View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Lakehead University Knowledge Commons
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1972

Ground state energy of a bound polaron.

Ghaem-Meghami, Vida

http://knowledgecommons.lakeheadu.ca/handle/2453/2418
Downloaded from Lakehead University, KnowledgeCommons


https://core.ac.uk/display/84405978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Ground State Energy Of A Bound Polaron

Vida Ghaem-Meghami
A Thesis Submitted In Candidature for the

Degree of Master of Science

Department of Physics
Lakehead University
Thunder Bay
June, 1972

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
=
/.-’_,,, ¢y
N
?
. o -
b .
[ @ <
. .5
—;7”
&:.b

Copyrigh:t © 1’72 Vidha Ghaem-Meghami

Canadian T heses orm Microtilim No ,

18277

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONTENTS

Page

1) Introduction .......ccviiiiieiieeenennnnnnn 1- 6
2) The Free Polaron .......ceeeeeenencenennennns 6-18

2.1) Derivation of the Hamiltonian

2.2) Free Polaron Energy
3) The Band Polaron ......ceceeeevnnannnacennns 18-32

a) Earlier Work

b) Present Work
4) Discussion and Scknowledgement ............ 32-33
5) References e, 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

Introduction

The motion of an electron in an ionic crystal has been of
considerable interest since early 193('s - firstly because of its
relevance to the applied physics of semi-conductors and secondly
because it provides a simple model for the study of interaction
between a particle and a quantum field. It is the first problem
in Solid State Physics to which methods of quantum field theory
have been applied.

The polaron problem is concerned with the motion of a slow
electron in a polar material. The electron as it moves through
the crystal disturbs the lattice in its neighbourhood and thereby
creates a polarization field. The field in turn acts on the
electron and changes its energy. The electron together with its
accompanying polarization field can be thought of as a quasi particle
called “"polaron®. The Hamiltonian H for such a system can be written

as

H = Hw_+ “a*,“wdr
- (1.1)

where \\ is the Hamiltonian corresponding to the energy of the

Lat
lattice, y\dvis the kinetic and potential energy of an electron

in the static lattice and W trepresents the interaction between
wh
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the electron and the lattice. Exact ca1cu15tion of the eigen states
with corresponding eigen energies for the Hamiltonian ¥ has not

been possible so far. Different approaches to solve the problem

have been used depending on the strength of interaction. Pekar

who first calculated the polaron eigen states considered a special
case in which the interaction is assumed to be so strong that the essen-
tial properties of a stationary polaron are described by a localized
electron moving in its own polarization field. Frbhlich,who was

the first to employ the methods of quantum field theory to this
problem, considered the weak interaction case and used the pertur-
bation theory to calculate the polaron energy states. The intermediate
coupling case has also received considerable attention in literature.
Al1 the works referred to so far deal with the motion of an electron
suitably affected by its polarization field. In many practical
situations, however, an electron in a polar crystal may be bound

to an impurity center. In this case the electron motion is influenced
not only by the impurity but also by its own polarization field. We
thus have a situation for the electron state which can be described

as a "bound polaron”. This quasi particle is very similar to the
polaron described earlier and the Hamiltonian describing the bound
polaron is similar to Eqn (1.1) apart from an additional term due

to the potential energy of an electron in thg presence of an impurity
atom. Platzman was the first to calculate the erergy states of a

bound polaron and since then several papers have appeared in the
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literature. The present thesis is concerned with the calculation
of the ground state energy of a bound polaron. Our approach to

this calculation is based on the assumption of weak electron lattice
interaction so that the perturbation theory ié Sssumed to hold.

The detailed calculations are given in Chapter I1II.

In the following chapter we shall give a brief introduction
to the development of the Hamiltonian for the electron-lattice
interaction. The derivation is based on the work of Frdhlich and
we shall show that the bamiltonian for a polaron can be written as

E 2
o= "%‘-m V,Ld_ -\—Z'f A w (5 N »,_)

"

Y

R s c
¥ . (1.2)

A w («-\'\‘.»()va ( ’\a/qmw)‘m

-

(1.3)

and

\IQ,
Q
d = S [—«:-L -—‘Z—’X (5“/&"&»3)
g ” - (1.4)
The first term in Eqn (1.2) is the kinetic energy of an electron

in the periodic lattice with wvn as its effective mass. The second

term describes the lattice energy in terms of the usual creation and
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destruction operators %; and b for the lattice modes of wave
_vector 3,. The last term is the electron latﬁice interaction. The
quantity o 1is the coupling constant for the electron 1atticé
interaction and is expressed in Eqn (1.4) in.tefms of . the fre-
quency of optical polar modes, e” and €° the high and Tow
frequency dielectric constants. Starting from the Hamiltonian (1.2)
we shall calculate the energy of an electron using perturbation
theory and show that for weak_ electron-lattice interaction the

polaron mass Yﬁr is related to the band mass 4w by the relation

¥

W = W \‘\"i
( 6) (1.5)

For{s0,i.e., neglecting the effect of electron-lattice interaction,
the polaron mass is equal to-band mass as is expected.

In Chapter III we deal with the bound polaron problem and
give the calculation of the ground state energy of a polaron bound
to a coulombic impurity. We shall see that the method first intro-
duced by Platzman gives the shift in energy A E due to the inter-
aztion of a bound electron with its accompanying polarization fields

in the following form:

2 gk
AE = -oc%iw(\»fiz_*%_“*..,.)
(1.6)

where pﬁ =~ B [4wis the ratio of the unperturbed ground state

energy to the energy of the optical modes of the lattice. The
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result as given by Eqn (1.6), according to Platzman, holds only

when

<< A |
e (1.7)
Platzman obtained the expression for AFE given in Eqn (1.6) by
employing an gxpansign procedure which requires the validity of
tpe_;ondition (1.7). Even though the conditioﬁ (1.7) maj be sat-
iffjeq fot_many polar crystals with suitable donor impurities,

in practice,situations may arise in which case this.coﬁdition
may not hold. 1In this thesis a new approach for calculating

is proposed. Even though our method is accurate when condition
(1.7) is satisfied, it may providé a reasonable estimate of

even in situation when §1”71. We shall show that our method

gives ‘the following expression for AT in the following form:

B R X R ey - - .

AF ‘=2 - & #\)J i_%_ (\*_ PQ)[('A/%) v"i(ﬁl/l) N 9*(\-m)_)

D )
o+ ﬁz(\'r ) " P: CQxpt) /x}
o ) . (1.8)
If ﬁ}‘<< { then the right hand of Eqn (1.8) may be expanded in terms
of p and if terms of to the 4th power in [> are re ained then
in Eqn (1.8) reduces exactly to Eqn (1.6) - a result obtained by
Platzman. If P is allowed to go to infinity then A ¥ in (1.8)

reduces to zero and one may conclude that the polarization field
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is unable to follow the electronic motion in this limit - a result
which is expécted in a strongly bound electronic state. Our
result for AE therefore tends to approach the correct result

for the two extreme values for (5 and one would reasonably expect
that for the intermediate values of  our result would provide

a reasonable extimate for AE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 11

The Free Polaron

1 Derivation of The Hamiltonian

The derivation of the Hamiltonian can be found inAmany advanced
text books on Solid State Physics. In this chapter we therefore
only give important steps in its development following the original
papers by Frohlich.

Our system consists of a single electron interacting with the
optical modes of the lattice. If only 1ohg wavelengths for the
lattice modes are to be considered, then the energy of the lattice
and the interaction energy of an electron and the lattice can be

studied in terms of the polarization field 3‘_ ,'c(") . The field

E}xtéi)ls composed of the optical ¢

W () and infrared P (&)

components, so that:

P o(a) = P,r) x PR
et bt - (2.1)

The optical component is important only if magnetic and radiation
effects are not being considered and therefore Exg) is considered
of little relevence in this thesis.

Using the definition for the dielectric constant

D= € E\ (2.2)

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where D and E are related by
b AN

~

D= E xum P,
ST - (2.3)
so that we may write
- _\
? w0 T (=) DAY _ o
(2.4)

_If the high frequency value of the dielectric constant is used in

(2.4) we get

T \' PSRN
R = g Cor ) S0l
B S T AR oo o I ) (2-5)
*Combining Eqns (2.1) (2.4) and (2.5) we get
(s .;,__L-,, ;L_- o ‘... AT
»‘i ) q'u'( e”’?>2(d)=7\;\_3€—_ '.2(&)
(2.6).

The equation of motion for P(1r)in absence of a polarizing source is
a simple harmonic motion at frequency W corresponding to the

‘polar optical mode of the lattice, and is given by

Pa) « W Pr) =
- (2.7)
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If a polarizing source - (an electron) is present then Eqn. (2.7)
will be modified. We shall consider these modifications later in
this section.

We sh&]] now develop a lLagrangian for our.system so that
we may obtain the required Hamiltonian and also the equation of motion
for P(2).

"o

Now since ézpi) is the external field and Eﬁfg is the effec-
tivepolarization field the interaction energy density is given by

- D). \3(&). We may then write the Lagrangian of our system as:

L= £ S[ ‘\5:'(&) - W f(’\-)} A%

(2.8)
where A is introduced as a parameter to be determined and s
is the position coordinate of the electron. Since D(r) is the

field produced at A4 by an electron at J , we may write
- wke

D(r,ny) = -V <
S oV =Ryl (2.9)

and

N:D = hwe o (h=2y) (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Hamiltonian can be obtained from the Lagrangian given by Eqn (2.8)

and may be expressed as

: _ R 2 . . .L
Ly '-‘-So\’ﬁhi%%_ﬁ(d) -~ wq‘fi(’@k - '«?.("-)'?i’b)} + -‘i'm 2 e

(2.11)
where the generalized coordinates are P(n) and A P(4)and M PN
is the conjugate generalized momenta. ;;é equation ;} motion f;;

P(»)can be obtained from the Hamiltonian in Eqn (2.11) using
t;; standard procedure to give

P(a) + W& P = L D)

- - AL -

(2.12)
which is consistant with (2.7) in the absence of a polarizing sources
i.e., an electron. We may use Eqn. (2.6) and consider Eqn. (2.12)
in the static limit, i-e-.i=c>so that the unknown parameter (i may

be determined. It therefore follows that:

-
Mmo= EE |
w (2.13)

Let us consider the interaction term in Egn (2.11) in more detail.

Moy = - § DD PUY P 2o (D(a,ny) - PI AR

wt

where D) is written as D(’Lgh-d.) for the field at & due to the
[0 P haand i
electron at }zd_. We further introduce the quantity 4;(&) which is de-

laa

fined by the relation
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AR PG = Y, b(4)

(2.14)
so that t#(ﬁ) may be considered as the potential producing the polar-
ization field ?}h). We may now write Y\ _« using Eqns (2.9),(2.10)
and (2.14) as

Vx> i S 3% ( \{;-’f’t,_a.\) ¥, 40

= € ¢ (re) : (2.15)

where we have used the delta function property of (2.10, in solving

for the integral.

The Hamiltonian now needs

3, Mg 8 Q(AJ S A A.Q x e ¢ (fas)
- So\_ ?%i"‘”w P x " .

Woes

(2.16)
We now introduce the following variables Bi{A) and E}Ln)
Bwd: 12 | Pead A Bum)
A a2k e

(2.17)

and
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oo [E3 o+ 0]

(2.18)
Since the conjugate variables P(4), M P(A)satisfy the commutation
[y o
relations
p . . [}
ey, » P)) 204 § (amn)
. N ool w e
(2.19)
T
the new variables @B(A)and 13 (4)can easily be shown to obey
et (o)
[
| ), ga)) = S(a-x)
(2.20)

Al . .
Expanding © (%) and G (/z.) in terms of its Fourier components we
et st

may express

\ v a. 5
B(a) = = 7 2oy L e ¥E
e v \ N
3’ LA (2.21)
and
1y -Lq/dz_
- v o ¥ 2 (2.22)
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13

where V is the volume of the media, and b%, \:; may be shown
(using Eqn (2.20)) to satisfy

Yoo et A
{bijbl.} -S?ﬁ' A yx,mb%,l-.{bw\;i) = o

(2.23)

The Hamiltonian (2.16) may now be expressed in terms of hgjb;

after a lengthy but simple calculation in the following form

+
v VU SN SR el b N W ¥
x — 2 2\ \_B% Q Y
vV (YN Ao
3 (2.24)
where
\/Q_ \“"l
U = hw (nd) [ F/gme |
(2.25)
and
N Va
£e ST ) (e
t\ éoo €°
(2.26)

) i :
Since the operator b, and b satisfy the commutation relations

Y ]

(2.23) it is possible to deduce that these operators acting on state
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of the lattice described by \'\\a> where 'Y\,% is the excitation

number of the lattice mode % generate the ?o]'lowing relations
e

b& \M:‘:\‘: J:t \'V\-i-\>

(2.27)
and
v —_—
! - {
\)ov \W:‘i> - J'v\ff\ \Mi':* 4
(2.28).

% . - .
It is customary to refer to Y. and \:% as creation and annihilation

i
operators, respectively, for a lattice mode with wave vector 4 -
LYV
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2 Free Polaron Energy

The Hamiltonian for an electron in a polar material as obtained

in the previous section, reads

\\-.-.ﬁ*.\f 'Q’" +i’hw(b‘b+—)
QAN /t.d

) S A K " ,@_"‘3"’:_ s e‘@."::x

VG %y %
v ¥ oo h " (2.29)
where U is given by Eqn.(2.25) with Eqn.(2.26). The first term
is the kinetic energy of an electron in a crystal with W as the
effective mass. The second term 1is the energy of the lattice and
the last term is the interaction between the electron and the
lattice. Let the interaction be small so that it may be considered
as perturbation to the unperturbed Hamiltonian given by the first
two terms. The eigen state of the unperturbed Hamiltonian may be
denoted by \\é’\\Tthere KK is the wave vector of the electron
and ~  is the excitation number of the qth lattice mode. The
energy of the state E. (\i,%,v} :.(t‘QKQ/Qm) r Rw (“1“'-‘;3
If we restrict ourselves to ter;peratures very much below the Debye
temperature the lattice vibrations may be assumed to have little
or no excitation at all so that for all a's )'_ 'yxj o. The unperturbed

. - 2y
energy ‘ED(\Q corresponding to this state is A% /am. We may

now use the perturbation theory to calculate the change in the
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energy ATE(x) due to the interaccion term. The change in the

energy is expressed by

L
\4\:1,°\ \-\w{\' \\'ila“?»L
B (%) - F, 06 M)

AT = <\£,°\ \'\m¥\\:\°> *2
k', .

_ (2.30)

where T, (X,",) ,(#3 k“/,‘\m) ~Rw (’“:y* $) and W 4 is

the interaction term given by

RS U SVEp Qv
" S— \a\ = % Y
v 9 -

(2.31)
If we use the creation and annihilation properties of h; and k@
it is easy to show that the first order perturbation term in (2.30)

is zero and that second order connection can be rewritten as

\)Q \ \ e
At = - - T /ea Z )
[4 - - w
(2.32)
Changing summation over 9, to integration by
A\ %
T o (S
% LA
- (2.33)
we obtain
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an o *\

v Cag (a ‘ —
- . i\
A S vy { (= R awm) + (K Wq @26 /amm) -

o 6 “\

(2.34)
We now consider electrons with small values of & so that the
second term in the denominator is small and therefore develop the
integrand in powers of \ . It is then straightforward to perform

integrations in Eqn (2.34) to give

’3/‘1.
’& K> ' ]
[ l'\‘\" W ) N ) -Z-. T

(2.35)

At

»

:Ur\"\

Using the value of U from Eqn. (2.25) we may write the perturbed

energy of an electron with wave vector k according as

b

2,
F(\;):’t‘k -o(#w-}.”ili X

o ——n

2 v K 6
(2.36)

. . PAYe .
If:p.i.€., no perturbation, we obtain T(«) = . as is expected.
With the perturbation present the electron behaves like a free

part.cle w’th energy

2,
E(K) s i..k.. - ¥ k\w
2w’ (2.37)
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where the mass of the electron with accompanying polarization field

*
may to refered as polaron mass ™ which is related to the effective

mass YA by the relationship

" W\

V- (Rg)

3

(2.38).

' It must be emphasized that Eqns.(2.35) to (2.38) are valid
for small values of | only (ie, for a slow electron). For electrons
with a large value of ¥ the energy cannot be described by the
quadratic dependence on ¥ . The polaron effects for slow electrons
have received attention in literature while polaron effects for
electrons with large ¥ have been considered of no great signifi-
cance.

We may interpret the result of electron lattice interaction
on the motion of a slow electron to be equivalent to a free quasi
particle motion with a renormalized mass wﬁ‘. The quasi particle

is called a "polaron".
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h CHAPTER 111

The Bound Polaron

In this chapter we calculate the ground state energy of a
bound polaron in a polar media. In Section A we give the calcula-
tion of the problem first attempted by Platzman, while in Section B

a new method of calculating ATFE 1is presented.

Section A

Platzman considered the following Hamiltonian for a system of
an electron in a polar crystal and in the presence of a coulombic

impurity atom.

¢ U \ ¥ oavq i YA
_’ﬁwiq(\’&e" "\91& )
%

(3.1)

The above Hamiltonian is similar to the Hamiltonian for a free polar,
the difference being that in the case of a bound -polaron the Hamil-
tonian has an added term ‘% corresponding to the potential energy

of the electron in the presence of an impurity atom. If the inter-

action between the electron and the lattice is considered as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

perturbation then the unperturbed Hamiltonian Y\ is

Y, = -%-\-\: x T Rw (b b +—-)
% -,

(3.2)
The eigen state of the electron may be represented by \my and
that of the lattice by \PV,> for all values of 9,. The combined
state may be expressed ac\rvq,m) The energy corresponding to the
state couid then be written as & (fvw,m) If the potential energy
19 is due to coulombic impurity then \m> will be hydrogen atom

wave functions and

) —
0 e \
) 2 - —_— % 2 (N%*Z)%‘w
E(N?.’ ) QQQ*QV\,Q 4 -

(3.3)
where € is the dielectric constant of the media and ™"\ takes
integral values. As before we shall restrict ourselves to tempera-
tures well below the Debye temperatures so that N, ~ o for all cvﬁb

-

and the eigen energies of interest therefore are

o et
B (o,m) = = +~ 7 Aw - ¥
%

69‘ k"A M= = "
(3.4)

The perturbed energy due to electron-lattice interaction may now

be written, using the standard result of the second order perturbation

theory, according to
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N~
where .
a\g.%
AT u? 2 <oyl by Cuk al, e \1 ~\><-«ay\b N be_‘&“\o
Vv g q* E(" Y\)_E(ﬁwoy‘>
—_-J_J_Z_\..“‘\e Biw> Ll e
v ~ 9% E -€F,-kw
q»n' “ n

| (3.5)
In Eqn.(3.5) we have used a shorthand notation for {o,m| as <=\.
We are interested in calculating the change in energy A® due to
perturbation of the ground state, so that in Eqn. (3.5) we substitute
m =1 so that state \A> is the ground state wave function of

hydrogen atom and

- 14
Ccn SYEIw L TENY

Q' i E\'Ew-t\w
n

At = -EL
AY)

(3.6).
Exact evaluation of (3.6) is not possible. Approximate evaluation
scheme as suggested by Platzman consists in using the following

identity
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\.\‘ \ E ~% "’(’b\q /’lws)
CTE -% _;‘\:w) (%w«—(*ﬂ ‘v/a.»ﬂ)

BimBanmRw T kG e (RaP ae)

(3.7)
By the method of iteration the above identity will generate a

series solution for the left hand side according as

\ \ .E‘Y\‘.t \- (k‘la:-/aw) Sty b e
T T Pt Al .2 2
FmEp-ho R (Fiaw) URwx (A4 /a0 )
(3.8)
If we now substitute (3.7) into Eqn. (3.6) we may unite
(3.9)

where

8

R
v \ 4\\e3’¥’i\-><-\ e 1.,.\\>

A - e =
Vo g <

Ruw x (W aw)

(3.10)
and

) \c”/\.\i>
*eMaL)\ <N w\w\"'\><“\e .-

- [E ,g‘-(kcy/g )x<

Ia)

-

v -
AT —67”%

52 V]

CE,- [ ku)) K_"k\o A (x\mﬂ,’"/qm)l
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(3.11)
Since

e

ST <1] X TINS L SR> = A
N

by the normalization condition, the integration over 9 in Eqn (3.10)
e

may easily be performed to give

Ly
AE\:—L ’3_*_*_\_ :_&’hw
L4 Jw &2

In order to evaluate £3€}'we use the identity (3.7) and write

(3.12)

AE9.=' A?Q«- b?q

where

| L
\ G e N R e - (R an) Y WO L ?_:,\.?
L ~

n

v . O
TRtV | Rw +(*‘1Wk/ﬁ*)3x

< M1

(3.13)

Remembering that \-\d S :E“\“)and the property that
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. . =l A
e 1 N, (B e o= Ry (b-%a)
= Y Q’) ‘\' -)S\_i—%"
| (3.14)

where \\dz. _}}*,\3- (the electron Hamiltonian with kb as momentum

AvA
operator), we may rewrite

R . A
AE, - Lz“‘*lﬁ,‘l\ > 6

VoG Al hwe (Matamd ]

(3.15)

The vanishing integral arises from the angular inte-
gration over the angle between % and q, . We may now calculate

‘- e
AE, which using our identity (3.7) can be broken up into two parts

IN

AE“ = Ats \-b-gé’

where
g 'w\ wew.\\>
N :--_\_)}'2_1.2( 'E'(t‘ 2/1%)]4‘ In>Lmie~ -
s v ) 43 = Y_tw»«(‘k»/a%)]

(3.16).
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Using the property (3.14) we are able to write

rd
prg =Ly L G\ DagrE b pyl] D
¥ (Rw« ();\a(vl/’*m))B

N

(3.17).
Evaluation of AES is tedious but not difficult. Using hydrogen

wave function for our state \ 4D it is possible to show that

AE = -1 ¥« P:"k«w
é

)
(3.18)
where
2
f" = - F\ /‘kw
(3.19)
If we put together terms AT ’A'Egand QES we obtain
- A
AT = =4 ®w (& _[Z_) P
(3.20).

Platzman calculated higher terms in the expansion generated by

Eqn (3.7) and obtained an expression A E valid up to the 4th power
in [% . His results were 1ater corrected by Sak and also by Wang
ngl. These authors showed that A¥E up to -the 4th power in fs can

be given by
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A - &k (1a B2

(3.21)
If the identity (3.7) is successively employed for calculating
beyond Eqn, (3.21) then the expression for AT may be obtained con-
sisting of higher powers in p . The use of the identity (3.7)
generates a power series in p for the energy AT . The validity

of Eqn (3.21) is therefore restricted to the condition that

99‘<< A

(3.22).
Sak has also pointed out difficulties in calculating &F for higher
power of (3 beyond the 4th power. In calculating higher order
terms Sak showed that many of the integrals involved diverge. In
the next section we have proposed a different approach for calcul-
ating AT . Unfortunately we have also encountered divergent
integrals similar to those in the work of Sak.
We do not have a simple solution to avoid these difficulties and

have not been able to propose a solution.

Section B

In this section we consider a new approach for calculating
the change in the ground state energy of a bound electron due to

electron-phonon interaction.
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We start with the expression (3.6) from our last section and

write

iy 1) e »\’“’>4’V~'\ NS
At = — =
o 9 (€, - E..-ARw)

\Y

(3.23).

We have seen,in the previous section, an expansion procedure adopted

by Platzman to evaluate the quantity AT . In our procedure we employ

the identity

O E e k)

= e Mz
J X,- \:_M.-‘V\w
o

(3.24)

where T is a variable of integration and has no obvious physical
meaning. It should be noted that E,-¥ .-%wis negative since T,
is the ground state energy and ¥ £ E. Employing the identity (3.24)

it is possible to express (3.23) in the following form

) E- R T ST WD
AL = (fm)'-" ZSJ%S <A e e

x<v\\eL*“‘\'\>

(3.25)

where we have changed summation over & to integration using (2.33).
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The following relations

"
|

\\¢L(§l) VW >

(3.26)
aqd the property (3.14)
A i
&t am e e o M, (b-%y)
=W, Kot _Rp.g
A o
_ (3.27)
enable us to rewrite Eqn (3.25) according to
3 ,
2 ~(E,- %)t =%, Ce-Fa)
AE = -9 _ go\*SAo,,e <1le ¢ =\
8 x>
(3.28).

For the sake of convenience of shorthand notation we define

\’\d(v\i-*&> = - k’\’jﬁl_\_ A—\ -

Avn

(3.29)
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where

A:—k__‘;__\f_m_‘.k‘g'k . \p-‘._._-egb

™ D € X
(3.30)
so that
2 LE-fw ~ (K ae) ) E
AE =2 - _\_')—. gdav de e
. J
-t
x»</\\ Q(A \r) \'\>
(3.31)

The expression for A ¥ given by Eqn (3.31) is exact. We now employ

approximation scheme by writing

(h-V)t + N
e = e.A — Ut (V- AV ) (U4

 (ATA + @A ) (B8

(3.32)
where it should be noted that the operator A does not commute
with VvV, |
Substituting expansion (3.32) into Eqn (3.31) we may write

\ v

[38Y \
+~ AT «x b E

_ . .
AE = AF + ATC

(3.33)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

where
> ©
a ° E AW = (R P awe) |
A'E\a-_\:'_-. Sd%go\k' e ‘ < 1y M AAS
gW?
o . -
(3.34)
v b E, ~Rw- (R4 faw) ) E
AE|-. ._U..._ davg -QY“
(R L1\ e D
(3.35)
w 2 o E‘-’Q -(t\lolemjt-
AE:Lgd%g&e[ w )
- R )
XLV AVEYA =V 11D
(3.36)
and
VoW L TR R (Rethad\ T
B (e far e
(o]

X LA ATR L RN R D (3.37)

We have restricted ourselves to the four terms arising from

Eqn (3.32).
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Physically the expression AEA is obtained by neglecting the
potential energy from E‘“. For states T, <o the potential energy
is larger then the kinetic energy and the approximation would be
unrealistic. For E >o(i.e., unbound states), howeverthe kinetic
energy is greater than the potential energy and for these states the
approximation would be at least reasonable. The approximation would
still be reasonable if the contribution to AE" due to all unbound
states is significantly larger than due to bound state. For a
strongly bound electron a larger number of unbound state would be
coupled with the ground state than in the case of weakly bound
electron. Our result for AsEJ is therefore more adequate for the
case-of strongly bound ground state. The terms AE to AEW take
into account the effect of the potential which is completely neg-
lected in ag'.

The integral in Eqns, (3.34) to (3.36) can be evaluated by
lengthy but straightforward calculations. The integral (3.37)
is however quite complicated and we have evaluated this integral
only up to terms whose contribution is comparable to the integral

in (3.36). The result of integration gives

V3 : Vo
p€ = - (24 A0 0n B {3 F [ (Fe)])
: (3.38)
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B -k AW (5 (\‘\‘?)

(3.39)
" -5
= (3)d Rw pH v p?)
and (3.40)
= (=71) o Kw PH("‘\-&" )-S‘I&
(3.41)

S0 that

Q

o(’kw{ -.5 \«p) Y.l - ;\ x &*(s-\-(ﬂ.‘/\«p”)\/l)]

~3/a Y
-P(\*P) A () (v pt) 1}

(3.42).
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CHAPTER 1V

Discussion:

We may now compare our expression (3.42) for 8€ with the
corresponding expression (3.21) given by Platzman. If we consider
the case when § << 4 and expand our expression (3.42) in power of
b and retain up to the 4th power in @ then our expression reduces
exactly to the result of Platzman (Egn. (3.21)). In the limit of f—=

“our expression for AT goes to zero. The electron-phonon inter-
action has therefore no effect on the grand state energy of electron.
In this case one may conclude that the phonon cloud is enable to
follow the electron motion and therefore the polaron effects are
negligible. A graph showing the dependence of 4& on F, for
Plazman's and our results is given in Fig. 1.

One may conclude that Platzman's result is valid for only
small values of f while our expression takes into account small

and large values for {3 within the limitations indicated.

Acknwoledgement

The author wishes to thank Dr. V. V. Paranjape for his supervision.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"

1o

A Platzman
Y Presemt Werk

W 4

T2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

REFERENCES

Frohlich, H., Advances in Physics 3, 325, (1954).
Pelkar, S., J. of Physics (U.S.S.R.) 10, 341, (1946).
Platzman, P. M., Phys. Rev. 125, 1061, (1962).

Sak, J., Phys. Rev. 13, 3, 3356, (1971).

Wang, S., Arora, H. L., Matsuura, M., Phys. Rev. B4, 3685
(1971).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Accepted for Publication in Solid State Communications

POLARON BOUND TO A COULOMB POTENTIAL

Vida Ghaem-Maghami, V. V. Paranjape and M. H. Hawton

Department of Physics. Lakehead University, Thunder Bay, Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The problem of an electron bound to a coulomb impurity center
embedded in an ionic semiCondﬁctor and interacting with optical
phonons has been of considerable interest in recent years.!™t
Platzman! was the first to ca]cu]até the ground state energy,E’
of an electron for such a system. He considered the electron -
phonon interaction as perturbation and used the second order
perturbation theory to obtain the result. The validity of his
calculations is, however, restricted to situations where the

ratio}gy; ,Skquvo of the unperturbed ground state energy, T, ,

.»4—“—‘—-——/
to the energy, #. », Of an optical phonon is very much smaller

———

e — T e e

than unity. The expression for & according to Platzman and

including the recent extensions proposed by Saklcan be written as

E = E\ -« 7h\vo Y“\ +C 92-“:) T C P‘tllq)] , \)’f&-/\u\u\ ")14<\ 3 (])
where . \
o | Nz )
o( = é m/@,tw)

£ / ’\ »

In Eqn. (2). € is the electronic charge, - the effective band

//

electron mass, G and ¢ are respectively the nhigh and low fre-
quency dielectric constants of the material. Sak? has shown that
the result, as expressed by Eqgn. (1), cannot be extended to include
higher powers of 3 by using Platzman's procedure.

Bajaj3 following the work oi Delgarno and Lewis® attempted the

problem by using a method different from that used by Platzman and
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obtained the expression for |- valid for the complete range of
values for P A result sirgﬂar to that of Bajaj was also obtained
by Stoneham.“ The conclusions arrived at by these two authors were
criticized by LarsenS who showed that the expression for T obtain-
~ ed by them does not reduce to the result of Platzman, as given by
(1), in the 1imit of small [ and that their result may hold
only in the limit of an extremely weak electron binding situation.
It is the purpose of this communication to propose a method for
calculating &= for values of [’.: within and beyond the range pre-
scribed in Eqn. (1), and to show that our expression for L agrees
exactly wi1;h the result of Platzman - (Eqn. (1)) - in the limit of
iR

1 Lo
[

L. la) LN I Y avnm N
Sula |7 s WnIE 30 167"geE I

result which is expected on physical considerations.
The Hamiltonian, 1\ , of our system may be expressed in terms of

usual notation by : /

W= (\"/Lm) (e/e h,) ~ 7. k\w ;‘p\ . \\o.}
.____//

e——

T AR e,
. where
\IF3 g
U = 2w (L) (t/x»«.w) (4)

and fo a.. are the usual creation / destruction operators for a
%

Y

v

lattice mode of wave vector 9 .

Treating the electron-phonon interaction as perturbation we can

write the cnergy T of the ground state \ V) at zero temperaturc

~

R . . .
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by using the second order perturbation theory accordingly as

-
-

% O exp (L) \wy dnlenb ((hon) 11D
_T v do, . N N
e DAL ’

¢ ¥ G Tar k) (5)

where \w> is the unperturbed eigen state corresponding to

energy & giyen by

Y_(Xw/zm) & (ez./ L-c):.)_x AnS> = T‘Q \ > (6)

In order to evaluate E in Eqn. (5), we use the following identity

oo

\ = - g”\ﬂ@.’fwf““)ﬂ o
E‘-E“‘V\W ° S

so that Eqn. (5) can easily be shown to be

E = F - vt S‘(»\k S 9’_3:; e.)\\)‘CE“'t\\“‘)t}
%

* Z A\ e*\:{-\—\ (E“““}) 't]\‘> 1 (8)

using the relation!

exp (Lgn) RCP) erp(Grarn) = W) @)
where
2 . (10)
Ch-%e) _ <&

M(p-Fq) = RIS

A Yo eo s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we now employ a shorthand notation A for the operator

- e e —— s —— ———

Y. (‘) /""’“) Gt;p C"/"“)} and V for (-% /e ):..) and re-

write Eqn. (8) in terms of R and” V as

X dq,
- = - _\_}___ ___, ex t tw -—-(R /1’m>]t
E=E (avw)? S 9> PALE $

x LA\ exb [ A-v)T 1 V1D (1)

‘ ' i +t for
Expanding the operator «x%pV ( A-v)E in powers of
V up to third power in X , we write

.
expbTCA-VIE) = exp (AT) -V + (Vi av-va)(Elx)
. .
—(f\V\'\ﬁ-F\I\i -\-\/P\l—r o ')tt‘fb)‘UZ)

We now use Eqn. (12) in Eqn. (11) and write

\
“ Nan

€ =t +E+t+\i AT (13)

/ '\
where
B
Ch 'u')

(14)
X AL ey (Re) 1A
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4 U’l dw ) N
E = S_i gdk' exb \_?‘~’R '-(tc-" RE=
(aw)° J g% \%_ ™ v law)] g
o -
* LAV VE 1D (15)
m— U"v &(‘, o . |
t = ——61“)3 S __~_-;: Sdit' Qn\si[ tt-tw‘(t“\//l\m)lt}
L2, |
| 2 (16)
x LAV Ay v vAa-NTI>
and
oD
E‘v = _\_J-i S i?i.“ dei Ek\) S_‘_E\-tw-(t‘ ‘\lxl,qm)'ltg
(aw)? 9> h
2 T T ;
w LA} AVA ¢ K VAV R N
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Integrals in Egns. (14), (15) and (16) can be evaluated exactly by

lengthy but straightforward calculations. The integral in Eqn. (17)

is, however, quite complicated. Ve are able to calculate this integral
only up to terms whose contribution tor &= 1is comparable to the contri-
bution by the integral in Eqn. (16). The Eqns. (14)-(17) after inte—

gration give

V 2 " 2 NEY
L Fw (V= p’“)x%.’%-f{ »‘-\’;‘\_\-(9/‘*91) 1%( )
18

‘U3
E--3
- \_'kb’a-\)
o e B0 ) -
'(g/a.)
Y x)
() % hw pOT P .
" \-('5/'»)
Iy a7
) ! (\* ‘5)
= (:’/6) <R (21)
so that
\/,}".
G (IS s
- p (p/\«-") k
Ezc»ro(‘kws)_"%(\*P) \.%"'-f*‘)’(
o ,
) ) prl ) } (22)

- ﬁl(\«-PL) (M
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The expression for ¥ as given by Eqn. (22) represents the main
conclusion of our communication.

We may now wish to compare our expression for £ with the ex-
pressions obtained by other authors. .First we compare our result
with that of Platzman! and Sak? as given by Eqn. (1). Assuming
g?z<<.1 we expand the right hand side of Eqn. (22) and consider-
ing terms up to the fourth power in [3 we observe that our expres-
sion for E vreduces to Eqn. (1) exactly. On the other hand if we
consider p to be large so that in the 1imit of [> tending to
infinity our expression becomes limit ﬁ-; o E=%_. This result
is expected as it shows that in this 1imit phonon cloud is unable to
follow the electron motion so that the electron phonon interaction
has no effect on B . Of course, this does not mean that the ioniza-
tion energy is unaffected by the interaction, since the energy cor-
responding to the bottom of the conduction band shifts by « Ruw.

The proposed method for calculating E cannot be extended by
considering higher terms in the expansion (12) since the integrals
involved would be divergent, similar to those found by Sak.2 This
may, therefore, mean that our result for ¥ would give excellent
values for the weak electron binding case, but for a strong binding

situation our result may only provide a reasonable estimate.
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