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Abstract

STEADY STATE ANALYSIS OF OSCILLATORS (under the supervision of Dr. Carlos
Christoffersen)

A common method used for steady-state analysis of oscillators is called Harmonic
Balance. Harmonic balance finds the steady-state solution directly in frequency-domain.
However, Harmonic Balance is very sensitive to the initial guess and may not converge if the
oscillation frequency is not known a priori. Sometimes it may converge to the unstable DC
operating point of the oscillator. Moreover, it is usually difficult to have such good initial
guess.

In this thesis, a fast approach is developed to improve the initial guess for Harmonic
Balance (HB). This approach is derived from Minimal Polynomial Extrapolation (MPE) and
Warped Multi- time Partial Differential Equation (WaMPDE). The WaMPDE works by
separating the fast and slow variations in the response of oscillators, thus minimizing time
and CPU consumption. The role of MPE is to accelerate the work of WaMPDE. The advantage
of the MPE method is that it saves Jacobian matrix decomposition and it is easy to
implement. Simulation results of different oscillators (Colpitts and LC-tuned bipolar) are
presented to evaluate the performance of the proposed method.
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Chapter 1

Introduction

1.1 Motivations of This Study
Oscillators are nonlinear circuits which generate periodic, time-varying waveforms from

DC inputs. They are essential components in many electrical and mechanical systems.
However, it is very challenging to analyze oscillators in a satisfactory and reliable manner.
Previous analysis of oscillators depended on a practical design perspective that relied on linear
models to obtain simple design formulas. However, linear models aren't really adequate for

practical oscillators, since nonlinearity is essential for their orbital stability. Today numerical
simulation represents the main tool in oscillator's analysis.

One of the most important aspects of oscillators is their steady-state. The steady-state
analysis can be accomplished by methods in time-domain, frequency-domain or in a
combination of both. The traditional time-domain method calculates the steady-state response
by integrating the differential equations that describe the circuit from some chosen initial state

until any transient behaviour dies out. This approach suffers from several drawbacks. One of
these drawbacks is that the transient might take a long time to decay. Thus, this approach

would involve expensive calculations. Several time-domain methods like the Shooting method
[11, 28], the time-domain envelope-following method [14, 17, 18] and Extrapolation method
[19,29] have been developed to address these drawbacks.
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Harmonic Balance (HB) [30] method bypasses the transient and computes the steady-
state directly. Each state variable is represented by a truncated Fourier series that satisfies the
requirements of periodicity. The Fourier coefficients are calculated to satisfy the nonlinear
equations. Despite its dominance, HB experiences some limitations. For example, HB needs a
good initial guess to converge to the desired solution. If such good initial guess is not provided,
HB may converge to the unstable DC operating point of the oscillator or may not converge at
all. It is usually difficult to have such good initial guess. Another problem with the regular HB is
that it becomes computationally expensive if the number of state variables that must be
optimized is large.

Several methods are developed to deal with the limitations of HB. In particular, the
method in Ref. [6] has improved the initial guess for the HB. The method is derived from
Warped Multi-time Partial Differential Equation (WaMPDE) [1, 5] formulation. The WaMPDE
works by separating the fast (oscillations) and slow variations (envelope) in the response of
oscillators. With this separation, while the time constant of the slow variation determines the

interval of computations, the fast variation rate is no longer restricting the integration step size.
Thus the computational cost is minimized. The methods in Refs. [5,6] adaptively control the
number of harmonics for each state variable, this allows reducing the number of harmonics and
thus reducing the computational effort.

Computing the steady state (if exist) is finding the limit of the solution sequences of the
transients. One way to accelerate their limit (the decay of the transient evolution) is to apply
vector extrapolation methods. Extrapolation methods were proved to be efficient and they are
very easy to implement [19]. The methods in Refs. [19,29] improved calculating the steady-
state of oscillators in time-domain analysis.

In this work we made some improvements to capture the steady-state response of
oscillators in frequency-domain. The attractiveness of the methods in Refs. [6,19] made them
to be the base of our sought improvements. WaMPDE and adaptive HB are used to improve the
initial guess and reduce computational effort respectively. Our improvement shall accelerate
the decay of the transient calculated by WaMPDE in Ref. [6]. A vector extrapolation method

2



known as Minimal Extrapolation method (MPE) [8,9,19,29] is used to accomplish our objective.
Our approach accelerates the work of WaMPDE, therefore, reducing the computational effort.

1=2 Thesis Outline
Chapter 2 provides the literature review of the topics relevant to this thesis; oscillator

theory, HB, multidimensional methods, the method in Ref. [6] and the MPE method in Refs.
[8,9,19,29]. Chapter 3 presents the proposed approach to capture the steady- state of
oscillators. Chapter 4 provides simulations of actual oscillators to test the proposed method
and compares them to the simulations in Ref. [6]. Chapter 5 provides a summary of the
simulations results and suggest some directions for future research.
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Chapter 2

Literature Review

2,1 Introduction
Capturing the steady-state of oscillators is achieved by methods in time-domain,,

frequency-domain or in a combination of both. Traditional time-domain methods obtain the
steady-state by integrating the nonlinear differential equations from an appropriate initial value
until the transients have died out. If the transient has disappeared after a few periods, this is
the simplest and most efficient approach for the computation of the steady-state solution.
However, in many cases, the transients change very slowly, which often imply excessive
integration before the steady-state solution is reached. Many methods have been developed
to accelerate the decay of the transients. We will mention a few: the Shooting method [11,28]
which finds the steady-state by iteratively integrating the ODEs over one period. The Time-

domain Envelope-Following method [14,17,18] which computes a few transient cycles and then
integrates the envelope to accelerate capturing the steady-state. One final example which is
relevant to the work in this thesis is the Extrapolation methods [19,29] which calculate the

steady-state by accelerating the decay of the transients using vector extrapolations.

The frequency-domain Harmonic Balance (HB) method calculates the steady-state of
oscillators directly by avoiding the transient. Avoiding the transient usually results in reducing
the simulation time in comparison with time-domain methods. Many techniques have been

developed to address the limitations of HB that mentioned in Chapter 1. For example the
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techniques in Refs. [2,3] use only the necessary number of harmonics for each state variable
which result in reducing the computational effort. One last example which is relevant to the

work in this thesis is the method in Ref. [6], this method uses WaMPDE [1,5] and adaptive HB
[5]. The WaMPDE is a multi-time scales method; it works by separating the fast and slow
variations in the response of oscillators. The method in Ref. [6] uses adaptive HB, unlike regular
HB; starting with small number of harmonics for all state variables and then each state variable

adds more harmonics as needed without directly increasing the number of harmonics in the
other state variables. The method in Ref. [6] managed to improve the speed and CPU
computations.

The main focus of this chapter is to review the concepts and techniques that are
relevant to the proposed method. The chapter is organized as follows: Section 2.2 gives an
introduction to oscillator theory. Section 2.3 explains the concept of HB. Section 2.4 describes*
the concept of multidimensional methods. Section 2.5 illustrates how to use WaMPDE to model·

a simple oscillator. Section 2.6 describes the algorithm of the method in Ref. [6]. Section 2.7
explains MPE, which is applied to the method in Ref. [6] in order to improve it.

2.2 Oscillator Theory
An electronic oscillator is a circuit with periodic output signal but with no periodic input

signal. It operates by converting dc power to periodic output signal (ac). Oscillators can be seen
in many communication and electrical systems. Oscillators are inherently nonlinear circuits, but
linear analysis techniques are used for analysis and design.

The block diagram in Fig. 2.1 shows the main components of a sinusoidal oscillator. It
consists of an amplifier with a frequency-dependent forward loop gain G(Ju)) and frequency-

selective network H(joo). In an actual oscillator circuit, normally no input signal will be present.
We include an input signal here to explain the principle of operation. The output voltage is
given by:

5



y _ VjGQ'?)0 1+00'?)??'?) (2.1)

For an oscillator, the output V0 is nonzero even if the input signal V¿ is a zero. At some
frequency ?0, the denominator will be zero. This leads to the well-known Nyquist criterion for
oscillation

G(Ju)0)H(Ju)0) = -1

Those are the two conditions for oscillations to happen [9]:

i. The magnitude of the open loop transfer function should be unity

IG(Ju)0)H(Ju)0)I= 1

¡i. And the phase shift is 180°. If a positive feedback is used, the loop phase shift must be
0°

argG((jú)0)H(j(o0)) = 180°

Note that for the circuit to oscillate at one frequency, the oscillation criterion should be
satisfied only at one frequency (i.e. ?0); otherwise the resulting waveform will not be a simple
sinusoidal.

Vi GGco)

H(JOJ)

Vn

Fis.2. i A block diagram of an oscillator
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There are various types of oscillators, such as LC-tuned oscillators and voltage-
controlled oscillators (VCO). The LC-tuned oscillators consist of a transistor amplifier with three
external impedances connected. Fig. 2.2 shows two commonly used configurations of LC-tuned
oscillators. They are known as the Colpitts oscillator and the Hartley oscillator. Both utilize a
parallel LC tank circuit connected between collector and base (or between drain and gate if a
FET is used). In both circuits, the resistor R models the combination of the losses of the

inductors, the load resistance of the oscillator and the output resistance of the transistor. If the

frequency of operation is not too high, we can neglect the transistor capacitances, the
frequency will thus be determined by the resonance frequency of the tank circuit.

Thus for Colpitts oscillator we have:

?

For Hartley oscillator we have:

l
Cu0 = ,

V(Li+L2)C

A voltage Controlled Oscillator (VCO) is often designed using the Glapp-Gouriet configuration;
where a varicap is a part of the LC-Tank circuit. One possible VCO configuration is shown in
Fig. 2.3, with a varicap diode added in series between the C2 and L, also for tuning, the varicap
is connected to a DC voltage and C¡5 a bypass capacitor.

The analytical frequency for this simple VCO is:

l

where C0 is the varicap junction capacitance

7



.Li C

(a) (b)

Fig.2. 2 Two common configurations of LC- tuned oscillators: (a) Hartley (b) Colpitis

Fig.2. 3 Configuration of a VCO oscillator



2,3 Harmonic Balance (HB) Analysis
Harmonic balance (HB) is a nonlinear, frequency-domain, steady-state method. It is well-suited
for simulating analog RF and microwave problems, since these are most naturally handled in
the frequency-domain. The HB method is iterative. It is based on the assumption that for a
given sinusoidal excitation there exists a steady-state solution that can be approximated to a
satisfactory accuracy by means of a finite Fourier series. Consequently, the nonlinearities
create discrete frequencies resulting in a spectrum of discrete frequencies at every node in the
circuit. The currents flowing from nodes into linear elements, including all distributed elements,
are calculated by means of a straightforward frequency- domain linear analysis. Currents from
nodes into nonlinear elements are mostly calculated in the time-domain. Generalized Fourier
analysis is used to transform from the time-domain to the frequency-domain. In some cases HB
is more efficient than traditional time-domain since the number of Fourier coefficients might be
smaller to achieve the same accuracy obtained by time-domain analysis [H]. Consider the DAE
of a general nonlinear circuit:

<K*(0)+/(*(t)) = KO, (2.2)
where b(t) is a vector of inputs, /(. ) is a vector function, q(. ) is a vector of nonlinear charges
and x(t) is a vector of unknowns (state variables of nodal voltages and currents). The key work
of HB is to express the state variable ? in Equation (2.2) as a truncated Fourier series:

*;(?)=#|]£*;ß'??°4, (2.3)
where x¡(t) is the ;th state variable in time domain, Xj is the Fourier coefficient of the ith
harmonic of the ;'th state variable, ?0 is the fundamental frequency, a is the number of
harmonics and Jl is the real part. Let X, Q, F and B be vectors with all harmonics for all state
variables in the frequency domain. Q and F can be evaluated using Discrete Fourier Transform
(DFT):

9



where q is a vector of the nonlinear charges for all state variables in time-domain, / is a vector
of the nonlinear functions of all state variables in time-domain and T, and T~x are the DFT and

its inverse respectively. Define a diagonal matrix O:

O =

? 0 ··· 0
0 O ··· 0

0 0 O.

where O=

0 0
0 ?0

O O

O
O

Then Equation (2.2) can be formulated in frequency-domain:

JCiQ(X) + F(X) = B, (2.4)

where) is the imaginary unit. The dimension of Equation (2.4) is equal to the number of state
variables times the number of harmonics (a +1). The resulting algebraic equations of the
nonlinear system in Equation (2.4) are solved with numerical methods like Newton-Raphson
method (See Appendix A for Newton-Raphson method). Note that larger number of harmonics
a improves the accuracy but slows the computational speed.

In radio frequency applications, electronic circuits include oscillatory signals with widely
separated time scales. Due to this, numerical simulation becomes extremely time consuming,
since the fastest time rate restricts the integration step size while the slowest time constant

determines the interval of computation . Methods based on a multidimensional signal model
[1,7] are an alternative approach. The multidimensional model decouples the widely separated
rates into multiple time axes. Consequently, the differential algebraic equations (DAEs) are
transformed into partial differential equations (PDEs). Numerical methods can then be used to

solve the PDEs. This strategy causes savings in computation time and memory, if the arising
partial differential algebraic equation (PDAE) can be solved efficiently.

10



The multidimensional idea was firstly introduced a few decades ago by Ngoyal
Larchev, but only has been applied recently. Roychowdhury [1,7] applied multidimensional
technique effectively to simulate circuits with widely separated times.

In this section, we will review multidimensional techniques; Multi-Time Partial Differential
Equation (MPDE) and Warped Multi-Time Partial Differential Equation (WaMPDE). We will
represent amplitude modulation (AM) using MPDE and frequency modulation (FM) will be
represented using WaMPDE.

2.4.1 Multi-Time Partial Differential Equation. (MPDE)
MPDE uses at least two time axes to represent signals with widely separated rates.

Consider the general nonlinear circuit in Equation (2.2) and let b(t) be a multi-rate input, with
widely separated rates. Equation (2.5) is the equivalent MPDE of the circuit:

{~k + ?)^ +/(je) = foi'tJ' <2-5>
where S(t1( t2) is the multivariate form of inputs and x(tt, t2) is the multivariate form of
unknowns vector (voltages and currents).

The state-space ordinary differential equations in Equation (2.2) are replaced by state-space
multi-time partial differential equations in Equation (2.5). The circuit behaviour is separated in
two different time axes; (t2) and (C1), one for slow variations (envelope) and the other for fast
variations (oscillations). Note here the MPDE is in two dimensions (t2; tx ), however multiple
dimensions can be used depending on the number of signals in a system. In this work we will
need only two dimensions (oscillations and envelope). The necessary condition for MPDE
representation is the system in Equation (2.5) must be at least periodic in the fast time [2].

Fig. 2.4 shows how MPDE can be integrated in the [t2 — tj plane. Starting from appropriate
initial conditions along tx and t2 =0> tne system is solved for each time step (Zz2) along the slow
time (t2). The discretization along t2 can be achieved, for example using Finite Difference (see
Appendix B for Finite Difference) or Harmonic Balance.

11



The set of the discretized equations is solved with any numerical method for nonlinear

equations, such as Newton-Raphson method. Note the initial condition (t2 = 0) for MPDE is a
set of discrete values along tt.

T1 J 1 1 1

Fig,2. 4 Example showing how the integration in MPDE can be performed

Let's consider a simple oscillating signal with amplitude controlled by a slow sinusoidal signal
[1]·

y{t) = sin (^t) sin g t), T1= 0.02s, T2=Is, (2.6)
The two tones at frequencies: /J= — = 50 Hz and f2 =— = 1 Hz. There are 50 fast-varying

T1 T2

sinusoids of period T1- 0.02 s modulated by slow -varying sinusoids T2= Is. This signal is shown
in Fig. 2.5. When T2 » T1 , consequently, many time steps are required to resolve all

oscillations of the short period ( T1) during one long period ( T2). The same signal can be
described using a multidimensional representation, where each time scale is described by its
own variable. Accordingly, we obtain the function:

Kt11W = sin (^ U1) sin g t2) (2.7)
By this transformation, we separate the envelope (slow) of the signal and its oscillation (fast)

into two different time axes as shown in Equation (2.7). The transformed signal is shown in Fig.
2.6. It is obvious that the signal y(tltt2*) does not have as many undulations as the original
signal y(t). Also the transformed signal require fewer points which do not depend on the

12



relative values of the periods T1 and T2. For example, Fig. 2.5 requires 20 points for each
sinusoidal, hence a total number of 1000 points are needed to generate the signal. However,

Fig. 2.6 was plotted with only 400 points on a uniform grid of 20 X 20, less than half of the
points in Fig. 2.5. Such saving is more evident when the rates are widely separated. We can
always recover the original signal by setting tx = t2 = t.

MPDE is very useful for amplitude modulation, especially when the period separation

factor m (m =—) is large. In many electronic circuits a separation factor of 1000 or more is

common. The key idea of MPDE is the fact that the signal can be represented by fewer points
than the original signal and the multidimensional form contains all the information needed to

recover the original signal completely. MPDE doesn't however handle frequency modulation
very well. In the next section we will present a generalized form of multi dimensional
representation (WaMPDE) which deals well with FM problems.

1 , 1 r__r_T r ? , ——-T-i r

0.8 - :

0.6- : : :

0.4-

?.2,-

-0.2 - ¦ . -

-0.4 -

-0.6 -

-0.8 - , ' . .

-1 -^ lI^-Uj 1 i_ L ,1LLj-L1 1 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (s)

Fig.2, 5 Example of an AM signal y(t)
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2.4,2 Warped Multi-time Partial Differential (WaMPDE)
Frequency modulation (FM) signals cannot, in general, be represented efficiently by the

MPDE. To see this inefficiency, consider the following prototypical FM signal:

x(t) = cos(<¡o(t)) = cos((27r/0 t) + kcos(2nf2 £)) (2.8)

The local frequency or named instantaneous frequency is modulated by a slow sinusoidal
signal:

^(t) = ¿ x aT = ^ - k/2 SmOZ2 1) , (2.9)

with /0 -1 MHz, /2 =20 KHz and k= 8p. The waveform of this signal is shown in Fig. 2.7. It's
obvious the waveform is unclear and difficult to analyze. Now, let's apply MPDE with two time

scales to this signal. Following the previous procedure, we will define the multidimensional
signal to be:
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* (h , t2) = cos((2rc/o t± ) + k cos(2nf2 t2 )) (2.10)

The MPDE representation ¡s shown in Fig. 2.8, here we have the fast time tx representing the
oscillation and the slow time t2 representing the modulation. The bivariate waveform of this

signal x(t1(t2) is periodic in tx and t2 , however the period along tx is not constant with t2 .
Unfortunately x(t1;t2) is not as clear as been observed before in the case of AM. When k
» 2p , i. e, k = Iura for some large integer m, then ^t1 , t2) will have about m oscillations as
a function of t2 over one period of the slow variations, which will be difficult to sample along
t2 . Therefore in general MPDE is inefficient to represent FM signals.
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Fig.2. 7 Example of FM signal
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Fig.2. 8 FM signal represented by MPDE

Narayan and Roychowdhury [1] introduced a version of multidimensional
representation named Warped Multi-time Partial Differential Equation (WaMPDE) to represent
FM signals. WaMPDE makes the waveform uniform by warping at least one time scale of the

MPDE, this effectively results in stretching and squeezing the U1 time axis at different times to
even out the period of the fast undulations. Equation (2.11) is the WaMPDE representation of
the system in Equation (2.2).

?(t2)-%(?) +j-q(x) +/(*) = £(t1# T2), (2.11)
where T1 is the warped time scale, T2 is the unwarped time and ?(t2) is the warping function.
Note that T2 is equal to the real time t, and T1 is no longer equal to the real time t, we refer to

T1 as the warped time. The relation between T1 and T2 is given by:

T1 = ?(t2)?t2

The warping function depends on the unwarped time variable. Note that the warping function
is an extra unknown and it requires an additional equation; otherwise the WaMPDE has more
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unknowns than equations. Thus we need to balance the number of unknowns with the number

of equations. Balancing the equations is usually accomplished by not specifying the warping
function a priori, but instead a phase condition is imposed on the WaMPDE function. The phase
condition requires that the phase of the function along C1 should vary slowly or not all as t2
changes [I]. When Equation (2.11) is solved in the frequency-domain, it is a common practice
to impose the phase condition by forcing a particular phase in one of the state variables, e.g.
the imaginary part to zero. This is equivalent to selecting one of the infinite solutions that only
differ in phase. In time-domain, imposing the phase condition can be done by setting one
sample of the derivative of one of the state variables equal to zero.

We apply WaMPDE to the FM tone in Equation (2.8), we use T1 instead of tx to
normalize the local frequency and T2 is the same as the real time ( t2) axis:

^2 (^i, T2) = COs(T1) , (2.12)
with x(t) = x2(0(t),t). The warped time is a function of time

T1= f(t2) =2p/0t2 + /ccos(27t/2t2) (2.13)

The result of the two dimensional representation is shown in Fig. 2.9. In this figure we can

notice there are fewer undulations than the MPDE representation in Fig. 2.8 and thus the signal
can be sampled with relatively fewer points since the reseated time axis stretches and squeezes
the real time axis by different amounts at different times to even out the period of the fast
oscillations. The mapping between warped time and real time is shown in Fig. 2.10.
It's worth noting that the solution of WaMPDE is not unique, WaMPDE is related to the choice
of warped time T1. We can recover the original signal by setting:

T2 = t and

X1 = (¡,fa) = 0(t)
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It's clear that WaMPDE can handle FM signals well when the rates of frequencies are
widely separated. Also MPDE can be viewed as nothing but special case of WaMPDE; we have
MPDE7 when the warped time is set to the real time.

We need to specify the boundary conditions (BCs) for the differential equations of the
WaMPDE. One shortcoming of WaMPDE is that it is sensitive to BCs, since BCs need to be

specified along the whole vertical line ?(t1;0), as shown in Fig. 2.11. A simpler approach to
approximate the BCs [6] of WaMPDE is to find the initial value x(0) of the ODEs of the system.
This value will correspond to x(0,0) in WaMPDE, and then we use one full period or the

interpolation of two periods of the ODE solution as a BC for (T1, 0) line. In addition, a periodic
boundary condition is imposed:

?(0,t2) = ?(2p,t2)

0.5 4
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Fig.2. 9 FM signal represented by WaMPi)E
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The resulting solution has the fast oscillation along T1 time axis and the envelope along T2 time
axis. A much improved method to approximate the BCs is found in [6].

T1

\ /
Periodic Conditions

Fig.2. 11. Graphical representation shows boundary conditions

Solving a WaMPDE system using HB:

HB method can be used to solve the WaMPDE along the warped time ( T1), the solution
along the warped time axis (T1) is solved in frequency or time-domain. The unknowns are the
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Fourier coefficients along T1 corresponding to each value of the real time T2. In HB the state
variable ? is expressed as a truncated Fourier series:

X\X-y, T2J — JV ?^?\t2^???, (2.14)
vi=o

The period in the warped time (T1 ) is normalized to 2p (Le. ?=1).

The Equation (2.2) is formulated with Fourier transform:

dQl (t2)
Ji(O0(J2)Q1 + dT + F1Qi2) = ß((t2) (2.15)

The fundamental frequency ?0 is an extra unknown. So a phase condition is usually
imposed as we mentioned earlier by forcing the imaginary part of one of the state variables to

be constant. For example, we can set the imaginary part of the fundamental frequency to a
zero:

3(X1) = 0 (2.16)
Note Equation (2.15) and Equation (2.16) form a + 1 equations in the same number of unknown
functions of T2. The resulting balanced equations are solved with Newton-Raphson method.

2,5 Formulation ofWaMPDE on oscillators
In this section we will show how to formulate the WaMPDE method to analyze a simple

voltage controlled oscillator [2], in which the system ODE is replaced with partial differential
equations. The periodic solution along the warped time is solved with Finite Difference Time
Domain (FDTD) or HB (Frequency-domain). The solution along the unwarped (real) time is
solved using time marching method (time-domain).

The circuit in Fig. 2.12 shows the schematic of the VCO. The VCO consists of an LC tank
in parallel with a nonlinear resistor. The capacitance is varied with a separate control voltage.

20



The values of the elements in Fig. 2.12 are: C = 1/(2p)µ?, C7n = 1/(4p)µ? and L = 1/(2p)
µ?.

The nonlinear resistor is given by:

iR = f(u) = (G0 - G00) tanh(u) + G00U , (2.17)

with G9 = 0.25 and G0 = —0.1

--------------------?

Uc

Fig.2. 12 A simple ideai VCO oscillator

Here the fast oscillation and the amplitude of the capacitor voltage uc and inductor current iL
are modulated with a much slower rate. We will find the transient response of this system with
the ODE method and the WaMPDE method. We will compare the solutions of the two methods
for two different variations of the control voltage.

2.5,1 ODE Analysis
The control voltage Vc:

Kc = 1.5cos(y)t, (2.18)
is varied with a fast oscillation T1 = 30 µe and a slow oscillation T2 = 1ms , the slow
oscillation Vc is shown in Fig. 2.13.

¡R=f(u) 4.< c+c

Ul
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Fig.2, 13 Control voltage -slow

The initial local frequency (i.e. r=0) is:

fo = 2KjL(C+CmVc0)
0.75MHz (2.19)

The local frequency as a function of time is given by:

ÍL = 2n^JL(C+C-rnVc) 71+0-7Scos(a,ct) (2.20)

Fig. 2.14 and Fig. 2.15 show the waveforms of the local frequency under the two variations of
control voltage Vc.

3
time (s)

Fig.2. 14 Loca« frequency under fast control voltage
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Fi«.2. 15 Local frequency under slow control voltase

Using KCL, the oscillator currents satisfy:

Ìr + k + k = 0 , (2.21)

with

Ir =
dQ _d(C + CmVc) uc
dt dt

dur dVr

Using KVL, the oscillator voltages satisfy:

ul — uc — UR (2.22)

The ordinary differential equations governing the oscillator can be written as:

diLur — L —— = 0dt
duc dVc

lL + (C + CmVc) -¿f+Cm-fcUc+ fW = °
(2.23)

The capacitor voltage uc and the inductor current iL are the state variables. Their initial values
are set to be 0 V and -1 A. Using the ode45 function in Matlab, we obtain the waveforms of
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capacitor voltage under the fast variation as shown in Fig. 2.16. The simulation is run again
under slow variation as shown in Fig. 2.17.

Obviously the control voltage modifies the local frequency; it also modifies the shape of
the envelope. Simulation time for fast varying was about 2.2 seconds, however for the slow

variation was about 200 seconds. Under the slow variation, the simulation took a long time. In
this example, the effectiveness of the ODE depends on rate of the control voltage. In the next
section, we will apply the WaMPDE method and observe its effectiveness.

2,5,2 WaMPDE Analysis
We will apply WaMPDE method to analyze the VCO. We mentioned in Section 2.4 that

the relation between the warped time T1 and the real time T2 is given by:

T1 = ?(t2)?t2
Jn

To apply the WaMPDE method: Firstly, we set the initial conditions in the grid (t1; T2 ). Secondly,
we convert Equation (2.23) into multi-time differential equations as shown in Equation (2.24).

f , í di, di,\J F1(T1^2) =uc- L (?(t2)^ +^j = 0 (2.24)
, ? / duc duc\ dVc

F2 (T1, T2) = iL + (C + CmVc(z2)) ^?(t2)— +—J + Cm—uc + f(uc) = 0

The warping function ?(t2) is an added unknown that must be calculated for each time step
along t2. Thus, we need to set the phase of one of the variables to an arbitrary value, we then
have:

F3(T1, T2) =uc(0, T2) = 0 (2.25)
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Fig.2. .17 Capacitor voltage under slow control voltage

Next we solve the vector of the nonlinear equations:



F = IF1 F2 F3 G

The nonlinear equations are discretized with the five point formula along X1 and with Backward
Euler Rule along t2 (see Appendix B for five point formula and Backward Euler Rule). Finally, the
unknowns which are along T1 are solved with Newton-Raphson for each time step along T2.

In this VCO, we use the same initial guess values for voltage and current used in the ODE
(O V and -1 A). The boundary condition of the capacitor voltage is set to be a sinusoidal wave
along T1 with amplitude 1 V. The number of samples used for the discretization along both time
axes is nl =n2 =20. The time step are hi = 2*pi/nl, for T1 axis and hl=T/n2, for T2 axis.

The WaMPDE of the capacitor voltage under the fast varying control voltage is shown in
Fig. 2.18. Like the ODE representation, WaMPDE represents frequency modulation and
amplitude modulation, but the waveform is much clearer and easier to analyze. The local
frequency associated with the circuit is shown in Fig. 2.19, which as expected, is identical to the
local ifrequency shown in Fig. 2.14. The relation between warped time and real time are shown
in Fig. 2.20. Here the warped time represents the phase shift of the carrier for each value of real
time. The computational time was 2.4 seconds.

The WaMPDE simulation is run again under the slow varying control voltage, the result
is shown in Fig. 2.21. As expected, the envelope changes very little for the capacitor voltage,
which is consistent with ODE results, but again, we have a clearer waveform. The local
frequency associated with the circuit is shown in Fig. 2.22, which as expected, is identical to the
local frequency shown in Fig. 2.15. The relation between warped time and real time is shown in
Fig. 2.23. The computational time is significantly reduced, while ODE needed 200 second,
WaMPDE needed only 34 seconds.

These results show the effectiveness of the WaMPDE method in terms of saving the
computational effort (i.e. time). There was no difference between the two methods under the
fast varying voltage but there was a considerable saving by the WaMPDE method for the slow
varying voltage.
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2,6 Steady-State Analysis of Oscillators
In this section a review explains how the method in Ref. [6] captures the steady-state of

oscillators. For the steady-state analysis, the method uses WaMPDE to find a good initial guess
for HB in a fast and a robust way. The general nonlinear system in Equation (2.2) can be written
by separating the linear and nonlinear parts as follows:

Cx(O + C^ + ^gO) + /(X(O) = S(O, (2.26)
where x(t) is vector of state variables( the nodal voltages vector), G is conductance matrix, C is
matrix of linear capacitances, l(x(t)), and Q(x(f)) are nonlinear functions representing
nonlinear devices and S(t) is the source vector.

The Equation (2.26) is transformed into the WaMPDE from:

(G + CJiU)0)X1 + C^ + JiO)0Q1 +^ + !i-Si = 0 (2.27)

and the phase condition in Equation (2.16)

3(X1) = 0

where i is the harmonic number and j is the imaginary unit. The WaMPDE solves Equation
(2.27) and Equation (2.16) along the warped time for each time step along the real time X2. The
solution samples are along the warped time.

The method implementation is accomplished in two steps:

I) In the first step, the multi-dimensional simulation runs until the initial transient starts to

disappear. This step is accomplished in the minimum number of Newton iterations possible.
At this point, the solution is assumed to be close to steady-state in which the local
frequency function has become constant, and the difference between two successive

periodic solutions (error) along the warped-time (T1) has become smaller than some desired
tolerance Gds. The transient envelope is stopped and the second step begins.
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II) In the second step, the regular HB starts, here the solution is switched from multi-time to
single time. Note the switching is achieved by setting all the derivatives in Equation (2.27)
with respect to X2 to zero. The regular HB analysis is started with initial conditions set to the

last multi-dimensional solution. Since this initial condition is close to the steady-state, only
few Newton iterations are needed for the regular HB.

A flow chart in Fig. 2.24 shows the method algorithm. The simulation is started with
initial conditions set to the DC bias point. An excitation current:

? (t ,x ) = f/0cos (T1) if t2 <tts x' 2 *-0 otherwise

is injected from the ground into one of the nodes where we expect oscillations. The excitation
current is very small (I0 is about a few µ?), and t¿ is the size of the first time- step in the
direction of X2. The excitation current is needed to start the oscillation by moving the system=
away from the unstable DC equilibrium point.

The method employed several provisions to improve the efficiency of the simulations:

1. For the integration along the real time, Backward Euler Rule is used. It allows numerical

damping [7]. The advantage of this is that if the oscillations along X2 are damped, this
will allow to use longer time step.

2. To further reduce the number of iterations to get close to the steady-state, the
tolerance of the Newton method is adaptively controlled during the transient evolution
(first step). Since the interest in the steady-state solution, the tolerance of Newton

method needs not to be very small during the transient evolution. This provision will
reduce the number of Newton iterations for each solution of X2- The Newton tolerance
(ToI) is setto:

Toi = max{0.1%^ax, ??-7} ,
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where Xlmax is the amplitude of the largest oscillation in the circuit at the previous
value of t2. When regular HB is started, for better accuracy, smaller tolerance of
Newton Method is used (typically in the order of 10~9). Smaller tolerance is used since
the solution is very close to the steady-state.

3. Adaptively controlling the number of harmonics for each state variable ? independently.
At the start of the simulation ("C2=O), only a small number of harmonics will be used

since the oscillations started at the DC bias point. For each solution away from DC bias
points along t2, the values of the last two harmonics are considered. If they are greater
than some threshold values, then the number of harmonics for that state variable is

increased by one, otherwise it is left unchanged for the next time step. The flow chart in

Fig. 2.25 shows the implementation of adaptive harmonic balance. There A¡ and Bj are
the magnitude of the last two harmonics for the /h state variable. The advantage of
using adaptive harmonic balance is that the number of harmonics is only increased as
needed.

4. The size of the time step (Zi2) along t2 is varied according to the number of Newton
iterations (n) required to achieve the Newton tolerance. The flow chart of adaptive time

step is shown in Fig. 2.26. Here F is the time step factor, nmin and nmax are the decision
factors, if the number of Newton iterations is larger than nmax, the time step is
reduced, if it is smaller than nmin, the time step is enlarged, otherwise it is kept
unchanged for the next calculation.
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33



Newton iterations

For each line

Set j=l, v=# of state variables

Calculate A, &B,

YES

Increase

harmonics by 1 in
state variable j

I

NO

Unchanged
harmonics in state

variable j

Next line
calculations

Fig,2. 25 A flow chiiri of adaptive harmonic balance

34



As stated before, the solution is considered very close to steady-state when the local frequency
function has become constant and the difference between two successive periodic solutions
(error) along t2 becomes smaller than £ds. To measure the difference of periodic solutions, we
calculate the maximum difference of voltages:

where ea is relative tolerances, j=0,l,2....v,v is the number of nodal voltages, i =1,2,3... a,

where a is the number of harmonics of the voltage j and Xj is the solution of ¿th harmonic of
the j th nodal voltage. Equation (2.28) calculates the error for a nodal voltage for all harmonics
and selects the maximum tolerance. The calculation is done for all the nodal voltages. And then:
select the maximum difference of the nodal voltages. If ??(t2 + h2) is close to zero we use the
absolute tolerance eb:

maxi*/ (T2 + /I2) - Xj(T2)I < eb (2.29)

35



Iteratici

Iteratici

h2_new=h2_old

Next line

Yes

Yes

h2_new=h2_old/F

h2_new=h2_old*F

Hg,2. 26 A flow chart of adaptive time step

2.7 Vector Extranote tiorc

Vector extrapolation methods can be very effective for the purpose of accelerating the
convergence of vector sequences. All these methods use the idea of fixed point iteration
without solving the system equations in dimension N, the dimension of the vector space. An
important property of vector extrapolation methods is the fact that they can be applied directly
for solving linear and nonlinear systems. This stems from the fact that these methods do not
need explicit knowledge of the sequence generator:

<-n + l F(Xn). (2.30)
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In particular, no derivatives of F (Jacobian matrix of the function) are computed in Equation
(2.30).

Suppose we need to accelerate the convergence of the general non-linear fixed point iteration
in (2.30). The iteration (2.30) can be linearized in the neighbourhood of a fixed point xs [S]. This
gives;

xn+i = F(xn) = F(xs + (xn - xs)) « xs + F' (xs)(xn - xs)
This can be written as:

Xn+i ~ F' (*s)Xn + (I - F'(xs))xs

This shows that in the neighbourhood of a fixed point the non-linear iteration behaves
approximately like the linear iteration

Xn+1 =Axn + b (2.31)

This suggests that if we have methods to accelerate (2.31), then these can be extended at least
locally to the general non-linear iteration. In this thesis we used an extrapolation method
known as Minimal Polynomial Extrapolation (MPE) [8,9].

Minimal Polynomial Extrapolation (MPE)

MPE was studied by Cabay and Jackson (1976) and considered as the most successful

method of extrapolation. Sidi(1987) [7] gave an efficient implementation of the MPE. Suppose a
sequence of vectors in real or complex /V-space is generated linearly from starting point X0.

Xn+1 = Axn + b, n = 0,1,2... (2.32)

where A is a fixed matrix and b is a fixed vector, we assume that neither A nor b are known;
only the sequence {xn} or means of generating it is known. Also we assume that 1 is not an
eigenvalue of A, so the iteration (2.32) has a unique fixed point:

s = As+b,
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namely,

S = (I-A)-1O (2.33)

if ? < 1 for every eigenvalue ? of A, then:

s = lim Xn
n->co

The objective of MPE is to determine s from few numbers of the terms of the sequence. If the
sequence diverges, s is called the anti-limit, MPE may still determine the anti-limit from few

terms of the sequence. The objective of MPE is to determine s from as few terms as possible
without inverting an N X N matrix, and without any additional information about A. In a typical
application, N may be quite large relative to the number of eigenvalues ? with |?| near 1
(causing slow convergence) or greater than 1 (usually causing divergence).

MPE Algorithm [8]

Let X0, X1, X1,..., be a given real or complex sequence of the /V-dimensional column. Define:

Ui=Ax1 = X1+1-X1 i = 0,1,2,... (2.34)

Let k < N be a fixed integer (to be determined), we define NXk matrices whose columns are
the vectors of difference

U = UK = [u0, U1, U2 , U^1], (2.35)

Note that

ui+1 = AUi = Ai+1u0 (2.36)
We determine s as a weighted average of the x¿'s, this weight is calculated by the coefficients
of the minimal polynomial P(X) of A with respect to x¿ - 5, i.e. the unique monic polynomial of
least degree such that

P04)ii0 = 0 (2.37)

We take k < N to be the degree of P(A). Note that k can be much smaller than N. We write

P (?) =S?=0???? and ck = 1
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From (2.30) and (2.31), we have:

k

Yc1U1 = O, (2.38)
i=0

so the vector c = (c0, C1, C2, ... C^1)1 of the unknown coefficients of the polynomial P(A) is the
solution of the system equations

Uc = -uk (2.39)

The system (2.39) could have more equations than unknowns if k < N1 thus we can write the

solution of the system as

c = -U+uk, (2.40)

where U+ is the Moore-Pen rose pseudoinverse of U

For any k+l consecutive terms of the sequence xm, xm+1, X2, , xm+k » we have:

2^ Ci um+i = I 2^ a J s (2.41)t=0 Vi=O /

Algorithm 1: A summary of MPE algorithm as follows:

Starting from initial value of sequence X0, and given the sequence generator of the form (2.32)

1. Generate the sequence X1, X1, X2,..., Xk+1

2. Calculate U, uk using Equations (2.34) and (2.35)

3. Calculate c using Equations (2.39) and (2.40)

4. Calculate s using Equation (2.41)
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In practice, when dealing with nonlinear sequences, the algorithm above is extended by cycling

to generate a sequence S0, S1, S2 ... of approximation to s [8].

Algorithm 2: Nonlinear Extrapolation Algorithm with Cycling.
1. Set S0 = X0, and /' = 1
2. Generate k+1 vectors ? for the MPE

3. Apply MPE to compute s*
4. Set Sj = s*, increase /' by 1, set X0= s*, and return to step 2.

Each time this loop is executed is called a cycle. It's difficult to find the right degree k of the
polynomial. However, the cycling technique is the most practical technique to deal with
nonlinear systems [8].
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Chapter 3

Method to obtain a good initial guess in HB analysis in
oscillators.

3,1 Introduction
As mentioned in Chapter 1, regular HB is very sensitive to the initial guess of the

solution. Regular HB analysis for oscillators may converge to the unstable equilibrium DC point
or may not converge at all if a good initial guess of the solution is not provided. It can be very
difficult to obtain such good initial guess of the oscillator solution, in particular, the guess of the
oscillation frequency. In this chapter we will present an approach to find a good initial guess for
HB by applying Minimal Polynomial Extrapolation (MPE) to the solution of Warped Multi-time
Partial Differential Equation (WaMPDE). In Ref. [6], WaMPDE has been proven to be a fast and a
robust method to find the transient and steady state of oscillators. The MPE has the ability to
accelerate finding the steady-state of the solution obtained by WaMPDE. If a nonlinear system
(i.e. oscillators) is bound to reach steady-state, MPE will accelerate this process (finding the
solution limit). In our approach, the extrapolation is applied along the real time (t2). The MPE is
expected to use a few solutions of the WaMPDE along the warped time t2 and then predict the
limit of these solutions. Therefore, the number of solutions along t2 should decrease before
this solution is applied as initial guess to the regular HB. Our choice of using MPE arises from
the fact that MPE doesn't require calculating the derivatives (Jacobian) of the nonlinear
equation to find the solution, while WaMPDE needs to calculate and factor the Jacobian matrix
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for each time step along the real time X2. Calculating and factoring the Jacobian can be
computationally expensive; therefore extrapolation may result in computational savings. In the
next section, we will present the algorithm of our approach.

3.2 The proposed algorithm

We first illustrate how the MPE algorithm is applied to WaMPDE. The general nonlinear
system formulated with Fourier transform is given in Equation (2.27):

N . dXl . dQl(G + CJi(X)0)X1 + C—— + jiœ0Ql + -^- + I1 -S1 = 0
ax2 a X2

The WaMPDE solves the nonlinear equation above along the warped time for each time step
along the real time t2. The solution sequences are along the warped time. These sequences are
composed of the nodal voltages vector and the fundamental frequency (?0). Each voltage
contains a harmonics and 1 dc component. Note for adaptive HB a varies for all nodal voltages.
Now we show how to construct the vector sequences which will be extrapolated by the MPE
method.

i. Starting t2=0, run the WaMPDE for k steps along the real time t2.
ii. construct a vector sequence R:

R= X(O) X(h2) X(Ih2) X((k- I)Zi2)
O)0(O) ü)0(h2) ?0(2/?2) ú)0((k - I)Zi2)

Where h2 is the time step along X2.

iii. Then Algorithm 1 of the MPE method mentioned in Section 2.7 is used to extrapolate

the vectors k of the sequences [R) or in other words, accelerating capturing the steady-
state.

Next we will show the algorithm of the proposed method:
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The following provisions used in Ref. [6] (mentioned in Section 2.6) are used to improve the
method efficiency:

• Adaptive HB

• Adaptive Newton tolerance

Unlike the method in Ref. [6], the method proposed in this work uses constant time steps;
however adaptive time step is also used for comparison. To best utilize the interactions between
MPE and WaMPDE; the extrapolation is done when the transients have started to decay. This
is accomplished by setting some appropriate tolerance € (e.g. 20%), and running WaMPDE until
the error as calculated in Equation (2.28) and Equation (2.29) is smaller than the tolerance 6.

When the error is smaller than €, at this point along t2 the transient may be started to decay.
At this point MPE is used to extrapolate the k samples along t2 and the result is used as a new

initial guess for the WaMPDE. The £ is further decreased and the process is repeated in this
fashion until the desired tolerance €ds (e.g.0.1 %) is achieved. This is the point where the
WaMPDE is stopped and the regular HB is engaged. The flow chart in Fig. 3.1 explains the
algorithm. Here the simulation process is sectioned and every section is called a run (1st run,
2nd run Mth run); runs represent the number of times the WaMPDE is executed. Note the
number or runs = number of times the WaMPDE is extrapolated - 1. Here (E1, E2 , ... ,EM)
represent the tolerances associated with each corresponding run. Note EM = E¿s. Every
successive tolerance is decreased by dividing it by some factor . The time step is increased by a
factor ? for the next run. For the last run, The WaMPDE is executed with initial guess from the
last time the extrapolation is used until the error is less than the desired tolerance €ds . At that
point the transient evolution is stopped and the regular HB is engaged with the final solution of
the WaMPDE used as the HB initial guess. Regular HB takes a few additional Newton iterations

to determine the final solution. Using adaptive HB allows nodal voltage to have different
number of harmonics. Thus at the end of each run, zeros are added as necessary after the last
harmonics of each voltage to even the length of R.
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Simulation parameters for a general oscillator:

• Number of runs: no specific rule of how many runs shall be in the algorithm. However,
two runs can achieve satisfactory results for smaller circuits..

• The tolerances^, G2, ¦¦¦> ^m) must De wisely selected: For example if two runs are
used; the first tolerance (E1) would be in the range about 10% - 30%, second tolerance
G2 = Gds in the range about 0.1% - 5.0%. The difference between G1 and Gds must not
be large so that WaMPDE in the last time wouldn't run for long time before HB is
engaged. Special attention must be directed to the choice of the runs tolerances. The

algorithm must check how many solutions it produces for each run. The first tolerance is

the most critical choice, if it is selected small, this will ensure the MPE will produce a
solution closer to the steady-state. However, choosing a very small tolerance (i.e. 0.1%)
for the first run might decrease the benefit of using MPE as opposed to using the
WaMPDE alone. Choosing a large tolerance (i.e. 50%) will also decrease the MPE
efficiency, since the extrapolation contains rapid transients.

• The most sensitive simulation parameter is the time step increase factor ? for each run.
The difficult part is determining the optimum ?, ? accelerates the solution in expense of
reliability. The simulation starts with small time step, after the first run, the solution is
likely starting to decay, therefore a larger time step might be to be used for the next

run. The time step increase factor depends on the initial time step and the tolerance of
WaMPDE for each run. Smaller tolerance and smaller initial time step could allow a
bigger increase in ? in the following run.

• It is better to extrapolate only the last few samples (e.g. extrapolate the last four
samples or the last third of the total samples). In particular the first run can contain high
nonlinear values, the simulation shall perform better if only a few of the final values are
extrapolated.

The MPE method accelerates the work of the WaMPDE in Ref. [6]. In the next chapter,
we will show some simulation to evaluate the performance of the method.
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Initial conditions==DC bias points

WaMPDE starti=!

set ei+1
error<

IVl = »runs

h,=h2*p

WaMPDE

NO

Regular HB

NO

Fig.3. 1 The flow chart, the proposed method
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Chapter 4

Simulations

4.1 Introduction

The authors of Ref. [6] have improved capturing the steady-state response of oscillators
using WaMPDE in conjunction with adaptive harmonic balance. The method proposed in
Chapter 3 further improves the method in Ref. [6]. In this chapter, we present simulation
results for two oscillators: an LC-tuned bipolar oscillator and a Colpitis oscillator. Results of the
proposed method are presented and compared by varying simulation parameters and also
compared with results in Ref. [6]. All the simulations are performed with MATLAB on 2.4 GHz
Pentium dual-core computer.

4.2 LC-tuned bipolar oscillator

Fig. 4.2.1 shows the schematic of the LC-tuned bipolar oscillator [13]. The parameters of
this circuit are: Ci = C2 =33 pF, C3 =3.17 pF, Cc =560 pF; L1 =nH, RF = 680 O, RB =100 ?O, Rc =1.2
kQ and Vdd =10 V. In order to formulate the circuit nodal equations, we replace the transistor
with the large signal model shown in Fig. 4.2.2, the inductor with the equivalent circuit shown
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¡? Fig. 4.2.3, and the Thevenin source with Norton source in Fig. 4.2.4. We substitute those
models in Fig. 4.2.1.

VWH

5
out

Fig.4.2. I LC-tuned bipolar oscillator schematic diagram

$

Fis¡.4.2. 2 Large signal model of the transistor
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=±(, Vbe

The base current is ¡b = — Ie^ —lj/ the collector current is Ic = BF x Ib, with
saturation current /s = 0.0IpA, thermal voltage VT = 26 mV and forward beta BF = 100.

Fie.4.2. 3 Inductor equivalent circuit

Rc

V,
Vdd/Rc

Fig.4.2. 4 Norton équivalent of the DC source

The resulting circuit is shown in Fig. 4.2.5 where all nodes are defined

(x = |lst2nd 3rd 4th Sth\T ). Then we formulate the nodal equations of the circuit according to
Equation (2.26):

Gx(X) + C —77— -\ — 1- /(x(t)} = S(t)at at
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Cc 2Rf
WV-

V1dd

Fìg.4.2, 5 LC-tuned bipolar oscillator equivalent model

Each matrix is defined by:

G =

0
0

0 0
0

0
0

Gb
0

-Gh

1(X) =

1
0

0
0
0

-Gb
0

Gf + Gc + Gb

,C=

0
0
0
0

Vdd
LRr.

Cc
-Cc
0
0

0
-Cc

cc + c2 + C3
-C3
0

0
0

C3
0

o-
0
0
0
G1J

with Gf — —/ Rf· Gh — — , Gr — —0 Rb c Rc



The DC bias points are calculated to be:

X2 = 4.9 V
< X3 = 0.7 V
X4 = 4.9 V

. X5 = 4.9 V

4.2.1 Simulation results and discussion:
The simulation starts with the DC bias points. The excitation current is injected into the

base node with a magnitude of 10µ A. The simulation is set to two runs; first run tolerance G1 is
set to 0.6 and second run tolerance e2 is set to G^ioo =0.0006. Using constant time steps of 0.2
ns, the simulation produced 14 samples of solutions along t2 with 56 Newton iterations.
Extrapolating the last 4 samples, increasing the constant time step for the second run to 0.02 s
and using the extrapolated value as the new initial value, we obtained 4 samples of solution
along t2 with 9 Newton iterations to obtain E2. The final solution from the second run is fed to
regular HB as initial value; the regular HB needed only 3 Newton iterations to capture the
steady-state . The fundamental frequency is found to be 308.709 MHz. The total simulation
time was 5.6 seconds, 0.001 seconds of which is the simulation time of the MPE.

Fig. 4.2.6 and Fig. 4.2.7 show the simulation results of the output voltage (voltage at
node 5) and fundamental frequency during the first run. It is obvious that the fundamental
frequency tend to reach a constant value quickly while the voltages are still in transient state
(only the output voltage is shown). Fig. 4.2.8 and Fig. 4.2.9 show the simulation results of the
second run; the voltages tend to be steady, and the fundamental frequency changes very little
and then reaches a constant value. Simulation of the output voltage of the regular HB is shown
in Fig. 4.2.10. Fig. 4.2.11 shows the steady-state solution of HB together along with the final
multi-time solution, which indicates that the two solutions are very similar. These results are
summarized in Table. 4.2.1.
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Simulation
section
Is run
2nd run
Regular HB

Number of solution
samples along t2

14

NA

Number of Newton
iterations

56

Tabie 4,2. 1 A summary of the simulation results
first run

Total Simulation
time

5.6 seconds

3.5
8

W;arped Time Scale [s] O O
2 ? 10

Real Time Scale [s]

Fig.4.2. 6 The output voltage during the first run
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Fig.4.2. 7 The fundamental frequency during first run
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Fig.4.2. 8 The output, voltage during secoi
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Fig.4.2. 9 The fundamental frequency during second run
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Fig.4.2. 10 The regular HB steady siate voltage
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time(s)

Fig.4.2. 1 1 Steady-state solution compared to final multi-time solution
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Comparison of Various Simulations

1. Repeating the same simulation but varying the number of samples for extrapolation:
• Extrapolating the last 8 samples and the last 5 samples produced the same results as

extrapolating 3 lines.

• Extrapolating all the 14 samples produced the same results but the number of Newton
iterations in the second run was 13 (an increase by 3).

2. (a) Repeating the same simulations but set G1 =0.2, G2= 0.0002. Results in Table. 4.2.2
(b) Repeating the same simulations but set G1 =0.2, G2= 0.0001. Results similar to part

(a)

Simulation
section

Number of solution
samples along T2

Number of Newton
iterations

Total simulation time

Is run 23 69 6.4 seconds
2nd run
Regular HB NA

Table 4.2. 2 Results with varying tolerances

(c) Repeating the same simulation but set G1 =0.1, G2 =0.00001. Results in Table. 4.2.3

Simulation
section

Number of solution
samples along T2

Number of Newton
iterations

Total simulation time

Is run 27 76 6.6 seconds
2nd run
Regular HB NA

Table 4.2. 3 Results witli varying tolerances

3. Repeating the simulation with time step = 2 ns for both runs. Results in Table. 4.2.4

Simulation
section

Number of solution

samples along T2
Number of Newton
iterations

Total simulation time

Is run 28 81 7.1
2nd run 14 17

Regular HB NA
Table 4.2. 4 Results with varying time step

54



4. Repeating the same simulation but with adaptive time step with a factor= 1.8. The total
number of samples is 30 and the total number of Newton iterations is 93. Results in
Table. 4.2.5

Simulation
section
Is run
2nd run
Regular HB

Number of solution
samples along t2

19
11
NA

Number of Newton
iterations

68
22

Total Simulation
time

5.6 seconds

Table 4.2. 5 The proposed method with adaptive time step

5. The simulation in Ref. [6] which uses adaptive time step with factor=1.8, initial time
step=2 ns and Newton threshold values are 5 and 10 is shown in Table. 4.2.6. The

simulation produced 34 samples and a total of 123 Newton iterations. The output
voltage of the multi-time solution and the steady-state solutions are shown in Fig. 4.2.12
and Fig. 4.2.13 respectively.

Simulation
section

Number of solution

samples along t2
Number of Newton
iterations

Total Simulation time

First step 34 121 5.5 seconds
Regular HB NA

Table4.2. 6 Simulation results of method in Reffe]

6. For some choices of the initial time step along t2; the method in Ref. [6] and the
proposed method produce an unstable DC operating point solution. However, the
proposed method finds the steady-state solution for some of these choices. For example
the method in Ref. [6] doesn't find the steady-state solution for initial time steps: 0.01
ns, 0.0125 ns, 0.017 ns and 0.02 ns while the proposed method finds the steady-state
solution for 0.02ns and 0.017 ns and fails to find it for 0.01ns and 0.0125 ns

In this circuit, it is clear the proposed method has improved the method in Ref. [6] in
terms of reducing the number of Newton iterations needed to capture the steady-state, thus
resulting in saving the CPU memory. Using constant time step; the reducing in Newton
iterations varies from 40% to 50%. In this circuit, the proposed method performs much better
using constant time step as opposed to using adaptive time step. The saving when adaptive
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time step is used with the proposed method is about 25%. In terms of simulation time, there is
no considerable difference between the method in Ref. [6] and the proposed method. The
proposed method also reduces the number of solution samples. The simulation shows it is
better to extrapolate the last few samples, extrapolating all the samples might slow the
process; since the first samples are highly nonlinear (transient). The simulation time attributed
to the MPE is very small.

Method [6] produced the best results with a time step factor F=I. 8, it needs 1394
Newton iterations and 40 seconds with no adaptive time step (i.e. time step factor F=I).
Choosing the adaptive time step factors is sensitive, for example if the time step factor is 2; the
method produces the unstable DC operating point solution. Thus the simulation might need to
run for few times with modifying the adaptive time step factors to get the right solution. Also if
the number of Newton iterations of the solution does not lie on the constraints (i.e. nmin and
nmax); the adaptive time step algorithm won't be used. The proposed method is as well sensitive
to simulation parameters (i.e. number of extrapolated samples, tolerances, time step for each
run). It is difficult to get the optimum results in the first try. However, the results in this
oscillator might indicate the proposed method might be slightly more reliable than the method
in Ref. [6]; it might not produce the optimum results but the right solution seems obtainable for
wider range of simulation parameters.
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Fig.4.2. 13 The regular HB steady-state voltage in [6]
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43 Colpitis Oscillator
Fig. 4.3.1 shows the schematic of the Colpitts oscillator [14]. The LC tank in this

oscillator uses a capacitive voltage divider. The values of the circuit parameters are: C1 = C2 =2

pF, Ce =100 pF, Cc =400 pF, L1 = ?µ?, R1 = 8 kQ, R2 =2 ?O, Rc = 2.4 kQ, R6 = 1.3 kQ, Vcc =11 V, BF
=100, and BR =1.

Fig.4.3. Î Colpitts oscillator schematic diagram

To consider the transistor saturation, we replace the transistor with the Ebers-Moll transistor

model shown in Fig. 4.3.2. The Ebers-Moll model has two diodes and two current sources which

model all operation regions of the transistor: forward active mode, reverse active mode,
saturation and cut-off mode. Ebers-Moll allows relating the emitter, base and collector current
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to the forward and reverse currents and transport factors. The diode currents and source
currents are given by:

'•" = meVT -1
BR X /.ubc

'uce — BF x lube

The saturation current ls =0.01 pA. Thermal voltage V1 =26 mA. Replacing all equivalent
models in Fig. 4.3.1 we have resulting equivalent circuit shown in Fig. 4.3.3 with all the nodes
defined.

Fig/4.3, 2 The Ebers-Moll model of the bipolar transiste]
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Vcc/Ri Vcc/Rc

Rc

^_^_|
Re

C,

Fig.4.3. 3 Colpitis oscillator equivalent circuit

Then we formulate the nodal equations of the circuit according to Equation (2.26):

Each matrix is defined by:

0
0
0

0
0
Gr

0 0
0 0

1
0
0
G„

0
0
0

G1 + G2

,C=

L 0
0 C2 + Cc

0
0
-Cr

0
0
C1
0
0

0
0
0
C

0
-Cc
0
0

/(*) =

0
0

L-iirP *uce 1UeC Iubc
~*ube * uce < 'uec

'ubc ' 'ube

G o
0

Rn

1 111
with G1 = — . G7 — — ,Gp= — , Gr = —1 R1' ¿ R2 Re Rc
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The DC bias points are calculated to be:

rXx- OV
X2 = 8.4 V

I X3 = 8.4 V
X4 = 1.4 V
.X5 = 2.2 V

4,3.1 Simulation results and discussion:
The simulation starts with DC bias points. The excitation current is injected into the base

node with a magnitude of 10µ A. The simulation is set to two runs; first run tolerance E1 is set
to 0.8, and the second run tolerance G2 is set to e^ioo = 0.008. Using constant time steps of 10
ns during the first run, the simulation produced 6 samples of solutions along T2 with 30 Newton
iterations. Extrapolating the last 4 samples, increasing the constant time step to 40 ns for the
second run and sending the extrapolated value as the new initial value, we obtained 83 samples
of solutions along t2 with 269 Newton iterations to obtain e2. The final solution from the
second run is fed to regular HB as initial value; the regular HB needed only 7 Newton iterations
to capture the steady-state. The fundamental frequency is found to be 5.036 MH. The total
simulation time was 16.2 seconds, 0.001 of which is the simulation time of the MPE.

Fig. 4.3.4 and Fig. 4.3.5 show the simulation results of the output voltage (voltage at
node 3) and fundamental frequency during the first run. It is obvious that the fundamental

frequency changes rapidly during the first run and the output voltage is still not oscillatory.
Simulations of the output voltage and the fundamental frequency during the second run are
shown in Fig. 4.3.6 and Fig. 4.3.7, respectively. The output voltage still experiences no
oscillation in the beginning of the second run and then starts to oscillate. Also, the
fundamental frequency has not reached steady value in the beginning of this run but it reaches
a point close to steady value in this run. Simulation of the output voltage of the regular HB is
shown in Fig. 4.3.8. Fig. 4.2.9 compares the steady-state solution of HB with the final multi-
time solution, which shows they are close but not as similar as noticed in the LC-tuned bipolar
oscillator (Fig. 4.2.11). A closer solution can be obtained if the second tolerance is decreased

but this will result in increasing the computation effort. Decreasing the second tolerance is not
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important since the regular HB needed only 7 Newton iterations to capture the steady-state
solution. These results are summarized in Table. 4.3.1.

Simulation
section
Is run
2nd run
Regular HB

Number of solution
samples along T2

83
NA

Number of Newton
iterations

30
269

Table. 4,3. Î Simulation smmiiarv

Total Simulation
time seconds

16.2
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Fig.4.3. 4 The output voltage during first run
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Comparison of Various simulations

1. Repeating the same simulation but varying the number of samples to be extrapolated:
• Extrapolating the last 3 samples produced the same results

• Extrapolating all the 6 samples of the first run produced the same results but the
number of Newton iterations in the second run increased to 800. This large increase
might be due to the fact that the first samples have no oscillations and are all
extrapolated. Only the output voltage is shown here, but most of the nodal voltages
don't start oscillating for many time steps along the real time; Colpitts is known for its
long transient [6].

2. Repeating the same simulation with the same time steps for both runs, both equal to 10
ns. Results in Table. 4.3.2.

Simulation
section
Is run
2nd run
Regular HB

Number of solution
samples along t2

119
NA

Number of Newton
iterations

30
421

Total simulation time

26 seconds

Table. 4.3. 2 Simulation with the same time step for both runs

3. (a) Repeating the same simulation but set e2=0.1 and G2 is kept the same (i.e. 0.8).
Results in Table. 4.3.3.

Simulation
section
Is run
2nd run
Regular HB

Number of solution
samples along T2

78
NA

Number of Newton
iterations

30
259

Total simulations time
(seconds)

15.4

Table. 4.3. 3 Simulation with varying tolerances

(b) Setting €!=0.6 and G2= 0.01. The Results are similar to part (a)
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4. Repeating the same simulation but with adaptive time step with a time step factor= 1.5
for both runs. The total number of samples is 66 and the total number of Newton
iterations is 371. Results in Table. 4.3.4

Simulation
section

Number of solution

samples along t2
Number of Newton
iterations

Total Simulation
time

Is run 30 16.6 seconds
2nd run 60 331

Regular HB NA 10
Table. 4.3. 4 The proposed method with adaptive time step

Simulation with three runs; G1=O-S, G2=O. 4 and G3= 0.0004. Using constant time
steps of 10 ns during the first run, 40 ns for the second run and 160 ns for the third run.

The last 4 samples are extrapolated in each run. The results are shown on Table. 4.3.5.

The output voltage and fundamental frequency are shown in Fig. 4.3.10, and Fig. 4.3.11
for the first run, Fig. 4.3.12, and Fig. 4.3.13 for the second run and Fig. 4.3.14, and Fig.
4.3.15 for the third run. Fig. 4.3.16 shows the steady-state and final multi- time solutions
are close. In the first and second run, the voltage still doesn't experience oscillations,
however, the output voltage experience unwanted oscillations equal to the

fundamental frequency along the real time. In start of the third run, the output voltage
and fundamental frequency became steady. However, the other voltages have not
reached the steady-state (not shown here). Comparing the results with the results of
two runs in Table. 4.3.1; the number of samples and Newton iterations increased when
using three runs. Using three runs for this circuit doesn't appear to be helpful to add any
benefits than using two runs. The nature of this oscillator is that it doesn't oscillate for
some time and when it does, it reaches steady-state very fast. This nature reduces the
benefits of the MPE methods. For example if G2 is reduced to 0.1, the WaMPDE will run
and stop at a point t2 close to the steady-state, here at this point the error reduces by
a factor of 100 in two successive samples along t2. Results are summarized in
Table. 4.3.5
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Simulation
section
Is run
2 run
3rd run
Regular HB

Number of solution

samples along T2

66
41
NA

Number of Newton
iterations

30
221
113

Total
time

Simulation

21.3 seconds

Table. 4,3. 5 The proposed method with adaptive time step

5. The simulation in Ref. [6] uses adaptive time step with time step factor F=I. 5, initial
time step=10 ns and Newton iterations constraints nmin=5 and nmax=10 . The simulation

results are shown in Table. 4.3.6. The simulation produced 62 samples and a total of 380
Newton iterations. The fundamental frequency was 5.035 MHz. The output voltage of
the multi-time solution and the steady-state solutions are show in Fig. 4.3.17 and Fig.
4.3.18 respectively.

Simulation
section

First step
Regular HB

Number of solution
samples along T2

62
NA

Number of Newton
iterations

372
8

Total Simulation time

22.9 seconds

TaWe. 4.3, 6 Simulation results from Reí [6]

6. Also in this oscillator for some choices of the initial time step along T2 the method in
Ref. [6] and the proposed method produce the unstable DC operating point solution.
However, the proposed method finds the solution for some of these choices. For

example the method in Ref. [6] fails to find the steady-state solution for initial time
steps: 5 ns, 4 ns, 1 ns, 0.1 ns and 0.01 ns while the proposed method finds the steady-
state solution for 5 ns and 4 ns and fails for 1 ns,0.1 ns and 0.01 ns.
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Fig.4.3, 18 Steady-state solution in Ref [6]

In this oscillator, the proposed method slightly improved the results in Ref. [6] in
terms of reducing the number of Newton iterations needed to capture the steady-state, thus
resulting in saving in the memory of the CPU. Using constant time step in Table. 4.3.1; the
simulation needed 299 Newton iterations for both runs and 7 for the regular HB. While in [6]
there are 372 Newton iterations and 8 for the regular HB. Here we have about 25% reduction in
Newton iterations. The MPE is very fast, its simulation time is very small; its fraction of a second
to extrapolate tenth of samples.

The use of adaptive time step with proposed method has not reduced the

number of Newton iterations. Using three runs resulted in more Newton iterations than using
two run but the final multi-time solution and the steady-state solution are very similar. In terms
of simulation time, there is no considerable difference between the method in [6] and the
proposed method; the average time saving is about 10%. The results in [6] which we compared
our results to are the optimum results method [6] provides. Results in [6] uses adaptive time
step factor=1.5, if this is set to 1.7; the solution produced is the unstable DC operating point

solution, if it set to 1.4, it needs 400 Newton iterations and without adaptive time step (i.e. time
step factor =1); it needs 45157 Newton iterations and takes 38 minutes. The simulation in
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method [6] might need to run for few times with modifying the adaptive time step factors to
get the steady-state solution in a small number of Newton iteration. In this oscillator, the
proposed method is as well sensitive to the simulation parameters. It is difficult to get the
optimum results in the first try. However, the results in this oscillator might indicate the
proposed method might be slightly more reliable than the method in Ref. [6]; it might not
produce the optimum results but the right solution seems obtainable for wider range of
simulation parameters.
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Chapters

Conclusions and Future Research.

For the first time Minimal Polynomial Extrapolation (MPE) was used to accelerate
capturing the oscillators' steady-state in frequency-domain. The method in Ref. [6] improves
capturing the oscillator's steady-state by improving the initial guess of the regular Harmonic
Balance using WaMPDE. The proposed method has further accelerated the work of WaMPDE

to find the improved initial guess for the regular HB.

These improvements are measured by the reduction in Newton iterations and the

simulation time. Number of Newton iterations in LC-tuned bipolar was reduced by 40% to 50%
and for the Colpitts was reduced by around 20%. Significant time saving is not observed in
these oscillators and this is not due to the work of MPE; MPE algorithm takes extremely little
time (i.e. 0.001 seconds to extrapolate 4 samples of 10 length), we attribute this to: Firstly, the
simulation time for these cases studies is relatively short; it is around 5 seconds and 20 seconds
for the LC-tuned bipolar and Colpitts oscillators respectively. Secondly, the implemented code is
reinitialized every time for each run (WaMPDE) and the regular HB. Time saving could be
expected in systems which take longer simulation time. However, in these cases studies, the

time saving might be accomplished if the program is written more efficiently. One simple
optimization that could be implemented in the code is to avoid re-initializing all WaMPDE
variables every time a run starts. The additional simulation time added by the work of MPE is
very little time or rather insignificant to the total simulation time.
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The limitation of the proposed method is that it is not straightforward to find the
simulation parameters that result in optimum performance. The method can be more reliable if
constant time step is used for all runs: the solution in Colpitis oscillator is not obtained if the
time step of second run is increased by 6 times.

The few case studies presented here indicate that the proposed method is more
efficient when oscillations can be started quickly as with the LC-tuned bipolar oscillator. In
contrast, it is more difficult to start oscillations in the Colpitis oscillator and thus more steps are
required to find a good initial guess for HB.

We will suggest some ideas for further studies using the proposed method.

1. Improvements can be done on optimizing the simulation parameters. If the method is

incorporated with a more reliable adaptive time step algorithm, this might turn out to
be beneficial. Improvements can be done on studying the time step, in particular, the
initial time step.

2. The method to start the oscillation should be reviewed and improved since for some
initial choices of the time step along T2 the method fails to converge to the oscillatory
steady-state solutions.

3. The method might be useful to determine the frequency locking range in forced
oscillators in Ref. [31].

4. The proposed method should be tested with oscillators with more nodes to verify its
effectiveness.
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Appendix A

Newton-Raphsoe Method

The Newton-Raphson method is an iterative technique for solving nonlinear algebraic equations
numerically. Like so much of the deferential calculus, it is based on the idea of linear
approximation. [16.17].

Given the function:

f{x) = 0 (A.l)

iteration method:

Starts from initial value x°

According to iteration·function F: x1l+l = F(xn) , generate a sequence of xn_1, xn , xn+1,
which hopefully converge to the solution x*.

To solve the function in (A.l) with Newton-Raphson method: linearize the system and solve:

Taylor series /(*)=/(**) +^p (x - **) (A.2)
f(xk) = f(xk) +^ (x,c+1 - xk) (A.3)

Iteration function xk+1 = ?k

dx

df(xk
dx

Each step, the function (J) and its derivatives is evaluated:

Do k=0,l,2...

until convergence

f(xk) (AA)
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Given a system ofN nonlinear equations:

F(x) =0 (A

System (A. 5) will be solved by Newton-Raphson method as follows;

Taylor series F(x) = F(x*) + J(x*)(x — x*)

Iteration function xk+1 — xk — /_1F(xk) ,
where J is the Jacobian matrix and given by:

(A

(A

J(X)
Ox1

dF^(x)
dx.

QF1(X)
dxN

dF^(x)
dxN

The Jacobian matrix is formulated by one of the numerical differentiation methods, depending
the desired accuracy.



Appendix B
Finite Difference Methods

Finite difference methods are techniques of numerical analysis to produce an estimate of the
derivatives of a mathematical function. There are many finite difference methods, few of them
are mentioned here. A method is selected depending on the desired accuracy. The methods can
be expressed in Taylor to estimate the truncation error. Here are some examples of these methods
using one dependant variable and expressing only the first derivative.

(I)A forward difference

d/_ /C*+/0-/W + Q(/i)(Lx

df _ /(x+/i)-/(x)
dx h

the truncation error 0(h) is 1' order

(2) A backward difference

d£ _ /0)-/(x-ft)
dx ~ h ^ '"'

the truncation error 0(h) is 1 order

(3) Central Difference:

dx 2h

the truncation errorO(/i2) is 2nd order

(4) Five point formula

df _ /(x+ft)-/(x-/i)
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df -f(x + 2h) + Qf (? + h) - Qf(x -h)+ f(x - 2K)
— « __ (B. 4)

the truncation enoi0(h4) is 4th order
These equations are used to approximate the numerical integration:

y'(t) = f(t,y(t)), y(to) = y0
Using Equation (B. 1), we can compute the solution by the following recursive scheme:

yn+i=yn + hf(tn,yn) (B.5)

This is the EuIer method (or forward Euler method)

If Equation (B.2) is used, we have:

Vn+x = yn + hf(.tn+1,yn+1) (B.6)

This equation is known as Backward Euler rule
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