56.5 mol%, with a selectivity o f 65.6%, was obtained at 650 C with a 1:6 

glycerol in water feed. Wen et al. (2008) found that aqueous phase reforming of glycerol over Pt
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catalyst at a lower temperature was also effective. They noted that hydrogen production was 

maximized over basic supports while alkane production was favoured over acidic support media. 

The zeolite-supported catalysts were found to be unstable under the chosen reaction conditions 

and collapsed. Steam reforming o f glycerol over commercial Ni catalyst and a calcined dolomite 

sorbent at ambient pressure and moderate to high temperatures was reported by Dou et al.

(2009). Hydrogen production was found to increase with increasing pressure and methane 

production was found to decrease to negligible levels at temperatures over 500°C. Byrd et al.

(2008) reported effective glycerol reforming in supercritical water over alumina-supported Ru 

catalyst.

Biological processes for hydrogen production involve the use o f anaerobic microorganisms 

to convert the glycerol into hydrogen and other gases through fermentation reactions (as opposed 

to aerobic reactions which result in CO2 production). Sabourin-Provost and Hallenbeck (2009) 

showed that the photosynthetic bacterium Rhodopseudomonas palustris is capable o f the 

photo fermentative conversion of both pure and crude glycerol into hydrogen. They reported the 

production of 6  mol H2/mol glycerol. Dark fermentation (as opposed to photofermentation) has 

also been used to produce hydrogen from glycerol (Chong et al., 2009).

Less frequently reported is the use o f glycerol as a fuel for fuel cells. Glycerol is of 

interest due to its higher energy density than other fuels that have been used in fuel cells. 

Arechederra et al. (2007) reported the use o f glycerol as a fuel for an enzymatic biofuel cell. The 

enzymes used oxidize the glycerol to mesoxalic acid via a multiple step process which makes use 

o f 8 6 % of the energy content of the glycerol. Room temperature reaction resulted in power 

densities up to 1.21mW-cm~^. In addition, the glycerol does not swell the PEM (polymer 

electrolyte membrane) thereby allowing the use o f highly concentrated (up to 98.9 wt.%) feed
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streams. PEM reactors have also been used to reform glycerol by means o f electrolysis (Marshall 

and Haverkamp, 2008). The authors reported hydrogen gas yields o f 10 m^ H2 day"'m"^ while 

using approximately 6 6 % less energy than water electrolysis.

2.5.2 Chemical Production from Glycerol

Glycerol is not suitable as an additive to gasoline and diesel by itself because it is practically 

insoluble in hydrocarbons. In addition it is water soluble and would increase fuel viscosity. 

(Gutierrez and Krause, 2008). It can however be converted or modified into compounds that can 

be added to hydrocarbon fuels to improve fuel performance.

One such process is acetlylation (estérification with acetic acid) o f the glycerol to produce di- 

and tri-acetylglycerol which exhibits enhanced cold and viscosity properties when blended with 

diesel fuel and anti-knocking properties when added to gasoline (Melero et al., 2007). Melero et 

al. obtained over 90% conversion of glycerol with combined selectivity for di- and tri-acetyl

glycerol o f over 85% after 4 h reaction with acetic acid over sulfonic acid-modified catalyst. The 

acid strength o f catalytic sites was shown to be a determinant parameter in catalyst performance 

with stronger acid centers improving both glycerol conversion and selectivity toward the desired 

products.

It is also possible to produce ethers from glycerol. Typically this involves the reaction of 

glycerol with iso-butene or t-butyl alcohol to produce di- and tri-tertiary butyl ethers. Melero et 

al. (2008) reported complete glycerol conversion over sulfonic catalyst under optimized reaction 

conditions with a combined selectivity towards DTBG and TTBG up to ca. 90%. Klepacova et 

al. (2005) studied éthérification of glycerol with isobutylene and tert-butyl alcohol, without 

solvent, over several catalysts. Glycerol conversion of 100%, with a selectivity for the desired

33



products o f -89% , was obtained over a strong acid Amberiyst type ion-exchange resin at 60°C. 

Increased temperature (90°C) was found to decrease both glycerol conversion and yield o f the 

desired products. Ethérification with t-butyl alcohol was found not to be as effective due to the 

formation o f water during the reaction and subsequent catalyst deactivation.

Being a polyalcohol itself, it is a small leap to see that glycerol could be the feedstock for the 

production o f glycols and simple alcohols including propylene glycol, ethanol and butanol.

Propylene glycol is used in many o f the same applications as ethylene glycol (such as 

antifreeze) but it is less toxic than the latter compound. Dasari et al. (2005) reported 

hydrogenolysis of glycerol to propylene glycol over copper-chromite catalyst. Mild conditions of 

200°C and 200 psi over 24 h resulted in a maximum conversion of -55%  with a selectivity 

towards propylene glycol o f almost 47% giving in a maximum yield o f 85 wt.%. Zhang et al 

(2006) investigated propylene glycol production by anaerobic fermentation o f glycerol by K. 

pneumoniae. Approximately 57 wt.% yield o f 1,3-propylene glycol was observed. The formation 

o f ethanol by the bacteria was found to hinder the production of the desired product. Selective 

dehydroxylation of glycerol by tosylation has been reported (Wang et al., 2003). The reaction 

involves guarding the terminal hydroxyl groups by acetalization and then converting the middle 

hydroxyl group into a tosyloxyl group. The tosyloxyl group is then removed by catalystic 

hydrogenolysis. This process is not economically viable, however, due to low (<15 wt.%) yields 

o f propylene glycol. More favourable results have been achieved using Cu/MgO catalysts (Yuan 

et al., 2010). Up to 72% conversion and 97.6% selectivity were observed, giving an overall 

propylene glycol yield o f 70.3 wt.%. The addition of a small amount o f NaOH to the reaction 

mixture was found to increase glycerol conversion to 82%.
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Yazdani and Gonzalez (2007) reported producing ethanol from glycerol via anaerobic 

fermentation using E. coli. Other microorganisms including Klebsiella pneumoniae, Clostridium 

pasteurianum, Citrobacter freundii, and Enterobacter agglomérons have also been investigated 

for the production o f ethanol and other low alcohols (e.g. butanol) from glycerol (Menzel et al., 

1997; Barbirato et al., 1998; Himmi et al., 1999; Nakamura and Whited, 2003; Biebel, 2001; 

Malinowski, 1999). Yazdani and Gonzalez (2007) also stated that anaerobic digestion o f glycerol 

can produce other chemicals such as formates and succinates. Lee et al. (2001) produced succinic 

acid from glycerol using Anaerobiospirillum succiniciproducens.

Acrolein (propenal) is an important chemical intermediate that is used in the production o f 

acrylic acid esters, superabsorber polymers and detergents. It is typically prepared by gas phase 

oxidation of propylene over Bi/Mo-mixed oxide catalyst. Vogel et al (2006) reported plug flow 

dehydration o f glycerol into acrolein in sub- and supercritical water over zinc sulfate catalyst. 

Reaction conditions ranged from 300-390 °C, 25-34 MPa, and 10-60 s residence time. They 

achieved a maximum glycerol conversion o f 50% at 360°C and 25 MPa with a selectivity o f 

75%. Higher yields and better selectivity have been reported by Watanabe et al. (2007), where 

glycerol was reacted in hot-compressed and supercritical water in both batch and flow reactors. A 

maximum conversion of 90% with 80% selectivity towards acrolein (72 wt.% yield) was 

achieved over acid-modified catalyst under supercritical conditions o f 400°C and 34.5 MPa. Gas 

phase dehydration o f aqueous glycerol to acrolein was investigated in a flow reactor by Jia et al.

(2010). High Si/Al ratio nanocrystalline catalysts were compared to bulk catalysts and exhibited 

greatly enhanced performance even at very high GHSVs o f 1438 h '. The most effective catalyst 

exhibited almost 100% conversion of the 35 wt.% glycerol feed even after 24 h on-line. Not 

unexpectedly, glycerol conversion was found to decrease with increased GHSV. Selectivity for
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acrolein, however, was found to increase with increased GHSV likely due to the shorter 

residence time which minimized possible side reactions. Corma et al. (2008), Zhou et al. (2007), 

Tsukuda et al. (2007), and Ning et al. (2008) have also investigated glycerol-to-acrolein 

conversion.

Although there is a large body o f research investigating the use o f the large surplus of 

glycerol produced by bio-diesel production, the research has mainly focussed on converting 

glycerol into fuel as hydrogen or syngas for subsequent F-T synthesis, using glycerol as a fuel 

itself or converting it into other chemicals such as propylene glycol, acrolein, oxygenates (esters 

and ethers) for use as fuel additives, and various alcohols. None of the research however, has 

reported the use o f glycerol as a feedstock for the production of bio-crude oil. As discussed 

previously, in research by Dasari et al. (2005) for hydrogenolysis o f glycerol to propylene glycol 

over copper-chromite catalyst, mild conditions were favorable for the yield and selectivity o f the 

propylene glycol products. Higher temperatures and pressures were found to increase 

condensation reactions, leading to a greater oily product yield. By tuning the reaction conditions, 

conditions (type o f catalysts, reaction temperature, reaction time, hydrogen pressure, and solvent 

effects), a high yield o f bio-crude oil would be achievable via hydro-treatment o f glycerol.

2.6 Summary

1) Fast pyrolysis is the only industrially realized technology for production o f bio-oils from 

biomass. However, pyrolysis oils contain high levels of oxygenated compounds and water, 

and therefore have lower caloric values than petroleum oils.
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2) High-pressure liquefaction technology which uses moderate temperatures <400°C but 

higher pressures o f 5-20 MPa has the potential to produce superior quality bio-oils with 

much higher caloric values (25-35 MJ/kg).

3) The bio-oils/bio-crudes produced by biomass liquefaction are composed o f a complex 

mixture o f oxygen-containing compounds in the form of phenol and benzene derivatives, 

hydroxyketones, carboxylic acids and esters, and aliphatic and aromatic alcohols. The high 

oxygen content o f the bio-oils limits their usefulness as liquid transportation fuels since the 

high oxygen content results in increased viscosity, poor thermal and chemical stability, 

corrosivity (due to the organic acids present) and immiscibility with hydrocarbon fuels. 

Pyrolysis oils/bio-crudes, therefore, need to be upgraded to reduce their oxygen content in 

order to convert them into useful fuels.

4) Catalytic cracking and catalytic hydro-treating are the two typical technologies used in the 

upgrading o f bio-oils for fiiel applications. Catalytic cracking processes, which use cracking 

catalysts (e.g. zeolites, silica-alumina and molecular sieves), are performed at atmospheric 

pressure without the requirement o f additional hydrogen. In contrast, catalytic hydro- 

treating processes operate at higher pressures (2-20 MPa) in the presence of hydrogen 

and/or in the presence o f hydrogen donor solvents.

5) Commercially available sulfided catalysts (AEOs-supported CoMo, NiMo, NiW, Ni, Co, Pd, 

and CuCrO) have been widely used for hydrodeoxygenation (HDO) o f both bio-oils and 

model compounds. Alumina-supported Pd catalysts have been found to be the most 

effective catalysts, producing higher bio-oil yields than conventional Mo-based catalysts. 

Catalyst deactivation due to the formation of coke and tars has been identified as the major 

issue with the conventional alumina-supported catalysts.
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6) Glycerol is a potential feedstock for many fuels and value-added products that is rapidly 

becoming more accessible as the production of bio-diesel increases.

7) Current research into glycerol utilization has focussed on the production o f syn-gas, pure 

hydrogen, and chemicals such as acrolein, epichlorohydrin, propylene glycol, various other 

alcohols and oxygenates to be used as fuel additives.

8) From the available literature however, no research has been reported on the 

hydrodeoxygenation o f glycerol into bio-oil. By tuning the reaction conditions, conditions 

(type of catalysts, reaction temperature, reaction time, hydrogen pressure, and solvent 

effects), a high yield o f bio-crude oil could be achievable via hydro-treatment of glycerol.
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CHAPTER 3 

Hydrodeoxygenation of Glycerol Into Bio-crude: Catalyst Screening

Hydrodeoxygenation (HDO) of glycerol feedstock in the presence o f various catalysts was 

investigated using a micro-reactor at a temperature of 300°C and initial hydrogen pressure o f 5.0 

MPa. The liquid products were separated into water-soluble components and bio-oil by liquid- 

liquid extraction with water and ethyl acetate. Without catalyst metals, the yields o f bio-oil were 

in the range o f 0.5 to 3.7 wt.%. The exception to this was the acidified zeolite which resulted in a 

bio-oil yield o f -3 4  wt.% but much greater char deposition. Various metals and combinations o f 

metals were tested in an oxidized form and the most effective catalyst for glycerol HDO was 

found to be MoCoP/zeolite which resulted in an average bio-oil yield o f -3 9  wt.%. Glycerol 

gasification and hydrogen consumption were generally found to increase in proportion with 

increased bio-oil yields. Reduction and sulfidation of the MoCoP/zeolite catalyst was found to 

drastically reduce bio-oil yield and decrease hydrogen consumption. According to GC/MS 

analysis, the bio-oil products consist primarily o f substituted phenols, ketones and substituted 

cyclic hydrocarbons in the C6 to C9 range. The bio-oils therefore contained a higher 

concentration o f carbon and much lower concentration o f oxygen than the original glycerol 

which resulted in a significantly increased heating value o f 33 MJ/kg.

Keywords: bio-oil, bio-cmde, glycerol, hydrodeoxygenation, catalysts
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3.1 Introduction

In the past century, the world’s energy demand has been met primarily by fossil fuels, 

comprising; 30% petroleum, 23% natural gas, 22% coal, 6% nuclear, and 19% renewable (Song, 

2002). The era o f fossil-resources-based energy and chemical industries is expected to phase out 

gradually over the course o f the 2U‘ century because o f the depletion o f fossil resources 

(Okkerse and Van Bekkum, 1999). Due to increasing concerns over greenhouse gas emissions 

and energy security, there has been a resurgence of interest in renewable bio-energy. Many 

countries have legislation in place to promote the use o f biomass energy and bio-fuels. For 

example, the European Union has set an objective to increase the market share o f biomass- 

derived fuels in the transport sector to 5.75% by the end o f 2010 (EU Directive 2003/30/EC). In 

December 2007, then US President Bush signed into law a Renewable Fuels Standard (RES) that 

calls for at least 36 billion gallons of ethanol and other bio-fuels to be used nationwide by 2022, 

including a minimum of 9 billion gallons in 2008, and 20.5 billion gallons by 2015 or about 15% 

replacement o f the U S’s gasoline consumption. Concurrent with these initiatives, has been the 

increased production o f bio-diesel from a variety o f sources. Trans-esterification o f fresh and 

spent cooking oils is one of the most common processes used to produce bio-diesel. The main 

by-product of trans-esterification is glycerol (approximately 1 kg o f glycerol for every 9 kg of 

bio-diesel produced) (Dasari et ah, 2005). The increased demand for bio-diesel has created a glut 

o f glycerol (100,000 tonnes annually in the USA alone) and the cost o f glycerol has decreased to 

a tenth o f what it was just a few years ago (Yazdani and Gonzalez, 2007). Economically 

beneficial utilization o f this glycerol by-product would greatly enhance biodiesel plant 

production economics. Much research is being conducted into the conversion of surplus glycerol 

into hydrogen (Marshal and Haverkamp, 2008, Valliyappan et al., 2005) and other value-added
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chemicals including ethanol (Yazdani and Gonzalez, 2007) and propylene glycol (Dasari et al., 

2005, Zhang et al., 2008).

Glycerol, as an oxygenated organic compound, can be a promising feedstock for the 

production o f liquid transportation fuels by oligomerization and de-oxygenation. However, there 

is no research available in published literature. This research investigated the effectiveness of 

different metal catalysts in the conversion o f glycerol into bio-oil/bio-crude through a novel one- 

step hydrodeoxygenation (HDO) process under a hydrogen atmosphere. The catalysts tested 

were in an oxidized, reduced or sulfided form, and supported on MgO, activated carbon (AC), 

AI2O3 or zeolite materials.

3.2 Experimental

3.2.1 Feedstock and Catalyst Preparation and Characterization

The feedstock for these experiments was reagent grade glycerol obtained from Canadawide 

Scientific (99% purity) and was used as received. The supported metal catalysts: 10% Co, Ni, 

Ru, or Mo as single metals, 10%Mo-3%Co, and 10%Mo-3%Co-2%P (MoCo and MoCoP for 

convenience) were synthesized by successive incipient wetness impregnation. The catalyst 

support materials (MgO, Y-AI2O3, activated carbon and X-type zeolite) were reagent grade and 

dried at 105°C in air for a minimum of 8  h before use. The metal salts (ammonium molybdate 

tetrahydrate (NH4)6Mo?024 4 H2O), ruthenium (III) nitrosylnitrate (RuN0 (N0 3 )3), cobalt (II) 

nitrate hexahydrate (Co(N0 3 )2.6 H2 0 ), and nickel (II) nitrate hexahydrate (Ni(N0 3 )2-6 H2 0 ), and 

the phosphorous promoter (86 wt.% phosphoric acid) were A.C.S. reagent grade reagents 

obtained from Sigma-Aldrich and used as received. Briefly, approximately 10 or 20 g o f support 

material was weighed into a flask. The required amount o f metal compound was weighed into a
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separate beaker and dissolved in distilled water. The resulting mixture of the metal salt solution 

and the support solids was agitated in a shaker for a minimum of 6  h. After agitation, the water 

was removed by rotary evaporation at 85°C. The dewatered material was dried at 105°C for a 

minimum 12 h in air. Where additional catalyst metals were required, the dried catalyst was 

crushed into a fine powder with a mortar and pestle and the above procedure was repeated for 

each subsequent metal. After the final drying step, the impregnated metal catalysts were calcined 

at 550°C in air for 6  h. The cooled catalysts were crushed to a small (<200 pm) particle size 

before storage. The bulk elemental composition (molybdenum, cobalt and phosphorus contents) 

o f selected catalysts were analyzed by inductively-coupled plasma-atomic emission spectroscopy 

(ICP-AES). These catalysts were also analyzed by X-ray diffraction (XRD) in order to determine 

their crystalline structures. The elemental analysis of these catalysts is presented in Table 3-1. 

Reduction of selected catalysts was performed in a flow reactor at 450°C under a hydrogen 

atmosphere for 4 h followed by passivation under a nitrogen atmosphere. Sulfidation o f selected

Table 3-1. Elemental analysis o f selected catalysts by ICP-AES and CNS

Catalyst
Mo Co P Mg' S
( 1 0  wt.%) (3 wt.%) (1.5 wt.%) (1.5 wt.%)

MoCo/MgO 7.8 2.4
MoCoP/MgO 7.8 2.3 1.5
MoCoP/Zeolite 6.5 2.3 1.5
MoCoP(R)/Zeolite 6.5 2.3 1.5
MoCoP(S)/Zeolite 6.5 2.3 1.5 5.6
M 0 C0 P/AI2O3 8 .1 2 .6 1 .6

MoCoP(R)/Al2 0 3 8 .1 2 .6 1 .6

MoCoP+Mg/Al2 0 3 8.0 2 .6 1 .6 1 .2

solution
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catalysts was performed with CS2 in tetralin solvent at 400°C for 4 h under 7 MPa hydrogen in 

an autoclave reactor. The ratio of S to catalyst was 2:1 (w/w) and the tetralin solvent was present 

at 8:1 (w/w) in relation to the catalyst (adapted from Olson 1992). The sulfur content o f the 

sulfided catalyst and the corresponding bio-oil product was determined by CNS.

As expected, the XRD spectrum of the MoCoP/zeolite catalysts (Figure 3-1) reveals 

multiple strong peaks that can be ascribed to crystallographic planes o f the zeolite support. It is 

not a surprise to note that no XRD signals attributed to Co-containing species are visible due to 

its low content (<3 wt%, as displayed in Table 3-1). Four weak signals o f M 0 O3 were observed 

in the spectrum at 2 0  = 12.5°, 26.5°, 36° and 53° (Patil et al., 2008). The peak at 2 0  = 12.5° 

coincides with one o f the crystallographic planes o f the zeolite support. The M 0 O3 peaks are

s
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Figure 3-1. XRD spectra o f MoCoP/zeolite catalyst in different chemical states
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much lower in intensity compared to those o f the zeolite due to the smaller amount o f Mo 

present relative to the zeolite support. The lack o f strong metal oxide signals may also imply that 

the metal species in these catalyst samples are highly dispersed (Byambajav and Ohtsuka, 2003, 

Radovic et al., 1983). Reduction of the MoCoP/zeolite catalyst resulted in a reduced signal from 

M 0 O3 indicating that the oxide form was converted into its reduced form. However, no XRD 

lines ascribable to Mo metal were detected, probably due to the high dispersion or fine 

crystalline size (finer than 5 nm) of the metal species in the reduced catalyst (Byambajav and 

Ohtsuka, 2003, Radovic et al., 1983). Sulfidation o f the MoCoP/zeolite catalyst resulted in 

reduced signals from the M 0 O3 peaks. Instead two broad shoulders between 2 0  = 12 - 16° and 

32 - 35° became evident, which may ascribed to the diffraction o f M 0 S2 (Iwata et ah, 1998).

The XRD spectra of the acidified zeolite and acidified zeolite-supported MoCoP catalyst are 

presented in Figure 3-2 along with the XRD spectrum of the MoCoP/zeolite catalyst for 

comparison. Unexpectedly, the acid appears to have partially destroyed the zeolite crystal 

structure as evidenced by the significant weakening o f the signals due to zeolite. Most obvious 

are in the figure are very strong peaks that were identified by the X ’Pert HighScore Plus software 

as being due to the presence of NaCl. The presence o f NaCl in the acidified zeolite catalyst is not 

unexpected since there is Na present in the zeolite and it is available to react with the HCl that 

was used in the acidification process. The loading of metals onto the acidified zeolite reduced the 

amount of salt present in the catalyst according to the XRD spectrum, while diffraction lines o f 

P-M0 CI2 were detected at 2 0  = -13° which again may be due to the residual chloride in the 

acidified zeolite. A small amount o f M0 O3 appears to be present as well. The peak labelled as 

has not been definitively identified but several potential candidate compounds have been 

found including A1(PÜ4), S-M0 O3, and Si0 2 .
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Figure 3-2. XRD spectra o f H-zeolite and MoCoP/H-zeolite catalyst

The textural structure of several catalysts was analyzed by isothermal N 2 adsorption. The 

analyses o f this catalyst are presented in Table 3-2.

Table 3-2. Elemental and textural analyses of several catalysts

Catalyst BET surface area (m^/g) Porosity (cc/g) Average pore size (nm)

Zeolite 3.1
-3

8.89x10 6.19

H-zeolite 67.3
-2

4.96x10 1.47

MoCoP/H-zeolite 2.9
-2

1.44x10 9.84

MoCoP/zeolite 2 .6
-2

1.29x10 1 0 .1

MoCoP/zeolite (S) 18.2
-2

3.12x10 3.43
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3.2.2 Experimental Apparatus and Procedure

The hydrodeoxygenation experiments were carried out in a micro-reactor made of stainless 

steel (SS 316L), consisting of capped 5/8 inch Swagelok bulkhead unions, with an effective 

volume of 14 mL. A schematic o f the apparatus can be seen in Figure 3-3. In a typical run, 10 g 

of glycerol was weighed into the reactor, followed by the addition o f catalyst (if needed) at a 

ratio o f 5 wt.% of the glycerol. This ratio was chosen based on previous work done in the 

author’s laboratory. The reactor was then securely sealed. The air in the reactor was displaced 

with high purity nitrogen by repetitive evacuation and N% purging. Finally, the reactor was 

pressurized to 5.0 MPa using high purity hydrogen. Supported on a mechanical shaker set at 100 

rpm, the reactor was then rapidly heated in a fluidized sand bath to the specified

Pressure relief valve 

(set at 4 0 0 0  psi)

 Cx]—
D isconnected
during
reaction

P ressure gauge  

(0-5000 psi)

To vacuum Micro-autoclave 
reactor (14 ml)

Fluidized sand bath

TC

Figure 3-3. Schematic diagram of the micro-reactor apparatus
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temperature o f 300°C. After the standard reaction time o f 1 h had elapsed, the reactor was 

removed from the sand bath and submerged in a water bath to terminate the reaction. A 

minimum of two runs were performed for each condition to ensure the reproducibility o f the 

results, and that the errors between the results from the duplicate runs were all within 5% o f one 

another.

3.2.3 Product Separation

A scheme of the product separation process can be seen in Figure 3-4. Once the reactor had 

cooled to ambient temperature, the gaseous products were collected in a pre-evacuated sample 

cylinder with a fixed volume o f 2.81 L. Cylinder pressure was brought to ambient pressure 

(required for analysis) by addition o f  high purity N2. Gas composition was then analyzed by GC- 

TCD (Agilent 3000 Micro-GC). The total amount o f gaseous product comprising CO, CO2, and 

Cl -  C3 hydrocarbon species, denoted as “gas” hereafter, was quantified. The solid/liquid 

products were rinsed completely from the micro-reactor with reagent grade ethyl acetate and 

distilled water. The resulting suspension was then filtered under vacuum through a pre-weighed 

Whatman No. 5 paper filter. The solids recovered in the filter paper consisted o f char, ethyl 

acetate-insoluble residuum derived from glycerol during the reaction, and spent catalyst. The 

recovered solids were dried in an oven at 105°C overnight and allowed to cool in a desiccator 

before weighing. The filtrate was decanted from the filter flask into a separatory funnel. The 

filter flask was rinsed three times with ethyl acetate to ensure all oils were recovered. The filtrate 

was allowed to separate into two phases overnight. After separation samples o f the organic layer 

were taken for GC/MS analysis. The aqueous layer was then decanted into a volumetric flask and 

diluted to a known volume with distilled water. Samples of the diluted aqueous phase were kept
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Figure 3-4. Product separation scheme

for DOC and HPLC analysis. The remaining organic liquid was rinsed into a pre-weighed round- 

bottomed flask and evaporated under vacuum at 60°C to remove the ethyl acetate. After 

evaporation, the flask was cooled in a desiccator and weighed to determine bio-oil yield. Where 

there was sufficient product yield, the viscosity o f the bio-oil was measured with a Brookfield 

viscosimeter at 100 rpm and 50°C. The remaining bio-oil sample was then collected for later 

CHN analysis by dissolving in reagent grade acetone and stored at 4°C to minimize 

condensation/polymerization reactions. The yields o f bio-oil, gaseous products, unreacted 

glycerol and char (solid residues), all expressed in wt.%, were calculated relative to the mass of 

glycerol feedstock fed into the reactor before the experiments.

3.2.4 Product Analysis

As mentioned previously, the composition o f the gaseous products was determined using 

an Agilent 3000 Micro-GC equipped with dual columns (Molecular Sieve and PLOT-Q) and 

thermal conductivity detectors. These values were used to determine the mass o f gaseous 

products produced. This mass was related to the mass o f the glycerol feed and reported as the
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yield o f gaseous products on a weight/weight basis. The elemental composition (C, H and N) o f 

the bio-oil was determined with a CEC (SCP) 240-XA elemental analyzer. The oxygen content 

was estimated by mass difference, assuming negligible content of sulfur in the products. The 

lone exception to this was the bio-oil produced by the sulfided MoCoP/zeolite catalyst which 

was analyzed for S content. The bio-oil products were also analyzed by GC/MS (Shimadzu 

QP2010S) with a SHRXI- 5MS column (30 mxO.25 mmxQ.25 pm) and a temperature program of 

initial oven temperature 40°C, 10°C/min ramp to 200°C, hold for 2 min. Longer runs did not 

produce an improvement in the data. The glycerol content o f the aqueous phases was determined 

by HPLC (Waters Breeze with a 1525 binary HPLC pump and 2414 RI detector. The Bio-rad 

Aminex HPX-87H column was maintained at 65°C using 0.005M H2SO4 in water as the eluent 

at a flow rate o f 0.6 mL/min. The dispersion states and chemical composition of certain catalysts 

before and after reaction were determined by X-ray diffraction (XRD) on a PANalytical X ’Pert 

PRO X-ray diffractometer using Cu K a  radiation with a wavelength of 1.54187 Â.

3.3 Results and Discussion

The results o f these experiments show that glycerol can be successfully dehydrated, 

deoxygenated, and oligomerized into bio-crude/bio-oil under hydrogen atmosphere with suitable 

catalysts. The yield of bio-oil was very high (up to -4 0  wt%) in the presence o f MoCoP catalyst. 

The yield o f char/heavy residue was found to be negligible for nearly all o f the catalysts tested. It 

should be noted here that the hydrogen was present in less-than-stoichiometric quantities relative 

to the glycerol and was therefore the limiting reagent in the reaction. Even so, in none of the runs 

was all o f the hydrogen consumed, indicating that there is room for significant improvement in 

terms o f product hydrogenation. This may be due to catalyst deactivation as will be discussed
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later. Testing at stoichiometric or greater-than-stoichiometric ratios was not possible due to the 

maximum pressure limitations in the reactor used for testing.

The theoretical maximum yield of product, assuming complete deoxygenation o f the glycerol 

feed, is 47.8 wt.%. This is based on the difference in molecular weight between the glycerol feed 

(92 g/mol) and the deoxygenated product (44 g/mol for propane). Thus, 44/92 x 100% = 47.8 

wt.%. This value will decrease if the propane polymerizes to produce alkanes or alkenes.

3.3.1 Effect o f  Catalyst Support Material

The results o f the hydrodeoxygenation tests on the four chosen support materials, including 

MgO, activated carbon (AC), y-A^O] and an X-type zeolite are summarized in Figure 3-5.

I- 0.00
Blank MgO Blank Alumina AC Blank Zeolite H-Zeolite

Blank Blank Blank
Catalyst Support

Figure 3-5. Effect o f  catalyst support material on product yields and H2 consumption (300°C, 60 
min).
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These materials were chosen based on previous work done in the author’s laboratory and are 

presented in comparison with a blank run performed without any catalyst or support material. 

The blank test produced a bio-oil yield o f -2 .0  wt.%. The yield o f bio-oil for the four support 

materials was negligible, ranging from 0.5 wt.% for MgO to a maximum of 3.7 wt.% for zeolite. 

The error bars represent a range of one standard deviation from the mean for the individual bio

oil yields. The means and standard deviations are the result of a minimum of two replicate runs. 

Hydrogen consumption was also minimal, ranging from a low o f 0.11 mol/kg of glycerol for 

AI2O3 to a maximum of 0.23 mol/kg for zeolite. Gasification o f glycerol, i.e. conversion of 

glycerol into gaseous products, was found to be negligible but generally increased with 

increasing bio-oil yield. This result was not unexpected since the cracking reactions that occur at 

elevated temperatures can produce molecular fragments that do not condense into either bio-oil 

or char but react with hydrogen atmosphere to produce gaseous hydrocarbon products (C1-C3). 

The results with the acidified zeolite, denoted as H-zeolite, are also displayed in the figure. The 

H-zeolite was found to greatly increase bio-oil yield (34 wt.%) and to double the consumption of 

hydrogen (0.46 mol H2/kg o f glycerol), compared to zeolite. The increase in hydrogen 

consumption is consistent with the increase in bio-oil yield due to the increase in HDO reactions.

The yield o f heavy residue/char for the alumina and zeolite blanks was very small (0.15 

and 0.93 wt.% respectively) and not significantly different from the blank (0.23 wt.%). The AC 

blank exhibited an increased char yield o f - 2  wt.%, possibly due to the carbon particles acting as 

nucléation sites for char formation. The presence o f MgO led to a high yield o f char (-4.2 wt.%). 

As mentioned above, the H-zeolite support greatly increased bio-oil oil yield. However, this 

catalyst also exhibited a dramatic increase in the yield o f char (6.0 wt.%). This is likely due to 

enhanced polymerization/hydro-cracking reactions (evidenced by the increased gas yield)
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catalyzed by the acidity of the material (Pater et al., 1998; Alonso et al., 2010) and the lack of 

metals to improve hydrogenation efficiency.

3.3.2 Effect o f  Catalyst Metals

y-Alumina was chosen as the reference support material because it is one o f the most 

commonly used catalyst support materials in industry. Ni, Co and Mo were chosen as catalyst 

metals because they are also commonly used in industry. Alumina-supported Ru catalyst was 

found to be very effective for conversion of glycerol into hydrogen gas by supercritical water 

reforming (Byrd et al., 2008). Thus, RU/AI2O3 catalyst was also tested in this study. The results 

using supported metal catalysts are presented in Figure 3-6. As can be seen, the Ni/A^Os catalyst

1.5
1-----iGas
" C h a r
" 1  Bio-Oil
—# -H 2  Consumed

1.2

^  30

2  25

«
n  

•9 I
I
a

0.3

—I—   r  Q Q

Alumina Blank Ni/Alumina Ru/Alumina Co/Alumina Mo/Alumina

Catalysts
Figure 3-6. Effect o f catalyst metals on product yields and H2 consumption (300°C, 60 min).
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produced a negligibly small yield o f bio-oil o f 0.8% - scarcely more than the alumina blank. The 

RU/AI2O3 and C0 /AI2O3 catalysts produced improved bio-oil yields o f 11.5 and 12 wt.%, 

respectively. The gasification o f glycerol also increased by metal catalysts, particularly for theRu 

catalyst reaching 9.7 wt.% of gas. The M 0 /AI2O3 catalyst resulted in the highest bio-oil yield at

14.4 wt.% with a slightly higher level of gasification than the Co catalyst.

The consumption o f hydrogen was found to increase in the presence of catalyst metals, even 

in the case of the Ni which did not produce any bio-oil, possibly indicating that the metals were 

inducing the reduction and hydro-cracking o f glycerol. Hydrogen consumption for the Ni and 

Mo catalysts reached 0.7 and 0.9 mol/kg. Ru exhibited the highest hydrogen consumption o f the 

catalyst metals tested, accompanied by the highest gas yield. Mo was chosen as the base catalyst 

for further testing because the Mo catalyst produced the greatest bio-oil yield.

3.3.3 Effect o f  Catalyst Promoters

A review of available literature reveals that industrial catalysts are rarely prepared with only one 

catalyst metal loaded onto the support material. In the case of Mo and Co, Mo is often loaded in 

large proportion as a base metal and Co is added as a promoter to enhance catalytic effectiveness 

o f the Mo. As discussed elsewhere, the addition o f P to catalysts is known to enhance HDO 

reactions and reduce char formation (Yang et al., 2009). The results of these tests are shown in 

Figure 3-7. The addition of Co promoter to the M 0 / A I 2 O 3  catalyst showed a modest increase of 

3.7 wt.% in bio-oil yield, totaling 18.1 wt.%. Glycerol gasification also increased by 

approximately 50% to 2.7 wt.%. The consumption of hydrogen followed the same positive trend 

with the addition of various promoters as did the bio-oil yield. This is an expected trend since the 

deoxygenation and reduction reactions consume hydrogen. The consumption o f hydrogen
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reached a maximum of 2.11 mol/kg with the M 0 C0 P/AI2O3 catalyst which produced the highest 

bio-oil yield in this set of experiments at 30.2 wt.% . The increase in bio-oil yield was induced 

by the addition of only 1.5 wt.% P to the MoCo catalyst. The addition of P also enhanced the
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Figure 3-7. Effect o f catalyst promoters on product yields and H2 consumption (300°C, 60 min).

gasification o f glycerol, more than doubling to 6 .1  wt.% and again indicating an improved 

catalyst activity. Together, these findings confirm the findings o f previous research that the 

addition o f P significantly enhances hydrogen addition and oxygen removal activity o f the 

catalyst (Lopez et al. 1990; Lewis et al., 1992; Yang et al., 2009). The addition of Mg to the 

MoCoP catalyst resulted in a slight decrease in both bio-oil yield and glycerol gasification and 

slightly lower hydrogen consumption. An interesting result of the MoCoPMg catalyst was that
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almost no char was produced, indicating that the presence of Mg may contribute to reductions in 

char/solid residue formation over the catalyst. Previous work in the author’s laboratory into the 

HDO of phenol in supercritical hexane demonstrated that CoMoP/MgO was a very active 

catalyst for HDO (Yang et al., 2009). It has also been observed in previously published research 

that the addition o f phosphorus as a catalyst promoter reduced coke deposition over the HDO 

catalysts (Czemik et al., 2002; Elliott, 2007).

3.3.4 Effect o f  Catalyst Support on MoCoP Catalyst

Having determined that MoCoP was the most effective combination of catalyst metals, the effect 

o f support material on metal catalyst activity was investigated. MoCoP catalysts supported on the 

support media tested earlier were prepared. The results o f the tests are presented in Figures 3-8

(a) and (b). Figure 3-8  a presents the percentage of the unreacted glycerol found in the aqueous 

phase (determined by HPLC) after product separation by liquid-liquid extraction. The glycerol 

conversion (wt%) can then be estimated by 1 0 0  wt.% minus the unreacted glycerol (wt%). 

Comparing the results in Figures 3-8 (a) and (b), generally the conversion of glycerol correlates 

well with the bio-oil yield for the different catalysts, i.e., a higher glycerol conversion 

corresponds to a higher bio-oil yield.

The highest glycerol conversion (> 90%) along with the highest bio-oil yield (39.7 wt.%) 

was obtained with the zeolite-supported MoCoP catalyst, which also consumed the greatest 

amount of hydrogen (2.3 mol/kg).

Overall, the yield o f bio-oil followed the following trend MgO<AC<Al2 0 3 <zeolite. This 

trend correlates with the acidity o f the support materials indicating that acidity plays an 

important role in the production o f bio-oil. Based on this observed trend, acidified zeolite was
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prepared by agitating some zeolite in an acidic solution (HCl) then washing, filtering and drying 

the solids. The acidified zeolite was tested in blank form (as discussed previously) and resulted 

in a remarkably high bio-oil yield o f 34 wt.%. It was expected that the excellent performance of 

the acidified zeolite would continue or even be enhanced by the addition o f catalyst metals. As 

can be seen in the figure, the activity o f the MoCoP/H-zeolite catalyst was found to decrease 

significantly in terms o f bio-oil yield, gasification and hydrogen consumption. The decrease in 

the catalyst’s activity might result from the reduction o f its surface area and porosity o f the H- 

zeolite by the addition of catalyst metals. This was evidenced by the N 2 isothermal adsorption 

analyses; the BET surface area and porosity o f the MoCoP/H-zeolite were 2.9 m^/g and 1.44 

xlO'^ cc/g, compared with 67.3 m^/g and 4.96^10'^ cc/g for the H-zeolite. The deactivation o f the 

MoCoP/H-zeolite catalyst might also be due to the formation o f less active metal chloride 

species, i.e., P-M0 CI2 as detected by XRD (Figure 3-2).

3.3.5 Effect o f  Catalyst Metal Chemistry

The chemical state of the catalyst metals was investigated and found to significantly affect 

the conversion o f glycerol and the yield of bio-oil as seen in Figures 3-9a and 3-9b, respectively. 

Samples o f the A I 2 O 3 -  and zeolite-supported MoCoP catalysts from the previous experiments 

were reduced in a flow reactor under a hydrogen atmosphere at 450°C for 4 h. The reduction of 

MoCoP catalysts was found to significantly decrease conversion of glycerol and the yield o f bio

oil. For instance, reduction o f both zeolite-supported MoCoP catalyst decreased conversion o f 

glycerol from 90% to 60%, and the yield of bio-oil from -38.5 wt.% to ~5 wt.%. Hydrogen 

consumption and glycerol gasification decreased as well. The decrease in glycerol gasification 

and hydrogen consumption can be related to the decrease in bio-oil yield according to the
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rationale as was discussed in the previous sections. It is also possible that the increased hydrogen 

consumption o f the oxidized catalysts may, in part, be due to reduction of oxidized metal sites in  

situ during the HDO reaction. The large decrease in the effectiveness o f the reduced catalysts in 

terms o f bio-oil yield and hydrogen consumption, as compared to the catalysts in their oxidized 

forms, suggests that catalyst metal oxides play a critical role in HDO reactions and the formation 

of bio-oil. More research is needed to elucidate the specific reaction mechanisms responsible.

The zeolite-supported catalyst was also tested in its sulfided form. Interestingly, the sulfided 

catalyst was found to decrease bio-oil yield to an even greater extent than the reduced catalyst. 

This is contrary to the results published in many studies on the HDO of bio-oil where sulfided 

catalysts (NiMo or CoMo) were commonly used (Centeno et al., 1995; Klipcera and Zrdazil, 

2002; Zdrazil, 2003; Yang et al., 2009). Based on this finding, sulfi dation o f the AliOs-supported 

MoCoP catalyst was not performed. The decreased activity o f the sulfided catalyst may be 

caused in part by a decrease in pore size (3.4 nm as compared to 10.1 nm for MoCoP/zeolite) 

due to the deposition of S on the catalyst, as evidenced by the results of the porosity analyses on 

the catalysts. However, hydrogen consumption for the sulfided catalyst increased as compared to 

the reduced catalyst. This increase can be explained by reduction o f the sulfided metals in the 

catalyst during the reaction and consequent production of H2S. The formation o f H2S was unable 

to be verified in this work due to the GC-TCDs being incapable o f detecting H2S.

3.3.6 Product Characterization

Carbon balances were calculated for a number o f catalysts in this study in order to evaluate 

the material balance o f the HDO operations. The carbon compositions o f the HDO products (bio

oils and the aqueous products) were analyzed with an elemental analyzer and DOC. The carbon
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content o f the spent catalyst was determined indirectly by TGA, and the carbon content of the 

gaseous products was obtained by GC-TCD. Carbon recovery in the products was defined by the 

percentage o f the moles o f carbon in the products in relation to the moles o f carbon originally 

present in the glycerol prior to hydrodeoxygenation. Some typical results o f the carbon balance, 

calculated by summing the carbon recovery for all o f the products, are presented in Table 3-3. As 

indicated in Table 3-2, the overall carbon molar conservation fell in a reasonable range o f 91.5- 

106% in most operations, except for the operations with MoCoP/zeolite (reduced) and 

MoCoP/H-zeolite catalysts, suggesting generally acceptable mass conservation and reliable 

experimental data. The carbon balances for the catalysts that performed poorly in terms of bio-oil 

yield generally exhibited a greater deviation from unity than did the carbon balances for the 

better-performing catalysts. It is believed that the discrepancies could be attributed to variability 

in the DOC results performed on the aqueous products. The samples supplied to the laboratory 

for analysis were too concentrated for the instrument and had to be diluted 4,000 times to obtain 

useable concentrations. TGA analysis was not performed on the AC-supported catalyst or the 

sulfided MoCoP catalysts since relevant data would not have been produced. The greater-than-

Table 3-3. Carbon recovery in the products o f the hydrodeoxygenation of glycerol with and 
without catalyst (300°C, 5.0 MPa Ha, 60 min)

Catalyst
Carbon Recovery in Products (%) Carbon
Bio-Oil Aqueous Char Gas Balance (%)

MoCoP/MgO 32.4 60.5 1 .0 5.8 99.8
MoCoP/AC 36.7 66.4 n/r 2.8 106.0
M 0 C0 P/AI2O 3 52.3 35.6 0.9 14.7 103.5
MoCoP/Zeolite 75.7 1 1 .8 1.1 11.4 1 0 0 .0

MoCoP/zeolite (reduced) 10.3 65.4 1.3 1.7 78.7
MoCoP/zeolite (sulfided) 5.2 80.3 n/r 6 .1 91.5
MoCoP/H-zeolite 23.4 53.4 1 .2 4.1 82.1
H-zeolite 25.7 56.4 16.3 2.9 101.4
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unity carbon balance for the AC-supported catalyst may be due to the incorporation o f carbon 

from the support material into the liquid and gaseous products.

The properties o f the bio-oil products are o f a particular interest in this work. The viscosities 

o f all o f the bio-oils were found to be much higher than straight chain alkanes and fell in the 

range of 158-786 cP. The elemental compositions (C, H and N) o f some typical bio-oil products 

are presented in Table 3-4, where the elemental composition of the glycerol feedstock is also 

given for comparison. The oxygen contents of the samples were obtained by difference assuming 

negligible sulfur content, and the higher heating value (HHV) of each sample was calculated by 

the Dulong formula, i.e., HHV (MJ/kg) = 0.3383C + 1.422 (H -  0 /8 ) where C, H and O were 

obtained from the elemental analysis. Compared with the glycerol feedstock, all o f the bio-oil 

samples exhibited much higher carbon contents and lower concentrations of oxygen leading to 

significantly increased higher heating values. All o f the bio-oils produced exhibited HHV values 

around 30 MJ/kg as compared to only 16 MJ/kg for the glycerol. Accordingly, with the 

maximum bio-oil yield o f about 40 wt.% obtained from hydrodeoxygenation in the presence o f 

MoCoP/zeolite catalyst as shown in Figure 3-8, about 75% of the energy in the feedstock was 

recovered in the bio-oil product. This result suggests that hydrodeoxygenation o f glycerol in the 

presence o f suitable catalysts can be a promising technique (due to the relatively mild 

temperature conditions) for upgrading low-heating value glycerol to a liquid bio-crude with a 

significantly increased heating value. As also shown in the table, all o f the bio-oil samples have 

very similar 0 /C  ratios (0.18 ~ 0.34, avg. 0.26) and H/C ratios (1 .1 8 -1 .4 1 , avg. 1.32), both o f 

which are much lower than those of the glycerol feedstock (1.0 and 2.67 respectively), which 

suggests that high concentrations of condensed aromatic compounds are present in the bio-oil 

products, as evidenced by the GC/MS results to be discussed later.
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Table 3-4. Elemental compositions o f bio-oils obtained from different catalysts (300°C, 5MPa 
Ha, 60 min).

Bio-Oil HHV  ̂ ' Empirical Formula
C H N s QO) (MJ/kg) C H 0 S

Glycerol 39.1 8.8 0 .0 - 52.1 16 1 2.67 1 -

MoCo/MgO 72.0 8.5 0 .0 - 19.6 33 1 1.40 0 .2 0 -

M 0 C0 /AI2O3 69.1 7.5 0 .0 - 23.5 30 1 1.29 0.26 -

MoCoP/MgO 69.1 8 .1 0 .0 - 22.8 31 1 1.40 0.25 -

MoCoP/MgO+zeolite 70.2 8.2 0 .0 - 21.6 32 1 1.39 0.23 -

MoCoP/AC 69.0 7.6 0 .0 - 23.4 30 1 1.31 0.25 -

M 0 C0 P/AI2O3 69.1 7.3 0 .0 - 23.6 30 1 1.26 0.26 -

M 0 C0 P/AI2O3 (red.) 68.5 7.8 0 .0 - 23.7 30 1 1.36 0.26 -

MoCoP+Mg/Al2 0 3 70.8 7.8 0 .0 - 21.4 31 1 1.31 0.23 -

MoCoP/zeolite 74.0 7.5 0 .0 - 18.5 32 1 1 .2 0 0.19 -

MoCoP/zeolite (red.) 65.9 6 .6 0 .0 - 27.5 27 1 1.18 0.31 -

MoCoP/zeolite (sulf.) 64.9 7.7 0 .0 0.5 27.0 28 1 1.41 0.31 0 .0

MoCoP/H-zeolite 63.8 7.3 0 .0 - 28.9 27 1 1.36 0.34 -

zeolite blank 65.6 8 .1 0 .0 - 26.4 29 1 1.47 0.30 -

H-zeolite 69.0 6.8 0 .0 - 24.2 29 1 1.18 0.26 -

By difference and assuming that the sulfur content is negligible;
 ̂Higher heating value (HHV) calculated by the Dulong Formula, i.e., HHV (MJ/kg) = 0.3383C + 1.422 (H -  0 /8)

The GC/MS chromatograms o f bio-oils from the HDO of glycerol with MoCoP/zeolite and 

M 0 C0 P/AI2O3 catalysts are presented in Figure 3-10, in comparison with those of the blank test 

and the original glycerol. An abridged table comparing some of the compounds in Figure 3-10 is 

provided in Table 3-5. The table lists the area % for some o f the compounds (defined by 

percentage o f the compound’s chromatographic area out of the total area) and the total area % for 

those compounds that are listed. It is interesting to note that seen from the table, the bio-oils from 

the catalytic runs consist of a high proportion o f phenol derivatives and ketones, e.g., 2 -methyl 

phenol and hexanone. Also, in the case o f the bio-oil blank, there is a large fraction of unreacted 

glycerol present. This peak is visible to a lesser extent in the bio-oil from the Al2 0 3 -supported 

catalyst and is virtually non-existent for the zeolite-based bio-oil. These results are consistent 

with the trend observed in the catalytic activities o f these catalysts for the glycerol conversion
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Figure 3-10. GC/MS chromatograms of bio-oils from the HDO of glycerol with and without 
MoCoP catalysts

Table 3-5. Comparison of the GC/MS results for various bio-oils from HDO of glycerol (300°C, 
I2, 6'

Area (%)
Peak RT Compound MoCoP

/zeolite
MoCoP
/AI2O3

No
Catalyst

Glycerol 
in EtAc

1 3.4 3-HEXANONE 2.45 1.91
2 3.45 2-HEXANONE 1.74 0.76
3 5.336 2,5-HEXANEDIONE 3.02 0.92
4 6.185 PHENOL 2.65 2.65 4.49
5 6.384 3,4-DIMETHYL-2 -C YCLOPENTEN-1 -ONE 2.18
6 6.474 2-ETHYL-1,3-DIOXOLANE-4-METHANOL 23.73
7 6.669 1,2,3-PROPANETRIOL 3.62 51.94 10 0

8 7.112 2,3-DIMETHYL-2-CYCLOPENTEN-1 -ONE 3.86
9 7.328 2-METHYL PHENOL 9.36 6.62
10 7.388 2-( 1,1 -DIMETHYLETHOXY) ETHANOL 2.27
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Table 3-5.Continued
Area (%)

Peak RT Compound MoCoP MoCoP No Glycerol
/zeolite /AI2O3 Catalyst in EtAc

11 7.481 2,3,4-TRIMETHYL-2-CYCLOPENTEN-l-
ONE 2.94

12 7.652 4-METHYL PHENOL 2.04

13 7.91 2-CYCLOPENTEN-1 -ONE, 2,3,4-
2 .1TRIMETHYL-

14 8.162 2,6-DlMETHYL PHENOL 4.14 1.86

15 8.217 2-METHYL BENZOFURAN 3.05 1.98
16 8.785 2,4-DIMETHYL PHENOL 2.29
17 9.343 2-ETHYL-5-METHYL PHENOL 2.41
18 9.723 4,7-DIMETHYLBENZOFURAN 3.22 1.31
19 9.855 4-PROPYL PHENOL 2.36

2 0 10.36 1 -(2-HYDROXY-5-METHYLPHENYL) 
ETHANONE 8.93

21 11.76 1,2-(METHYLENEDIOXY)-4-PROPYL 
BENZENE 2.74

Total 49.81 33.3 80.16 100

and the bio-oil yields (i.e., zeolite>Al2 0 3 >blank). A more complete analysis o f the bio-oil from 

oxidized MoCoP/zeolite catalyst is provided in Table 3-6.

As can be seen in this table, and was mentioned above, the majority o f the compounds in the bio

oil are aromatics (37% of the total) and ketones (41% of the total) mostly in the C6-C9range. 

These findings confirm the H/C and 0 /C  ratios (average 1.32 and 0.20 respectively) obtained 

from the CHN analysis presented previously in Table 3-3. The aromatics are mostly present in 

the form of substituted phenols condensed from the fragments of partially deoxygenated 

glycerol. The presence of ketone and quinone structures indicates that the deoxygenation of 

glycerol under present conditions was not complete and that more effective HDO catalysts or 

conditions are needed to obtain bio-crude oils with lower oxygen contents.
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Table 3-6. GC/MS analysis of the bio-oil from HDO of glycerol with MoCoP/zeolite catalyst
RT (min) Area% Compound

2.932 2.18 4-METHYL-2-PENTANONE
3.042 1.29 1-PROPOXY BUTANE
3.233 0.69 TOLUENE

3.4 2.45 3-HEXANONE
3.45 1.74

4.878 1.53 4-METHYLCYCLOHEXANONE
5.051 1.26 2-METHYL-2-CYCLOPENTEN-1-ONE
5.336 3.02 2,5-HEXANEDIONE
5.527 1.49 2,3-DIMETHYL-2-CYCLOPENTEN-l-ONE,
5.948 1.79 3-METHYL-2-CYCLOPENTEN-1-ONE

6 1.27 2,2.5-TRIMETHYL-3,4-HEXANEDIONE
6.185 2.65 PHENOL
6.233 1.33 5-METHYL-2-( 1 -METHYLETHYL)-C YCLOHEXANOL
6.384 2.18 3,4-DIMETHYL-2-CYCLOPENTEN-1-ONE
6.698 1.26 l,4-DIONE-2-METHYL-2,5-CYCLOHEXADIENE
6.838 1.59 5-ETHYLDIHYDRO-5-METHYL-2(3H)-FURANONE
7.112 3.86 2.3-DIMETHYL-2-CYCLOPENTEN-1-ONE
7.328 9.36 2-METHYL PHENOL
7.481 6.28 2,3,4-TRIMETHYL-2-CYCLOPENTEN-1-ONE
7.652 2.04 4-METHYL PHENOL
7.852 1.17 6,6-DIMETHYL-2-METHYLENEBICYCLO(3.2.0)HEPTAN-3-OL
8.061 1.7 3,5-OCTADIEN-2-ONE
8.165 4.14 2,6-DIMETHY PHENOL
8.217 3.05 2-METHYL BENZOFURAN
8.275 0.94 2,6-DIMETHYL-2,5-CYCLOHEXADIENE-l, 4-DIONE
8.376 2.02 2,3,4,5-TETRAMETHYL-2-CYCLOPENTEN-1-ONE
8.508 1.01
8.608 1.59 2-ETHYL PHENOL
8.714 1.64 2-PROPENYL-TRANS-2-METHYL-2-BUTENOATE
8.785 2.29 2,4-DIMETHYL PHENOL
8 .8 6 6 2.14 2-CYCLOPENTYL-l-(lH-IMDAZQL-4-YL)-ETHANQNE
9.197 1 .1 1 2,4-DIMETHYL-3-CYCLOHEXENE-1-C ARB ALDEHYDE
9.343 2.41 2-ETHYL-5-METHYL PHENOL
9.723 3.22 4,7-DIMETHYL BENZOFURAN
9.855 2.36 4-PROPYL PHENOL
9.932 1.47 3-METHYL-2-(l-METHYLETHYL) CIS-CYCLOHEXANONE
9.996 1.39 2-METHYL-2-INDANOL
10.054 0.96 2,4,5-OR 2,3,5-TRIMETHYL PHENOL
10.155 1.16 3,4,5,6-TETRAMETHYL-2H-PYRAN-2-ONE
10.359 1 .2
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Table 3-6. continued
RT (min) Area% Compound

11.762 1 l,2-(METHYLENEDIOXY)-4-PROPYL BENZENE
11.85 0.96 2-ETHYL-5-PROPYL PHENOL

88.19 Total area
37.11 Total aromatics
40.55 Total ketones
10.53 Remaining compounds

A comparison o f the GC/MS results for the bio-oils from the HDO of glycerol with H- 

zeolite, MoCoP/H-zeolite and MoCoP/zeolite catalysts are presented in Figure 3-11. It is 

interesting to note that the bio-oil from the H-zeolite blank, even though the bio-oil yield was 

very high (34%), contains fewer aromatic compounds than the MoCoP/zeolite bio-oil. The 

fraction o f ketones is also lower. Instead, the bulk of the oil consists o f high concentrations of 

alcohols and ethers.

The differences between the oxidized, reduced and sulfided forms of the MoCoP/zeolite 

catalyst are evident not only in their activities for bio-oil yields but also in the composition o f the 

bio-oils. GC/MS chromatograms of these oils are presented in Figure 3-12. The most obvious 

difference in bio-oil composition between the three catalysts is the presence of unreacted 

glycerol in the reduced and sulfided bio-oils, as evidenced by the poor glycerol conversion and 

bio-oil yields for the two catalysts in question (Figure 3-9). In addition, although the bio-oils 

from both the reduced and sulfided catalysts contain aromatics, they are not as abundant as in the 

bio-oil from the oxidized catalyst. The oil from the sulfided catalyst contains more alcohols than 

the other two bio-oils. This suggests that the sulfided catalyst is not as effective in deoxygenating 

the glycerol as the reduced and especially the oxidized forms are. Also o f note is that some sulfur 

compounds were identified in the bio-oil from the sulfided catalyst, e.g., l-(3-thienyl)-ethanone
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Figure 3-11. GC/MS chromatograms o f bio-oils from the HDO of glycerol with H-zeolite, 
MoCoP/H-zeolite and MoCoP/zeolite catalysts
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Figure 3-12. GC/MS chromatograms o f bio-oils from the HDO of glycerol with the oxidized, 
reduced and sulfided forms o f MoCoP/zeolite catalyst
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and benzothiazole. The presence o f sulfur compounds was consistent with the CNS analysis o f 

the oil which indicated that sulfur comprised 0.48 wt.% of the bio-oil.

Simulated distillation was performed on bio-oils from the MoCoP/zeolite catalyst and the 

acidified zeolite blank to confirm the GC/MS results. These oils were chosen on the basis o f the 

performance o f the MoCoP/zeolite and the unexpectedly high yield for the H-zeolite blank. The 

simulated distillation was calibrated using C5 to €60 standards. As seen in Figure 3-13, the 

majority (-95% ) o f the components in the bio-oils have boiling points less than 165°C indicating 

that the components are lighter and more volatile than is typically found with heavy oils. This is 

consistent with the previous findings that the majority of the bio-oil components were in the C6  

to C9 range.
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Figure 3-13. Simulated distillation of MoCoP/zeolite and H-zeolite bio-oils
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3.3.7 Characterization o f Spent Catalysts

As discussed previously (Figure 3-1), the fresh (as-synthesized) catalysts were characterized 

by powder X-ray diffraction (XRD) using Cu-K a radiation after calcination, reduction and 

sulfidation. Samples o f these same catalysts were analyzed after reaction in order to investigate 

the changes in the crystalline structures o f the catalysts during the reaction. The resulting XRD 

patterns are presented in Figure 3-14. Compared with those in the fresh oxidized MoCoP catalyst 

supported either on AI2O3 or zeolite, the M 0 O3 signals in the spent catalysts significantly weaken 

or become undetectable probably due to the masking effects o f the deposited coke or solid 

residue from glycerol.

In the spent oxidized MoCoP/zeolite catalyst, the zeolite signals are nearly undetectable, 

which may be attributed to the presence o f carbon, in the form of heavy residue and char.

-- Oxidized M 0 C0 P/AI9O
X MoO

# Zeolite
• Y-AI2O;

Reduced MoCoP/zeolite

Oxidized MoCoP/zeolite I

i

0 30
2© (Cu-Ka, degrees)

40 50 60 70 8010 20

Figure 3-14. XRD patterns of the fresh (upper) and spent (lower) catalysts
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masking the support material from the X-rays. This effect was not noticed with the reduced and 

sulfided catalysts due to their poorer HDO activity and, consequently, much lower deposition of 

carbonaeeous material. Although it is diffieult to see at the scale of the figure, there is a broad 

shoulder centered around 2 0  = 24° for the spent oxidized MoCoP/zeolite catalyst which is 

indicative o f the presence o f amorphous carbon.

Thermal gravimetric analysis (TGA) was performed on the all o f the spent catalysts, except 

the sulfided and AC-supported catalysts, in order to determine the amount o f char and heavy 

residue present. The TGA profiles were collected using the spent catalysts heated at 30 K/min 

from room temperature up to 900°C in 40 ml/min flow of air. The weight loss up to 200°C 

(ranging from 1 to 10 wt.%, average 4 wt.%) may be attributed to the removal o f any adsorbed 

water and lighter organics in the catalysts. The weight loss between 250 and 600°C may be 

attributed to the combustion of heavier organic residues (ethyl acetate-insoluble oils, tars 

andcoke referred to in this work as char for convenience) that had been deposited on the catalysts 

during reaction. The mass o f char varied widely depending on the catalyst tested. The least 

amount o f char, for the RU/AI2O3 catalyst was only 1.3 wt.%. In contrast, the acidified zeolite 

(without metal catalyst) experienced severe char build-up totaling 65.6 wt.%. The TGA curves 

for some spent catalysts are presented in Figure 3-15. The TGA curves show that the AI2O3- 

supported catalyst did indeed exhibit very little carbon build-up ( < 2  wt%), while the zeolite- 

supported MoCoP catalysts resulted in a relatively larger amount o f char deposition (~ 10 wt%).

The presence o f P on the catalyst was found to have a beneficial effect on the amount o f char 

deposited on the spent catalyst. The M 0 C0 /AI2O3 catalyst experienced a build-up o f 6 .6  wt.% 

char compared to only 2.8 wt.% for the M 0 C0 P/AI2O3 catalyst. This result confirms the findings
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of previous research and suggests the presence o f small amounts o f phosphorus in HDO catalysts 

may enhance resistance to coking (Yang et ah, 2009).

As shown by the XRD spectra and TGA results, the deposition of carbon on the catalyst 

surfaces can be significant and may be the cause o f catalyst deactivation even at lower levels. 

The presence o f coke particles and heavy reside could coat the metal catalysts and also block the 

pores in the catalyst resulting in incomplete conversion of the glycerol and, consequently, 

incomplete hydrogen consumption.
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Figure 3-15. TGA analysis of some spent catalysts

80



3,4 Conclusions

In this study, the hydrodeoxygenation o f glycerol in the presence of various catalysts was 

investigated. High yields of bio-oils with a HHV of ~30 MJ/kg were obtained by 

hydrodeoxygenation of glycerol in the presence of MoCoP/zeolite catalyst under a hydrogen 

atmosphere at 5.0 MPa initial pressure and reacted at a temperature of 300°C for 1 h. The results 

o f the present study may be summarized as follows:

(1) Acid-supported catalysts are more effective for converting glycerol into bio-oil than 

either basic- or neutral-supported catalysts.

(2) Zeolite-supported MoCoP catalyst was found to be the most effective in the production of 

bio-oil from glycerol.

(3) Both reduction and sulfidation o f the MoCoP/zeolite catalyst were found to have a 

marked negative effect on bio-oil yields.

(4) The presence of P in the catalyst reduced the amount o f char deposited on the spent 

catalysts.

(5) GC/MS analysis revealed that the bio-oil produced by hydrodeoxygenation o f glycerol is 

composed mainly o f substituted phenols, ketones and to a lesser extent alcohols, ethers 

and cycloalkanes in the C6  to C9 range.

(6 ) The bio-oil produced has HHVs up to 33MJ/kg compared to the HHV o f 16 MJ/kg for 

the glycerol feedstock indicating hydrodeoxygenation is a promising technique for the 

upgrading of glycerol into bio-oil/bio-crude with a significantly increased heating value.
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CHAPTER 4 

Hydrodeoxygenation of Glycerol into Bio-crude: Process Optimization

The optimum conditions for the hydrodeoxygenation (HDO) o f glycerol were investigated 

using a micro-reactor in the presence o f MoCoP/zeolite catalyst. The parameters which were 

investigated include initial hydrogen pressure, reaction temperature, residence time, and 

feedstock concentration. The liquid products were separated into water-soluble components and 

bio-oil by liquid-liquid extraction with water and ethyl acetate. The bio-oil, gaseous products, 

char and unreacted glycerol were quantified relative to the initial mass o f glycerol feed. The 

composition o f the bio-oil was determined by GC/MS. The optimum conditions for the 

hydrodeoxygenation of glycerol into bio-crude in the presence o f MoCoP/zeolite catalyst were 

found to be: 300°C reaction temperature, 5 MPa initial hydrogen pressure, 60 min reaction time 

and 100% glycerol feed. While dilution of the glycerol feedstock with water had a negative 

effect on bio-oil yield, HDO of pure glycerol produced the highest bio-oil yield (40 wt.% at 

300°C, 1 h and 5 MPa H2). The amount o f char deposited on the spent catalyst decreased with 

extended reaction time, increased reaction temperature, and elevated initial hydrogen pressure.

Keywords', bio-oil, bio-crude, glycerol, hydrodeoxygenation, MoCoP/zeolite catalyst
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4.1 Introduction

Due to increasing concerns over greenhouse gas emissions and energy security, and with end 

o f the fossil fuel era approaching, here has been a resurgence o f interest in renewable bio-energy 

and bio-chemicals and the fossil-resource-based energy and chemical industries are expected to 

phase out gradually over the course o f the 2U* century (Okkerse and Van Bekkum, 1999). Many 

countries have legislation in place to promote the use o f biomass energy and bio-fuels. For 

example, the European Union has set an objective to increase the market share of biomass- 

derived fuels in the transport sector to 5.75% by the end of 2010 (EU Directive 2003/30/EC). 

Concurrent with these initiatives, has been the increased production of bio-diesel from a variety 

o f sources. Trans-esterification o f fresh and spent cooking oils is one of the most common 

processes used to produce bio-diesel. The main by-product o f trans-esterification is glycerol 

(approximately 1 kg o f glycerol for every 9 kg o f bio-diesel produced) (Dasari et al., 2005). The 

increased demand for bio-diesel has created a glut of glycerol ( 1 0 0 ,0 0 0  tonnes annually in the 

USA alone) and the cost of glycerol has decreased to a tenth of what it was just a few years ago 

(Yazdani and Gonzalez, 2007). Economically beneficial utilization of this glycerol by-product 

would greatly enhance biodiesel plant production economics. Much research is being conducted 

into the conversion o f surplus glycerol into hydrogen (Marshal and Haverkamp, 2008; 

Valliyappan et al., 2005) and other value-added chemicals including ethanol (Yazdani and 

Gonzalez, 2007) and propylene glycol (Dasari et al., 2005; Zhang et al., 2008).

In our previously study (reported in Chapter 3) to screen catalysts for the 

hydrodeoxygenation (HDO) of glycerol feedstock to produce bio-crude oils at 300°C and initial 

hydrogen pressure o f 5.0 MPa, the most effective catalyst for glycerol HDO was found to be 

oxidized form o f MoCoP/zeolite which resulted in an average bio-oil yield of -3 9  wt.%. In the
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present work, optimization of the HDO of glycerol was investigated using the zeolite-supported 

MoCoP catalyst at various temperatures between 275°C and 350°C under hydrogen at cold 

pressures varying from 2.5 to 10.0 MPa. Effects of reaction time and glycerol concentration on 

the glycerol conversion and bio-oil yield were also investigated in this study.

4.2 Experimental

4.2.1 Feedstock and Catalyst Preparation and Characterization

The feedstock for these experiments was reagent grade glycerol obtained from Canadawide 

Scientific (99% purity), and was used as received or diluted with distilled water as required. The 

supported metal catalyst, 10%Mo-3%Co-2%P (MoCoP in short) was synthesized by successive 

incipient wetness impregnation. The catalyst support material (X-type zeolite) was reagent grade 

and dried at 105°C in air for a minimum o f 8  h before use. The metal salts (ammonium 

molybdate tetrahydrate (NH4)6Mo?024-4HzO) and cobalt (II) nitrate hexahydrate 

(Co(N0 3 )2.6 H2 0 ), and 8 6  wt.% phosphoric acid were A.C.S. reagent grade obtained from 

Sigma-Aldrich and used as received. The metal-impregnated catalyst was calcined at 550°C in 

air for 6  h. The cooled catalyst was crushed to a small (<300 pm) particle size before storage. 

The bulk elemental composition (molybdenum, cobalt and phosphorus contents) o f the chosen 

catalyst was analyzed by inductively-coupled plasma-atomic emission spectroscopy (ICP-AES) 

and X-ray diffraction (XRD). The textural structure of the catalyst was analyzed by isothermal 

N2 adsorption. The analyses o f this catalyst are presented in Table 4-1.

Table 4-1. Elemental and textural analyses o f the MoCoP/zeolite catalyst
Catalyst Chemical compositions (wt.%) BET surface 

area (m^/g)
Porosity
(cc/g)

Average 
pore (nm)Mo Co P

MoCoP/Zeolite 6.5 2.3 1.5 2.58 8.20x10'^ 1 0 .1
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The XRD analysis was performed on the catalyst and the results are presented Figure 4-1. 

Multiple large peaks are present and represent the numerous crystallographic planes o f the 

support material (X-zeolite), as can be seen in Figure 4-2 provided for reference.

#  I
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.-az/a
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%

X MoO 3
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2 0  (Cu-Ka, degrees)
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Figure 4-1. XRD spectrum of MoCoP/zeolite catalyst

The smaller peaks at 2 0  = 12.5°, 26.5°, 36° and 53° may be attributed to the presence of 

M 0 O3 (Patil et al., 2008). The lack o f  strong metal oxide signals suggests that the metal species 

in this catalyst sample are very highly dispersed (Byambajav and Ohtsuka, 2003, Radovic et al., 

1983).
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Figure 4-2. Molecular sieve type X (www.grace.com)

4.2.2 Experimental Apparatus and Procedure

All tests reported here were carried out in a high-pressure micro-reactor system whose details 

were given previously in Chapter 3. The micro-reactor used in this study, made o f stainless steel 

(SS 316L), consisted o f capped 5/8-inch Swagelok bulkhead unions and had an effective volume 

o f 14 ml. In a typical run, 10 g of the feedstock (glycerol or diluted glycerol) was weighed into 

the reactor, followed by the addition o f the 5 wt.% of the catalyst pulverized with a mortar and 

pestle to obtain very small particles. After sealing the reactor, the air inside the reactor was 

displaced by repetitive vacuuming and Na-charging. Finally the reactor was charged with the 

required pressure (2.5-10 MPa) o f ultra-pure hydrogen. Supported on a mechanical shaker (set at 

1 0 0  rpm), the reactor was then rapidly submerged in a fluidized sand bath pre-heated to the 

desired temperature for the reaction (275°C - 350°C). After the predetermined reaction time (15- 

1 2 0  min) had elapsed, the reactor was removed from the sand bath and quenched in a water bath 

to stop the reactions. Once the reactor had cooled to room temperature, the gas inside was 

collected in a pre-evacuated gas cylinder with a fixed volume of 2.81 L. The pressure in the 

reactor was brought to ambient (required for analysis) by filling with Nz. The solid/liquid
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products were rinsed completely from the reactor into a beaker with reagent grade ethyl acetate 

and distilled water. The resulting mixture was filtered through a pre-weighed Whatman #5 filter 

paper to recover the spent catalyst and ethyl acetate insolubles (coke or char). The filtered solids 

were dried in air at 105°C overnight and allowed to cool in a desiccator before weighing. The 

filtrate was then decanted into a separatory funnel and the filter flask rinsed to ensure complete 

transfer o f the bio-oil. After 30 s o f vigorous shaking the liquids were allowed to separate 

overnight. After separation the aqueous layer was decanted and diluted to a known volume. A 

sample o f the diluted solution was stored for later HPLC and DOC analysis. The remaining 

organic layer was decanted and diluted to a fixed volume. A sample of the organic phase was 

taken and stored for later GC/MS analysis. The organic solution was transferred to a pre-weighed 

round-bottomed flask and evaporated under vacuum at 60°C to remove the ethyl acetate. After 

evaporation the flask was allowed to cool in a dessicator before weighing, after which, if  

sufficient bio-oil was present, the viscosity o f the oil was measured. The remaining bio-oil was 

rinsed completely from the flask into a sample vial with a minimum o f acetone and stored at 4°C 

to minimize any condensation/polymerization reactions that might occur. Almost all the 

experimental runs were repeated a minimum of two times to ensure that the yields for runs under 

the same conditions were within 5% on one another.

4.2.3 Product Characterization

As mentioned previously, the composition o f the gaseous products was determined using an 

Agilent 3000 Micro-GC equipped with dual columns (Molecular Sieve and PLOT-Q) and 

thermal conductivity detectors. The elemental composition (C, H and N) o f the bio-oil was 

determined with a CEC (SCP) 240-XA elemental analyzer. The oxygen content was estimated by
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mass difference, assuming negligible content of sulfur in the products. The bio-oil products were 

also analyzed by GC/MS (Shimadzu QP2010S) with a SHRXI- 5MS column (30 mxO.25 

mmxO.25 pm) and a temperature program of initial oven temperature 40°C, 10°C/min ramp to 

200°C, hold for 2 min. Longer runs did not produce an improvement in the data. The glycerol 

content o f the aqueous phases was determined by HPLC (Waters Breeze with a 1525 binary 

HPLC pump and 2414 RI detector. The Bio-rad Aminex HPX-87H column was maintained at 

65°C using 0.005M H2SO4 in water as the eluant at a flow rate o f 0.6 mL/min. The dispersion 

states and crystalline structures the fresh/spent catalyst were determined by X-ray diffraction 

(XRD) on a PANalytical X ’Pert PRO X-ray diffractometer using Cu K a  radiation with a 

wavelength o f 1.54187 Â.

4,3 Results and Discussion

The yield o f bio-oil in the presence of MoCoP catalyst at 300°C, 5 MPa hydrogen, 1 h 

reaction time and 100% glycerol was very high (~40 wt%). The yield o f char/heavy residue was 

found to be negligible for all o f the conditions tested and will not be discussed.

4.3.1 Effect o f  Reaction Time

The effect o f reaction time on bio-oil yield followed the expected trend with bio-oil yields 

increasing with longer reaction time and then levelling off at a maximum bio-oil yield as can be 

seen in Figure 4-3. At 15 min the yield of bio-oil was 12.3 wt.%, while the yield increased to

17.1 wt.% at 30 min, and 32.0 wt.% at 45 min, and reached the maximum oil yield o f 40 wt.% at 

1 h reaction time. Further increasing the reaction time from 60 min to 120 min did not increase 

the bio-oil yield further. An increase in the reaction time from 15 min up to 60 min decreased the
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unreacted glycerol, or in other words, increased the glycerol conversion from 60% to 90%. These 

results suggest that 60 min is likely the optimum reaction time under for the present glycerol 

HDO process, which is consistent with the reaction conditions used for the catalysts screening in 

the previous chapter. In fact, the oil yields decreased slightly, although there was more variation 

in these later runs as can be seen by the error bars. The consumption o f hydrogen generally 

followed the trends in bio-oil yield, increasing with higher bio-oil production indicating that 

hydrogen was consumed. The decrease in hydrogen consumption after 45 min may be due to the 

production o f hydrogen via the reforming reactions o f the bio-oil products by the water produced 

in the HDO process. The char yield in all tests was constantly low at -0 .4  wt.%.

 ̂1 1 .... ... ... . -------- ----- ..............................  ■ .■ . . --.w—
1 “ ♦ “ Bio-Oil “♦ “ Gas

45 ------- 1 □'■Unreacted Glycerol ■  Char _____
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Figure 4-3. Effect o f reaction time on product yields (300°C, 5 MPa H2, 100% glycerol)
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4.3.2 Effect o f  Reaction Temperature

The dependency of various product yields on reaction temperature is presented in Figure 4-4. 

The char yields were negligibly low (<0.5 wt%) for all temperatures. Gas yields generally 

increased with increasing reaction temperatures, from almost 0 wt% at 275°C to approximately 8 

wt% at 350°C. The higher temperatures can facilitate the cracking o f any condensed product into 

gaseous products. This can also be explained by the enhanced reforming reaction o f the 

feedstock or the HDO products by the water (a byproduct in the HDO process), to produce 

gaseous products o f hydrogen and CO/CO2. The newly formed hydrogen might account for the 

declined hydrogen consumption at higher temperatures, as displayed in Figure 4-4. The bio-oil 

yield at 275°C was very low at 1.7 wt.%. The oil yield increased drastically to 40 wt% as the
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Figure 4-4. Effect o f reaction temperature on product yields (1 h, 5 MPa H2, 100% glycerol)

92



reaction temperature increased from 275°C to 300°C, accompanied by a marked decrease in 

the % o f unreacted glycerol (from 50% to 10%). Surprisingly, HDO at temperatures higher than 

300°C did not increase bio-oil yields, but led to a decrease in bio-oil yield. Some explanations 

are discussed as follows. The HDO of glycerol process involves oligomerization/polymerization 

and de-oxygenation reactions. Oligomerization/polymerization is an exothermic process, 

thermodynamically favorable at lower temperatures. The formation of bio-oil in the reaction 

system can be partially attributed to the oligomerization/polymerization o f the HDO 

intermediates, followed by HDO of the oligomers. Thus, as the temperature increases higher than 

300°C, oligomerization/polymerization is thermodynamically inhibited and results in declined 

oil yields. Moreover, the oligomer HDO reactions, enhanced at an elevated temperature, could 

also lead to a reduction in bio-oil yields. The enhanced HDO reactions at a higher temperature 

may be evidenced by the reduced oxygen contents of the bio-oil products, as shown in Table 4-2.

Table 4-2. Elemental compositions of bio-oils obtained from HDO o f glycerol at various 
temperatures (5 MPa H2, 60 min).
Reaction Elemental Composition (wt.%) HHV
Temperature (°C) C H N Q(l) (MJ/kg)
350 72.5 7.6 0 . 0 19.9 32
325 70.3 7.0 0 . 0 22.7 30
300 74.0 7.5 0 . 0 18.5 33
275 58.3 7.7 0 . 0 34.0 25

^Higher heating value (HHV) calculated by the Dulong Formula, i.e., HHV (MJ/kg) = 0.3383C + 1.422 (H -  0 /8 )

In terms of the yield of bio-oil, these results suggest that 300°C appeared to be the optimum 

reaction temperature under for the present glycerol HDO process, which is consistent with the 

reaction conditions used for the catalysts screening in the previous chapter.
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4.3.3 Effect o f  Initial Hydrogen Pressure

The effect o f initial hydrogen pressure on the various product yields is presented in Figure 4- 

5. The yield o f bio-oil at 2.5 MPa hydrogen was 15 wt.%. This value more than doubled to -4 0  

wt.% at 5 MPa hydrogen, while the consumption o f hydrogen also increased by -50%  and

CUD Gas

■ ■ B io -O il -- -

___ j ............ ^ - H 2  Consumed

2.5

2.5 5 10

Initial Pressure (MPa)

5.0 (N2)

Figure 4-5. Effect of initial hydrogen pressure on product yields (60 min, 300°C, 100% 
glycerol)

the percentage o f unreacted glycerol decreased greatly from 35 wt% (2.5 MPa Hz) to 

approximately 10 wt% (5.0 MPa Hz). Increasing initial hydrogen pressure from2.5 MPa to 5.0 

M Pa also led to an increase in gas yield from 1.6 wt.% to 5.1 wt.%. The experiment conducted 

under 5 MPa nitrogen instead o f hydrogen resulted in much lower bio-oil yield (12.6 wt.%) 

compared to the 5 MPa hydrogen runs (-40  wt.%), accompanied by a much higher % of
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unreacted glycerol, as clearly displayed in Figure 4-5. The gasification o f glycerol under Nz was 

approximately half that found during the 5 MPa Hz experiment. The Micro-GC analysis o f the 

gaseous products from the test under Nz revealed significant formation o f Hz at 0.4 mol/kg of 

glycerol in the process, which indicated the presence o f reforming reactions between the 

feedstock or the de-oxygenation products and the water by-product in the process.

Surprisingly, increasing the initial hydrogen pressure further to 10 MPa resulted in a decrease 

in bio-oil yield, possibly due to the fact that, with the gases that are produced, this is a volume- 

increasing reaction and higher pressure inhibits bio-oil production. Even though the bio-oil yield 

was low, the consumption o f hydrogen increased slightly, possibly indicating the production of 

higher quality oil.

4.3.4 Effects o f  Glycerol Concentration and Addition o f  Other Solvent

The effects o f glycerol concentration (diluted by distilled water) on the yield o f bio-oil are 

presented in Figure 4-6. As can be seen, in all operations the yields o f gaseous products were low 

(<5 wt%) and the formation of char was negligible (<0.5 wt%). The dilution of glycerol had a 

marked negative effect on bio-oil yield, decreasing from 40 wt.% with 100% glycerol to 24 wt.% 

and 7.6 wt.% with 80 wt.% and 50 wt.% glycerol, respectively. These results are relative to the 

amount o f glycerol added, not the mass o f diluted feed. As a result o f the dilution, hydrogen 

consumption decreased and the % of unreacted glycerol increased with increasing the water 

content o f the glycerol feedstock. The above results may be explained by the reaction kinetics 

and equilibrium shift for the following simplified glycerol HDO reaction (assuming an HDO 

efficiency o f 1 0 0 %);

n CgHgOz + 2n Hz n (CzHg) + 3n HzO (1)
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As is clearly shown in the above reaction, dilution o f the glycerol reactant (CsHgOs), or 

reduction in the reactant concentration, would decrease the reaction rate. Furthermore, the 

addition of water (the reaction by-product) would cause an equilibrium shift to favour the reverse 

reaction. As a consequence, dilution o f glycerol feedstock would decrease the bio-oil yields, as 

was evidenced by the results in Figure 4-6. HDO of 50% glycerol diluted in a non-polar 

hydrocarbon solvent (heptane) was found to be more effective than that in water. As can be seen, 

the yield o f bio-oil in the presence of 50% heptane was over 4 times higher than when diluted 

50% with water (-32 wt.% vs. 7.6 wt.%) indicating that the reaction had proceeded to a greater 

extent in the presence o f the hydrocarbon solvent. The superior performance of heptane
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Figure 4-6. Effect o f glycerol concentration & solvent effect on product yields (60 min, 5 MPa 
Hz, 300°C)
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compared to water in the reaction system may be explained as follows: heptane, as a non-polar 

solvent, has a better solubility for the reaction products and hence can increase the driving force 

o f the reaction. The results o f this section thus demonstrate that pure glycerol would be the best 

feedstock for the bio-oil production by HDO. HDO of crude glycerol would lead to a lower bio

oil yield due to the presence o f water, but the oil yield might be improved by addition o f some 

suitable non-polar solvents, which will be investigated further in future work.

4.3.5 Chemical Analysis o f  the Glycerol HDO Products

Carbon balances were calculated in order to evaluate the material balance of the HDO 

operations. The carbon compositions o f the HDO products (bio-oils and the aqueous products) 

were analyzed with an elemental analyzer and DOC. The carbon content o f the spent catalyst 

was determined indirectly by TGA, and the carbon content of the gaseous products was obtained 

by GC-TCD. Carbon recovery in the products was defined by the percentage o f the moles o f 

carbon in the products in relation to the moles o f carbon originally present in the glycerol prior to 

hydrodeoxygenation. The results o f the carbon balances, calculated by summing the carbon 

recovery for all o f the products, are presented in Table 4-3. As discussed previously in Chapter 3, 

the aqueous carbon recovery is the greatest source o f error in these calculations. The highlighted 

values in particular do not agree with the amounts o f unreacted glycerol as determined by HPLC.

Table 4-3. Carbon recovery in the products of the HDO of glycerol with MoCoP/zeolite catalyst
Reaction Carbon Recovery in Products (%) Carbon
Condition Bio-Oil Aqueous Char Gas Balance (%)
350°C 57.4 37.0 0.7 16.7 111.9
325°C 63.4 49.0 0.9 1 1 .8 125.1
275°C 3.0 92.1 1 .2 0.3 96.7
1 2 0  min 71.1 37.5 0.9 8.7 118.3
90 min 65.3 38.5 0.9 9.9 114.6
45 min 58.4 49.0 1 .0 6.9 115.3
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Table 4-3. Continued
Reaction Carbon Recovery in Products (%) Carbon
Condition Bio-Oil Aqueous Char Gas Balance (%)
30 min 30.4 50.2 1.1 7.9 89.7
15 min 21.3 55.2 1 .0 3.0 80.6
50% Glycerol 6.7 85.9 1.3 2.5 96.4
80% Glycerol 31.3 59.9 1 .2 2.5 95.0
50% heptane 26.3 68.2 1 .6 5.4 101.4
10 MPa Hz 18.6 64.9 1.1 5.7 90.3

The chemical composition o f the bio-oil products from the hydrodeoxygenation o f glycerol 

under different conditions (reaction time, reaction temperature, hydrogen pressure and feed 

concentration) was analyzed by GC/MS. The results o f these analyses are presented in Figures 4- 

7 through 4-9. Figure 4-7 illustrates the similarity in the composition o f the bio-oils from 

different reaction times.
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Figure 4-7. GC/MS chromatograms for bio-oils from different reaction times (300°C, 5MPa FIz, 
1 0 0 % glycerol)
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An abridged list o f the compounds found in the bio-oils at different reaction times is presented in 

Table 4-4. The area percent values are with reference to the individual chromatograms and may 

be used to show qualitatively the relative abundance of the compounds in each sample.

Table 4-4. GC/MS analysis results for bio-oils from different reaction times (300°C, 5MPa Hz,
1 0 0 % glycerol)
RT Compound 15 min 30 min 45 min 60min 90 min
2.938 1,2-PROPANEDIOL 1.69 2.34 1.47 0.56
3.412 3-HEXANONE 1.69 1.96 2.06 1.3
3.458 2-HEXANONE 0.86 1.53 1.37 1.46 1.3
4.854 2-HYDROXY-3-HEXANONE 1.66 4.03 2.49
5.06 2-METH YL-2-CYCL0PENTEN-1 -ONE 0.98 2.17 1.73 1.06
5.345 2,5-HEXANEDIONE 2.17 1.35 4.33 2.54 3.88
5.957 3-METHYL-2-CYCLOPENTEN-1 -ONE 0.43 1.23 0.73 1.5 1.78
6.187 PHENOL 3.03 4.24 3.53 2.23 3.48
6.395 3,4-DIMETHYL-2-CYCLOPENTEN-l-ONE 2.6 4.11 1.83 1.14

6.472 2-ETHYL-1,3-D10X0LANE-4-M ETHAN0L 12.28 6.12
6.664 4-METHYL-l ,3-DIOXOLAN-2-ONE 3.8 0.78
6.708 2-METHYL-2,5-CYCLOHEXADIENE-l,4-DIONE 1.55 1.31 1.06
6.854 5-ETHYLDlHYDRO-5-METHYL-2(3H)-FURANONE 4.43 2.82 1.33

7.126 2,3-DIMETHYL-2-CYCLOPENTEN-l-ONE 2.35 2.93 3.19 3.27 3.21
7.337 2-METHYL PHENOL 7.67 sat. 9.3 7.9 12.69
7.496 2,3,4-TRIMETH YL-2-C YCLOPENTEN-1 -ONE 0.35 2.06 4.24 2.8
7.62 3-METHYL PHENOL 1.71 1.45
8.032 1,2,3 -PROP ANETRIOL 1 - ACETATE 3.82 2.07 2.41

8.175 2,6-DIMETHYLPHENOL 1.58 6.06 3.77 5.4 5.5
8.227 2-METHYL BENZOFURAN 0.56 2.97 1.84 2.56 1.55

8.616 2-ETHYLPHENOL 0.75 2 1.43 1.34 2.27
9.354 2-ETHYL-5-METHYL PHENOL 0.62 2.19 3.84 2.03 1.6
9.424 1,2-ETHANEDIOL DIPROPANOATE 2.24 4.85 0.67

9.636 1,2-BENZENEDIOL 2.86 3.58 2.42 1.25
9.734 4,7-DIMETHYL BENZOFURAN 0.76 2.32 2.03 2.7 2.38
9.862 2-PROPYL PHENOL 0.56 1.74 1.64 1.98 2.43

10.013 2-METHYL-2-INDANOL 1.29 2.35 1.45 1.17 1.83
10.371 l-(2-HYDROXY-5-METHYLPHENYL)-ETHANONE 1.09 1.17 1.01 2.27

11.7 2-METHYL-1,4-BENZENEDIOL 1.66 6.23 2.00 6.35

Total Area % 61.42 72.83 62.25 50.38 61.02

The compounds in the table above were chosen to show the most abundant compounds 

common to all of the bio-oils produced at different reaction times in comparison to the highest 

yielding condition at 60 min. The results o f the 120 min run are omitted for brevity. As can be
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seen, the majority o f the bio-oils is made up o f substituted phenols, ketones and diones as well as 

a few diols. While the relative abundances o f the individual compounds vary from bio-oil to bio

oil, the general composition is relatively consistent.

The same can be said for the three o f the four bio-oils presented in Figure 4-8. As can be seen 

in the figure, the oils from runs at 300°C, 325°C, and 350°C are all very similar and only vary in 

the strength o f response at the various retention times. This indicates that after 300°C the
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Figure 4-8. GC/MS chromatograms for bio-oils from different reaction temperatures (60 min, 5 
MPa Hz, 100% glycerol)

composition o f the oils does not change appreciably. The bio-oil at 275°C, however, shows that a 

considerable amount o f unreacted glycerol is present. This was confirmed by the HPLC analysis, 

indicating that the glycerol conversion was 50% at 275°C, compared to >90% at temperatures >

100



300°C (Figure 4-4). Other than glycerol, phenol, 2-methyl phenol, 2,2-dimethyl-l,3-dioxolane- 

4-methanol and 2-ethyl-1,3-dioxolane-4-methanol are present in the 275°C bio-oil, and they are 

also present in the other bio-oils from different temperatures.

Figure 4-9 illustrates the differences in bio-oil composition for experiments conducted under 

different hydrogen pressures and also a nitrogen atmosphere. The chromatogram of the bio-oil 

produced under a nitrogen atmosphere shows that the oil produced under a N2 atmosphere is 

much simpler in composition compared to the oils produced under a hydrogen atmosphere. Its 

chromatogram does reveal the presence of 6  to 8 -carbon ketones and diones as well as
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Figure 4-9. GC/MS chromatograms for bio-oils from different atmospheres (300°C, Ih, 100% 
glycerol)

101



substituted phenols such as 2 -methyl phenol, 2 ,6 -dimethyl phenol, and 2 -ethyl phenol but with 

reduced quantity compared to the other oils. Surprisingly, the 10 MPa condition reveals the 

presence of unreacted glycerol, which was confirmed by HPLC analysis o f the aqueous products. 

Figure 4-10 presents the GC/MS results for the bio-oils collected for the runs conducted with 

different concentrations o f glycerol. The most obvious result is that the diluted glycerol runs, 

which resulted in poor bio-oil yields, produced bio-oils containing a significant amount o f 

unreacted glycerol. This can be evidenced by the high percentage o f unreacted glycerol as was 

evidenced by the HPLC analysis (Figure 4-6). Other than the unreacted glycerol content, the 

composition o f all o f these oils is consistent with the bio-oils analyzed previously, containing, for
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Figure 4-10. GC/MS chromatograms for bio-oils from different glycerol concentrations (300°C, 
5 M Pa Hz, Ih)
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the most part, substituted phenols and ketones in the C6-C9 range. The presence of heptane does 

not seem to have affected the bio-oil composition.

4.3.6 Characterization o f the Spent Catalysts

As was stated previously the fresh (as-synthesized) catalyst was characterized by powder X- 

ray diffraction (XRD). The spent catalyst was collected after each run for later TGA analysis. 

Selected spent catalysts were also analyzed by XRD in order to determine the evolution o f the 

metal oxides during the HDO process. Figure 4-11 presents XRD spectra o f fresh and spent 

MoCoP/zeolite catalyst after HDO of pure glycerol at 300°C under 5 MPa Hz for Ih.
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Figure 4-11. Comparison o f the XRD patterns for fresh and spent MoCoP/zeolite catalyst after 
HDO of pure glycerol at 300°C under 5 MPa Hz for 60 min
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The most striking difference between the fresh and spent catalysts is the reduction o f the 

signals attributable to the zeolite support. In addition, the peaks due to M0 O3 are also greatly 

diminished or eliminated. The reason for this is most likely due to the masking effects o f the 

deposition o f heavy residue and coke on the surface o f the catalyst. This may be evident from the 

broad peak centered on 2 0  = 24° which is due to the presence o f amorphous carbon.

In order to examine the extent o f solid residue/coke formation during the 

hydrodeoxygenation of glycerol under different conditions, TGA analysis of was performed on 

the spent catalysts. The TGA profiles of the spent catalysts under the different conditions tested 

are presented in Figures 4-12 through 4-14. The TGA profiles were collected by heating the 

spent catalysts at 30 K/min from room temperature up to 900°C in 40 mL/min flow o f air. The 

weight loss up to 200°C (average o f 6  wt.% for all of the catalyst) can be attributed to the 

removal o f the water and lighter organics in the catalysts. The remaining weight loss can be 

attributed to the combustion of heavier residual oils, coke and tar deposited on the catalysts. The 

amount o f char on the catalysts was then calculated by mass difference between 200°C and 

900°C. The TGA results as seen in Figure 4-12 reveal that HDO of glycerol at a higher 

temperature results in less severe coke deposition as was discussed previously in Figure 4.4, 

although the maximum difference between the 275°C and 350°C runs is only in the range o f 5.5 

wt.%.

The TGA curves in Figure 4-13 show that, as a general trend, the amount o f char deposited 

on the spent catalyst decreases with extended reaction time, although the maximum difference is 

only in the range o f 3 wt.%. This finding is consistent with the results of char yields vs. reaction 

time as discussed previously in Figure 4-3 and could be due to reaction between the coke and
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Figure 4-12. TGA comparison of spent MoCoP/zeolite catalyst at different reaction temperatures

100

98

96

94

92
1 2 0  min

90

60 min
88 90 min

45 min
86

30 min
84

82
15 min

80 -- ;-----

300 900 I4 0 0 ^  500  ̂ 60Q „^, 700
Temperature (°C)

8000 200100

Figure 4-13. TGA comparison of spent MoCoP/zeolite catalyst at different reaction times
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water present to produce CO and Hz (water-gas shift reaction). This would explain the lower 

hydrogen consumption seen at 120 min in Figure 4-3.

The TGA curves in Figure 4-14 show the effects o f dilution of the glycerol feedstock on the 

amount o f char deposited on the spent catalysts. As can be seen, the amount o f char deposited on 

the catalyst was lower for the glycerol feedstock with less dilution. This is likely due to the 

immiscibility of the reaction products in the water present. The presence o f water increases the 

local concentration o f reaction products in a separate phase and hence facilitates the product 

condensation into much heavier compounds which deposit on the catalyst surface.
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Figure 4-14. TGA comparison of spent MoCoP/zeolite catalyst after HDO of glycerol feedstock diluted 
with different amounts of water or heptane.
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4.4 Conclusions

In this study, the optimum conditions for the hydrodeoxygenation o f glycerol were

investigated in the presence o f MoCoP/zeolite catalyst. The conclusions may be summarized as

follows;

(1) The HDO activity o f the MoCoP/zeolite catalyst increased with extended reaction time

up to 1 h.

(2) The activity o f the MoCoP/zeolite catalyst for the bio-oil yield and glycerol conversion in

HDO of glycerol exhibited maximum at around 300°C. Temperatures below 300°C were 

not effective in converting glycerol into bio-oil. Increased temperature was also found to 

decrease char yield and increase glycerol gasification.

(3) The initial pressure o f hydrogen was found to greatly affect the HDO activity of

CoMoP/zeolite catalyst. Bio-oil yield increased drastically with an increase in hydrogen 

pressure from 2.5 to 5 MPa..

(4) While dilution o f the glycerol feedstock with water had a negative effect on bio-oil yield, 

HDO of pure glycerol produced the highest bio-oil yield (40 wt.% at 300°C, 1 h and 5 

MPa Hz).

(5) The amount o f char deposited on the spent catalyst decreased with increased reaction

temperature and elevated initial hydrogen pressure.
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CHAPTER 5

Conclusions and Recommended Future Work

5.1 Summary and Conclusions

This thesis conducted novel research into the conversion o f glycerol into a higher caloric 

value bio-oil by simultaneous hydrodeoxygenation (high-pressure deoxygenation under a 

hydrogen atmosphere) and oligomerization reactions in the presence o f a catalyst. Under 

optimum conditions of 300°C, 5 MPa initial hydrogen pressure, 100% glycerol feed, 1 h reaction 

time and oxidized MoCoP/zeolite catalyst, high yields of bio-oil (up to 40 wt.%) with a HHV of 

33 MJ/kg were obtained. Two parts o f work have been studied in this thesis: (1) 

Hydrodeoxygenation o f Glycerol into Bio-crude - Catalyst Screening; (2) Hydrodeoxygenation 

o f Glycerol into Bio-crude - Process Optimization. The detailed conclusions for each part o f this 

work are summarized as follows.

Part-I: Hydrodeoxygenation of Glycerol into Bio-crude: Catalyst Screening

(1) Acid-supported catalysts are more effective for converting glycerol into bio-oil than 

either basic- or neutral-supported catalysts.

(2) Zeolite-supported MoCoP catalyst was found to be the most effective in the production o f 

bio-oil from glycerol.

(3) Both reduction and sulfidation of the MoCoP/zeolite catalyst were found to have a 

marked negative effect on bio-oil yields.

(4) The presence o f P in the catalyst reduced the amount of char deposited on the spent 

catalysts.
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(5) GC/MS analysis revealed that the bio-oil produced by hydrodeoxygenation o f glycerol is 

composed mainly o f substituted phenols, ketones and to a lesser extent alcohols, ethers 

and cycloalkanes.

(6 ) The bio-oil produced has HHVs up to 33MJ/kg compared to the HHV o f 16 MJ/kg for 

the glycerol feedstock indicating hydrodeoxygenation is a promising technique for the 

upgrading o f glycerol into bio-oil/bio-crude with a significantly increased heating value.

Part-II: Hydrodeoxygenation of Glycerol into Bio-crude: Process Optimization

(1) The HDO activity o f the MoCoP/zeolite catalyst increased with extended reaction time 

up to 1 h.

(2) The activity o f the MoCoP/zeolite catalyst for the bio-oil yield and glycerol conversion in 

HDO o f glycerol exhibited maximum at around 300°C. Temperatures below 300°C were 

not effective in converting glycerol into bio-oil. Increased temperature was also found to 

decrease char yield and increase glycerol gasification.

(3) The initial pressure o f hydrogen was found to greatly affect the HDO activity of 

CoMoP/zeolite catalyst. Bio-oil yield increased drastically with an increase in hydrogen 

pressure from 2.5 to 5 MPa.

(4) Dilution o f the glycerol feedstock with water had a negative effect on bio-oil yield, while 

HDO o f pure glycerol produced the highest bio-oil yield (40 wt.% at 300°C, 1 h and 5 

M Pa Hz).

(5) The amount o f char deposited on the spent catalyst decreased with increased reaction 

temperature, and elevated initial hydrogen pressure.
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5.2 Recommendations for Future Work

This thesis work involved bench-scale exploration tests in the hydrodeoxygenation of 

glycerol into bio-oil. Although the experiments results are very promising, more work is needed 

to scale-up the production o f high quality bio-crude from bench-scale to pilot-scale or even 

industrial scale.

For bio-crude production through hydrodeoxygenation o f glycerol, the following recom

mendations may be considered for future research:

(1) Based on the present experimental results and available literature, it is possible to 

produce higher yields o f bio-oil by further optimizing the experimental parameters such 

as catalyst loading, different catalyst support materials and the use of co-solvents.

(2) The bio-oil produced in this research is not suitable for use as a transportation fuel 

directly. It is too viscous and contains appreciable oxygen. Further upgrading of the bio

oil is required in order to increase the hydrogen content and further decrease the oxygen 

content. More research is required to determine if  this can be accomplished in a more 

effective one-step HDO process or requires a subsequent upgrading stage.

(3) The liquid product separation procedure for heavy oil recovery (presently by evaporation) 

may be improved by using more effective solvents for extraction (since ethyl acetate is 

slightly soluble in water).

( 4 )  Instead of using HCl, H N O 3  or H 3 P O 4  may be used to acidify the MoCoP/zeolite 

catalysts. This would eliminate the formation of metal chlorides and, in the case of 

H 3 P O 4 ,  pre-phosphorate the catalyst.

(5) Optimization o f zeolite acidification may reduce or eliminate the apparent destruction of 

the zeolite crystal structure that was observed.
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(6 ) Other types o f support materials, such as Y-type zeolite, and catalyst metals, such as Pt, 

may be investigated.

(7) A more robust reactor capable of withstanding higher pressures would enable the 

investigation o f glycerol HDO reactions at stoichiometric and greater-than-stoichiometric 

hydrogen pressures.

(8 ) The use o f a continuous flow-type reactor in the HDO of glycerol should be investigated 

in future work, with especial care given to the problems of feed viscosity.

(9) The long-term catalytic effectiveness o f the zeolite-supported MoCoP catalyst, or other, 

possibly more effective, catalyst combinations, should be examined with longer reaction 

times and also with the use of regenerated catalyst.

(10) The present work indicates that HDO of pure glycerol can be achieved. The feed streams 

from bio-diesel production will not be pure. Investigation o f crude glycerol from a bio

diesel production facility would be of enormous benefit in determining if this process is 

feasible on an industrial scale.

112


