Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

2006

Context sensitive neural network by
overlapped systems

Mohamed, Atef S.

http://knowledgecommons.lakeheadu.ca/handle/2453/3695
Downloaded from Lakehead University, KnowledgeCommons

A CONTEXT SENSITIVE
NEURAL NETWORK BY
OVERLAPPED SYSTEMS

by

Atef S Mohamed

A thesis submitted to the faculty of graduate studies
Lakehead University
in partial fulfillment of the requirements for the degree of
Masters of Science in Mathematical Science

Department of Computer Science
Lakehead University

Mar 2006

Copyright © Atef S Mohamed 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 |

Library and Bibliotheque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-24061-8
Our file Notre référence
1SBN: 978-0-494-24061-8

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List of Tables
List of Fingures
Acknowledgments
Abstract

1 Introduction
1.1 Artificial neural network basics i
1.1.1 Basic neural network components
1.1.2 Neural network topology
1.1.3 Multi-layer perceptron (MLP) model
1.1.4 Error back-propagation training of MLP
1.2 Generalization ability of a neural network
1.2.1 Weight decay approach
1.2.2 Complexities in regularization and VC dimension.
1.3 Highlighting some neural network types
1.3.1 Radial basis functions
1.3.2 ThebasicSOM e

2 Context dependent neural networks
2.1 Introduction to contextual features
2.1.1 Definitionof context
2.1.2 Illustration example of the contextual features definitions ...
2.1.3 Identification of context sensitive features................
2.2 Managing context-sensitive features o L
2.2.1 Strategies for managing context
2.2.2 Hybrid strategies. i il
2.2.3 Context dependency in neural networks
2.3 Overcoming the slow convergence problems
2.3.1 Context sensitive neural network for problem segmentation . .
2.4 Context dependent neuronmodel
2.4.1 Context dependent neuron model structure

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii
viii

ix

2.4.2 Dependence of weights on context variables 39

2.4.3 Mathematical model of a context dependent net 39
2.4.4 Minimizing the error of a context dependent Network 40

2.4.5 Learning algorithm for feed-forward back-propagation con-
text dependent networks e 40
2.4.6 Example: XORproblem 42
3 Overlapped neural networks 46
3.1 Overlapped neural network for function localization 48
3.1.1 Overlapped multi-neural network training 51
3.2 Overlapped self organizing mapsccouun... 53
321 HOSOM Structureo vvr ettt e e e 53
322 HOSOM training............ouiuiiiinnnininuennnany 54
3.3 Shared weight neural networks, 57
3.3.1 Shared-weight neural network architecture 57
4 Novel context sensitive model 59
4.1 Inmtroductionot e 60
4.2 Model and structure of our network 61
4.2.1 Performance metrics state vector as context dependency 61
4.2.2 Neural network structure, 64
423 SPMand SSE 65
424 Training algorithm 67
4.2.5 SPM incorporation algorithm 69
4.3 A Simulation Example 69
431 Neuralnetworkdesign............................... 71
4.3.2 Simulationresults 71
4.4 Conclusion e 75
5 Conclusion T
References 80

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 The most commonly used activation functions. 4

2.1 Duality of relevance and context-sensitivity 25

2.2 Example of the different types of features 26

2.3 Some examples from machine learning literature 29

4.1 Performance metrics after imposing different SPM state vectors 75
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 McCulloch and Pitts neuron model. 3
1.2 TIlustration of (a) an acyclic graph and (b) a cyclic graph. The cycle

in (b) is emphasized with thick lines.. 4
1.3 A three-layer multi-layer perceptron configuration. 5
1.4 MLP example for back-propagation trainingsingle neuron case. 6
1.5 Notations used in a multi-layered MLP neural network model. 8
1.6 Illustration of how the error back-propagation is computed. 9
1.7 Generalization versus memorization. 10
1.8 Factors influencing the generalization for neural networks. 11
1.9 The status of hidden neural connections. 11
1.10 Tlustration of the over-fitting dilemma. 15
1.11 Schematic illustration of the VC dimension..................... 15
1.12 A radial basis function network. L il 16

1.13 TIllustration of the batch process in which the input samples are dis-
tributed into sublists under the best-matching models, and then the
new models are determined as (generalized) medians of the sublists

over the neighborhoods IV;.. il 21
2.1 The result of combining samples from different contexts. 30
2.2 Contextual normalization: The result of combining normalized sam-

ples from different contexts. 30
2.3 Contextual expansion: The result of combining expanded samples

from different contexts.. i 30
2.4 Contextual classifier selection: Different classifiers are used in differ-

ent COMBEXES. . . o oottt e e 31
2.5 Contextual classification adjustment: The classification is adjusted

for different contexts. 31
2.6 Contextual weighting : The impact of weighting on classification. ... 32
2.7 A simple neural network model based on modulation to implement

the idea of context sensitivity o i i, 34
2.8 Schematic diagram of a context-sensitive network model. 35
2.9 Context dependent neuronmodel 38

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.10

2.11
212

3.1

3.2
3.3

3.4
3.5

4.1

4.2
4.3

44

4.5

4.6

4.7

4.8

Five-point XOR problem solved by a two-layer traditional network.
(Left) Input points and discriminating lines of both hidden neurons.
(Right) Input points transformed by the first layer and the discrim-

inating line of the output neuron.. 43
Five-point XOR problem solved by one context dependent neuron. .. 43
Five-point XOR problem. it 44

Multiple network, overlapped-multi-network and ordinary feed-forward
network. e 47
An OMNN consisting of two parts: main part and partitioning part. 48
An example of OMNN showing the relationship between partitioning

part and main part. 50
The HOSOM structure.ttt 54
Standard shared-weight neural network architecture. 57

In RN dimensional space, every SPM factor pushes or pulls the out-
put vector towards its satisfactory state as possible. 62
Model Structure, two overlapped back-propagation neural networks.. 64
An intersection of two streets with three lanes each, the middle lane
isleft turn lane. 70
SSE of MNN sharing all weights with training of both neural net-
works (Solid), only training RNN (Dashed)[X-axis is the training,

Y-axisisthe error]. i 71
SSE of MNN sharing no weights (Solid), sharing all weights with
RNN (Dashed) [X-axis is the training, Y-axis is the error]. 72
SSE of RNN sharing no weights (Solid), partially sharing weights
with MNN (Dashed)[X-axis is the training, Y-axis is the error]. 72

Cumulative delayed vehicles over the time resulted by traffic compu-
tations over MNN output, [X-axis is the time, Y-axis is the number
of cumulative delayed vehicles.]. 73
Cumulative delayed vehicles over the time resulted by traffic com-
putations over MNN output using partial SPM, [X-axis is the time,
Y-axis is the number of cumulative delayed vehicles.]. 75

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to thanks my professors at lakehead university who provided
me with the best guidance to my research

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The use of context dependency in neural networks is an important issue in many
cognitive situations. In this report we introduce a novel context dependent neural
network model based on overlapped multi-neural network structures. We present
a detailed study about contextual features and some of its applications in neural
networks. We also present some different strategies for applying overlapping in
neural networks.

The generalization ability of a neural network is mainly influenced by three
factors, the number and performance of the learning data samples, the complexity
of the learning algorithm employed, and the network size. Neural network over-
lapping is one of the practical techniques of achieving a better generalization and
recognition rate. This is due to its ability of decreasing the number of free weights
of a neural network and providing less complexity of the neural network function.
For this purpose overlapped neural networks have been used in feed-forward neural
networks (MFNN) , self organizing maps (SOM) and in shared weight neural net-
works (SWNN). Overlapped neural networks also have the ability of performing a
function localization over the neural network feature space.

Among the feature space of any problem, three different types of features (
from the relevance point of view) can be distinguished: primary, contextual, and
irrelevant features. Researches in the contextual features are mainly concerned
with two issues. Identifying such contextual features, and managing them. We are
presenting the strategy of identifying these context-sensitive features and five basic
strategies for managing them. We are also presenting a context sensitive model for
overcoming the slow convergence problems, and a context dependent (cd) neuron
model that is considered a generalization of the traditional neuron model.

We introduce a novel approach for problems regardless of sufficiency or accuracy
of their historical observations or lab simulation data. Our approach is based on
imposing a context of problem performance metrics into networks and gaining the
enhancement towards its satisfactory state. We use an overlapped system of back
propagation neural networks for our purpose. A main neural network is responsible
for mapping input and output relation while a regulatory neural network evaluates
the performance metrics satisfaction. We provide special training and testing algo-
rithms for the overlapped system that guarantees a synchronized solution for both
neural networks. An example of traffic control problem is simulated. The result of
simulation shows a great enhancement of the solution using our approach.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Since late 1980s there has been an explosion in research of neural networks. Today,
neural network successful applications are reported across a big range of fields.
Neural network is a paradigm of learning tool, which is able to discover under-
lying dependencies between the given inputs and outputs by using training data
sets. After the training process, it represents high-dimensional nonlinear functions.
Many research institutions, industries, and commercial firms have already started
to apply neural network successfully to many diverse types of real world problems.
The most important applications include the following, (See [19] and its references)

Classification and pattern recognition for visual, sound, olfactory and tactile
patterns.

Time series forecasting for financial, weather, engineering time series.
Diagnostics, e.g., in medicine or engineering.

Robotics, including control, navigation, coordination, object recognition prob-
lems.

Process control, like nonlinear and multivariate control of chemical plants,
power stations and vehicles or missiles.

Optimization, such as combinatorial problems, e.g., resource scheduling and
routing.

Signal processing, speech and word recognition.

Machine vision, e.g., inspection in manufacturing, check reader, face recogni-
tion and target recognition.

Financial forecasting for interest rates and stock indices, currencies.

Financial services, like credit worthiness, forecasting and data mining , ser-
vices for trade like segmentation oflcustomer data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 2

A Neural network function differs based on its application, e.g. In certain ap-
plication areas, such as speech and word recognition, neural networks outperform
conventional statistical methods. While in other fields, such as specific areas in
robotics and financial services, they show promising application in real world situ-
ations. One of the first successful applications was the NETtalk project (Sejnowski
and Rosenberg 1987), aimed at training a neural network to pronounce English text
consisting of seven consecutive characters from written text, presented in a moving
window that gradually scanned the text.

The nonlinear nature of neural networks, the ability of neural networks to learn
from their environments in supervised and unsupervised ways, as well as the uni-
versal approximation property of neural networks make them highly suited for
solving difficult signal processing problems. For practical understanding of neural
networks, it is imperative to develop a proper understanding of basic neural network
structures and how they impact training algorithms and applications.

A challenge in surveying the field of neural network paradigms is to identify
those neural network structures that have been successfully applied to solve real
world problems from those that are still under development or have difficulty scaling
up to solve realistic problems. It is also critical to understand the nature of the
problem formulation so that the most appropriate neural network paradigm can be
applied. In addition, it is also important to assess the impact of neural networks
on the performance, robustness, and cost-effectiveness of the systems.

1.1 Artificial neural network basics

A Structure is the first step of understanding neural networks. In general a neural
networks consists of a set of simple analog signal processors called “processing ele-
ments’ or “neurons” connected through weighted links called “connections”. Each
processing element works by itself as a processing element on its inputs that comes
to it through its input connections and generate one output and then spread it over
its output connections to be processed again by other connected processing element.
These connections are having some feature of changing the strength of the passing
signal according to its connection weight. The output connection from a neuron
can be an input to another neuron or a final output of the neural network. The
input connection to a neuron can be an output of another neuron or an initial input
to the neural network. The processing that is accomplished at any neuron over its
inputs is established through applying a specific function called net function. The
output of this function is the value of the neuron after processing its inputs. This
value is called a net value. Another function called activation function or output
function is then applied over the net value to produce the neuron’s output value
associated to the current inputs.

In neural network processing begins with the entire network in a quiescent state, an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

external comprised of a set of signals to be processed by the network is applied to
the input layer, then each processing element generates a single output signal with
magnitude that is a function of the total simulations received by the unit. Collec-
tively , the output produced by all processing elements on the layer are then passed
as input pattern to the subsequent layer , until the final layer produces output for
the current input pattern (see [23]).

1.1.1 Basic neural network components

Among numerous neural network models that have been proposed over the years,
all share the neuron as a common building block for its networked interconnected
structures. The most widely used neuron model is McCulloch and Pitts neuron
model illustrated in Fig 1.1.

X, W)

X, Wy

X, W, >
g 1

Figure 1.1: McCulloch and Pitts neuron model.

In Fig 1.1, each neuron consists of two parts, the net function and the activation
function. The net function determines how the network inputs {z; : 1 < j < N}
are combined inside the neuron. In this figure, a weighted linear combination is
adopted:

N
j=1

{w; : 1 < j < N} are parameters expressing the synaptic weights. The quantity
0 is called the bias and is used to model the threshold.

The output of the neuron, denoted by a in this figure, is related to the network
input u via a linear or nonlinear transformation by the activation function:

a= f(u) (1.2)
In various neural network models, different activation functions have been pro-

posed. The most commonly used activation functions are summarized in Table 1.1
, (see [23])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

Activation Function Formula
Sigmoid flu) = H—eim
Hyperbolic tangent f(u) = tanh(%)
i - {1, a2 T
Gaussian radial basis f(u) = exp[—ul|lu — m|?/0?]
where m and o are parameters to be specified
Linear flu)=au+b

Table 1.1: The most commonly used activation functions.

1.1.2 Neural network topology

(a) Acyclic topology. (b) Cyclic topology.

Figure 1.2: Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in
(b) is emphasized with thick lines..

In a neural network, multiple neurons are interconnected to form a network
to facilitate distributed computing. Schematically, the configuration of the inter-
connections can be described efficiently with a directed graph. A directed graph
consists of nodes (neurons) and directed arcs (synaptic links). The topology of the
graph can be categorized as either acyclic or cyclic. Refer to Fig 1.2(a); a neural
network with acyclic topology consists of feed-forward loops. Such an acyclic neural
network is often used to approximate a nonlinear mapping between its inputs and
outputs. As shown in Fig 1.2(b), a neural network with cyclic topology contains
at least one cycle formed by directed arcs. Such a neural network is also known
as a recurrent network. Due to the feedback loop, a recurrent network leads to a
nonlinear dynamic system model that contains internal memory.

A special and common case, is the multi layered neural networks, in which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

the processing elements are grouped together into a layer structure where each
processing element on each layer performs an analog integration on its inputs to
determine its net and activation value.

1.1.3 Multi-layer perceptron (MLP) model

This is the most well known and most popular neural network among all the ex-
isting neural network paradigms. It consists of a feed-forward, layered network of
neurons. Each neuron in an MLP has a nonlinear activation function that is often
continuously differentiable. Some of the most frequently used activation functions
for MLP include the sigmoid function and the hyperbolic tangent function. A
typical MLP configuration is depicted in Fig 1.3. Each triangle represents an indi-
vidual neuron. These neurons are organized in layers, labelled as the hidden layer
#1, hidden layer #2, and the output layer in this figure. While the inputs at the
bottom are also labelled as the input layer, there is usually no neuron model im-
plemented in that layer. The name hidden layer refers to the fact that the output
of these neurons will be feeded into upper layer neurons and, therefore, is hidden
from the user who only observes the output of neurons at the output layer. Fig
1.3 illustrates a popular configuration of MLP where interconnections are provided
only between neurons of successive layers in the network. In practice, any acyclic
interconnections between neurons are allowed.

Output Layer

Hidden Layer 1

Input Layer

Figure 1.3: A three-layer multi-layer perceptron configuration.

It has been proven that with a sufficient number of hidden neurons, an MLP
with as few as two hidden layer neurons is capable of approximating an arbitrarily
complex mapping within a finite support (see [23] and its references).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

1.1.4 Error back-propagation training of MLP

The key step in applying an MLP model is to find the proper weight matrices.
Assuming a layered MLP structure, the weights feeding into each layer of neurons
form a weight matrix of that layer. The values of these weights can be found using
the error back-propagation training method.

J

Figure 1.4: MLP example for back-propagation trainingsingle neuron case.

Let us first consider a simple example consisting of a single neuron to illustrate
this procedure. Fig 1.4 represents the neuron in two separate parts: a summation
unit to compute the net value u, and a nonlinear activation function to computer
the neuron’s output o = f(u). Then the output o is to be compared with a desired
target value d, and their difference will be computed as the error e. There are two
inputs (z1,z2) with corresponding weights wl and w2. The input labelled with a
constant 1 represents the bias. Here, the bias link weight is labelled wy. The net
value is computed as:

2
Y= Zwixi = Wx. (1.3)
i=0

where 2o = 1, W = [wp w; wy] is the weight matrix, and z = [l 3 xg]T
is the input vector, T is the matrix transpose. Given a set of training samples
{[z(k),d(k)] : 1 < k < K}, the error back-propagation training begins by feeding
all K inputs through the MLP network and computing the corresponding output
{o(k) : 1 < k < K}. We usually use an initial random setup for the weight matrix
W, although some researchers like [6] have provided better guess for the initial
setup of the weight matrix. Then a sum of square error will be computed as:

E=3"[e®f = S [d(k) - oW = S [dlk) - FWx ()P (1.4)
k=1 k=1 k=1

The objective now is to adjust the weight matrix W to minimize the error E.
This leads to a nonlinear least square optimization problem. There are numerous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

nonlinear optimization algorithms available to solve this problem. Basically, these
algorithms adopt a similar iterative formulation:

Wt +1) = W(t) + AW(t). (1.5)

where AW (¢) is the correction made to the current weights W (t). Different
algorithms differ in the form of AW (t). The basis of the error back-propagation
learning algorithm is called the steepest descend gradient method where

OF
t) = Ui
Here 7 is caller the learning factor. Usually, it is a value between 0 and 1, it is
specified by the network designer.
The derivative of the scalar quantity £ with respect to individual weights can
be computed as follows:

AW/((1.6)

M=

2[d(k) — o(k)] (_agg:)) fori=0,1,2. (L7

= k=1

Where

Hence

gzi = ‘22 [d(k) = o(k)}f (u(k))z:()- (1.9)

=1
With §(k) = [d(k) — o(k)]f (u(k)) , the above equation can be expressed as:

OE X
o, = —2;5(k)xi(k). (1.10)

0(k) is the error that represents the amount of correction needed to be applied
to the weight w; for the given input z;(k). The overall change Awj; is thus the sum
of such contribution over all K training samples. Therefore, the weight update
formula has the format of:

wi(t +1) = wi(t) +n Y _ 6(k)zi(k). (1.11)

If a sigmoid activation function f(u) = 1—;;57/7" is used,then the derivative f (u)
is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

fw) = f)t = f(w)]. (1.12)
Then 6(k) can be computed as:
)
§(k) = e [d(k) — o(k)] x o(k) x [1 — o(k)]. (1.13)
So far, we discussed how to adjust the weights of an MLP with a single layer of

neurons.

Lets now discusses how to perform training for a multiple layer MLP. First, some
new notations are adopted to distinguish neurons at different layers. In Fig 1.5,
the net-function and output corresponding to the k-th training sample of the j-th
neuron of the (L — 1)-th are denoted by uX~(k) and of‘l(k), respectively. The
input layer is the 0-th layer. In particular, oé(k) = z,;(k). The output is feeded into
the i-th neuron of the L-th layer via a synaptic weight denoted by w{’j (t) or, for
simplicity, wiLj , since we are concerned with the weight update formulation within
a single training epoch.

4o (0)

" (k) 1y k(A WO L it
@ O A CAY 1) {0 (i ® o,

k.

Figure 1.5: Notations used in a multi-layered MLP neural network model.

To derive the weight adaptation equation, 0F/ 8wiLj must be computed:

OE X BE Bub(k) < o &L, .
—_— i = -2] L ,b-1
owk 2; ul (k) % dw; ; 55 (k) x dw; mzz:lw"nom (k)

K
=—2) 67 (k) x o (k). (1.14)
k=1
Where 1 < m < M, and M is the number of neurons in layer (L — 1).
In Equation 1.14, the output 0]].“ -1 (k) can be evaluated by applying the k-th training

sample (k) to the MLP with weights fixed to w};. However, the delta error term
6 (k) is not readily available and has to be computed. Recall that the delta error is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 9

Figure 1.6: Tlustration of how the error back-propagation is computed.

defined as w;(k) = OE/duf (k). Fig 1.6 is now used to illustrate how to iteratively
compute 67 (k) from 65+1(k) and weights of the (L + 1)-th layer.

Note that of (k) is feeded into all M neurons in the (L + 1)-th layer. Hence:

8 M. O9E fukt M o <
6 (k) = 6u§k) =3 G I<€’)ﬂ> =3 |5 % g Do vkl (4 (9)
M
= f (uF(B)) x Y (85 (k) x wh,) . (1.15)

Equation 1.15 is the error back-propagation formula that computes the delta
error from the output layer back toward the input layer, in a layer-by-layer manner.

1.2 Generalization ability of a neural network

The basic topics of multi-layered feed-forward neural networks (MFNNs), such as
the network structures, mathematical descriptions, and back-propagation learning
algorithms were discussed in the previous section. Beyond these aspects, signifi-
cant progress has been made on many related issues. In fact, numerous extensions
to the basic MFNNs with the back-propagation algorithm have emerged. Most
of these were developed to overcome some of the inherent limitations of the basic
back-propagation learning algorithms. These extensions have involved the alterna-
tive error measure criteria for the standard back-propagation learning algorithm,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

complex regularization techniques for both improving the generalization capability
of MFNNSs and pruning the networks, sensitivity calculation based network pruning
techniques for the purpose of optimizing the network structure and accelerating the
learning phase, the procedures of dealing with the second derivatives of MFNNs to
improve the convergence speed of the back-propagation algorithm, and many other
advanced studies are still in progress for adapting the learning of MFNNs.

In this section we will concentrate on neural network generalization ability in
particular in studding some extensions of the back-propagation that provides en-
hancement to the training process as well as the generalization ability of the neural
network. (see [9])

Definition 1.1. Generalization ability of a neural network determines how well
the mapping surface of the network will renderer the unseen inputs to the output
space.

Fig 1.7 shows two symbolic cases of a neural network convergence in Fig 1.7(a)
the wiggly curve shows that the neural network function is being too complex and
the network is behaving over-fitting in the training data, in this case the network
is memorizing the training data not generalizing them , and hence for any new
stimulus the network will be going to categorize the input into one of the mem-
orized classes instead of recognize it, while in Fig 1.7(b) the convergence surface
is performing better generalization for the unseen inputs because in this case the
solution error for every unseen inputs is going to be less while probably the sum
squared error over the whole test set would be bigger. However, in classification
problems, the maximum recognition error over all samples is the important factor of
generalization measure according to Geman and Bienenstock (1992) bias-variance
dilemma (see [9] and its references).

(a) Training data (circles) is being mem- (b) Training data (circles) have been
orized. generated.

Figure 1.7: Generalization versus memorization.
As shown in Fig 1.8, generalization is mainly influenced by three factors:

First, the number and performance of the learning data samples, which represent
how well the problem at hand is characterized, generally speaking, a larger number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

Number and C lexi
Performance d?:gg ’i('ty Metwork Size
Of data samples rning

Generalization of
nheural network

Figure 1.8: Factors influencing the generalization for neural networks.

of learning data samples can provide a better representation for the underlying
problem, and if a suitable learning algorithm and network size are used, a better
solution to the problem should be obtained.

Second, the complexity of the learning algorithm employed. It is known that
extra training to the neural network result in more function complexity and over-
fitting problem which definitely decrease the generalization ability of the neural
network.

The third factor of the generalization for the neural networks is the network size.
It is generally admitted that generalization of the back-propagation architecture
will depend on the relative size of the training data and the trained network size.
However, it is observed that the back-propagation networks are sometimes very slow
in learning. This is because the synaptic connection weights, especially the hidden
connection weights (connections among hidden neurons), are significantly smaller
for a large network. This means that the networks cannot utilize hidden connections
efficiently. Thus, hidden neurons cannot be appropriately used in speeding up the
learning.

(a) All hidden connections are inactive. (b) Some hidden connections are inactive.

Figure 1.9: The status of hidden neural connections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

This situation is illustrated in Fig 1.9. The network in Fig 1.9(a) is a back-
propagation network in which the hidden connections among the hidden neurons
are inactive, while the input and output connections are active. If the hidden
connections are weak; that is, the absolute values of the hidden weights are small,
it is certain that the hidden neurons are not appropriately used in speeding up
the learning. As shown in Fig 1.9(b), some hidden connections of the network are
active.

In this case, the hidden neurons are expected to be used in improving the
generalization as well as speeding up the learning. In order to adapt the size of
the back-propagation network and activate hidden connections, an approach of
complexity regularization may be applied. In this approach, a term is added to
the error measure function that discourages the learning algorithm from seeking
solutions that are too complex. This term represents, in fact, a measure of the
network’s complexity; that is, both the quantities and number of weights. The
resulting criterion or cost function is of the form

Cost = Network error measure + Model complexity measure.

where the first term on the right-hand side measures the network error between
the network outputs and the task or desired outputs, while the second term is de-
termined only by the complexity of the network structure. This type of criterion is
sometimes referred to as the minimum description length (MDL) criterion because
it has the same form as the information theoretic measure of description length.

Simply speaking, the description length of a set of data is defined as the total
number of bits required to represent the data. But for a neural network that is
designed to represent a set of data, the total description length should be defined
as the sum of the number of bits required to encode the errors. The cost function
introduced above may be considered as one such form if the term of the network
error measure is related to the number of bits required to encode the errors, and the
term of complexity measure corresponds to the number of bits required to describe
the network model. The learning process that minimizes this cost function then,
to a certain degree, provides a minimal description of the data. In the context of
back-propagation learning, or any other supervised learning procedure, such a cost
function may be represented in a symbolic way as

Ei(w) = E(w) + AE.(w). (1.16)

where the E(w) is the error function used in the standard back-propagation
learning, F.(w) is the complexity measure, and the parameter A is a small posi-
tive constant that is used to control the influence of the term of the complexity
measure E.(w) in relation to the conventional error measure E(w). Consequently,
the learning algorithm derived using such a criterion is a simple extension of the
back-propagation algorithm. Later, we show the weight decay approach as one the
approaches may be obtained as a choices of the complexity measure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 13

1.2.1 Weight decay approach

The weight decay approach is a method of reducing the effective number of weights
in the network by encouraging the learning algorithm to seek solutions that use as
many zero weights as possible. This is accomplished by adding a term that is the
sum of all the squared weights to the criterion function that penalizes the network
for using the nonzero weights. Then, the new criterion function is formulated as

Ei(w) = E(w) + %I]w“ = E(w)+ —g wa (1.17)

where the sum in the second term on the right-hand side performed over all the
weights represents the complexity measure F, of the network. It is to be seen that
in this modification of the standard back-propagation learning algorithm, an extra
term of the form A, is added for updating the weight vector. Therefore, one has
the following new updating formulation:

E OF

wk+1)=wk)—n (éﬁfm + Aw(k)) = (1 —n\w(k) — nm. (1.18)
This shows that the effect of A is to “decay” the weight vector by a factor of
(1 —nA). The weight decay approach does not actually delete weights from the
network, nor does it typically produce weights that are exactly zero. Weights that
are not essential to the solution decay to zero and can be removed. When some
weights are forced to take on values near zero, some other weights remain relatively

large. The result is that the average weight size is smaller.

Another simple weight decay method is to define the cost function as

Ey(w) = E(w) + Awl. (1.19)

In this case, an additional term Asgn(w) is used in the weight vector updating
rule, Equation 1.19. If W, > 0, the weight is decremented by A; otherwise, if w; < 0,
then it is incremented by A.

We have seen some methods that enhances the network structure and hence the
generalization ability. The following is another method that can define a measure
of the function complexity of the neural network algorithm.

1.2.2 Complexities in regularization and VC dimension

The VC (Vapnik-Chervonenkis) dimension h is a property of a set of approximating
functions of a learning machine that is used in all important results in the statis-
tical learning theory, (see [23]). Despite the fact that the VC dimension is very
important, the unfortunate reality is that its analytic estimations can be used only
for the simplest sets of functions. Here for simplicity we only present the basic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 14

concept of the VC dimension for a two-class pattern recognition case, while it can
be generalized for some sets of real approximating functions.

Consider a task of classification, in which we need to find a rule to assign an
input to one two different classes. One possible formalization of this task is to esti-
mate a function f : RY — {-1,1} using input-output training data pairs generated
identically and independently distributed according to an unknown probability dis-
tribution P(z,y)

(X, Y4), (X, Y,) e RV xY : Y={-1,1}

such that f will correctly classify unseen examples (X,Y). An example is as-
signed to class 1 if f(X) > 0 and to class —1 otherwise. The test examples are
assumed to be generated from the same probability distribution P(X,Y) as the
training data. The best function f that one can obtain, is the one that minimizes
the expected error (Risk):

Rlf] = / I(f(X),Y)dP(X,Y). (1.20)

where [denotes a suitably chosen loss function. Unfortunately, the risk cannot
be minimized directly, since the underlying probability distribution P(z,y) is un-
known. Therefore, we must try to estimate a function that is close to the optimal
one based on the available information, i.e., the training sample and properties of
the function class F' the solution f is chosen from. To this end, we need what is
called an induction principle. A particular simple induction principle consists of
approximating the minimum of the risk in Equation 1.20 by the minimum of the
empirical rigk

Romolf] = 5 Y UF(X0), Y. (1.21)

It is possible to give conditions to the learning machine which ensure that,
asymptotically (as n — o0), the empirical risk will converge towards the expected
risk. However, for small sample sizes, large deviations are possible and over-fitting
might occur (see Fig 1.10). Given only a small sample (left), either the solid or
the dashed hypothesis might be true, the dashed one being more complex but also
having a smaller training error. Only with a large sample are we able to see which
decision more accurately reflects the true distribution. If the dashed hypothesis
is correct, the solid would under-fit (middle); if the solid were correct, the dashed
hypothesis would over-fit (right). Then, a small generalization error can usually
not be obtained by simply minimizing the training error (Equation 1.21).

One way to avoid the over-fitting dilemma is to restrict the complexity of the
function class F' from which one chooses the function f. The intuition, which will
be formalized in the following, is that a simple (e.g., linear) function that explains
most of the data is preferable to a complex one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 15

o?
o ® .. ’ 0 oo"f 20 "o
’ 4
9, O\: ‘. .‘.l.’ Vo ._’%
'O C°. 9, o 09;00008 0°% 2,
330 SR Sels
‘o o O 0C 000" 50

Figure 1.10: Illustration of the over-fitting dilemma.

A specific way of controlling the complexity of a function class is given by Vapnik
Chervonenkis (VC) theory and the structural risk minimization (SRM) principle.
Here, the concept of complexity is captured by the VC dimension h of the function
class F from which the estimate f is chosen. Roughly speaking, the VC dimension
measures how many (training) points can be shattered for all possible labelling
using functions of the class. Constructing a nested family of function classes F} C

-+ C Fj; with non-decreasing VC dimension, the SRM principle proceeds as follows.
Let fi,---, fix be the solutions of the empirical risk minimization (Equation 1.21)
in the function classes F; . SRM chooses the function class F; (and the function f;
) such that an upper bound on the generalization error is minimized.

A Expected Risk /

Figure 1.11: Schematic illustration of the VC dimension.

In Fig 1.11, The dotted line represents the training error (empirical risk), and the
dash-dotted line represents the upper bound on the complexity term (confidence).
With higher complexity, the empirical error decreases but the upper bound on the
risk confidence becomes worse. For a certain complexity of the function class, the
best expected risk (solid line) is obtained. Thus, in practice, the goal is to find the
best trade-off between empirical error and complexity.

Theorem 1.1. Let h denote the VC dimension of the function class F' and let

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 16

Repyp be defined by Equation (1.21) using the 0/1-loss. For all § > 0 and f € F,
the inequality bounding the risk

h(in%2 +1) —in(8/4)
” :

R[f] € Remplf] + \/ (1.22)

holds with probability of at least 1 — & for n > h.

1.3 Highlighting some neural network types

There are around 50 different types of neural networks in use today [23]. According
to the propagation direction most of these types can be categorized as either feed-
forward or feed-back neural networks. According to the structure growing they
may be categorized either as static or dynamic neural networks. In this section we
explain two types of them, that are helpful in understanding the following chapters.

1.3.1 Radial basis functions

Linear output weights

Non-linear receptive fields in attribute space

Figure 1.12: A radial basis function network.

The radial basis function network generally consists of two weight layers, a
hidden layer of units performing linear or non-linear functions of the attributes,
followed by an output layer of weighted connections to nodes whose outputs have
the same form as the target vectors (see [10] and its references).

They can be described by the following equation:

y=w+ Y wif(|z - al]) (1.23)
i=1

where f is a radial basis function, w; is the output layer neuron ¢ weight, wy
is the output offset, z is the input to the network, ¢; is the center associated with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 17

the basis function f, ny is the number of basis functions in the network, and || ||
denotes the Euclidean norm.

Structurally it can be viewed as an MLP with one hidden layer, except that
each node of the the hidden layer computes an arbitrary function of the inputs
(Gaussian is the most popular), and the transfer function of each output node is
the trivial identity function.

Instead of “synaptic strengths” the hidden layer has parameters appropriate for
whatever functions are being used; for example, Gaussian widths and positions.
This network offers a number of advantages over the MLP under certain condi-
tions, although the two models are computationally equivalent.

These advantages include a linear training rule once the locations in attribute
space of the non-linear functions have been determined, and an underlying model
involving localized functions in the attribute space, rather than the long-range
functions occurring in perceptron-based models. Fig 1.12 shows the structure of
a radial basis function. The non-linearities comprise a position in attribute space
at which the function is located (often referred to as the functions center), and
a non-linear function of the distance of an input point from that center, which
can be any function at all. Common choices include a gaussian response function,

exp(—z?) and inverse multi-quadrics ([22 + cz]—%) as well as non-local functions such

as thin plate splines (2%log 2z) and multi-quadrics ([2? + 02]%). Although it seems
counter-intuitive to try and produce an interpolating function using non-localized
functions, they are often found to have better interpolating properties in the region
populated by the training data. The radial basis function network approach involves
the expansion or pre-processing of input vectors into a high-dimensional space. This
attempts to exploit a theorem of Cover (1965) which implies that,“a classification
problem cast in a high-dimensional space is more likely to be linearly separable
than would be the case in a low-dimensional space”.

Training

In RBF network the training consists of parameterizing the unknown parameters
in a particular RBF network. Generally speaking, this means determining (1) the
number of basis functions (hidden units), (2) centers and widths of each basis func-
tion, and (3) output layer weights. For some algorithms, these steps are carried out
separately, while in others, all parameters are found simultaneously. Furthermore,
different techniques can be mixed and matched for training the different parameters.

A number of methods can be used for choosing the centers for a radial basis
function network. It is important that the distribution of centers in the attribute
space should be similar to, or at least cover the same region as the training data. It
is assumed that the training data is representative of the problem, otherwise good
performance cannot be expected on future unseen patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 18

A first order technique for choosing centers is to take points on a square grid
covering the region of attribute space covered by the training data. Alternatively,
better performance might be expected if the centers were sampled at random from
the training data itself, using some or all samples, since the more densely populated
regions. of the attribute space would have a higher resolution model than sparser
regions. In this case, it is important to ensure that at least one sample from each
class is used as a prototype center.

When center positions are chosen for radial basis function networks with localized
non-linear functions such as Gaussian receptive fields, it is important to calculate
suitable variances, or spreads for the functions. This ensures that large regions
of space do not occur between centers, where no centers respond to patterns, and
conversely, that no pair of centers respond nearly identically to all patterns. This
problem is particularly prevalent in high dimensional attribute spaces because vol-
ume depends sensitively on radius. Prager & Fallside (1989) have introduced a
quantitative discussion of this point.

The process of optimizing the weights of RBEF networks is simply performed by
solving a linear system. The same problem arises in ordinary linear regression, the
only difference being that the input to the linear system is the output of the hidden
layer of the network, not the attribute variables themselves.

Let yk) be the output of the k-th radial basis function on the i-th example.
The output of each target node j is computed using the weights w;; as

Z wiyl. (1.24)

Let the desired output for example ¢ on target node j be Y;. Then the error is

) Z (Z kaykz J‘L> . (1.25)

This follows that

Y S wnaPy - S Y. (1.26)
k4 i

OWpg

The error is minimum where this derivative vanishes. Let R be the correlation
matrix of the radial basis function outputs,

=S iy, (1.27)
i

The weight matrix W* which minimizes E lies where the gradient vanishes:

e = Z Z Yy Ry, (1.28)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 19

Thus, the problem is solved by inverting the square (H x H)-matrix R, where
H is the number of radial basis functions. The matrix inversion can be accom-
plished by standard methods such as LU decomposition (Renals & Rohwer, 1989)
and (Press et. al., 1988) if R is not singular. This is typically the case, but
things can go wrong. If two radial basis function centres are very close together a
singular matrix will result, and a singular matrix is guaranteed if the number of
training samples is not at least as great as H There is no practical way to ensure a
non-singular correlation matrix. Consequently the safest course of action is to use
a slightly more computationally expensive singular value decomposition method.
Such methods provide an approximate inverse by diagonalizing the matrix, invert-
ing only the eigenvalues which exceed zero by a parameter-specified margin, and
transforming back to the original coordinates. This provides an optimal minimum-
norm approximation to the inverse in the least-mean-squares sense.

Another approach to the entire problem is possible (Broomhead & Lowe, 1988)
. Let n be the number of training examples. Instead of solving the H x H linear
system given by the derivatives of E in Equation 1.26, this method focuses on the
linear system embedded in the error formula (1.24) itself:

k

Unless n = H, this is a rectangular system. In general an exact solution does
not exist, but the optimal solution in the least-squares sense is given by the pseudo-
inverse (Kohonen,1989) y)" of (), for the matrix with elements ngH):

W =Yy", (1.30)

This formula is applied directly. The identity Y+ = YT(YYT)" | T denotes the
matrix transpose, can be applied to Equation 1.30 to show that the pseudo-inverse
method gives the same result as Equation 1.28

+
W =yy'® (Y<H>YT‘H’) . (1.31)

The requirement to invert or pseudo-invert a matrix dependent on the entire
data-set makes this a batch method. However an online variant is possible, known
as Kalman Filtering (Scalero & Tepedelenlioglu, 1992). It is based on the somewhat
remarkable fact that an exact expression exists for updating the inverse correlation
R~! if another example is added to the sum in Equation 1.27, which does not
require re-computation of the inverse.

1.3.2 The basic SOM

The Self-organizing Map (SOM) is an effective software tool for the visualization
of high-dimensional data. In its basic form it produces a similarity graph of input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 20

data. It converts the nonlinear statistical relationships between high-dimensional
data into simple geometric relationships of their image points on a low-dimensional
display, usually a regular two-dimensional grid of nodes. As the SOM thereby com-
presses information while preserving the most important topological and/or metric
relationships of the primary data elements on the display, it may also be thought
to produce some kind of abstractions (see [8]).

The SOM may be described formally as a nonlinear, ordered, smooth mapping
of high-dimensional input data manifolds onto the elements of a regular, low-
dimensional array. This mapping is implemented in a way that resembles the
classical vector quantization as follows:

Assume first for simplicity that the set of input variables {{;} is definable as
a real vector z = [§,&, - ,§n]T € R™ With each element in the SOM array
we associate a parametric real vector m; = [, o, -+ , ,un]T € R™ that is called a
model. Assuming a general distance measure between x and m; denoted d(z, m;),
the image of an input vector x on the SOM array is defined as the array element
m, that matches best with z, i.e., that has the index

c=arg miin{d(:r, m;)}. (1.32)

Differing from the traditional vector quantization, the task is to define m,; in
such a way that the mapping is ordered and descriptive of the distribution of z.

Consider Fig 1.13 where a two-dimensional ordered array of nodes, each one
having a general model m, associated with it. The initial values of the m, may be
selected as random, preferably from the domain of the input samples in a symmetric
way.

Then consider a list of input samples z(t), where ¢ is an integer-valued index.
Let us recall that in this scheme, the z(¢) and m, may be vectors, strings of symbols,
or even more general items. Compare each z(t) with all the m, and copy each z(t)
into a sublist associated with that node, the model vector of which is most similar
to z(t) relating to the general distance measure.

When all the 2(¢) have been distributed into the respective sublists in this way,
consider the neighborhood set N, around model m;. Here N; consists of all nodes
up to a certain radius in the grid from node ¢. In the union of all sublists in N;, the
next task is to find the “middlemost” sample Z;, defined as that sample that has
the smallest sum of distances from all the samples z(t) , t € N; . This sample Z;
is now called the generalized median in the union of the sublists. If Z; is restricted
to being one of the samples z(t), we shall indeed call it the generalized set median;
on the other hand, since the z(¢) may not cover the whole input domain, it may
be possible to find another item Z; that has an even smaller sum of distances from
the z(t), t € N;. For clarity we shall then call Z} the generalized median.

Also notice that for the Euclidean vectors the generalized median is equal to
their arithmetic mean if we look for an arbitrary Euclidean vector that has the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 21

x(1) x(2) x(3) x(4)
x(3) x(6) x(7)----

OO0,

1(1 Generalized median

Figure 1.13: Tllustration of the batch process in which the input samples are dis-
tributed into sublists under the best-matching models, and then the new models
are determined as (generalized) medians of the sublists over the neighborhoods N;.

smallest sum of squares of the Euclidean distances from all the samples z(t) in the
union of the sublists.

The next phase in the process is to form Z; or Z; for each node in the above
manner, always considering the neighborhood set N; around each node 4, and to
replace each old value of m; by Z; or Z., respectively, in a simultaneous operation.

The above procedure shall now be iterated: in other words, the original z(t)
are again distributed into the sublists (which now change, because the m,; have
changed), and the new Z; or Z} are computed and made to replace the m;, and so
on. This is a kind of regression process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Context dependent neural
networks

The wealth of information from the neuronal morphology of the brain is primarily
the motivation for such an exciting state of the research in neural networks. One ob-
servation that was strongly employed in neural networks is the context dependency
of the biological neural system, this observation simply states that the biological
brain reacts differently to the same inputs if they were applied in different contexts.

The results of Wrobel A,(1998) in [20] of measuring potential in rat barrel cortex
evoked by vibrissa stimulation are reported the conclusion as follows, “We hypoth-
esize that neuromodulatory action elicited by contextual stimulation activates all
neurons in the principal barrel column, including those providing an output to the
surrounding barrels. This mechanism may lead to experience-dependent changes
within intracortical network.”

A simple example was given in [2] about that context dependency, stated that
“Our reception is narrower when we are frightened or angry”.

In this chapter we first introduce the definitions of context by Peter Turney (1996)
and the strategy of identifying the context sensitive features in Section 2.1. The
strategies of managing the context sensitive features are then described in Section
2.2, then we focus on two different techniques of managing the context sensitive
features in neural networks to establish better performance are explained in Section
2.3 and 2.4 (see [16] and its references).

2.1 Introduction to contextual features

“Context” is a will-defined term. Here we are concerned with a specific type of

context that influences decision making or any type of information processing of

a contextual problem. In general, researches that involve contextual features are

mainly concerned with two issues. The first issue is identifying such contextual
22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 23

features among the whole feature space of a problem. The second issue is managing
these contextual features, in which researchers are concentrating on developing
different techniques of managing these features and benefit from them.

The classification of such contextual features can help in creating symmetric en-
vironments for all primary data within one context class. Recent work has demon-
strated that, the strategies for exploiting contextual information can improve the
performance and efficiency of machine learning algorithms.

In this section we describe the strategy of identifying contextual features for a
specific type of context. In particular, the contextual features in supervised concept
learning.

Assume the standard machine learning model of concept learning, where data
are represented as vectors in a multi dimensional feature space. The feature space is
partitioned into a finite set of classes. And the training data are labelled according
to its association with the different classes. In many concept learning problems, it
is possible to use common-sense knowledge to divide the features into three classes:
primary features, contextual features, and irrelevant features.

Primary features are useful for classification even when they are considered in iso-
lation, without the other features. Contextual features are useful for classification
only when they are considered in combination with other features. And irrelevant
features are not useful, either in isolation or in combination with other features.
For more understanding of these three types, example, “When classifying spoken
vowels, the primary features are based on the sound spectrum. The accent of the
speaker is a contextual feature. The color of the speakers hair is irrelevant.”

Surprisingly, the identification problem has received little attention in the re-
search, perhaps because common-sense makes the problem seem trivial. However,
learning systems that can both identify and manage contextual features may have a
substantial advantage over the systems that only manage them. A precise definition
of context is the first step in the construction of such identification systems.

2.1.1 Definition of context

Peter Turney’s definition for context in (1993), did not consider the the possibil-
ity of weakly relevant features. In the light of the definitions given by John et al.
(1994), Turney introduced new definition that does not have this problem in (1996).

Suppose we have m dimensional feature space Fy x Fy X --- x F, where F; is
the domain of the i-th feature. Let C be a finite set of classes. A training instance
is in the form (X,Y) where X € Fy x Fyx ---x F, and Y € C.

Assume that instances are sampled from Fy X Fy X -+ - X F, x C identically and
independently with a probability distribution p:

p: i X Fpx---x F, xC —|[0,1]. (2.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 24

In an instance of form (X: ,Y') , where X = (X1, X5, -, Xm) and X; represents the
i-th feature , z; represents the value of the i-th feature and similarly y is the value
of Y.

Given the feature values for a new instance, X1 = z1,--- , X;n = Z,, the learning
algorithm can predict the class of the instance, ¥ = y.

Let 5; be the set of all features except X; , i,e.

Si=A{X1,, Xie1, Xir1, -+, X} (2.2)
Let s; be an assignment of values to all of the features in S;

Definition 2.1. Suppose that X; is either strongly relevant or weakly relevant. By
definition there is a subset of features S, of S; and an assignment of values s} to S;
such that:

p(Y =y|Xi = 2,,S; = 5;) # p(Y =ylS; = s)). (2.3)

$C S5 CS (2.4)

There may be several subsets that satisfy (Equation 2.3 and 2.4). Each such
subset S; defines a context in which the feature X; is (strongly or weakly) relevant.
Let o, be the cardinality of the smallest subset (or subsets) for which Xj is relevant.
Let f; be the cardinality of the largest subset (or subsets) for which X; is relevant.
«; is called the minimum context size and f; is called the maximum context size.
When X is irrelevant, both ¢; and §; and are undefined.

It follows from Definition 2.1 that 0 < o; < §; < m — 1. It is easy to see that
X; is strongly relevant when 3; = m — 1 and weekly relevant when 3; < m — 1.

Definition 2.2. The feature X; is primary if and only if o; = 0.

A primary feature is relevant even when the context is the empty set. That is,
if X; is primary, then there exists some z; and y for which p(X; = z;) > 0 such
that:

p(Y =y|X; = z;) #p(Y = y). (2.5)
Definition 2.3. The feature X; is contextual if f o; > 0.

A contextual feature is only relevant when considered in some(non-empty) con-
text. A contextual feature is irrelevant when considered in isolation, that is, if X
is contextual feature, then for all z; and y:

p(Y =ylX; =z;) =p(Y =y). (2.6)

A contextual feature may be either strongly or weakly relevant.
The distinction between primary and contextual is dual to the distinction be-
tween weakly relevant and strongly relevant. As illustrated in Table 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 25

Term Definition Dual
strongly relevant (3, =m —1 primary
weakly relevant G, <m -1 contextual
primary o; =0 strongly relevant
contextual a; >0 weakly relevant

Table 2.1: Duality of relevance and context-sensitivity

We have defined primary features and contextual features. Now lets see what
it means for one feature to be context-sensitive to another. Let S;; be the set of
all features except X; and X, i.e.

Si={X1, X1, Xiy1, - Xj_1, Xj1, -, X } (2.7)
Let s;; be an assignment of values to all of the features in S; ;.

Definition 2.4. The feature X, is weakly context-sensitive to the feature X; if
and only if there exists a subset of features S;’j of S;; for which there exists some

T;,25,8; ; and y for which p(X; = z;, X; = x5, S;‘j = 3;7].) > 0 such that the following
two condztzons hold:

p(Y__—y'Xi:xi?Xj ::I;j,Sf. -)%p(y le —xJa IR B z]) (28)

%7

(Y ’le _qu CL'],S ',j) ?ép(Y=yIX IL'“ 4, = z]) (29)

4T

In this definition, the first condition (Equation 2.8) means that, the feature
X; must be relevant in some context that includes the feature X; . The second
condition (Equation 2.9) means that, the feature X; is an essential (non-redundant)
component of the context. The symmetry of these two conditions implies that X;
is weakly context-semsitive to X; iff X; is weakly context-sensitive to Xj.

Definition 2.5. The feature X; is strongly context-sensitive to the feature X; if f
X 1s a primary feature, X; is a conteztual feature and X; is weakly context-sensitive
to Xj .

2.1.2 TIllustration example of the contextual features defin-
itions
In this simple example,the features and the class are boolean:

Fi=Fy=F=C=/{0,1}. (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 26

Class Primary Contextual Irrelevant Probability

Y Xi X X3 Y4

0 0 0 0 0.03
0 0 0 1 0.03
0 0 1 0 0.08
0 0 1 1 0.08
0 1 0 0 0.07
0 1 0 1 0.07
0 1 1 0 0.07
0 1 1 1 0.07
1 0 0 0 0.07
1 0 0 1 0.07
1 0 1 0 0.07
1 0 1 1 0.07
1 1 0 0 0.03
1 1 0 1 0.03
1 1 1 0 0.08
1 1 1 1 0.08

Table 2.2: Example of the different types of features

Table 2.2 shows the probability distribution and illustrates the above definition.p :
Fi x Fy x F3 x C — [0,1].
From the table p(Y = 1) = 0.5 and p(Y = 1|X; = 1) = 0.44, Since,

p(Y =1) #p(¥ =1|X; = 1) (2.11)

It follows that X, is a primary feature. If the value of X; is unknown, then
the class Y may be either 0 or 1 with equal probability (p(Y = 1) = 0.5). If X; is
known, then we can guess the class Y with better accuracy than random guessing.
If Xy =1, then Y is most likely to be 0 because p(Y = 1|X; = 1) = 0.44. If
X1 =0, then Y is most likely to be 1. The feature X; is primary because it gives
us information about the class Y, even when we know nothing about the other
features, X, and X3.

Since p(Y = y| Xy = z9) = p(Y = y) for all values y and z, it follows that X,
is not a primary feature. However, X5 is not an irrelevant feature, since,

Therefore X, is a contextual feature. Furthermore, the primary feature X; is
(strongly) context-sensitive to the contextual feature X, , since,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 27

p(Y =1jX; =1, X, = 1) = 0.53. (2.13)

p(Y =1|X; =1) = 0.44. (2.14)

That is, if we know only that X; = 1, then our best guess is that Y = 0 (by
Equation 2.14). However, if we know that X; = 1 in the context of X, = 1, then
our best bet is that Y = 1 (by Equation 2.13). The feature X, is contextual because
it gives us information about the class Y, but only when we know the value of the
primary feature X;. Finally, X3 is an irrelevant feature, since, for all values y,z;
,Zg,and z3:

p(Y = lel = ZBl,XQ = $2,X3 = .’1,’3) = p(Y = y|X1 = fL‘l,Xg = .’132). (215)

The feature X3 does not give us any information about the class, even when we
know the values of the other features.

2.1.3 Identification of context sensitive features

In general the probability distribution p of instances in the training data set is
unknown. So we need to estimate p from the training data. Let D be a sequence
of training instances ()Z" ,Y) selected from Fy X Fp X --- X F,, x C identically and
independently with probability distribution p. Let d be an empirical estimate of
p, based on the frequencies of occurrence observed in the training data D (see [16]
and its references).

It is likely, due to random variation in D, that every feature X; will appear to
be primary, if we naively apply definition 2.2 to the estimate d. Random noise will
cause the following inequality to be true, even when X; is not actually primary:

dY =yl Xi = z:) # d(Y =y). (2.16)

To apply the above definitions, we need to allow for the presence of noise in
the training data D. Let £ be a small positive real number. We may say that the
feature X; appears to be primary when there is a value z; of X; and a value y of
Y, such that:

d(Y = y|lX; = z;) —d(Y = y)| > &. (2.17)

This inequality allows for noise. We can adjust our sensitivity to noise by
altering the value of e. When ¢ is very close to zero, the implication is that there
is little noise in the data. For a fixed sample D, as we increase €, the number
(apparently) of identified primary features decreases. Given a certain desired level
of statistical significance (say 95%), we can use standard statistical techniques to
calculate the required value of e.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 28

This concludes that, in addition to the problem of estimating the probability
distribution p from the data set D, there is another problem of searching through
all possible subsets S; of S;. In general, it is not computationally tractable to
examine every possible subset of features in order to determine which features are
contextual and which are primary. In practice, it will be necessary to use heuristic
search procedures.

2.2 Managing context-sensitive features

In Section 2.1 we have shown the definition of the contextual features and discussed
the strategy of identifying these features, the identification of these features is the
first main issue with context dependency problem , the other main issue is the man-
agement of these identified features. In this section we show the different strategies
or heuristics in ([17] and its references).

Assume the standard machine learning framework, where examples are represented
as vectors in a multidimensional feature space. We assume that set of training
examples is partitioned into a finite set of classes.

As explained earlier, we may distinguish three different types of features: pri-
mary, contextual, and irrelevant features.

Primary features are often context-sensitive. That is, they may be useful for
classification when considered in isolation, but the learning algorithm may perform
even better when we take the contextual features into account.

In this section we introduce a survey by [17] of strategies for taking contextual
features into account. We will also list five heuristic strategies for managing con-
text.

We will review evidence that hybrid strategies can perform better than the sum
of the component strategies.

Table 2.3 lists some of the examples of contextual features that have been exam-
ined in the machine learning literature. Many standard machine learning data sets
(Murphy & Aha, 1996) contain contextual features, although this is rarely (explic-
itly) exploited. For example, in medical diagnosis problems, the patients gender,
age, and weight are often available. These features are contextual, since they (typ-
ically) do not influence the diagnosis when they are considered in isolation (see

[17]).
2.2.1 Strategies for managing context

Suppose we are attempting to distinguish healthy people (class A) from sick people
(class B), using an oral thermometer. Context 1 consists of temperature measure-
ments made on people in the morning, after a good sleep. Context 2 consists of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 29

Task Primary Features Contextual Features Reference

image classification local properties lighting conditions Katz et al. (1990)

of the images (bright, dark)
speech recognition sound spectrum speakers accent Pratt et al.(1991)
information
gas turbine engine thrust, weather conditions Turney&Halas(1993)
diagnosis temperature,
pressure
speech recognition sound spectrum speakers identity Kubat(1996)
information and gender
hepatitis prognosis medical data patients age Turney (1993)
heart disease electrocardiogram patients identity Watrous (1995)
diagnosis data
tonal music meter, tactus, to be discovered Widmer (1996)
harmonization local key by the learner

Table 2.3: Some examples from machine learning literature

temperature measurements made on people after heavy exercise. Sick people tend to
have higher temperatures than healthy people, but exercise also causes higher tem-
perature. When the two contexts are considered separately, diagnosis is relatively
simple. If we mix the contexts together, correct diagnosis becomes more difficult.
Fig 2.1 illustrates the intuition about this common type of context-sensitivity.
Katz et al. (1990) listed four strategies for using contextual information when
classifying. Turney. (1993) named these strategies contextual normalization, con-
textual expansion, contextual classifier selection, and contextual classification ad-
justment.
Strategy 1 Contextual normalization
Contextual features can be used to normalize context-sensitive primary features,
prior to classification. The intent is to process context-sensitive features in a way
that reduces their sensitivity to context. For example, we may normalize each
feature by subtracting the mean and dividing by the standard deviation, where the
mean and deviation are calculated separately for each different context. See Fig
2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 30

A B8 Context #1

Context #2 A B

v

Nusrber of examples

Combined Contexts

Feature

Figure 2.1: The result of combining samples from different contexts.

Context #1
‘M
»

F

% Context #2

g ‘M_

k-] >

=1 Ll

¥} Combined

3 Contexts

A B
.
»
Nermalized Feature

Figure 2.2: Conteztual normalization: The result of combining normalized samples
from different contexts.

Context #1 Context #2 Combined Contexts
A B

Context

L J
w»
v

Feature

Figure 2.3: Contextual expansion: The result of combining expanded samples from
different contexts.

Strategy 2 Contextual expansion
A feature space composed of primary features can be expanded with contextual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 31

features. The contextual features can be treated by the classifier in the same
manner as the primary features. See Fig 2.3.

Data 4 Classifier#2 A B
[(Including context) } '

Contextual classifier
selection

: !

Classifier 1 Classifier 2
(excluding context) (excluding contexi)

(o)

Figure 2.4: Contextual classifier selection: Different classifiers are used in different
contexts.

Strategy 3 Contextual classifier selection

Classification can proceed in two steps: First select a specialized classifier from a set
of classifiers, based on the contextual features, then apply the specialized classifier
to the primary features. See Fig 2.4.

Context #1
a Data
s {Including context)
g T A B
| é Classifier %, >
; ‘ Context #2
§< @@ | LECluding contexd § A 5
Class kS >
g 58 - 'é Combined Contexts
P Contextual Classification 3
Adjustment 4
S<noo Adjusted Class Fealure »

Figure 2.5: Conteztual classification adjustment: The classification is adjusted for
different contexts.

Strategy 4 Contextual classification adjustment

The two steps in contextual classifier selection can be reversed: First classify, using
only the primary features. Then make an adjustment to the classification, based on
the contextual features. The first step (classification using primary features alone)
may be done by either a single classifier or multiple classifiers. For example, we
might combine multiple specialized classifiers, each trained in a different context.
See Fig 2.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 32

Turney. (1993) discussed another strategy called contextual weighting.

Original Scale

Scale Strelched and Compressed by Weighting

Feature #2

Feature #2

v
L 4

Feature #1 Feature #1

Figure 2.6: Conteztual weighting : The impact of weighting on classification.

Strategy 5 Conteztual weighting

The contextual features can be used to weight the primary features, prior to classi-
fication. The intent of weighting is to assign more importance to features that, in
a given context, are more useful for classification. Contextual selection of features
may be viewed as an extreme form of contextual weighting: the selected features
are considered important and the remaining features are ignored. See Fig 2.6.

2.2.2 Hybrid strategies

Various combinations of the above strategies are possible. For example, [17] exper-
imented with all eight possible combinations of three of the strategies (contextual
normalization, contextual expansion, and contextual weighting) in two different
domains, vowel recognition and hepatitis prognosis (Turney 1993a, 1993b). In the
vowel recognition task, the accuracy of a nearest neighbor algorithm with no mecha-
nism for handling context was 56%. With contextual normalization, contextual ex-
pansion, and contextual weighting, the accuracy of the nearest-neighbor algorithm
was 66%. The sum of the improvement for the three strategies used separately
was 3%, but the improvement for the three strategies together was 10% (Turney,
1993a, 1993b). There is a statistically significant synergetic effect in this domain.
In the hepatitis prognosis task, the accuracy of a nearest neighbor algorithm with
no mechanism for handling context was 71%. With contextual normalization, con-
textual expansion, and contextual weighting, the accuracy of the nearest-neighbor
algorithm was 84%. The sum of the improvement for the three strategies used
separately was 12%, but the improvement for the three strategies together was 13%
(Turney, 1993b). The synergetic effect is not statistically significant in this domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAFTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 33

2.2.3 Context dependency in neural networks

Broadly speaking, context dependent neural networks means neural networks which
can change their way of functioning in a context-sensitive mode. In other words,
a context dependent neural network may react differently for the same sequence
of inputs, depending on external conditions these conditions is expressed by the
contextual variables.

Using context dependency in neural networks is an important issue in many
cognitive situations. It opens another horizons to neural network solutions. In the
last decade neural network researchers have paid attention to contextual aspects.
Many of them have given attention to such aspects to improve systems performance
by identifying and managing the context sensitive features among input data. [12]
introduced an extension to the standard error back propagation algorithm that en-
ables it to train for the context dependent information by multi-layer feed forward
neural networks, a special error function is used in the extension. In [18] a proba-
bilistic framework was presented to incorporate context dependent auditory mod-
els in hybrid segment based neural network speech recognition. Some researchers
presented new neural network structures to achieve such context dependency. [3]
presented a neural approach of using two layer recurrent attractor network which
receives external input on one of its layers. Recently, [2] presented a context depen-
dent neural network model. This model allows nets weights to change according to
changes of some environmental factors even after completing the learning process.

In this section we have seen different strategies for managing context sensitive
features in any learning algorithm. The rest of this chapter will be zooming more
into some neural network solutions for learning context sensitive features.

2.3 Overcoming the slow convergence problems

In complex systems systems like for example, robotics and other control systems,
learning the control mappings between inputs and outputs requires large size of
neural networks. This can make the learning process and convergence prohibitively
slow.

The problem size can be approximately quantified as the dimensionality of the
input space. With an increase in the dimensionality, the input space will experi-
ence an exponential growth in size. Very often, the increase in dimensionality also
increases the nonlinearity of the control mappings.

In order to acquire a highly nonlinear control mapping through learning, a large
and complex network is required in order to approximate the mapping up to a
certain degree of accuracy. The direct consequence of using large networks is the
increase in time required to learn the appropriate network parameters using a given
learning neural network. Learning becomes so slow that the problem may prove to
be intractable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 34

Context-dependent learning can usually simplify a learning problem signifi-
cantly. The segmentation of the problem different context makes the segmented
subproblems to be reduced to simpler ones under each fixed context.

Of course,the system (natural or artificial) also needs to remember the relation-
ship between the learning subproblem and its associated context.

In [21], Yeung D.Y (1993) had explained the modulation technique of a big
problem using the principle of divide-and-conquer to decompose a learning problem
to be solved into a set of smaller subproblems corresponding to different contexts.
The solutions to the individual subproblems in context-dependent learning are then
integrated to give the solution to the entire problem. Decomposing a problem into
smaller subproblems might be very expensive and difficult for some problems.

However, the principle of divide-and-conquer is very useful for handling a large
variety of problems, especially those whose subproblems do not have very tight
mutual interactions.

Q
n |Q
Input | 2 Module 1
units)
O
Module 2
Q
G O
mput |] Module 3 O m
units ! . ; Output
O ' i units
: O
!
]
'
Module M —[

Figure 2.7: A simple neural network model based on modulation to implement the
idea of context sensitivity .

Consider now the simple network model with n = ny +n» input units and m output
units as shown in Fig 2.7. The set of input units is divided into two groups. The first
group consists of ny units. The activation values of these n; units in combination
constitutes an address that can be used to access one of the M modules. If these
units have binary (0 or 1) or bipolar (-1 or 1) activation values, a maximum of 2™
modules can be addressed using the binary coding scheme.

However, these input units can also take continuous activation values, as long as
there is some mechanism to guarantee that only one module will get activated. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 35

activated module is then provided with the actual input by the second group of ng
input units. After some internal processing, the activated module gives an output
with m values. One can view this model as a collection of M sub neural network
modules, each subneural network has n, inputs and m output. The first group
of input units serves to specify the context (hence the corresponding subnetwork
module) under which further processing is to be carried out. The original problem
of forming an (n — m) mapping is thus decomposed into M smaller subproblems of
forming (ny — m) mappings. It is important to mention here that the selection of
these n — 1 inputs for the context network should based on a specific identification
of contextual features out of the whole feature space.

This solution we have shown now is simply a modulation of the big problem which
is considered the simplest way of applying context dependency, the disadvantage of
this technique, is its one-to-one mapping between contexts and subnetwork mod-
ules, which probably require huge capacity hardware to process all the different
submodules, especially in case of big number of modules that would be impossible
to apply this technique.

Yeung D.Y (1993) in [21], developed another enhanced model that mostly
doesn’t require such huge hardware capacity although in some cases e.g. the very
large neural networks, the model may fail to reduce the hardware capacity as shown
later, the model is explained in the following subsection.

2.3.1 Context sensitive neural network for problem seg-

mentation
Function outputs
A A A
Context > .
inputs 2] Context Network Function
2 Network
A A A

Function inputs

Figure 2.8: Schematic diagram of a context-sensitive network model.

A context-sensitive network is shown schematically in Fig 2.8. It consists of
two feed forward neural networks, the context network and the function network.
Context network is responsible about mapping the relation between the contextual
variables as input and the weight setup of the other neural network as outputs. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 36

function network is responsible to mapping the relation between the set of primary
features as inputs and the problem solution as output.

The set of input variables is partitioned into two sets. One set (context input)
acts as the input to a context network. The function inputs acts as the inputs to a
function network. Depending on the context input provided by the current input
pattern, the function network represents different functions at different times based
on different contexts.

The feed-forward class of context sensitive neural networks is considered here
for both neural networks, with the back-propagation learning neural network.

The context network has as many output units as the total number of adjustable
weights in the function network. In general, the number of adjustable weights in the
function network may be very large, hence the context network has to learn a large
number of parameters. It is thus desirable that the function network be as simple
as possible. The ideal case refers to the class of context-sensitive networks whose
function networks are linear. This corresponds to the class of functions which are
decomposable into parameterized families of linear functions.

Using the activation values of the output units in the context network directly
as the weights of the function network is inappropriate, as the activation values
are restricted to the range [—1,1]. This problem can be solved by introducing a
coupling function to map these activation values from [—1, 1] to their correspond-
ing values which span a wider range. For output unit [in the context network,
its activation value, y; is coupled with a weight in the function network through a
coupling function, g; . One simple choice is to let g; be the inverse of a sigmoid
function,e.g. g; = ffl , so that the weights of the function network can take values
from (—o0, 00).

The use of one network to modulate the behavior of another network is a very useful

- property. In particular, a single piece of hardware (function network) can behave
differently depending on the output of the context network. Hardware reusability
is crucial to the design of networks for solving complex problems, so that in most
cases the networks will not grow to an unmanageable size. Configuring a system to
behave differently in a context dependent manner is a desirable property for robust
systems.

With its programmability through the context network, the function network
can compute different functions at different times. This helps in separating the
network semantically into two different levels of abstraction, each of which plays a
different role in network computation. While learning in the function network aims
at generalization of the usual type, learning in the context network tries to achieve
a better generalization.

This context dependent neural network model have two disadvantages. The con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 37

text network is trained to produce the weight matrix of the function network ,
which mean that the output of the context network is usually too large, with a
little increase in the size of the function network. The context network increases
dramatically. In this case the context network will require extremely long training
and probably more hardware resources.

Also the possibility of error mapping of the context network is not small for that
large number of outputs , and in this case, selecting wrong weight matrix will let
the function network output be too far from the desired. Even if the output of the
context network is the proper weight matrix but with some notable error in some
weights , that would lead to error in propagating the output of the function network.

In the following subsection we show different technique of imposing the context
sensitive features in the neural network solution that doesn’t have the mentioned
disadvantages while learning complex nonlinear mappings.

2.4 Context dependent neuron model

The model we are showing here also introduces the idea of learning complex nonlin-
ear mappings in a context dependent manner. In the previous model the contextual
features were separated from the primary features on a neural network level, i.e.
Contextual features were applied to separate neural network other than the neural
network that primary features are applied to. In The following model both contex-
tual and primary features are applied with the same neural network. More than
that, they are both applied to the same neuron.

Hence, the model of context dependent neural networks we are showing in this
section is considered a generalization of the traditional neuron model. The mapping
adjustment is performed by contextual “fine-tuning” of weights obtained from a well
trained traditional neural networks.

The model of Piotr Ciskowski. (2004) in [2], we are showing here assumes that
the features are already identified and doesn’t involve any identification technique
of the contextual features. It only concentrates on processing contextual data by
context dependent neural networks. One of the aims of this models is to cover the
case of continuous contextual variables.

2.4.1 Context dependent neuron model structure

Having Z denotes the vector of contextual variables, the neuron model shown in
Fig 2.9, can be expressed in the form

S
y=20|w(2)+ > Wi2)z,|. (2.18)

s=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 38

Figure 2.9: Context dependent neuron model

where z, denotes the s-th primary input, y is the neurons output, and @ is the
activation function.
The first difference between this model and the traditional one is the division of
inputs into the two groups of: primary and context-sensitive inputs grouped in vec-
tor X, and contextual inputs in vector Z. The second difference is that the weights
between neurons and primary inputs, depend on the vector of contextual variables,
i.e. w, = wy(Z) where s = 0,1,---,S, as presented in Fig 2.9

The neural network model that is used here to solve a problem characterized
both by primary and context-sensitive features a hybrid network, in which some
weights are context dependent and others are traditional , traditional weight means
that the weights are constant after training, i.e. they don’t change in all contexts.

In general,Z may functionally depend on z, as being contextual sensitive to
them. This model excludes such a possibility, that is, both functional and even
stochastic independence of z, and Z will be assumed.

In other words by classifying contextual variables into the following categories,

o External contextual variables, which are provided to the network as parallel
to input variables, without any functional or statistical dependencies between
the context and input variables.

e Internal contextual variables, which are generated from input and/or output
signals of the same network.

Then, this model concentrates on the external contextual variables, because its
technique of incorporation of the contextual features to the output of the problem,
is not depending on such relation between the contextual features among each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 39

2.4.2 Dependence of weights on context variables

As mentioned earlier, the second difference between this neuron model and the tra-
ditional one is that in this model weights are dependent on the contextual variables.
This dependency can be expressed as follows.

Assume that in the model of a context dependent neuron in Equation 2.18, com-
ponents w,(Z) of its weight vector W (Z), dependent on the vector Z = [21, 22, - - , 2p)
of contextual variables, in the form,

T

we(Z) = AT -V(Z),s=0,1,---,S. (2.19)
where V(2) = [v1(2),v2(Z), - - ,vM(Z)]T is a vector of basis functions, chosen

by the networks designer.
In Equation 2.19 A, = [a,1,0s2, - ,as,M]T € RM where s = 0,1,---,8 are

vectors of parameters, which specify the dependence of weights on context variables.
In other words, components of V(Z) are functions spanning the context dependent
vector of weights and our aim is to choose the vectors of coefficients A, where
§=0,1,---,S. As components of V(Z).

2.4.3 Mathematical model of a context dependent net

According to the provided form of dependence of weights on the contextual vari-
ables, here we show the mathematical model of the context dependent neuron.

For a random vector of input variables X;,, = [z1, 72, - - - ,xS]T and for a random
vector Z of contextual variables, the output of the network is given by

Y = o[W7(2) - X]. (2.20)

where @ is the activation function, 7 is the transposition, X & 1, X’in]T. The

k-th neurons weight vector is given by

Wi(Z) = [wio(2), wp1(Z), -, wis(2)]. (2.21)

_ where each weight wy +(Z) is approximated by the column vector of coefficients
Ay, and the vector of basis functions V(Z). as w+(Z) = AL, - V(2).

For the k-th neuron, the coefficient vectors A; ; are concatenated into one col-
umn vector
T
]

Ap =[AL0, ALy, AL (2.22)

The layers weight matrix is constructed the same way as the weight matrix of a
traditional network, only now the weights are dependent on the context vector as
shown in 2.23

W(Z) = Wi(2),Wa(Z), -, Wk(2)]. (2.23)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 40

® is assumed to be strictly monotone on R. Thus, ¥(t) = ®7(t) exists and
Y(U) = & }(U) is well-defined random variable, if U is a random variable. The
only important activation function, which is excluded by this assumption, is the
step function, which however, can be arbitrarily closely approximated by strictly
monotone functions.

2.4.4 Minimizing the error of a context dependent Network

The desired output of the net given by Equation 2.20 is represented by a random
variable Y. In summary, the existence of a probability distribution of (X,Z,Y) is
assumed. This distribution is unknown. In this learning algorithm we use a learning
sequence (X;, Z;,Y;),i = 1,2,--- ,n, instead of the unknown common distribution
of (X,2,Y).

Lets consider that this probability distribution is known, and then we replace
the unknown moments of this distribution by their empirical counterparts, based
on the learning sequence. Thus, we shall use a variant of the classical method
of moments, known to provide efficient estimators when underlying distributions
are Gaussian, since then the method of moments coincides with the maximum
likelihood approach. Usually, the measure of fit between Y and ®[@7(Z) - X] is
considered as

Egzn{Y —oa”(2)- X]}". (2.24)

where F denotes the expectation with respect to random variables specified be-
low this operator. Here, we consider an alternative approach to choose the weights
in such a way that the following criterion is minimized:

Egzv[®}(Y) -a7(2)- X]". (2.25)

which is later called the activation-error criterion, since the desired output Y
is transformed back to the interior of the nets’ output neuron and then compared
with its activation signal (@7 (Z2) - X).

The advantage of Equation 2.25 in comparison with Equation 2.24, is that
Equation 2.25 is a quadratic form with respect to the vector of weights W. The
following result additionally justifies the assumed mathematical model of the cd
neuron.

2.4.5 Learning algorithm for feed-forward back-propagation
context dependent networks

Piotr Ciskowski in [2] had presented many learning algorithms such as, nonre-
cursive Least Squares, Recursive Least Squares, Stochastic Approximation, and
back-propagation algorithm.

Here we only present his extension to the back-propagation algorithm to train
the network for such contextual features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 41

Hence, in this subsection, a way of calculating the error functions gradient with
respect to coefficient vectors of output and hidden layers neurons will be presented.
The output-error function will be used, while results for activation-error function
are analogical.

Let us now consider a two-layer network containing K neurons in the first, and

_ T
L neurons in the second layer. X® = [1,z{" 2", ... 2] is the vector of the
_ T
first layers primary inputs. The first layers outputs Y = [y yél), Ly
~ T
and the bias are primary inputs for the second layer X® = [1, y ygl), . ,yf%)] .

_ T
Y@ = [[@ 2)] is the vector of the second layers outputs. Both

layers are supplied with the same vector of contextual inputs Z = [, 2, - - , 2p].
Each layer has its weight matrix:

v (Z (\ . 2.2

wH(2) = [“’(Z)] (S+1)xK (2:26)
where k=1,2,--- ,K and s =0,1,---,§, and

Fr@) (7Y — |, D (7

W (Z) = [v(2)] . (2.27)
where [=1,2,---,Land k=0,1,--- , K.

Let us consider the second layer as the output layer of the network and, thus

assume that the desired output values are given as Yd@) [yff}, y((f%, ,yff%] .

The error function for the network (in [2]) is given by
L
Q=Q® (4®, A2) = 3" [(a9, 4P)] . (2.28)
=1

where ng) (A(l), Af”) is the error function for the second layers I-th neuron,
given by

2
2 (2 1
Q§>(A(1>,Al<)) 5Bz 2420 {ydl _ (l())} _ (2.29)

where u =& {(A(2)) [X® V(Z)]},

and YU = @ {(A(l)) XV V(Z)]} is the vector of the first layers outputs,
® denotes the Kronecker product of matrices.

Thus, the error functions gradient with respect to the second layers I-th neurons
coefficients is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 42

grad;0Q = ~ (g, 5 o0 {d§2> ¥4 (ul(?)) X®g V(Z)]} . (2.30)

The coefficient update (in [2]) is given by

Ans1 = An +70d® - @ (ul(z’)-[)‘(@)@x?(z")]. (2.31)

where d§2) yl(fl) o (ufz))
The error functions gradient with respect to the first layers k-th neurons coef-
ficient vector is given by

L
gmd (1)Q (X(l) 29®y { [Z w(2) ((2) yl(2)> Y (ul@))jl

@ (o) - [XV e 7(2)]}. (2.32)

By analogy to the traditional back-propagation rule, the unknown desired value
of the neurons output yg’l,z may be computed from the errors of all the next layers
neurons that are connected to this neuron, and weights connecting the k-th neuron
in the first layer with all neurons in the second layer. Thus, the estimated value of
the first layers k-th neurons error is given by

&) =yl -y ‘i[82)-d?) = ‘i[Q@) (48 -4™)]. @39)

=1

where dfcl) and d§2) denote error values for k-th neuron in the first layer and I-th
neuron in the second layer, respectively.

Remark 2.1. Contexrt dependent neural networks are, in fact, a generalization
of traditional networks. By choosing the basis function vector with one constant
function, we may build a context dependent network with the properties of traditional
one.

2.4.6 Example: XOR problem

It is well known that it is impossible to find any weight vector for a single perceptron
neural network (Neural network consists of only one neuron) to solve the standard
4-point XOR problem, in the following subsection we show that with the generalized
neuron model provided earlier, it is possible to solve five-points XOR, problem (see

[2D)-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 43

Figure 2.10: Five-point XOR problem solved by a two-layer traditional network.
(Left) Input points and discriminating lines of both hidden neurons. (Right) Input
points transformed by the first layer and the discriminating line of the output
neuron.

Figure 2.11: Five-point XOR problem solved by one context dependent neuron.

In this subsection, the differences are shown in the way traditional and context
dependent networks work. The networks are used to solve the XOR, problem en-
hanced by one additional point in the middle. Traditional networks topology is 2
(Hidden neurons) and 1 (Output neuron). Each neuron in the input layer (not yet
“aware” of the points context) is only able to perform linear separation of points,
so the division into two classes takes place gradually in both layers.

In Fig 2.10, given five points as inputs : (0,0), (0,1), (1,0), (0.5,0.5), and (1,1) in
two-dimensional input space, the first layer reproduces them into the second layers
input space. Three of these points (no. 2, 3, and 4) belonging to the first class are
transformed into points close to (0,1). Two other points (from the second class)
are positioned in the area that is linearly separable from the transformed points of
the first class. Linear separation is then done by the single neuron in the second
layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 44

(a) Discriminating hyperplane of a tradi- (b) Hyper surface of a context dependent
tional functional neuron. neuron.

Figure 2.12: Five-point XOR problem.

Let us now assume that points 1 and 3 belong to one context (for which z = —1),
while the other three to another z = 1. Traditional neuron using the information
about points context (supplied on additional primary input or using a functional
input multiplying two primary ones) is able to solve the standard 4-point XOR
problem (excluding point no. 3). As its decision hyperplane cannot bend through
the contexts to perform the desired classification of point no. 3 [Fig 2.12(a)], it
cannot solve the enhanced 5-point XOR problem, slightly more complicated than
the standard one. Context dependent network (supplied with information about
points contexts) works more efficiently.

The 5-point task may be solved by a single neuron. As for each context only
one decision line is needed, context dependent neuron produces one discriminating
line and adjusts it as the context changes (Fig 2.11). Although lines are parallel,
their directions are reversed. Fig 2.12(b) shows the decision hyper-surface of a con-
text dependent neuron in the joint three-dimensional input space and the way it
inverses its direction with the context change.

In this chapter we have shown, a formal method to distinguish the three differ-
ent types of features from the relevance point of view: primary, contextual, and
irrelevant features, and an Illustration example was explained.

We have presented the strategy of identifying these context-sensitive features
and the five basic strategies for managing them. Combining these strategies appears
to be beneficial, as well as five different methods of managing these contextual
features.

We have presented a context sensitive model for overcoming the slow conver-
gence problems this technique uses context sensitively between features to provide a
segmentation to the problem solution. Another model of context dependent neural
nets has been presented and its basic training algorithms, taking advantage of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 45

contextual dependencies in training data. It has been shown that context depen-
dent neural networks, being the generalization of traditional networks, have better

transformation abilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Overlapped neural networks

Neural network overlapping is known as one of the practical techniques of achiev-
ing better generalization and recognition rate. Overlapped Multi-Neural Networks
(OMNN) have been used for feed forward neural networks by Hu & Hirasawa.
(2000) in [4] and self organized maps by Atukorale & Suganthan. (1999) in [1] and
by Suganthan & Winter. (1999) in [14] for this purpose. These systems impose
a function distribution over the partially shared weight vector of a multi neural
network in which some neurons react only to some inputs but not to the others.
Neural network overlapping is also used in shared weight neural networks (SWNN)

in which the weight sharing or overlapping reduces the number of free weights while
produces better performance on test sets by Yonggwan & Gader. (1995) in [22] and
by Khabou & Gader. (2000) in [7].

Analysis presented by Jinwook & Chulhee.(1999) in [6] and by Stevenson & Winter.
(1990) in [13] of the weight distribution and its error sensitivity concluded that the
weight vectors of a trained neural network is not unique as there are many possible
weight vector solutions based on the initial setup. They also concluded that such
weight solutions tend to form concentrated groups in RY dimensional weight space.
This analysis helps to understand the concept of reducing the network freedom by
using overlapped neural networks to decrease the neural network function complex-
ity and achieve better generalization.

In an ordinary neural network, individual units do not have any special relations
with the input patterns. However, according to recent knowledge of brain science,
it is suggested that there exists function localization in a human brain, which means
that specific neurons are activated corresponding to certain sorts of sensory infor-
mation the brain receives. Therefore, a brain-like neural network should have the
capabilities of function localization as well as learning. Such a brain-like model
may be more efficient because its individual units are mainly used to remember
certain input patterns. To obtain such a brain-like model, the main problem is how
to guide a training algorithm to realize the function localization.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 47

Qvetlapped unit

Usual unit

Figure 3.1: Multiple network, overlapped-multi-network and ordinary feed-forward
network.

In the following we show an overlapped neural network model by Hu & Hira-
sawa. (2000)in [4]. In this model, a simple implementation of such brain-like model
is considered by using an overlapped multi-neural-network (OMNN). This model
OMNN consists of two parts: main part and partitioning part. The main part,
structurally, is the same as an ordinary feed forward neural network, but it is con-
sidered as one neural network that consists of a class of sub-nets, all the sub-nets
have the same input-output units but some different hidden units. The partition-
ing part, can be any structure that can make unsupervised classification, the main
function of this part is to divides the input space into several parts, each of which
is associated with one sub-net.

Various clustering or classification methods and algorithm may be used to im-
plement the partitioning part. In his work, Hirasawa has introduced a competitive
network for this part in [4] and introduced SOM Model for the partitioning part in
[11], However, a competitive network that has the same number of outputs as the
number of parts of the input space divided is used here. Each output of compet-
itive network represents one input space part. For an input pattern, only one of
competitive network outputs gives 1, and only nodes of the sub-net associated with
this output are fired, while all other nodes remain inactive. This realizes function
localization of OMNN.

On the other hand, from a viewpoint of multiple network, the main part of OMNN
is a multiple network with overlapped units, when the number of overlapped units is
zero, it becomes an ordinary multiple network, while it is an ordinary feed-forward
neural network when the number of overlapped units is equal to the total hidden
units. In this sense, an OMNN can be seen as a learning network between an
ordinary feed forward neural network and an ordinary multiple network. Fig 3.1
shows an image of such relationship. Moreover, it is well-known that multi model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 48

approach is based on a divide-and-conquer strategy. The bias variance trade-off is
an important issue for the divide and-conquer strategy. In general, dividing the
training data set into subsets for process identification tends to increase the vari-
ance and decrease the bias. In multi model approach, soft or fuzzy splits of data
are often used to ease the bias-variance dilemma.

3.1 Overlapped neural network for function lo-
calization

An OMNN has the capabilities of both learning and function localization. As
shown in Fig 3.2, it consists of two parts: main part and partitioning part. The
main part realizes the capability of learning and the partitioning part classifies the
input space so as to realize the capability of function localization (see [4] and [11]
and their references).

Partitioning part : Competitive network

Figure 3.2: An OMNN consisting of two parts: main part and partitioning part.

Partitioning Part

The role of this part is partitioning of operating region. Let us consider problems
such as system identification and pattern recognition. The operating region is
defined as Z. An operating point 2z € Z is a vector of variables. The operating
region is partitioned into M operating regimes Z; : (¢ = 1,--- , M) which is a subset
of Z, on the basis of certain prior knowledge.

The input and output vectors of the model are called z and y and consist
of n and m different variables respectively, where = = [z}, 22, - ,2,]) and ¥V =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 49

[X/h}/é;”. ’Ym]-

Here, competitive neural networks is used for this part. The network selects a win-
ner, via a competitive learning process, highlighting the “winner-take-all” schema.
That is, the output unit receiving the largest input is assigned a value of 1, whereas
all other units are suppressed to a 0 value. As shown in the lower part of Fig 3.2,
the competitive learning network has one layer of input neurons and one layer of
output neurons. An input pattern z is a sample point in the n-dimensional real
vector space. Binary-valued {0,1} local representations are used for the output
nodes. That is, there are as many output neurons as the number of classes (M)
and each output node represents a pattern category.

Main Part

Structurally, the main part is an ordinary feed forward multi-layer neural network,
but it is considered to consist of M overlapped sub-nets.

If we denote the set of input units by I, the set of output units by O, and the
set of i-th hidden layer units by NV; : {¢ = 1,2,---}, then the j-th sub-net can be
described by {I,S};, Saj,--- , 0} where the set of i-th hidden layer units, S;; is a
subset of N;. That is, S;; C N; : {j =1,2,--- ,M}.

These M sub-nets are associated with the M operating regimes (class). For the
input and output vectors {z, y} of operating regime Z;, only the units corresponding
to the j-th sub-net of OMNN are active, while all other units are inactive and have
zero output. The sets of hidden layer units of sub-nets, S;;, are determined based
on the prior knowledge used in operating region partition such that all hidden layer
units available in the sets N; are used in subsets S;;.

To establish this structure, there are several parameters to be determined: the
number of sub-nets, the number of hidden units for each sub-net, the number of
hidden units that overlap or the number of total hidden units.

The values of these parameters are certainly problem depended. Hirasawa.
(2000) gives an estimation for these numbers as follows:

1. The number of sub-nets. It is equal to the number of parts of input space
divided. In many cases, prior knowledge is available for determining the
number of input space to be divided. When there is no prior knowledge
available, it is recommended to divide the input space into 4 to 6 parts gives
better results.

2. The number of hidden units for each sub-net. This depends on the complexity
of each part of input space. When no prior knowledge is available, the same
number may be used for all sub-nets. It is found that when the number of
hidden units for each sub-net is equal to % to -g- of the total number of hidden
units, OMNN gives better results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 50

3. The number of hidden units that overlap. This is rather difficult to determine.
It seems that it is easier to determine the total number of hidden units first,
then the number of hidden units that overlap by assigning the number of
hidden units for each sub-net based on the 3 to 2 rule.

Structure example

Here we give a simple example to show the relation between the partitioning part
and the main part in an OMNN.

In the e.g. shown in Fig 3.3, the main part has 2 input units, 6 hidden units and
1 output unit. It is divided into two sub-nets with the same input-output units,
the first sub-net contains the first to fourth hidden units, and the second sub-net
contains the third to sixth hidden units. The partitioning part is a competitive
network containing two output units. It divides the input space into two parts.
The outputs of the competitive network control the firing of the hidden units of
main part.

When an input set from the first part of input space appears, the competitive
network gives O; = 1 and O, = 0. This fires hidden units 1 to 4, while hidden
units 5 and 6 contribute 0 to the output of OMNN. When an input set is from the
second part, then only hidden units 3 to 6 are fired, and hidden units 1 and 2 will
be kept inactive. From this example, it is clear that OMNN has not only learning
capability, but also function localization capability.

competitive nerwork

Figure 3.3: An example of OMNN showing the relationship between partitioning
part and main part.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 51

3.1.1 Overlapped multi-neural network training

The training process here is two steps: first,training of the partitioning part, second
training of the main part. It is clear that the former usually must be done before
carrying out the latter training.

A competitive learning algorithm is used for training the partitioning part using
the well known winner-take-all algorithm. In the following we discuss training of
the main part.

The training of the main part of OMNN is formulated as a nonlinear optimiza-
tion defined by,

©=arg mein{E}, where © € W. (3.1)

where F is the error function, © is the weight vector and W denotes a compact
region of weight vector space. Let y is the OMNN output corresponding to the
input vector . Then the error function E is defined by

E=Y (5~ ul)- (3.2)

i€D

where D is the set of training data, and ¢ is the desired output.

Training algorithm

The ordinary random search method algorithm can be employed to find the required
weight vector and hence the solution. Some modifications have been done by Hi-
rasawa (2000) to improve the efficiency of the random search algorithm. However,
the following is the modified algorithm.

Let O(k) = [M(k),---, M(k),---]" be the weight vector © € W denoting the
weight vector corresponding to the k-th search, and A©(k) be the random vector
AO(k) = [AXN(k),- -, AN(K),- - -]T generated based on a probability density func-
tions after the k-th search. Then the random search algorithm can be described as
follows.(see [4] and [11])

Algorithm
1. Step 1:

e Choose an initial value ©(0) € W
e calculate £(©(0))
e set k=0.

2. Step 2:

¢ Generate a random search vector AG(k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 52

o If O(k) + AO(k) ¢ W then let ©(k + 1) = O(k) and go to Step 3, else

e calculate E(O(k)+AO(k)), If E(O(k)+AB(k)) < E(O(k)), (the current
search is successful), then set) = 1 And O(k + 1) = O(k) + AO(k),
else

e calculate E(O(k)—AO(k)), If E(O(k)—AB(k)) < E(©(k)), (the current
search is successful), then set *) = 1 And ©(k + 1) = ©(k) — AO(k),
otherwise

e (The search is Failure), Then set y*) = 0 and

O(k) if K} > ke, and k. > ker
Ok +1)=(Ok)+A0(k) ifk} <k
O(k) — AO(k) ikt >k,
where k., > 1 is the maximum error ratio, ¥} and k. are defined by

» Yer

o+ _ Ok +A6(k)
=)

o _ E®k) = A6(k)
- CIO)

3. Step 3:
Stop if pre-specified conditions are met, else set £ = k + 1 and go to Step 2.

In a conventional random search algorithm, AJ; is usually generated by using a
Gaussian probability density function, the modification done by Hirasawa is put
better strategy to find A); based on a sophisticated probability density function.

Example of OMNN

Hirasawa had considered a benchmark problem. The problem is providing the
separability of two nested spirals and he used OMNNSs to for that purpose.

The training sets consist of 152 associations formed by assigning the 76 points
belonging to each of the nested spirals into two classes. This is a nontrivial clas-
sification task, which has been extensively used as a benchmark for evaluation of
neural network training. We use the example to discuss generalization ability of
OMNN (see [4]).

The OMNN he used in the simulations is denoted by N,_,_., X M/ny where
Np—r—m iS a sub-net with n input units, 7 hidden units and m output units, M is
the number of parts of input space divided, and nr is the total number of hidden
layer units. Since all sub-nets have the same number of hidden units, obviously
when nr = r X M, that is, there is no overlapped units, the OMNN becomes a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 53

multi neural network, and when . ny = r the OMNN is equivalent to an ordinary
feed-forward neural network.

As described earlier in chapter 1 the network generalization is depending on
three factors: The size of the data , the algorithm complexity, and network struc-
ture, and many methods is been proposed for achieving better generalization, we
mentioned the weight decay approach for third factor (The network structure),
and the VC dimension for the second factor (The algorithm complexity), it is also
known that, soft or fuzzy splits of data are often used to this purpose and to ease
the bias-variance dilemma. In this example, overlapping hidden units has the same
impact so that it improves generalization ability of multi neural network, Hirasawa.
(2000).

3.2 Overlapped self organizing maps

In this section we introduce another implementation of neural network overlapping.
Suganthan in [14], had developed a model of Hierarchical Overlapped SOM’s (HO-
SOM) for pattern classification, in which the overlapping is achieved by duplicating
every training sample to train several upper-level SOM’s. That is, the winning neu-
ron as well as a number of runners-up neurons make use of the same training sample
to train the higher-level maps grown from those neurons using Kohonen’s SOM.

In general every class is represented by several neurons. Further, as every training
sample is used to develop a number of different upper layer maps, a degree of over-
lap in the upper-level SOM’s was achieved. This multiplicity allows to make the
final decision by fusing the classification of several maps for every training and test-
ing sample. In addition, every higher-level map is trained using a different subset
of the training data. As the top-layer maps are pruned by merging and removing
neurons, the problem of over-training is curtailed. The resulting HOSOM network
offers the best performance for any SOM-based classifier and somewhat compara-
ble performance to the best multi-layer back-propagation network-based classifier.
Further, the HOSOM may be regarded as an efficient alternative to the k- nearest
neighbor type algorithms.

3.2.1 HOSOM structure

Hierarchical SOM had been intensively researched and is known to provide lower
solution cost for the large problems than the standard SOM, Here another feature
is added, then the added structural features to the HOSOM relative to the standard
SOM, is the the former is both hierarchical and overlapped. However, the network
is initialized with just one layer first. The number of neurons in the layer has to be
chosen. If there are too few neurons in the first layer, the network may have to be
grown to have several layers. If there are too many neurons in the first layer, com-
putational advantage of hierarchical architecture may be compromised. In pattern

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 54

recognition applications, the number of training samples may be considered in the
selection of initial lattice size.

Second layer SOM
grown r
fromnode A | P ... Second layer SOM
r grown from node B
‘ First layer
SOM

Connection weights

X .& ' “N
Inpus features

Figure 3.4: The HOSOM structure.

Fig 3.4 shows the first-layer SOM and two instances of second-layer SOM’s
grown out of nodes A and B. The figure also shows the overlap in the feature space
of the two second-level maps conceptually.

3.2.2 HOSOM training

For the initial adaptation of the synaptic weight vectors, Kohonen’s SOM algorithm
is employed. The algorithm is applied to the topmost layers which were grown
during the last structure adaptation iteration.

Lets list the following three algorithms, for unsupervised, supervised learning
and HOSOM algorithms (see [14] and its references).

Table I: The unsupervised SOM algorithm

e USOM1 Initialize the weight for the given size map. First layer weights are
randomly initialized. Subsequent layers are initialized around the root node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 55

Initialize the learning rate parameter, neighborhood size and set the number
of unsupervised learning iterations.

e USOM2 Present the input feature vector z = [z1, 29, - - - , Zx] in the training
data set of the root neuron.

e USOMS3 Determine the winner node ¢ such that ||z — w,|| = min;{]|z — w;||}

e USOMA4 Update the weights within the neighborhood of node ¢, N.(t) using
the standard update rule: w;(t+1) = w;(t)+a(t)[zn—w;(t)] where i € N—c(t).
The neighborhood wraps around at edges, i,e., column and row indices are in
modulo representation.

e USOMS5 Update learning rate and neighborhood size. According to a(t +
1) = a(0){1-£}, and | Ne(t+1)] = |N(0){1—£}, where K is a constant and
usually set to be equal to the total number of iterations in the self organizing
phase.

e USOMBS6 Repeat USOM2-5 for the specified number of unsupervised learn-
ing iterations.

Table II: The supervised LVQ 2 learning algorithm for SOM

e SSOM1 Present the input feature vector z = [z, 22, -- ,zy] in the training
data set.

e SSOM2 Locate the winner node ¢ such that ||z — w,|| = min;{||z — w;||}

e SSOMS3 If the winning neuron has the same level as the training example,
update weights of the winning neuron only using the standard update rule:
We(t +1) = we(t) + Blzn — we(t)]. If the winning neuron has a different label,
then 1) update the weights of the winning neuron only using a small negative
learning rate (3, as follows: w.(t + 1) = w.(t) + fi[zn — wc(t)] and 2) Locate
the closest neuron with the same label as the training sample and update its
weights using the update equation with a positive learning rate of ;.

e SSOM4 Repeat SSOM1-3 for the specified number of supervised learning
iterations.

Table III: The HOSOM algorithm
e HOSOM1 Apply USOM

e HOSOM2 Label all output nodes using a simple voting scheme.
e HOSOMS3 Apply SSOM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 56

¢ HOSOM4 Merge/remove neurons
¢ HOSOMS5 Apply SSOM
¢ HOSOMS6 Obtain recognition rates on training data.

e HOSOM?7 Grow an additional layer and repeat HOSOM 1-6 until satis-
factory recognition rate is achieved or maximum complexity level is reached.

The SOM algorithm is summarized in Table I. Having completed the unsuper-
vised SOM learning, the neurons in the topmost layers are labelled using a simple
voting mechanism. Then the supervised LVQ algorithm given in Table II is applied
to fine-tune the prototype vectors. We apply the following structure adaptation
techniques just after applying the supervised LVQ 2 algorithm.

1. Growing a Layer : The network may be grown, until either a satisfactory
recognition rate is achieved or a predefined level of structural complexity is
reached by the network. The complexity may be defined in terms of number
neurons or layers.

2. Merging/Removing Neurons : The merging operation is essential in particular
in the final layer which is not to be grown further.

Consider the following simple scheme. If an end-node neuron represents a
few training samples, that neuron is merged with another neuron which is the
closest with the same label. If there is no other neuron with the same label,
the neuron is removed. It should be noted that merging operation improves
the performance on test data set, in case the network has been over-trained
or over-specialized, Kohonen,1997.

It was indicated earlier that overlapped SOM’s are obtained at the completion
of training. The overlapping is achieved by duplicating every training sample to
train several upper-level SOM’s. That is, the winning neuron as well as a number of
runners-up neurons make use of the same training sample to train the higher-level
maps grown from those neurons. By duplicating the training samples in the upper-
level SOM’s, we obtain overlapped SOM’s. The testing samples are also duplicated,
but to a lesser degree. Hence, the testing samples fit well inside the feature maps
developed using the best matching and several runners-up in the training data.

In addition, this duplication of samples allows us to employ a voting scheme to
obtain the final classification. The HOSOM algorithm for pattern recognition is
presented in Table III. Fig 3.4 shows the first-layer SOM and two instances of
second-layer SOM’s grown out of nodes A and B. The figure also shows the overlap
in the feature space of the two second-level maps conceptually.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 57

3.3 Shared weight neural networks

In this section we just give a brief about the shared-weight neural networks, many
researchers had used shared-weight neural networks for the problem of automatic
target detection for its ability to improve the network generalization, for example
by Yonggwan & Gader. (1995) in [22] and by Khabou & Gader. (2000) in [7].

It was mentioned earlier that many techniques exist to improve the general-
ization capability of a neural network by imposing predefined constraints on its
weights. Such techniques include regularization, weight pruning and structural
constraints. Regularization uses an added term to the neural-network cost function
to reduce the effect of non useful weights or to impose a priori knowledge on its
structure. Pruning eliminates weights that are deemed redundant.

Structural constraints reduce the number of independent weights by using a
locally connected structure or sharing the same weights on many connections. This
dramatically reduces the number of free weights while producing better perfor-
mance on test sets. The standard shared-weight neural network (SSNN) , the
morphological shared-weight neural network (MSNN) and the Entropy Optimized
Shared-Weight Neural Networks (ESNN) are examples of such networks.

3.3.1 Shared-weight neural network architecture

Feature Extraction Metwork (F) Feature Layer

Figure 3.5: Standard shared-weight neural network architecture.

The structure of SSNN is not far from the structure of the previous mentioned
OMNN, a SSNN consists of two cascaded sub-networks, called stages: a feature ex-
traction stage F' followed by a feed-forward stage C. The feature extraction stage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERLAPPED NEURAL NETWORKS 58

F usually has a two-dimensional input and has local, translation invariant connec-
tions. The layers in this stage perform feature extraction by linear convolution of
their inputs with the kernels defined by the local connections.

Each layer is partitioned into subsets called feature maps. Each feature map in
a feature extraction layer has one kernel for each feature map in the previous layer.
The nodes of the last feature extraction layer are the inputs to C (see Fig 3.5).

The morphological shared-weight neural network, MSNN has the same architec-
ture as the SSNN except that the kernels in the feature extraction layers perform
gray-scale hit-miss transform on their inputs instead of convolution performed by
the SSNN. For ESNN, Entropy defines a measure on the space of probability dis-
tributions, such that those of high entropy are in some sense favored over others.

During training in automatic target recognition, a shared-weight neural network
takes a sub image as input, and produces two output values: target or nontarget.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Novel context sensitive model

In the previous chapters, we have seen the context dependency usage in different
models and the benefits that we may gain by employing them in a neural network
solution, the major advantages of employing contextual features is actually depend-
ing on the way it is used, one of the advantages we have shown here is simplifying
the problem while providing more efficiency to it, we also have described neural
network overlapping, the major advantages of overlapped neural network, that it
performs a function localization and improves the neural network generalization
ability.

In this chapter we introduce a novel context dependent model for solving com-
plex problems regardless of sufficiency or accuracy of their historical observations
or lab simulation data.

Our approach in this model is based on imposing a context of the problem perfor-
mance metrics into networks and gaining the enhancement towards its satisfactory
state.

We use an overlapped system of back propagation neural networks for our pur-
pose. A main neural network is responsible for mapping input and output relation
while a regulatory neural network evaluates the performance metrics satisfaction.

We provide special training and testing algorithms for the overlapped system
that guarantees a synchronized solution for both neural networks. By the end of this
chapter we present an example of traffic control problem. The result of simulation
shows a great enhancement of the solution using our approach.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 60

Context Dependent Controller by Overlapped
Neural Networks for Performance Metrics
Revision

4.1 Introduction

The theory and design of artificial neural networks have advanced significantly dur-
ing the past 20 years. Lots of attentions were given to it for its efficient capabilities
in pattern recognition, classification, regression, decision making and other tasks
of information processing. Many progresses are focused on establishing new tech-
niques and designs of network structures to increase the ability and the efficiency
of solving complex problems and to add new features to neural networks.

In this chapter, we consider context dependent neural networks using a different
model. Our model is based on a neural structure in which we control and benefit
from the weight distribution of two overlapped neural networks to allow imposing
the context dependent features into the final output. Different from the result of
[2], our contextual variables are not independent on input variables in general. On
the other hand, the contextual variables are not necessary generated from input
and/or output of the same network. Therefore our approach is also different from
the model of Elman’s network. These characteristics of our new model allows some
special applications which are not fit the previous models.

Analysis in [6] and [13] of the weight distribution and its error sensitivity con-
cluded that the weight vectors of a trained neural network is not unique as there
are many possible weight vector solutions based on the initial setup. They also
concluded that such weight solutions tend to form concentrated groups in RV di-
mensional weight space. This analysis helps to understand the concept of reducing
the network freedom by using overlapped neural networks to decrease the neural
network function complexity and achieve better generalization.

Our model adapted some advantages of overlapped multi-neural networks for
the purpose of context dependency.

The rest of this chapter is organized as follows. Section 4.2.1 describes our concept
of applying performance metrics as a context dependency and give an example of a
problem analysis according to this concept. In section 4.2.2 we explain the model
structure and define the function of its components. In section 4.2.3 the output
and the error computation based on the definition of SPM state vector and the
provided structure is shown. Section 4.4 and 4.2.5 provide the training and SPM
incorporation algorithms. Section 4.3 shows a simulation example and its results
and finally, section 4.4 is our conclusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 61

4.2 Model and structure of our network

In this section, we describe a new model of context dependent neural networks.

4.2.1 Performance metrics state vector as context depen-
dency

Most of the problems (simple or complex) have a set of dependent performance
metrics which are related to each other and dependant on the inputs and solution
algorithm. Each performance metric works as a meter to the performance of the
solution algorithm, and has a value or a set of values that constitutes the optimal
or satisfactory states.

In our model we employ a criterion of context dependent parameters that is
derived from some environmental observations of the performance metrics. It will
be used to enforce the neural network to produce an optimal output towards the
Satisfying Performance Metrics (SPM) state vector.

The study of this performance metrics satisfaction is very important in establishing
an efficient and integral solution of problems in which an optimum satisfaction of
the dependent performance metrics is required.

This study is also important for cases when the historical data of a problem
can’t provide the best consultations that guarantees the requested quality.

Example of that can be a mortgage calculation, where the historical data might
seem good (case by case) but it doesn’t provide the maximum benefits for all the
parties. In this problem, the study of the performance metrics as a context depen-
dency would be able to re-evaluate the historical data from the performance point
of view and redefine the decision boundaries to achieve better estimations.

Performance metrics incorporation can also play a good role in fixing the lack
of the historical information. It will help in providing enhanced solutions in spite
of the lack of information.

Neural solutions that the training data is based on a laboratory or experimental
data or that is based on a software computation might also use our technique to
overcome possible human mistakes or insufficient study of the problem.

Definition 4.1. Satisfactory Performance Metrics (SPM) : In this model
we define SPM as the state vector of the performance metrics that describes the
satisfactory states of these metrics.

Each factor or dimension of the SPM state vector defines the requested quality
of a specific performance metric. We can view it as a magnet which creates an
attraction force to let the neural network output towards or against its value. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 62

»
\\ %
5 | 6ependent Qfﬁﬁa

X .
3 Metrics
h\\ 1\‘ o
s"'\ kY ! .}{*“”\:
) ¥ el
~ 1

-
s

,,,,,

Y

Figure 4.1: In RV dimensional space, every SPM factor pushes or pulls the output
vector towards its satisfactory state as possible.

all the SPM factors, the resultant force would be the enhancement to the solution
towards satisfying that performance metrics.

SPM state vector is different from the neural network input and output vectors.
It defines a subset of the problem dependent performance metrics.

To explain the SPM, let’s give an example of the bandwidth allocation problem
for a new network connection request in ATM Networks. Let
Inputs

e (i1) Network node buffer size
e (iy) Total available bandwidth
e (i3) current network traffic conditions

¢ (i4) Requested connection quality

Output
e (01) Allocated Bandwidth

In this example, the performance metrics based on the total occupied bandwidth
after such allocation are
Dependent Performance Metrics

e (my) The cell loss rate (CLR).
e (my) The cell delay variation (CDV).

e (m3) The network resources utilization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 63

It is clear that these metrics (my) through (ms) are all depending on the decision
of the bandwidth allocation algorithm as well as the current traffic conditions or
the current inputs.

Now we can identify the SPM for this performance metrics as the best possible
combination of these metrics as follows.

SPM state vector

e (s1) Minimum possible cell loss rate. (Min m;)
e (s3) Minimum possible cell delay variation. (Min my)
e (s3) Maximum possible network resources utilization. (Max mg)

And we can define SPM for this problem as the state vector

SPM = (s1, 83, 83) = (0,0, max(bandwidth)).

In our model, employing the SPM state vector will force the neural network
to obtain the possible best output towards satisfying all the metrics based on the
defined state vector.

If we employ a specific SPM state vector that gives more attention to a specific
performance metric than the other or that ignores some performance metrics, then
the neural network will be forced to give more attention to these specific metrics
than the others.

In the previous example, more attention is given to cell loss rate than cell delay
variation in text data transfer, while giving more attention to cell delay variation
than cell Loss rate in voice transfer.

Definition 4.2. Partial SPM : We define a partial SPM state vector as a SPM
vector that ignores one or more performance metrics.

For example,
(81, 82, 83) = (0, —, max(bandwidth)).

is a partial SPM state vector that doesn’t give any attention to the second met-
ric.

In some cases it might be impossible for the network to reach the SPM state,
because the complex relationship between these metrics makes satisfying one met-
ric is against the other. In our example, satisfying the cell loss rate (m,) and the
cell delay variation (mq) will be against the complete satisfaction of the network
resource utilization (mg). This is because achieving maximum ATM network uti-
lization (m3) means increasing the network traffic and the allocated bandwidth,
which increases the cell loss rate (m,) and cell delay variation (ms).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 64

4.2.2 Neural network structure

Our model consists of two back propagation neural networks, partially overlapped
in the hidden layers and sharing the same input layer. The output layer of one
neural Network plays two roles as it acts also as a part of a hidden layer of the

other neural network.
T _______ ? - % S P M

Regulatory NN Output Layer

)

Hidden Neurons

!

)

Shared Input Layer

Figure 4.2: Model Structure, two overlapped back-propagation neural networks.

Main Neural Network (MNN)

This is a 3(+) layers back propagation neural network with one or more hidden
layers, this neural network is responsible for learning the relation between the inputs
and the outputs of the problem. This neural network belongs entirely to the other
bigger neural network called regulatory neural network (RNN).

Training of this neural network will be performed in parallel with the training
of RNN as shown later. The output of this neural network will be pumped again
to the regulatory neural network as shown in Figure 4.2.

Regulatory Neural Network (RNN)

This is a 4(+) layers back propagation neural network with two or more hidden
layers. It is responsible for learning the relation between the inputs and the perfor-
mance metrics of the historical observations, and to impose the SPM state vector
into the output of the main neural network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 65

It includes all the hidden layers of MNN as well as the output layer which
constitutes part of the top level hidden layer of RNN.

Advantages of the model

Since MNN entirely belongs to RNN, all of its weights are actually shared by the
two neural networks. That will limit its weight freedom which leads to better gener-
alization of the unseen data by providing less error for each simulation, comparing
to the totally free weights neural networks.

RNN, as well, will have less number of free weights as big part of its weights are
shared with MNN which also leads to less error decisions.

The combination of RNN and MNN will control the weight distribution over
the whole system, and then we can benefit from that weight distribution to impose
an external context into the behavior of MNN in an efficient way.

Simplicity of the model structure which is based on back propagation algorithms
makes it fast and easy to be implemented.

4.2.3 SPM and SSE

For a specific problem, we can express its historical data as a set of patterns in the
form (X,Y, M) where X = (1, %3, -+ ,z,) is the input vector, Y = (y1,%2,"** , ¥p)
is its output vector, and M = (my,ma, - -+ ,m,) is the observed performance metrics
based on the input vector X and its decision or output Y. SPM defined as the vector
S = (51,82, ,84) is the state of the performance metrics which we are looking
forward to achieve.

Then we can express the sum square error (SSE) between the output of RNN
and SPM as

DD (mwg - swp)™ (4.1)

Eys =

Do —
-

Where D is the number of training patterns,q is the number of neurons in the
output layer of RNN.

RNN being well trained means that it is able to provide an output that is close
enough to its desired output.

So we can take the limit over the error equation in (4.1) when M Trainins yy)

M is the set of actual outputs, M is the set of desired outputs. Then we get

limA EM,S = EM,S' (42)

M—M
From (4.2) it is clear that for a trained neural network the error to the SPM
state vector is tending to the error between the desired outputs and this SPM state
vector. For a finite set of training data and a constant state vector the error Ey ¢
is constant. For infinite set of training data or in the online training, Ey, 5 would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 66

be the SSE of M to S.

In our model we expect to decrease the effect of this error over the incoming deci-
sions by employing a set of virtual data patterns (X,Y,S) in which the output of
RNN is always the same vector S. It is clear that we can’t use this virtual set of data
patterns to train the neural network, because it will result in mapping a relation
from any vector to the constant vector S. In our model we use this virtual set of
data patterns to test RNN for new input vectors in a very sensitive way in which
we don’t allow the weight vector of RNN to change dramatically by the training of
such virtual data patterns. In this technique we always take a step back to the set
of weights that provided the best mapping of (X, M).

This restoration of the weight vector protects the system from getting distorted. On
the other hand the output ¥ of MNN will be produced according to the imposing
of the vector S.

The output of a neuron ¢ in the output layer of RNN is

H
m; = fs (Z hj’l.Uji> . (43)

Where H is the number of neurons in the topmost hidden layer of RNN, h; is
the output of neuron j in this hidden layer, w;; is the connection weight between
neurons j and ¢, and f* is the output sigmoid function.

Since the topmost hidden layer consists of two parts (as the output layer of
MNN belongs to it), we can rewrite (4.3) as

» H
m; = f° (Z Yiwyi + Z hkwlci) ; (4.4)
Jj=1 k

where y; = h; Vj € {1,2,...,p} and p is the number of neurons in the output layer
of MNN. Then we can write

m; = f* (G1(Y,WN) + Go (RN, W), (4.5)

where G4, G are functions expressing the two summations in (4.4) respectively, h"Y
is the set outputs from the non overlapped hidden neurons of RNN topmost layer,
and WY is the non overlapped part of RNN weight vector.

Since hY is propagated from preceding overlapped layers, we can make the
following substitution.

m; = fs (Gl (}/7 WN) + GZ(X: WO’ WN)) ’ (46)

where WO is the overlapped part of RNN weight vector. According to (4.6) we can
see that G, G, indicate the dependency of the performance metrics over the input
X and the decision Y. And that dependency was established using the provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 67

model weight redistribution.

If the number of the non overlapped neurons in the topmost layer is small enough,
then the dependency function Gy will be incorporated more than G» in producing
the final output of RNN. Hence Y as the output of MNN will be more adapted
towards satisfaction of the performance metrics during the error back propagation
of RNN.

4.2.4 Training algorithm

Training of this overlapped system using back propagation algorithms has to be
done in parallel. We will minimize the training of both neural networks and try to
get a reasonable balance between them. Extra consecutive training for any one of
them will certainly result in a distortion of the weight vector of the neural networks.

The ideal case is when every training iteration for one neural network is followed
by a training iteration for the other net. Consecutive training over the whole system
in such a manner will force the weight vector of the RNN to perform a specific
distribution in which the overlapped section will plot the relation between X and
Y, while the whole weight vector is also able to plot the relation between X and
M.

Since it is not guaranteed that both neural networks provide an acceptable
solution at the same time, we implemented the following technique to adjust the
consecutive training so that allowing a neural network perform more training than
the other.

We trigger the system to take such decision when one neural network reaches a
good convergence state while the other one still not. In this case the slow neural
network will have the opportunity to be trained more while the other one will wait
for it or probably perform a little divergence until they both be in a same solution
phase. If the system couldn’t come to a solution for both neural networks, then
more neurons should be added to the non overlapped and/or overlapped part of
RNN.

Before introducing the training algorithm, lets define Rryx as the training rate of
RNN, and Ry vy as the training rate of MNN. Also let Ry, = Maz(Renn, Runn)
and Rprin = Min(RgyN, Ryny). The training rate is the number of training itera-
tions for one training cycle, where the training cycle equals to Rpsq,. Define ERyy
to be the SSE of RNN, and similarly EZ}yy to be the error for MNN.
Algorithm

1. Start

2. Set RRNN = RMNN = 1.

3. Initialize RNN with random weights.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 68

4. Pick a random training pattern (X, Y, M).

5. If Rany > Runn or Rpyny mod(Raser — Rurin) # 0 then train RNN for
(X, M).

6. If Rywnn > Rany or Runwy mod(RMaz — RMm) # 0 then train MNN for
(X, Y).

7. Repeat (4) to (6) for (Rps,,) times.
8. Repeat (4) to (7) for (D/Rpra.) times.
9. Repeat (4) to (8) for a number of epochs.

10. If (Eyy is acceptable but EZ is not acceptable) then increase Ry, Else
if (ERyy is not acceptable and EL) v is acceptable) then increase Rryy-

11. If (RMNN = RRNN) then Set Reyy = Ryny = 1.
12. Repeat (4) to (11) until ERyy is acceptable and EL}y is acceptable.
13. End

It is known that the error function for the output layer neurons in back propa-
gation is different from the error function of the hidden neurons.

According to the provided training algorithm, the first hidden layer(s) will be
treated as hidden layer in both neural networks, while this is not the case for MNN
output layer as it will be trained for error as an output layer in MNN using the
learning equation

Awy; = —n(g; — 0;)0;(1 — 05)0;.
where y; is the desired output for neuron j in the output layer of MNN, While
get trained for error as a hidden layer in RNN using the learning equation

q

k=1
Where Aw;; is the change of the connection weight between neuron i and j
according to the back propagation algorithm, 7 is the training factor, of is the
output of neuron k in the upper layer, §; is the output error of neuron k& in the
upper layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 69

4.2.5 SPM incorporation algorithm

Lets define a degree of dissatisfaction ofF™ for the output of a neuron k in RNN
output layer as follows

»

ooPM _ [Sk —my ifsp# “—
k 0 otherwise

In case of partial SPM, o5 will equal to 0 for all ignored metrics and will equal
to the error between the neuron output and the requested satisfaction if specified.

The following simple test algorithm is able to provide the output of MNN ac-
cording to the required satisfaction criterion. The regulatory neural network is first
consulted to estimate the performance metrics of such input data and then evaluate
it against the SPM state vector. The resulted error will be back propagated in the
whole system to allow the main neural network to provide a suitable solution for
such satisfaction.

Algorithm
1. Start.
2. Backup the weight vector of RNN.

Test RNN for the given input.

-~ w

Compute the degree of dissatisfaction o for all output neurons of RNN.
Back propagate the degree of dissatisfaction to RNN.

Test MNN for the same given input.

Restore the weight vector of RNN.

Repeat step (3) to (7) for all the test data.

e A

End.

Steps (2) and (7) are used to backup the weight vector of RNN and restore it
again after the testing is done. The need for that is because our testing includes a
step of error back propagation for RNN. If we ignore its commutation that would
cause divergence of the MNN.

4.3 A Simulation Example

Street traffic control is chosen as an example for its well known structure. In this
example, we want to control the intersection flow using information of the previous
3 traffic cycles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 70

Training data were obtained from a software program (Traffic flow controller)
developed using C++ language based on real traffic rules. Traffic flow control and
the performance metrics were obtained based on setup data such as intersection
structures, average vehicle speed and dimensions, etc.

For simplicity we simulate two intersected streets constituting four traffic direc-
tions. Each street has three lanes and the middle lane is for left turning (see Figure
4.3).

Figure 4.3: An intersection of two streets with three lanes each, the middle lane is
left turn lane.

We denoted the four directions by (North, South, East, West), or simply (N, S,
E, W). Traffic Light has five statuses { Red, Yellow, Green, Left Arrow, flashing
Green). A traffic load is an ordered set of numbers, (Nys, Nnvi,- -+ , Nwi), where
Nyg is the number of vehicles heading north straight and Ny is the number of
vehicles heading north left, and so on.

A vector of the intersection traffic lights at any moment is (N Light, S Light,
E Light, W Light). For example, the traffic light state vectors for the Intersection
(Green, Green, Red, Red) and (Red, Red, Red, Red) are valid vectors, while (
Green, Green, Green, Green) is not a valid state vector. There are 14 valid state
vectors in a traffic cycle. Each vector is associated with a time interval which in-
dicates the duration of that state vector. After that time interval, the traffic lights
changes to the next state vector.

A solution for a given traffic load is a vector of ordered time intervals correspond-
ing to each of the 14 traffic light state vectors, which constitutes a complete traffic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 71

cycle. A Traffic cycle is set as 120 seconds.

The performance metrics in this example are cumulative numbers of vehicles
which were delayed for at least one traffic cycle, while crossing the intersection.
So the performance metrics vector M = (Dyg, Dn1, -+, DwL), where Dyg is the
number of delayed vehicles for North-Straight direction , and so on.

4.3.1 Neural network design

The main neural network has three layers of (32,32,14) neurons consisting 1472
connection weights between them, with an output sigmoid function.

The 32-input vector describes the last three cycles traffic loads (24 numbers)
and the numbers of current waiting vehicles. The 14-output vector is the sequence
of the traffic light state time intervals, which is a solution estimated for the incom-
ing traffic cycle, based on previous three cycles traffic load.

The Regulatory neural network has four layers of (32,32,32,8) neurons consist-
ing 2304 connection weight between them, with an output sigmoid function.

The 32-input vector is similar to that of the main neural network while the 8-
output vector is the ordered set of the estimated performance metrics vector defined
earlier.

It is clear that RNN is sharing about 2 thirds of its weight vector with MNN.

4.3.2 Simulation results

This example uses a set of 10,000 data patterns (X,Y, M) which are from the
C++ program. 5,700 of them were used as training set while 4,300 were used
for testing as unseen set of data. The neural networks were trained for 1, 140,000
iterations. SSE (Sum square error) between the neural network outputs and the
desired outputs was read for training and testing for both neural networks.

7 MNN Trained 71 MNN Trained

61~ o - = = -MNNNot Trained| © T = ~ = <MNN Not Trained

§ s 5 T e

4 4

3 3

2 2

1 1

3 e — , 0 " : - d .
0 5 10 15 20 5 0 5 10 15 20 25

(a) Training (b) Testing

Figure 4.4: SSE of MNN sharing all weights with training of both neural networks
(Solid), only training RNN (Dashed){X-axis is the training, Y-axis is the error|.

The error on the Y-axis of Figures 4.4, 4.5 and 4.6 was computed as the SSE of
the actual and the desired output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 72

In Figure 4.4(a) and 4.4(b), we compared the results from different settings. The
dashed line shows the error of MNN which is a part of RNN without any training, its
weights change only according to the training of RNN. In this case its output layer
was only acting as a part of the hidden layer of RNN. Training RNN certainly affects
the weight vector of MNN but doesn’t produce any specific weight distribution. The
error for training set in Figure 4.4(a) and test set in Figure 4.4(b) respectively is
very big. The neurons in the output layer of MNN is only trained as hidden neurons
in RNN. The Training algorithm provided allows them to provide solutions together
as well as provide the requested weight distribution. The solid line shows the error
when both RNN and MNN gets trained according to our training algorithm.

07 Seperate 07 Seperate
06 T " = - -Overlapped o Y - - - -Overlapped
05 \‘ 05 \
04 e 04 B O
03 ‘*‘M\‘ 03 “R—e_g__\g*_
02 6.2
01 01
0 T v T T " 0 v v T T)
1] 5 10 15 20 25 0 5 10 15 20 25
(a) Training (b) Testing

Figure 4.5: SSE of MNN sharing no weights (Solid), sharing all weights with RNN
(Dashed) [X-axis is the training, Y-axis is the error].

08 1y 08
07 Seperate 07 \ Seperate
06 x‘ - = = -Overtapped 08 L M Overlapped
05 14 05 LY
04 ‘ 0.4 ‘E
03 t 03 3
02 \ 02 \
01 2 01 e
0 s SSERS 0 . ; - . .
0 5 10 15 20 25 0 5 10 15 20 25
(a) Training (b) Testing

Figure 4.6: SSE of RNN sharing no weights (Solid), partially sharing weights with
MNN (Dashed){X-axis is the training, Y-axis is the error].

In Figures 4.5(a) and 4.5(b), we tested the effect of the network overlap. We
considered two situations for the system , separate and overlapped. In the separate
status there is no weight sharing, i.e. MNN is totally isolated from RNN and has
its own different set of weights. In the overlapped status MNN shares all its weight
vector with RNN according to our model structure. The solid line shows the error
of MNN in separate status and the dashed line line shows the error in overlapped

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 73

status. It clearly shows that MNN provided the requested convergence although it
shares all its weights with RNN. So overlapped system reduces the number of free
weights without reducing the function of the system.

Figures 4.6(a) and 4.6(b), shows the error of RNN in the separate and over-
lapped situations in the solid and dashed lines respectively, we see that RNN also
provided the requested convergence in the overlapped status.

In this case we see that the overlapped system is able to provide the performance
metrics as the output of RNN, while being able to provide a solution to the given
inputs from MNN output layer which is also part of RNN topmost hidden layer.
We forced the weight change of RNN to perform such specific weight distribution
that allows us to impose the SPM state vector over MNN behavior.

After establishing the requested weight distribution a test for the overlapped
system reaction to different SPM state vectors was done over a test set of 1000
unseen traffic cycles which forms 33 hours in terms of time. Testing of the 1000 un-
seen patterns was done by the provided SPM incorporation algorithm. The traffic
light state time intervals was obtained from MNN as its output.

According to the obtained MNN output and the intersection traffic load we com-
puted the cumulative number of delayed vehicles using the traffic flow controller
software. In this way we can measure the effect of imposing the SPM state vector
on the traffic performance of the intersection.

For simplicity we express the number of cumulative delayed vehicles as 4 dimen-
sional vector. We take our measures for the four straight directions only.

5000 5000
North

L L s PETPE South| 4000

3000 £ East | 3000

2000 2000

1000

0 200 400 600 800 1000 1200 a 200 400 €00 800 1000 1200

(a) No SPM incorporation (b) SPM = (0,0,0,0)

0

Figure 4.7: Cumulative delayed vehicles over the time resulted by traffic computa-
tions over MNN output, [X-axis is the time, Y-axis is the number of cumulative
delayed vehicles.].

Figure 4.7(a) shows the performance metrics over 33 hours without any SPM
state vector incorporation. The measure of the cumulative delayed vehicles in the
four directions was (1718, 1323, 3526, 1320) for (Left, South, East, West)
respectively, '

Figure 4.7(b) shows the incorporation of a SPM state vector (0, 0, 0, 0),the mea-
sure of the cumulative delayed vehicles over the 33 hours was (2074 , 867 , 415 ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 74

748). It is clear that the system provided a great enhancement of the traffic flow
over the 33 hours by decreasing the cumulative delayed in the south, east and west
directions, with a little increase in the north direction. This is considered the best
performance metrics over the whole traffic system in these conditions.

The (0,0,0,0) SPM state vector acted like a set of magnets, each one of these
magnets attracts the output of the main neural network towards the satisfaction of
the corresponding performance metric separately.

The total force of attraction of these magnets could achieve such reduction of the
cumulative delayed vehicles in the south, east and west directions. It also caused a
little increase in the north direction.

The total enhancement in the four directions i,e. the summation of all the cu-
mulative delayed vehicles has been reduced from 7887 to 4104 delayed vehicle in a
period of 33 hours.

According to the training data of MNN, it was trained to give more attention
to the directions that are loaded with traffic. For example if the traffic load for
north direction is expected to be high, MNN will produce a set of traffic light in-
tervals for the next cycle in which more time will be assigned to the north-south
Green light.

We can see that the overlapped system has two sets of forces that affects the
final output of MNN. These forces are solution force and the regulation force.

The solution force is produced from MNN training and its tendency to provide
the desired solution. In our example, this force works to free the loaded traffic in
any direction without paying attention to specific directions.

The regulation force is produced from the SPM incorporation to the output of
MNN. In our example, it works to free the traffic of the four directions according
to the requested satisfaction of the SPM state vector without paying attention to
which one has more traffic load.

Hence we get the output of MNN that is balanced using the solution force
towards the desired solution and the regulation force towards the SPM state vector.

In Figure 4.8 we are testing the system reaction to the partial SPM state vectors.
In Figure 4.8(a) we gave priority to free the east and west directions by choosing
SPM state vector = (—,—,0,0) and in Figure 4.8(b) we gave priority to free the
north and south directions by choosing SPM state vector = (0,0, —, —).

The results of imposing both partial SPM state vectors show an excellent reac-
tion from the system, and we could obtain the requested prioritization over the
selected traflic directions.

Another set of results based on different SPM state vector is provided in the
following table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 75
5000 Non] 0% North
1 R = SoUth | 4000 e L L South
3000 e - Bast

-West -West
2000 2000 5
1000 i 1000
H bbb ey
o ‘ e : : ' a4 ' 7 ' ' ' '
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

(a‘) SPM = <_v_7070> (b) SPM = <010»_7_>

Figure 4.8: Cumulative delayed vehicles over the time resulted by traffic compu-
tations over MNN output using partial SPM, [X-axis is the time, Y-axis is the
number of cumulative delayed vehicles.].

SPM state vector | Result Performance metrics
No SPM (1718 , 1323, 3526 , 1320)
(0,0,0,0) (2074 , 867 , 415, 748)

(0,0,—,-) (944 , 678 , 2923 , 4314)
(—,—,0,0) (1971, 1560 , 261 , 346)
(=, —,—,0) (1454 , 1169 , 2037 , 399)
(—,—,0,—) (2561 , 2255 , 1000, 6)

0,-,0,-) (1567 , 2546 , 772, 386)
0, —,—,0) (942,517, 3411, 223)

(0,-,0,0) (2355, 3081, 712, 145)
(0,10, 0,0) (2216 , 3671 , 1062 , 41)

Table 4.1: Performance metrics after imposing different SPM state vectors

4.4 Conclusion

Our novel approach of solving problems is based on satisfying its dependent perfor-
mance metrics. This approach allows us to provide an integral and efficient solution
regardless of sufficiency or accuracy of its historical observations or lab simulation
data.

We measure these dependent performance metrics of the problem and perform
regulation to the neural network output to gain better satisfactory to these perfor-
mance metrics.

We employed a state vector (SPM) of the problem to express the required prob-
lem satisfaction and we used it to enhance the final solution of the neural network.
The partial SPM vector also can be used to control the solution behavior by prior-
itizing the satisfaction of some specific metrics over the others.

Our model consists of two overlapped back-propagation neural networks that pos-
sesses a specific weight distribution among their weight vectors. The first is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 76

main neural network which is responsible for mapping the input to output. The
main neural network belongs entirely to the second neural network. The second
network called regulatory neural network is responsible for evaluating the perfor-
mance metrics satisfaction and imposing the degree of dissatisfaction to the output
of the main neural network.

Training of such system of overlapped multi neural networks required a specific
algorithm that prevents extra consecutive training cycles to any of them and let
them provide solutions in the same time. In this algorithm we trigger the slow
neural network to train more than the faster one and also keep flipping training
cycles between them.

Our algorithm for incorporating SPM state vector to the final solution is based
on error back-propagation in which we let the regulatory neural network estimate
the performance metrics for the unseen inputs, evaluates the degree of dissatisfac-
tion and then back propagate it through the overlapped neurons. It allows the main
neural network benet from the such regulation and provide better solution towards
the required satisfaction.

Simulation results of a traffic system show that the overlapped system of neural
networks could establish convergence to their desired solutions while the main
neural network is sharing its entire weight vector with the regulatory neural net-
work. The results also shows that the system provided a great enhancement to the
solution by incorporating SPM state vector so that the cumulative delayed vehi-
cles for all directions had decreased dramatically during a test period of 33 hours.
We could control the behavior of the solution and give higher priority of freeing
some traffic directions than others by incorporating partial SPM state vector that
expresses the required satisfactory state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion

Context dependent neural networks mean neural networks which can change their
way of functioning in a context-sensitive mode. Using context dependency in neural
networks is an important issue in many cognitive situations. In this report we
introduced a novel context dependent neural network model based on overlapped
multi-neural network structure. For that we gave details about contextual features
and some of its applications in neural networks. We also presented some different
strategies for applying overlapping in neural networks.

First, we started by introducing the basic knowledge and concepts of neural net-
works, and explained its main constituting components. The most common neuron
model is McCulloch and Pitts neuron. Many different neuron output formulation
functions were listed. The sigmoidal function is the most common one. We ex-
plained the multi-layer perceptron (MLP) as the most common structure of neural
networks. The well-known method of back-propagation learning was also briefly
presented.

The generalization ability of a neural network determines how well the mapping
surface of the network will renderer the unseen inputs to the output space. Gener-
alization is mainly influenced by three factors: the number and performance of the
learning data samples, the complexity of the learning algorithm employed, and the
network size. We have shown the weight decay as one the approaches may be ob-
tained for the complexity measure. We briefly touched upon Vapnik Chervonenkis
(VC) theory as a concept of complexity measure that can be captured.

We highlighted the radial basis function (RBF) networks and self organizing maps
(SOM). Radial basis function networks can be regarded as a very useful addition
to the toolbox of neural networks. In general, it can be seen that for many ap-
plications, RBF networks can provide a fast and accurate means of approximating
a nonlinear mapping based on observed data. Due to the locally acting nature of
RBFs, they have a tendency to require more data than a comparable multi-layer
sigmoidal network.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CONCLUSION 78

Our study of the contextual features involved a formal method to distinguish the
three different types of features from the relevance point of view: primary, con-
textual, and irrelevant features. Primary features are useful for classification when
considered in isolation without regard for the other features. Contextual features
are not useful in isolation, but can be useful when combined with other features.
Irrelevant features are not useful for classification, either when considered alone or
when combined with other features. An illustration example was explained.

Researches that involve contextual features are mainly concerned with two issues.
The first issue is identifying such contextual features among the whole feature space
of a problem. The second issue is managing these contextual features, in which re-
searchers are concentrating on developing different techniques of managing these
features and benefit from them.

We have presented the strategy of identifying these context-sensitive features
and five basic strategies for managing them. Combining these strategies appears
to be beneficial.

We have presented a context sensitive model for overcoming the slow conver-
gence problems, this technique uses context sensitively between features to provide
a segmentation to the problem solution.

A context dependent neuron model was also presented. This neuron is considered
a generalization of the traditional neuron, according to the mapping adjustment
which is performed by contextual “fine-tuning” of weights obtained from traditional
networks. The mathematical model and the learning algorithm of this context de-
pendent neural networks was presented. A sample five-point XOR problem was
presented as well.

Neural network overlapping is one of the practical techniques of achieving bet-
ter generalization and recognition rate. It is been used in feed-forward neural
networks as well as in self organizing maps. It has also been used in shared weight
neural networks (SWNN) in which the weight sharing or overlapping reduces the
number of free weights while produces better performance on test sets. Examples
of overlapped multi feed forward neural networks to perform function localization
was presented, and a benchmark problem example had shown better generalization
based on the function localization performed using the overlapping technique.

We have introduced a novel approach of solving problems that is based on sat-
isfying its dependent performance metrics. This approach allows us to provide an
integral and efficient solution regardless of sufficiency or accuracy of its historical
observations or lab simulation data.

In our approach we measure the dependent performance metrics of the problem
and perform regulation to the neural network output to gain better satisfactory to
these performance metrics. For that we employed a state vector (SPM) that stands

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CONCLUSION 79

for (Satisfactory performance metrics) of the problem to express the required prob-
lem satisfaction and we used it to enhance the final solution of the neural network.
We also introduced a partial SPM vector which also can be used to control the
solution behavior by providing a control function of prioritizing the satisfaction of
some specific metrics over the others.

The novel model consists of two overlapped back-propagation neural networks that
possess a specific weight distribution among their weight vectors. The first is the
main neural network which is responsible for mapping the input to output. The
main neural network belongs entirely to the second neural network. The second
network called regulatory neural network. And it is responsible for evaluating the
performance metrics satisfaction and imposing the degree of dissatisfaction to the
output of the main neural network.

Training of the system of overlapped multi neural networks required a specific
algorithm that prevents extra consecutive training cycles to any of them and let
them provide solutions in the same time. In this algorithm we trigger the slow
neural network to train more than the faster one and also keep flipping training
cycles between them.

We presented a test algorithm that allows incorporating the SPM state vector to
the final solution. And it is based on the error back-propagation algorithm. We let
the regulatory neural network estimate the performance metrics for the unseen in-
puts and then evaluates the degree of dissatisfaction and back propagate it through
the overlapped neurons. This allows the main neural network to benefit from such
regulation and provide better solution towards the required satisfaction.

Our simulation results of a traffic system show that the overlapped system of
neural networks could establish convergence to their desired solutions while the
main neural network is sharing its entire weight vector with the regulatory neural
network. The results also shows that the system provided a great enhancement to
the solution by incorporating SPM state vector. So that the cumulative delayed
vehicles for all directions had decreased dramatically during a test period of 33
traffic hours. We could control the behavior of the solution and give higher priority
of freeing some traffic directions than others by incorporating partial SPM state
vector that expresses the required satisfactory state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Atukorale A.S and Suganthan P.N, ” Combining multiple HONG networks for recog-
nizing unconstrained handwritten numerals,” IEEE Neural Networks, 1999. IJICNN
’99. International Joint Conference, vol 4, pp: 2928 - 2933, 10 July 1999.

[2] Ciskowski P and Rafajlowicz E, ” Context-Dependent Neural networks-Structures
and Learning,” IEEE Trans. Neural Networks, vol 15, pp: 1367-1377, 6, Nov 2004.

[3] Doboli S, Minai A and Best P.J, ”Generating smooth context-dependent neural
representations,” IEEE Neural Networks, 1999. IJCNN ’99. International Joint
Conference, vol 1, pp: 12 - 15, 10 July 1999.

[4] Hu J and Hirasawa K, ”Overlapped multi-neural-network: a case study, ” IEEE
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Inter-
national Joint Conference, vol 1, pp: 120 - 125, 24 July 2000.

[5] Hu J, Hirasawa K and Xiong Q, ”Overlapped Multi- Neural-Network and Its Train-
ing Algorithm” IEEJ Japan, 2001. Electronics, Information and Systems Society,
vol 121, pp.1949-1956, Dec 2001.

[6] Jinwook G and Chulhee L, ” Analyzing weight distribution of neural networks,”
IEEE Neural Networks, 1999. IJCNN ’99. International Joint Conference vol 2, pp:
1154 - 1157, 10 July 1999.

[7] Khabou M.A and Gader P.D, ” Automatic target detection using entropy optimized
shared-weight neural networks,” IEEE Trans. Neural Networks, vol 11, pp: 186 -
193, 1 Jan 2000.

[8] Kohonen T,”Self- Organizing Maps,” Springer, pp:1 - 260, 2001.

[9] Madan M.G , Liang j and Noriyasu H ”Static and Dynamic Neural networks from
fundementals to advanced theory,” IEEE Press pp:1 - 751, 2003.

[10] Michie D., Spiegelhalter D.J., Taylor C.C. "Machine Learning, Neural and Statis-
tical Classification,” University Forvie, pp:1 - 274, 1994.

[11] Sasakawa T, Hu J and Hirasawa K, ”Self-Organized Function Localization Neural
Network” Fuji Technology Press, Japan, The 20th Fuzzy Systems Symposium, vol
1, pp- 27-30, Dec 2004.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CONCLUSION 81

[12] Spreeuwers L.J, Van Der Zwaag B.J and Van Der Heijden F,” Context dependent
learning in neural networks,” IEEE Fifth International Conference, pp: 632 - 636,
4 Jul 1995.

[13] Stevenson M, Winter R and Widrow B, ”Sensitivity of feed-forward neural networks
to weight errors,” IEEE Trans. Neural Networks, vol 1, pp: 71 - 80, March 1990.

[14] Suganthan P.N, ”Hierarchical Overlapped SOM’s for Pattern Classification,” IEEE
Trans. Neural Networks, vol 10, pp: 193 - 196, 1 Jan 1999.

[15] Tibshirani R and Hinton G, ”Coaching variables for regression and classification,”
Statist. Comput, vol 8, pp: 2533, 1998.

(16] Turney P, The identification of context-sensitive features:Aformal definition of con-
text for concept learning, in Proc. 13th Int. Conf. Machine Learning (ICML96),
Bari, Italy, 1996, pp: 5359

[17] Turney P, The management of context-sensitive features: A review of strategies,
in Proc. 13th Int. Conf. Machine Learning (ICML96), Bari, Italy, 1996, pp. 6066.

[18] Verhasselt J and Martens J.P, ” Context modeling in hybrid segment-based/neural
network recognition systems,” Acoustics, Speech, and Signal Processing, ICASSP
'98. IEEE, vol 1, pp:501 - 504, 12 May 1998.

[19] Vojislav K , ”Learning and Soft Computing,” The MIT Press pp:1 - 576, 2001.

[20] Wrobel A, Kubik E and Musial P, Gating of the sensory activity within barrel
cortex of the awake rat, Exp. Brain Res, vol 123, pp: 117123, 1998.

[21] Yeung D.Y and Bekey G, ”On reducing learning time in context-dependent map-
pings,” IEEE Trans. Neural Networks, vol 4, pp: 3142, Jan 1993.

onggwan and Gader P.D, ”"Morphological shared-weight neural network for

22] Y W and Gader P.D, ”Morphological shared-weigh al k f
pattern classification and automatic target detection,” Neural Networks, 1995. Pro-
ceedings., IEEE International Conference, vol 4, pp: 2134 - 2138, 1 Dec 1995.

(23] Yu H,H and Jeng-Neng H ”Handbook of Neural network signal processing,” CRC
Press pp:1 - 384, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 T
,Appelndlx

hisg the C++ Source .code of the 51mu1atlon example in thlS renort
Trafflc Controller fan : Senmie

/s

.wample

{#1nclude "stdafx hi.
- #i nclude1<std1ib,h$
yelude “stdioh>
'<math h>

CSHUGE WAL 1 &
+HUGE_VAL

v ;Doubie,,
¢ Double

farog

T flC nght Intervals
umber of Patterens -

RNN Number Of Outputs},-.

) Number Of Hldden[OI e
MNN Number ®f Outputs 0} ,N.f

{Number of Inputs[l] 3 Number Of: Hldden[l]

" Number Of Hldden[l] 7 RNN.] Number Of Outputs}},

‘1nt Data In Integer [Number Of Patterens][z*Trafflc DlmenSlons “F
3 Traffic nght Inteérvals]; :
double Data In Double [Number Of Patterens]lZ*Trafflc Dlmen51ons *
fraffic _Light: Intervalsl; Ty SR

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

#define Training End. P01nter
’#deflne Test. Start - P01nter
Bdefine Teést ~knd. P01nter

'#deflne

Tra flC Impact (100

\Spped Galva”"b
Car Start;"

Max:ilnters ctlon Flo

#define i
”%défihéf

#define Training_ Start. Pointer

int. Loaded Trafflc Indlcator[Trafflc D1mens1ons]-

Impact on. Opposrte D1rect10n Percent (95)
‘. The 11de}x ot the green Interval for Nurch —qout:h

Green EW (ll) // The"ndex of ths green In"erva; for F‘ast -m/esi: The Cbange towazds tfze
: e same side :

fdefine can- Cross.. In sYellow. . Percent (50)
#define
#deflne Green] NS 4y

ellow ManRed

(History.Tmpact)

(4 * Number Of Patterens/ 5)
(Tralnlng_End P01nter+l)

- {Number_Of Patterens)

{2 ll 212, 2 15 2 14}

S CaY

//

Impact .on Opp051te Dlrectlon Percent)

Rate‘ //((

Starter Max, St

r“Y “low - Max, Trafflc Cycle-(2 *

(Starter Max+Y

’/ i Vectm" Time !

1nt Stage Mln[Trafflc’

B May VFCCOI’ Tlme
_1nt.Interval B[Trafflc nght
;1nt Interval

Ihauplrg arrav be
"/‘ {011 for :the

én. the vecters

[Trafflc Light Intervals];

O bW af“(—tteu

ellow Max+Red Max)) Yellow Max, Red Max},

'ght Intervals] {0 0,05 0 Green Mln ‘Yellow: Max, Red Max,r*’

0 0,0, O Green Mln Yellow Max Red Max},

Intervals] ; ’/ L,utr)ur ;ectc,r _Intervals ;

and the. affec:od affic Dfrectfoﬁs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

he Change towards the other si’dé :

A4T2], 031 for:the minor ‘two affected. Directions.
’/ =1 Meam, 1o effe’cc On: ALY dlf‘PCt’lC"

',[Trafflc Light Intervals]_ {0

double Waltlng_Factor NS

ydouble Wai 'ng Factor EW s : :
double M n{2] [Pratfic nght Interv»ls 5
double5~Tra1nError[2], 9 : '
fdpublevﬁTralnErrorPredlctlngMean[2],
double TestError[2];
'ddubléfwTestErrorPredlctlngMEan[2]

double Input Max[2][2 * Traffic DlmenSLOns]
ddouble'Input Mln[Z] Traffic Dimensions]

fric ngnt a8
fflc nght I8,

1tervals],

L : oty South..East e
o : TS s s i s .
| int VDMap{4][Traff1c nght Intervals] :
: ; S{d0.0,2,05 1,1, 1,4,4, ,4,5,5,
42,1,35:2,:3, 3 <1,6.,5,7 ,6,7,7,—
{=1,-1,+1,-1,0,0, -1,—1, -1,-1
=l L,20, -4 2.2, 1,-1

ntervalsl:

1}I
1)) i
,‘o 0,01, 0, 1 o },

g ‘// Reau T =) Lntezvals :’azt ot)we

’"%S" S),

””fscanf(Flle Inputs
. for (] =0;

S
: fscanf(Flle Inputs,,'"%d"’
Data: In Integer[l][J +Step]

3 < Trafflc nght Intervals l

] ‘++)_

&GVar),

GVar i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N ,Da‘,ta_‘_In_Doub‘le[i 103 .+Step~] =dogb1é(c_;var) ;
l..
LS Tgnore ‘the Fars wau_:.ng (Seu)re} Part of the :Ile :
fscanf (File: Inputs oSt L e 8) :
‘fo: (vj =0; 3 <—Traffic-Dimensmons-l; J ++)

{ , ' .
R fscanf(Flle Inputs ,'"%d" pi&Chre) it
il : c i]

e Read t‘ze Cars ualcvng P.zrt: OF »tae lee

_ Step. —Trafflc Dlmen51ons .
”fscanf(Flle Inputs S wgan S),K_
for (j —0 3 <= Trafflc Dlmens1ons

o

i fscanf(Flle nputs .

sy <Number Of Patterens,; i ++)j{ ,

30205090 <2*Traff1c .Dimensions; 3 ++) A4

1f (Input Max{O][j]~Input Mln[O]{j] Y= 0y i :

Data in Double [if[g) = double(((Data In, Double[l][j]

ey Input Mln[Ol[J] Y/ Input: MaX[O][J]*
Input Mln[O]Ej])) * (HI Loy LO),

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Data_In_ Double ‘[i]:[j} Fo
fihatey [3 sTraffici Dimensions= 1) : :
Mean[lj[j —Trafflc Dlmen51ons] += Data In Double[l][j] /
i . : i Number:Of Patterens,v 5

;// SPW uaun’e A ray (LgPOre ‘L) : B
i forv(1 ,afflc Dlmen51ons, i_+f) {

LonS]—’ v
: ; -_"mens1ons] e e
double(((SPM Dcuble[l] ‘1Input Mln[O][l

iensl) o/ (Input Max[O +Traff1c Dlmens1ons]-
+Traff1c»D1men51ons])) *‘KHI LO) + LO)‘*: i

+Traff1c Dlmeu
Input M1n[0][1

[i103) = Lo

tipfor e =Traff1c Dl‘ ﬁéiéus, 5 <(2*TrafficTDiménsiQﬁs)}’:j'+%) {
: “Qutput Max[l]{ Traffic.Dimensions] = Input Max[2}{j];
Output Mln[l][j —Trafflc Dlmens1ons] = Input;Min[l][j};f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v01d InltlallzeAppllcatlon(v01d)

o _ . 5
' -»'Flle Inputs : fopen("Inputs Lobiquid EEE N B :
SFile NN Performance e g fopen (UNNPexf Ext™ 0wty
¢ File Outputs = foben("Outputs.txt® W) E
L ‘File Totals = £o‘p=n(Totals.txt” "a") s
- File Outpu Formated = fopen(" Formatted txtn ""'w:".)'_; .

fopen(" We.lghts txt"

 File NN Weight

St) :

1e) i 4/ speed

I uble Delay_In Start(lnt NC)// Delay in bt‘az‘L For

’-:{’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s _rétu;n'((Nc—l)*(Ayg;Distance;Betwéen;Stopping+Cars+Average;car_Lengph));”'
5 s s : & : DR g i e

g L e iy ; i
double T:Lme TO Cross(lnt NG dnt ROOt) S Root AL, #2 .For Tune Quddrar @ xzquatj.on vhlch is

: S : { f o 7 Time' o Croqs the NC walt.mg Ca S,
xadquble,a ,’b Giae ,.SqrtTerm ,.Outf' '
Ant Sign; S e

-‘J.f (NC>O)

- 1f (Root ——1)'Slgn =1; else Slgn —fl,v
a (double)O 5 e Speed Accelara on»,;g}

?, int Whlch)

of >Léyer #n(LAYER**) calloc(Number Of Layers[Whlch NN] ,.si;éof(LAXERf));
for (1=0; 1<Number§0f'Layers[wh1ch NNJ; L#e) (o . R R
SaNets >Layer[l] &“(LAYER*) ‘ma 100(51zeof(LAYER)), _T“_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Net-sLayer[lj->Number 0f. Neurons Number Of Neurono[Whlch NN][l],
- :Net-sLayer[l]->0utput =z {double*) ;

calloc (Number Of Neurons[Whlch NN}[11+1 ; 31zeof(double))
Net:s>Tayer{l]<>Error = (double*) . "" '
i eal loc{ Number, | of Neurons[Whlch NN][l]+lv, 51zeof(doubler);‘

. Net- >Layer [1]->Weight 22 {double®*) . e Tl =

. calloc(Number: Of Neurons[Which _NN] [1]+1 ; sizeof (double¥));
“iaNet= >Layer[l] ~>WeightSave = ‘(double**) o R

: : /alloc(Number of Neurons[whlch NNT[21%1

Net->Layer([l]->Delta _Weight . = (doublerx} oo o G

,alloc(Number of Neurons[Whlch NN]L1]+11,'Si?éof:dbubketjf;>ln;'

7§i2é9£(déub1eij;vi -

v:vibé—Number 0
[l} >We1ght[1

f Neurons[Whlch NN][l],

Net->Layer[0
Net - >Layer
fdouble(O 9)

t InputLine

Dlmens1ons,]'+¥)b{:@:

:j];

i : 1 <—Net >OutputLayer >Number Of Neurons, :i-++)'{-
Output[l»—l] ‘Net->OutputLayers >Output[1],\‘ e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ .

} .
//___._~. it Lt W L e : ,..A__._.___.,,,W.,«:.,_,.*_4..,..,,4...._,,_:;-.m...........,,....--,.,v
v01d Save Welghts(NET* Net o dntoWhich: NN)
g o . : . :
ine ol ﬁ.l-;’j i

for (l'l}~l<Number of Layers[Whlch NN ; 1++) o , g
for (io=1; i <=Net- >Layer[l} —>Number. Of Néurons; o)

for g =0s g <= Nét->Layerf{l-i}:>Number Of: Neurons,‘,] eyl

” Net >Layer[l]—>WelghtSave[1][J] Net >Layer[1] >Welght[1][3],

// , e : Si L : . .
VOld Copy Welghts{NET* NetO NET* Net}» 1nt Whlch NN):ﬁ

vzo

o Netl >Layer[l] >We1ght[1][3] ~>Layer[1]~>We1ght[1]"

fprlntf(Flle NN Welghts‘, "\nLayer

. Net , lnt Whn.ch NN)

5t (1=1; l<Number Of Layers[whlch NN], 1++) Cor i e v

forildo=ly i <=Net->Layer[l}->Number Of Neurons,“ TerEy
for (3 =057 § =iNetssLayer{l-1]43Number Of Neuréns: . +4+) {

" Net->Layer{l]-sWeight[i][j] = Net- >Layer[1l]->WeightSavel[i] i) "

o = ' B R R ; e :

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v01d Propagate Layer(NET* Net y LAYER* Lower ; LAYER* Upper)
(T L S : :
L inE Togpiagig
idouble: Sum; b i
- for (i =1; i Upper >Number of Neurons, Aoww)o e
. Sum = 0; b e
for(o J <= Lower—>Number Of Neurons,)L
; ,Sum~+— Upper >We1ght[1][j] * Lower >Output[3],: ,v’
Upper >Output[1] 1 / (l + exp(Net >Ga1n‘* Sum))

Lnt Whi;]

- int ForBest)

Upper >Welght[}}[l]

L@wé};>arro;[1] Net >Ga1n * Out * (I‘Outf7*’Err;?:

//- - i i . ¥ - : i L PR S 1 O R
v01d Back Propagate Neural Network(NET* Net i 1nt Whlch NN)
1nt l

for (1=Number. . of Layers[whlch NN] <1 151 1=-) ¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Back_ Propagate Layer(Net ., Net-s>Layerfl]

et : = Ll MBI LIC I T 8 SIo e w § SNSRI PR OFD TV S
void Adjust Welghts(NET* Net int Whlch NN) G
Lo I : : : .
'”1nt ;l’/ i-‘“" oo
double out. = Delta Welght

i ++)

.1] >Output[]],

te Neural Net ork(NET* Net . int Line , double* out

, Net-sLayer [1=11); "

>Layer[l l] >Number Of Neurons,j 3 ++) o

MNN - Numbert: Of Outputs], .
jRNN Number. | Of Outputs],v- o

'°'él:Netwdrk(NéE0
V(NetO . Netl sy

'mulate Neural Network(Netl_
) 0),,

NE’I‘*{ Netvl) »

-v01dtTest Neural Network(NET* NetO ,

Tj,double OutputO[MNN Number;Ofaoutputs];;
xdouble Outputl[MNN Number:Of outpits];:
,TralnError[G] =.0: vj” .

. TrainErrori{ll . Q;""

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

“for (Line=Training Start: Pointer; Line<=Training End Pointer; Line++) {
~Simulate Neural Network (NetO ., Line - OutputQ:; 0 ;>0 , false);
TralnError[O] += NetO=>Error;. . G s A
“Simulate: Neural Network(Netl ,YLine;L'Outputiv,,Oﬁ,jl yofalse);

- TralnError[l] i Netl >Error,
'}_’. g e ;

SoQE
£ Lne: Start P01nter,
: Slmulate Neural Network(NetO
IiTestError[O] +~ NetO >Error &

- xTéstEfforfO‘.
f TestError[lr‘

Llne<-Test Eni

/Pefformance ;'“\h : #1#
TralnError[l] / TralnErrorPredlctlngMean[l]

prlntf(Flle

(lCars Input Mln[Wthh NN][The]) /‘ el
+ LO)?

”return double((
;//-—f;—f--;h~--*-;- i —-——-—>;;-;~;~—----~-—v——777——
void Put Cars in Queue(lnt Llne) ' ‘
o jlnt Ao
sednt WaltlngCars— L ; G
Cfor i o=0s0d <—Traff1c Dlmen51ons 1 1O E)
o 5 o ' o
EURES A ks 5) S : : CL S ; 8!
“WaitingCars = int(Waiting:Factor NS *]DataéIn;In;eger[Llne]f;}),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

else ‘ :
WaitingCars = 1nt(Walt1ng_Factor EW: Data In Integer[Llne][ll),/
‘WaltlngCars+—RndInt(0 ;. Data In._Integer[Linel [1J= WaltlngCars) =

int{1 0% (Data In Integer[Llnelfl}— WaltlngCars)/2),
if (Wa1t1ngCars<0) WaitingCars =0;

= df (WaltlngCars>Data In Integer[Llne][ll)
WaltlngCars —Data In Integer[Llne][ll,

g;Performance Metrlcs[ll +— WaltlngCars,; e . S
. Cars_In Queuelil Data’ In Integer[Llne][l] WaltlngCars,-
»mWaltlng_In Queue[l} Performance Metrlcs[l],_.ig :

LastCarStartDelay
ComlngFlrst 0

1f (Rnddouble(o 0) Interval[i]) <= (LastCarStartDelay—- e
(ComlngFlrst * Mln Tlme Interval Between Runnlng Cars)))

{

Com1ngF1rst++ '_. R ; PR HE e
LastCarStartDelay = - Delay In_ Start(Performance Metrlcs
' [VDMap[31{i]] # ComingFirst). o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"

else

A e

o break;

Lk :
_IntefvalRem = Interval[ll,

LastCarStartDelay) v : L :
encugh: for crossing the Waiting cars so e w‘J‘.l_l cross_. and.some will . .
n'a WIl.L stav :m the rmx{:; waltzng l e ST

‘ // caluulat:c_ tne numba of cazs chat: w111 be able ‘o cros»
Loit frar the wazt:mg Z s‘. : :

ars In. Queue[VDMap[:][l]]
break

) o > : tnl) Cross z‘:he pz opa
Das: ract crossing ,o,_ all. the wa'

the delay from the remaining interval :
:udrl(‘P Metrlcs[

- FreeFactor (Loaded Trafflc Indlcator[VDMap[Depend] i] =
g g Cars In Queue[VDMap[Depend][ll]) : .
. /Loaded Trafflc Indlcator[VDMap[Depend][1]]
:1f (FreeFactor %0 7). FreeFactor=0; sy
AT et (.cLl(“ulate how mdny Cars Ean cross iF the oppae.vr:e dlrecc;w e enyty
i Théd Multm:v it bj tHe tree F or to ke thr= actyai Cars that oan . Créss:
CanCroess =0; : : L e e Er §

v g Fven The R.mnmq c‘ar Wikl hava ro slozv down:like a sr(‘p :
: // tovbe able to crosé S0 tdey Wi ,LL bha trea:ed ‘ag "Performance ‘Metrics cars

for le=lscs= Performance Metrlcs[VDMap[j][1]]+
Cars In: Queue[VDMap[;][l]], c++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jif o (Interval({i] 5= Time! To _Cross_Root Selected(c))
canCross=sc; ; : : : Fi
else .
s . break-‘
3 onlyiParg ol l:nem Can eross accozd_w] to:the:! cor.tespaaulag rraffic
1f (CanCross > O) CanCross 1nt(CanCross * FreeFactor),

if (Performance Metrlcs[VDMap[v][ll] > CanCross)

{U

Performance Metrlcs[VDMap[j][lII —=«CanCro§$;kigvfe

: ‘-Cape'I _Queue[VDMap[J][lll 'Canéfassvf Petfbr@aﬁcé;MétricSLVDMap[il{il):'
”K;Reffennance Metrlcs[VDMap[j][l]] e T

Tratfic cycle;

ectlans e
0y l),

‘v01d Push Text Llne(lnt Llne)
ey ke :
Ldnpedg e e
Cfprintf(File Outputs , "SeFar.. i
e:fprlntﬁ(Flle_Outputs Lohgsg v Line) s
| fprintf(File Outputs. , "Actual . ' '};:

sforiif il=0;hyi'<§T£affié;Dimensi6ns¥i} Cdok)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£ ; R P » : SR
< Iprintf (File Outputs % %34 7, Data In Integer(Linel(il):
“fprintf(File Outputs’, ." 'Programmed -Waiting"); : S .
bcfor (. i.=Traffic.Dimensions; - i <2*Traffic Dimensions; i &) "

fa . Sl i o i S
P "fprinthFile'Outputs ,v”%3d'“ ;-Data’In. Integer[Linel [4])::
ke : : g , S
*prrlntf(Flle Outputs L Programmed Intervals Y
J_for (1—0 1 <Traff1c nght Intervals, ad ++)

fprlntf(Flle Outputs }:"%3d w Data In Integer[Llne][l\x»
+2*Trafflc Dlmen51ons]),. C o

'Qy~

,*fprlntf(F‘le_Outputs ,’" NN Interva & B
. for (=0;: 1 <—Traff1c nght'Interval 1
e fprlntf(Flle Outputs ff“%3d'"¢' Interva_ B[l]},,~

fgfprlntf(Flle Outputsfq " Adapted Int
1 <-Trafflc nght Inter

Outputs

fprkntf(Flle "%3d

<-Trafflc Dlmens1ons l e ++)

zmdted "SoFar
mnated '"%Sd o
v.”Actual»

'le Outputs Fn-

[Linel [11);

‘ _ Outputs Formated ;v Programm d W ;tlng);*T
“for. (i =0 1 == Trafflc Dlmen51ons S e

fprlntf(Flle Outputs Formated
: +Traff1c Dlmen51ons])

i%3d "“;;Dat;;in;integertbinélfi,’,

,,prlntf(Flle Outputs Formated " NN Waltlng "),
"for ¢ 1»=0 L <-Trafflc DlmenSlOHS l A ++) :

iﬂ

o fprlntf(Flle Outputs Formated “"%3d i ,.Performance“MetricSIi]);-
0 . oLl S !
}_fprlntf(File+0utputs;Formatedg,'ﬂ\na);_

v01d Adapt Next Trafflc Loads(lnt Llne o 1nt Whlch NN)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: int- it o : R
Dfor (i =0p 4 <Traffic Dimensions; i ++)

L

©Data In Double [Line] [Trdffic Dimensions + ~i]= v
- Normalize Input(Performanceé Metrics{i] ;i 5 Which NN):;

kiv

TheOne ,‘_ Rém=0 TOT;O-, . GiveToNS=0 , GiveToEW=0;

:'b;élsé'TﬁeOhe::

'(‘T3’“>'St;ar‘tef‘;is¢ax:)/ .

Réﬁ~Rém'+ (T3 —\Starter Max)
T3 Starter Max,;: £ .

o ‘(Interval_B[7] >_'Interval B[8]) TheOne =7 >
X (Intervale[TheOne] < Interval B{9}) Theone =

J‘"Interval[TheOne] : T3
_flf (ThHeone == 7 ek T3>0) L L
_ - Interval[lO]— Starter Yellow Max,_‘f} S
velse;igj' ; : S e

b

e Interval[lO]— 0

”Rem—Rem +Interval B[lO] Interval[lO],
Intervalil5) : &
»}WInterval[12]— Yellow Max,

oInterval [6) = :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interval [13]= Red Max;: Lol L

Rem: &= Rem:+ Interval: B[5] -Interval[5];

Rem = Rem:+ Interval B[12] +sIntervalll2l;:
Rem = Rem + Interval B[6] -Intervall6];
Rem .= Rem + Interval B[13] :~Interval[13]i .
'for (1-*0 1 <Number of; Outputs[OI, i)

: ToT+ Intervalfll,

*;GiveTbNS\ ‘nt((Interval B[4]/(Interval B[4]+Interval B[ll])) *1Rem);5ﬂ
. GiVeToEW = Rem- G1veToNS~j ; 5 T
/v'Interval[4 ‘Interval B[4]+ leeToNS

- Intervall ’Interval B[ll]+ leeToEW;w,

Calc Metrlcs(Llne),
AdaptvNext Trafflc Loads(Llne

Performance Metrlcs‘TotalSLl} +—vPefofmence,MetriceLil,,_

i Push Text Ll e(Llne),; E
'fKLlne Number of Patterens 1) G e
Push Totals Llne("Before cadhrio

#fﬁrg(1,;0* A <Traff1c Dlmens1ons, i %4) o

0, :

mance. ! Wlthout SPM(NET* Net)

ointo i Llne,; '
double Output[RNN Number Of Outputs},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (Llne Tralnlng_Start Po;nter, Line<#Number_Of_Petterens—1;'Line++)
bif'(LIne= 535)
: Liithe =:Liine; g ‘ : L e
prlntf(“\nTrafflc Shaplng %3d" seasa o Line);
Simulate. Neural:Network(Net . Line:, Output. ;. 0, L, false)y
for € 1.0 <Number Of Outputs[l], 1 +4) S
X o ' : ;» s
L Pe:formance Metrlcstll = De Normallze Output(Output[l] -,vi)jmb

i =05 1'<Traff1c llmen51ons~“'f++)ﬁ}:"

f?efﬁormaQQe_Metrics_Totals[i]“+;-RerfgrméQCe+Metric${i}j;fle

‘fprlntf(Flle Outputs Formated 5"\n Total Performance Metrlcs Is"), ‘,,
’.fprlntf(Flle Outputs Formated S "An _4*——‘—*———3——f-\n")j : S
rmated 5

. a _Sta POlnter: Llfs
'»‘C:irrvlntAl C 1T : :.\..f 'k(Netl i

double OutputO[MNN NUmber of CutqﬁtSJ}j,,ﬁV
double Outputl[RNN Number -Of output

S SDI" Duuble Ar :
for | lv# P <Traff
- 1f (SPM Double [1]'

»Dlmens10ns, dokE) L

Output: Mm[l] SPM Iriteger 111

L1ne<Te t End Po:Lnter,

for (Line-Training Start Pointer; ; Liness

Restore Weights (Netl , 1);
for (a=0; a<Epochs; a++) { Shtn e e R R
: SimulatefNeural_Network(Netl Jobiine s ooutputl o1, 1o, true)il

Sy , v
Copy: Welghts (Net0, Netl L 0) R o e
'Slmulate Neural Network(NetO ; Line Vo Output0 -0 50 false)

senforid i:=0; i <Number Of Outputs[O], i ++)
R : :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

{,

Push Tota

for ﬁ ; =@:

'Interval_BLi]’
_Data;In*Doub@e[Llne][Z*Trafflc_Dlmen51ons+ 1]— OutputO[l],

ush Text Llne(Llne) e
if (Llne =Test Eqd Pointer- l) : :
1ne(After" J Epochs),_‘

1 <Traff1c Dlmen51ons,

De:Normalize Output(OutputO[l] i 0);

Adapt.Intervals();
Calo Metrics(hine); = i

© Adapt.Next TrafficiLoads(Line , 0); = -
for (. i :Of'i <Traffic Dimensions; i ++)

Performance Metrlcs Totals[ll +- Performance Metrlcsil],

i ++)

Q‘lnt Increas1ng 0
'double

"IncreaSLng++

SoFar

f;(

IncreaSLng

'prlntf("\nNetw”

"'Test Neural Network'(&Net[O] ; &Net[l]

*‘&Net[l]

’

‘110‘0 ‘

s Tralnm_ g

TestError[O] 5 TestError[l]),

{ TestError[O} < MlnTestError[O] &k TestError[]] &
MlnTestError[ll) L : : ;

vlf (MlnTestError[O] = TestError[O] > 0 001 & MlnTestError[ll
: TestError[l] > Q 001) : : :

0;'

rror#O— %f Erfbr#o”;,,iﬁﬂ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~fprintf(File NN_Performance', * - saving Weights ..."); -
‘MinTestError[0] = TestBrror[0];: Fn ‘ S
MinTestError[l] TestError[l}, :

Coelse G i
iRt Increa51ng >= |] : G : : :

f (MinTestError(0] - TestError[O] <= 0 001 &5 MlnTestError[O] =

: TestError[O] > 0. 0)|| (MlnTestErrorIll = TegtError[l] <= 0. 001
&& MlnTestError[l]f-/TestError[lj >0000) 0y G

 'fpr1ntf(F1le NN»Perf”:
b Welghts
.Stop = 1 :

;;?Performance W1fr;~‘_
. fprintf(File Outputi
"Efprlntf(Flle- 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

