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Abstract

Caland and Hogarth Pit Lakes formed after cessation of mining and
dewatering efforts of open-pit iron mines, near Atikokan, Ontario. They were
assessed for water quality changes since monitoring began in 1998. Stable
isotopes were used to evaluate trends in water columns and gain information on
geological processes influencing water quality. Chronic toxicity investigations
were carried out for Hogarth Pit Lake.

Approaching depths of 200 m, both pits have been filling with groundwater
and precipitation since termination of mining in 1979. Limestone and carbonate
deposits in the area counter production of acids from waste rocks, resulting in
near-neutral pH’s in both lakes. Although proximal pit lakes, there are major
chemistry differences between them. Caland is characterized by alkaline,
nutrient rich, while Hogarth has elevated conductivity, total dissolved solids
(TDS), and SO4* levels. Monitoring trends reveal gradual dilution of both pit
lakes since 1998. Hogarth has pronounced seasonal variations, with winter
months having elevated levels of the aforementioned parameters. Similar 5**S
profiles in Caland and Hogarth suggest pyritic lenses in the ore body are the
major source of sulfates for both lakes. Caland 8">Cpic values reveal organic
inputs are the major sources of carbon, whereas Hogarth’s major source of
carbon comes from weathering carbonates.

Hogarth Pit Lake has experienced a change in toxicity. In 1999 the lake
was acutely toxic, and by 2005, chronic effects were present. Chronic toxicity

testing using Ceriodaphnia dubia resulted in intermittent toxicity occurring in the



winter months. Toxicity Identification Evaluation (TIE) tests did not successfully
isolate the cause of toxicity, which led to exploration of TDS toxicity using mock
effluents. Mimicking concentrations of the most abundant ions (Ca?*, Mg**, and
S04%), mock effluent test results on both C. dubia and Lemna minor suggest
TDS were responsible for the majority of toxicity in Hogarth. Bioaccumulation
studies using Eleocharis smallii and Pyganodon grandis resulted in elevated
concentrations of S and Ni in tissues exposed to Hogarth water. Metals

contributing to toxicity in Hogarth, especially Ni, could still a possibility and should

not be ruled out.

it
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GENERAL INTRODUCTION

General Information

Northwestern Ontario has an abundance of natural resources. Many
established northern communities were and have been sustained by mining
activities. The mining industry however, experiences “boom and bust”
fluctuations, with aggressive exploration and extraction practices followed by
mine closures. Results of such behaviours have left widespread ecological
footprints in the northern landscape.

Progress towards environmental responsibility within the industry has
been made. In recent years regulations, programs, and legislations at both
federal and provincial levels have been implemented. Such examples include
Environmental Effects Monitoring (EEM), Accelerated Reduction and Elimination
of Toxics Program (ARET), Ontario’s Municipal/Industrial Strategy for Abatement
(MISA), and amendments to the Ontario Mining Act. Amendments to the Ontario
Mining Act, part VII, requires, as of 2000, specific closure plans for all mining
operations.

At the time of discovery in 1930, Steep Rock Iron Range, located just
north of Atikokan, Ontario was the richest large deposit of iron ore in North
America (Steep Rock Mines, 1943). Developmental and operational
complications arose due to the ore body being located beneath Steep Rock
Lake. The lake was the shape of the letter “M”, comprised of the “West Arm”,
“Middle Arm”, “East Arm”, and “South Arm”. Authorized under Canada’s War

Measures Act due to a period of wartime emergency, isolation and access to



Steep Rock Lake required major changes to the landscape (MNR, 1986). A
massive diversion of the Seine River, which flowed through Steep Rock, was
executed in 1944. This included the construction of various dams and tunnels to
isolate areas of the lake under which the ore was located. Access to the ore
body was accomplished by draining 5.7 x 10"" L of water from the “Middle”, “East
Arms”, and “Southeast Arms” and removing 2.25 x 108 m® of overburden
(Steeprock Resources Inc, 1986). Mining of the Steep Rock area continued for
35 years until 1979, yielding 79 Mt of iron ore from Caland Ore Company and
Steep Rock Iron Mines (MNR, 1986). On April 1%, 1988, a Surrender Agreement
was signed by Steep Rock Mines and the Ministry of Natural Resources (MNR);
and as such, the MNR became the owners of the previously mined area,

including Caland and Hogarth Pit Lakes.

Pit lake characteristics

Pit lakes form when open-pit mining operations cease, dewatering efforts
stop, and the pit fills with water most commonly through inflows of groundwater,
runoff, and precipitation. General characteristics of pit lakes are summarized in
Table i. Environmental concerns from the operation of large open pits include:
regional effects on water tables, rate of pit lake filling, ultimate water quality,
limnology, and potential impacts of the lakes on wildlife (Shevenell ef al, 1999).
Particular concerns in this study were centered on water quality and impacts on

aquatic life.
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Controls on pit lake chemistry are complex and include, but are not limited
to: groundwater chemistry and inflow, precipitation/evaporation, limnology and
internal chemical processes, geochemical influences, pit wall-water interactions,
and biological processes (Eary, 1999; Castro and Moore, 2000; Bowell, 2003).
Acid mine drainage and acidic pit waters are largely influenced by local geology,
and are of concern in previously mined areas. Relative abundance of minerals
that generate (i.e. pyrite) or neutralize (i.e. calcite) acidity ultimately determine
whether water in contact with a deposit will be acidic (Shevenell et al, 1999).
Due to their neutralizing effects, contact with calcite (CaCO3) and dolomite
(CaMg(CQOs;),) result in better water quality. To generalize resulting
characteristics of pit lakes, Eary (1999) outlined three main categories of pit
lakes. These are based on trends in total dissolved solids (TDS), major solutes,
and metals in hard rock pit lakes: (1) acidic-high TDS, (2) alkaline-high TDS, and
(3) circumneutral-low TDS. Based on this classification, Caland Pit Lake fits

category 3, while Hogarth corresponds with category 2.

Analysis of Water Quality Monitoring Data

Analysis of water quality monitoring data can be difficult due to large data
sets, numerous variables, and many spatial and temporal variations. Multivariate
statistical techniques can be applied to characterize and evaluate surface water
to verify temporal and spatial variations linked to seasonality (Singh et al, 2004).

Applications of different multivariate statistical techniques, including

cluster analysis (CA), principal components analysis (PCA), factor analysis (FA)



and discriminant analysis (DA) can aid in the interpretation of complex data
matrices and allow for a better understanding of the water quality and ecological
status of studied systems (Shrestha and Kazama, 2007). To determine

dimensionality of group differences and to summarize the differences between

groups, DA can be used (McCune and Grace, 2005).

Stable Isotope Analysis

Isotopes are atoms of the same element that have different numbers of
neutrons, but the same number of protons and electrons. Two possible
mechanisms govern isotopic abundance of elements (1) decay of radioactive
elements to their stable daughter products and (2) isotopic fractionation during
mass-dependent physical, chemical, or biological processes (Allen and Lepitre,
2004). To “fractionate” is to change the relative proportions of various isotopes.
As a result of the fractionation process, water and solutes develop unique
isotopic compositions (ratios of heavy to light isotopes) that can be indicative of
their source and/or the processes involved in their formation (Kendall and Doctor,
2005).

Environmental stable isotopes are the naturally occurring isotopes of
elements found in abundance in our environment: H, C, N, O, and S (Clark and
Fritz, 1997). These environmental isotopes can serve as tracers of water,
carbon, nutrient, and solute cycling in the environment (Allen and Lepitre, 2004).
Isotope-based studies are now integral components in water quality and

environmental studies. Stable isotopes have been used in pit lake studies to



better understand past and present mechanisms influencing the water chemistry,
and more accurately predict future dynamics of the systems (Allen and Lepitre,
2004; Dold and Spangenberg, 2005; Pellicori et al, 2005; Gammons et al, 2006,

Trettin et al, 2007).

Toxicity Testing

Many motives exist for toxicity testing; whether they are for exploratory,
monitoring, or regulatory purposes. Applications include assessing effects of
present toxicants in aquatic or terrestrial ecosystems and attempting to identify
cause of tOxicity in these systems (Environment Canada, 1999).

Historically, when effluent has been identified as toxic, or suspected as
being toxic, a sample is analyzed for “priority pollutants” (i.e. heavy metals,
volatiles, organics, etc.). Concentrations of such pollutant(s) present are then
compared to literature toxicity data with the goal of determining which pollutant(s)
is responsible for toxicity (U.S. EPA, 1991). Of course, the first of many
problems is variability of effluents. Since numerous constituents can contribute
to toxicity, distinguishing one or multiple toxicants as causative by comparing
their concentrations to literature values can be daunting. Furthermore, when a
combination of multiple toxicants serve as the cause of toxicity, conventional
methods fail to measure such matrix effects (U.S. EPA, 1991). If toxic effects are
present, with no known cause, Toxicity Identification Evaluation (TIE) test
methods can be performed. TIE methods employ physical/chemical

manipulations on the effluent in an attempt to determine whether any



manipulations result in a reduction in toxicity (Norberg-King et al, 2005a). If
toxicity is not reduced after TIE manipulations and sample conductivity exceeds
2000 ps/cm in freshwater, total dissolved solid (TDS)-related toxicity should be
investigated (Waller et al, 2005).

TDS consists of a combination of ions (Ca**, Mg®*, Na*, K*, HCO3’, C,
NOs", and SO4%). Elevated levels can cause toxicity through: increases in
salinity, changes in ionic composition of the water, as well as toxicity of individual
ions (Weber-Scannell and Duffy, 2007). The aforementioned authors state that
increased salinity can cause shifts in biotic communities, limit biodiversity,
exclude less-tolerant species, and cause acute or chronic effects at specific life
stages. To confirm toxicity caused by TDS, employment of mock effluent testing
(prepared effluent using ionic salts to match effluent quality) has been successful

(Kennedy et al, 2005; Norberg-King ef al, 2005b).

Objectives

This study had two broad objectives: to continue monitoring and assess
the water quality of Caland and Hogarth Pit Lakes to gain a more comprehensive
understanding of their characteristics and major influences on water chemistry;

and secondly, to investigate the toxicity of Hogarth Pit Lake.



Chapter 1: Water Quality Monitoring of Two Pit Lakes in Northwestern
Ontario

1.1 Introduction

Following cessation of mining and dewatering efforts in the Steep Rock
area, the mined pits began filling through combinations of groundwater, runoff,
and precipitation. Abandoned mines were up to 300 m below the original lake
level of 70 m (Steep Rock Resources Inc., 1986). This resulted in the formation
of the two main pit lakes: Caland and Hogarth. These pit lakes have been the
sites of two previous studies (McNaughton, 2001; Vancook, 2005).

Caland Pit Lake supports a diverse aquatic community, including Snow
Lake Fish Farm started in 1988, currently not in operation. Hogarth Pit Lake
lacks higher forms of aquatic life and has experienced a change in toxicity over
the years. In 1999 the pit lake was acutely toxic, but by 2005, chronic effects
were present. Both lakes are meromictic, primarily due to elevated levels of
dissolved solids in the lower portions (hypolimnion) in combination with such
deep waters, yet overall chemistries do significantly differ ever since monitoring
began in 1998.

Caland Pit Lake is characterized by having an anoxic layer, with the fish
farm once located in the upper, oxygenated freshwater lens, higher levels of
nutrients (TOTN and TOTP), pH, dissolved organic carbon (DOC) and alkalinity.
Caland is a circumneutral-low TDS pit lake (Eary, 1999). As proximal pit lakes,
they are in an area with similar climatic effects, groundwater, and geology, hence
the differences in water quality and resulting aquatic life is an interesting

phenomenon.



Hogarth Pit Lake has higher levels of total dissolved solids (TDS)
comprised mainly of Ca?*, Mg?*, and SO4>, and related parameter including
hardness and conductivity. Eary’s (1999) characterization, classifies it as
alkaline-high TDS. Hogarth water chemistry in particular has changed
considerably since monitoring began. Detailed chemistries can be reviewed in
McNaughton (2001). Observational changes within the lake began with
McNaughton describing the lake as milky-olive in colour with noticeable iron floc
compared to recent observations of clear water with no floc. Although monitored
since 1998 (with the exception of 2001), more insight into the processes
responsible for the variations in water quality were needed. This can be done by
exploring the data of each lake annually and seasonally using multivariate
analyses and introducing the use of stable isotopes in monitoring pit lakes.

Chemical differences with the meromictic pit lakes have been documented
(McNaughton, 2001; Vancook, 2005). Focusing on trends over a longer period of
time is critical as the water in these two pit lakes will eventually combine to
discharge into the Seine River system, producing potential adverse downstream
effects. Seasonal variations are also of interest, as Hogarth Pit Lake now
exhibits toxicity during winter months. Environmental isotopes were employed to
determine processes and factors influencing the water quality of these pit lakes.

Clark and Fritz (1997) state that environmental isotopes (H, C, N, O, and
S) of principal elements in hydrological, geological, and biological systems, can
serve as tracers of groundwater sources, recharge and subsurface processes,

geochemical reactions and rates, and biogeochemical cycles. Within the



hydrological community, isotope-based methodologies have become well
established for water resource assessment, development, and management; and
are now becoming an integral part of water quality and environmental studies
(Clark and Fritz, 1997; Kendall and Doctor, 2005). Since pit lake water
chemistries are greatly influenced by physical, chemical, and biological factors,
environmental isotopes can serve as an important tool in both qualifying and
guantifying them.

Stable isotopes of oxygen and hydrogen can provide information on
sources of groundwater recharge and recognize physical processes, such as
evaporation that have affected water isotope composition (Allen and Lepitre,
2004). Stable isotopes can also aid specifically in pit lake studies through
identifying sources of water and S04%, quantifying evapo-concentration effects,
observing presence or absence of mixing/turnover, and placing constraints on
mechanisms of pyrite oxidation (Pellicori et al, 2005).

This study continues the water quality monitoring of Caland and Hogarth
Pit Lakes. The objectives of this chapter are (1) to assess water quality trends
over time and seasonally through the use of multivariate statistics and (2) to
introduce stable isotope analyses to evaluate trends in the pit lake water columns

to gain more insight into possible influences on water quality.
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1.2 Methods
1.2.1 Site Description

The study sites were Caland Pit Lake, located at the former Caland Ore
Company and Hogarth Pit Lake, located at the former Steep Rock Mines near
Atikokan, Ontario, Canada (48°48'N, 91°39'W). Major construction efforts were
required to access the iron ore, which was located under Steep Rock Lake.
Activities included diverting the Seine River, draining the Middle, East, and
Southeast arms of Steep Rock Lake (5.7 x 10"" L of water), and removing 2.15 x
102 m® of overburden (Steep Rock Resources Inc., 1986) (Figure 1.1). As of
2006, both pit lakes were approximately 200 m in depth. Caland and Hogarth pit
lakes areas were approximately 120 ha and 100 ha respectively.

This area is located in the southern margin of the granite-greenstone
Wabigoon Subprovince of the Superior Province of the Canadian Shield
(OMNDM, 1994) and contains Archean metavolcanic, metasedimentary and
intrusive rocks which were displaced by a series of faults (Shklanka, 1972).
Footwall rocks, east of the ore zone, consist of the Marmion Complex, the Wagita
Bay Formation, and Mosher Carbonate. To the west of the ore zone, the
hanging wall consists of the Witch Bay formation and Dismal Ashrock (Kusky and
Hudleston, 1998). The ore zone itself, the Jolliffe Ore Zone, extends up to 400 m
in thickness and is subdivided into three members: Manganiferous Paint
Member, Geothite Member, and Pyrite Member (Joliiffe, 1966). Some
differences have been noted in geology between the two mine sites, mainly

concerning deposits of pyrite. The Steep Rock Mine site mineralogy, located in
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the middle zone (now Hogarth Pit Lake), contained the main pyritic unit between

the dolomite and ashrock (Shklanka, 1972).
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1.2.2 Field Procedures

1.2.2.1 Water Quality Monitoring

Two sampling locations were utilized on both Caland and Hogarth Pit

Lakes, corresponding to the previous sites used in McNaughton (2001) and

VanCook (2005), as shown in Figure 1.2. Hogarth Pit Lake sampling locations

were A (48°49'15”N, 91°39'03"W) and B (48°48’23"N, 91°38’36") and Caland

12



sampling locations were A (48°49'23"N, 91°36'55"W) and B (48°49’01"N,
91°36°21"W).

Water samples were obtained using a 2L Kemmerer on a calibrated rope
and transferred into 500mL polyethylene bottles. Depths sampled corresponded
with the mixolimnion (2m), chemocline (~18m), monimolimnion (40m), and 1 m
off bottom. Duplicate samples were taken at random sample depths, one from
each lake, and during each sampling period. Sampling times coincided with
each season, when possible. During the course of this study, sampling took
place in 2004 (spring, summer, and fall), 2005 and 2006 (winter, spring, and
summer).

Dissolved oxygen (DO) and temperature profiles to a depth of 40m were
obtained from each lake at both sites A and B with a YSI model 57
DO/temperature probe. In the summer of 2006, a Hydrolab® Datasonde 4
measuring temperature, DO, conductivity, and pH, was used to acquire more
detailed depth profiles for each lake. Secchi depths were measured during ice-

free months using a secchi disk on a calibrated line.
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Figure 1.2. Site location map illustrating sample stations A and B.

1.2.2.2 Stable Isotope Sampling

Locations for stable isotope sampling correspond with sampling stations
“A” in Caland and Hogarth Pit Lakes (Figure 1.2), as these locations were easier
to sample from due to their locations on the lakes (more sheltered). Three
sample periods were included, corresponding with winter, summer, and fall (after
overturn) seasons. Winter samples (full ice cover) were collected on 03/16/06
(Caland) and 03/30/06 (Hogarth), summer samples were collected on 08/16/06

(Caland) and 08/17/06 (Hogarth), and fall sampling occurred on 01/11/06 (both
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lakes). A 2L kemmer bottle on a calibrated rope was used for all depths and
collected in 250 mL polyethylene sample bottles allowing overflow to ensure no
air in the samples. Depths sampled were: 2m, 10 m, 18 m, 30 m, 40 m, 60 m,
80 m, 100 m, 125 m, and near bottom (x-1)m. A ground water sample was also
obtained on 01/11/06 from a drilled well located at the Atikokan Airport, near the
pit lakes. Samples were not preserved or filtered and were kept at 4°C until
shipment for analysis. Water samples for full chemistry analysis were also taken

at these depths.

1.2.3 Laboratory/Analytical Procedures
1.2.3.1 Water Quality Analyses

All water samples were analyzed at Lakehead University Environmental
Laboratory (LUEL) in Thunder Bay, Ontario. LUEL adheres to strict Quality
Assurance/Quality Control (QA/QC) guidelines. Their commitment to QA/QC is
demonstrated through participation in both the Canadian Association for
Environmental and Analytical Laboratory (CAEAL) and the National Water
Research Institute (NWRI) proficiency testing programs. Principles followed to
ensure reliability of results consist of guidelines, procedures, and practices
developed and implemented to produce quality data. Blanks, certified standards,
reference materials, and replicates were used to verify effectiveness of QA/QC
procedures. Standard operating procedures (SOP) for all tests were modified
from Standard Methods for the Examination of Water and Wastewater 18"

Edition by Greenberg et al (1992)
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Alkalinity, pH, and conductivity were measured within 24 hours of
sampling. A 50mL sample aliquot was used to measure conductivity with an
Accumet probe using an Accumet XL60 Multimeter System. The same aliquots
were analyzed for total alkalinity and pH. Using a Mettler Toledo DL53 Titrator
and DL20 Autosampler, pH was measured with a Mettler DG111-SC probe and
total alkalinity was measured after being titrated to a pH of 4.5 with 0.02N H,SO,.

Sample aliquots for total metals analysis were acidified with 0.4 mL Fisher
Trace Metal Grade concentrated HNO;. After an open-vessel CEM Mars5
microwave-assisted digestion, samples were brought to 50 mL with double
distilled water (DDW) and analyzed on a Varian Vista Pro Inductively Coupled
Argon Plasma Spectrometer (ICP) with Cetac Autosampler.

Anions (S04%, NO3, and CI') were determined using a Dionex DX-120 lon
Chromatograph (IC) with an AS40 Autosampler. Samples passed through an
lonPac As14 Analytical Column. Samples with SO4 concentrations exceeding
400 mg/L were diluted accordingly. Cations (Ca?*, Mg®*, Na*, and K*) were
determined by ICP. Total hardness was calculated with results from separate ion
determinations of calcium and magnesium using the calculation: Hardness
(mgCaCOs/L) = 2.497(Ca* mg/L) X 4.118 (Mg?* mg/L) from Greenberg et al
(1992).

Total suspended solids (TSS) and total dissolved solids (TDS) were
gravimetrically determined and reported as weight/volume of sample. For TSS
samples, 200 mL of sample was passed through a 0.45 ym glass fiber filter and

dried at 103°C overnight. TDS samples were obtained from a 50 mL aliquot of
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sample that passed through the glass fiber filter, then poured in a glass beaker
and dried at 180°C overnight. Filters and beakers were desiccated to a constant
weight and final weights were recorded to five decimal places.

Total UV digestible phosphate (TOTPUV), total UV digestible nitrogen
(TOTNUYV), dissolved organic carbon (DOC) and NH3 were all analyzed on a
Skalar San-System Autoanalyzer. Water chemistry parameters examined for this

study and associated minimum detectable limits (MDLs) are listed in Appendix 1.

1.2.3.2 Stable Isotope Analyses

Samples collected for isotope analysis were analyzed at the Isotope
Science Laboratory in Calgary, Alberta. Isotopic compositions were measured
for deuterium/hydrogen (5D), oxygen (3'20), sulfur (5**S), and carbon (5'*Cpic).
Techniques for determination were as follows: 8D by chromium reduction method
adapted from Nelson and Dettman (2001), §'20 by CO,-H,0 equilibration method
of Epstein and Mayeda (1953), 84S by continuous flow elemental analyzer
isotope ratio mass spectrometry (CF-EA-IRMS), and &'*Cpc by phosphoric acid
digestions (McCrae, 1950).

Isotope values were reported in the usual & notation in units of %o (per mil)
relative to the following standards: Vienna Standard Mean Ocean Water (V-
SMOW) for 8D, and §'®0, Vienna Canon Diablo Troilite (V-CDT) for §%S, and
Pee Dee Belemnite (PDB) for 8"°Cpic. Accuracy and precision for the

aforementioned methods are summarized in Appendix 2.
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1.2.4 Data Analysis

Since this is a continuation of monitoring from previous studies by
McNaughton (2001) and Vancook (2005), Table 1.1 provides a summary of
sampling in the pit lakes since 1998. Separate sample locations on the lakes
(sites A and B) were averaged together, as differences between the sites have
never been detected. Averages were also taken when sampling occurred more
than once per season. Data used for all analyses was categorized by year,
depth, and season. Raw data for both pit lakes used in analyses can be viewed
in Appendix 3. Only preliminary analyses were performed on data sets with both
lakes present. Comparing and contrasting lakes with such difference chemistries
would be redundant; therefore, Caland and Hogarth Pit Lakes were mainly
analyzed separately.

Analyzing water chemistry can be challenging due to the frequency of
“censored values”, or concentrations of some elements reported as “non-
detected”, “less-than”, or “greater than” values which are created by the lower or
upper detection limit of an instrument and/or method used (Guler et al, 2002).
Since these censored values are not appropriate for many multivariate statistical
techniques and can compilicate all subsequent statistical analyses, these values
must be replaced with “unqualified values” (Farnham ef al, 2002). Values
commonly used to replace the <MDL values are 0, MDL, or MDL/2. A study by
Farnham et a/ (2002) which developed approaches to determine the best
substitution methods concluded that MDL/2 was the superior substitution.

Caution however, should be used when evaluating either censored data or data
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for which substitutions have been made. Changes in precision of methods may

have occurred, using various laboratories with different analytical

instrumentation, and creating biases in long-term trends (Porter et al, 1988;

Chambless et al, 1992; Farnham et al, 2002).

Table 1.1. Summary of sample information from monitoring of Caland and

Hogarth Pit Lakes since 1998.

Caland Hogarth
Location Depths (m) Seasons Year | Location Depths (m) Seasons  Year
Aand B 1,18, 30, (x-1) spring AandB 1,18, 30, (x-1) spring
AandB  1,18,30, (x-1)  summer(3) 1998 | AandB 1,18,30, (x-1)  summer(3) 1998
Aand B 1, 18, 30, (x-1) fall AandB 1,18, 30, (x-1) fall
A and B 1, 18, 30, (x-1) winter Aand B 1,18, 30, (x-1) winter
Aand B 1, 18, 30, (x-1) spring 1999 | Aand B 1, 18, 30, (x- 1) spring 1999
AandB 1,18, 30, (x-1) summer(4) AandB 1,18, 30, (x-1) summer(4)
Aand B 1,18, 30, (x-1) fall AandB 1,18, 30, (x-1) fall
Aand B 1,18, 30, (x-1) winter 2000 | Aand B 1,18, 30, (x-1) winter 2000
Aand B 1,18 spring 2002 Aand B 1, 18, (x-1) spring 2002
Aand B 1,18, (x-1) summer(2) AandB 1, 18, (x-1) summer(2)
AandB 1,18, (x-1) summer(2) 2003 [ AandB 1,18, (x-1) summer(2) 2003
Aand B 2,18, 40, (x-1) spring AandB 2,18, 40, (x-1) spring
AandB 2,18, 40, (x-1) summer 2004 | AandB 2, 18, 40, (x-1) summer 2004
AandB 2 18, 40, (x-1) fall AandB 2 18,40, (x-1) fall
AandB 2,18, 40, (x-1) winter AandB 2 18,40, (x-1) winter
AandB 2, 18,40, (x-1)  spring 2005 | AandB  2,18,40, (x-1)  spring 2005
AandB 2 18,40, (x-1) summer AandB 2, 18, 40, (x-1) summer
A 2,18, 40, (x-1) winter AandB 2, 18, 40, (x-1) winter
AandB 2, 18, 40, (x-1) spring 2006 | A 2,18, 40, (x-1) spring 2006
A 2,18, 40, (x-1) summer A 2,18, 40, (x-1) summer

Resolving the issue of “censored values” or in this case <MDL values was

approached in two ways: (1) removing parameters if the majority of data in both

lakes were <MDL and (2) replacing <MDL with MDL/2. For data where >90% of

the values were <MDL in both lakes, the parameters were removed which

included: As, Be, Cd, Co, Cr, Cu, Pb, and V. S was also removed as it was not
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measured prior to 2002 and SO,> was measured throughout the entire
monitoring period.

Parameters that resuited in >90% of value <MDL in only one lake, or
where was a trend in the parameter detectable in more recent years, the <MDL
values were replaced with MDL/2. Parameters detected more often in Caland
than in Hogarth Pit Lake were TOTN and TOTP whereas, NH; (in later years), Ni
(in later years), and TSS (in earlier years) were detected in Hogarth but not
Caland Pit Lake. Other substitutions for <MDL values were used in cases where
the parameter was not detected in earlier years of monitoring, either due to
different detection limits and/or changes in the actual chemistry. The timing for
these changes coincides with a new ICP used in the metal analyses. For both
lakes, Al and Ba were not detected until 2002 and 2003 respectively and Ni in
Caland was not detected until 2002.

A multivariate approach was taken to evaluate the monitoring data, using
discriminant analysis (DA), an eigenanalysis technique. DA was used to
describe and summarize differences between a priori groups of samples (i.e. by
year and season). Mathematically the same as multivariate analysis of variance
(MANOVA), DA emphasizes and summarizes the results differently.
Independent variables are used as predictors of group membership in DA as
opposed to seeking differences in dependant variables among groups in
MANOVA (McCune and Grace, 2002). The end result of DA is maximizing the
separation of prior groups. Direct DA was run using SPSS (SPSS, 2006) on raw

data.
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Due to repetitive nature of the sampling protocols over the years and
correlations among variables in limnology (i.e relationships such as TDS,
conductivity, and individual ions), the variables cannot be considered truly
independent; therefore, forcing assumptions to be violated during analyses.
Assumptions of DA include normal distribution, homogeneity of variance, and
independent samples, however, these assumptions are almost never met by
ecological data (Williams, 1983). Green (1971) stated that variables which are
highly intecorrelated with each other will be less effective at separating
discriminant categories. Therefore, all data was evaluated for high
intercorrelations (positive and negative) and the number of variables were
reduced to those that were representative (of the correlations) for use in the

discriminant analyses.

1.3 Results
1.3.1 Water Quality Monitoring

Over eight years of observations (seven years of data), there have been
some obvious changes particularly in Hogarth Pit Lake. Summer temperature-
oxygen profiles from Caland Pit Lake show the anoxic layer remaining intact at
the 25-30 m (Fig 1.3). The years 1998 and 1999 revealed slightly negative
heterograde shaped oxygen profiles. Throughout the years this trend moves
towards positive heterograde profiles. Hogarth Pit Lake illustrates a shift from a
relatively uniform (orthograde) profile (1998 and 1999) to a more distinct change

in dissolved oxygen with depth; ultimately resulting in positive heterogrrade



profiles (Figure 1.4). These positive heterograde profiles become increasing
pronounced from 2002 to 2006. The major difference between the pit lakes is
Hogarth remains oxygenated with depth while Caland is anoxic below 30 m.
Secchi depths for Caland Pit Lake averaged 3.9 m and in Hogarth Pit
Lake, 3.3 m. Caland secchi depths remained fairly consistent from 2004 to 2006

while Hogarth secchi depths did increase from 2.7 in 2004 to 3.7 in 2006.
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Figure 1.3. Temperature-oxygen profiles of Caland Pit Lake from summers
of 1998, 1999, 2002, 2003, 2004, 2005, and 2006 (averaged from the 2
sampling locations).
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1.3.2 Water Chemistry Analyses

1.3.2.1 Caland and Hogarth Pit Lake Water Quality

Discriminant analysis of Caland and Hogarth Pit Lakes together (by year)

shows distinct separations between the two lakes with Hogarth positioned to the

left of Function one and Caland to the right (Figure 1.5). The main objective was

to summarize the separation between the two lakes. Classification of data to

each lake was achieved with 100% accuracy, while classification of data to each

lake and year was done with 72.7% accuracy. Variables used in the analysis
were: alkalinity, conductivity, TDS, TOTP, and S04%. Of the six functions
derived, the first four were significant (p < 0.05) (Table 1.2). Table 1.3
summarizes the standardized canonical discriminant coefficients for the four
functions. Function one, accounting for almost all (99.0%) of the variation, was
characterized by TDS, conductivity, SO4%, and pH at the negative end (where
Hogarth sites are located) and alkalinity and TOTP at the positive end (where

Caland sites are located).
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Figure 1.5. Scatter-plot from DA of Caland and Hogarth Pit Lake water
quality data by year.

Table 1.2. Summary of statistics from DA of Caland and Hogarth Pit Lake
water quality data by year.

Function
1 2 3 4
Eigenvalue 362.612 1.793 .880 666
% of Variance 99.0 5 2 A
Wilks' Lambda / .000/ .091/ 2531 4757
Significance .000 .000 .000 .000
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Table 1.3. Summary of standardized canonical discriminant functions of
Caland and Hogarth Pit lake water chemistry data by year.

Standardized Canonical Discriminant Function
Coefficients

Function
1 2 3 4
ALK 2272 .564 672 -074
Cond -.537 -.194 121 1.410
S04 -424 -.027 .868 -.971
TDS -1.810 331 -.674 -.123
pH -117 .955 692 .323
TOTP .093 -1.037 222 -.058

1.3.2.2 Caland Pit Lake Water Quality

DA successfully separated the data by years with the groupings occurring
in time sequence from left (2006) to right (1998) along Function 1 (Figure 1.6).
2004, 2005, and 2006 data forms a tighter grouping to the left, while 1998 and
1999 form a tighter grouping to the right. Data points were classified to each
year with 94.8% accuracy. Of the seven canonical discriminant functions used in
the analysis, only the first five were significant (p< 0.05) (Table 1.4). A summary
of the standardized canonical discriminant function coefficients is shown in Table
1.5. The first function accounted for 83.6% of variation and was largely
influenced by NO3, Ni, and Ca on the positive end (with previous years) and
alkalinity, S0.7, pH, and conductivity on the negative end (with more recent
years). The second function accounted for 9.8% of variation shows separation

due to mainly alkalinity and pH.
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Figure 1.6. Scatter-plot from DA of Caland Pit Lake water quality data by
year.

Table 1.4. Summary of statistics from DA of Caland Pit Lake water quality
data by year.

Function
1 2 3 4 5
Eigenvalue 33.085 3.885 1.267 .687 447
% of Variance 83.6 9.8 3.2 1.7 11
Wilks’ Lambda / .001/ 031/ 149/ .048 / 150/
Significance .000 .000 000 .000 015




Table 1.5. Summary of standardized canonical discriminant functions of
Caland Pit lake water chemistry data, by year.

Standardized Canonical Discriminant Function Coefficients

Function
1 2 3 4 5
Ca 510 .590 3.954 .077 -152
ALK -7.154 2.200 2.604 1.116 3.449
Cond -.224 -614 -3.521 034 214
NO3 1.140 -.161 .045 .605 1.297
Al -.706 -1.174 -.274 -1.511 1.302
Ni 1.005 .857 207 1.901 -1.451
S04 -2.185 .187 -.709 .308 -1.124
pH -174 1.727 .265 .391 .046
NH3 -.071 -.761 -.400 -.579 -.014
TOTP 145 -.789 229 722 -.148

DA did not separate Caland Pit Lake data by season as well as by year
(Figure 1.7). Winter data aggregates to the right of function one, while the other
seasons overlap. Only three variables were used in the analysis, pH, CI', and
NHj;. Data points were classified to each season with only 44.2% accuracy. Of
the three functions, only the first was significant describing 83.6% of the variation
among the seasons (Table 1.6) and the standardized canonical discriminant

function coefficients are summarized in Table 1.7.
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Figure 1.7. Scatter plot from DA of Caland Pit Lake water quality data by
season.

Table 1.6. Summary of statistics from DA of Caland Pit Lake water
quality data by season.

Function
1 2 3
Eigenvalue .605 118 .001
% of Variance 83.6 16.3 A
Wilks’ Lambda / 557/ .894 / 999/
Significance .000 .086 .800




Table 1.7. Summary of standardized canonical discriminant functions of
Caland Pit lake water chemistry data by season.

Standardized Canonical Discriminant
Function Coefficients

Function
1 2 3
Ci 1.037 -.156 .948
NH3 .392 .936 -.019
pH 1.337 -.409 -.069

1.3.2.3 Hogarth Pit Lake Water Quality

As for Hogarth Pit Lake, DA successfully separated the data by years, with
groupings occurring almost in sequential order from left (2006) to right (1998)
along function 1 (Figure 1.8). Among the separations are groupings of years
along function 1: 2004, 2005 and 2006 to the left, 2003 in the middle, and 1998,
1999, 2000, and 2002 to the right. Data were classified to each year with 87.5%
accuracy. Of the seven canonical discriminant functions were used in analysis,
only the first three were significant (p < 0.05) (Table 1.8). A summary of the
standardized canonical discriminant function coefficients used in the analysis is
shown in Table 1.9. Function one accounted for 88.2% of the variation and was
primarily composed of Ca%*, Na*, Ni, pH, and TDS on the positive end (with
previous years) and alkalinity, SO,*, and TSS on the negative end (with recent
years). The second function accounting for 5.7% of the variation. This was
mainly due to pH and Ca®" at the positive end and Na* and TSS at the negative

end.
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Figure 1.8. Scatter plot from DA of Hogarth Pit Lake by year.

Table 1.8. Summary of statistics from DA of Hogarth Pit Lake water
quality data by year.

Function
1 2 3
Eigenvalue 35.140 2.275 1.955
% of Variance 88.2 5.7 4.9
Wilks’ Lambda / 002/ .068 / 223/
Significance .000 .000 .000




Table 1.9. Summary of standardized canonical discriminant functions of
Hogarth Pit lake water chemistry data by year.

Standardized Canonical Discriminant
Function Coefficients

Function
1 2 3
Ca 1.251 .817 -.690
Na 1.562 -.971 .700
ALK -2.032 .596 -1.424
Ni .808 .286 -.921
SO4 -.374 .051 1.395
pH 404 887 .087
TDS 179 680 633
TSS -130 -.793 379

Hogarth data were also successfully separated by season, with
summer/spring data to the left of function one and winter/fall data to the right
(Figure 1.9). Data were classified to each season with 84.4% accuracy. Three
canonical discriminant function were used in the analysis, all were significant (p <
0.05) (Table 1.10). Standardized canonical discriminant functions are
summarized in Table 1.11. Variables selected for analysis by season, include
most of those selected for year (except Ni and TSS) plus Mg®, K*, conductivity,
and CI". Function one described 61.3% of the variation and was mainly
comprised of Mg?*, Na*, SO,%, and TDS at the positive end (winter/fall data) and
CI, K*, and conductivity at the negative end (summer/spring data). The second
function, accounting for 25.7% of the variation, was shaped by conductivity, TDS,
pH, and Ca** at the positive end (fall data) and CI', K*, SO,%, and alkalinity at the

negative end (winter data).
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Figure 1.9. Scatter plot from DA of Hogarth Pit Lake by season.

Table 1.10. Summary of statistics from DA of Hogarth Pit Lake water
quality data by season.

Function
1 2 3
Eigenvalue 2.205 .960 433
% of Variance 61.3 26.7 12
Wilks’ Lambda / A1/ .356/ 698/
Significance .000 .000 .002




Table 1.11. Summary of standardized canonical discriminant functions of
Hogarth Pit lake water chemistry data by season.

Standardized Canonical Discriminant
Function Coefficients

Function
1 2 3
Ca .054 -.442 1.858
Na 1.366 .030 183
ALK 197 -.310 453
S04 1.180 -.550 -.204
pH .026 913 .768
TDS .346 -.944 .084
Cl -2.212 732 .896
K -1.730 718 -1.083
Mg 1.597 -.400 -1.362
Cond -.664 -1.064 -.288

1.3.3 Stable Isotope Analysis of Caland and Hogarth Pit Lakes

Figures 1.10 and 1.11 provide comparisons of temperature, DO, pH,
conductivity, SO4*, and hardness between the pit lakes taken at the same time
as sampling for isotopes. Some chemical data is missing for the November
sampling period, including temperature and DO readings. pH levels in the lakes
are roughly the same; Hogarth Pit Lake does display higher readings near the
surface during summer and fall sampling. These trends again confirm
differences in chemistry between the lakes; Caland Pit Lake’s anoxic layer and
Hogarth Pit Lake characterized by higher conductivity, hardness, and SO,*

levels.
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Both lakes have a similar range of 8'®0 and 3D values; however, Hogarth
is generally more depleted, as shown in Figure1.12: Caland Pit Lake 5'%0 (-8.3
%o t0 -11.1 %a) and 8D (-68.1 %o to -87.4 %) and Hogarth Pit Lake 5'%0 (-8.5 %o to
-11.6%0) and 8D (-71.1 %o to -89.9 %0). Hogarth Pit Lake profiles are less variable
with depth, which may be a result of sampling. However, enrichment of 880 and
3D is evident in both lakes in the upper 20-30 m compared to deeper waters. As
expected, a less pronounced trend occurs during the winter, due to ice cover.
Groundwater levels of §'%0 and 8D are -12.9 %o and -91.1 %o respectively. These
values are much lower in comparison to the pit lake surface waters. With depth,
the pit lake values do approach the groundwater values.

Profiles of 5**S do not vary much with depth or between lakes (Figure
1.13). 8*S values range from -2.9 %o to 4.3 %o in Caland and -3.2 %o to -3.9 %o in
Hogarth. Groundwater with a §**S value of 1.7 %o is near the §**S values found
in the pit lakes.

With respect to stable isotope analyses, depth profiles of 5'°Cp,c provided
the largest difference between the two lakes. Hogarth Pit Lake values ranged
from 2 %o to -2 %o; whereas Caland Pit Lake §'°Cpc values ranged from -4.4 %o to
-9.2 %o (Figure 1.14). Caland Pit Lake §'*Cpic values came closest to the

groundwater value of -12.7%o.

38



-14 -13
0r k-
50 [
E
§. 100 |
150 [ —8— winter 7
F| —&— summer b
F| —»— fall J
[| % groundwater a1
or e -
50 [ .
E r ]
g. 100 |- ]
150 | -
-14 -13 -12 -11 -10 -9
18
8 OV-SMOW(°/°°)

-8

SDv-smow(%")
95 90 -85 -80 75 -70 -85
1 Caland | 3
1 Pit Lake |
- - 50
- 4 100
- — 150
. 1
- . . ‘ 0
Hogarth | ]
Pit Lake| ]
- 350
- J 100
F — 150
i ]
F ]
95 9 85 80 -75 70 65
8Dy, _smow (%)

Figure 1.12. Depth profiles of 8D and 820 values in Caland and Hogarth Pit

Lakes from seasonal sampling.

39

Depth, m

Depth, m



34 34
5 sv.cn'r(%°) & Sv-co'r(%")

0-6 -4 -2 o] L2 -8 -4 -2 N

: ) 1f :
50 [- 7 c
: ] :
£ s r
g 100 3 C
E —e— winter . F
150 ~ —A— summer b -
E —»— fall ‘ F
F * groundwater F
o r

Caland Hogarth

Figure 1.13. Depth profiles of 53*S values
from seasonal sampling. '

in Caland and Hogarth Pit Lakes

1 50
4 100

1150

13 o 13 o
5 CD'CFDB(/W) 8 CD‘CPDE(AD)
-16 -12 -8 -4 o 4 -16 12 -8 -4
]
50 [ 3 L
r 1
E
§ 100 1 F
- —e— winter ] L
150 - —A— summer 7 r
F —»— fall ] r
E *  groundwater
r
Caland Hogarth

Figure 1.14. Depth profiles of §'*Cp,c values in Caland and Hogarth Pit

Lakes from seasonal sampling.

1 50
4 100

1 150

Depth, m

Depth, m

40



1.4 Discussion
1.4.1 Water Quality Monitoring

Observed trends in the temperature-oxygen profiles of Caland Pit Lake
confirm the presence of a freshwater lens over topping the anoxic layer with the
relatively consistent depth of 25-30 m. The positive heterograde oxygen curves
in the upper portion of Caland Pit Lake may be the results of seasonal freshwater
inflows and photosynthetic activities; while the anoxic conditions observed in the
hypolimnion results from the loading of organic matter, thus consuming the
oxygen (Wetzel, 2001). Presenting orthograde profiles in earlier years of
monitoring (1998 to 2003), characteristic of oligotrophic lakes, Hogarth Pit Lake
gradually developed a positive heterograde curve. Orthograde curves are
regulated mainly by physical processes during summer stratification, with oxygen
levels in the epilimnion decreasing as temperature increase. The formation of
the positive heterograde profile in Hogarth may indicate the presence of oxygen
production by algae in excess of oxidative consumption in the metalimnion
(Wetzel, 2001). Unlike Caland, Hogarth does not become anoxic at any depth.

Other observations noted over the years in Hogarth Pit Lake include
improved water clarity and presence of aquatic life. Secchi depths have
increased from 1.5 m (1998 to 2000) to 2.8-3.3 m. McNaughton (2001)
described the water of Hogarth Pit Lake as a milky-olive colour with noticeable
iron floc. During the course of this study, the water was clear, with no noticeable
particulate matter in the water column. This change in clarity roughly coincides

with water in the pit lake the joining to the water contained in a smaller adjacent
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pit, “Robert’s Pit" in 2003. Perhaps the mixing of these separate waters caused
some precipitation of floc in the water column. Dilution with groundwater over the
years may have also influenced the improved clarity of Hogarth water.

Presence of aquatic life in Hogarth Pit Lake was first discovered in the
summer of 2004 when grab samples taken at 1-2 m contained green algae
including: Oocystis, Botryococus, Monoraphridium, Diatoma, Synedra, and
Nitzschia. There have also been observations of gastropods (snails and other
small shelled organisms) and evidence of dragonflies near the shoreline areas.
In 2006 numerous larval casings of dragonflies were found on the shores at the
northern end of Hogarth. Most recently, in the summer of 2007, researchers in
the area observed schools of small minnows in pockets near the shores.

Attempts to trap and identify them were not successful.

1.4.2 Water Chemistry Analyses

Comparisons of water quality data from the pit lakes denote some
differences (Figure 1.5). A Wilk’s lambda of 0.00 for function one indicates
perfect separation of these groups (McCune and Grace, 2005). Function one,
accounting for most (99.0%) of the variation separates the two lakes by grouping
Hogarth sites to the left side corresponding to higher levels of TDS, conductivity,
and SO,% levels: and Caland sites to the right side corresponding to the more

alkaline, nutrient rich water (TOTP).
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1.4.2.1 Caland Pit Lake

Caland Pit Lake did show separation throughout the years. More recent
years (2004, 2005, and 2006) were separated from 1998, 1999 and 2000 data,
with 2002 and 2003 in the middle (Figure 1.6). The general trend shown is a
decrease in alkalinity, conductivity, and SO,* with time; as they are negatively
correlated to the left side of function one. It appears that Caland water is
becoming diluted over the years. Ni was positively correlated with function one,
corresponding to higher Ni levels in earlier years. TOTP and NO; are also
positively correlated with the right side of function one, coinciding with more
productive times. Fish farm operations have slowed over the years to nil
production, resulting in a decrease of nutrient inputs over time.

Caland water chemistry data did not show strong seasonal separations.
DA classified only 44.2% of data to the correct season. Although function one
accounted for 83.6% of the variation, the data were not well separated, as
indicated by the Wilk’s lambda value of 0.55. pH provided the highest correlation
coefficient for function one, corresponding to marginally higher pH values during

spring and summer.

1.4.2.2 Hogarth Pit Lake

Hogarth Pit Lake water chemistry data demonstrated strong separation
over time, with a similar pattern to Caland (Figure 1.7). 2004, 2005, and 2006
data aggregated to the left of function one, 2003 remained near the middle, and

1998, 1999, 2000, and 2002 data to the right. Function one accounted for 88.2%

43



of the variation and strongly separated the data (Wilk’s lambda = 0.02). To the
left of function one, data were separated due to lower alkalinity, SO4*, and TSS
values and to the right, data were separated by higher Ca®, Ni, and TDS values
(Table 1.9). As with Caland, with the exception of higher nutrient level in
previous years, Hogarth Pit Lake is becoming diluted with time.

Data separation by season was more successful for Hogarth Pit than
Caland Pit Lake, resulting in 84.4% accuracy for classification. The first function
accounts for 61.3% of the data; summer and spring data are positioned to the left
of function one, while winter and fall data are to the right. Function one
coefficients corresponding to the right include SO,*, TDS, cations (Mg**, K*, and
Na®), indicating these variables are elevated in fall and winter months. Function
two accounted for 26.7% of the variation, which was the highest value for a
function two throughout all analyses. This shows further separation of fall and
winter months: fall sites fall to the top of function two and winter sites to the
bottom. Coefficients corresponding to the negative (bottom) end of function two
include conductivity, TDS, SO,%, and cations (Ca** and Mg?*), signifying higher
levels of these parameters during winter months. These elevated levels may
result from a combination of ice cover limiting mixing of surface waters and

reduced dilution effects from precipitation and groundwater seepage.

1.4.3. Stable Isotopes of Caland and Hogarth Pit Lakes
Enrichment of "0 and 8D in the surface waters of both pit lakes signifies

evaporation as a main process. Although the entire water column of each pit
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lake signifies an evaporative signature, evaporation is more pronounced in the
surface waters. These waters become enriched with heavier isotopes of oxygen
and hydrogen in contrast to less evaporated bottom waters (Gammons et al,
2006). These trends were similar to results found by Pellicori ef al (2005) where
strong evaporative effects were observed to depths of 30 m, after which the pit
lake was more or less isotopically homogenous. These gradients also confirm
that these pit lakes do not thoroughly mix below 30 m, further supporting their
meromictic classifications.

The lower §'®0 and 3D values of groundwater (-12.9 %o and -91.1 %o
respectively) compared to the surface pit lake waters (see Figure 1.11) are
expected as groundwater is not under the influence of evaporation. Therefore,
with depth, pit lake waters approach the §'°0 and 3D values of groundwater.
This is suggests the groundwater is a major source of water to these pit lakes. It
has been estimated that 85% of recharge water in these pit lakes is groundwater
(Bernatchez, pers. comm., 2003)

Similar 8**S profiles in both pit lakes were found, falling within a similar
range showing little fluctuation with depth (Figure 1.12). Both lakes range from
2.9 %o to 4.3 %o, which is similar to groundwater §**S values of 1.7 %o. Such
results can identify possible sources of aqueous sulfate. Hogarth, known for
much higher aqueous SO,% levels than Caland, was thought to have
more/different sources. However, based on the isotope results, Hogarth appears
to have the same sulfate sources. Perhaps they are just more abundant thus

aliowing for more rock-water interactions. No regional groundwater stable
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isotope data exist, but based on the relative consistency of §**S in the study
area, the likely contributor of sulfur to the pit waters is the ore zone (goethite and
pyritic members) itself. Groundwater could very well have come into contact with
exposed and unexposed extensions of the ore zone and/or undiscovered pyrite
bodies (MacDonald, 2005). Uniformity of the 5**S profiles also rules out previous
theories of the presence of sulfate reducing bacteria (SRB), common in anoxic
environments (i.e. Caland Pit Lake). if SRB were present there would be
enrichment in 8**S, as bacterial reactions favour the lighter isotope (*?S) (Hsu
and Maynard, 1999).

The largest difference in isotope values between the pit lakes were for
8"°C pic (Figure 1.13). Carbonate rocks typically have 5'C values of 0 £ 5 %o
(Kendall and Doctor, 2005). Hogarth Pit Lake &'°C values ranged from -2.0 %o to

2.0 %0. This suggests the influence of carbonate walls surrounding the lake since

reactions that produce DIC are the weathering of carbonate and silicate minerals
(Kendall and Doctor, 2005). Caland Pit Lake 8'*Cpc values ranged from -4.4 %o
to -9.2 %o and 8'°C values for C3 and C4 plants average -25 %o and -12 %o
respectively (Deines, 1980). As there are more organic inputs into Caland Pit
Lake (through fish farm operations and submerged vegetation along the shores),
Caland is expected to have more §'3Cpic depleted waters than Hogarth Pit Lake.

The DIC depletion in Caland occurs through DIC-DOC isotopic exchanges (Conly

et al, in press a).
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1.6 Conclusions and Future Work

Due to the near-neutral pH of the water in both lakes (4.5-8.5), elevated
metal concentrations from oxidation of Fe sulfide minerals, are not a concern as
they are regulated by solubility and adsorption controls (Eary, 1998; Eary, 1999).
The water quality of Caland and Hogarth Pit Lakes has been changing over the
years. Decreasing alkalinity, conductivity, and SO,* levels in both lakes are due
to. Seasonal differences remain more pronounced in Hogarth Pit Lake. Winter
months in Hogarth are characterized with higher levels of conductivity, TDS, and
S04”. These elevated levels may occur during winter months because the lake
is more isolated, hence, surface water can not mix as well as during ice-free
periods, nor is it diluted with precipitation and/or runoff during ice cover.

Preliminary table isotope work reveals interactions with the surrounding
geology. Hogarth and Caland Pit Lake sulfate sources appear to be the ore
body. The §*S values of the pit lakes are also close to that of the groundwater
suggesting groundwater interactions with the ore. Despite higher sulfate levels in
the water and the potential for acidic conditions, Hogarth Pit Lake maintains a
neutral pH, due to carbonate buffering. §'*Cpic results in particular reveal the
influence of weathering carbonates. These carbonates are rich in calcite
(CaCO3), dolomite (CaMg(COs3),), akerite (Ca;MgFe(CO3)4), and pyrite (FeS,),
which are also a major source of dissolved solids, characteristic of Hogarth
water.

Future work should include a more detailed geological approach. This

would identify the differences between the two pit lakes, perhaps by quantifying
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rock types. Experiments using rock samples and lake water could give insight
into which rock formations more than others are influencing the water chemistry.
Such information would help predict future rock-water interactions with exposed
rocks, waste piles, and tailings piles not yet submerged by the water. Such
preliminary work has been completed by Cockerton (2007) and Conly et al (in
press b).

More information on rock-water interactions would also aid in predicting
future water chemistry of the pit lakes. Using geochemical modeling tools, such
as PREEQC and MINETEQ which utilize geological information in addition to
previous water quality monitoring data can more accurately predict future water

chemistry than pit filling models alone.
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Chapter 2: Investigations into Cause of Toxicity in Hogarth Pit Lake
2.1 Introduction

Hogarth Pit Lake has evolved from an acutely toxic state, showing no
obvious signs of life, to a chronically toxic state showing signs of natural
succession. Acute toxicity of Hogarth was discovered in 1999 by McNaughton
(2001) and subsequent studies in 2002 and 2003 by VanCook (2005) confirmed
the lake to be devoid of life. At present, the lake is chronically toxic, showing
signs of life in the water column. To account for such changes, this study
focused on chronic test methods and bioaccumulation studies to determine the
cause of paucity of life in Hogarth Pit Lake.

Considerations for acute toxic results suggested by McNaughton (2001)
included; As, Ni, sulfate salinity, iron floc, and osmotic stress. Metal toxicity does
not seem obvious, as the metal levels generally do not approach levels to cause
concern (CCME, 2007). Acute toxicity due to sulfate levels was later ruled out by
Baker (2004). Chronic effects however, were not examined.

Since Hogarth water did not exhibit acute toxicity, yet showed no obvious
signs of life in spring 2004, chronic toxicity was investigated. Chronic
Ceriodaphnia dubia test methods (EC, 2002) were used to confirm toxicity, and
monitor toxicity over the 2 year study period. Using more than one species
(preferably trophic levels) for toxicity testing is recommended to determine if
effects are limited to only one test species, or whether the toxicant has impacts
on other organisms EC, 2005). Lemna minor tests (EC, 1999b) were also used

to test chronic effects of Hogarth water and mock effluent.
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Identifying the cause of toxicity was attempted through the use of chronic
toxicity identification evaluation (TIE) methods (USEPA, 2001). Toxicity
Identification Evaluation (TIE) methods were developed by United States
Environmental Protection Agency (USEPA) to characterize effluent toxicity. The
general procedure is to carry out various physical/chemical manipulations on the
effluent and determine whether the manipulation changed the toxicity (Norberg-
King et al, 2005a).

As suggested by Waller et al (2005), when Phase | TIE manipulations do
not substantially reduce toxicity and sample conductivity exceeds 2000 ps/cm for
freshwater, TDS-related should be investigated. Major cations and anions
adversely affect aquatic organisms either directly or through influencing toxicity of
other contaminants (Mount et al, 1997; Tietge et a/, 1997; Waller et al, 2005).
Possible TDS-related toxicity in Hogarth is a result of elevated ion levels typical
of pit lakes. Further investigations into possible ion or TDS-related toxicity may
include the use of synthetic effluents that mimic the major ions in the effluent
under evaluation (SETAC, 2004)

Synthetic effluents have proven useful for assessment of TDS-related
toxicity associated with whole effluent testing (WET) (Goodfellow, 2000; Norberg-
King et al, 2005b). Since cations or anions are not present as individual
constituents, but are in combination with other ions, individual toxicity of a cation
or anion may be masked or inseparably affected by the associated anion or
cation. Therefore effects in effluents or waters must result from combinations of

ions (Goodfellow, 2000). If synthetic/mock effluents produce similar responses
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as the effluent, one can conclude that the major components of the synthetic
effluent are the cause of toxicity.

Bioaccumulation studies, controlled in situ studies, can also be used to
test for potential toxicants. Bioaccumulation is often a good integrative indicator
of chemical exposures of organisms in polluted ecosystems (Phillips and
Rainbow, 1994). Aquatic plants take up metals required for growth, such as
Ca**, cu®, Fe®, K*, and Mg?*: but will also accumulate other substances in the
water column, including those that may be toxic (Raskin, 1996). Test organisms
used for in situ studies are set out in field sites thus being exposed to any
contamination that ordinarily occurs under field conditions (Schulz, 1999).
Simplified settings of toxicity tests are incapable of simulating exposures in
natural systems. Chappie (1997) maintains that in situ testing using caged
organisms allows one to assess aquatic contamination and bioaccumulation
since the physical, chemical, and biological conditions integrated in the natural
environment cannot be accurately reproduced in a laboratory.

This study investigates of the factors/reasons for the lack of aquatic life in
Hogarth Pit Lake (McNaughton, 2001; VanCook, 2005). This chapter has two
objectives using standard chronic methods, TIE procedures, and
bioaccumulation studies: (1) to identify the likely cause of chronic toxicity in
Hogarth and (2) utilize bioaccumulation studies to determine other potential

toxicants, namely metals.
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2.2 Methods
2.2.1 Study Site

The location of Hogarth Pit Lake, used in toxicity investigations, is shown
by Figure 2.1. A description of the area, including Hogarth and Caland Pit Lakes,
is summarized in Chapter one, section 1.2.1. The West Arm (originally the west
arm of Steep Rock Lake) was not actively mined during operations; however it
was partially filled with overburden, decreasing its average depth from
approximately 30 m to 3 m (Jackson, pers. comm., 2005). Sites in the West Arm,
Caland Pit Lake, and Hogarth Pit Lake were selected for the in situ study and are

illustrated in Figure 2.1.

West Arm
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Figure 2.1. Site location map showing sites used for bioaccumulation
studies.
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2.2.2 Field Procedures
2.2.2.1 Toxicity Sampling

Water samples for toxicity testing were obtained at a depth of 2m using a
2L Kemmerer from sampling station “B” (Figure 1.2) located in the Northeast part
of the lake (N 48° 49’ 23", W 091° 38’ 36”) Samples were collected in
polyethylene 1L bottles. When larger volumes were required for TIE testing, a
peristaltic pump and hose was used to obtain samples from the desired depth
and collected in clean 10L or 25L polyethylene containers. Samples collected for
toxicity testing were not filtered or preserved and were kept at 4°C until time of

testing.

2.2.2.2 Bioaccumulation Studies

In late spring of 2006, Eleocharis smallii clumps were obtained from a
wetland located near Mission Island Marsh in Thunder Bay, Ontario (48°20°07”N,
89°12'40"W) to conduct a greenhouse experiment. For the in situ test on
bivalves, floater mussels, Pyganadon grandis, were collected by Dr. Joe Carney,
from LaSalle River, in Manitoba. This test species was selected after repeated
failed attempts to locate bivalves near the study sites in populations dense
enough to facilitate such a test. At test initiation and test termination
temperature, dissolved oxygen (DO), pH, and conductivity were obtained using a

Hydrolab DataSonde®4.
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2.2.3 Laboratory Analysis

Analyses of test waters followed methods outlined by Lakehead University
Environmental Laboratory (LUEL), which were adapted from Standard Methods
for the Examination of Water and Wastewater 18" Edition (Greenberg et al,
1992). All methods used here were also subjected to the same QA/QC

procedures elaborated on in Chapter 1 section 1.2.2.2.

2.2.3.1 Mock Effluent Preparation and Analysis

Test solutions made to mimic Hogarth water were prepared by dissolving
individual ion salts in moderately hard reconstituted water (MHRW). Salts used
were reagent grade Simga brand CaS0O4 (CaSO4 » 2H,0) and Caledon
Laboratories Ltd. MgSO4 (MgSO4 « 7H,0) in concentrations that would result in
similar ratios of Ca:Mg found in Hogarth, and also achieve the appropriate S04%
levels. Test water with just SO4> was prepared using a 1000 mg/L stock solution
of SPEX CertiPrep SO4* anion standard. Concentrations of major ions were
determined analytically on mock solutions used in testing; Ca? and Mg2+ were
determined by ICP and SO,* was determined by IC, the Dionex Dx-120, as

previously described in Chapter 1, section 1.2.2.2.

2.2.3.2 Plant Tissue Analysis
Plant samples were dried for three days in an oven at 30°C. After ground
to a fine powder, 0.5 g of each sample was place into 50 ml XP1500 Teflon®

microwave vessels and a ratio of 3 HNO3:1 HCI Fisher Trace Metal Grade

54



concentrated acids added to each. The closed vessels were placed in a CEM
Mars5 for a microwave-assisted high pressure, high temperature digestion,
ramped to a temperature of 175°C and held for 25 minutes. When cooled,
samples were brought to 50 ml with double distilled water (DDW) and analyzed
for metals on a Varian Vista Pro Inductively Coupled Argon Plasma spectrometer
with Cetac Autosampler. Parameters included in analysis were: Al, As, Ba, Be,
Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Sr, and Zn. Minimum

detectable limits (MDLs) for this method can be viewed in Appendix 1.

2.2.3.3 Bivalve Tissue Analysis

Whole tissue analysis was carried out on the bivalves after removing the
tissue from the shell and rinsing with DDW (Foster and Bates, 1978; Soto et al,
2000; Markich et al, 2001). Bivalve tissues were thoroughly mixed with a tissue
homogenizer. A 5.0g aliquot, wet weight of each sample was placed in a glass
test tube and a ratio of 3 HCI :1 HNO3 Fisher Trace Metal Grade concentrated
acids was added to each. Samples were allowed to pre-digest overnight then
underwent an open digestion at 95°C for 4 hours on a block heater. When
cooled, samples were brought to 25 ml with DDW and analyzed for metals on a
Varian Vista Pro Inductively Coupled Argon Plasma spectrometer with Cetac
Autosampler. Parameters included in analysis were: Al, As, Ba, Cd, Co, Cr, Cu,
Fe, Mn, Ni, Pb, S, Se, Si, and Zn. Minimum detectable limits (MDLs) for this

method are provided in Appendix 1.

55



2.2.4 Toxicity Testing
2.2.4.1 Acute Toxicity Test Methods

In June and July 2004, rainbow trout and Daphnia magna acute lethality
tests were conducted by the Lakehead University Aquatic Toxicology Research
Centre (ATRC) according to EPS 1/RM/13 and EPS 1/RM/14 respectively (EC,

2000a; EC, 2000b).

2.2.4.2 Chronic Toxicity Test Methods
2.2.4.2.1 Ceriodaphnia dubia Chronic Test Methods

Chronic toxicity investigations began with Ceriodaphnia dubia, tests of
reproduction and survival, based on the Environment Canada Biological Test
Method (1992). C. dubia were cultured at Lakehead University in moderately
hard reconstituted water (MHRW). This water was also used for dilution water.
Water characteristics for MHRW were as follows: pH (7.55-7.90), conductivity
(100-110 ps/cm), DO (85-95% saturation), and hardness (160-180 mgCaCOs/L)

Prior to each test, confirmation was needed that all culturing health

criteria were met to ensure accurate and reliable test results. This was achieved
through reference toxicant tests performed by the Lakehead University TIE
Laboratory. Test trays held plastic cups in which 10 mL of test water were
placed. Tests were conducted using full dilution series: 12.5%, 25%, 50%, and
100% strength, five replicates for each. At least one control was run with each

test, also with five replicates. Neonates (<24-h-old daphnia) were transferred to
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each test cup and fed with 0.67pL each of yeast, Cerophyll™, and trout chow
(YCT) and algae.

Daphnids were fed and checked daily with any progeny or other
observations recorded. Chronic C. dubia tests are termed static-renewal toxicity
tests; solutions are renewed (replaced) periodically during the test. Test
solutions for this study were renewed at intervals of < 48 h throughout the tests
with the first-generation daphnid transferred to the new solution. Water quality
variables including temperature, conductivity, pH, and dissolved oxygen were
measured at the beginning/end and at the renewal/post exposure of each toxicity
test, depending on the nature of the test, i.e. static or static-renewal tests.
Conductivity, pH, and temperature were measured using a Fisher Scientific
Accumet® multimeter system with Accumet probes. DO was measured on a
Hach senslON378 with a Hach DO Probe.

Tests were carried out in Sanyo Versatile Environmental Test Chambers
maintained at 25 + 1°C and a photoperiod of 16 h light: 8 h darkness. Duration of
tests was 8 days or fewer. Criterions for test acceptability were a mean survival
of 280% and a mean reproduction of 15 young/surviving females. Endpoints for
these tests were two-fold; first being mortality of the first-generation daphnids
(i.e. original neonates) and second, the number of live neonates produced by

each first-generation daphnid during the test period.
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2.2.4.2.2 Ceriodaphnia dubia Chronic Toxicity Identification Evaluation
Test (TIE) Methods

Chronic Toxicity Identification Evaluation (TIE) Phase | tests followed the
general guidance of the U.S. Environmental Protection Agency (USEPA, 1992).
For both the chronic and TIE Phase | toxicity tests, similar test methods were
followed (see section 2.2.5.1.). Manipulation tests performed for TIE Phase |
included: filtration, aeration, post C'® solid phase extraction column test (post
SPE), graduated pH adjust, methanol eluate, sodium thiosulfate (Na;S,03)
additions (10 mg/L and 25 mg/L), and ethylenediaminetetraacetic acid (EDTA)

additions (3 mg/L and 8 mg/L).

2.2.4.2.3 Mock Effluent Chronic Toxicity Test Methods

Standard chronic toxicity tests based on the EC (1992) and EC (1999b)
test methods were conducted on mock effluents. Water characteristics for mock
effluent were as follows: pH (7.30-7.70), conductivity (2260-2400 ps/cm), DO (80-
95% saturation), and hardness (1420-1500 mgCaCQaj/L). The dilution series
(12.5%, 25%, 50%, and 100%) of mock effluent water were tested and the
results were then compared previous Hogarth toxicity results.

Attempts to test effects of only SO4* addition failed. It was not possible to
adjust the low pH without compromising concentrations of other ions as a result
of the base that was used to adjust pH. Artifactual toxicity was introduced as a

result.
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2.2.4.2.4 Lemna minor Toxicity Test Methods

Growth inhibition tests on Lemna minor were carried out following the
Environment Canada Biological Test Method (1999b). Plants were cultured in
Hoagland’s E+ medium (1999b). Controls and dilutions were prepared with
modified APHA (American Public Health Association) growth medium.

Trays held plastic cups in which 100 mL of test water was placed. Tests
were conducted using the dilution series: control, 25%, 50%, and 100% strength,
four replicates for each. Two three-frond plants were transferred to each cup. All
cups were covered, placed in Versatile Environmental Test Chambers
maintained at 25 £ 1°C and continuous full-spectrum lighting. Lemna minor tests
were static, non-renewal, therefore after 7 days the final counts of fronds were
recorded. Criteria for test acceptability were controls with a >8-fold increase in

fronds.

2.2.5 Bioaccumulation Studies

A greenhouse study using Eleocharis smallii was carried out since
exposing them in pit lakes is not possible due to lack of a littoral zone with
sediment/substrate. Small clumps (rhizomes and shoots) of E. smallii were
transplanted into tubs and allowed to acclimate in the Lakehead University
greenhouse, using greenhouse water. Soil media consisted of black earth and
an aquatic clay-type soil to anchor the plants. All media was autoclaved at

120°C for 40 minutes prior to the experiment for sterilization.
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Water from the West Arm Lake, Caland Pit Lake, and Hogarth Pit Lake
was collected from the surface and transported to the greenhouse using 25L
plastic containers. In total, 4 treatments, including the control, with 4 replicates
per tréatment were maintained from June 19" to October 10", 2006 (see Figure
2.2) for over four months of exposure. At the end of the exposure period, plants

were dried and prepared for analysis.

gt i AN |
o Nl - 1

Figure 2.2. Photos illustrating Eleocharis smallii greenhouse experiment
(left) and watering system (right).

For the in situ study, the bivalve Pyganodon grandis was used. Following
a 3-day acclimation period after transport from Manitoba, test organisms were
ready for exposure. Each mussel was individually marked, weighed, and
measured with calipers across the longest plane, widest plane, and thickest
plane (Fig 2.3). Custom made cages (see Figure 2.3), by SureCraft Plastics Ltd.

were constructed of co-polyester plastic and all hardware was made of a plastic
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material, ensuring ho metallic compounds were near the bivalves. Dimensions
were 17.5 cm wide, 24.5 cm long, and 17 cm high. A window, 5 cm by 20.5 cm
scréened in with a 2mm by 2 mm mesh to allow for water flow-through. Within
each cage, a fixed amount of black earth, aquatic soil (clay-like), and coarser
sand were layered to provide a substrate to anchor in. All media was autoclaved
at 120°C for 40 minutes prior to the experiment for sterilization.

Bivalves were transported in coolers, aerated, and placed in a water bath
of lake water for acclimation until submersion. Exposure sites were situated near
shores/land to allow for easy access and tie-off spots to monitor them regularly.
Each cage was securely anchored and submerged to a depth of 1.5 to 2 meters.
Three replicate cages, each containing five mussels were deployed in the West
Arm Lake, Caland Pit Lake, and Hogarth Pit Lake (n=15). Locations for the sites
are shown in Figure 2.1 and the corresponding coordinates in Table 2.1. Water
chemistry measurements of each site within the three study lakes are
summarized in Table 2.2.

Duration of exposure was from July 26" to September 14™ 2006 for a
total of seven weeks exposure. Bivalves not used in the exposure treatments
were frozen to serve as a reference. Atthe end of the test period, the bivalves
were collected, measured, and weighed for a final time and frozen whole in the

shell until analysis.
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Figure 2.3. Photos illustrating Pyganodon grandis with the planes taken for
measurement (left) and cages used during exposure (right).

Table 2.1. Locations of bivalve cages in study lakes.

West Arm

Caland

Hogarth

Site 1

Site 1

Site 1

48°46'01.85"N
91°39'41.03"W

48°49'21.13"N
91°36'16.48"W

48°48'23.44"N
91°38'50.01"W

Site 2

Site 2

Site 2

48°46'36.76"N
91°39'40.88""W

48°49'23.03"N
91°36'40.06"W

48°48'25.30"N
91°38'32.36"W

Site 3

Site 3

Site 3

48°47'34.04"'N
91°40'05.33"W

48°48'57.47"N
91°37'12.91"W

48°49'18.69"N
91°39'13.78"W

Table 2.2. Water chemistry measurements at exposure locations for bivalves.

West Arm Caland Pit LLake Hogarth Pit Lake

Site 1*  Site 2 Site 3 Site 1 Site 2 Site 3 Site 1 Site 2 Site 3
DO 8.6 8.4:0.8 8.7:0.5 8.9£0.2 8.8£0.2 8.6:0.4 8.7£0.1 8.8+0.3 8.5x0.3
Temp.(°C) 22.3 19.9+2.1  19.6+1.3 20.0+1.3 20.3z1.1 19.6x0.7 19.8+1.2 20.5:0.9  20.3:0.7
pH 6.9 7.0:0.3 6.9+0.4 8.9+0.5 8.41+02 8.3:0.3 8.210.3 8.2+0.2 8.4+0.2
Cond? 853  854x1.9 80.2+15 663+6.4 643+5.0 642+7.2 2095+9.2 2077+12.4 2102+18.0

Values are means + SD for intial and final readings (n = 2)

* only one reading was taken, complete mortality after 2 weeks

? As ps/cm
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Both the greenhouse and in situ studies examined bioaccumulation in the
three lakes, including Hogarth Pit Lake to determine whether bioaccumulation
would be similar in more than one organism.

2.2.6 Data Analysis
2.2.6.1 Toxicity Testing

The C. daphnia 7-day chronic test is a dual-effect test, assessing both
mortality and number of progeny. Mortality is considered a quantal effect, for
which each test organism either shows the effect or does not. Number of
progeny is a quantitative effect, in which the measured effect can take any whole
or fractional value on a numerical scale. Results of dual-effect tests should be
analyzed separately (EC, 2005). L. minor growth inhibition tests are quantitative
sublethal tests.

Toxicity data was assessed by statistical comparison with data from the
controls using ToxCalc™ version 5.0 (2000). Most common endpoints for
guantal tests are median lethal concentration (LC50) or median effective
concentration (EC50) (EC, 1999a). The preferred standard method is probit or
logit regression by maximum likelihood regression; however, for tests that
produce only one partial effect (i.e. an effect at only one concentration), the
Trimmed Spearman-Karber method is recommended (EC, 2005). 7-day EC50
values, using mortality as the endpoint, were determined using the Auto-Trimmed
Spearman-Karber method as the majority of tests resulted in mortality solely at
100% strength. For quantitative tests, the preferred endpoint is the Inhibiting

Concentration for a (specified) Percent Effect (ICp) calculated by regression
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techniques, such as linear interpolation (EC, 1999a; EC 2005). Both C. daphnia
(using number of neonates) and L. minor (using number of fronds) tests were
evaluated using the Linear Interpolation method. All toxicity data is reported with
95% confidence limits. Due to limited mortality, reproduction was the more
informative endpoint for the C. daphnia chronic tests. 1C50s were used for
evaluating TIE results, as they are more useful for Phase | TIEs when trying to
correlate the characterization test results to effluent toxicity (Goodfellow et al,

2005).

2.2.6.2 Bioaccumulation Studies

In cases where the vast majority (>95%) of the data, for all treatments,
were below minimal detectable limits, the parameters were removed and in
cases where some samples had metal values which were below detection limits,
one-half of the detection limits were used in analyses (Gauthier et al, 2006).

Based on these criteria, for plant tissue data, As, Be, Cd, Co, and Pb
parameters were removéd and for bivalve data, As, Cd, and Pb were removed as
all samples resulted in less than detectable limits. Bivalve reference data set
was removed for comparative analyses due higher metal levels and low
replication, which skewed the overall data sets and violated assumptions of
subsequent statistical analyses. There was also a lack of water quality data to
help account for metal levels. Reference data was solely used to account for any

prior contamination of the bivalves.
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Accumulation data was analyzed using SPSS 16.0 (SPSS 2007). Means
and standard deviations were used to summarize the data. Analysis of Variance
(ANOVA) determined whether significant (p<0.05) differences were detectable
between the treatments (lakes/control). Kolomogorv-Smirnoff and Levene’s tests
were used to test the assumptions of normality and equal variance respectively.
Where significant differences (SD) were detected, Tukey's Least Significance
Difference (LSD) Post Hoc test was used to determine where they differed
among the treatments. For data sets with equal sample sizes, Tukey’s LSD test
was used; however this was not suitable for unequal sample sizes (Miller, 1977).

Due to unequal sample sizes in the bivalve data, Gabriel's Post Hoc was used.

2.3 Results
2.3.1 Toxicity Testing
2.3.1.1 Acute Toxicity
In the spring and summer of 2004, no mortality resulted from either the

Rainbow Trout or Daphnia magna acute lethality tests.

2.3.1.2 Chronic Toxicity and Chronic Toxicity Identification Evaluation

In November 2004, the result of a 7-day chronic test on Hogarth Pit Lake
water was an IC25 of 75% and IC50 >100%. Subsequent toxicity tests
throughout the years were intermittent (Table 2.3). Results of chemical ana\ysis'
from previous monitoring show elevated levels of conductivity, TDS, hardness,

and SO,% in winter months (Table 2.4).
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Table 2.3. Summary of Hogarth toxicity tests over time (in percent).

Nov Jan May June Nov Jan June July
2004 2005* 2005 2005 2005 2006* 2006 2006
Ic25 (Zfa) (%8) 00 >100 100 1312_'618) >100  >100
Ics0  >100  ZEA >100  >100 100 oo, >100  >100
Eosy 100z 100 >100  >100 o 100 >100

*from #1 and #2 TIE baselines
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Table 2.4. Seasonal water chemistry of Hogarth Pit Lake (2m).

2004 2005 2006

Fall Winter  Spring Summer Fall Winter  Spring Summer Fall
pH 7.77 7.74 7.54 784 n/a 6.59 8.09 8.10 7.85
pH* 7.63 7.81 7.57 790 7.82 7.10 8.01 8.10 7.64
Conductivity 2290 2319 2058 2071 n/a 2120 2009 2024 2020
Conductivity* 2180 2347 2070 1965 2090 2330 2027 2036 2085
TDS 2104.80 2166.20 1970.40 1796.90 n/a 2104.20 2028.70 1806.60 2123.00
Hardness 1426.50 1498.30 1362.86 1327.13 nla 1422.38 1284.97 129549 1413.00
cr 12.00 10.04 10.08 1142 nla 10.51 8.91 8.91 11.89
SO, 1321.60 1435.50 1323.78 144825 n/a 1465.97 1258.57 1227.37 1476.91
NO; 0.47 0.58 0.51 046 n/a 0.56 0.46 0.47 0.57
ca® 284.00 29680 27560 268.00 n/a 283.00 253.80 261.20 294.00
K* 5.81 6.23 5.49 536 nla 5.72 5.33 5.72 5.80
Mg** 170.80 180.80 161.10 15710 n/a 170.90 15550 15360 162.10
Na* 1997 22.41 18.37 1844 n/la 2088 18.43 18.02 18.59
Al 0.0394 0.0393 0.0654 00700 n/a 00450 00410 0.0370 0.0100
As <MDL <MDL <MDL 0.0170 n/a <MDL <MDL 0.0080 0.0070
Ba 0.0065 0.0073 0.0051 00120 n/a 00090 00070 0.0100 0.0030
Be <MDL  <MDL  <MDL <MDL n/fa <MDL <MDL <MDL <MDL
cd <MDL  <MDL  <MDL <MDL n/a <MDL <MDL <MDL <MDL
Co 0.0225 0.0240 <MDL <MDL n/a <MDL <MDL  <MDL <MDL
Cr <MDL <MDL <MDL <MDL n/a <MDL <MDL <MDL  <MDL
Cu <MDL <MDL  <MDL <MDL n/fa <MDL <MDL  <MDL 0.0130
Fe 0.1362 02127 02127 0.0420 n/a 01770 0.0910 0.0350 0.0270
Mn 0.2098 0.2300 04060 05292 n/a 0.3289 0.3427 0.2264 0.0683
Ni 0.0254 0.0282 0.0366 0.0530 n/a 0.0340 0.0350 0.0250 0.0130
Pb 0.0749 0.0885 <MDL 0.0100 n/a <MDL <MDL <MDL <MDL
S 419.80 44467 391.43 477.00 n/a 447.94 460.00 467.56 184.40
v <MDL  <MDL  <MDL <MDL n/a <MDL <MDL <MDL  <MDL
Zn <MDL 00014 0.0016 0.0020 n/a 0.0030 <MDL <MDL 0.2000
Total metal 420.315 445301 392.157 477.735 nla 448537 460.517 467.901 184.741
ions with S
Total metal 0515 0631 0727 0735 na 0597 0517 0341  0.341
ions w/o S

all values expressed as mg/L, except conductivity (uS/cm)
* taken at test initiations (average value if more than one toxicity test was run)

** calculated using: 2.497(Ca®*)+4.188(Mg>"), expressed as mg(CaCO3)/L
bolded values indicate highest vaiues of all seasons, corresponding to toxic

responses
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January 2005 was the initiation of TIE Phase I. The baseline (a full
dilution series of Hogarth Pit Lake water with no manipulations) had an 1C25 of
23% and an IC50 of 62%. Results from all the manipulation tests are
summarized in Table 2.5. A visual comparison of baseline results to all
manipulations is illustrated in Figure 2.4. The only manipulation of the first TIE
Phase | that showed a reduction in toxicity (i.e. a higher IC50 value) was the
EDTA 8 mg/L addition test. In comparison to the baseline, it reduced toxicity

from an 1C50 of 62% to >100%.

Table 2.5. Summary of results from the first Phase | Characterization Tests
(in percent).

Characterization Tests

pH 6 pH7

Endpoint Baseline Filtration Aeration Buffered Buffered Post SPE
(Cos 23.1 27.0 28.8 8.7 29.5 10.65
(7-80) (1-44) (8-47) (12-68) (7-82) (4-73)
C50 62 52.1 59.2 61.3 64.2 49.2
(28-79) (28.79) (32-67) (25-72) (31-78) (0-80)
7-day 61.6 35.3 61.6 771 77.1 53.6
. ECS50  (4879) (nfa) __(nfa) (64-94) (64-94) | (nfa) .
Characterization Tests
Na;S;0;  NayS;0; EDTA EDTA
Endpoint  addition  addition  addition  addition ME:S:&"'
(10mg/L) {25mg/L) (3.0 mg/L) (8.0 mg/L)
9.0 425 10.3 84 o
IC25 (4-71) (28.72) (3-78) (n/a) < 12.5%
60.6 61.1 58.8 -
IC50 (0-63) (30-62) (38.74) >100 <12.5%
7-day 70.2 46.6 89.1
EC50 (65-93) (32-69)  (58-135) >100 >100

* indicates IC estimate less than the lowest concentration
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Figure 2.4. Effects of toxicity identification evaluation (TIE#1)
Phase | manipulations on Ceriodaphnia dubia 7-day IC25
values (top graph) and IC50 values (bottom graph). Dotted
lines mark the levels of upper and lower limits (95% confidence
limits) for the baseline toxicity test.
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The second TIE Phase | in January 2006 resulted in the baseline having
an IC25 of 32.1% and an IC50 of 66.9%. Results of these manipulation tests are
summarized in Table 2.6 and a visual comparison of the baseline to the

manipulations is illustrated in Figure 2.5. No manipulations resulted in a marked

decrease in toxicity.

Table 2.6. Summary of results from the second Phase | Characterization
Tests (in percent).

Characterization Tests

Endpoint Baseline  Filtration  Aeration o PH® Bupf?eZe g PostSPE
25 32.1 323 356 446 395 307
(11-68) (8-59) (13-52) (1963)  (14-88) (8-74)
50 66.9 62.4 60.1 65.5 66.2 49.0
(21-94) (33.76) (28-97) (42-88) (42-87) (0-83)
égg())/ >100 (r?/i) (53?174 ) >100 >100 (385—476)
-------------------------------------- Characterization Tests 777
Na;S;0;  NajS,0,  EDTA EDTA

Endpoint addition  addition  addition  addition ME:L‘:&”
(1omgll)  (25mgiL) (3.0 mgiL) (8.0 mgiL)

30.4 29.0 29.0 33.7 -

IC25  (22-76) (6-42) (6-42) (10-74) ~ <125%
60.6 69.3 48.8 70 .

G0 (3090)  (36-84)  (872) (nva) ~ <125%

7-day 99 99

EC50  (11217)  (r1-217) %0 >100 >100

* indicates |C estimate less than the lowest concentration
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Figure 2.5. Effects of toxicity identification evaluation (TIE#2)
Phase | manipulations on Ceriodaphnia dubia 7-day IC25 values
(top graph) and IC50 values (bottom graph). Dotted lines mark
the levels of upper and lower limits (95% confidence limits) for
the baseline toxicity test.
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2.3.1.3 Mock Effluent Chronic Toxicity

lonic composition of the prepared mock effluents in comparison to Hogarth

Pit Lake water is summarized in Table 2.7. The major ions in Hogarth (Ca®",

Mg?®*, and SO,?) constitute the majority of TDS as represented by the mock

effluent. Results of mock effluent toxicity testing results compared to previous

Hogarth Pit Lake toxicity results are shown in Table 2.8.

Table 2.7. lonic composition of Hogarth water and mock effluent.

Sample ca®* K mg® Na HCOs* CI  NOsy SO,  TDS*
Hogarth 296 6 181 22 101 10 1 1436 2053
Mock Eff. 298 n/a 179 n/a n/a n/a n/a 1443 1920

all values reported as mg/L, except * from total alkalinity (mgCaCQs/L)
**as sum of all major anions and cations

Table 2.8. Summary of C. dubia mock effluent tests compared to Hogarth

tests (in percent).

Mock Test Mock Test

41 42 Jan 2005 Jan 2006
C25 33.9 38.2 23.1 32.1
(9-81) (14-85) (7-80) (11-68)
C50 80.3 66.5 62.0 66.9
(n/a) (50-81) (28-79) (21-94)
7-da 98 61.1
EC50 (n/a) >100 (48-79) >100

2.3.1.4 Lemna minor Toxicity

Lemna minor testing showed the effluents (both Hogarth Pit Lake and

mock effluent) to be less toxic to this species as indicated by higher IC25 values

summarized in Table 2.9. No data for IC50s is available because a 50%

reduction in the number of fronds did not occur at the concentrations tested. It
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should be noted that the appearance of the plants in the higher dilution series
(50% and 100%) of both effluents showed signs of stress including smaller

unhealthy looking fronds that were chorotic and had shorter roots.

Table 2.9. Surhmary of Lemna minor mock effluent tests compared to
Hogarth tests (in percent).

Mock Test ~ Mock Test 5, 02006  Sept2006  Oct 2006

#1 #2
90.74 88.7 93.4 85.1
IC25 (n/a) (n/a) >100 (n/a) (n/a)
IC50 n/a n/a n/a n/a n/a

2.3.2 Bioaccumulation Studies

Mean tissue concentrations (+/- standard deviations [SD]}) for E. smallii
and P. grandis are summarized in Table 2.10. The thirteen variables depicted in
Figures 2.6, 2.7, and 2.8 are the only variables that showed significant
differences (p<0.05) between the lakes. Trends of most interest are those that
resulted in the highest concentrations in Hogarth Pit Lake water. For E. smallii,
Ba, Ca, Cr, Fe, Mg, Mn, Na, Ni, S, Sr, and Zn showed significant differences,
with Ni and S levels highest in Hogarth water. E. smallii Ca, Na, and Mg
concentrations were also significantly higher in Hogarth water, but not only
Hogarth water. P. grandis, Al, Cr, Cu, Fe, Ni, and S concentrations revealed
significant differences, with Al, Cu, Fe, Ni, and S highest in Hogarth water.

Ni and S levels were the only two variables that resulted in the highest

levels in Hogarth water for both tissues.
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Table 2.10. Mean tissue concentrations in (ug/g) for Eleocharis smallii and
Pyganodon grandis.

Eleocharis smallii Pyganodon grandis

Ctri/Ref _West Arm  Caland  Hogarth | Ctri/Ref West Arm Caland Hogarth

Al Mean 109.71 105.00 122.64 98.95 445 215 3.18 4.87
SD 21.92 12.22 18.32 11.06 0.92 0.63 0.83 0.24

As Mean <MDL* <MDL <MDL <MDL <MDL <MDL <MDL <MDL
SD - - -- -- -- -- -- --

Ba* Mean 63.44 36.27 59.97 48.42 36.00 38.35 33.09 29.21
SD 515 587 9.78 6.15 0.44 17.25 9.67 0.53

Be Mean <MDL <MDL <MDL <MDL n/a** n/a n/a n/a
SD - - - -~ n/a n/a n/a n/a

cat Mean  5996.98 382425 625775 5332.55 n/a n/a n/a n/a
SD 457.96 54913 648.18 408.12 n/a n/a n/a n/a

cd Mean <MDL <MDL <MDL <MDL <MDL <MDL <MDL <MDL
SD -- -- -- -- -- -- - —

Co Mean <MDL <MDL <MDL <MDL 0.05 0.08 0.07 0.08
SD -- -- -~ -- 0.00 0.03 0.02 0.01
cre Mean 0.47 0.26 0.08 0.05 0.14 0.11 0.05 0.05
SD 0.03 0.14 0.05 0.00 0.00 0.06 0.00 0.00

cu Mean 2.81 2.52 2.92 2.60 1.71 0.55 0.55 0.68
SD 0.49 0.20 0.62 0.28 0.02 0.16 0.11 0.01
Fe*? Mean 209.15 140.15 151.15 171.93 146.17 127.78 118.22 147.82
SD 51.54 30.58 30.49 34.35 1.97 45,75 17.55 1.70

K Mean 3139240 3118570 3294985 30184.88 n/a n/a n/a n/a
SD 1805.48 2264.78 272979  4132.81 n/a n/a n/a n/a
Mg" Mean  3326.68 2037.43 293110 3017.49 n/a n/a n/a nfa
SD 82.77 224.42 325.65 325.93 n/a n/a n/a n/a
Mn? Mean 536.63 377.27 520.93 594 .86 439.37 549.32 436.11 434.43
SD 37.41 117.68 177.77 81.95 7.53 22818 123.85 7.42

Na® Mean 518.51 358.02 793.59 687.38 n/a n/a n/a n/a
SD 55.95 48.90 80.48 134.70 n/a n/a n/a n/a
Ni*® Mean 0.05 0.07 0.09 0.38 0.12 0.12 0.12 0.30
SD 0.00 0.04 0.04 0.14 0.00 0.00 0.00 0.01

P Mean 6673.13 7031.45 623020 5109.87 n/a n/a n/a n/a
SD 589.30 1201.83 730.73 1294.01 n/a n/a n/a n/a

Pb Mean <MDL <MDL <MDL <MDL <MDL <MDL  <MDL <MDL
SD -- -- -- -- -- -- -- --

ghe Mean  2191.41 1264.67 3300.77 477198 | 585.81 584.37 628.23 736.57
SD 232.05 181.44 255.36 200.81 68.23 37.21 54 .54 11.85

Si Mean 447 .65 499.11 498.33 500.27 0.29 0.36 0.35 0.40
SD 34.79 32.67 29.70 27.57 0.02 0.09 0.06 0.03

srt Mean 34.16 20.64 40.42 35.62 n/a n/a n/a n/a
SD 1.99 1.91 477 2.68 n/a n/a n/a n/a
7n Mean 30.99 32.87 43.11 36.58 23.41 23.56 19.40 17.51
SD 8.40 260 2.64 4.01 0.38 9.92 4.38 0.28

* <MDL, below detectable limits, see Appendix 1 for MDLs ** n/a, parameter not included in tissue analysis
M2 denotes significant difference (p<0.05) in Eleocharis smallii and Pyganodon grandis respectively
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Figure 2.6. Mean tissue concentrations (Al, Ba, Cr, Cu, and Fe) for
Control/Reference, West Arm, Caland, and Hogarth Treatments. Scale on
right side of graphs corresponds to lake water concentrations.

Capital letters indicate significant differences (p<0.05) for Eleocharis
(Tukey’s LSD post hoc) and lower case letters indicate significant

differences for Pyganodon (Gabriel post hoc).
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Figure 2.7. Mean tissue concentrations (Mn, Ni, S, and Zn) for
Control/Reference, West Arm, Caland, and Hogarth Treatments. Scale on
right side of graphs corresponds to lake water concentrations.

Capital letters indicate significant differences (p<0.05) for Eleocharis
(Tukey’s LSD post hoc) and lower case letters indicate significant
differences for Pyganodon (Gabriel post hoc).
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Figure 2.8. Mean tissue concentrations (Ca, Na, Mg, and Sr) for
Control/Reference, West Arm, Caland, and Hogarth Treatments. Scale on
right side of graphs corresponds to lake water concentrations.
Capital letters indicate significant differences (p<0.05) for Eleocharis
(Tukey’s LSD post hoc) and lower case letters indicate significant

differences for Pyganodon (Gabriel post hoc).
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One bivalve replicate (Site 1) in the West Arm suffered 100% mortality 2
weeks into the study. No other cages experienced such high rates of mortality;
the following sites had one bivalve die during the course of the exposure period:
West Arm #3, Caland #2 and #3, and Hogarth #1, #2, and #3. Bivalve weights,
initial and final, along with differences between the sites and lakes are
summarized in Table 2.11. Hogarth Pit Lake sites were the only bivalves to lose
weight, while Caland sites gained the most on average, but not significantly

higher than West Arm sites.

Table 2.11. Bivalve mean weights and differences within sites and lakes.

West Arm Caland Pit Lake

Site 1 Site 2(n=5) Site 3(n=5) Site 1(n=5) Site 2(n=5) Site 3(n=5)
Weight; n/a 151.59+34.60* 152.96+12.53 163.69+20.57 145.92+30.02 175.93+35.28
Weights n/a 153.85£12.53 154.15+12.48 166.40+£30.89 148.09+30.89 178.18+34.88
Difference n/a 2.26+2.07 1.19+0.54 2.17+1.02 2.17+1.02 2.25+1.33
Lake mean 1.78+1.76 (n=9) = 2.40£0.94 (n=13)
difference

Hogarth Pit Lake

Site 1(n=5) Site 2(n=5) Site 3(n=5)
Weight; 153.31£44.28 131.96%19.58 130.01119.54
Weight¢ 151.28444.86 128.86+19.17 127.44x:18.56
Difference -2.03+3.23 -2.41£1.10 -2.57+1.77
Lake mean -2.3412.02 (n=13)°
difference

* values are means with SD
**Different letter indicate significant difference (p<0.05), as determined by ANOVA Gabriel Post Hoc Test
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2.4 Discussion
2.4.1 Toxicity Testing
2.4.1.1 Acute Toxicity

Lack of toxicity to Daphnia magna was a change compared to
McNaughton’'s (2001) results in May 1999, which resulted in 100% mortality
using full strength effluent (Hogarth water). This may be the result of changes in
lake water quality since that time. In 1999, SO4* and TDS levels approached
1792 mg/L and 2477 mg/L respectively, while in 2006 they were 1513 mg/L and
2352 mgl/L respectively (both years as annual averages). Nickel levels from

1999 were also higher at 0.058 mg/L and in 2006, averaged 0.030 mg/L.

2.4.1.2 Chronic Toxicity and Chronic TIE Toxicity

Chronic test results were inconsistent throughout the 2 years, with toxicity
occurring during the winter months. It was noted that conductivity, Ca®, M92+,
S0.%, and TDS were slightly higher during those months (Table 2.4). These
parameters are discussed further in section 2.4.1.3.

The first TIE Phase | test resulted in a reduction in toxicity (i.e. a higher
IC50 value) with the EDTA 8 mg/L addition manipulation test (Table 2.5 and
Figure 2.4). Reductions in toxicity are also evident when looking at the 1C25
values of the sodium thiosulfate 25 mg/L and 8 mg/L addition tests; however, as
suggested by Goodfellow et al (2005), IC50s may be more useful for Phase |
TIEs when trying to correlate the characterization test results to effluent toxicity.

The use of a consistent endpoint effect level is important for subsequent TIE
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work (USEPA, 1992), therefore, it was also the endpoint observed in the second
TIE Phase | tests.

Reductions in toxicity following EDTA additions are indicative of cationic
metal toxicity. Cationic metals strongly chelated by EDTA include, AP*, Cd%,
Cu®, Fe**, Pb?*, Mn?", Ni**, and Zn** (Stumm and Morgan, 1981): however,
EDTA can remove non-metal ions such Ca?* and Mg?* (Flaschka and Barnard,
1967; Sovari and Sillanpaa, 1996 ). Also corresponding to this reduction or
toxicity in the winter of 2005, was a relatively isolated high level of Pb in the
water (Table 2.4). At 0.0885 mgl/L, this exceeds the CWQG of 0.007 mg/L at
hardnesses > 180 mgCaCO,/L (CCME, 2007). Nilevels at this time were 0.0282
mg/L, well within the CWQG limit of 0.150 mg/L at hardnesses >180 mgCaCOsl/L.
Based on these results, cationic metal toxicity should not be ruled out as a
possibility.

Continuing with TIE work, such as Phase Il to further isolate the cause of
toxicity, could ﬁot happen in the spring of 2005, as there was no toxic response
from Hogarth water. Summer and fall testing also showed no toxic response.
January 2006 tests resulted in a toxic response; therefore, a subsequent TIE was
carried out to determine whether the results were reproducible.

None of the Phase | manipulations in the second TIE greatly reduced
toxicity (Table 2.6 and Figure 2.5). Pb levels at this time fell below the detection
limit of 0.005 mg/L while Ni remained fairly consistent at 0.034 mg/L (Table 2.4).
Given that toxicity was still present, and occurring in the winter months when

TDS levels and corresponding parameters including conductivity and hardness
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were elevated, further investigations into TDS-related toxicity were continued.
Since TDS behave as a mixture of toxicants, only general relationships exist
between toxicity and TDS (USEPA, 1992). Due to this variation, TDS does not
sort out clearly in Phase |. Waller et al (2005) suggest if Phase | TIE
manipulation fail to substantially reduce toxicity and sample conductivity is >2000
Hs/cm, TDS toxicity should be investigated. Effluents may be toxic due to
elevated ions, while other effluents may be toxic due to ratios of ions or types of
ions that are not supportive of test organisms (Norberg-King et al, 2005a).
Hogarth effluent does have conductivity values >2000 pys/cm and elevated TDS
(and associated ions) concentrations (Table 2.4). The possibility of TDS toxicity

in Hogarth Pit Lake was explored through testing mock effluents.

2.4.1.3 Mock Effluent Chronic Toxicity

Numerous authors concede that the use of mock effluents can effectively
evaluate toxicity due to high TDS or unusual ionic balances (Mount et al, 1997;
Tietge et al, 1997, Goodfellow et al, 2000; SETAC, 2004). A review of Hogarth
water (effluent) data shows that 93% of effluent TDS could be accounted for by
the sum of Ca%*, Mg?*, and SO.,*. Therefore, it is likely the mock effluent was
representative of TDS in Hogarth water (Table 2.7). Toxicity test results
demonstrated that mock effluent produced similar responses to Hogarth water.
The mock effluent was slightly less toxic than Hogarth water generating 1C25s of
33.9% and 38.2% compared to 23.1% and 32.1% and IC50s of 80.3% and

66.5% compared to 62.0% and 66.9% (Table 2.8). This may suggest that
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although the mock effluent, while simulating TDS levels in Hogarth water does
account for the majority of toxicity, other toxicants may be acting in addition to
TDS.

A study by Norberg-King et al (2005b) using mock effluent to determine
TDS toxicity concluded that although their results from mock effluents did prove
to be a major contributor to effluent toxicity, it could not rule out the possibility of
additional non-TDS toxicants being present. In this case, the additional non-TDS
toxicants were assumed to be metals (due to small reductions in toxicity seen
with EDTA additions); however, unless the TDS ions are reduced, it is difficult to

identify any other toxicants.

2.4.1.4 Lemna minor Toxicity

To introduce an additional species to toxicity testing, L. minor tests were
used in the fall of 2006. Responses of L. minor to Hogarth water and mock
effluent were not as evident in comparison to C. daphnia (i.e. producing only an
IC25 and no IC50); however, there were similar responses to both effluents
(Table 2.9). Itis also important to note that the plants did show signs of stress
including smaller fronds, shorter roots, and chlorosis (discolouration of the plant
due to lack of chlorophyll).

Toxicity to this species as a result of metals, specifically Pb and Ni, is
unlikely. Pb levels during the time of testing were below detection limits. Wang
(1987) reported 1C50s for Ni to Lemna minor of 0.36 and 0.21 mg/L for water with

hardness ranging from 37 to 78 mgCaCOs/L respectively. He also estimated that
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at a concentration of 1 mg/L, Ni can cause a 30% inhibition (IC30) of duckweed
growth in almost all surface waters, and a 70% inhibition (IC70) in extremely soft
waters. With Ni levels in Hogarth of 0.013 — 0.025 mg/L during the time of L.
minor testing, the toxicity is unlikely due to Ni. This is not even taking into
account the ameliorating effects of hardness levels on metal toxicity which is later
discussed. Hence, Ni levels toxic to L. minor would have to exceed 1.0 mg/L, a
level substantially higher than found in Hogarth Pit Lake.

The toxic response of L. minor to Hogarth water and mock effluent then is
due to TDS levels, with SO,* as the major contributing ion. A few studies have
documented the effects of elevated TDS on aquatic plants. (Sorenson ef al,
1977) reported declines in productivity in algae (species not given) at TDS
concentrations >1400 mg/L. Selanastrum capricornutum, green algae, resulted
in an EC20 value of 551.3 mg/L TDS, as CaSOy4 (LeBlond and Duffy, 2001) and
effects to higher order plants including the near elimination of coontail
(Ceratophyllus demersum) and cattails (Typha sp.) in water with 1170 mg/L TDS
(Hallock and Hallock)

Based on these studies, most likely the toxicity of L. minor to both Hogarth

water and mock effluent is the result of TDS levels at approximately 2000 mg/L.

2.4.2 Bioaccumulation Studies
Ecological effects and risks from metal contamination are challenging to
document due to variable responses among species, differing threats among

metals, and complex environmental influences (Luoma and Rainbow, 2005).
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Metal bioavailability, subsequent bioaccumulation, and risks presented by metals
is a complex issue, which still must be better understood and quantified to a
greater degree (McGeer ef al, 2004). Issues confounding the science on
bioaccumulation of metals in aquatic biota include: uptake mechanisms,
accumulation strategy, trophic transfer, adaptation and acclimation (tolerance),
intra/intercellular speciation, and metabolism/detoxification (McGeer et al, 2004;
Chapman et al, 2003). Even choice of test species can influence variability in
results. Within the same species of bivalves there can be major differences in
bioaccumulation attributed to biological factors such as age, size, sex, genotype,
phenotype, feeding activity, and reproductive state (Boening, 1999).

It was not the intent of this bioaccumulation study to attempt to explain
such complex issues; rather, act as an aid in determining whether there exists
the potential for metals in Hogarth Pit Lake to accumulate in aquatic biota.
Essentially, it acted as a magnifying glass to account for toxic responses not fully
explained by TDS toxicity. Trends of particular interest were metals that
accumulated in both plant and animal tissue, while corresponding to increased
levels of total metals in the water. In both E. smallii and P. grandis elevated
concentrations of Ni and S were found when exposed to Hogarth Pit Lake water
(Table 2.10 and Figure 2.7). Such an obvious trend, given the complexities
associated with bioaccumulation, should not be overlooked. Having already
reckoned toxic effects of S (as SO4%) in TDS-related toxicity, Ni remains the

metal of interest.
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Some metal levels were higher in the control/reference tissues compared
to the lake treatments (Figures 2.6 and 2.7). Cr and Fe in E. smallii were higher
in the controls, and may be result of levels in the greenhouse water supply, which
was not analyzed for metals at the time. Higher levels of metals in reference P.
grandis tissues were not compared to the other treatments for reasons discussed
in section 2.2.6.2.

Aside from bioaccumulation results, the bivalves also served as an in situ
toxicity test by assessing how well (if at all) an organism could survive in Hogarth
Pit Lake given its historical absence of life. No significant differences in mortality
occurred in the study lakes, with the exception of West Arm Site 1. This can be
attributed to low water levels during a dry period in the summer. Due to its
location, near shoreline, the cage was more susceptible to changes in water
level, resulting higher temperatures. No increased mortality in Hogarth Pit Lake
indicates it was a suitable environment to live in. Hogarth bivalves did however
experience net average weight loss, while the other two study lakes had average
net weight gain. The lack of suspended food in Hogarth’s water column may be
the cause of weight loss. No differences in bivalve size were observed. The
duration of exposure time (7 weeks) may have been insufficient to produce any
detectable differences.

Variability between individuals inhibits demonstrations of statistically
different changes of metal concentration in tissues (Markich et al, 2001). By
investigating tissue concentrations using biotic predictors, such as sex and age,

this could be improved.
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2.5 Conclusions and Future Work

Based on TIE Phase | and mock effluent results on C. dubia, most of the
toxicity in Hogarth Pit Lake can be attributed to the presence of the major ions
S04%, Ca*", and Mg?*. However, the reduction of toxicity shown in the first TIE
with EDTA suggests metals may possibly contribute to toxicity. Pb levels at the
time (January 2005) were high, and in later sampling, fell below detection limits;
which may explain those isolated results.

Further evidence that may contribute to toxicity is suggested by the
bioaccumulation results. Ni stands out as it was the only metal, other than S to
bioaccumulate most in Hogarth water in both Eleocharis smallii and Pyganodon
grandis tissues. C. daphnia appears to be the most sensitive species tested with
nickel in both acute and chronic exposures. Keithly ef al (2004) showed chronic
effects (EC20s) at concentrations of < 3.8, 4.7, 4.0, and 6.9 pg/L at hardnesses
of 50, 113, 161, and 253 mgCaCOs3/L respectively. Levels of nickel in Hogarth
Pit Lake range from 13 to 53 ug/L, or 0.0130 to 0.0530 mg/L (Table 2.4). With
hardness values in Hogarth water far exceeding levels tested at for chronic nickel
toxicity (Keithly el al, 2004), it can be assumed the Ni concentrations would have
to be much greater to cause an effect in Hogarth water. CWQG allowable Ni
concentration ranges from 0.025-0.150 mg/L, with 0.150 mg/L being the limit for
water with hardness >180mgCaCOs/L (CCME, 2007).

Reductions and modifications of metal toxicity in freshwater organisms
due to effects of hardness (Stubblefield et al, 1997; Welsh et al, 2000; Gensemer

et al, 2002; Pyle et al, 2002; Heijerick, 2003, Keithly et al, 2004), and
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calcium/magnesium ratios (Naddy et al, 2002) have been well documented. ca*
and Mg*®* are known to compete with metal ions for binding sites on organic
matter or test species.

Toxicity testing should be continued, as there have been considerable
changes over the years, even seasonally. Future work could include the removal
of ions from Hogarth water to take a closer look at the possibility of Pb and Ni
toxicity without implications of water hardness; however, removing hardness as a
factor is not ecologically relevant since it is a part of the local limnology. The
complex interactions of metal toxicity with biotic and abiotic factors presents a
challenge. Mock effluent testing mimicking TDS with spiked additions of metals
may be way of observing both effects.

In the case of L. minor testing, quantifying the health of the organisms
would help to interpret results, rather than just counting the number of fronds.
Perhaps incorporating an endpoint such as colour of the plants would be possible
through photographic techniques. L. minor could also provide more insight into
the possibility of metal effects. This could be achieved through analyzing the
exposed test tissues for metals. Several studies have shown that L. minor can
accumulate high concentrations of various heavy metals (Kara et al, 2003)
including Ni and Pb (Jain ef al, 1988; Axtell et al, 2003).

Further bioaccumulation investigations should be considered, utilizing
indigenous species may allow for less variation in data as they would be
geographically closer, exposed to more similar environments. Based on the

preliminary findings, influences on Ni bioavailability and bioaccumulation should
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be elaborated on to assess its potential environmental risks in Hogarth Pit Lake
water. Studies solely on metal availability and uptake mechanisms of aquatic
organisms would also prove useful due to the complex nature of metal

bioaccumulation in aguatic environments
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GENERAL CONCLUSIONS

Caland and Hogarth Pit Lakes have demonstrated dilution trends from
1998 through 2006. This is more pronounced in Hogarth, as observed through
toxicity changes (acute to chronic). Major differences in chemistry still exist:
Caland is more alkaline with higher nutrient levels while Hogarth displays higher
TDS values (and related parameters including conductivity, SO4* and cations).
Caland Pit Lake contains a freshwater lens covering anoxic waters while Hogarth
Pit Lake now contains aquatic organisms in the water column. This results in the
- development of a positive heterograde oxygen profile. Throughout the study
period, observations of aquatic life forms in Hogarth Pit Lake were documented.
This significant change differs from 2003 when at that time the lake was devoid
of life (VanCook, 2005). More pronounced seasonal changes have also occurred
in Hogarth. Winter months are characterized with higher levels of conductivity,
TDS, and 8042',' which also corresponds with the presence of toxicity in winter
months.

Stable isotope analyses were employed to identify trends and influences
on the pit lake water quality. Strong evaporative effects to depths of
approximately 30 m are apparent in both lakes. This isolates bottom waters,
creating permanent meromixes conditions. The ore body is the main source of
sulfate for both lakes as §**S values show little variation in either pit lake and
groundwater. Carbon inputs into the lakes differ. Hogarth Pit Lake is influenced

by surrounding carbonate formations, while Caland Pit Lake is more influenced
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by organic sources. Groundwater is still considered to be the major source of
water in the pit lakes.

Toxicity in Hogarth Pit Lake during winter months correspond to observed
seasonal variations. TDS, mainly comprised of S0,%, Ca®*, and Mg2+ appears to
be the main cause of toxicity in Hogarth Pit Lake. Metals contributing to toxicity,
especially Ni, could still be a possibility and should not be ruled out. With the
continuing trend of dilution and presence of aquatic life in Hogarth Pit Lake,
forecasts of natural succession may continue over time. Thus far, failure for
successful establishment of lower organisms such as invertebrates and plants
(i.e. Daphnia and Lemna minor) severely inhibits the succession of higher
organisms, and hence the productivity of the lake itself. Steep sides and
continuously rising water levels are also not advantageous for organism
establishment, specifically those shoreline plants and aquatic organisms
requiring macrophytes for habitat (such as aquatic insects and fish).

This unique study area provides a very interesting opportunity for
numerous and diverse research studies. It is a prime example of the resiliency of
ecosystems and “how nature takes its course”; yet still reminds us of our

ecological footprints and their resulting consequences.

90



References

Allen, D.M. and M.E. Lepitre. 2004. Use of Pb, 180, and 2H Isotopes in mining-
related environmental studies. Mine Water and the Environ. 23:119-132.

Axtell. N.R. P.K.S. Sternberg, and K. Claussen. 2003. Lead and nickel removal
using Microspora and Lemna minor. Bio. Technol. 89:41-48.

Baker, S.L. 2004. The cause of acute toxicity in Hogarth Pit Lake, Atikokan,
Ontario. Lakehead University Press, Thunder Bay, Ont.

Boening, D.W. 1999. An evaluation of bivalves as biomonitors of heavy metals
pollution in marine waters. Environmental Monitoring and Assessment.
55:459-470.

Bowell, R. 2003. Pit lake systematics: A special issue. Mine Water and the
Environment. 22:167-169.

Castro, J.M., and J.N. Moore. 2000. Pit-lakes: their characteristics and the
potential for their remediation. Environ. Geol. 39(1):1254-1260.

CCME [Canadian Council of Ministers of the Environment]. 2007. Canadian
water quality guidelines for the protection of aquatic life: Summary table.
Updated December, 2007. In: Canadian environmental quality guidelines,
1999, Canadian Council of Ministers of the Environment, Winnipeg. 8 pp.

Chambless, D.A, S.S. Dubose, and E.L. Sensintaffar. 1992. Detection limit
concepts: foundations, myths, and utilization. Health Phys. 63:338-340.

Chapman, P.M. F. Wang, C.R. Janssen, R.R. Goulet, and C.N. Kamunde. 2003.
Conducting ecological risk assessments of inorganic metals and

metalloids: Current status. Human and Ecological Risk Assessment.
9(4):641-697.

Chappie, D.J., and G.A. Burton, Jr. 1997. Optimization of in situ bioassays with
Hylella azteca and Chironomus tentans. Environ. Toxicol. Chem.
16(3):559-564.

Clark, I1.D. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology. Lewis
Publishers, New York. 352 pp.

Cockerton, S. J. 2007. An experimental water-rock interaction study into the
origin of the chemical characteristics of the Hogarth and Caland Pit Lakes,
Steep Rock Lake, Atikokan. Lakehead University Press, Thunder Bay,
Ont.

91



Conly, A.G., P.F. Lee, AR. Goold, and A. Godwin. (in press a). Geochemistry
and stable isotope composition of Hogarth and Caland Pit Lakes, Steep
Rock Iron Mine, Northewestern Ontario, Canada.

Conly, A.G. P.F. Lee, A. Godwin, and S. Cockerton. (in press b). Experimental
constraints for the source of sulfate toxicity and predictive water quality for
the Hogarth and Caland Pit Lakes, Steep Rock Iron Mine, Northwestern
Ontario, Canada.

Davies, T.D. 2007. Sulphate toxicity to the aquatic moss, Fontinalis antipyretica.
Chemosphere 66:444-451.

Davis, A. and D. Ashbenberg. 1989. The aqueous geochemistry of the Berkeley
Pit, Butte, Montana, U.S.A. Appl. Geochem. 4:23-36.

Deines, P. 1980. The isotopic composition of reduced organic carbon. In:
Handbook of Environmental Isotope Geochemistry. P. Fritz and J.Ch.
Fontes (Eds). Elsevier, Amterdam. Vol. 1 329-406pp.

Dold, B. and J.E. Spangenberg. 2005. Sulfur speciation and stable isotope trends
of water-soluble sulfates in mine tailings profiles. Environ. Sci. Technol.
39:5650-5656.

Doyle, G.A. and D.D. Runnels. 1997. Physical limnology of existing mine pit
lakes. Mining Engineering. 49(12):76-80.

Eary, L.E. 1998. Predicting the effects of evapoconcentration on water quality in
mine pit lakes. J. of Geochem. Explor. 64:223-236.

Eary, L.E. 1999. Geochemical and equilibrium trends in mine pit lakes. Applied
Geochemistry. 14:963-987.

EC [Environment Canada]. 1992. Biological Test Method: Test of Reproduction
and Survival Using the Cladoceran Ceriodaphnia dubia, Method
Development and Application Section, Ottawa, Ont., Rept EPS 1/RM/21.

95 pp.

EC 1999a. Guidance document on application and interpretation of single-
species tests in environmental toxicology. Method Development and
Application Section, Ottawa, Ont., Rept EPS 1/RM/34. 225 pp.

EC. 1999b. Biological Test Method: Test for measuring the inhibition of growth

using the freshwater macrophyte Lemna minor. Method Development and
Application Section, Ottawa, Ont., Rept EPS 1/RM/37. 120 pp.

92



EC. 2000a. Biological Test Method: Biological Test Method: Reference method
for determining acute lethality of effluents to Rainbow Trout, Second
Edition. Method Development and Application Section, Ottawa, Ont., Rept
EPS 1/RM/13. 34 pp.

EC. 2000b. Biological Test Method: Reference method for determining acute
lethality of effluents to Daphnia magna, Second Edition. Method
Development and Application Section, Ottawa, Ont., Rept EPS 1/RM/14.
32 pp.

EC. 2005. Guidance document on statistical test methods for environmental
toxicity tests. Method Development and Application Section, Ottawa, Ont.,
Rept EPS 1/RM/46. 241 pp.

Epstein, S. and T.K. Mayeda. 1953. Variation of O-18 content of waters from
natural sources. Geoch. Cosmochim. Acta 4:213-224.

Farnham, I.M., A.K.Singh, K.J. Stetzenbach, and K.H. Johannesson. 2002.
Treatment of nondetects in multivariate analysis of groundwater
geochemistry data. Chemometrics and Intelligent Laboratory Systems.
60:265-281.

Flaschka, H.A. and A.J. Barnard, Jr. (Eds). 1967. Chelates in Analytical
Chemistry. Marcel Dekker, Inc., New York, NY. 418 pp.

Foster, R.B. and J.M. Bates. 1978. Use of freshwater mussels to monitor point
source industrial discharges. Environ Science and Technology 12(8):958-
962.

Gammons, C.H. S.R. Poulson, D.A. Pellicori, P.A. Reed, A.J. Roesler, and E.M.
Petrescu. 2006. The hydrogen and oxygen isotopic composition of
precipitation, evaporated mine water, and river water in Montana, USA. J.
Hydrol. 328:319-330.

Gauthier. C. P. Couture, G.G. Pyle. 2006. Metal effects on fathead minnows
(Pimephales promelas) under field and laboratory conditions.
Ecotoxicology and Environmental Safety 63(3):353-364.

Gensemer, R.W., R.B. Naddy, W.A. Stubblefield, J.R. Hockett, R. Santore, and
P. Paquin. 2002. Evaluating the role of ion composition on the toxicity of
copper to Ceriodaphnia dubia in very hard waters. Comparive
Biochemistry and Physiology Part C. 133:87-97.

93



Goodfellow, W.L., LW. Ausley, D.T. Burton, D.L. Denton, P.B. Dorn, D.R.
Grothe, M.A. Heber, T.J. Morberg-King, and J.H. Rodgers, Jr. 2000. Major
ion toxicity in effluents: A review with permitting recommendations.
Environ. Toxicol. Chem. 19(1):175-182.

Goodfellow, W.L. J. Brils, R.M. Burgess, J. Doi, P.J. Downey, D.L. Matthews, T.J.
Norberg-King, and B.M. Phillips. 2005. Chapter 3: Wastewater Toxicity
Identification Evaluations. In: Toxicity Reduction and Toxicity dentification
Evaluations for Effluents, Ambient Waters and Other Aqueous Media.
Edited by T.J. Norberg-King, L. W. Ausley, D.T. Durton, W.L. Goodfellow,
J.L. Miller, and W.T. Waller. Society of Environmental Toxicology and
Chemistry, Pensacola, FL. 455 pp.

Green, R.H. 1971. Multivariate statistical approach to the Hutchinsonion niche:
bivalve mollusks of central Canada. Ecology 52:543-546.

Greenberg, A.E., L.S. Clesceri, and A.D. Eaton. 1992. Standard Methods for the
Examination of Water and Wastewater, 18" Ed. EPS Group Inc., Hanover,
Maryland.

Guler, C. G.D. Thyne, J.E. McCray, and A K. Turner. 2002. Evaluation of
graphical and multivariate statistical methods for classification of water
chemistry data. Hydrogeol. J. 10:455-474. '

Hall, S. 2005. Case Study 6.4: Toxicity Reduction Evaluation Case Study In:
Toxicity Reduction and Toxicity Identification Evaluations for Effluents,
Ambient Waters and Other Aqueous Media. Edited by T.J. Norberg-King,
L.W. Ausley, D.T. Durton, W.L. Goodfellow, J.L. Miller, and W.T. Waller.
Society of Environmental Toxicology and Chemistry, Pensacola, FL.

Hallock, R.J. and L.L. Hallock (Ed.) 1993. Detailed Study of Irrigation Drainage in
and near Wildlife Management Areas, West-Central Nevada, 1987-1990.
Part B. Effect on Biota in Stillwater and Fernley Wildlife Management
Areas and other Nearby Wetlands. US Geological Survey, Water
Resources Investigations Report 92-4024B.

Hamblin, P.F., C.L. Stevens, and G.A. Lawrence. 1999. Simulation of vertical
transport in mining pit lakes. J. Hydraulic Engineering. 125(10):1029-1038.

Heijerick, D.G., C.R. Janssen, and W.M. DeCoen. 2003. The combined effects of
hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn
to D. Magna: Development of a surface response model. Arch. Environ.
Contam. Toxicol. 44:210-217.

94



Hsu, S.C. and J.B. Maynard. 1999. The use of sulfur isotope to monitor the
effectiveness of constructed wetlands in controlling acid mine drainage.
Environ. Engg. and Policy. 1:223-233.

Jackson, B. 2005. Ministry of Natural Resources, Atikokan Region Area Biologist.
Personal Communications.

Jain, S.K., G.S. Gujral, N.K. Jha, and P. Vasudevan. 1988. Heavy metal uptake
by Pleurotus sajor-caju from metal enriched duckweed substrate. Biol.
Wastes. 24:275-282.

Jolliffe, A.W. 1966. Stratigraphy of the Steeprock Group, Steep Rock Lake,
Ontario. Geological Association of Canada. Special Paper No. 3:75-96.

Kalin, M., Y. Cao, M. Smith, and M.M. Olaveson. 2001. Development of the
phytoplankton community in a pit-lake in relation to changes in water
quality. Wat. Res. 35(13):3215-3225.

Kara, Y. D. BaAran, Y. Kara, and A.Y. H. Genc. 2003. Bioaccumulation of nickel
by aquatic macrophyta Lemna minor (duckweed). International J. Agricul
Biol. 5(3):281-283.

Keithly, J. J.A. Brooker, D.K. DeForest, B.K. Wu, and K.V. Brix, 2004. Acute and
chronic toxicity of nickel to a cladoceran (Cerdaphnia dubia) and an
amphipod (Hyalella azteca). Environ. Toxicol. Chem. 23(3):691-696.

Kendall, C. and D.H. Doctor. 2005. Chapter 5.11 Stable Isotope Application in
Hydrological Studies in: Drever, J.l. (Editor), H.D. Holland, and K.K.
Turekian (Executive Editors). Surface and Ground Water, Weathering, and
Soil. Elsevier Ltd., Amsterdam, Netherlands. 626 pp.

Kennedy, A.J., D.S. Cherry, and C.E. Zipper. 2005. Evaluation of ionic
contribution to the toxicity of a coal-mine effluent using Ceriodaphnia
dubia. Arch. Environ. Contam. Toxicol. 49:15-162.

Kusky, T.M. and P.J. Hudleson. 1998. Growth and demise of an Archean
carbonate platform, Steep Rock Lake, Ontario, Canada. Can. J. Earth Sci.
36:565-584.

LeBlond, J.B. and L K. Duffy. 2001. Toxicity assessment of total dissolved solids
in effluent of Alaskan mines using 22-h chronic Microtox® and
Selenastrum capricornatum assays. Sci. Tot. Environ. 271:49-59.

Levy, D.B., K.H. Custis, W.H. Casey, and P.A. Rock. 1995. Geochemistry and

physical limnology of an acidic pit lake. Tailings and Mine Waste '96. 479-
489.

95



Luoma, S.N. and P.S. Rainbow. 2005. Why is metal bioaccumulation so
variable? Biodymanics as a unifying concept. Environ. Sci. Technol.
39(7):1921-1931.

Lyons, W.B. 1994. The limnology of future pit lakes in Nevada: The importance of
shape. In: Proceedings of International Conference on Tailing and Mine -
Waste 1994. Fort Collins, Colorado, A.A. Balkema, 245-248.

MacDonald, J.C. 2005. An integrated mineralogy, geochemistry and stable
isotope geochemistry investigation into potential sulphate sources on the
Hogarth Pit Lake, Steep Rock Iron Mine, Atikokan. Lakehead University
Press. Thunder Bay, Ont.

Markich, S.J., P.L. Brown, R.A. Jeffree. 2001. Divalent metal accumulation in

freshwater bivalves: an inverse relationship with metal phosphate
solubility. Sci. Tot. Environ. 275: 27-41.

McCrea, J.M. 1950. On the isotope chemistry of carbonates and a
paleotemperature scale. J. Chem. Phys. 18:849-957.

McCune, B. and J.B. Grace. 2002. Analysis of Ecological Communities. MjM
Software Design. Gleneden Beach, Oregon. 300pp.

McGeer, J., G. Henningsen, R. Lanno, N. Fisher, K. Sappington, J. Dresler, and
M. Beringer. 2004. Issue Paper on the Bioavailability and Bioaccumulation
of Metals. Eastern Research Group Inc. Lexington, MA. 122 pp.

McNaughton, K.A. 2001. The limnology of two proximal pit lakes after twenty
years of intense flooding. Lakehead University Press, Thunder Bay, Ont.

85 pp.

Ministry of Natural Resources [MNR]. 1986. Summary Report on Surrender of
Mining Claims by Steep Rock Resources Inc. Steep Rock Lake Atikokan
District. Regional Engineering Services, North Central Region. 19 pp.

Miller Jr., R.G. 1977. Developments in multiple comparisons 1966-1976. Journal
of the American Statistical Association. 72(360):779-788.

Mount, D.R., D.D. Gulley, J. R. Hockett, T.D. Garrison, and J.M. Evans. 1997.
Statistical models to predict the toxicity of major ions to Ceriodaphnia
dubia, Daphnia magna, and Pimephales promelas (fathead minnows).
Environ. Toxicol. Chem. 16(10):2009-2019.

Naddy, R.B. W.A. Studdlbfield, J.R. May, S.A. Tucker, and J.R. Hockett. 2002.

The effect of calcium and magnesium ratios on the toxicity of copper to
five aquatic species in freshwater. Environ. Toxicol. Chem. 21(2):347-352.

96



Nelson, S.T. and D. Dettman. 2001. Improving hydrogen isotope ratio
measurements for on-line chromium reduction systems. Rapid
Communications in Mass Spectrometry. 15:2301-2306.

Norberg-King, L. W. Ausley, D.T. Burton, W.L. Goodfeliow, J.L. Miller, and W.T.
Waller. 2005a. Chapter 1: Introduction. In: Toxicity Reduction and Toxicity
Identification Evaluations for Effluents, Ambient Waters and Other
Aqueous Media. Edited by T.J. Norberg-King, L. W. Ausley, D.T. Durton,
\W.L. Goodfellow, J.L. Miller, and W.T. Waller. Society of Environmental
Toxicology and Chemistry, Pensacola, FL. 455 pp.

Norgerg-King, T.J., T. Dawson, and K. Lott. 2005b. Case Study 6.7: Toxicity
Identification Evaluation of a Wastewater Treatment Plant Effluent with
lonic Toxicants. In: Toxicity Reduction and Toxicity Identification
Evaluations for Effluents, Ambient Waters and Other Aqueous Media.
Edited by T.J. Norberg-King, L.W. Ausley, D.T. Durton, W.L. Goodfellow,
J.L. Miller, and W.T. Waller. Society of Environmental Toxicology and
Chemistry, Pensacola, FL. 455 pp.

OMNDM [Ontario Ministry of the Northern Development and Mines]. 1994. Rock
Ontario. OMNDM. Rock On Series 1, 89 pp.

Parshley, J.V. and R.J. Bowell. 2003. The limnology of Summer Camp Pit Lake:
A case study. Mine Water and the Environment. 22:179-186.

Pellicori, D.A., C.H. Gammons, S.R. Poulson. 2005. Geochemistry and stable
isotope composition of the Berkeley pit lake and surrounding mine waters,
Butte, Montana. Appl. Geochem. 20:2116-2137.

Phillips, D.J.H., and P.S. Rainbow. Biomonitoring of Trace Aquatic
Contaminants, 2" edition. 1994. Chapman and Hall. London. 371 pp.

Porter. P.S. R.C. Ward, and H.F. Bell. 1988. The detection limit, water quality
monitoring data are plagued with levels of chemicals that are too low to be
measured precisely. Environ. Sci. Technol. 22:856-861.

Pyle, G.G., S.M. Swanson, and D.M. Lehmkuhl. 2002. The influence of water
hardness, pH, and suspended solids on nickel toxicity to larval fathead
minnows (Pimephales promelas). Water, Air, and Soil Pollution. 133:215-
226.

Ramstedt, M., E. Carlsson, and L. Lovgren. 2003. Aqueous geochemistry in the
Udden pit lake, northern Sweden. Appl. Geochem. 18:97-108.

97



Raskin, I. 1996. Plant genetic engineering may help with environmental clean-up:
Comentary. Proceedings of the national academy of sciences of the
United States of America. 93(8):3164-3166.

SETAC [Society of Environmental Toxicology and Chemistry]. 2004. Whole
Effluent Toxicity Testing: lon Imbalance. Technical Issue Paper. SETAC. 4

PP.

Shevenell, L. Connors, K.A., and C.D. Henry. 1999. Controls on pit lake water
quality at sixteen open-pit mines in Nevada. Appl. Geochem.14:669-687.

Shklanka, R. 1972. Geology of the Steep Rock Lake area district of Rainy River.
Ontario Department of Mines and Northern Affairs. Geol. Rep. 93. 114 pp.

Shrestha, S, and F. Kazama. 2007. Assessment of surface water quality using
multivariate statistical techniques: A case study of the Fuji river basin,
Japan. Environmental Modeling and Software. 22:464-475.

Shultz, R., M. Liess. 1999. Validity and ecological relevance of an active in situ
bioassay using Gammarus pulex and Limnephilus lunatus. Environ.
Toxicol. Chem. 18(10):2243-2250.

Singh, K.P. A. Malik, D. Mohan, and S. Sinha. 2004. Multivariate statistical
techniques for the evaluation of spatial and temporatl variations in water
quality of Gomti River (India): a case study. Water Research. 38:3980-
3992.

Sorenson, D.L.., M. McCarthy, E.J. Middlebrooks, and D.B. Porcella. 1977.
Suspended and dissolved solids effects on freshwater biota: A review. US
Environmental Protection Agency, EPA-600/3-77-042.

Soto, M., M.P. Ireland, |. Marigédmez. 2000. Changes in mussel biometry on
exposure to metals: implications in estimation of metal bioavailability in
‘Mussel-Watch’ programs. Sci. Tot. Environ. 247:175-187.

Soucek, D.J. and A.J. Kennedy. 2005. Effects of hardness, chloride, and
acclimation on the acute toxicity of sulfate to freshwater invertebrates.
Environ. Toxicol. Chem. 24(5):1204-1210.

Sovari, J. and M. Sillanpaa. 1996. Influence of meal complex formation on heavy
metal and free EDTA and DTPA acute toxicity determined by Daphnia
magna. Chemosphere 33:1119-1127.

Sowa, V.A. 2003. Aspects of sustainability following closure of the Steep Rock
Iron Mines, Ontario. Explor. Mining Geol. 12(1-4):37-47.

98



SPSS Version 16.0. Copyright 1989-2007. SPSS Inc.

Steep Rock Mines. 1943. The Steep Rock iron ore deposits. A story of patient
investigation and development. Can J. Mining. 63:437-444.

Steeprock Resources Inc. 1986. Report on Surrender of Mining Coaims by Steep
Rock Resourcs Inc.

Stevens, C.L. and G.A. Lawrence. 1998. Stability and meromixes in a water-filled
mine pit. Limnol. Oceanogr. 43(5):946-954.

Stubblefield, W.A., S.F. Brinkman, P.H. Davies, T.D. Garrison, J.R. Hockett, and
M.W. Mcintyre. 1997. Effects of water hardness on the toxicity of
manganese to developing brown trout (Salmo trutta). Environ. Toxicol.
Chem. 16(10):2082-2089.

Stumm, W. and J.J. Morgan. 1981. Aquatic Chemistry: An Introduction
Emphasizing Chemical Equilibria in Natural Waters. John Wiley & Sons,
Inc., New York, NY. 583 pp.

Tietge, J.E., J.R. Hockett, J.M. Evans. 1997. Major ion toxicity of six produced
waters to three freshwater species: Application of ion toxicity models and
TIE prodedures. Environ. Toxicol. Chem. 16(10)2002-2008.

ToxCalc™ v5.0.23G. 2000. Tidepool Scientific Software.

Trettin,R. H.R. Glaser, M. Schultze, and G. Strauch. 2007. Sulfur isotope studies
to quantify sulfate compounds in water of flooded lignite open pits — Lake
Goitsche, Germany. Appl. Geochem. 22:69-89.

U.S. EPA [Environmental Protection Agency]. 1991. Methods for Aquatic Toxicity
Identification Evaluations: Phase | Toxicity characterization procedures,
Second Edition. Environmental Research Laboratory Office of Research
and Development, Duluth, MN., EPA/600/6-91/003.

U.S. EPA. 1992. Toxicity Identification Evaluation: Characterization of chronically
toxic effluents, Phase |. Environmental Research Laboratory Office of
Research and Development, Duluth, MN., EPA/600/6-91/005F .

Vancook, M. 2005. The limnology and remediation of two proximal pit lakes in

Northwestern Ontario. Lakehead University Press, Thunder Bay, Ont. 105
pp.

99



Waller, W.T., H.A. Bailey, V. DeVlaming, K.T. Ho, JW. Hunt, J.L Miller, D.A.
Pillard, C.D. Rowland, and B.J. VVenables. 2005. Ambient water,
porewater, and sediment in Chapter 4: Toxicity Reduction and Toxicity
Identification Evaluations for Effluents, Ambient Waters and Other
Aqueous Media. Edited by T.J. Norberg-King, L. W. Ausley, D.T. Durton,
W.L. Goodfellow, J.L. Miller, and W.T. Waller. Society of Environmental
Toxicology and Chemistry, Pensacola, FL. 455 pp.

Wang, W. 1987. Toxicity of nickel to common duckweed (Lemna minor). Environ.
Toxicol. Chem. 6(12):961-966.

Weber-Scannel, P.K. and L.K. Duffy. 2007. Effects of total dissolved solids on
aquatic organisms: A review of literature and recommendation for
salmonid species. American J. Environ. Sci. 3(1): 1-6.

Welsh, P.G. J. Lipton, G.A. Chapman, and T.L. Podrabsky. 2000. Relative
importance of calcium and magnesium in hardness-based modification of
copper toxicity. Environ. Toxicol. Chem. 19(6):1624-1631.

Wetzel, 2001. Limnology Lake and River Ecosystems 3 Edition. Academic
Press. San Diego. 1006 pp.

Williams, B.K. 1983. Some observations on the use of discriminant analysis in
ecology. Ecology 64:1283-1291.

100



APPENDIX

101



Appendix 1

Minimum Detectable Limits for Analytical Methods

102



Water Chemisty Minimun Detectable Limits

Parameter MDL Units Parameter MDL Units
Conductivity 0.2 uSicm Chromium 0.002 mg/L
Hardness (cacl.) n/a mgcaco./L Copper 0.002 mg/L
pH n‘a n/a Iron 0.002 mg/L
Calcium 0.01 mg/L Manganese 0.0002 mg/L
Potassium 0.10 mg/L Nickel 0.002 mg/L
Magnesium 0.005 mg/L Lead 0.005 mg/L
Sodium 0.01 mg/L Sulphur 0.05 mg/L
Chiloride 0.05 mg/L Vanadium 0.01 mg/L
Sulphate 0.05 mg/L Zinc 0.001 mg/L
Aluminum 0.005 mg/L Ammonium (NH3-N) 0.05 mg/L
Arsenic 0.01 mg/L Total Dissolved Solids 10.0 mg/L
Barium 0.003 mg/L Total Suspended Solids 20 mg/L
Beryllium 0.002 mg/L Total K. Nitrogen 0.015 mg/L
Cadmium 0.001 mg/L Total Phosphorus 0.005 mg/L
Cobalt 0.01 mg/L Nitrate 0.009 mg/L
Dissolved
Organic Total Alkalinity measured as
Carbon 0.50 mg/L CaC0s 1.0 mgcacos/L

Plant Tissue Chemistry Minimun Detectable Limits

Parameter MDL Units Parameter VDL Units
Aluminum 5.00 ug/g Magnesium 0.10 ug/g
Arsenic 2.50 ug/g Manganese 0.01 pgl/g
Barium 0.05 ug/g Sodium 0.10 ug/g
Beryllium 0.02 ug/g Nickel 0.10 ug/g
Calcium 0.10 po/g Phosphorus -0.80 pg/g
Cadmium 0.40 ug/g Lead 0.50 pg/g
Cobailt 0.10 ug/g Sulphur 3.00 upg/g
Chromium 0.10 ug/g Silicon 0.50 ug/g
Copper 0.02 ualg Strontium 0.10 ug/g
Iron 0.10 ug/g Zinc 0.10 ug/g
Potassium 5.00 ug/g

Clam Tissue Chemistry Minimun Detectable Limits

Parameter MDL Units Parameter MDL Units
Aluminum 0.70 ug/g Manganese 0.03 ug/g
Arsenic 1.25 uglg Nickel 0.23 ug/g
Barium 0.25 uglg Lead 0.13 uglg
Cadmium 0.04 wug/g Sulphur 1.25 uglg
Cobalt 0.10 ug/g Selenium 0.25 ugl/g
Chromium 0.10 ug/g Silicon 0.25 wug/g
Copper 0.10 ug/g Zinc 0.02 ug/g
Iron 0.25 ug/g
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Appendix 2

Stable Isotope Analysis Reported Precision and Accuracy
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Stable Isotope Precision and Accuracy

Parameter and Method

Reference

Precision/Accuracy

38D, chromium reduction

8180, CO0,-H,0 equilibration

5°*S, CF-EA-IRMS

813CD]C, phosphoric acid digestion

V-SMOW

V-SMOW

V-CDT

PDB

+/- 2.0 %o (one standard
deviation based on n=10 iab
standards

+/- 0.2 %o (one standard
deviation
based on n=10 lab standards

+/- 0.7 %o (one standard
deviation
based on n=10 lab standards

+/- 0.2 %o (one standard
deviation
based on n=10 lab standards
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Appendix 3

Raw data for Caland and Hogarth Pit Lakes (averages taken when
sampling occurred more than once per season)
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