
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1997

Simulation engine : a platform for

developing industrial process knowledge

based discrete event simulations / by

Steven V. Falcigno.

Falcigno, Steven Vincent.

http://knowledgecommons.lakeheadu.ca/handle/2453/2547

Downloaded from Lakehead University, KnowledgeCommons

INFORMATION TO USERS

This manuscript has been reproduced from the microfihn master. UMI
fihns the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be
from aity type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproductioiL

In the unlikely event that the author did not send UMI a complete

manuscript and t h ^ are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., mrq)s, drawings, charts) are reproduced by
sectioning the original, b^inning at the upper left-hand comer and

continuing from 1 ^ to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Ifigher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI
A Bell & Howell DAnnadon Comparer

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

The original manuscript received by ÜMI contains pages with
indistinct print. Pages were microfilmed as received.

This reproduction is the best copy available

UMI

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LAKEHEAD UNIVERSITY

The SIMULATION ENGINE : A Platform for Developing

Industrial Process Knowledge Based Discrete Event

Simulations

BY

Steven V. Falcigno

A THESIS SUBMITTED TO LAKEHEAD UNIVERSITY IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE

DEPARTMENT OF MATHEMATICAL SCIENCES

THUNDER BAY, ONTARIO

APRIL 15. 1997

©STEVEN FALCIGNO 1997

1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1̂ 1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques
395, me Wellington
Ottawa ON K1A0N4
Canada

Your6le Votr» ré ^n n c a

Our 09 Notre référence

The author has granted a non
exclusive hcence allowing the
National Libraiy o f Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accordé une hcence non
exclusive permettant à la
Bibhothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfîche/fîlm, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-33370-1

CanadS
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

ACKNOWLEDGEMENTS

Many thanks to Dr Li, whose patience and guidance were of the utmost

importance to the completion of my thesis.

A special thanks to my wife, Kim, who read my work and listened to me. Her

understanding of technical writing was an incredible asset to the production of

this thesis.

I would like to extend my gratitude to the operating staff at Avenor Inc. A special

thanks to my father, Pat Falcigno, whose in depth understanding of the digester

process gave me my first insight into the complexities of the industrial process.

Finally a special appreciation to my extemal examiner. Dr Meng, and my internal

examiner, Dr Hasegawa for their input and recommendations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

This thesis is concerned with the design and implementation of an object

oriented Simulation Engine capable of producing Knowledge Based simulations.

The Simulation Engine provides a high-level Lisp-like script language for

describing the process being simulated. As a detailed example, a Kaymr

continuous digester is simulated. The Simulation Engine is made up of four

distinct objects which have been implemented as individual programs in a

Windows operating system.

This thesis describes the Simulation Engine in detail. The first chapter

discusses the problem of complex knowledge based simulations in an industrial

environment. A detailed example of an industrial process is provided. The

second chapter provides an overview of the Simulation Engine in its design. The

third chapter discusses the resources used to build the Simualtion Engine. The

fourth chapter outlines the process of building the Simulation Engine. Chapter

five demonstrates the Simulation Engine being used. The final chapter, chapter

six, concludes with a discussion of advantages, disadvantages and possible

enhancements for the Simulation Engine.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Approval Page .. i

Acknowledgments ... il

Abstract .. iii

Table o f Contents ... iv

List of Figures .. vi

1 INTRODUCTION ... 1
1.1 Industrial Process Simulation ... 2
1.2 Continuous Digester Theory ... 3

1.2.1 The Continuous Digester Process 4
1.2.2 Continuous Digester Simulations .. 9

1.3 Knowledge Based Simulations and Related Work 11
1.4 Motivation and Thesis Outline... 13

2 OVERVIEW OF THE SIMULATION ENGINE 15
2.1 The Object-Oriented Model ... 15
2.2 Message Passing System ... 16
2.3 The Details of The Model’s Objects ... 19

2.3.1 The Simulation State ... 19
2.3.2 The I/O Handler.. 20
2.3.3 The Event Handler .. 21
2.3.4 Knowledge Base ...22

3 THE WINDOWS PROGRAMMING ENVIRONMENT 25
3.1 Windows Operating System Environment 25
3.2 Object Window L ibrary.. 28
3.3 CLASSLIB Container Classes... 31
3.4 DDE for Inter-Process Communication .. 33

4 IMPLEMENTATION OF THE SIMULATION ENGINE 37
4.1 The Knowledge Base Script Language ... 37
4.2 The Input/Output Tag Objects... 42
4.3 The Variable Handler Class ... 44
4.4 The DDE Client/Server Class ... 45

5 DEVELOPING SIMULATIONS .. 51
5.1 Building a Simple Simulation ... 51
5.2 The Basic KAMYR Model of a Continuous Digester 60

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 The AVENOR ISO Model .. 66
5.4 Linking To Other Window Applications .. 70

6 CONCLUSIONS... 73
6.1 Practical Limitations to the Simulation Engine 73

6.1.1 Design Limitations .. 73
6.1.2 Implementation Limitations... 74

6.2 Enhancements to the Simulation Engine....................................... 76
6.3 The Future of the Simulation E ngine.. 79
6.4 Final Summary ... 81

Appendix I INSTALLING THE SIMUALTION ENGINE 84

Appendix II THE SCRIPT LANGUAGE... 86

Appendix III TAG MESSAGES .. 99

References ... 101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Kamyr Continuous Digester System ...5
1.2 Digester Extraction Screens ...7
1.3 Digester Process Tim eline..8
1.4 The Digester Zones...9
1.5 An Event Driven Simulation .. 12

with a Knowledge Base

2.1 The Simulation Engine M odel.. 15
2.2 The Event Message... 17
2.3 The Tag I/O Message ... 18
2.4 The Simulation State ... 19
2.5 The I/O Handler.. 20
2.6 The Event Handler ...22
2.7 The Knowledge Base ...23

3.1 Windows Message Passing System .. 26
3.2 CLASSLIB Container Classes..32
3.3 CLASSLIB ADT Prefixes ... 33

4.1 An Example CodeCell Structure ..40
4.2 The Tag Inheritance Tree ... 43

5.1 Building A Simulation Background ... 56
5.2 A Simple Pump Simulation... 59
5.3 The Kamyr Continuous Digester Sim ulation................................ 65
5.4 Operating Parameter Simulation ..68
5.5 Excel Spreadsheet Communicating W ith.......................................72

The Simulation Engine

6.1 Example o f a Graphical Instruction .. 78
6.2 A Graphic Script Overview... 79
6.3 Simulation Engine RTU Add-on Model 81

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1 : INTRODUCTION

This paper discusses the production of a simulation development

environment, which can be used to develop case-specific simulations. Originally

I was planning on focusing my efforts to the creation of one simulation of a non

trivial industrial process. In order to accomplish this goal I studied the pulping

process at a mill I was employed at as a Process MIS Specialist, during which

discussions with the Digester Process Engineer (the chemical engineer in charge

of improving the pulping process) led me to understand that simply applying the

known mathematical formulae would not be sufficient to create a realistic

digester simulation. Although proven methodologies exist for monitoring the

production rate, quality control was limited to testing the finished product.

Further conversations with the operating staff at this site made me realize

that the key to modeling any industrial process was to incorporate the knowledge

of the operating staff. As well, it was apparent that such a simulation could be a

useful tool for passing the experience of older operators on to younger ones

without endangering either the people or the product. A training simulation

would satisfy this goal.

By studying the pulping process I realized that the problem was that only

an experienced operator really knew what was happening in the process. A

computer programmer would never really be able to grasp the subtle nuances

that an operator gathers over several years. To solve this problem, a highly

flexible model would be required, one that easily allowed operator input.

Rather than focusing my efforts on a case-specific simulation only good

for modeling a single industrial process, I decided to create a simulation

development environment that could be used to build training models by

providing a simple, inexpensive tool for collecting and simulating the existing

operator experience.

To accomplish this goal I chose to work on a microcomputer running

Windows 3.1. Borland C++ was chosen as the development language to allow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an object-oriented programming solution to this problem. In order to permit the

gathering of experience into the simulation generator I decided to use the

knowledge based simulation paradigm.

This chapter discusses industrial process simulations in general, the

continuous digester process, knowledge based simulations and finally presents a

motivation and outline for this paper.

Section 1.1: Industrial Process Simulation

Simulation for industrial type systems involve complex chemical and

mechanical processes that cannot be modelled properly in controlled

environments. Although the science of the process may be understood and the

chemical reactions and mechanical processes can be reduced to formulae, the

human element adds a factor that is not easily measured. Despite this difficulty,

most simulation efforts revolve around producing a set of mathematical

equations that model the process. The ultimate goal of these is to produce a

model which can do one of two things.

First, the exact models can be manipulated to predict the results of

changing factors in the process. This type of simulation can then be used to

conduct tests which, if successful, can then be tried in the actual process. This

type of simulation needs to understand the complex equations and reactions

happening at the molecular level.

These models can then be integrated into advanced control models which

provide automated controls for the industrial process. Having accurate

automated controls can significantly reduce costs by fine tuning the use of

materials and optimizing production. As a result, the majority of simulations seem

to be about adding intelligence to the process.

The second use of these simulations is to train new operators in the

industry by providing a realistic interface to a modelled industrial process. It is

vital that operators receive training that does not put the process and the people

around the process at risk, and that extensive costs are not incurred during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training phase of an operator’s career This type of simulation does not require a

complex type of understanding o f the process - rather, it needs an intimate

understanding of the history of the process. The operator needs to learn what

has happened or could have happened.

The problem with simulations based purely on mathematical formulae is

that they generally try to reduce the industrial model to a scientific model. The

human element, the instincts and experience of the operators, is largely ignored.

That is, simulations generally do not take the operator in mind, and since the

operator is an intrinsic part of any industrial process the simulations have a

tendency to fail, produce sub-optimal results or be only correct in specific

conditions.

As noted in the paper by Weymouth and Sztrimbely (1990) it is the

operators that can tell you how things are run. Their strategy was to incorporate

operators, computer staff and engineering together in a process they called

knowledge engineering. This knowledge was combined with artificial intelligence

(Al) techniques to create a decision making model, capable of scheduling

different events within the process. Weymouth and Sztrimbely also noted that a

primary concem was to get the experience of the older operators in a usable

form for the less experienced ones.

In order to simulate real-world processes I needed to understand the

process to be simulated. In order to accomplish this goal a non-trivial process

was selected for study.

Section 1.2: Continuous Digester Industrial Theory

The non-trivial process I selected to study was the Kamyr continuous

digester. The digester process was available at my work site. It is generally

accepted as a complex process. The following sub-sections discuss the kraft

pulping process and provides an outline o f some of the simulation work done in

this field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 1.2.1 : The Continuous Digester Process

Kraft pulp Is a porridge of wood fiber which has all the lignin (the bonding

agent o f wood) removed through a chemical process called pulping. The

remaining fiber can be meshed together and bleached to make a very bright

white product. Kraft pulp is used in the production of paper products ranging

from tissue paper to Kodak picture backing. This process has been in existence

since the late 1800’s, and has grown out o f a great deal of empirical study.

To leam about this process I first examined the general methodology

behind the process of making kraft pulp (Smook,1994). This process extracts the

lignin from wood using a highly caustic chemical cooking process which

combines pressure, chemical and heat. The chips are soaked in active alkali

chemical, called white liquor, and forced through a vessel called a digester. In

the Kamyr continuous digester this is a single unit - other kraft processes use

batch processing which involves multiple tanks.

As the chips move through the digester it passes through heating zones,

cooking zones, cleaning/washing zones and finally through a blow unit which

sends the de-ligined pulp to the next phase (diffusing). Each zone pushes the

cooking chemical through an intemal tube out through a screen which permits

the chemical through but not the wood chips. The chemical is extracted out

through special drains, cleaned and retumed to the process.

The amount of time that the chemical and temperature is exposed to chips

inside the digester determines the quality of the product. The quality of the

product is a measurement of lignin, called a K-number (in the European market a

kappa number is used). This value cannot be measured inside the digester, so

other techniques have been developed; most modeling and simulation studies

with digesters focus on solving this problem (this is discussed more in section

1.2.2). A simple diagram of the chip to digester process is given in figure 1.1

(Smook,1994):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Top Separator
Wash HeaterChip Bin

Bin Activator

Chip Meter

(High Preseure Steam In)
Low Pressure Feeder

Heaters (Upper and Lower)
Steaming Vessel

Flash Tank *1Chip Chute

High Pressure Feeder Flash Tank *2

\ jm m (To Evaporators.)Digester

I (Steam & White Uquor)

(Low Pressure Steam IN)

Two Stage Filtrate Tank

Pump

Screen
Outlet Device

Figure 1.1 : Kamyr Continuous Digester System

The different components in the digester process are:

Chip Bin - This container stores chips from the wood yard, and insures
that chip supply during wood yard downtime.

Bin Activator - The activator assures a uniform flow of chips from the
chip bin.

Chip Meter - A rotating star feeder with seven pockets possessing a
measured volume of chips per revolution. The chip meter speed
determines the first factor of production (chip flow).

Low Pressure Feeder - A rotating star feeder that acts as a seal against
the pressure in the steaming vessel.

Steaming Vessel - A sealed screw conveyor, providing the initial steam
bath of the chips. Its purpose is to raise the chip temperature to
approximately 250 deg. F.

Chip Chute - The chute provides a passage from the steaming vessel to
the liquor pool in the high pressure feeder.

ReprocJucecJ with permission of the copyright owner. Further reproctuction prohibitect without permission.

High Pressure Feeder - The high pressure feeder combines the chips
with the steam/white liquor mixture and sluices the mixture to the top
separator.

Top Separator - A sealed screw conveyor, which evenly moves the
sluiced chips into the digester vessel. It includes a level indicator which
alarms if the digester is full (normally a digester runs between 60 - 80%
full).

Heaters - Heaters are used to increase the temperature o f re-circulated
liquor. The wash heater takes liquor from the bottom of the digester, re
heats it and injects the liquor at the top using low pressure steam. The
upper and lower heaters are similar, in that they reheat cold liquor, but
take the liquor from the middle areas of the digester.

Flash Tanks - These tanks reduce the steam/chemical temperature to
room temperature. Waste chemical extracted here is sent to the recovery
process.

Outlet Device - Provides a scraper at the bottom of the digester to
uniformly release cooked chips to the blow unit.

B low Unit -The blow unit passes cooked chips to the high density storage
tank, ensuring temperature and pressure factors do not damage wood
fibers.

Filtrate Tank - As part of the cleaning process, dilution and filtrate are
added to the chips. The washed out chemicals/chip solution is filtered out
and passed onto the diffusion washer, and onto the high density storage
tank.

The chemical reactions that take place in the digester are a result of the

active alkali chemical, usually referred to as white liquor. This chemical is a

combination of sodium hydroxide (NaOH) and sodium sulfide (NagS)

(Smook,1994). As the chips travel through the digester the chemical digests the

wood lignin, leaving the wood fibers necessary to make paper products. The

chips flow from the top of the digester (top separator) to the bottom (outlet

device). Through this flow is a water/liquor wash which breaks down the lignin.

Spent (used) liquor is removed via the flash tanks and the filtrate tank. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spent (or black) liquor Is sent to the evaporators, where the recovery of re-usable

chemical can be done.

An interesting note in the behaviour o f the digester is that the flow of chips

is controlled through pressure and the rotation per minute of the chip feeder. The

flow of cooking chemical is through the chips - the chemical washes around the

chips. Gravity and pressure forces the heavier, chemical filled chips down to the

outlet device. The chips are forced up against screens along the sides of the

digester, squeezing out the chemical. An extraction screen is a fine mesh (5 mm

holes) that the chips are pushed against. The chips, except for some very small

particles, cannot pass through the screen. The extracted chemical can be

cleaned and reused. An extraction screen is given below:

Top ViewSide View

Cooking Chemical

ChipsScreen
Chip Plug

Screen

Pressure

Pressure

Recovered
Chemical

Recovered
Chemical

Figure 1.2 : Digester Extraction Screens

The Importance of the screens cannot be overlooked. If a screen

becomes plugged in the digester both temperature and pressure will be

impossible to control. This will result in poor quality product and low

productivity. Excess screen plugging will stop the liquid flow through the chips

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the center to the outside o f the chips plug, reducing the cooking (or washing

in the case of extraction or washing zone) of the exterior region and destroying

the interior chips.

By discussing the digester operation with the operators and supervisors of

a typical disgester, an approximate timeline was developed:

TIME
(hours)

EVENT NOTES

0:00 chip bin Storage of chips to insure steady supply.
0:01 agitator Shakes chips into chip meter for uniform distribution.
0:02 chip meter Pressure seal.

RPM determines production.
7 compartments which rotate and deposit chips.

0:03 low pressure fieeder Steam injected into chips.
Pressure raised to 40-60 #.

0:04 steaming vessel Gases/air forced out of chips.
Temperature raised to 240-250 deg. F.
Moisture unifonnly distributed:

0:08 high pressure feeder Adds cooking liquor to chips.
Increases pressure to 180# at top separator.

0:10 top seperator Pressure at 180#. (sealed in)
Temperature 250 deg F.
Screen used to extract liquor.

1:00 impregnation zone Chips soak up liquor.
Pressure at 165#.
Temperature at 240 deg F.

3:00 upper cooking Screens extract liquor for re-heating.
Temperature at 310 deg F.
Cooking (lignin breakdown) begins.

4:00 lower cooking As upper, but temp 330 deg F.
K-number based on temperature here.
+ 1 deg F = -0.5 K-number.

5:00 cooking zone chips left to cook (temperature increases +8 deg)
7:00 extraction Temp cooled to 280-300 deg F.

Liquor (chemical) extracted.
Chemical sent to flash tanks, recovery.

7:30 washing zone Chips rinsed with filtrate (dirty water).
Pressure 240#
Temperature 265 deg F
Oveifow filtrate extracted using screens.

8:00 scraper Breaks up chips for uniform distribution.
8:01 outlet device Cool wash (temperature 170-190 deg F).

Pressure lowered - 240 drops to 90 rapidly, (called blow
effect).

8:05 diffuser washer Washing continues.
Pressure : 40 #

8:15 atmospheric diffuser Washing, pressure reduced to atmosphere.
8:30 blow tank Provides storage/feed for bleaching process.

Figure 1.3 : Digester Process Timeline

The wood chips pass from zone to zone, first being impregnated with cooking

chemical (white liquor), then being heated, then allowed to cook, and finally the

chemical is removed and the wood pulp blown out the bottom of the digester. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

order to understand the different zones in the digester process, examine the

following diagram illustrating the zones and time line events:

Typical Values Digester
pressure: <180. temp; 250. dienacal: <5.2 C

pressure: 180. temp: 250. diemical:<5.2

pressure: 165. temp: 250. diem ical: 5.2

pressure: 165. temp: 310. diem ical: <5.2

pressure: 165. temp: 330. diem ical: <5.2

pressure: >165. temp: 336. diem ical: <5.2

pressure: >165. temp: <300. diem ical: 1 0

pressure: 240. temp: 265. diem ical; 0.0

pressure: <240, temp: <190. diem ical: 0.0

pressure: 90. temp: 170. diemical: 0.0

\

\

Zones

Top Seperator

Impregnation Zone

Upper Heating Zone

Lower Heating Zone

Cooking Zone

Extraction Zone

Washing Zone

Outlet Sevice

Timeline

0:00
1:00

3:00

4:00

5:00

7:00

7:30

8:00
8:15

Figure 1.4 : The Digester Zones

The formulae and human elements of the digester process are discussed in

more detail in section 5.2. Even this preliminary work shows how a great deal of

operator experience is used to control the digester process. One of the top

concerns is that this experience is passed onto the next generation of operators.

Section 1.2.2 : Continuous Digester Simulations

Generally, digester simulations focus on mathematically modeling the

digester process. The Kamyr equations are available (see section 5.2) and can

be used to predict the quantity of production, but not the quality of production.

That is, the production rate can be determined by how fast wood chips are fed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Into the system, but the amount o f lignin digestion that takes place is harder to

predict.

The first modeling method examined was by Allison, Dumont, Novak, and

Cheetham (1989) who examined the exposure time the wood chips experience

within the digester. A digester is a closed vessel, full of the cooking liquor. It is

very difficult to determine the actual level of the chips, and thus difficult to

determine how high the chips are (the size of the chip plug). In this study Allison

et al used data collected from strain gauge meters to calculate the position of the

chip plug. These meters have a blade which sticks out at a right angle from the

digester’s intemal wall. By measuring the pressure or strain put on these gauges

the position of the chip plug can be approximated. In this study the premise was

that the exposure time would determine the quality, and this time could be

determined by using strain gauges and a complex algorithm. This method does

work, assuming that all other factors can be kept constant. Human intervention

was still required when unusual instances occurred. The study gave the example

of a chip plug hang-up, when sections of the chip plug get stuck on the extraction

screens, thus never reaching the gauges and giving the false reading that no

chips are coming down. This type of instance is exactly why the human being

needs to be part of the solution.

Another interesting approach to modeling the digester was based on a

database of information. This study by Michaelsen, Christensen, Lunde,

Lundman,and Johansson (1992) focuses on a quality control variable (the kappa

number) which is a measure of the quality of pulp. The model tries to keep the

kappa number constant, allowing the other factors in the model to change. (This

is similar to the keeping the H-Factor constant in section 5.2. The premise is that

since production is governed by chip flow the only issue is quality of product. The

kappa number is an European measurement of pulp quality.)

This study uses a complex linearization (a set of partial derivatives)

combined with feedback from the control system to model the digester - the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm uses older information to correct itself over time. The theory Is that the

model will become more accurate over time.

This particular study was interesting because of the database of

information that was retained. The complexity of the mathematical model

restricted the model to the site being modelled, rather than being able to expand

to the general case. This approach of adapting with respect to history has a

major flaw. If the process changes significantly a new set of non-trivial equations

will be required. Complex processes such as the Kamyr continuous digester

require a more advanced type of solution in order to facilitate a correct model.

Section 1.3: Knowledge Base Simulation

After examining the environment to be modelled - an environment where

people are part of the simulation, where poorly understood chemical reactions

take place and there is a constant effort to improve the process to remain

competitive - 1 decided that the best solution to investigate would be the use of a

database of behaviours, combined with the simpler Kamyr equations all the while

keeping the operator in the process. This decision was influenced by Nielson

(1991) who discusses the three instances where a math model may fail:

1. A poorly understood decision process.

2. A human in the loop - an operator as a required part of the process.

3. Situations where experimenting with the decision making process are

made frequently.

All three of these apply to the complex digester process. To resolve this complex

problem a different sort of simulation is required; a /cnow/edge-basec/simulation

is the answer.

The knowledge based event simulator requires that a database of

information about the process is used. This information can be stored in many

different formats. The most useful format encountered was the use a simple

programming language to describe the different behaviours in the model. Hu and

Rozenblit (1991) use a Lisp like language to describe their rule database. This

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technique should allow the most flexible rule database because anything should

be describable using a full language.

A possible implementation of a knowledge based simulation would include

the traditional simulation modules: event processing, a user interface and a

simulation state. Additionally a knowledge base, a processor dedicated to

implementing the rules in the knowledge database would be required to evaluate

any general rules, probabilities or dynamic formulae that occur. An information

flow diagram illustrates how information would be passed to the different parts o f

the simulation:

EVENT
PROCESSOR $-

EVENT QUEUE

INPUT
MODULE

SIMULATION

STATE

KNOWLEDGE DISPLAY
BASE MODULE

Figure 1.5 : An Event Driven Simulation with a Knowledge Base

As every quantum of time passes, the event processor examines the

queue. Events that are scheduled to be executed (to a maximum number, to

ensure the user input module does not spend too much time suspended) are

removed from the queue and processed. At this time the event processor will

read and write to the variables stored in the simulation state to reflect any

changes. Once the simulation state has been updated, the event processor will

add any new events that are created by the event currently being processed.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the event processor has completed, the rules processor will evaluate

the simulation state using a knowledge database. This process is implemented

by taking values stored in the simulation state, checking if particular conditions

exist and creating an event for each condition that requires it. The knowledge

database should be dynamic, to allow run-time adjustments, using a simple

intemal language capable of primitive Boolean and mathematical operations.

Each module or processor should be discrete both in concept and design.

If practical, each component should be implemented as a separate task in a

multitasking operating system. The interaction that does take place between

components uses an object message passing system with clearly defined

responsibilities. The final result of the knowledge based simulation should be a

database capable of working with experienced operators.

Section 1.4: Motivation and Thesis Outline

After examining the industry process of creating kraft pulp I decided that I

could either build a complex simulation of a particular digester or develop an

engine that could be used to produce knowledge based simulations. I felt that a

simulation engine would be more useful both to industry and to the development

of my computer science skills. I call this simulation development environment the

Simulation Engine.

My goal was to create a graphic, PC based, simulation development

environment capable of supporting knowledge based simulations. The focus of

these simulations should be trainer oriented instead of predictive, since these

simulations will be used to assist in the educating of new operators. The

simulation should be capable of supporting simple math models/formulae, but

contain enough intelligence that it can demonstrate qualitative behavior o f

complex processes as well.

The development environment must support dynamically configurable

simulations allowing experienced operators to reconfigure simulations quickly

and easily. The design should allow room to develop concepts more in depth as

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more information becomes available. The environment should allow

simplifications so that work can focus on the known factors and not be halted on

the unknowns.

The Simulation Engine takes full advantage of the Windows 3.1 operating

system, utilizing its limited multitasking ability to breakdown the simulation

engine design. It implements inter-process communication using native

Windows protocols and interfaces with other programs not a part of the

simulation. The engine provides a simple developer’s graphical interface, which

is configurable by non-computer oriented personnel. Since it was designed to run

on a PC platform, it is cost effective. In order to test the knowledge based

simulation generator simple digester simulations were developed.

The Simulation Engine conceptualization is described in chapter 2. Here

the concept of a knowledge based simulation development environment is

molded into an object-oriented message passing model. Chapter 3 discusses the

various programming tools used to build the actual program such as Borland

C++, the DDE(Dynamic Data Exchange) protocol and the Windows operating

system.

Chapter 4 explains some o f the more in depth implementation details of

the Simulation Engine. The key concepts include the language the knowledge

database is implemented in, the graphic tags that interface to the operator, the

variable handler used to store the simulation data and the DDE client/server

class developed to allow inter-process communication.

Actual simulations are presented in chapter 5, including the development

o f a simple pump simulation used to explain the development process. This

chapter also discusses interfacing to other Windows applications and gives an

example of how this might be done.

The final chapter discusses the problems with the Simulation Engine, the

desirable enhancements and the possible future applications of the Simulation

Engine.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2; OVERVIEW OF THE SIMULATION ENGINE

This chapter examines the simulation engine model. It defines the roles

and responsibilities of each o f the major components required in the design

phase. It also introduces the message passing mechanism required between the

different tasks. This chapter is meant to give an overall understanding of the

simulation engine.

Section 2.1 : The Object-Oriented Model

The simulation engine breaks down the process of simulating into four

objects. Each of the entities can be classified according to the different classes

defined by Budd (1991). The simulation model is illustrated in figure 2.1.

states (I/O)

Figure 2.1: The Simulation Engine Model

The first object in the model is the Simulation State. This entity is a

storage object or data manager. It keeps track of the values or states that

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent the simulation. Other programs, including tasks not a part of the

simulation engine, can request specific simulation states. These tasks can send

assignment messages to the simulation state to change stored values.

The next object is the Input/Output handler. This program is responsible

interacting with the user. It provides output onto a view screen in response to I/O

messages received from other tasks. Input is provided using mouse and

keyboard by interfacing with Window’s messaging system (this is covered in

more detail in section 3.1). This entity is a combination of source and viewer

object. The reasons for this hybrid are covered in section 2.4.

Most o f the I/O messages come from the Knowledge Base. This object is

responsible for processing the rules that specify the simulation. It receives

messages from other tasks which trigger it to load, parse and execute different

script files. These scripts can then generate more communication among the

different entities. This class can viewed as a storage class (it stores the different

scripts) or a facilitator as it interfaces between the other tasks.

Some script files need to be run on regular intervals. This is

accomplished using the Event Handler. The Event Handler message’s are called

events. As each event is received this object stores them in a queue of script

files to be executed. When a timed interval occurs, it checks each item in its

queue and executes them by sending a message to the Knowledge Base as

required. This class generates information and can be viewed as another source

object.

By working together these entities can simulate both simple and complex

processes. The aspects of storage, interface, process and automation have

been taken into account. The result is a highly flexible simulation engine.

Section 2.2: Message Passing System

The simulation engine uses a standardized messaging system between

its object-tasks. To understand how the simulation engine works, we need to

understand the different types of messages that are passed from task to task.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exactly how the messages are passed will be discussed in more detail in section

4.5. Each message consists o f two text strings (normally referred to as the topic

and Item). This section covers the structure and purpose of those strings.

The simplest message in the simulation engine is the state. This

message comes from the Simulation State and consists o f a variable name and

a floating point value (stored in a text string). It is sent out in response to a

request; the client process sends a request in the form of a variable name to the

Simulation State and the Simulation State responds with a state message.

The state message is complemented by the assignment message. This

message sends the variable name in the first string and a floating point value in

the second. The Simulation State can then store the new value and make it

available for the other tasks in the simulation.

The Event Handler and I/O Handler exchange messages with the

Knowledge Base. If the first string is a message the Knowledge Base will queue

the contents of the second string (which should be a script filename) to be

executed. If the first string is anything else, we assume a state has arrived. The

name is derived for the first string and the data from the second. Note that the

string “message" can never be a variable name because of this.

The message event is the first non-trivial message. Valid messages are

shown in figure 2.2.

First String Second String

queue <ID string>, <script name>, <iteration count>

pulse nil

remove <ID string>

Figure 2.2: The Event Message

When an event message has a first string of queue, the Event Handler updates

or adds a job to the queue list, based on the unique ID string. If the first string is

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remove, the job with the corresponding ID string will be removed from the job

queue. Finally, if the string is pulse, the Event Handler will process its job queue.

The most complex communications in this model is to the I/O Handler.

State messages arrive and are matched with the first string with any tags storing

that variable. The value will be updated to the contents o f the second string and

the user display is refreshed. More complex I/O messages, usually received

from the Knowledge Base as part of a script executing, force changes in the

screen's display by altering display elements called tags (discussed in section

4.2). Figure 2.3 shows what the messages look like:

First String Second String

refresh <tag ID> or refresh

smartgraphic <tag description>

simplegraphic <tag description>

simpletext <tag description>

simpleregion <tag description>

niltag <tag ID>

flushtags nil

smarttext <tag description>

smartpopuptext <tag description>

simplepopuptext <tag description>

changeregion <tag ID>,<new x,y,dx,dy>

changeregioncolor <tag ID>,<color>

changegraphic <tag ID>, <bitmap filename>

<default> <data to be displayed>

Figure 2.3 The Tag I/O Message

For more information on the various tag descriptions see appendix III. Most of

the first string possibilities create different tags. The exceptions are refresh.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which forces the I/O Handler to request a state message for a particular tag;

riHtag, which removes a tag; flushtags, performs a niltag on all display elements;

changegraphic, allows us to update/animate a graphic image; and the default, if

none of the others apply the first string is assumed to be a tag ID and the second

is assumed to be data to be displayed by that display element.

The messaging system is critical to the function of the simulation engine.

In order for the simulation to run, protocols must be agreed between the different

tasks in the simulation.

Section 2.3: The Details of the Model’s Objects

Section 2.3.1 : The Simulation State

The Simulation State is an object which manipulates the values or states

of the simulation. Other tasks in the simulation send requests for states to this

program, which looks up the value and returns it. This object also accepts

assignments, which it uses to alter its stored variables. How the simulation works

is described in figure 2.4.

assignments

assign/load state

state request

get state
transmit state

Figure 2.4 : The Simulation State

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The core of the simulation state is a variable handler which maintains simulation

variables. States can be assigned (to existing) or loaded (new states). These

values can be retrieved using a get message. This entity is discussed in more

detail in section 4.3.

O f all the tasks in the Simulation engine the Simulation State is the

simplest. Like all simulation tasks it is capable of peer-to-peer type of

communications, but the nature of state storage allows it to behave as a pure

server type entity. Future enhancements to the simulation entity will require the

task to take a more active, peer-to-peer type role.

Section 2.3.2: The I/O Handler

The user interface is made up of two important components, the output

section and the input section. These two sections are combined by the end user

to create the Input/Output Handler. The user is the source/sink object which

takes messages from the Output Section and generates messages to the Input

Section. Figure 2.5 illustrates the I/O Handler model.

niltag/tlushtags

Tag List

transmit Message
transmit Events
transmit Assignments

output

Figure 2.5 : The I/O Handler

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The original simulation model separated the I/O Handler into two tasks, the Input

Handler and the Output Handler. Although this is a reasonable idea, the

restrictions of Windows programming required that the display screen and input

routines be contained in the same program, thus the input and output was

combined to create the I/O Handler - a hybrid object that both facilitates and

views information.

The I/O Handler interacts with users via an object called a Tag (discussed

in detail in section 4.2). A tag is an entity which can be displayed (as a value or

picture) and utilised to get user input. A list of tags is maintained by the I/O

Handler. This list represents the current state of the user’s interaction with the

simulation. The Output section will refer to this list to re-draw the screen and to

generate state requests. By selecting a tag the user can generate messages,

events, and assignments. These are communicated with the other tasks in the

simulation using the DDE OUT section.

The other processes in the simulation communicate with the I/O Handler

by sending i/o to the DDE IN section. This information is passed to the Process

Data section, which deciphers the type of i/o. The I/O Handler receives two

types of communications. The first type of i/o is a requested state. This

information is passed to the Update Tag section, which searches and updates

the correct tag in the tag list. The second type is specific instruction from the

Knowledge Base. For instance, a refresh instruction will force the I/O Handler to

request a state or states. This request will cause a requested state to arrive,

which will cause an update. Generally, the instructions will make the Input

section add, update, and remove tags in the list.

Section 2.3.3: The Event Handler

The Event Handler is designed to repeat regular, timed events in the

simulation. The idea was to offload the Knowledge Base by automating the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution o f routine or iterative tasks. These tasks would need to happen via a

pulse type message. The Event Handler is modelled in figure 2.6.

event

add/remove
event

Event Queue
pulse

add/remove
event

script files
transmit message

Figure 2.6 : The Event Handler

The Event Handler receives two types of instructions. The first is an event to be

either scheduled for execution or to be removed. Based on this, the event is

either added to the event queue or removed. The other type of instruction, pulse,

tells the event handler to process the event queue. The execute section reads

the next event to be processed, transmits a message to the Knowledge Base if

required, and either re-submits the event to the queue or removes it.

Section 2.3.4: The Knowledge Base Script Language.

A knowledge base is a set of rules (or knowledge) stored in a format

capable of being interpreted by the computer(Oren,1991). In the simulation

engine, the Knowledge Base entity is the task associated with interpreting the

rules that represent the process being simulated. It communicates with the other

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tasks in the simulation using the DDE IN and DDE OUT entities. The Knowledge

Base model is shown in figure 2.7.

Job Queue

filename
wakeup

requested State Timer

codecell

transmit 1/0
transmit Events
transmit Assignments

command

Figure 2.7 : The Knowledge Base

The heart of the Knowledge Base is a job queue which stores jobs until they can

be executed. As messages arrive via the DDE IN section they are converted to

jobs and stored in this queue. A timer regularly sends a “wakeup” signal which

causes the “update simulation” section to read jobs from the queue and pass

them on as script filenames to the loader/parser section. The loader/parser

section reads the file, creates a parsed object called a codecell, and invokes the

interpreter. The interpreter executes each command. By running each

command the rules of the simulation being modelled are executed. Some of the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high level commands can request and transmit information via the DDE OUT

section which communicates with the rest of the simulation engine. Other

commands can call more scripts, allowing models to be built from the top down -

less knowledge to more knowledge. The script language is covered in more

detail in section 4.1.

The Knowledge Base is meant to be used as an discrete event (message)

driven model. The messages that arrive from other simulation tasks represent

events (such as user i/o, or value change) that affect the simulation. The

Knowledge Base runs the appropriate script - it applies the correct rule for the

situation.

It is possible to do continuous modeling by utilizing the timer. By using a

timer the Knowledge Base can provide a quantum unit of time (based on a

constant number of wake-ups), which can be used by the Simulation Engine for

timed events. This quantum,, or simulation heartbeat, can be used to create a

continues simulation by sending out regular pulse messages to the other

simulation tasks. In order to facilitate this, a special script is always run when the

heartbeat is active. It is automatically queued to run at each heartbeat. All timed

events can be triggered from this script.

The high level language allows the simulation designer to develop a

simulation with complex rules that can represent quantitative and qualitative

events within the model. This allows us to build rules which represent the “soft”

concepts (Rothenberg,1991). These can be hard to define (e.g. getting warmer,

usually around 10%) and require the flexibility that a knowledge base can offer.

The Knowledge Base program provides the tools required to implement a set of

rules. Combined with the other simulation engine tasks, it is a key component to

the design of the entire simulation system.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 : THE WINDOWS PROGRAMMING ENVIRONMENT

This chapter examines the influencing factors of the chosen programming

environment, Windows 3.1. It discusses how the actual operating system

influenced the Simulation Engine’s design. Programming libraries used in the

development of the simulation engine, OWL (Object Windows Library) and

CLASSLIB (class library), are described. Finally, the DDE (dynamic data

exchange) protocol used in the simulation engine is introduced. This chapter

provides the groundwork for understanding chapter 4.

Section 3.1 : The Windows Operating System Environment

The simulation engine was originally designed to work in a Windows 3.1

environment using the Win16 API. The completed project runs in Windows 95,

Windows for Workgroups or Windows 3.1, but still depends on the basic

principals found in Windows 3.1.

The Windows operating system is a non-preemptive multi-tasking

operating system. This means that the operating system can not interrupt a

process to force a fair time slice. Instead, program design in Windows 3.1 is

based around voluntary release of system resources. The downside of this

approach is that if a process becomes locked up it will lock all of the operating

system. (It should be noted that Windows 3.1 will terminate such processes if a

CTRL-ALT-DELETE keyboard message is issued. Previous versions of Windows

could not even do this. The Windows NT platform uses true preemptive

behavior, finally bringing safe multitasking to the PC Windows).

To understand the Windows environment we must first understand the

relationship between the application and its window. The application interfaces

between the window and the operating system. The window links the user to the

application.

The window has associated with it a procedure which defines how the

window will react to the communications from the application. As the application

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receives and deciphers information tokens called messages from the operating

system, they are dispatched to the window procedure. This procedure then

reacts according to the program design.

Messages can be originated from hardware (mouse, keyboard) or other

applications. The messages are processed by the operating system, and passed

on to the program in one of two ways. First, the message may be posted. A

posted message is left in an application message queue to be read when the

program gets a chance. The second method is a send. A message which

arrives using a send goes directly to the window process, bypassing the

application. This is only used for high-priority communications. The message

passing process is modelled in figure 3.1. (Yao,1994).

POSTMESSAGE

APPLICATION OBJECT WINDOW OBJECT

MOUSE & KEYBOARD

Figure 3.1 : Windows Message Passing System

The application's GetMessage loop releases control to the operating system

after each message is processed. This loop is in every Windows program, and

typically looks like:
while (GetMessage(&msg, 0, 0, 0)) {

T ranslateMessage(&msg);
DlspatchMessage(&msg);

}

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The GetMessage function will only return false when a quit message is received.

At this point the loop will end and the program will terminate.

The key to the process is the message. A message is a structure made up

o f six parts. From the Borland C++ windows.h file we can see the structure:

typedef struct tagMSG
{

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM IParam;
DWORD time;
POINT pt

}MSG;

The hwnd is a window handle. As explained earlier, a window handle identifies a

window uniquely. In this case it is the window targeted to receive this message.

The message is an unsigned integer (either 16 or 32 bit depending on which

applications programmer interface you are using) which identifies the type

message (the details of the different types of messages is out of scope for this

paper). The wParam and IParam variables are data - the type of data depends

on the type of message. The variables time and pt identify the time the message

was created and the position of the mouse at that time.

Because of a message driven, non-preemptive nature of the Windows

operating system the style of programming is a bit different. A windows program

amounts to a set of “traps” which capture different messages. Even when using

a timer messages are generated and responded to. The environment is very

easy to develop in, but the influence on the simulation engine is substantial. The

simulation engine is a reactive type program; it waits for user input, it waits for

timed events. This lends itself very nicely to event driven typed applications,

which in tum assists the simulation engine in creating event driven simulations.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.2: The Object Windows Library

This section covers in general terms the use of the Object Windows

Library. The OWL (Object Windows Library) simplifies the process of creating

windows applications. The process of creating a windows application requires

the programmer to create a application loop which reads the different Windows

messages and a window function which interacts with the user. As well, the

application needs to register its name, icon, cursor etc. For example, look at this

code taken from (Ammeraal,1993) Windows Wisdom for C and C++

Programmers (page 5):
#include <windows.h>

long FAR PASCAL _exportWndProc(HWND hWnd, UINT message,WPARAM
wParam, LPARAM IParam):

int PASCAL WinMain(HANDLE hinstance, HANDLE hPrevlnstance, LPSTR IpCmdLine,
int nCmdShow)

{
char szAppNameQ-’wtest";
WNDCLASS wndclass;
HWND hWnd;
MSG msg;
int xScreen = GetSystemMetrics(SM_CXSCREEN),

yScreen = GetSystemMetrics(SM_CYSCREEN);

if (IhPrevlnstance)
{

wndclass.style = CS_HREDRAW j CS_VREDRAW;
wndclass.IpfhWndProc = WndProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hlnstance = hinstance;
wndclass.hlcon = Loadlcon(NULL,IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL,IDC_ARROW);
wndclass.hbrBackground = GetStockObject(WHITE_BRUSH);
wndclass.IpszMenuName = NULL;
wndclass.IpszClassName = szAppName;
if (lRegisterClass(&wndclass)) retum FALSE;

}
hWnd = CreateWindow(szAppName, "Windows Test",

WS_OVERLAPPEDWINDOW, 0, 0, xScreen, yScreen,
NULL, NULL, hinstance, NULL);

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ShowWindow(hWnd.nCmdShow);
U pdateWindow(hWnd);

while (GetMessage(&msg,NULL,0,0)) {
TranslateMessage(&msg);
DispatchMessage(&msg); /* message is sent to the Window */

}
retum msg.wParam;

}

I *

* Window Procedure
7
long FAR PASCAL _export WndProc(HWND hWnd, UINT message.WPARAM
wParam, LPARAM IParam)
{

switch (message)
{

case WM_DESTROY :
PostQuitMessage(O); break;

default
retum DefWindowProc(hWnd, message, wParam, IParam); break;

}
retum OL;

}

This program creates a window with the title “Windows Test” and waits for the a

WM_DESTROY message. The programmer is required to a significant amount

of work for very little retum.

The OWL library (version 2.0) hides this complexity by providing a detailed

class hierarchy of 128 classes (Yao,1994). The philosophy of OWL is to create

two main objects; first, an application object descendant of TApplication and

secondly a window object descending from TWindow.

The TApplication class takes care o f the non-window functionality. These

include registering the window class, icon, cursor etc. Note that the programmer

can override any or all of these if necessary.

The TWindow class provides for user input and output. This class comes

with over 55 descendants, including TDialog, TControl, and TFrameWindow.

These are further extended to allow buttons, checkboxes and other custom

design user interface items. The application object actually expects a

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFrameWindow, which includes basic window items (e.g. scrollbars), but can be

made to work with any descendent of TWindow.

The OWL library also simplifies the program entry point. Instead of using

the complex WinMain it uses a more familiar looking OwlMain, which is similar to

the traditional C++ main. This function creates an instance of the application

class and runs it. The application object creates an instance of the window class

and monitors the windows messaging system. Messages are read in and

dispatched to the window object, which can have member functions that respond

to the messages. A simple OWL based program, one which produces similar

results as the previous example, is given:
#include <owl\owlpch.h>

// — window object
class MyWin : public TFrameWindow
{

public:
MyWin(char "title) : TFrameWindow(0,title) {

Attr.W = GetSystemMetrics(SM_CXSCREEN);
Attr.H = GetSystemMetrics(SM CYSCREEN);

}
-MyWinOO

}:

// — application object
class MyApp : public TApplication
{

public:
MyAppO : TApplication() 0
void InitMainWindowO {

SetMainWindow(new MyWin("Windows Test"));

}

};

// — main entry point
int OwlMain(int char **)
{

return MyApp().Run();
}

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This program is not only smaller than the non-library version, it is also much

more flexible. The programmer can focus on design o f the application and

concentrate more on the program task ahead of him. The cost of using the OWL

library can be measured in size of the executable. The non-library program is 32

Kbytes where the OWL program is 175 Kbytes. While significant, this size is

more than justified in the increase of programmer productivity. The simulation

engine project spanned both version 1.0 and 2.0 o f the OWL library, requiring

one major re-write. The functionality and simplicity provided by the OWL library

allows the programmer to focus on the design of the program, and forces the

message handling details of the Windows operating system into a background

role.

Section 3.3: CLASSLIB - Container Classes.

This section discusses the Borland C++ CLASSLIB, which provides

container classes.

The types of containers are (Borland, 1993b): Array, Association, Bag,

Binary Tree, Dequeue, Dictionary, Double-listed list. Hash table. List, Queue,

Set, Stack and Vector. These classes provide a extensive set of tools that can

be used in moving from conceptual model to actual computer program.

In order to implement these containers on specific classes, Borland C++

makes use o f the template concept provided by C++. A template looks like a

class with member class substituted with a pseudo-argument. For example

consider the following example (Stroustrup,1991):

template<class T> class vector {
T * v;
int sz;

public:
vector(int);
T& operatorQ(int);
T& elem(int i) { retum v[i];}
n ...

}:

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This template provides a class capable of storing an array (or vector) of elements

o f some class. If the programmer required an array of integers, he would use:
vector<int> int_array(20);

The resulting vector object would store, or contain, integers. Just as easily, we

could create a more complex class and create a vector from them.

The Borland CLASSLIB library uses this functionality to build many

containers implemented in many different ways. Depending on the fundamental

data structure (FDS) the programmer chooses for implementing the abstract data

type (ADT) member functionality will vary. Not every combination of FDS/ADT is

available (although the programmer can expand upon these). Those that are

provided are shown in figure 3.2 (Borland, 1993c page 223).

ADT Sorted
FDS stack Queue Dequeue Bag Set Array Array Dictionary
Vector X X X X X X X
Ust X
OoubleUst X X
Hashtable X
Binary tree

Figure 3.2 : CLASSLIB Container Classes

In order to make use of an abstract data type, Borland uses a specific

naming convention. The declaration works by combining ADT “as” FDT. For

instance if you wanted an array implemented as a vector to contain floating

points, the declaration would look like:
TArray AsVector<float> x(100);

The result would be an array of floating points. The advantage of this is that the

array could be of a more complex class. (Sections 4.4 and 4.3 give such

examples used in the Simulation Engine).

The prefix to the ADT indicates other attributes the template has. The T

indicates that the template is a member of a Borland library (Borland uses this

notation extensively in all their libraries). Other prefixes, all which may be present

or absent at the same time, are listed in figure 3.3.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M User supplies the memory-management container

1 Indirect container

0 Counted container

S Sorted container

Figure 3.3 : CLASSLIB ADT Prefixes

These indicate whether the user’s class will have member functions for copying

itself (M), whether container is actually storing pointers to objects (I), whether the

elements in the container should be counted (C). and whether the elements

should be sorted(S). Depending on these selections, the programmer will be

required to build different functionality into their class.

With some leaming, these container classes can reduce the workload of

the programmer. The alternative is to build each container class individually.

This time consuming process is worthwhile only in situations where special

behaviours are required. When a simple queue or array is required, the

CLASSLIB can help considerably.

Section 3.4: Dynamic Data Exchange for Inter-Process Communication.

The Simulation Engine uses the DDE (Dynamic Data Exchange) protocol

for communicating between the different processes that are a part of the

Simulation Engine. This section discusses about the protocol itself and how it is

implemented using Windows DDEML link library. The DDE protocol is native to

the Windows environment and is currently losing favor to the more popular OLE

(object linking and embedding) protocol. The DDE protocol was chosen because

it is easily implemented and provided the basic client/server communication

required to complete the Simulation Engine. If another protocol had been used,

it likely would not be OLE - rather it might make sense to use one of the IP

based protocols, such as UDP. This would allow for easy communication

between platforms; extending the usefulness beyond the Windows/PC

environment to include UNIX, VMS, OS400, etc.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The DDE protocol Is implemented on the Windows messaging system

(covered in more detail in section 3.1). The protocol provides a means of

establishing a connection, asking for action, sending/receiving information and

closing connection. Each individual conversation can be viewed as a

client/server type relationship, since the originator (or client) starts and controls

the conversation with the server. Multiple conversations can be started between

processes; thus a peer-to-peer relationship can be accomplished by having each

process initiate a conversation (Clark, 1992).

A conversation is initiated by using the Windows SendMessageQ function

to send a WM_DDE_INITIATE message to the target application window. This

message can be lost (application is either not there or not DDE capable),

rejected (the application is not interested in starting a conversation) or accepted.

If the message is accepted both processes create DDE handles for the

conversation. This handle provides the processes access to global memory

objects allowing data to flow between them.

The client process can then request a specific task be executed by using

a WM_DDE_EXECUTE message. The server process will receive the message,

get the required data (typically a text string data) and perform the task. A

response WM_DDE_ACK is returned, either a “YES” message indicating a

successful execution of the command or a “NO” message indicating failure.

The client process can request data using the WM_DDE_REQUEST

message. The server extracts the data from the global memory and either sends

a WM_DDE_DATA message (your data is now available in the global memory)

or a WM_DDE_ACK. The second message will retum a “YES” ; I have this

information but cannot give it to you right now, or a “NO”; I do not know what is

being asked for.

The client can transmit data to the server by loading the global data and

sending a WM_DDE_POKE message. The server process receives the

message and retums a WM_DDE_ACK message. The response will be a “yes”;

I got and understood your request, or a “no”; what are you talking about.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An additional way for the client to get data is to send a

WM_DDE_ADVISE message. This tells the sen/er to send WM_DDE_DATA

messages whenever the server feels it is a good time (normally when the data

changes). A WM_DDE_ACK will be returned with a “no" if the advise loop is

rejected. Othenwise the server will continue to send messages until it receives a

WM_DDE_UNADVISE message.

Finally, to conclude a conversation a WM_DDE_TERMINATE message is

sent. This instructs the server (or client) to clean up the shared memory and

shutdown the DDE link. This message must be sent before an application exists

or memory will be lost.

The dilemma with the DDE protocol is the amount of programming and

details involved in using it. A simpler approach, which takes care o f

communicating with the Window’s messaging system, is required. In order to

accomplish this, Windows 3.1 comes with a dynamic link library called the

Dynamic Data Exchange Management Library (DDEML). This library provides

functions and design conventions for the DDE protocol. It insulates the

programmer from working with global memory and takes responsibility of

garbage collection.

The key to the DDEML programming conventions is the use of a

CALLBACK function. This function is registered to the application using a special

function DdelnitializeQ. Once this function is loaded it will be called whenever a

DDE type message arrives for the application. The function will be passed a

message identifier which tells the CALLBACK function what type of message has

arrived. These identifiers correspond to the underlying DDE messages:

XTYP_EXECUTE

XTYP_REQUEST

XTYP_POKE

XTYP_AVSTART

XTYP ADVSTOP

WM_DDE_EXECUTE

WM_DDE_REQUEST

WM_DDE_POKE

WM_DDE_ADVISE

WM DDE UNADVISE

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The difference Is that the Identifiers come with the handles to the data. These

can then easily be converted to their text strings using other functions provided

by the DDEML.

The DDEML encourages the use of special conventions. These include

the concepts o f services, topics and items. A service name is a string that the

DDEML maps to an application. Identifying the DDE server process is more

easily done by using the service name, rather than identifying the window to post

the message to. Within each service several topics can be identified, so that a

conversation is picked by selecting a service and a topic. The actual entity being

discussed is referred to as the item.

The DDE protocol, as implemented using the applications programmer’s

interface DDEML, provides a mechanism for inter-process communication.

Further it is a widely used protocol, available in most word-processing and

spreadsheet applications. The DDE protocol is a valuable part of the Simulation

Engine.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: IMPLEMENTATION OF THE SIMULATION ENGINE

This chapter is intended to outline and describe in some detail how the

major parts of the Simulation Engine were implemented. Each task in the

simulation engine has an implementation issue; the Knowledge Base has a Lisp

like language, the Simulation State uses a Variable Handler, the I/O Handler’s

Tag class hierarchy, and the Event Handler’s event class. As well, the DDE

client/server class used by all the tasks in the simulation engine is discussed.

Section 4.1 : The Knowledge Base Script Language.

In order to create a Knowledge Base, a method was required of

describing the pieces o f knowledge. In order to accomplish this, a script

language was developed. To simplify the programming task, the script language

is based on Pure Lisp (Pratt, 1984) which has been extended to allow program

to program communication using the Dynamic Data Exchange protocol (DDE).

The use of a simple programming language allows the simulation designer a

great deal of flexibility. The script language can communicate changes o f value,

graphic displays, etc. to the other programs in the simulation engine. Formulae,

functions and even random events can be generated. By allowing the language

to call other script files, the programmer can build and expand upon the

simulation. The script language allows for a precise description o f the rules that

make up the simulation.

The simulation script language has very similar syntax to Lisp-like

languages. Many of the commands of Lisp have been implemented, as well as

some extensions to allow inter-process communication and high-level floating

point arithmetic. It is not the purpose of this section to discuss the Lisp

programming language; a detailed breakdown of the implemented commands

can be located in Appendix II.

The script language is implemented using two classes; Loader and

CodeCeU. A Loader object interfaces to a text file containing script code. This

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class has all the member functions required to read in, parse, and retum a

pointer to a CodeCell object. A skeleton of the loader class is given below:

class Loader
{

private:
ifetream *fp;
char fiiename[30];
f / ... other data items used In the parsing process...

public:

Loader(char * _filename);
LoaderO:
-LoaderO;

// the parser
II
CodeCell * Parse{);
I I ... and other member functions used in the parsing process

}:

The resulting CodeCell object contains both the parsed byte code instructions as

well as the member functions for interpreting them. A skeleton of the CodeCell

class is given below:
class CodeCell
{

private:
char"data;

public:
CodeCell "CAR. "CDR;
int type;

// constructors
II
CodeCell(int _type =0);
CodeCell(char "_data, int_type=0);
CodeCell(CodeCell "r);

~CodeCell{);

void AssignData(char "_data);
void AssignType(intJype);
void Dump(string " core);

CodeCell " lnterp(CodeCell " env);

CodeCell " Eval(CodeCell "env);

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CodeCell * Apply(CodeCeiI •f.CodeCell * args, CodeCell *env);

//... predicates and primitive functions of the script language...

};

Each CodeCell can either be a LIST/CELL or an ATOM. Most Lisp

implementations include two other types, FUNCTION and NUMBER (Pratt 1984).

For the purposes of the script language, the usage within the script file Is

sufficient to determine whether an ATOM is a number, function or variable. For

example, if an atom is the first entry in a list it is assumed to be a function. If an

atom begins with a numeric character it is assumed to be a number.

In a similar fashion, we can consider variables and functions to be similar

types. A variable can be equivalent to a LIST or an ATOM, a function definition

is a LIST starting with a LAMBA function. This approach requires that a variable

name cannot be used as a function name or vice-versa. The advantage is that

both functions and variables are made persistent by implementing a CodeCell

object called env. This object belongs to the Knowledge Base's window object.

It is passed to the InterpQ member function call, so that functions and variables

will be available to other scripts.

The InterpO member function can travel through a CodeCell tree and

execute its content. This structure is defined by the data, type and its CAR and

CDR CodeCell pointers. For example, figure 4.1 shows the structure of the Lisp

instruction “(SETQ X 10.2)” .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1 : An Example CodeCell Structure

Once the Loader object has created the tree of CodeCell objects it can

then be executed. The returned pointer to CodeCell object calls its InterpQ

member function. This member function takes the argument env. The InterpQ

member function retums a pointer to CodeCell object, representing the result of

the execution. This is typically a f, meaning success, or a n il, meaning failure.

This information is extracted using the DumpQ member function into a string

variable which can be displayed or written to a log file.

Since the script program is interpreted line by line, a while loop is used to

process the entire file. Consider this code segment which is based on the

Knowledge Base Window object’s Message member function:

Loader * x;
CodeCell * runme;
CodeCell * result;
string core;

// interfece to file “filename"
// pointer to CodeCell to be run
// pointer to the result of running “runme"
// a string for storage

X = new Loader(filename);
// while there are lines to parse
while ((runme = x->Parse()) != NULL) {

if (!runme->null()) {

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

result = runme->!nterp(env);
core = "" :
result->Dump(&core);
if (core 1= "") logfile->write((char •)core.c_str(),core.length());

delete result, runme;
}

delete x;

When the Knowledge Base program is initially run, a prebuilt script file is

parsed and executed. This file contains definitions for built in functions as well

as many simple functions written in the script language. These are stored in the

env object for access by other scripts. As each subsequent script is run or re-run

it can add to or replace entries in the env object. While these values are

available to the Knowledge Base, they are not available to the Simulation Engine

or other DDE compatible programs. Values that are required by the I/O Handler

or Event Handler should be transmitted to the Simulation State. These values

can be read in when required by the script file, and transmitted back when

required. These commands are DDESETQ and DDESENDQ and are outlined in

Appendix II.

A communication issue arises when the script file requires a state value

from the Simulation State. In this case the program makes the requests, then

goes into a waiting state. This is accomplished by monitoring a global variable

where the response will be deposited. The polling is done at high speed, but

permits other programs to continue execution. The program segment is provided

below:
do {

This->anyRequest(This->targetConv[conv],v->data); /
This code Is used to gracefully wait until data has been
retumed. It will LOCK UP if the state handler is not
around to accept the request for data.

while (global_flag=0) {
while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

T ranslateMessage(&msg);
DispatchMessage(&msg);

}
}
global_flag =0;

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The script language Is a complete language capable o f inter-process

communication, mathematical manipulation and problem description. The script

language could be replaced by another high-level language by maintaining the

message passing rules (section 4.5). Using the Pure Lisp language as a

guideline allowed for a simple to use and implement script language.

Section 4.2: The Input/Output Tag Object

As mentioned in Section 2.3.2, the Tag object is assigned the task of

interacting with the user. In order to develop a versatile system, the Tag object is

only the parent object of an hierarchy of descendants. Each descendant is

specialized for a particular type o f interface. At the most general level, a Tag

object has a x, y, dx, dy display region and an identifier or tagname which is

unique to that tag. The Tag object class is given below:
class Tag
{

public:

TReglon *pos;
char 'tagname;

IntTAGTYPE;

Tag(TRect _tr,char *_tagname);
"Tag(){ delete pos; delete tagname;}

virtual void Do(TWindow 'parent) {}
virtual void PaintfTDC &dc) {}

TRect GetRgnBoxO (return pos->GetRgnBox();}
char 'GetTagO (return tagname;}

int Contains(TPoint x) { return pos->Contains(x);}
int Match(char 'ts) { return (!strcmp{tagname,ts)):}

At the topmost level, the tag provides member functions for checking tagname

match, checking if a point is contained within the region, returning the tagname

and display rectangle and two virtual function. Do and Paint. The Paint member

function is provided to be overridden with a function capable of displaying the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tag. Note that parent object Tag has no dispiayable form. The virtual function

Do is provided to act upon being selected by the user. In this way the tag object

provides both input and output functionality to its descendants. The use o f virtual

functions allows the descendants to be stored in a list of type Tag. Each

descendent may use the Do and Paint functions as best fits its responsibility.

Thus the Window object for the I/O Handler contains a simple member function

that reacts to all mouse-button-up window events:

void MyWin::EvLButtonUp(UINT id. TPoint& p)
{

char s[100];

for (int i=0;i<200;i++) {
if (taglist(i] && taglist(i]->Contalns(p)) {

taglist[i]->Do(tliis);

}

}

Six types of tags have been developed by inheriting from class Tag. The

hierarchy tree of available tag types is given in figure 4.2.

Figure 4.2 : The Tag Inheritance Tree

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each o f these classes adds to the parent It Inherited from. Consider the

inheritance of PopupText. Its branch in the hierarchy tree begins with

SimpleText, which adds the ability to display text on the screen. This text cannot

be changed other than by deleting the tag. The next step in the branch is

SmartText, which creates a selectable text on the screen and makes the text

dynamic. Not only can the text be changed, selecting this tags region will cause

a message to be sent to the Knowledge Base, allowing the user the ability to

directly cause the simulation rules to be invoked. From this PopupText adds a

popup dialog that allows the user to input a value for a state. Not only can this

value be changed and send messages to the Knowledge Base but also it can be

used to input data into the simulation.

The other tags follow a similar pattem. All the possible tag configurations

and how to use them are described in Appendix III.

Section 4.3: The Variable Handler Class

The Simulation State provides variables, or states, to the other tasks in

the simulation engine, as well as any DDE compatible software (this is covered

by section 5.3). The simulation states consist of floating point values and related

variable names. Access, storage and manipulation o f these states are

accomplished by using a class called the VarHandler. This class was originally

designed as a sorted structure array containing a string and a float. In its original

format, one dirtyBIT variable was used to determine whether the state had been

written to. This boolean flag would be set to TRUE if the value had changed

since last being accessed and FALSE othenvise. As the complexity of the

simulation engine increased, and as tasks other than the I/O Handler accessed

the Simulation State, the implementation of the dirtyBIT become too complex

and its usefulness declined in the wake of the power o f the Knowledge Base.

Future versions of the Simulation State (refer to section 6.3) may require the

dirtyBIT to reduce unnecessary interprocess communication.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next generation of the VarHandler class was simplified by utilizing a

Dictionary class member object called diet to store and sort variable names and

their corresponding floating point values. The class is given below:

class VarHandler {
private:

Dictionary *dlcf
public:

VarHandlerO;
~VarHandler{);

int add(char *s,float x);
int assign(char's,float x);
float get(char *s);
float remove(char *s);

}:

In order to implement the Dictionary class, a CLASSLIB (as discussed in

section 3.3) template, TDictionaryasHashTabie was used. This template takes a

storage type class and builds a dictionary type from it. It requires that the

storage class has a member function HashValueO which retums a hash based

sort key. This was accomplished by using another class provided by Borland’s

CLASSLIB, string, which has a member function hashQ. The resulting class,

HashStnng, is then associated with type float, the class the dictionary will lookup.

The code used to produce the Dictionary type is provided below:

class HashString : public string {
public:

HashStringO : string() 0
HashString(const char* s) : string(s) 0
unsigned HashValue() const { return hash();}

}:
typedef TDDAssoclation<HashString.float> ClassData;
typedef TDictionaryAsHashTable<ClassData> Dictionary;

The resulting class can add, assign, remove and get values in the Simulation

State. When a state is called for which is undefined (i.e. not in the dictionary) the

VarHandler retums a special value, FLOATNULL, which other programs

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accessing the Simulation State must recognize as a NULL value. This value is

defined as -1e37, an unlikely number in any simulation.

The VarHandler is a good example of a class greatly simplified by using

existing libraries. Although it and the State Handler are the simplest entities in

the Simulation Engine, they are very important. The values stored in the

Simulation State represent the entire simulation. The whole process of storage

and retrieval is taken care of - as well as providing an access point to third party

programs which may have a use for these values.

Section 4.4: The DDE Client/Server Class

Each of the tasks in the Simulation Engine use the DDE protocol to

communicate (also see section 3.4) and each requires a window interface to the

user. To simplify this process, the TFrameWindow class provided by Borland

C++ is used to build a descendent class, called MyClientServer. The resulting

class includes all the necessary window functions and most of the DDE protocol

functionality. The remaining functionality must be a part of the application part of

the program - not the window. This is handled using a common function, which

is included in each of the tasks.

To begin with, we examine a portion of the MyClientServer header file:

class MyClientServer : public TFrameWindow {

public;

MyClientServer.:MyClientServer(char*title,
char *servicename,
char *topicname,
char *targetserversQ.
char *targettcpicsQ,
int _numberoftargets):

void anyRequest(HCONV hOonv.char *item);
void anyTransmit(HCONV hConv.char 'item,char *s);
void anyAdvise(HCONV hConv.char 'item);

virtual void ProcessData(int flag, int conv,char 'topic,char 'item,char 'data);

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Virtual void LoadDataReq(char 'topic,char 'item);

This class inherits from TFrameWindow which is a descendent of TWindow,

which allows MyClientServer to be a window class (refer to section 3.2). This

class can then be inherited from to create a window class for each particular

program. When the object is first constructed it should provide a title for the

screen, the name of the DDE service to be provided, the name of the topic for

this service, an array listing the servers to connect to, another array containing

the topics to connect to in the corresponding servers, and finally a

number_of_targets variable.

Using this information, the Client/Server object will create DDE handles for

providing server/topics and for connecting to the required DDE servers. These

connections will be made at run time. These handles are of HCONV types;

these are used in the member functions to allow communication. These

functions include: anyRequestQ, which sends a request to the targeted server;

anyTransmitO, sends a Poke type message; anyAdviseQ, which sends a request

to be added to a advise loop.

Two virtual member functions are provided to allow descendants to

override the pre-built functionality. ProcessDataQ receives the incoming data

once it has been decoded from the DDE handles. This allows the descendent to

be concerned with the text message and not be bothered with the details of the

protocol. By overriding this function the descendants provide their own

responses to incoming communications.

The second virtual member function is LoadDataReqQ which is called

with a topic and item and is expected to load class variable DataReq. This

variable will be used by C/ZenfSe/ver functions to communicate with a client task.

As with ProcessDataQ, this function works strictly with text strings - once

overridden by the descendant class this function will simply use topic and item to

determine what value is required in DataReq and copy it there. The ClientServer

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will then take responsibility to create a DDE handle and respond to the

requesting client

Part of the DDE functionality must be provided by the application part of

the program (recall that in windows every program is part application and part

window - refer to section 3.1 and 3.2). This is done by using a CALLBACK

function which is registered by the application class. This means any incoming

DDE communications will first be captured by the function, which will then call

the appropriate Client/Server member functions. The CALLBACK function looks

like:

HDDEDATA FAR PASCAL .export
MyApp::CallBack(WORD type, WORD wFmLHCONV hConv,HSZ hsz1,HSZ hsz2,

HDDEDATA hData, DWORD, DWORD)
{

int i;
chart1[100],t2[100];

switch (type) {

case XTYP.ADVREQ:
if (This->MatchTopicAndltem(hsz1, hsz2,t1 ,t2))

return This->DataRequested(wFmt);
return 0;

case XTYP_XACT_COMPLETE:
This->anyReceivedData{hConv, hData, hszl, hsz2);

return 0;

case XTYP.ADVSTART:
if (This->MatchTopicAndltem(hsz1, hsz2,t1,t2)) {

for (i=0;i<=MAX_LOOP;i++) {
if (This->Loopstr[i]— 0) {

This->Looptop[i] = hszl ; // store topic
This->Loopstr[i] = hsz2; // store item
This->Loopcon[i] = hConv;
This->Loop++;
return (HDDEDATA)I;

}
}

}

return 0;

case XTYP.ADVSTOP:
if (This->Loop && This->MatchTopicAnd!tem(hsz1, hsz2,t1 ,t2)) {
for (i=0;i<MAX_LOOP:i++) {

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (This->Loopcon[i] = hConv) // conv match
if (DdeCmpStringHandles(hsz1, This->Looptop[i]) = 0)
if (DdeCmpStringHand!es(hsz2. This->Loopstr[i]) = 0) {

This->Loop—;
This->Loopcon[i] = 0;
This->Loopstrp] = 0;
This->Looptop[i] = 0;
return (HDDEDATA) 1;

}
}
}
::MessageBox(GetFocus(),"Error! "."DDE SERVER",MB_OK);
return 0;

case XTYP.CONNECT:
for (i=0;i<CONV_MAX;i++) {

if (!This->HConv[i]) {
This->OpenMouth = i;
return (HDDEDATA)1;

}
}

return 0;

case XTYP_CONNECT_CONFIRM:
This->HConv(This->OpenMouth] = hConv;
break;

case XTYP.DISCONNECT:
for (i=0;i<CONV_MAX;i++)

if (hConv = This->HConv[i])
This->HConv[i]=0;

break;

case XTYP.ERROR;
This->MessageBox("A critical DDE error has occured.", This->Title,

MBJCONINFORMATION);
break;

case XTYP.EXECUTE:
return DDE.FNOTPROCESSED;

case XTYP.POKE: {
This->anyReceivedData(hConv,hData,hsz1,hsz2);
return (HDDEDATA)DDE_FACK;

}

case XTYP.REQUEST:
if (This->MatchTopicAnditem(hsz1, hsz2,t1,t2)) {

This->LoadDataReq(t1,12);
return This->DataRequested(wFmt);

}
return 0;

case XTYP WILDCONNECT:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return This->WildConnect(hsz1, hsz2, wFmt);

case XTYP.REGISTER:
break;

default
break;

}
return 0;

}

This CALLBACK function is based on (Borland, 1993a). The case arguments

match the different DDE messages (oulined in Section 3.4). The variable This->

is used to refer the window object. It is assigned during the construction of the

window class. Since it is a global it can be used in the CALLBACK function to

access the Client/Server member functions.

Working together, the DDE CALLBACK and the Client/Server class

provide the functionality for simple DDE communication. Note however that the

DDE protocol is not strictly enforced - use of meanings of server, topic and item

have been modified to allow simpler implementation. Future revisions would

clean up and complete the DDE class to insure complete compatibility (see

section 6.3).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 : DEVELOPING SIMULATIONS

Using the Simulation Engine to model a process is relatively easy so long

as the designer is aware of the strengths and weaknesses of the program. The

Simulation Engine has a powerful Lisp-like language which can describe

anything from high-level mathematical formulae to random events to

approximations. This language is tied to either manual or automatic pulse

events which can be used to simulate timed events. The user interface is based

on graphic elements or tags, which can be linked to data entry and script files,

allowing for excellent user control and manipulation of the modelled process.

Virtually speaking, any process can be modelled.

The pitfalls of this system become apparent when the design leaves the

original design paradigm; that complex processes should be modelled based on

a combination o f operator experience and mathematical formulae. If a process

can be modelled successfully using equations, then the Simulation Engine and

its Lisp-like script language would not be the best choice. If these equations

were influenced by unknown factors (factors that can not be mathematically

modelled with ease), then the Simulation Engine will allow you to combine them.

For a more complete discussion o f the applications, limitations and some

planned improvements to the Simulation Engine, refer to chapter 6.

Section 5.1 : Building A Simple Simulation

This section describes the steps of building a simple simulation. The

process to be simulated is the use of a pump filling a storage tank. To add some

complexity to the process, we will assume that the substance being pumped

contains a sticky particulate which quickly gathers and lowers the efficiency of

the process. We will indicate the tank level graphically and with text as well as

giving the current pump efficiency, tank overflow and the number of simulated

minutes. A graphic will be used to indicate when the pump’s efficiency has

dropped below fifty percent, and a tag to flush the pump line will be added.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key to this simulation is the pump’s efficiency. It can be determined

(by examining the gathered knowledge on the pump) that its “clean" rate is 500

liters per minute and that its efficiency drops about ten percent per minute after

being flushed. (Note: these values are meant as examples only.) In this simple

simulation the key rule is easily identified. A safe rule-of-thumb is that the

efficiency of the pumping process will be reduced 8-12 percent every minute,

unless a line purge has just been done.

The two entities in the simulation are a pump and a tank. These sub

processes need to be modelled in order to complete the main process. In order

to do this, I have adapted a naming convention for naming these entities. Each

entity has a main name, eg. tank or pump. This is followed by an underscore and

a unique number, which Is followed by another underscore and a specific

variable name(i.e. pump_01_eff). When calling a prebuilt script which models a

certian type, the convention simply puts the id number in a local Lisp variable

called id. The script can build the necessary DDE query strings, extract the data

from the Simulation State, and process the generic code. For example, here is a

simple pump model based on rate and efficiency:
pump.scr

requires variable id to be set
returns pump.out

build dde query strings

(setq pumps 'pump J
(street pumps id)
(setq s1 pumps)
(setq s2 pumps)
(street s1 ’_eff)
(street s2 ’.rate)

get data

(ddesetq 0 pump.efflOO s i)
(ddesetq 0 pump.rate s2)
(setq pump.eff (/ pump.efflOO 100))

ealeulate new values

(setq pump.out (* pump.rate pump.eff))

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At this point the generic pump script is very simple. As our understanding of
pump behavior improves we will modify this one file - and improve the entire
simulation. Here is a code fragment which illustrates the use of this script file:

(setq id '01)
(load 'pump.scr)

The /c/variable is loaded with the id number of the pump being accessed. A

similar approach is used for the tank entity:
tank.scr

requires variable id to be set
retums level

build strings for dde query

(setq tanks 'tank_J
(strcat tanks id)
(setq si tanks)
(setq s2 tanks)
(setq s3 tanks)
(strcat si ’.level)
(strcat s2 '.overflow)
(strcat s3 '.max)
(ddesetq 0 old.tank.level s i)
(ddesetq 0 old.tank.overflow s2)
(ddesetq 0 tank.max s3)

calculate new values

(setq tank.level (+ old.tank.level tank.intake))
(cond ((> tank.level tank.max)

(setq tank.overflow (+ old.tank.overflow (- tank.level tank.max)))) (t nil))
)
(cond ((> tank.overflow 0) (setq tank.level tank.max) (t nil)))

send out new values

(ddesendq 0 tank.level s i)
(ddesendq 0 tank.overflow s2)
(setq level tank.level)

This approach is simple and allows incremental refinement. (An improved

approach to building the query strings is required and is discussed in section

6.3).

With the sub-processes modelled, including any sub-processes they might

contain, and any complex mathematical formulae required, the rules-of-thumb

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be examined. In this example there is one rule; “the efficiency of the

pumping process will be reduced 8-12 percent every minute, unless a line purge

has just been done". A line purge resets the efficiency to 100 percent. In order

to accomplish this, a state will be created, “pump_01 j>urged", which will be set

to an “1" if a purge just occurred and a “0" if a purge has not happened. The rule

can then be implemented in the “lub.scr" script file, which happens once every

simulation pulse. (This is assuming that each pulse will represent one minute.)

The script would then look like:

pump.eff.scr

script calculates the efficiency of pump_01

(ddesetq 0 pe ‘pump_01_eff)
(ddesetq 0 pi 'pump_01 jaurged)
(cond ((< pi 1.0) (setq pe (* pe (/ (random 88 92) 100)))) (t nil))
(ddesendq 0 pe 'pump_01_eff)
(ddesendq 0 0.0 'pump.OI ju rged)

The corresponding script file, “purge.scr", will be required to set the

“pump_01 jDurged" state to a value of one. This script will also be responsible for

resetting the current pump efficiency:

purge.scr

purge pump.OTs line

(ddesendq 0 1.0 'pump_01_purged)
(ddesendq 0 100.0 ’pump_01_eff)
(load ’alarm.scr)
(ddesendq 2 'refresh 'refresh)

Unlike the efficiency script, this routine will need to be triggered by the operator

by using a special tag linked to the “purge.scr" file.

When the I/O Handler sends a StartSimulation message to the Knowledge

Base the script “init.scr" will be executed. This script allows the simulation

designer a single opportunity to initialize the simulation states. This same script

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should load another script responsible for loading the initial screen. In this case a

initial script could look like:
initscr

send out initiai values

(ddesendq 0 0 ’quantum)

pump_01

(ddesendq 0 100.0 ‘pump_01_eff)
(ddesendq 0 500.0 ’pump_01_rate)
(ddesendq 0 1.0 'pump.OI ju rg e d)

tank.OI

(ddesendq 0 0.0 ’tank.OIJevel)
(ddesendq 0 5000.0 ’tank_01_max)
(ddesendq 0 0.0 ’tank_01_overflow)

load initial screen

(load 'tanksim.scr)

This script also initializes the system variable quantum. This state represents the

number of pulses the Simulation Engine has generated. In this specific case, we

are using one quantum to represent one minute.

With these script files built, all that remains is the construction of an

interface for the operator. To minimize the time spent doing this, it is a good idea

to build background graphics. A background image can be drawn using a

paintbrush program (e.g. Paint Shop Pro) which can draw .BMP files and provide

X, y coordinates. Once the layout of the display screen is constructed, locate and

record the x, y, dx, dy values where you would like to place the different dynamic

graphic elements (e.g. analog outputs, changeable graphics). The remaining

image is loaded at run time and the dynamic images placed on top of the

background image. For the simple pump simulation, figure 5.1 shows the

background file “tanksim.bmp”.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ain t Shop Pro - [TANKSIM.BMP (1:1)]

L ev el

P .V /P ALAPM
IAL A5V A - 6C%)

O v erflo w : E f f i c i e n c y :

Simple Pumping Simulation

1
I
1I
1i

1
Figure 5.1 : Building A Simulation Background

The missing numeric displays (analog outputs) are tank_01_level,

tank_01 .overflow, pump.01 .efficiency and minutes (quantum). Graphic

elements that are missing include an efficiency alarm, a pulse button, a stop

button, and a purge button. A simple animation was added to represent the

current tank level using a region fill inside the tank. All these missing display

elements, or tags, are initialized in “tanksim.scr", which is called from “init.scr"

when the simulation initially runs. It is given below:

: tanksim.scr

; load tags for the simulation

(ddesendq 2 'flushtags 'flushtags)

(ddesendq 2 '0,0,1000,700,tanksim.bmp,tanksim 'simplegraphic)
(ddesendq 2 '700,0,100,25,0,quantum, nil 'smarttext)

(ddesendq 2 '900,10,50,50,rarrow.bmp,heart_beat,lub.scr 'smartgraphic)
(ddesendq 2 '950,10,50,50,stop.bmp,stop_beat,exitscr 'smartgraphic)
(ddesendq 2 '800,350,200,75,buttup.bmp,button_01,button.scr 'smartgraphic)
(ddesendq 2 '600,250,200,75,alarmok.bmp,alarm_01 ,alarm.scr 'smartgraphic)
(ddesendq 2 '665,420,100,25,EFF%:.pump_01_eff,pump_01_eff,nil ’smartpopuptext)
(ddesendq 2 '220,125,100,25,0,tank_01Jevei,nil 'smarttext)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(ddesendq 2 '250,420,100,25,0,tank_01_overflow,nil ’smarttext)
(ddesendq 2 '356,170,130,235,0,200,0,tank.level 'simpleregion)

(load 'lub.scr)
(ddesendq 2 'refresh 'refresh)

The type of tags used define the operator interface. For example, consider the

smartpopup tag “pump_01_e1T. Not only will this tag display values as they

arrive from the simulation state and run a script file if selected, it provides the

operator a pop-up dialog which allows him to change the “pump_01_efT state

directly.

Once these tags are loaded the script file forces one pulse to run by

loading the “lub.scr” script file. This file runs automatically whenever a simulation

heartbeat or pulse occurs. In this simple example a smartgraphic called

heart.beat will run the “lub.scr” whenever the operator selects it. This file will

call all the other files, and will signal the Event Handler with a pulse message. It

is given below:

lub.scr

heart.beat

(ddesetq 0 x 'quantum)
(ddesendq 1 'pulse 'pulse)
(setq X (addi x))
(ddesendq 0 x 'quantum)

modify pump.01 efficiency

(load 'pump.eff.scr)

calculate pump output

(setq id '01)
(load 'pump.scr)
(setq tank.intake pump.out)

calculate new tank level

(setq id '01)
(load 'tanlescr)
(load 'tankani.scr)

calculate any new alarms

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(load ’alarm.scr)
(ddesendq 2 ’refresh ’refresh)

This script first does the overhead work such as incrementing the quantum state

and sending out the pulse message, it can then process the simulation.

This simple simulation calculates the current pump efficiency, calculates

the pump output, the new tank level, checks for new alarms and finally sends a

generic screen refresh to the I/O Handler. Most of the scripts called from here

were already built; “pump.eff.scr”, “pump.scr”, “tank.scr” are described above.

The result of their calculations are sent to the Simulation State which will send

them out to the I/O Handler for updating. The new scripts are designed to add to

the operator interface. They are “tankani.scr” and “alarm.scr”.

The script “tankani.scr” manipulates the current tank level into x, y, dx and

dy values and animates a region on the operator’s display to reflect the new

level.

It is given below;

tankani.scr

Animate the tank filling up

(setq s1 '356,)
(setq dy.fact (/ tank.level 20))
(setq y.fact (- 405 dy.fact))
(setq xtra (trunc y.fact))
(strcat si xtra)
(strcat si ',130,)
(setq xtra (trunc dy.fact))
(strcat si xtra)
(strcat si ',tank.level)
(ddesendq 2 si ’changeregion)

The script “alarm.scr” sets the tag “alarm.01” to the appropriate alarm

graphic, depending on the pump’s efficiency. In this example the alarm will be

set if the efficiency is less than 65%. The code is given below:

purge pump alarm

(ddesetq 0 e ff’pump.01.eff)
(cond ((< eff 65.0) (ddesendq 2 'alarm.01,alarm.bmp ’changegraphic))

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

((t (ddesendq 2 *alarm_01,alarmok.bmp ’changegraphic)))
)
(ddesendq 2 ’alarm_01 ’refresh)

Independent to the “lub.scr” file Is the script that Is executed when the tag

“b u tto n .o r Is selected. This script file is called “button.scr” and looks like:

; button.scr

(ddesendq 2 'button_01.buttdn.bmp changegraphic)
(ddesendq 2 button_01 ’refresh)
(ddesendq 2 'button_01 refresh)
(ddesendq 2 ’button_01 refresh)
(ddesendq 2 ’button_01,buttup.bmp changegraphic)
(ddesendq 2 'button_01 refresh)
Ooad ’purge.scr)

This script “blinks” the button the operator selects. Multiple refreshes force a

noticeable delay. Once the little animation is complete, the “purge.scr” file is

loaded (described above) and pump efficiency is reset to 100%. The final

product is given in figure 5.2.
SVF lOHANDLER

M in u t e s : 2 . 0 0 ■ ■
L e v e l : 95 0 .5 0

PURGE PJ.P - ALAPM
(ALARM RNGS N ATÇJS)

O v e r f l o w : o .o o E f f i c i e n c y ; 9 0 .1 0

Simple Pumping Simulation

Figure 5.2 : A Simple Pump Simulation

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This simulation is only meant to be a simple example. The process it was

(loosely) modelled after is actually much more complex. The purging process

does not necessarily work all the time, “best two out of three” was how one

operator described it. The pump's efficiency is never at 100%, even after a

perfect purging. Other factors that could be taken into account are the pressure,

density, temperature and “stickiness” of the fluid. By breaking the simulation into

smaller script files the simulation can be extended and developed as new

information is gathered.

Section 5.2 : The Basic Kamyr Model of a Continuous Digester

This section discusses the design of a Digester simulation based on the

manufacturer’s specifications. The goal o f this simulation is to develop a graphic

representation of the Digester process and to introduce a basic set of “rules-of-

thumb” into the model.

One of the biggest problems encountered in industry today is the training

of employees responsible for the operation of expensive, dangerous

equipment. In the production of kraft pulp, proper control of pumps, tanks,

steam flows and chemical flows are critical to production and safety. An

'operator* must be fully competent before he/she takes command of the

process. Unfortunately, traditional training requires that the operator train on

active equipment under supervision of an experienced operator. The trainee

may not experience any emergency situations; since this is the actual process,

it is not economical to lose production or risk lives for training purposes. What is

required is the ability to produce simulations o f the process which can be used

to expose and train employees.

Usually any such simulation is based on an accurate mathematical

formula. In the case of an industrial based system, this is not always possible.

Specifically, the digester process has proven to be very difficult to model. In

order to properly simulate such an ambiguous system requires a combination of

known mathematical formulae and a collection of rules and probable

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

happenings. The perfect digester model is outlined in the Kamyr Digester

Operating Manual (1993). This set of equations provides an excellent starting

point in the modeling of the system. The three main equations are:

1. Production (PROD) based on chip input.

R - Chip Meter (RPM).
F - Filling Degree of Chip Meter (%).
Y - Chip Meter Volume (cubic ft per revolution).
W - Chip Meter Volume (lbs/cubic ft).
Y - Yield, %Bone Dry Pulp to %Bone Dry Wood.

PROD = (R x F x V x W x Y) / 12500

This is implemented using the script “prod.scr":

; Production (PROD) based on chip input

(ddesetq 0 r ’chip_meter_rpm)
(ddesetq 0 f 'chip_meter_till%)
(ddesetq 0 v 'chip_meter_volume)
(ddesetq 0 w ’chip_weight_ovendry)
(ddesetq 0 y 'pulp_from_chip_jield)
(ddesetq 0 tot ’total__prod)
(ddesetq 0 oidp 'hourlyjrod)
(setq new.hprod (hourjrod r f v wy))
(setq new.tot (+ tot new.hprod))
(ddesendq 0 new.hprod 'houriy__prod)
(ddesendq 0 new.tot ’totaljDrod)
(ddesendq 0 (* 24.0 new.hprod) 'target_prod)
(ddesendq 2 refresh 'refresh)

2. Chemical Flow (W) based on target production (PROD).

A - Active Alkali (cooking chemical) (%AA).
The Active Alkali (or alkali charge) is usually 12 to 14% for softwood and 8 to
10% for hardwood. (Smook, 1994 p. 81) It is set by the operator.

S - Chemical content (lbs/cubic ft).
PROD - Production (tons / day).
Y - Yield, %bone dry pulp to %bone dry wood.

(a) calculate bone dry pulp: BDP = (PROD x 0.9 x 2000) / 24.0
(b) calculate bone dry wood: BDC = (BDP x 100.0) / Y
(c) calculate lbs/hr active alkali charge: AAC = (BDC x A) /100.0
(d) calculate chemical flow: W = (AAC) / S (cubic ft / hour)

This is implemented using the script “chem.scr":

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chem.scr

Chemical Flow (W) based on target production (PROD)

(ddesetq 0 A 'active_alkali%)
(ddesetq 0 S 'chemical.content)
(ddesetq 0 Y ’pulp_from_chip__yieid)
(ddesetq 0 HPROD 'hourlyjjrod)
(setq PROD (* HPROD 24.0))

(setq BDP (/ (* PROD (* 0.9 2000.0)) 24.0))
(setq BDC (/ (* BDP 100.0) Y))
(setq AAC (/ (* BDC A) 100.0))
(setq W (/AACS))
; W is now in ft cubed per hour; convert to gallons per minute
; (GPM is the preferred unit to display)
(setq WGPM (/ (' W 7.48) 60))
(ddesendq 0 WGPM 'chemical.flow)
(ddesendq 2 'chemical.flow 'refresh)

3. Temperature based on production (PROD) and cooking time.

T - Time in hours chips will cook for.
RR - Relative rate of cooking, referenced in a table by temperature.
TEMP -Temperature required.

According to Smook (1994), using temperatures higher than 180 deg C (356
deg F) will damage the product

H-Factor - Ratio value of relative rate of cooking (lignin breakdown) vs. temperature.
Notice that H-Factor is an experimentally developed value which acts as a

quality control value. The operator can control time and temperature based on
keeping the H-Factor constant The H-Factor is proportional to a value called
the K-Number, an actual measurement of quality in the pulp. If the operator
can keep the H-Factor constant the desired quality of product will be
achieved. H-Factor is calculated:

H-Factor = T X RR (at a specified temperature)

For example:
Let T = 1.8 and temperature be 320 deg F.
From relative rate table find that RR at 320 is 397.8.

H-Factor = 1.8 x 397.8 = 716.04.

(a) to increase production (PROD) to a new production (PROD.NEW).

T_NEW= (PROD)/(PROD_NEW) xT

(b) calculate a new relative rate (RR.NEW) to keep H-Factor constant

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RR.NEW = (H-Factor)/(T_NEW)

(c) lookup new relative rate up on relative rate table to find temperature(TEMP).
The relative rate vs temperature is implemented using script “ratetemp.scr” :

ratetemp.scr

Return the temperature (TEMP) based on Relative Rate (RR)
inputs required : RR
outputs : TEMP

(cond ((> RR 53.1) (setq TEMP 280)) (t nil)))
(cond ((> RR 56.0) (setq TEMP 281)) (t nil)))
(cond ((> RR 59.1) (setq TEMP 282)) (t nil)))

... [temp 283 to 354 omitted]...

(cond ((> RR 1968.8) (setq TEMP 355)) (t nil)))
(cond ((> RR 2056.7) (setq TEMP 356)) (t nil)))
(cond ((> RR 2148.3) (setq TEMP 357)) (t nil)))
(cond ((> RR 2243.7) (setq TEMP 358)) (t nil)))
(cond ((> RR 2343.1) (setq TEMP 359)) (t nil)))

The calculations are done in script file “termp.scr" :
temp.scr

Temperature based on production (PROD) and cookjtime
(should be called when a change of production happens)

(ddesetq 0 T ’cook.time)
(ddesetq 0 RR ’relative.rate)
(ddesetq 0 HPROD 'hourly jro d)
(ddesetq 0 HFACTOR 'h.factor)
(setq PROD.NEW (* HPROD 24.0))
(ddesetq 0 PROD OLD target_prod)
(setq T.NEW (* (/ PROD.OLD PROD.NEW) T))
(setq RR (/ HFACTOR T.NEW))
; get TEMP via rate-temp script
(load 'ratetemp.scr)
(ddesendq 0 TEMP 'temperature)
(ddesendq 0 T_NEW 'cook.time)
(ddesendq 0 RR 'relative.rate)
(ddesendq 0 (* T.NEW TEMP) 'h-factor)
(ddesendq 2 'temperature 'refresh)
(ddesendq 2 'cooktime 'refresh)
(ddesendq 2 'relative.rate 'refresh)
(ddesendq 2 'h-fector 'refresh)

As indicated earlier, these formulae are theoretical only. In practice they

have proven to be a better guide than a strictly enforced rule. Generally

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

speaking, an operator will try operate at a maximum production rate at a

maximum temperature (about 330 deg F). In order to Increase the process

beyond the original formula, operations will manipulate all the variables In ways

not accounted for by the formula. For example, one of the digesters I studied

was rated at 800 tons/ day. It produces an average of 1100 tons per day - by

using operator skill and knowledge, production has been Increased 300 tons

per day. This Is discussed more In section 5.3.

Having built the general scripts for dealing with the three main formulae,

the design of the operator Interface could begin. It was decided that the

operator should see all the values and be allowed to Input chip meter speed,

chip meter fill percentage, chemical content, active alkali percentage and be

allowed to adjust the H-Factor. These Input points were linked to the

corresponding scripts. Since a change In production affects all the values In

the simulation, a new script was built, “hourprod.scr”:
; hourprod - calculate the hourly production

(ddesetq 0 r 'chip_meter_rpm)
(ddesetq 0 f ’chip_meter_fill%)
(ddesetq 0 v ’chip_meter_volume)
(ddesetq 0 w 'chlp_weight_ovendry)
(ddesetq 0 y ’pulp_from_chlp_yield)

; assign hourly production the new target value

(setq X (hour_prod r f v w y))
(ddesendq 0 x 'hourly_prod)

; find out the chemical and temperature changes required

(load chem scri
(load 'temp.scr)
(ddesendq 0 (* x 24.0) 'targetjarod)
(ddesendq 2 'refresh ’refresh)

The background for the user’s Interface Included a simple drawing of the

process. Based on the actual control screens, this drawing was to contain

output tags, alarms etc. Due to time constraints this work was not done; Instead

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a simpler text display was created beside the drawing. The I/O Handler receives

Its Initial tags from “chlplnltscr":
; chipinitscr
; initialize the chip screen

(ddesendq 2 'flushtags 'flushtags)
(ddesendq 2 '0,0,1000,700,kamyr.bmp.tag1 'simplegraphic)
(ddesendq 2 '200,625,100,20,0,quantum,nil smarttext)
(ddesendq 2 '900,10,50,50,rarrow.bmp,heart_beatlub.scr 'smartgraphic)
(ddesendq 2 '950,10,50,50,stop.bmp,initx,resetscr 'smartgraphic)
(ddesendq 2 '800,90,50,25,0,hourly_prod,hourprod.scr 'smarttext)

(ddesendq 2 '800,120,100,25,0,totaljarod,nil 'smarttext)
(ddesendq 2 '800,155,100,25,0,chip_meter_rpm,chip_meter_rpm,hourprod.scr
'smartpopuptext)
(ddesendq 2 '800,190,100,25,0,chip_meter_fill%,chip_meter_fill%, hourprod.scr

'smartpopuptext)
(ddesendq 2 '800,225,100,25,0,chip_weight_ovendry,nil 'smarttext)
(ddesendq 2 '800,260,100,25,0,pulp_from_chip_yield,nil smarttext)
(ddesendq 2 '800,290,100,25,0,chip_meter_volume,nil 'smarttext)
(ddesendq 2 '800,465,100,25,0,active_alkali%, active_alkali%, chem.scr

'smartpopuptext)
(ddesendq 2 '800,495,100,25,0,chemical_content,chemical_content, chem.scr

'smartpopuptext)
(ddesendq 2 '800,520,100,25,0,chemical_flow,nil 'smarttext)
(ddesendq 2 '800,545,100,25,0,cook_time,nil 'smarttext)
(ddesendq 2 '800,575,100,25,0,temperature,nil 'smarttext)
(ddesendq 2 '800,600,100,25,0,relative_rate,nil 'smarttext)
(ddesendq 2 '800,625,100,25,0,h_fiactor,h_factor,temp.scr 'smartpopuptext)

The resulting simulation Is shown In figure 5.3.

KAMYR CONTINUOUS

DIGESTER SIMULATION
P ro d u c tio n BMOd Chip In p u t ■ ■

HOURLY PROD 37 3

TUTAL PRCD 0 00

CHIP METER RPH 113 00

a i l ? METER FILL % !100 . 00

CHIP MEIER VOLUME 9 SO

PULP YIELD 4 6 .0 0
OVENDRY CHIP WEIGHT 16 30

C h M ic n l and T om p era tu re

S im u la t e d H o u rs 0 00

ACTIVE ALKALI% 1 2_00
OŒMICAL COKIEKT (2 0 _

ŒEMICKL FLOW 3 2 7 .5 0
COOKING TIME I 66

COOKING TEMPERATWE 3 2 1 . 00
RELATIVE RATE 4 2 1 .6 5

H-FACTOR (7.00, 00

Figure 5.3 : The Kamyr Continuous Digester Simulation

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this simulation only the most basic Kaymr rules were Implemented.

Further expansion of this simulation Is possible using some of the known

characteristic behaviours o f the pulping process. As an example, consider the

following basic K-number guidelines:

• A one percent. Active Alkali change will change K-number by 2 units
• A one degree (F) temperature change will change K-number by 1.5 units
• A one RPM chip meter change will change K-number by 1 -1.5 units

These rules will have to be Incorporated to affect the predicted K-number value.

When combined with other qualitative rules, such as :
• plugged extraction screens will stop chemical flow and reduce temperature
• if a high percentage of chips are pins (small, toothpick-like chips) screens are more

likely to plug

The simulation should be able to examine Incoming chips and predict screen

plugging probability. Once the screens become plugged, the simulation should

account for a reduction In temperature. The reduced temperature will then

Increase the K-number, which will result In a lower quality, less cooked final

product. These rules begin the process of producing a complex simulation; the

Simulation Engine allows for future growth as Input from operators and process

engineers Is gathered.

Rather than proceed with building In the rest of the complex rules Into

this simulation. It was Identified that the operators would be able to build a set

of rules to calculate the various Inputs based on their experience. This model Is

used In section 5.3.

Section 5.3 : The Avenor ISO Model

This section extends the basic Kamyr model of a digester by Integrating

Information gathered by the operating staff at a particular mill site. The actual

numbers being used In the formulae will not be replicated In respect o f the

company’s privacy. This does not compromise the Idea, however.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When examining the original simulation model It becomes evident that

many variables are not taken Into account. Some of these variables Include:
UPPER_COOKlNG_FLOW
LOWER_COOKING_FLOW
EXTRACTION_FLOW
WASH_CIRCULATION_FLOW
WASH_HEATER_TEMPERATURE
PD_INLET_TEMPERATURE
STEAMING_VESSEL_PRESSURE
DIGESTER_PRESSURE
1_FLASH_TANK_LEVEL
2_FLASH_TANK_LEVEL
WHITE_L!QUOR_TO_BOTTOM
BLOW_LINE_TO_TOP
BLOW_LINE_TO_CONSISTENCY
EA_RESIDUAL
PD_EXTRACTION_FLOW
PD_WASH_FLOW
AD_1_WASH_FL0W
AD_1_EXTRACTI0N_FL0W
AD_2_WASH_FL0W
AD_2_EXTRACTI0N_FL0W
CONSISTENCY
FILTRATE_K

A good operator will set these based on the targeted production. (Recall that

targeted production Is based on the current chip Input variables given In section

5.2.) Rather than expand the original model with additional formulae from

Kaymr, It was decided to use the operating parameters that the operating staff

had calculated. These are a set of standardized “rules" which use the targeted

production to find these unknowns. This simulation will simply extend the

previous one by providing these calculated values on the display screen

Instead of the operating diagram.

In order to produce this new simulation, the operating parameter rules

were first built Into a standalone simulation which simply allowed the operator to

enter the target production. This model acted as a simplified expert system; the

operator enters the production value and the model returns the values the

operator should use. This model was then merged with the existing Kamyr

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model, allowing the target tons to be based on the chip variables. The resulting

simulation Is shown In figure 5.4.

SVF lOHAHDLER

1 6 5 2 .8 0 UPPER_OOOKING_FLOW
1 9 0 0 .7 2 LOWER_OOOKING_FLOW
1 0 7 4 .3 2 EXTRACnON_FLOW
4 1 3 .2 0 WASH_CIRCULATION_FLOW
3 4 0 .0 0 wash_heater_temperature
1 5 5 .0 0 PD_INLET_TEMPERATURE
1 8 .0 0 STEAMING_VESSEL^RESSURE
1 6 5 .0 0 DIGESTER_PRESSURE
1 3 .0 0 1_FLASH_TANK_LEVEL
1 3 .0 0 2_FLASH_TANK_LEVEL
1 4 .0 0 WHITE_LIQUOR_TO_BOTTOM
4 1 .3 2 BLOW_LINE_TO_TOP
1 0 0 .0 0 BLOW_LINE_TO_CONSISTENCY
0 .9 0 EA_RESIDUAL
1 1 9 8 .2 8 PD_EXTRACnON_FLOW
1 1 1 5 .6 4 PD_WASH_FLOW
1 2 3 9 .6 0 AD_1_WASH_FL0W
1 4 8 7 .5 2 AD_l_EXrBACriON_FLOW
1 0 7 4 .3 2 AD_2_WASH_FL0W
1 4 8 7 .5 2 AD_2_EXTRACTI0N_FL0W
1 2 .0 0 CONSISTENCY
3 .0 0 FILTRATEJC

P r o d u c t io n B a se d C h ip I n p u t

TARGET TONS 8 2 6 .4 0
HOURI.Y PROD 3 4 .4 3

TOTAL PROD 0 .0 0

CHIP METER RPM 112.00

CHIP METER PILL % llOO .OO

CHIP METER VOLUME 9 .8 0

PULP YIELD 4 8 .0 0
OVENDRY CHIP WEIGHT 1 8 .3 0

C h e m ic a l a n d T e m p e ra tu r e

ACTIVE ALKALIS 116.00
CHEMICAL CONTENT IS. 20

CHEMICAL FLOW 4 1 5 .3 8
COCKING TIME 1 .8 0

COOKING TEMPERATURE 3 2 0 .0 0
RELATIVE RATE 3 9 7 .8 0

H-FACIDR 1716.04
S im u la te d H o u rs O.OO

Figure 5.4 : Operating Parameter Simulation

The circular graphic In the upper right was provided to Indicate when the

Knowledge Base was working. It changes colour (RED, ORANGE, YELLOW,

and GREEN) depending on which script file Is executing. The result tells the

operator that the system Is busy, not to use the calculated numbers yet.

The modifications Included adding the new variables to the “lnlt.scr”

script, updating the screen tags so that the variables would be displayed,

copying and modifying the background Image, and adding a script file that does

the actual calculations for the operating parameters. A partial script Is given

below;
; stpd.scr

; This script performs the calculations as determined by the operating staff.

(ddesetq 0 stpd ’stpd)
(ddesendq 0 (* 2 stpd) 'UPPER_COOKING_FLOW)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(ddesendq 0 (* 2.3 stpd) 'LOWER_COOKING_FLOW)
(ddesendq 0 (* 1.3 stpd) ’EXTRACTION_FLOW)
... [calculations]...
(ddesendq 0 (* 1.3 stpd) 'AD_2_WASH_FL0W)
(ddesendq 0 (* 1.8 stpd) 'AD_2_EXTRACTION_FLOW)

(ddesendq 2 'UPPER_COOKING_FLOW 'refresh)
(ddesendq 2 'LOWER_COOKING_FLOW refresh)
(ddesendq 2 'EXTRACTION_FLOW 'refresh)
... [transfer data to lO/HANDLER]...
(ddesendq 2 'AD_2_WASH_FL0W 'refresh)

(ddesendq 2 AD_2_EXTRACTION_FLOW 'refresh)
(ddesendq 2 'stpd 'refresh)

Along with a new I/O Handler screen initializing script was written to add new

tags. Note that no new Input tags were added, since all the Inputs were In place

from the Kamyr model. The script Is partially listed below:

: avenor.scr

; Revised simulation to include operating variables
»

(ddesendq 2 'flushtags 'flushtags)
(ddesendq 2 '0,0,1000,700,avenor.bmp,digesterbmp 'simplegraphic)

(ddesendq 2 '120,10,400,25, UPPER_COOKING_FLOW,isovar1 'simpletext)
(ddesendq 2 '120,40,400,25,LOWER_COOKING_FLOW,isovar2 'simpletext)
(ddesendq 2 '120,70,400,25,EXTRACTION_FLOW,isovar3 'simpletext)
(ddesendq 2 '120,100.400,25,WASH_CIRCULATION_FLOW,isovar4 'simpletext)
...[screen text]...
(ddesendq 2'120,610,400,25,CONSISTENCY,isovar22 ’simpletext)

(ddesendq 2 '120,640,400,25,FILTRATE_K,isovar23 'simpletext)

(ddesendq 2 '0,10,400,25,0,UPPER_COOKING_FLOW,nil 'smarttext)
(ddesendq 2 '0,40,400,25,0,LOWER_COOKING_FLOW,nil 'smarttext)
...[input/output tags]...
(ddesendq 2'0,610,400,25,0,CONSlSTENCY,nil 'smarttext)

(ddesendq 2 '0,640,400,25,0,FILTRATE_Knil 'smarttext)

; from the original Kamyr model

(ddesendq 2 '900,10,50,50,rarrow.bmp.heart_beat,lub.scr 'smartgraphic)
...[refer to section 5.2]...
(ddesendq 2 '800,625,100,25,0,h_factor,h_factor,temp.scr 'smartpopuptext)

(ddesendq 2 '800,655,100,20,0,quantum,nil 'smarttext)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The result of these changes is to produce a model which can be used

both to train and to act as an expert system. Further expansions to this

simulation could include introducing random events such as screen plugging,

poor chips and other anomalies which would then let the operator attempt to

Identify the problem based on the reported values. Another possibility Is to

experiment with different formulae that the operations group feel may work.

Generally speaking, the simulation should now be turned over to the operations

group and their process engineers to explore particular avenues. The Simulation

Engine has proven to be a powerful and flexible tool.

Section 5.4 : Linking To Other Windows Applications

This section discusses how the Simulation Engine can be used to

communicate Information to other Window applications.

During the design phase of the Simulation Engine the decision was made

to use the DDE protocol to communicate between the different processes that

make up the Simulation Engine. This functionality permits other Window’s

applications to read data from the Simulation State.

As an example of this functionality, consider the popular PC spreadsheet

application, EXCEL. This spreadsheet Is capable of DDE Inter-process

communication and thus Is capable of using the Simulation State as a DDE

server. Assume that the task at hand Is to record some o f the calculated values

that the simulation In Section 5.3 describes. A macro would need to be

developed In EXCEL that would connect and gather data. As an example I have

written one:

OPERATINGVALUES Macro

This macro demostrates how the simulation engine data can be
accessed using the DDE protocol. It selects 4 data items from
the simulation state and collects them as rows of data.

Macro recorded 7/5/96 by Steven Falcigno

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sub OPVALSO

First establish a DDE conversation

channelNumber = Application.DDEInitiate(_
app:="SVF_SIMULATION_STATE'. _
topic:="states")

' Increase the target row for outputing data

oldx = WorksheetsC'Sheet1").Cells(1.26)
oldx = oldx + 1
WorksheetsfSheet1").Cells(1,26).Formula = oldx
oldx = oldx + 2

Issue requests to the SIMULATION_STATE for data.
Once the data has arrived, write it to the spreadsheet

retumList = Applicatidn.DDERequestfchannelNumber, "stpd")
Worksheets("Sheet1").Cells(oldx, 1).Formula = retumList(1)
retumList = Application.DDERequest(channelNumber, "UPPER_COOKING_FLOW")
Worksheets("Sheetr).Cells(oldx, 2).Formula = retumList(l)
retumList = Application.DDERequest(channelNumber, "L0WER_C00K1NG_FL0W")
Worksheets{"Sheet1").Cells(oldx, 3).Formula = retumUst(1)
retumList = Application.DDERequest(channelNumber, "EXTRACTION_FLOW")
Worksheets("Sheet1").Cells(oldx, 4). Formula = retumList(l)

' Terminate the DDE conversation

Application.DDETerminate channelNumber

End Sub

The language is reasonably complicated, but once a macro is written it is a

simple enough process to link It a push-button on the spreadsheet Itself. The

Information gathered here can be used In statistical analysis or In comparing the

simulation to the real world process. Figure 5.5 shows the output of the above

macro after seven Iterations of changing chip RPM from 12 to 18 (which changes

the target production from 826 tons to 1239 tons):

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ M ic ro so f t E x c e l - isoQOOO

1900.72! 1074.32
2059.12

964.13 2217.51

2534.29
1170.73 2341.46 2692881
1239.6 2951.08 1611.48

S heen

Figure 5.5 : Excel Spreadsheet Communicating With The Simulation Engine

This simple example shows how the Simulation Engine could be linked to

other Window’s examples. This Is a reasonable thing to expect, since this Is how

the Simulation Engine was constructed. Each process Is a discrete Windows

program which uses DDE to communicate. The result Is that the Simulation

Engine can easily talk to any Windows application supporting the DDE protocol.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 : CONCLUSIONS

The Simulation Engine was designed to be a virtual machine for building

simulations that would require complex rule based events. It was to be built In a

popular environment which could be Inexpensively acquired. The Simulation

Engine was meant to demonstrate knowledge In simulation design theory,

object-oriented design and Implementation using C++, Inter-process

communication protocols, and high level language development. In building this

program over thirty non-trivlal programming “experiments" were performed to test

and learn the Wlndows/C++ programming environment. These range from the

simple creation of a Windows application to the use of screen graphics to the

advanced concepts of DDE protocol manipulation to the use of the Borland

CLASSLIB to build advanced data structures. The final programs that make up

the Simulation Engine were not written In one attempt, but were assembled from

the preceding pieces. Inherited from pre-bullt classes and expanded Into their

final form. The result Is a highly advanced and flexible system of programs.

I believe that my Simulation Engine, although not perfect. Is a very good

example of advanced Computer Science system development. The remainder of

this chapter discusses the future of the Simulation Engine by Identifying Its flaws,

possible enhancements and a possible practical future as a simple control

system.

Section 6.1: Practical Limitations to the Simulation Engine

Several issues have been Identified with this Simulation Engine, both with

the fundamental design and with the actual Implementation. This section

Identifies these Items, and recommends possible solutions.

Section 6.1.1 : Design Limitations

The Simulation Engine attempts to distribute the workload over several

discrete processes. Two of these processes, the Simulation State and the Event

Handler could be made superfluous. The Simulation State acts as a storage

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object which can be accessed from any other process in the system. With

respect to the Simulation Engine, this functionality could be completely

implemented by the Knowledge Base's high level language. That is, variables

assigned In the Knowledge base retain their values until they are over-written or

until the simulation ends. With some modification, the Knowledge Base could

communicate any changes to the I/O Handler, thus rendering the Simulation

State unessential. In order to maintain the flexibility that the Simulation State

offers - allowing programs such as Excel to access to the data In the simulation -

the Knowledge base would need to be extended. As a result the Knowledge

Base's purpose would become confused. Instead, I recommend that the

Simulation State be extended to have more intelligence and a higher

functionality.

The Event Handler, however, requires some significant changes to

continue to be a part of the Simulation Engine. Its original purpose, to allow

scheduling of jobs to run a specific number o f times. Is easily done by the

Knowledge Base. In order to retain the Event Handler In the Simulation Engine,

It needs the functionality to completely process the job without putting further

load on the Knowledge Base. That Is, without calling the Knowledge Base’s

script language Interpreter. This can be accomplished either by limiting the Event

handler’s functionality to specific tasks - e.g. variable ramping, addition,

subtraction, etc. or by duplicating the complexity of the Knowledge Base’s script

language. I suggest that the Event Handler’s functionality can be carried out by

the Knowledge Base and that the Event Handler can be removed from the

Simulation Engine.

Section 6.1.2 : implementation Limitations

The choices made In the design of the Simulation Engine have forced

some Implementation sacrifices. Some of these Issues are easy to resolve by

extending the system (adding memory or drive space) and some will require

more effort.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The DDE protocol uses a significant amount of system memory - even

when the protocol is idle. The Simulation Engine generates a great deal of Inter

process communication. The result Is that the base PC computer to support the

Simulation Engine needs to have at least 16 Megabytes of memory (I would

recommend 24 as preferred). The choice of protocol Is discussed In more detail

In section 6.2.

Another memory Intensive part of the Simulation Engine Is the script

language Itself. Based on a Lisp Interpreter I wrote In my fourth year of

Computer Science, It was chosen because It was reasonably straight forward to

Implement and was quite capable of describing complex rules. The

Implementation Is highly recursive and as a result requires a great deal of stack

memory. As well, the script language does not Implement any of the traditional

Iterators, such as while, for and goto loops. The result Is a dependence on

recursive style programming within the scripts. This consumes more memory.

The language needs to be replaced with a graphic-oriented. Iterative based

solution. This Is also discussed further In section 6.2.

The I/O Handler’s tag objects are also limited by memory. The actual

number of tags are limited by a statically defined amount, currently set to two

hundred. This value can be changed as required by recompiling. A better

solution would be a dynamic array with memory checking.

The I/O handler has a bigger problem. Some types of tags have not yet

been developed - more region based tags and a greater diversity o f Input dialogs

would add to the usability of the Simulation Engine. Some Ideas Include building

a generic dialog system - allowing dialogs to be designed by the operator and

Integrated Into the simulations. The designs would Include graphic animated

changes o f set points. This functionality would require a significant programming

effort.

The final major limitation encountered Is the design of the simulation

screens themselves. The creation of background .BMP files and the positioning

o f tags on them Is a tedious and time consuming task. A better solution would

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be to spend some time building a graphic package that allows the design of the

static background and the placement of dynamic tags on It. This package would

then output the necessary script files that would load the tags at run time.

Many of these “limitations" are directed towards the Improvement or

enhancement of the Simulation Engine. The fundamental Idea behind the

Simulation Engine was to produce a system capable of simulating complex, rule

based processes. The program requires fine tuning, a better protocol solution,

and an Improved language for rule Implementation. Other Issues, such as

simplified screen development and better dialogs, are Important to Improving the

ease of use of the Simulation Engine. In the next section, I will try to recommend

how some of these enhancements could be Implemented.

Section 6.2: Enhancements to the Simulation Engine

Two key Items will Improve the Simulation Engine, the move to a TCP/IP

based protocol and a change In Implementation language. These Items will allow

an Improvement not only to the development of simulations but also to the

general performance of the Simulation Engine Itself.

The first to consider Is the Inter-process protocol. The biggest advantage

of using the DDE protocol Is that It Integrates nicely with most Windows based

protocols. In order to maintain this functionality. It would be desirable to maintain

some level of DDE (or the more modem Windows protocol OLE) protocol

support In the Simulation State. This would continue the ability to communicate

Information to programs such as Microsoft Excel.

The primary protocol would become TCP (Transmission Control Protocol)

which establishes streams between different virtual sockets which would allow

Information to pass back and forth. The messaging system between the different

Simulation Engine processes would remain Intact; the fundamental changes

would be made to the ClientServer class discussed In section 4.5. Little or no

changes would be required to the other classes In the Simulation Engine.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key advantage would then be the ability of the Simulation Engine to

receive and send data to any program that can connect to It. This connection

would be established In a fashion similar to the existing DDE, Instead o f a

conversation being established a connection would be made. The advantage Is

that the TCP protocol can be used to communicate over a network to any

platform that supports It. This means that systems running VMS, UNIX, OS/400

type operating systems on mid-range computers can communicate Information to

the Simulation Engine.

As an example, consider an industry using Sun midrange computers for

control and AS400 computers for business applications. In this Instance the

Simulation Engine could gather real cost Information from the business computer

and actual field values from the control systems. This Information could then be

used to Improve the simulation's realistic value. And since the DDE protocol Is

maintained In the Simulation State, Information could be collected and reported

on directly from an Excel spreadsheet. There are some very clear advantages to

using a TCP-llke protocol.

The other desirable enhancement to the Simulation Engine Is an easier

language for designing simulations. As discussed In section 6.1.2, the LIsp-llke

script language Is not simple enough for development by operators. The key

seems to be a movement to a graphical type language Interface.

The problem with graphical, flowchart like languages Is the amount of

drawing a program takes up. Consider something as simple as ;
(cond ((< pi 1.0) (setq pe (* pe (random 88 92)))) (t nil))

This example was taken from the simple pump simulation In section 5.1 and

represents a straightforward Instruction In a set of a about ten Instructions. To

graphically represent this, one might draw the flow chart shown In figure 6.1.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(cond ((< pi 1.0) (setq pe (* pe (random .88 .92)))) (t nil))

Figure 6.1 : Example of a Graphical Instruction

This approach Is easier to learn and design In. It would require a graphical type

Interface to It, so that each Instruction could be selected and edited. A program

listing would be a listing of English Instructions. The simulation designer would

select the Instruction to edit, which would then give a graphic flow chart similar to

Figure 6.1 above. The above example was taken from the “pump_eff.scr” script

program:

pump_eff.scr

script calculates the efficiency of pump_01

(ddesetq 0 pe ’pump_01_eff)
(ddesetq 0 pi ’pump_01_purged)
(cond ((< pi 1.0) (setq pe (* pe (/ (random 88 92) 100)))) (t nil))
(ddesendq 0 pe ’pump_01_eff)
(ddesendq 0 0.0 'pump_01_purged)

78

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the new graphic format, the overview listing would look like figure 6.2.

Figure 6.2 : A Graphic Script Overview

The programmer could then select the plain text description and go to a flow

chart such as the one In Figure 6.1. This style of graphic programming would be

easy to learn. The Interface would be time consuming to design, but the result

would be an advanced programming development environment.

Finally, a system of automatically “teaming" from the operator’s responses

could be developed. In such a process the Simulation Engine would record the

decisions the operator makes In response to specific situations. These would be

converted Into script files and Integrated Into the simulation to create an

Increasingly Intelligent simulation.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.3: The Future of the Simulation Engine

The Simulation Engine was designed to give the appearance of a control

system, to simulate processes In order to allow operators to learn about the

process. In building this Engine, I have created a very flexible design that can be

extended beyond the realm of simulation.

Recall the original model given In Figure 2.1. Each of the processes In the

Simulation Engine Is an Independent process, using a common protocol for

communicating. The addition of a process that talked to the actual control

systems would be very easy to do, and would allow the Simulation Engine to

become a real time Man Machine Interface (MMI).

As an example of this, consider the requirement to Interface with a

Remote Termination Unit (RTU). These devices are commonly used to

terminate field I/O signals (typically 0-14 mA) and bring these values Into an

Interface card. This card will then have a serial (RS232) type Interface which can

be connected to modem, PC or other such devices.

In order for the Simulation Engine to become a true control system It

would need to be able to communicate with an RTU. Since there Is a serial link,

a program would need to be developed that could communicate to a serial

Interface to the RTU. Fortunately, most RTUs not only support multiple

protocols, the specifications for many of protocols Is Industry standard (e.g. DNP

3.0 [Distributed Network Protocol]). The task of writing a program to

communicate with a RTU Is achievable.

If this program were then put Into the C//enfServer window class the other

programs In the Simulation Engine would be able to communicate with the RTU.

The result would change the basic model to figure 6.3.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Control Signals

Figure 6.3 ; Simulation Engine RTU Add-on Model

The RTU could then receive instructions from the Knowledge Base that could be

based on higher level intelligence. The operator would have access to the

outputs from the field and the ability to make changes in the field.

This evolution to a simple Windows based MMI would be a productive

growth of the Simulation Engine. Even rf control was not desired, most RTU-like

devices have multiple communications ports - one could be used simply to

gather data to create more refined solutions. Finally, the fact that the whole

process can be done on an inexpensive, PC based platform - capable of

communication to software packages such as Excel - makes this extension very

desirable.

Section 6.4 : Final Summary

This thesis has examined an approach to developing Knowledge Based

simulations in the microcomputer environment.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulations developed under the Simulation Engine are easy to use. The

graphical type interface allows the operator to manipulate the process being

simulated using simple mouse button selections. The data from the simulation

can be effectively gathered using commonly used applications (e.g. Microsoft

Excel). The actual development of simulations requires design skill in a high level

language, but is far easier than working from first principles. The result is a

simulation design system which is straightfonvard to use and configure.

The Simulation Engine has limited portability within the popular Windows

operating systems including Windows 3.1, Windows for Workgroups and

Windows 95. This effectively restricts the Simulation Engine to operating in a PC

based environment, although the simulation data can be moved to other

platforms by taking full advantage of the client/server nature o f the Simulation

State

The interactive nature of the Simulation Engine allows for rapid prototype

development. Since the script files used to build the simulation can be modified

at run time the simulation designer and the end user can work together on a live

system to adjust the simulation. The resulting rapid feedback reduces the time

between considering the change and making the change.

The Simulation Engine, with its rapid prototype features, client/sever

architecture and ease o f use is still a growing product. By introducing an easier

to use script language the gap between simulation designer and end user will be

eliminated. Additional programs can be added to the system to interface with real

world equipment allowing the Simulation Engine to gather and use live industrial

data.

The Simulation Engine is a valuable tool for teaching industrial processes.

Not only can it mathematically model an industrial process, the Simulation

Engine can graphically represent the process to simplify the learning process.

The Knowledge Base nature of the Simulation Engine permits modeling of

unusual or difficult to understand occurrences within the process. Properly

designed, simulation developed with the Simulation Engine could be used to

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

build predictive models of complex industrial processes. These could be used to

make production choices and expert decisions.

The Simulation Engine is cost effective due to its platform being an IBM

compatible running Windows 3.1, and the development time to create and

support simulations. With the simplification of the script language it will be

possible to use the end user to build the simulations exactly how they should be.

This eliminates the need for a computer oriented person.

The Simulation Engine is the result of a carefully planned object-oriented

approach. Before the platform or operating system were chosen the objects

required to make this engine work were identified and defined. The message

passing system was designed for the object-oriented model rather than the

environment. Once the design stage was coniplete, it was determined that it was

possible to implement the Simulation Engine in a cost-effective platform (PC)

using a multitasking operating system (Windows 3.1). The model was modified to

take full advantage of its native environment, but remained consistent to the

original object-oriented model.

The result was an object-oriented, easy to use, cost effective solution to

the problem of designing simulations for industrial processes.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix I: INSTALLING THE SIMULATION ENGINE

Installing and setting up the simulation engine is a relatively simple

process. The Simulation Engine executables have been compressed to

approximately 734 kilobytes, but will expand to just over seven megabytes once

installed. This archive has been put on an installation diskette. This disk should

first be put in the installation diskette drive A: (or any other drive by simply

substituting the drive letter in the following). Create a directory on your hard drive

(for example: C:\> MKDIR C:\SIMENG). Make this your current directory and

execute the following command: C:\SIMENG> A:\PKUNZIP -d A:\SIMENG.ZIP.

This will create the following sub-directories under the current directory:

AVENOR - The simulation built for the Avenor Kraft Pulp Mill from section 5.1.3

BMPS - Directory where simulation graphics are stored

KAMYR - The simulation built on the Kamyr equations from section 5.1.2

SCRIPT - The directory where the active scripts are stored

TANKSIM - The simple pump/tank simulation from section 5.1.1

The current directory will contain the following executables:

EVENT. EXE - The Event Handler

IOHAND.EXE - The Input/Output Handler

KNOW.EXE - The Knowledge Base

STATE.EXE - The Simulation State

For installations using Windows 95 a batch file, GO.BAT is included. This batch

file will execute all four of the programs in the Simulation Engine. Windows 3.1

users will need to create icons and execute the programs independently. A

typical group would look like:

Event Simuioton Knowledge |
Handler State Base I

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the Installation is complete, you can proceed to create or install a

simulation. Create the graphics for the simulation and copy them into the BMPS

directory. Create the script files and copy them into the SCRIPT directory. I

recommend putting an extra copy in a separate directory as was done for

AVENOR, KAMYR and TANKSIM. For help on building simulations refer to

chapter 5.

If a simulation is already installed, delete the installed simulation files by

using DEL BMPSV.BMP and DEL SCRIPTV.SCR before installing the new files.

Be very careful not to delete any other files in these directories as they may be

required by the Simulation Engine. (At this time there is only one file,

PREBUILT.KEY, which contains some pre-built scripts, that must not be

deleted.)

In order to execute your simulation, execute each of the programs that

make up the engine (Windows 95 users can use the GO.BAT file provided).

Once the programs are running, go to each window and select the CONNECT

menu option. (The Simulation State does not currently have a CONNECT

option.) Maximize the Input/Output Handler and select the STARTSIMULATION

menu option. The Simulation Engine should proceed to execute your INIT.SCR

file and execute the simulation.

At this stage in its life, the Simulation Engine does not check for file

existence. As well, it only does simple language syntax checking in the script

files. Future versions will clean up the user interface, providing more room for

user error. Until then the use of the Simulation Engine must be done carefully.

The system should not cause any harm, but should be considered beta and as-is

at this time.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix II: THE SCRIPT LANGUAGE

The Knowledge Base uses a script language to implement database

rules. This language is based on simple Lisp, as a result it contains many of the

same type o f commands. Despite this, there are many extensions and

omissions, allowing the script language to focus on simulation development. All

the script commands and syntax are listed below, using the greater-than and

less-than symbols (<>) to indicate a user entered value.

!=

/

This is the subtraction operator. The second argument is subtracted from

the first.

Syntax:

(- <number> <number>)

This is the ‘not equal to’ operator. It returns ‘t’ if the two numbers are not

equal.

Syntax:

(1= <number> <number>)

Multiplication operator. Returns the multiplied result of two numbers.

Syntax:

(* <number> <number>)

Division operator. The second argument is divided from the first.

Syntax:

(/ <number> <number>)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+

< =

Exponential operator. The first argument is raised to the power of the

second.

Syntax:

(* <number> <number>)

Addition operator. The numbers are added together.

Syntax:

(+ <number> <number>)

Less-than operator. Retums ‘t ’ if the first number is less than the second,

else it retums ‘nil’.

Syntax:

(< <number> <number>)

Less-than-or-equal-to operator. Retums‘t’ if the first number is less than

or equal to the second, else it retums ‘nil’.

Syntax:

(<= <number> <number>)

Equal-to operator. Retums ‘t’ is the arguments are equal, else it retums

‘nil’.

Syntax:

(== <number> <number>)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Greater-than operator. Retums t if the first argument is greater than the

second, else it retums ‘nil’.

Syntax:

(> <number> <number>)

> =

Greater-than-equal-to operator. Retums ‘t ’ if the first argument is greater

than or equal to the second, else it retums ‘nil’.

Syntax:

(>= <number> <number>)

abs
Absolute function. Retums the absolute value of a number.

Syntax:

(abs <number>)

add1

Increments a number by one.

Syntax:

(add1 <number>)

append
Appends a list or atom to a list. Fails to work if first argument is not a list.

Syntax:

(append <list> <list or atom>)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

apply

Applies a function to a list of argument.

Syntax:

(apply <function_name> <list>)

atom

Returns ‘t ’ if its argument is an atom, else it returns ‘nil’.

Syntax:

(atom <list or atom>)

caar

car

cdr

Retum the CAR of the CAR of argument, (see car for definition o f CAR).

Syntax:

(caar <list or atom>)

cadr

Retums the CDR of the CAR of the argument, (see car,cdr for definitions

of CAR,CDR resp.).

Syntax:

(cadr <list or atom>)

Retums the CAR of a list. The CAR of a list is the first entity in a list,

which can be a list, an atom, or a nil.

Syntax:

(car <list or atom>)

Retums the CDR of a list. The CDR of a list is the list minus its first

element. The result will either be a nil or a list - never an atom.

Syntax:

(cdr <list or atom>)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concat

Merges the first argument into the list o f the second argument. If the

second argument must be a list.

Syntax:

(concat <list or atom> <list>)

cond

Evaluates the second argument of a sub-list if the first argument is true.

Many expressions may be listed but only the first true expression’s

adjacent script is evaluated.

Syntax:

(cond ((<boolean expression> <list of valid script commands>)

(<boolean expression> <list of valid script commands>)

)
Example:

(cond ((> RR 53.1) (setq TEMP 280))
(t nil)

)
)

cons

Adds the second element to the first argument’s list. The first argument

must be a list.

Syntax:

(cons <list> <list or atom>)

consp
Retums ‘t ’ if the argument is a list, else it retums ‘nil’.

Syntax:

(consp <list or atom>)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COS

Retums the cosine of the argument. Note that the result is in radians.

Syntax:

(cos <number>)

cubed

Retums the argument multiplied by itself three times.

Syntax:

(cubed <number>)

ddesendq

Sends an atom to one o f the peer programs using the DDE protocol, (see

following sections for details on this command). The first argument

identifies the peer being communicated with (0 = Simulation State, 1 =

Event Handler, 2 = I/O Handler). The data being sent is a message to the

DDE peer. This is expanded on in Appendix III.

Syntax:

(ddesendq <peer number> <atom containing data> <atom

containing DDE item>)

ddesetq
Requests data from a peer program using the DDE protocol and assigns it

to a local variable. The first argument identifies the peer being

communicated with (see ddesendq).

Syntax:

(ddesetq <number> <local variable name> <atom containing DDE

item>)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

defun

Defines functions that can be called at a later date.

Syntax:

(defun <function name> <list containing local variables>

<list o f valid script commands>

)
Example:

(defun cubed (x) (* x (* x x)))

e

The constant e.

eql

Retums‘t ’ if two atoms are equal, else retums ‘nil’. Both arguments

should be atoms.

Syntax:

(eql <atom> <atom>)

equal

Retums ‘t ’ if two items (lists or atoms) are equal.

Syntax:

(equal <list or atom> <list or atom>)

eval

Evaluates a list. Must be a list and the first entry of this list should be a

defined function.

Syntax:

(eval (list containing valid script))

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exp

Retums e to the power of the argument.

Syntax:

(exp <number>)

firs t

Alias for car.

if

Retums second argument if the first is true, otherwise it retums the third

argument.

Syntax:

(if <list or atom evaluates to 't' or ‘nil’> <list or atom> <list or atom>)

isconst

Retum s't' if argument is a literal value (a number or a string), othenwise it

retums ‘nil’.

Syntax:

(isconst <atom>)

islambda

Retums ‘t ’ if argument is the name of a function, otherwise it retums ‘nil’.

Syntax:

(islambda <atom>)

isvar

Retums ‘t ’ if argument is the name of a variable or function, otherwise it

retums ‘nil’.

Syntax:

(isvar <atom>)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

last

Retums the last member of a list (which may be a list, atom or nil).

Syntax:

(last <list>)

length

Retums the length of a list.

Syntax:

(length <list>)

list

Puts both arguments in one list.

Syntax:

(list <list or atom> <list or atom>)

listp

Returns't' if the argument is a list, otherwise it retums 'nil'.

Syntax:

(listp <list or atom>)

In

Returns the natural logarithm of the argument.

Syntax:

(In <number>)

load

Reads and executes a script file. When execution completes, retums to

original file.

Syntax:

(load <filename>)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

log

Retums the base 10 logarithm of the argument.

Syntax:

(log <number>)

member

Retums t ' if the first argument is a member of the second argument.

Syntax:

(member <list or atom> <list>)

not

Retum s't' if the argument is ‘nil’, otherwise it retums ‘nil’.

Syntax:

(not <atom>)

nth

Retums the nth member of a list.

Syntax:

(nth <number> <list>)

nthcar

Retums the nth CAR of a list.

Syntax:

(nthcar <number> <list>)

nthcdr

Retums the nth CDR of a list.

Syntax:

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(nthcdr <number> <llst>)

null

Returns ‘t ’ If the argument is 'nil', othenwise it retums ‘nil’.

Syntax:

(null <atom or list>)

numberp

Retums t ’ if the argument is a number, othenwise it retums ‘nil’.

Syntax:

(numberp <atom>)

PI

The constant PI.

plusp

Retums ‘t ’ if the argument is a positive number, otherwise it retums nil’.

Syntax:

(plusp <atom>)

quote

Retums the value of the list or atom. This stops the interpreter from

processing the contents of a list or atom. The symbol ‘ is used as a short

form.

Syntax:

(quote <list or atom>)

On

‘<list or atom>

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

random

Retums a random number from the first argument to the second.

Arguments must be valid numbers.

Syntax:

(random <number> number>)

rest

Alias for CDR.

reverse

Retums the reverse of a list.

Syntax:

(reverse <list or atom>)

second

Retums the second entry in a list. This is the CDR of the CDR of a list.

The argument must be a list.

Syntax:

(second <list>)

setq

Assigns the first argument the value stored in the second argument. The

first argument becomes a local variable.

Syntax:

(setq <variable name> <value>)

sin

Retums the sine of the argument. The result is given in radians.

Syntax:

(sin <number>)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sqrt

Retums the square root of the argument.

Syntax:

(sqrt <number>)

strcat

Appends the value of the second argument to the first argument. The

result is retumed in the first argument, which must be a variable.

Syntax:

(strcat s1 “_tank01”)

sub1

tan

Returns the argument less one.

Syntax:

(sub1 <number>)

Retums the tangent of the argument. The result is given in radians.

Syntax:

(tan <number>)

zerop

Retums ‘t’ if the argument is zero, otherwise it retums nil'.

Syntax:

(zerop <number>)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix III: TAG MESSAGES

The Knowledge Base has several messages it can communicate to the

I/O Handler using the I/O tags discussed in section 4.2. Since these messages

use the DDE protocol they are sent using the ddesendq command (covered in

Appendix II). The following is a summary of all the messages the I/O Handler will

currently accept:

changegraphic
Modify the image file stored by a smartgraphic tag.
Syntax:
(ddesendq 2 '<tagname>,<image_file> 'changegraphic)

flushtags
Delete all existing tags.
Syntax:
(ddesendq 2 nil flushtags)

niltag
Delete a specific tag.
Syntax:
(ddesendq 2 '<tagname> ’niltag)

refresh
Issue a request to the State Handler for fresh data. It can either request
all tags or specific tags. The tag must be a smarttext tag or a
smartpopuptext tag, otherwise the refresh is ignored.
Syntax:
(ddesendq 2 'refresh 'refresh)
(ddesendq 2 'refresh '<tagname>)

simplegraphic
Create a simplegraphic tag.
Syntax:
(ddesendq 2 '<x>,<y>,<dx>,<dy>,<image_file>,<tag_name>
’simplegraphic)

simplepopuptext
Create a simplepopuptext tag.
Syntax:
(ddesendq 2

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’<x>,<y>,<dx>.<dy>,<text_data>,<tag_name>,<target_tag or
nil>,<script_file or nil>
'simplepopuptext
)

simpleregion
Create a simpleregion tag.
Syntax:
(ddesendq 2 '<x>,<y>,<dx>,<dy>,<tag_name> 'simpleregion)

simpletext
Create a simpletext tag.
Syntax:
(ddesendq 2 '<x>,<y>,<dx>,<dy>,<text_data>,<tag_name> 'simpletext)

smartgraphic
Create a smartgraphic tag.
Syntax:
(ddesendq 2 '<x>,<y>,<dx>,<dy>,<image_file>.<tag_name>,<script_file or
nil>
'smartgraphic
)

smartpopuptext
Create a smartpopuptext tag.
Syntax:
(ddesendq 2

'<x>, <y> ,<dx>, <dy> ,<text_data> ,<tag_name> ,<target_tag or
nil>,<script_file or nil>
smartpopuptext

)

smarttext
Create a smarttext tag.
Syntax:
(ddesendq 2 '<x>,<y>,<dx>,<dy>,<text_data>,<tag_name>,<script_file or
nil>
'smarttext

)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Allison, B J. & Dumont G.A. & Novak, LH & Cheetham W J. (1989). Adaptive-

Predictive Control O f Kamyr Digester Chip Level Using Strain Gauge

Level Measurements. In Pulp and Paper Reports PPR 739. Point Claire,

P.O.: Pulp and Paper Research Institute of Canada.

Ammeraal, L. (1993). Windows Wisdom for C and C++ Programmers. Rexdale,

ON: John Wiley & Sons Ltd.

Borland C++. (1993a). DDEML Example. In Borland C++ 4.0 for DOS, Windows

and Windows NT [Computer Software]. Scotts Valley, CA: Borland

International Inc.

Borland C++. (1993b). Library Reference (Version 4.0). Scotts Valley, CA:

Borland Intemational Inc.

Borland C++. (1993c). Programmer's Guide (Version 4.0). Scotts Valley, CA:

Borland Intemational Inc.

Budd, T. (1991). An Introduction to Obiect-Oriented Programming. Don Mills,

ON: Addison-Wesley Publishing Company.

Clark, J. D.(1992). Windows Programming Guide to OLE/DDE. Carmel, IN:

Sams.

Hu J. & Rozenblit J. W. (1991). KAR for Design Model Development. In P.A.

Fishwick & R.B. Modjeski (Ed.), Knowledge-Based Simulation:

Methodoloov and Application (pp. 77-94). New York, NY: Springer-Verlag.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kamyr, (1993). Digester Update (7**’ ed.). Ridge Falls, NY: Kamyr Inc.

Michaelsen R. & Christensen T. & Lunde G.G. & Lundman G. & Johansson K.

(1992) Model Predictive Control Of A Continuos Kamvr Digester At SCA-

Nordliner. Sweden. Paper presented at the conference Control Systems

'92 Dream vs Reality: Modem Process Control in the Pulp and Paper

Industry.

Nielson, N.R. (1991). Applications of AI Techniques to Simulation. In P.A.

Fishwick & R.B. Modjeski (Ed.), Knowledge-Based Simulation:

Methodology and Application (pp. 1-19). New York, NY: Springer-Verlag.

Oren, T.l. (1991). Dynamic Templates and Semantic Rules for Simulation

Advisors and Certifiers. In P.A. Fishwick & R.B. Modjeski (Ed.),

Knowledge-Based Simulation: Methodoloov and Application (pp. 53-76).

New York, NY: Springer-Verlag.

Pratt, T. W. (1984). Programming Languages (2"‘‘ ed.). Eaglewood Cliffs, NJ:

Prentice-Hall Inc.

Rothenberg, J. (1991). Knowledge-Based Simulation at the RAND Corporation.

In P.A. Fishwick & R.B. Modjeski (Ed.), Knowledge-Based Simulation:

Methodology and Application (pp. 133-161). New York, NY: Springer-

Verlag.

Smook, G.A. (1994). Handbook for Pulp and Paper Technologists (2"*̂ ed.).

Vancouver, BC: Angus Wilde Publications Inc.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stroustrup, B. (1991). The C++ Programming Language (2"“ ed.). Don Mills ON;

Addison-Wesely Publishing Company.

Weymouth, P. J. & Sztrimbely, M.W. (1990). Applications of Advisory Intelligence

Capabilities To Process Plant Simulation & Scheduling. In B. Svrcek & J.

McRae (Ed.), The Proceedings to the 1990 Summer Computer Simulation

Conference (pp. 335 - 339). San Diego, CA; The Society for Computer

Simulation.

Yao, P. (1994). Borland C++ 4.0 Programming for Windows. Toronto, ON:

Random House Electronic Publishing Inc.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (Q A -3)

/

%

1.0

l.l

1.25

üKâ yâ
\22ISà

|X6
14.0

1.4

2.0

1.8

1.6

150mm

/4PPLIED ^ IIVMGE . Inc
1653 East Main Street
Rochester. NY 14609 USA

- = ~ — Phone: 71 S'482-0300
Fax: 716/288-5989

0 1993. Applied Image. In c , AU FUghIs Reserved

4 ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

