
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Retrospective theses

1987

Computation using s-programs

Wen, Yandan

http://knowledgecommons.lakeheadu.ca/handle/2453/917

Downloaded from Lakehead University, KnowledgeCommons

COMPUTATION USING S-PROGRAMS

A Thesis Subml-b-bed

to

LAKEHEAD UNIVERSITY

In Partial Fulfillment o£ the Requirement

for the

Degree

of

MASTER OF SCIENCE

by

Yandan Wen

1987

ProQuest Number: 10611762

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProOuest

ProQuest 10611762

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L*autorisation a ete accordee
k la Bibliotheque nationals
du Canada de microfilmer
cette these et de preter ou
de vendre des exemplaires du
film.

L*auteur (titulaire du droit
d'auteur) se reserve les
autres droits de publication;
ni la these ni de longs
extraits de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation ecrite.

ISBN 0-315-44804-0

CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

INTRODUCTION iii

CHAPTER 1 Prograxnming Language S, 1

1.1 S-Programs 1

1.2 Syntax of S-programs
1.2.1 Non-Deterministic Execution Rule-I
1.2.2 Deterministic Execution Rule-II

1.3 5-programs of Indeterminacy 5 9
1.3.1 Algorithm for Indeterminacy-AFI 10
1.3.2 NDCSP Accepts the Same Sets as General

(Non-Deterministic) Computation of an
S-program 14

CHAPTER 2 Simulation of General Computation by
Deterministic Computation. 22

2.1 Clock Sequence for Simulation 22

2.2 Time Estimation 30

CHAPTER 3 T.M. Accepts the Same Class of
Sets as NDCSP. 33

3.1 The Flowchart of T.M. Simulator for DCSP 33

3.2 Procedures of Simulation 36

3.3 A General S-program Accepts the Same
Set as a T.M. 48

CHAPTER 4 Universal NDCSP. 55

4.1 Algorithm for Binary condition-AFBC 55

4.2 Universal BNDCSP 58

4.3 Universal S-program, Second Construction 60

CM ro

CHAPTER 5 NP Completeness. 64

5.1 Cook's Theorem for the programming
Language S^-program 64

5.2 Cook's Theorem, Necessity 66
5.2.1 The Initialization 67
5.2o2 Unique Configuration, Q(k) 71
5.2.3 Change of State and of Control 72

5.3 Cook's Theorem, Sufficiency 81

REFERENCES 87

i

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor Dr. C. F. Kent for

his guidance and encouragement in the preparation of this

thesis.

ii

ABSTRACT

The concepts of S and S^^-programs are given by Davis,

Weyuker, 1983. Several parts of the complexity theory are

carried out directly for S and S^^-programs. The concepts of

non-deterministic and deterministic computation from

S-programs are defined, and deterministic simulation of

non-deterministic computation is proved. A universal

5-program for general (non-deterministic) computation is

shown to require only one duplicate line label. Complexity

results are given for these and other simulations, e.g.

Turing Machine by 5-programs and the reverse. Cook,s Theorem

for 5^-programs is proved in full.

iii

INTRODUCTION

In reference [2] Chapter 2 the authors use as their first

model of abstract computation a very basic programming

language^ S. Their first definition uses a set of registers,

denoted X, V, Z, etc, with possible subscripts, a set of line

labels, L, M, etc, possibly subscripted, and executable lines

of only three types.

V<-V+l

V<—V“1 {leaves a null register null}

IF VjtO GOTO L

In this definition the concept of an alphabet is avoided

or, equivalently, the alphabet can be thought of as a

l-symbol "tally" language. Other programs, called

Sj^-programs, are introduced which use ”non-trivial”

alphabets. A, and replace the first two rules above by

”V<-aV”, for aeA, and (remove the rightmost symbol in

V, if there is one), and the last by "IF V ENDS a GOTO L”.

A certain portion of the usual theory of abstract

computation is developed using these S symbols and, in due

course, the theory is shown to be equivalent to the more

usual formalization, the Turing Machine. After this

equivalence is established, reference [2] becomes more

conventional and develops much of its material using Turing

Machines(TM*s). In particular all results related to

non-determinism are developed in the TM context. In this

thesis, we develop a larger part of the basic theory,

including non-determinism, in the S-program context,

directly.

iv

In one small departure from the usual presentation

(see [7]),. we do not distinguish deterministic and

non-deterministic S-programs. There is only one type of

S-program, and it does both jobs depending upon whether the

computation (execution) rules are deterministic or

non-deterministic. The same could be done for TM*s. We do not

use indexingsf or numberings of S-programs in our work, but

if that were necessary, a possible economy would result from

having only one class, indexed once.

A further small departure occurs in our use of the

"non-operable” instruction, V<-V, as a basic instruction. In

reference [2,pp.23], V4-V, is a small subprogram, and its

introduction therefore introduces several lines, and would

complicate our statement of several complexity relations. The

use of V<-V is inessential. The instruction VQ<-VQ-1, (or

VQ^-VQ") / for a register which was conventionally always left

empty, would accomplish the same purpose, i.e. it would pass

control to the succeeding line of the S-program (5^-program) .

In Chapter 1 we define the basic concepts of (general)

5-programs, indeterminacy of an S-program, state the

execution rules, and show how to replace a general S-program

by one in which each line label occurs the same number of

times (constant indeterminacy). The chapter concludes with a

formal proof that, from the viewpoint of set acceptance, a

program, P, and its constant indeterminacy companion, P’, are

equivalent.

Chapter 2 is devoted to developing the usual result about

simulating non-deterministic computation by deterministic

V

computation, but here for 5-programs directly. The usual

exponential increase in the time required is shown to apply.

Chapter 3 develops the equivalence between general

5-programs and general(non-deterministic) TM's. This is a

direct equivalence and avoids the usual chain of

equivalences, from non-deterministic TM to deterministic TM

to (deterministic) 5-program to 5-program. Complexity

results, in terms of time requirements, are given, but a

limitation of the first type of 5-program emerges. This

restriction is a consequence of the previously mentioned fact

that ordinary 5—programs use tally languages, for which the

length and the value of words, x, coincide (or differ by at

most 1) .

Chapter 4 begins by showing how to replace

constant-indeterminacy 5-programs, of indeterminacy a, by

programs of constant indeterminacy 2. This result is used to

exhibit a universal (non-deterministic) 5-program, which

differ from the universal (deterministic) 5-program of

reference [2,pp.58] by the insertion of only one duplicate

line label, (one additional line). A second construction is

given which does not depend upon the constant-indeterminacy

result, but is more complex.

Finally, in Chapter 5, we return to a classic complexity

result. Cook *s Theorem, formulated here for 5^-programs .

Because of the lack of distinction between value of x and

length of x for tally languages, and consequently for

reference [2]'s first model of an 5-program, we change here

to 5j^-programs . In terms of complexity, 5-program are

equivalent to 5^-programs. Cook's Theorem is given the usual

vi

sort of proof, by exhibiting an algorithm for constructing a

conjunctive normal form, ^x, for each S-program, P, and input

X. However, we do go one step farther than most presentations

by showing that the CNF, ^x, is satisfied if and only if. P

accepts X.

CHAPTER 1

Prograxnming Language S

In this Chapter, we describe the Prograxnming Language S

and the syntax of S-program. Our definitions follow closely

these in reference [2,pp.l5~l7], with minor differences.

1.1 S-Programs

Like any other program languages, programming language S has

a.Input variables

h.Local variables

c. Output variable

d. Label names :

X, . Xj . X3 ,...

Zi.Z^.Za....

,B-| ^2 »®2 *'

e. One of the following statements(instructions)in the table 1.1

Instruction

V v+i

V 4- v-i

V 4- V

IF V^Q GOTO L

Interpretation

Increase by 1 the value of the variable V. Variables are

the names for registers holding values during a computation

from the program. At the beginning of each computation all

variables have initial value 0.

If the value of V is 0, leave it unchanged; otherwise

decrease by 1 the value of V.

A non-operable line, control passes to next line

If the value of V is not zero, perform the

instruction with label L next; Otherwise proceed to

the next instruction in the list.

where V may be any variable and L may be any label.

Table 1.1

~ 2 -

f. A Program is an ordered list of instructions (finite).

a. The length of the program is the length of the list of

those instructions, i.e. the number of lines.

h. The empty program contains no instruction, its length is 0.

i. A state of a program P is a list of equations of the form

V=m, where V is a variable and m is a number, including

exactly one equation for each variable that occurs in P.

j. A label block is a maximal set of consecutive lines of the

program, all bearing the same label.

1.2. Syntax o£ 5~programs

Suppose we have a program P of length n. Let a be a state

of P and let V be a variable that occurs in a. The value of

Y at a is then the (unique) number q such that the equation

V=q is one of the equations making up cr. In order to say what

happens ”next”, we also need to know which instruction of P

is about to be executed. We therefore define a snapshot or

instantaneous description of a program P of length n to be a

pair (i,<i) where 1 <i < n+1, and a is a state of P.

(Intuitively the number i indicates that it is the

instruction which is about to be executed; i=n+l corresponds

to a "stop” instruction).

- 3 -

If s=(i,a) is a snapshot of P and V is a variable of P,

then the value of V at s just means the value of V included

in the state a.

We shall handle the deterministic versus non-deterministic

issue not by considering programs of the two types, but by

considering only one type of program and representing

deterministic computation, rule-II, as a special case of

non-determini Stic (ordinary) Gomp-Ut a.t.l.Q.Q, rule-I.

Non-determinism in computations is handled by use of multiple

occurrences of the same line label, say L, so that in

response to a "GOTO L”* the computation may choose

non-deterministically any line labelled L just like

non-deterministic Turing machine, which might have, for

certain combinations of state and scanned symbol, more than

one possible chice of behavior, defined in [4,pp.204]. In

deterministic computation of [2,pp.25] a "GOTO L" command

always chooses the first line of label L in the program.

1.2.1 Non-Deterministic Execution Rule-I

For a given S-program P, If (i,a) is a non-terminal

snapshot of P, we define the successor of (i,a) to be the

snapshot (j,x) following the rules below.

* The unconditional GO TO L will be used below and

represents the small subprogram V 4— V + 1, IF V ^ 0 GO TO

L, using some variable V which does not appear elsewhere in

the program.

Line changing flowchart

Fig 1.1

I—A. The line is not in any label block, i.e. is not a

labelled line, a, and contains the equation V=m.

(a.l). The i^^ line is not the form ”IF V^O GOTO L".

i=i+l;

X has three subcases:

i) The line is ”V<-V+1”, x is obtained from a

by replacing the equation V=m by V=m+1.

ii) The line is ”V<-V-1”, x is obtained from a

by replacing the equation V=m by V=m-1 if m;^0; if

m=0, x=<j.

iii) The line is ”V<-V”, x=<r.

- 5 -

(a. 2) .The line is the form ”IF V^O GOTO L”.

x=a;

j has two subcases:

i) If V=0, j=i+l.

ii) If V9^0/ j is the number of any line in any

L-block.

•B. The i^^ line is in the label block, of label M, a

contains the equation V=m.

(b.l). The i^^ line is not the form "IF V^O GOTO L".

(b.1.1). The line is ”V<-V”.

x=a;

j=i+l.

(b.l.2) . The line is not ”V<-V” .

j is the number of the first line below

X has two subcases;

i) The line is "V<-V+l”, x is obtained

from cr by replacing the equation V=m by

V=m+1.

ii) The line "V4-V-1”, x is obtained

from a by replacing the equation V=m by

V=m-1, if rn^Of if m=0, x=a.

(b.2). The i^^ line is the form "IF V^O GOTO L”.

x=a;

j has two subcases:

i) If V=0, j is the number of the first line

below Bj^.

ii) If j is the number of any line in any

L-block.

1.2.2 Deterministic Execution Rule-II

Rule-II

Line changing flowchart

Fig 1.2

II-A The line is not the form "IF V^O GOTO L".

i=i+l;

X has three subcases:

i) The line is ”V<-Vtl", x is obtained from a by

replacing the equation V=m by V=m+1.

ii) The line is ”V<—V-1”, x is obtained from a by

replacing the equation V=m by V=m-1 if m9^=0; if m=0, x=a.

iii) The line is ”V<—V", x=a.

II-B The i^^ line is the form "IF V^O GOTO L”.

x=a;

j has two subcases:

i) If V=0, j=i+l.

ii) If V^O/ j is the number of the first line in the

first L-block.

DEFINITION 1.1 A computation, C, of a program P of length n

is a sequence s^, S2^ . . ., Sj^ of snapshots of P such that s^^^^ is

the successor of s^^ for i=l, 2, . . ., k-1. Sj^=(l,aj^) which is

initial snapshot, Sj^= (n+1,which is terminal snapshot.

DEFINITION 1.2 Any computation C, which is being executed by

Rule~I, is called a non-determiiiistic computation, for

convenience, written NDC to emphasize this case.

DEFINITION 1.3 Any computation C under Rule-II is called a

deterministic computation, for convenience, written DC to

emphasize this case.

As stated earlier, we do not classify 5-programs as

"deterministic” or "non-deterministic”, but have only one set

of 5-programs. It is the computations from these programs

which are called deterministic, or non-deterministic. Our

general term "computation" thus stands for what other authors

call a non-deterministic computation (program, machine,

etc.).

Frequently it happens that restricted classes of programs

suffice for certain types of computations, we consider

several results of this nature in this paper, but begin with

a very simple example, which should not be confused with the

more important results of the next section.

Example 1.1

- 8

[L] X4-X+1

IF X^O GOTO L

[L] X4-X-1

Pro.1.1

This program contains two instructions having the same

label. According to the definition of DC, its snapshot, in

effect, interprets a branch instruction as always referring

to the first statement. So the program is equivalent to the

following:

We use DCSP to represent the program which is executed by

Rulo-II.

Lemma 1.1 Given a general 5-program, P, there is a

companion program, P*, in which no line label occurs more

than once, and so that the set of deterministic computations

from P is the same as the set of all computations from P*.

Proof If line i of P has label L, but is not the top line of

label L, then control in a deterministic computation can pass

to line i only if the line immediately above i is executed.

Since this happens whether or not the label L is present in

line i, we can erase all prefix labels L in lines which are

not the top one with label L. In this new program,

P*, all computations become Rule-I computations. Therefore,

for program P*, the set of all computations is the same as

the set of deterministic computations of P.

[L] X<~X+1

IF X?tO GOTO L

X4-X-1

Pro. 1.2

1.3. S~programs of Indeterminacy 5

In a general S-program, there may be several different

occurrences of a label. One label that occurs may not have to

occur the same number of times as another label. We refer to

the number of occurrences of label L in the label block as

the multiplicity of L. and the maximum multiplicity of any

label in P as the indeterminacy of P, say 6.

Example 1.2

X<-X-l

[L] X<-X

[L] X<-X+l

[M] Z<-Z + l

[L] IF Z^Q GOTO M

[N] Z<-Z-l

[L] IF X^O GOTO N

[M] IF Z?iO GOTO L

Y^Y+1

Pro. 1.3

In Pro.1.3, the multiplicity of L in first L-label block

is 2, the multiplicity of M in first M~label block is 1, and

so on. The indeterminacy of this program, 5, is 2.

In our proof, in the next chapter, of the standard result

on simulation of non-deterministic computation by

deterministic, we will require an intermediate result, like

Theoreml.1(below), to show that general S-program of

indeterminacy, 5, can be replaced by program in which each

labelled line has indeterminacy 5+1. Thus, we next turn to

the procedure for this replacement.

- 10 -

1.3.1 Algorithm for Indeterminacy-AFI

Let P be a general S-program

Step 1. Determine the indeterminacy 5, and let a=5+l.

Step 2. For a fixed label L.

i). Put L-blocks in order as B_ ,...,B^ (suppose

there are m L-blocks in P).

ii) . In B_ , replace all labels L by L. .
Li 1

iii) . (a) The multiplicity of L^^, 5^^, will be made

equal to a.

(a.l) i?^, add statement "GOTO with label

Lj^ below the last line of the L^-block. Call this

new label block B_' .

(a.2) i=m, add statement "GOTO L^" with label L^^^

below the last line of the L -block. Call this
m

new label block B’ .

(b) The multiplicity of L^^, may not yet be equal

to a. Insert statements "V<-V" with label L^^

between the last line of the old Li-block and

the new last lines added in (a) until the

multiplicity of L^^ is equal to a. Call this new

label block B* .
Li

Step 3. Repeat step 2 until all L-blocks are treated.

Step 4. Inside any line which contains form "GOTO L",

replace by "GOTO L^"; Note that no line which lacks an

internal or a prefix label is changed.

- 11 -

step 5. Repeat step2, 3 and 4 until all labels have been

treated.

Now we use NDCSP, P* to represent the program which has

been changed by the Algorithm-AFI and is executed by Rule-i.

For use in the chapter 4 later, we give the simulation

steps of P’ simulating a one step GOTO statement of P.

Corollary 1.1 An NDCSP, P', takes^a steps to simulate a

one step GOTO statement of a general 5-program, P.

Proof For a statement "GOTO L” in P, there is the

corresponding line "GOTO L^” in P'. When a P-computation

executes "GOTO L", the next step will go to one of lines

labelled L in P. By AFI steo-2, the P *-computation, in

simulating this step may go though all L-blocks, i.e. a

steps, in the worst case. So P* may take a steps to simulate

a one step GOTO statement of P.

In Ex. 1.2, 6 is 2 for label L; according to the above

procedure after step 2, it looks like:

X<-X-l

[L^] X«-X

[L^] X<-X+l

[L^] GOTO L2

[M] Z<~Z + 1

IF Z^O GOTO M

[N] Z<-Z-l

- 12 -

[L3] IF X5^0 GOTO N

[M] IF Z56O GOTO L

Y<-Y+l

Pro. Ic4

After step 3 and step4,

[Li]

[Li]

[Li]

[M]

[L2]

[L2]

[L2]

[N]

[L3]

[L3]

[L3]

[M]

After step 5. we have:

[LJ

[LJ

[LJ

[MJ

[MJ

[M^]

the program looks like

X^X“1

x<-x
X<-X+l

GOTO L2

Z<-Z + l

IF GOTO M

X<-X

GOTO L3

Z<-Z-l

IF X96O GOTO N

X4-X

GOTO

IF Z^fcO GOTO

Y4-Y+1

Pro. 1.5

X4-X-1

X<-X

X<-X+l

GOTO L2

Z<“Z + 1

Z<~Z

GOTO M2

-13-

[L^] IF ZjtQ GOTO

[L2] X«-X

[L2] GOTO L3

[NJ Z<r-Z-1

[N^] Z4-Z

[N^] GOTO

[L3] IF X^O GOTO

[L3] X«-X

[L3] GOTO

[M2] IF Z^O GOTO

[M2] Z<-Z

[M2] GOTO M^

Y<-Y+l

Pro. 1.6

- 14 -

1.3.2 NDCSP Accepts the Same Sets as General

(Non-Deteimiinistic) Computation of an 5-Program

In this section we show that the replacement of an

S-program, P of length n, by another, P*, of constant label

multiplicity, as in the last section, does not affect the set

accepted by general computation.

DEFINITION 1.4 Let f be the one-to-one order preserving map

of the lines of the original program P (of length n onto the

lines of P' of length N) that are not added in step-2 iii)

of AFI. Call this the correspondence mao> and for i, l<iln,

f(i) is called the corresponding line for P, and f(n+l)=N+l.

Note that the difference between line i, of P, and line

f(i) of P' are superficial. Line f(i) differ from line i, at

most, in change of the prefix label, and change of the

internally mentioned label, if line i is a GOTO line.

Lemma 1.2 Function f which is defined as above

injection from P to P*.

Proof For the line i in P.

(a) line i is not in any block.

(a.l) line i is not of the form "GOTO L”.

There is exactly one corresponding line f(i)

has the same form as i , by AFI-step 4.

(a.2) line i is of the from "GOTO L”.

There is exactly one corresponding line f(i)

is changed to "GOTO L^”, by AFI-step 4.

(b) line i is in M-block Bj^.

(b.l) line i is not of the form "GOTO L".

There is exactly one corresponding line f(i)

has the same form as i, in B' by AFI-step-2

is an

, which

, which

, which

(suppose

- 15 -

this M-block is the occurrence M-block

in P) .

(b.2) line i is of the from "GOTO L".

There unique corresponding line f(i) is the form

that comes from (a.2) and (b.l) in this case. Thus,

for all i, l<i<n, in P, there is exactly one

corresponding line f(i) in P*. Therefore f is an

injection from P to P*.

For both lemmas below we assume that P has no ”V4-V”

instruction. If so, then omitting such lines from P does not

affect the inputs accepted. P(x) denotes that x is the input

of program P.

Lexnma 1.3 If there is a k-step computation of P(x) leading

to a snapshot s=(i,a), then there is a computation of P*(x)

leading to a snapshot c=(f(i),a).

Proof By induction on k.

Basis k=l.

The only 1-step computation of P (x) leads to the

snapshot Sj^=(l,a^), where is the initial state. By

AFI, the initial snapshot of P'(x), c^, has the same

state o^, and starts at first line, i.e. C2^=(l,a^) .

Hence in this case the assertion is,correct.

Assume, for induction.

For any k-step computation C of P(x) leading to the

snapshot Sj^= (i,^,, there is a computation C of P'(x)

leading to the snapshot c^^ = (f (i^^) , .

- 16 -

Consider the (k+1)^^-step.

Suppose there is a k+l-step computation of P(x) leading

to the snapshot . We use the induction

assumption on the part of that computation through step

k, and we have three cases:

case 1) Line ij^ is not of the form "GOTO L”, ij^^tn+l.

In this case state in both computations, passes to

the same state and we need only check that the

control is correctly passed.

a) line i,^ is not in a label block, then ij^^^=ij^+l. in

P*(x), control passes from next line,

i.e. f (ij^+1) =f (ij^)+1, so the corresponding snapshot of

* ^(k+l)p“^^ ' ^k+l^ '^k+l^ *

Thus in this case, there is a computation of P' (x)

leading to snapshot C(k+i)p"" ' ^k+i^ *

b) line ij^ is in a label block, say

control passes from ij^ to the top line below in P

(since line ij^ is not V4-V) ; In P'(x) control passes from

f(ij^) to the top line, below B^^ (suppose this M-block is

the occurrence M-block in P), and this line is

f(i.^), so the corresponding snapshot of s^ , is again:

*^(k+l)p ^^k+l^ ' ^k+l^ *

Thus, in this case, there is a computation of P' (x)

leading to snapshot (f (i^^^^) , .

-11 -

case 2) Line is of the form "GOTO L", i^^n+1.

In this case no change is made in the state, in either

computation, so •

Control passes from line ij^ to some line in one of

the L-blocks in P. We must see that there is a P *

computation with correct transfer of control from

snapshot (f(ij^),a^) to (f ,a^) . Since the executable

command of line i^^ is "GOTO L", the command of f(ij^),

according to algorithm AFI is "GOTO L^"o The correct

computation for P* in this case selects the last line

of block B' , last line of B_' , . . ,, last line of B* , and
-1

last line of B' . Thus there is a computation P' (x)

which eventually arrives at snapshot (f ^ 3-S

required.

case 3) ij^=n+l.

Then stays on line n+1, state is unchanged.

Since f(ijc) is the corresponding line, then, by

definition f(ij^)=N+l (suppose program P’ is of length

N) , thus the corresponding snapshot of is:

This complete the induction step, so the result of the

lemma follows.

End of proof.

- 18 -

Lemma 1.4 If there is a k-step computation of P*(x) leading

to a snapshot c=(f(j),a), where f(j) is a corresponding line

of P/ then there is a computation of P (x) leading to a

snapshot s=(j,a) .

Proof By complete induction on k.

Basis k=l.

The same argument as in the basis ease of Lemma 1.3

applies.

Inductive step

Assume for all h<k, if there is a h-step computation of

P* (x) leading to snapshot (f ' where f(i^) is a

corresponding line of P, then there is a computation of

P(x) leading to snapshot Sp=(i^,a^).

Now consider a k-step computation, c^, C2/ . . . Cj^, of P'(x)

leading to snapshot (f (i,^) , , where f(i]^) is a

corresponding line of P.

Choose the largest hQ<k, so that the hQ-step part of the

k-step computation gives snapshot c =(f(i),0), for a
HQ hg HQ

cor responding line f (i>,). By assumption there is a
"0

computation of P (x) leading to snapshot s = (i, , G,) .

We diagram the present assumptions for greater

understanding.

- 19 -

P-computation P ’ -computation

s
Pho

C = (f (i,) f CTj.)
iln -fin Ho

s
Pho+l Vi> ■h„+l

}
results of
executing ijon-
corresponding
lines

use g to denote the first corresponding line number

executed by P' after step hQ.

First we note that CJ w the result of executing lines
HQ+I

i f or equivalently f(i.) , on the state S , is the same
to tg rig

as since in the P *-computation the intervening steps

do not change the state. Thus, to prove the lemma it is

sufficient to show that i^=f^ (g) .

We consider cases on the joint form of the line i^ and its

correspondent f(i.) .

a) lines L and f(i^) are not GOTO lines,

a.i) both are labelled lines.

In this case P control passes to the top line below

the label block in which i^ lies, and P' control to
^0

the top line below the label block in which f(i)
“0

lies. But, this is a corresponding pair of lines

-1
and f (g)=ij^.

- 20 -

a.ii) neither line i^ nor f(i^) is labelled.
1^0 “0

In this case, control in both programs passes to the

next line, i.e. i =i. +1, g=f (i,)+1 and f (g)=i, .
JC HQ Hg X

b) lines i^ and f(i,) are GOTO lines.

In this case line i^ is of the form "GOTO L” and line

f(i,) of the form "GOTO L " . Now, line g is the first
hg 1

corresponding line of the f(i,). Thus line g must lie

in same block, since the actions of the

non-corresponding lines in steps hg+l through k-1

cannot transfer control outside of the (set of)

blocks. Since g is a corresponding line in an

block, there is a line in some L-block of P which

contains the corresponding instruction, so that

f"^ (g)=ij^.

This completed the induction step and, hence, the lemma is

proved.

From lemma 1.3 and lemma 1.4 , we can get a theorem as

following:

Theoreml.l Given a general 5-program, P, there is another,

P ' , in which all line labels occur with the same

multiplicity, such that P accepts X if and only if P' accepts

X.

Proof The lemmas above show that the same snapshots can be

attained by P and P', then, for given X, there is a

- 21 -

halting computation of P(x) if and only if there is a

halting computation of P*(x),

-22-

CHAPTER 2

Simulation Of General Computation

By Deterministic Computation

In this Chapter;, we prove, for S-programs directly, that if

a set X can be accepted by an S-program, P, then there is

another S-program, P*, which accepts X and every computation

from P*, is deterministic (Lemma 4.6.1 of [4] proves that a

non-deterministic Turing machine can be simulated by a

deterministic one) . In this sense general computation is no

more powerful than deterministic computation except, of

course, that it seems to require an exponential increase in

time for the deterministic computation. The usual device used

in simulating a non-deterministic computation by a

deterministic one is to use a subprogram to generate

instructions which remove choices from the main program in

executing GOTO statements with multiple destinations. We

refer to such instruction as "clock sequences”, definition

2.1, below. The subprogram generates a sequence, C, of

numbers CQ, c^^, . . ., Cj^^; 0<Cj_<a, where a is the indeterminacy of

P, and P* executes a computation simulating m steps of some

P-computation and consuming the clock sequence as it reads

its values to direct the choice of GOTO destinations.

2.1 Clock Sequence for Simulation

DEFINITION 2.1 Any given non-negative integer c, can be
m

Call the sequence

{d ,d d„} a Clock Sequence for integer c. m' m~ 1' ' u

-23-

The individual values dj^, 0<i^, will be used to instruct the

simulator which of the a possible line labels involved in a

"GOTO L” should be executed. We call each d^ a clock sequence

value..

Theorem 1.1 tells us that for general S-program computation

from P, it suffices to consider only S-programs, P’, of

constant indeterminacy. Thus^ in order to simulate P by a

DCSP/ P*/ we need only consider a NDCSP, P*/ in which all

the labels in a label block occur a times, and simulate the

computations of P' by to a DCSP, P*.

Theorem 2.1 If a NDCSP, P*, accepts a set X, then there is

a DCSP, P*, which also accepts X.

Proof Suppose the constant indeterminacy of the given

NDCSP, P\, is a.

First we make an intermediate change in P'.

cl. In each L-block, replace the a occurrences of L

by LQ, L^, . . ., in order.

c2. Insert the unlabelled line "GOTO in the

L-block immediately below each L^-line, 0<j<a-2. Here

we use the unconditional "GOTO L^j" as a basic

command, as an abbreviation for "IF GOTO for

same register, V, which is initialized non-zero.

c3. Insert "V<-V" with label below line Lj^_|.

-24 -

After this change, no label is used more than once in

program P* and there is no L-line to support the "GOTO

L" statements of P'(see pro2.2). Thus, execution of

P' would result in termination in response to each

GOTO statement, however our attention is not on the

execution of this temporary program, for which we

retain the name P *.

Now we turn to creation the simulator, DCSP, P* from

P' of length t.

The flowchart for turning P* into P* follows.

Fig 2.1

I. P* contains the following lines to create the clock

-25-

sequence, call CL which is:

CL C<—*C+1 {C is the clock sequence, it is

initially 0 }

Z^«-C

II. If the line is not of the form "GOTO L” , here L

is not subscripted, then the corresponding form in p*

is the same as the one before in P'.

III. If the line is of the form "GOTO L" but not "GOTO

LQ^", then the corresponding form in P* is changed to

"GOTO LC" which transfers control to the subprogram

LC, below:

LC Z4<-0

IF GOTO RML {RML will compute the remainder

and the quotient of modulo Ct}

GOTO CL {the current clock sequence has
been consumed. Create another
clock sequence.}

IV Read next line, if it is line D+1, stop the

simulation; Otherwise, go back to the step II.

Note that if the program P' had h different labels,

there are h kinds of Change-subprograms.

By definition 2.1 rm(Z^,a) is the clock sequence value

and qt(Z^,a) is the new(reduced) clock sequence. We

use registers for rm(Z^,a) and Z^ for qt(Z^,a), in

subprogram RML. Now rm (, a) = Z a * [Z ^ / a] and

qt (Z^, a) = [Z^/a], but to avoid analysing the complexity

-26-

of primitive recursive functions computed by

S-programs, we compute these two quantities by the

following straightforward program.

[RML]

[RL2]

Z^^-l

IF Z^5*0 GOTO RL2

GOTO FL

Z2^—Z2 + I

IF Z^9fe0 GOTO RL3

GOTO FL

{this part of the program reduces

by bt^ If a 0 arises before the

last line of this part, we exit

with the present and Z2.}

(decrement clock}

{increment remainder}

[RL„_J Z^f-Z^-1

Z2«-Z2+l

IF Z^?fcO GOTO RL„

GOTO FL

[RL„] Z^f- Z3-I

Z2^—0

Z^<—Z4 + I

IF GOTO RML

GOTO FL

[FL] Zi<-Z4

IF Z^i^O GOTO L'l

GOTO LQ

[L\] Z2<-Z2-l

IF Z^jtQ GOTO L*2

GOTO L3

[^’a-2] Z2<—Z2-I

IF GOTO L'a-i

GOTO L„_2

[L'„_i] GOTO L„_i

{there are 3(a-1) lines until

{reset remainder value to 0}

{increment quotient}

{start another reduction of Z-^ by

a}

{this part of the program utilises

the clock sequence value in

register Z2 to direct control to a

particular line LQ, L]_, . . ., the

new labels for the a—tuple of lines

labelled L in the program P'.}

{end RML}

-27-

There also are h kinds of RML-subprograms, since each

label block, L, requires a different subprogram.

Therefore, if there is P'-computation which accepts the set

X, then there is a clock sequence which generates a

P*-computation such that X is accepted.

Let us take an example.

Suppose P' is following, and a=3

L

L

L

V4-V

V4-V+1

GOTO L

IF V^fcO GOTO M

V«-V-l

Vf-V+1

M

M

M

V<“V+1

V<-V+l

V4-V

V<-V-l

Y<-V

Pro 2.1

Then the temporary P' is

V4-V

V^V+1

GOTO L

LQ IF V^tO GOTO M

GOTO L3

V<-V-l

GOTO L3

L2 V<-V+l

GOTO L,

M.

M,

M-

V<-V

V4-V+1

V«6-V+l

GOTO M.

V4-V

GOTO M,

Vf-V-1

GOTO M,

V<-V

Y<-V

Pro 2.2

-28-

So the P* is :

CL C^C+1

—c
v<-v
V<-V+l
GOTO LC

LQ IF V?tO GOTO MC

GOTO L3

V«-V-l

GOTO L3

L2 V4-V+1

GOTO L3

L3 V<^V

Vf-V+1

MQ V4-V+1

GOTO M3

M3 V<-V

GOTO M3

M2 V4-V-1

GOTO M3

M3 Vf-V

Y<~V

LC

IF GOTO RML

GOTO CL

MC

IF GOTO RMM

GOTO CL

[RML] Z3<- Z3-I

IF Z^^iO GOTO RL2

GOTO FL

[RL2] Z^^Z^-l

Z2^—Z2+1

-29-

IF Z^?tO GOTO RL3

GOTO FL

[RL3] Z^^-l

Z2«-0

Z^i-Z^+l

IF Z^9fc0 GOTO RML

GOTO FL

[FL] Zi^-Z^

IF Z2?^0 GOTO L'l

GOTO LQ

[L’l] Z2<-Z2-l

IF GOTO L*2

GOTO L^

[L'2] GOTO L2 { end of RML }

[RMM] Z^4- Z-1

Z2^~Z2 + 1

IF Z^^ GOTO RM2

GOTO FM

[RM2] Z^f-Z^-1

Z2<-Z2 + l

IF Z^^O GOTO RM3

GOTO FM

[RM3] Z^<-Z^-l

Z2^“0

Z4^Z^ + 1

IF Z^^ GOTO RMM

GOTO FM

[FM] Z^<-Z^

IF Z2^0 GOTO M’l

GOTO MQ

[M\] Z2<-Z2-l

IF Z2^0 GOTO M*2

-30-

GOTO

[M'2] GOTO M2 {end of RMM}

Pro 2.3

Theorem 2.2 Given a set, X, accepted by an 5-program, P,

there is another 5-program, P*, which also accepts X, and

each computation of P* is deterministic.

Proof As commented above, it suffices to show that P*

accepts the same set as the version of P* which has constant

indeterminacy. For each X, if there is a computation of P'

which terminates on input X, there will be a value of the

clock sequence for which P* also terminates on X. Since,

eventually, arbitrarily large values of the clock sequence

are generated by P*, unless termination occurs, then P*

accepts X. Conversely, if there is a P* computation accepting

X, then P* will have an accepting computation based on the

sequence of choices dictated by the appropriate clock

sequence of P*. Since no line label is repeated in P*, each

P* computation is deterministic.

2.2 Time Estimation

We consider the number of steps required by P*(x) to fully

simulate t steps of P*(x).

Lemma 2.1 A single call to the subprogram LC (Change L) ,

where the values of is may require ^^^:^+2a+2

computation steps of P*.

proof Let us go back to look at the subprograms:

-31-

There are 1 + z^ steps in CL, 3z^+[z^/a]+2a+l steps in

LC in the worst case, and (4zj^+[z^/a]+2a+2) < (5z^+2a+2).

Thus the total number of steps in the worst case is at

most: a+2 .

Here a is a fixed number, ^ linear

polynomial.

Theorem 2.3 Given an NDCSP, P', there is a DCSP, P*,

which will simulate a t-step computation of P' in 0(a^^)

steps.

proof To simulate t "steps” of NDCSP, P', the DCSP, P*

must successively calculate for all clock sequences of

length 1,2, ...,t. Thus the value of Clock sequence C

must run from 1 to C(t) = (a—l)a^"^+ . . . + (a—l)a+ (a—1)

(Unless, of course, P* halts for one such value of C).

Now, to simulate 1 step of P' which is not of the form

"GOTO L" requires 1 step of P*.

Suppose the step i to be simulated is "GOTO L" in P'

then in P* it must be changed to "GOTO LC”, and requires

P^j^(C(i)) (C(i) is present clock sequence value) steps

of P* by the lemma 2.1.

Thus, to simulate t steps of P', the worst

simulation case would involve simulating t successive

GOTO statements. P* must cycle through all of the

-32-

Clock strings of a-length 1, then all of these of

a-length 2,...,all of a-length t. Since for each t

there are a^ such strings, the worst case is:

P^j^(l)a+ P^L<2)a2+. . P^^(C(t-l))a^-i+ P^j^(C(t))a^ .

Since P^^^ (C (t)) a^= (5C (t) +2a+2) a^= (5 (a^-1) +2a+2) .

Therefore T = 0(a^^) ,

-33-

CHAPTER 3

T.M.Accepts The Same Class Of Sets As NDCSP

In this chapter, we are going to prove that a general

non-deterministic computation S-program, P, can be simulated

by a deterministic Turing machine, M, and conversely. Note

that the present formulation (including the use of a two-way

infinite tape) follows [6], Actually Turing's original

development employed quintuples rather than quadruples. As we

know from Chapter 2, it is necessary only to consider a

deterministic computation S-program, P*, because, a general

S-program P can be simulated by a program P*, which admits

only deterministic computation.

3.1 The Flowchart of T.M. Simulator for DCSP

Since one P *-computat ion step is specified by its

snapshot, which contains the line number to be executed and

the content of each register, it is convenient to consider

two-way infinite multiple-tape Turing machines, and then to

appeal to the standard result for simulating multiple-tapes

by a single tape. This simulation is refered in [2,pp.ll6] in

which the authors mention that the contents of a two-way

infinite k-tapes T.M. and the position of the tapehead on

each can be represented as a single tape with 2k tracks.

Using this representation, the proof of Lemma 4.5.2 of [4],

in fact, shows how to simulate any computation by a two-way

infinite T.M. using only one tape.

We use V3, V^, . . ., x^,X2, . . ., x^, the input variables

' ^1' ^Z' ■ ■ ■ ’ the lOCal

-34-

variables of P*/ and for, Y, the output variable of P*.

although it is possible to consider any S-program language,

we simplify the discussion to a "Tally-language” in which

Vj“0, is represented by 1, and Vj=m is represented by

IV.1+1
1 =ll...l (m+1 times) .

To construct the simulating Turing machine, we adopt the

convention that the input string is placed on the first tape,

tape-1; the number of executed line in P* is placed on the

second tape, tape-2; the variable (3<j^n+p+3) is initialized

blank on the tape-j. At the end of a computation a n+p+3-tape

T.M. is to leave its output on its first tape; the contents

of the other tapes are ignored.

Before proceeding to the T.M. code, we describe the idea of

the construction for ,the simulating T.M. There are n+p+3

tapes, of which tape-1 is reserved for input and output,

only. Tape-2 records the number of the next 5-program line to

be executed. Tape-3 through n+2 are reserved to receive the n

inputs V3, V^, . . ., which are the initial contents of the n

input registers. Tape-(n+3) through n+p+2 are initialized

with value 0, and later become the locations of values for

the variable registers. Execution of 5-program instructions

"V<-V+l" and "V+-V-1” can be accomplished by modifying one

register tape, and incrementing tape-2 by 1, to record change

of control. When the executed line is a GOTO, none of the

input or local register tapes is altered, but tape-2 is

erased and rewritten with the number of a line bearing the

correct label. In this process, states of the TM. are used to

remember the line numbers to be written on tape-2. The

instruction "V<-V" results in incrementing tape-2 only. A

-35-

flowchart which relates the various procedures follows. Note

that the n initial inputs are all recorded on tape-1 initially

as a concatenation.

Fig 3.1

-36-

3.2 Procedures of Simulation

First we initialize each tape as following:
IV3I+I IV4I+I IV2+nl+l @

tape-1 ai B1 B...B1 B

{the input string is
placed on the first
tape}

(number of executed
line is place on the
second tape}

(input variabletape}

(input variable tape }

(local variable tape }

(local variable tape }

(output variable tape}

tape-2 B 1 a

tape-3 a

tape-(n+2) a
tape-(n+3) B 1 a

tape-(n+p+2)B 1 a

tape-a B 1 a

Here a is equal to n+p+3, the underline represents the

head position on the each tape of the T.M..

In the following procedures, we use an a-tuple notation

with superscripts, say [B^^^ . . . B^“^] (a times B) to

represent the a-tuple of symbols which occur at the present

head positions of the a—tape T.M.. For example, [B^^^ 1^^^

B^^^... B^“^] denotes that the head points to blank on the

first tape, the head points at 1 on the second tape, and the

head points to blank on the other tapes. The second a-tuple

in each T.M. instruction may contain, besides alphabet

symbols, also the symbols R and L which are used in the

standard T.M. sence to indicate moves of one square right, or

left, on the indicated tape. Our T.M. instructions will be

of the quadruple form, using the symbols just defined and

states as needed. Since states are used by the T.M. to

remember what to do, we invent and use MNEMONIC symbols for

-37-

states .

0 where: V3=Xj^,V^=X2, Vn+2=Xn-

(1) COPYINPUTS - copy the inputs V3, , . . . , tape-3

until tape-n+2 (n times) in order. We use (O^i^n^ 0^q<2) to

represent states.

{start at blank for each tape,

move the heads on tape-1 and
tape-3 to the right, the rest are
not to change.}

{read 1 on tape-1, write 1 on

tape-3 }

[B^^^B<2)B(3) _ .B<“)] [B^^*B<2)3(3) ^ ^ ,B<“)] C20

{if the head on tape-1 points

to a blank, go to state C20 which

works on tape-1 and tape-4 }

C^2 [1<^JB<2)I(3)B(4) ^ ^ .B<“)] [R<1)B<2)R<3)B(4) ^ ^

{if both heads on tape-1 and
tape-3 point at 1, then move the
heads on both tapes to the right,
go back to state

. . {Then for the states C20' ^21,

. . C22 'and C3Q, the idea of

. . operation is similar to ^lO'

^11, ^12 ^20' ^30' ••*'

^nO' ^nl' ^n2 ^n+10^

. . .B^“)] [R^^^B^2) ^ ^ 3(n+lJ3{n+2)B(n+3) ^ ^

C^^[B^^>B<2) ^ ^ B(n+2) ^ ^ .B^“)] [B<^^B<2^B^^^LQ

{state LQ is

procedure}

in the next

-38-

. . .B'“>] [R<1)B<2)R(3)B'«' . .

{After we finish working on the

tape-1 and tape-(n+2), the inputs

will be copied from tape-1 to

tape-3 to tape-(n+2)}

After procedure COPYINPUTS, the T.M. looks like

tape-1

tape-2

tape-3

tape-4

IV3I+1 IV4I+1

B 1 B 1

B 1 a
IV31 +1

B 1 a
1V4I+1

B 1 a

B ... B 1
'2+n +1

tape-(n+2) B 1 a

tape-(n+3) B 1 a (local variable tape }

tape-(n+p+2)B 1 a

tape-a B 1 a

(local variable tape }

(output variable tape}

The next procedure will be started at state LQ .

(2) INCLINE - increase the number of the executed line by 1.

[B B B ...B] [B L B ...B]

(move the head on tape-2

to left)

(1) (2) (3) (a), (1) (2) (3) (a) ^
L^ [B 1 B ...B] [B L B ...B]

(read 1 on tape-2 until the

first blank was found}

^ (1) (2)_(3) _(a) ^ ^_(1) (2)^(3)
L^[B B B ...B] [B 1 B ...B]

(add 1 to the left end of

tape-2

-39-

L, [B 1 B ...B] [B LB ...B]R 2 0

{move the head on tape-2 to
left, go to state Rg which

is in the procedure CHECK)

After execution of this procedure, the head on tape-2 is

on the blank just to the left side of the string of I's. In

this case the T.M. looks like:
1V31+1 IV4I+I IVz+nl+l

tape-1 B1 B1 B... B1 a

tape-2

tape-3

tape-4

a 1 1 B

IV, I +1
B 1 a

1V41 +1

B 1 a

|Vn^2l+l
tape-(n+2) B 1 a

tape-(n+3) B 1 a (local variable tape }

tape-(n+p+2) B 1 a

tape-a B1 a

(local variable tape }

(output variable tape)

The next procedure will be started in state Rg.

(3) CHECK - reads the line number on the tape-2. If it is

t+1, then the machine halts, here t represents the length of

the S-program P*.

Rg [B<1^B<2)B^“)] Rg (move the head on tape-2

to right}

Rg [B<^^ 1^2)30) ^ ^ .B<“)] . .B<“)]RQ^

(the first 1 is reached)

-40-

RQ^ . . .B<*^)]R^ {the second 1 is reached}

R^ [B<^>B<2) . . .B^“>] [B^^>B<2) _ ^B(a)jp^[i] ^

is read on tape-2 , then
go to state which

finds the instruction in
line 1.}

R^ [B(D I(2)B(3) ^ ^ .B^®)] [B<^^R^2)B(3) ^ ^ .B^“)]R2

{in state R-j^, if a 1 is

. . read on tape-2, then go to

. . the state R2, continue to

. . read tape-2}

RJ^[B<^’B^2) ^ ^ .B<®)] [B<1’B<2) . . { in state R^, if a blank is

read then go to the state

FQ which corresponds to

the k^^ line in P*}

RJ^[B<^^1<2)B(3) ^ ^ .B<“)] [B<^^R^2^B^^>. . .B<“)]Rj^^^{ i^k<C}

. . {in state Rj^, if a 1 is read

. , then go to state Rj^+i and

. . continue to read tape-2.}

R^[B^^U<2)B(3) ^ ^ [B<^^R<2^B^^^ . . .B<“MRC+I

Rj^^ [B<^^B<2)B(3> _B(a)j . .B<“M HQ {the program execution

halts, so go to state HQ

Rj;^^ [B<^> 1 . . .B<“)] [B^^>B^2)B(3) _B(a) J procedure

HALT}

After this operation, the head on tape~2 moves to the blank

just to the right side of the string of I's.

Now find the instruction on the k^^ line of program P*. If

the variable in the k^^ line is V. then the T.M works on the
J /

tape-j, here 3<j<a , 1^^.

If the instruction is Vj^-V^+l, we have subprocedure called

INCVj.

-41-

(4.1) INCV^-for tape-j

]F
[k]

1» j

{since the head on the

tape-j, is immediately to

the right of the last 1 and

add 1 on tape-j }

F
[k]

j

{move the head on the tape-j

to the right one square, go

to the state LQ which is in

procedure INCLINE}

If the instruction in line is Vj<—V^-l,. then we use

subprocedure called DECV^. The procedure checks whether

and takes action on the result of the check.

(4.2)DECV^ -for tape-j

F, [B ...B ...B [B
(1) j-i),{ j)„(j+i) „(ct)

..B L B ...B]F
[k]

1, j

{move the head on the tape-j

to the left one square }

Fi,j[B ...1 ...B]F
[k]

2,1

{continue left past the

rightmost 1 on tape-j}

F;;;;(B‘^’...B<'’...B‘“’

^[k] ^^(1) (j) ^(a)

F2,j[B -1 -B

] [B ...B R B ...B]F^ j

{ Vj^=0, move the head

square to the right }

] [B ...B R B ...B]F .
^, 1

{there are two I's, Vj^^O,

move head one square to

right}

-42-

[k] (1) (j) «<«),.„(!)
[B ...1 ...B] [B ..B R B

(a)
.B]L

{move the head to the right

on the tape-j, then go to

the state LQ, leaves tape-j

unchanged}

„[H1 _(1) (1)
...1

(change rightmost 1 to blank

on tape-j, then go to state

LQ}

If the instruction is we have subprocedure called NCV.

(4.3) NCVj - for tape-j

-.(j) (tt) (1)
[B ...B ...B] [B ...B B B

(a) ^
...B]L

(leaves tape-j unchanged)

If the instruction in line is ”IF GOTO L'\ then we

use a subprocedure called UNCV^. The procedure first checks

whether V^^Or and then takes appropriate action.

(4.4) UNCVj -for tape-j

[3c] ,_(1) (j) (a) (1)
[B ...B ...B] [B ...B

j)_(j+l) _(«),_[k]
L B ...B]F

1. j

(head on the tape-j moves to

the left one square }

[k] _(1) (j) (tt) (1)
^^^[B ...1 ...B] [B ,..B

F^ ^ [B ...B ...B] [B ...B
2,j '■

[k] ^^(1) ^ (j) ^(a) (1)
F^ j [B ...1 ...B] [B ...B

L B
(a) , [k]

2, j
...B]F

(continue left past right

most 1}

R B ...B]F, .
3, 3

(Vj^=0, move head on tape-j

to right one square)

R B ...B]F^_J

(Vj^?*0, the head on tape-j

goes back to right one

square)

-43-

(j'l) J j)„(j+1)
R B ...B]L,

{Vj_=0, go to the state LQ

leave tape-j unchanged}

F^^^[B ...1 .,.B] [B ...B
(1) _(j-i)^(j)„(j+i)

R B ,..B]N o,P
{Vj^#0, go to state NQ which

is in the procedure

CHANGELj^p, P is the number

of the line with label

L,1^P^1 = the(constant)

multiplicity of line labels
in the S-program)

(5) CHANGELj,p- for the instruction of "IF Vj^tO GOTO L", If

there are m different labels in P, then there will be m versions

of this procedure, each with its own unique value of p.

B
(2)

B

N
l.P

1
(2)_(3)
B

N
2,p

N [B B ..,B
P.0

(3) _(a) ^ ,_(l)^(2)_{3)
...B] [B LB

(a)
.B]N

l,P

{move the head on tape-2 one
square left }

[B'^’B'^’B'^'

{erase one 1 on tape-2}

(a) (1) (2) (3) (a)
..B] [B L B ...B]N

1,

{continuing move head on
tape-2 to left}

..B
(a) (1) (2) (3)

[B B B]N
[L]

P,0

{finish by erasing all
tallys, go to the state

Np, move the head to

left in order to print P + 1

tallys on tape-2}

]N
[L]

P.l
{print p+1 tally on tape-2

for the label L, there will
be m kinds of this
instruction if the program

-44-

P* has m difference

labels}

(2) (3)
L B]N

[L]

P.2
{after writing 1 in one
square of tape-2, move the
head to the left again}

N„ [B B ...B] [B 1 B ...B]N„
P.2 P,3

[L] (1) (2) , ,«(1),(2) (3)
N [B 1 ...B] [B LB ...B]N

P.3 p,4

P.2P ^ ••• J I J P2P+1

N™ [B'^’I'^’B‘^>...B<“>] [B‘‘'L‘^’B' = ’...B'“>] N™ „
p,23+l P.2 (P+1)

[L] (1) (2) (3) (a) (1) (2) (3) (a)
N „ [B B B ...B^^] [B^^ ^B B ...B'^]R,
P,2P+2 0

{state RQ is in the

procedure CHECKj^p)

After this operation, the head on tape-2 is on the end left

of the string

(6) HALT- if the program halts, copy the last tape, tape-a, to

the tape-1, there are two steps:

(6.1)-erase the tape-1

{move the head on tape-1
from right to left one
square)

r, ^(a) [IBB ...B
(1) (2) (3) (a)

] [B B B ...B]H

{erase 1 on tape-1 of the
right end. }

-45-

{reach another blank, move
the head on tape-1 to left
again. After this it erased
one input register}

(1) (2) (3) , r„(l) J2)^(3) ^iOL)
K^[l B B ...B] [B B B ...B]

{start to erase another
input value}

(3) (a) (3) „(a)
[B B B ...B] [B B B ...B]

{until the first double
blanks reached}

(6.2) COPY- copy tape-a to tape-1

^ ^ Jl) (2)_{3) ^(a),
Hj[B B B ...B] [R B B ...L]H

4

{move the head on tape-1 to
right, and the head on

tape-a to left}

, (a) (1> J2)_{3) (a),
H^[B B B ...1] [1 B B ...1

{copy 1 from tape-a to

tape-1}

r, (3) (2)^(3)
[B B B ...B] [B B B ...B]

{finish copy }

„ ^ (1)_(2)_(3) , (CO , ,J1) J2)_(3) ^(a),
H^[l B B ...1] [R B B ...L]

{continually copy}

Here^ the state Hg represents a "halt state”, and does

not appear in any other instructions.

From the procedures above we immediately get the following;

Theorem 3.1 Given a DCSP, P*, with n inputs registers,

there is a deterministic Turing Machine, M, which accepts the

same set of n-tuples as P*.

-46-

We now look at the number of steps taken in each procedure

above.

a) . Initialization configuration

T.M.^ M, takes one step to initialize the inputs register

on tape-1.

b) . In COPYINPUTS

There are slx^^l+l steps from state to €30^ thus M

n

takes totally 32^|x.|+n steps in this case.

c) . In INCLINE

There are (3+t) step in the worst case.

d) . In CHECK

There are 3 steps from state RQ to R^, and there are (C+1)

steps from state R^ to HQ in the worst case.

Thus step (CHECK) =C+4 in the worst case.

e) . It is very easy to find out:

step (INCVj)=2

step (DECVj)=4

step(NCV.)=l

step (UNCV.)=4

f) . In CHANGELj p

r [L]
There are 21+2 steps from state N „ to N in the worst

p,o

« r [L] . case, and there are 2(i+l)+l steps from state N to R^ in
0

worst case.

Thus step(CHANGELj p)=4C+5 in the worst case.

g) . In HALT
n

2^^|x.|+n+2 steps from state H^ to H^ in which
1-1 ^

There are

-47-

all inputs are erased.

And there are 2| YI+2 steps from state H3 to Hg in which

output is copied to tape-1.
n

Thus step (HALT) =2^|x. I +1 Y I+n+4.

Corollary 3.1 For a t-step deterministic computation

S-program P*, there is a T.M., M, which takes 0(t) steps to

simulate P*.

Proof First M would intialize the inputs and copy those

inputs to the individual input register tape, that requires:
n

l+3^|Xi| +n
i-l

And the worst simulation case would involve simulating t

successive GOTO statements and require:

t (step (UNCV.) +step (CHANGELj^p)) .

If P* halts at t step, then at this case M takes:
n

2]^|x. I +1 Y I+n+4 steps
i-l ^

Thus, simulating a t-step computation of P* in the worst

case, M would require:
n n

t (Step (UNCV)+step (CHANGEL «))+3X|x.| +n+l+22^|x.| +|Y| +n+4.
^ j/P i-l ^ i-l ^

n

= t (4+4C+5)+sX|x. I +|Y| +2n+5
i-l ^

= 0(t). ###

Corollary 3.2 For t-steps of a non-deterministic

computation S-program, P, there is a T.M., M, which takes

0(a^^) steps to simulate P, here a is indeterminacy of P.

Proof From Lemma 1.3, we know that a t-step P—computation

can be a simulated by (t+c)-step P'-computation, here c is

-48-

some constant, and each label block has the same

indeterminacy a in P' .

And from Theorem 2.3 a (t+c)-steps of a P*-computation can

be simulated by O (a^ -steps, which is 0(a^^)-step

P*-computation.

Finally from Corollary 3.1 0(a^^)-step P*-computation can

be simulated by a O (O (a^^))-step, which is 0<a^^)-step,

M-computation of a Turing machine.

Therefore a t-step P-computation of S-program can be

simulated by a 0(a^^)-step M-computation of Turing machine.

3.3. A General 5-program Accepts the Same Set as a T.M.

We now show how to find a general non-determinist ic

computation 5-program for any given a NDTM (Non-deterministic

Turing machine[2]) .

For simplicity we consider quintuple Turing machines instead

of quadruples, because a quadruple Turing machine can be

simulated by a quintuple Turing machine [2,pp.l01] . There

are two kinds of quintuples:

R qj

<3l Sj s,, L qj

We want to construct a program P in the language S which

simulates NDTM, NM.

-49“

Let a quintuple non-deterministic tally Turing machine be

NM with states . . . / and alphabet {0,1}^ here 0

represents the blank, B.

P will simulate NM by using the numbers in base 2 to

represent strings(on the NDTM tape). The tape configuration

at a given stage in the computation by NM will be encoded by

P using three numbers stored in the registers L, H, and R.

The value of H will be the numerical value of symbol(0 or 1)

currently being scanned by the NM's head. The value of L will

be a number which represents in base 2 a string of

symbols({0,1}) which begins with the leftmost 1 to the

current head position and ends at the square just left of the

head. The value of R represents in a similar manner the

string of symbols to the right of the head, ending with the

rightmost 1 on the tape. Note that one or both of L and R may

be 0.

For example, consider the tape configuration of NM :

...0001111011100. ..
t
<53

Here H=l;

L=1*2^+1*2^+1*22+1*2^+0*2°=30;

R^l*2i+l*2°=3;

The program P will consist of three parts:

BEGINNING

MIDDLE

END

BEGINNING - Suppose the initial tape of NM is :

B XT B x^ B ... B x„ B 12 n

where the numbers x^, X2f . . . / are represented by Tally

-50-

strings (see section 3.2) , Thus the part BEGINNING has the

initial value of L,H,R:

L <— 0

H 0

(2n-l)
R <- CONCAT^ (x^,0,X2/0, . . .,0,x^)

here for given strings u^^, U2f .../u^^ € A*, CONCATj^<"^ (u3^,U2f . . . u^^)

is simply the string obtained by placing the string

Ui,U2/...fu^one after the other.

MIDDLE - this part will simulate NM in a step-by-step

"interpretative” manner.

Associate with each state a label Aj^ and with each

state-symbol pair (q^/j) a label Bj.j (j=0,l). For each label

A^ ,place the following pairs of lines, in order i=l,2,..,m

(for definitness, since the order does not matter) at the

beginning of the S-program MIDDLE.

[A^] IF H=0 GOTO Bio

IF H=1 GOTO

If NM contains the quintuple q^ j k R q^ (j,k=0,l), then

we introduce the block of instructions

[B^j] H 4“ 0 {k=o}

[B^j] H 4- 1 {k=i}

L 4- C0NCAT2(L,H)

H 4- LTEND2(R)

R 4- LTRUNC2 (R)

GOTO At

-51-

If .NM contains the quintuple j k L (j,k=0,l), then

we introduce the block of instructions

H <— 0 {k=0}

H 1 {k=l}

R f- C0NCAT2 <H,R)

H 4“ RTEND2 (L)

L 4- RTRUNC2(L)

GOTO Af

If there is no quintuple in NM beginning q^^ t (t^O,l), we

introduce the block

[B.^] GOTO END

Finally, the part END of P can be taken simply to be

Z 4- CONCAT^^^ (L,H,R)

Y 4- Z

where functions (see [2])

1. RTEND2 (L) gives the binary code for the rightmost symbol

of a given word when L is the binary code for

2. LTEND2 (L) gives the binary code for the leftmost symbol of

a given word Wj^ when L is the binary code for W^;

3. RTRUNC2 (L) gives the binary code for the result of

removing the rightmost symbol from a given nonempty word

when L is the binary code for

4. LTRUNC2 (L) gives the binary code for the result of removing

the leftmost symbol from a given nonempty word when L is

-52-

the binary code for Wj^;

We have now completed the description of the program P

which simulates the NDTM, NM. This gives us the proof of the

following theorem.

Theorem 3.2 Given any non-deterministic quintuple Turing

machine, there is a general 5-program which accepts the same

set as this Turing machine.

Summarizing results from Chapter one to this section, we

observe the consequence as shown in the following:

Fig 3.2

In attempting to compute the time requirement for an

5-program to simulate a T.M. computation we encounter a

limitation of the first form of 5-programs discussed in

reference [2], Consider the problem of simulating a single

move of the T.M. using the program of Theorem 3.2. Of the

several string manipulation operations, CONCAT, LTEND, RTEND,

LTRUNC and RTRUNC, even the simplest, RTEND, involves

-53-

evaluation of the remainder function, base 2, because we are

working with numbers and must use numerical codes for the

argument strings. As we saw in Chapter 2, the time required

by an S-program to perform the remainder operation is linear

in the value of its argument. Since the 5-program must

manipulate entire numerical register contents in simulating

each T.M. step, and the time required is proportional to the

values of these registers (here, in general, exponential in

the lengths of the registers) the use of an 5-program to

simulate a T.M. would seem quite wasteful.

The limitation just discussed is imposed by the

5-operations ”V«-V+1” and ”V<—V-1” which, in effect, force the

5-program to work in a tally mode. In manipulating numerical

codes for words of a T.M. language this is wasteful. Of

course, in what we have done in Chapter 3, the argument of

waste is not really applicable because, for a tally language

the length of a word and its value coincide. However, this is

not the correct way out of the difficulty.

The correct way to simulate even a tally language T.M. is

to use Davis * idea of a symbol manipulating 5-program, which

we will do in Chapter 5. The operations ”V<-V+1” and ”V<-V-1”

are then replaced by operations "V<-aV”, which adds a new

symbol to the left end of the string in V, and ”V<—V"”, which

deletes the rightmost symbol of the string in V. Using these

operations it is easy to see that the string manipulation

functions CONCAT, LTEND, RTEND, LTRUNC and RTRUNC (as

distinct from their primitive recursive counterparts

performed on numerical codes) can all be carried at in times

linear in the lengths of the argument strings. For example,

LTEND (x) , is performed by the 53^-program.

-54-

[L] Y4-X

X<-X’

IF X^O GOTO L

which requires 3(|x|-1)+2=3|x|-1 steps to complete.

-55-

CHAPTER 4

Universal NDCSP

In the previous chapters/ we discussed the special NDCSP

in which each label occurs a times/ and each label occurs

only in one label block. We now can reduce the a to 2, to

provide the most direct modification of the universal

deterministic S-program, of reference [2], to make it

non-deterministic.

4.1 Algorithm for Binary Condition-AFBC

Suppose an NDCSP, P*, contains condition instruction ”IF

GOTO L”. If the condition is true in the ”IF” statement,

a of possibilities will exist, since there are a L

statements. After executing one of L statements, the next

statement to be executed may again be one statement, or one

of a choices. The above condition is best illustrated by a a

branching tree; the case a = 4 is shown below.

If true

Fig 4.1

-56-

It is easy to reduce the value of a to 2, as shown in the

next algorithm.

Step 0 Replace any P* line of the form

IF (condition) GOTO L

by IF (condition) GOTO

Step 1 Add these lines in blocks of 2.

[Aj^] GOTO

[A^] GOTO A2

[A2] GOTO L2

[A2] GOTO A3

[A„] GOTO L„

[aj GOTO L„

Step 2 Replace the original

[LJ

[LJ

GOTO M

[L2] ...

[L2] ...
GOTO M

L-block by

{first line of the L-block,

repeated twice}

{second line of the L-block,

repeated twice}

[LJ . . . {a^^ line of the L-block,

[L„] . . . repeated twice}

[M] V<-V

[M] V4-V

-57-

In algorithms AFI (Chapter 1) and AFBC it is mainly the

GOTO statements of each corresponding program which are

changed. When we come to analyse the simulation steps, the

GOTO statement usually brings out the worst case. Thus we

consider how many steps would be taken for simulating a one

step GOTO statement of P* by P”(lemma 4.1). Since there are a

steps taken by P* to simulate a one step GOTO statement of

P (corollary 1.1 Chapter 1), we have the result of Lemma 4.1.

We will get the results of Corollary 4.1 and Corollary 4.2 in

later sections of this chapter.

Lemma 4.1 The binary S-program, P”, takes a+3 steps to

simulate a one step GOTO statement of P' in the worst case.

Proof For a one step "GOTO L” statement of P*, by AFBC,

steps 0, 1 and 2, P” takes a+3 steps in the worst case.

Lemma 4.2 A binary 5-program, P”, takes 2a+3 steps to

simulate a one step GOTO statement of a general S-program, P.

proof The result immediately follows Corollary 1.1 and Lemma

Theorem 4.1 Given an 5-program, P’, of constant

multiplicity, a, there is another, P”, of constant

multiplicity 2, which accepts the same set as P* does.

"Broot (outline) The technique for a formal proof of Theorem

4.1 is essentially the same as that for Lemma 1.3. We

establish a (2-valued) correspondence relation, g, between

lines of P' and lines of P”. A non-GOTO line corresponds to

-58-

itself/ and the line of on L-block corresponds to the pair

of lines labelled Lj^. One then shows, in the same manner as

the proof of lemma 1.3, that there is a P ’-computation

leading to snapshot (i,a) if, and only if, there is a

P''-computation leading to (g(i),a).

4.2 Universal BNDCSP

In this and the following section we give two constructions

of a universal 5-program (which in our terms includes both

non-deterministic and deterministic). The first construction

uses the idea of a binary 5-program developed in section 4.1,

and varies little from the universal deterministic program of

[2] . It is worth noting that both of our universal programs

contain only one duplicated line label. Every general

non-deterministic computation 5-program can be simulated by

NDCSP in which all similar labels occur in one block, and

every NDCSP can be simulated by BNDCSP in which there are

only two labels in the each block. Thus, in our first

construction,we need only to give the universal program for

every BNCDSP.

The non-deterministic computation universal program

is as follows. For definitions of the several primitive

recursive functions used, and to follow the universal program

itself, the reader may wish to consult [2,pp.58] .

s - n
K f- 1

-59-

[C] IF K=Lt(Z)+1VK=0 GOTO F

U 4- r((Z)^)

P 4“ P ^ ^ ^r(U)+l

IF C(U)=0 GOTO N

IF C(U)=1 GOTO A

IF ~(P|S) GOTO N

IF C(U)=2 GOTO M
GOTO B

[B] K<-min [D((Z) +2 = C(U)]
i^Lt (Z)

[B] K4-min [D((Z) +2 = C(U)]+1
i^Lt (Z)

GOTO C

[M] S 4- [S/P]
GOTO N

[A] S <- S*P

[N] K <-K+l
GOTO C

[F] Y 4- (S)^

Pro.4.1

From Pro 4.1 we have the Theorem as follows:

Theorem 4.2 There is a universal S-program (f or both

non-deterministic and deterministic computation) which

contains only one repeated line label.

Of course the result is best possible, if we wish to permit

non-deterministic computation. Since each non-deterministic

computation can be simulated by a deterministic one, there is

another universal S-program with no repeated labels, i.e. the

one in reference [2].

As we discussed earlier in this chapter, we now compute how

many

-60-

steps a universal S-program, ^UNSPI' takes to simulate a

general 5-program, P, by using the "middleman” programs P'

and P”.

Corollary 4.1 A universal 5-program, ^ONSPI' takes 2a+16

steps to simulate a one step GOTO statement of a general

5-program, P, by using program P* and P” if we count each

primitive recursive line as ” 1-step” in

Proof In Pro.4.1, there are 13 steps to simulate a one step

GOTO statement of P” in the worst case. And there are 2a+3

steps to simulate a one step GOTO statement of P by P” by

Lemma 4.2. Thus a universal 5-program takes 2a+16 steps to

simulate one step GOTO statement of P. ^

4.3. Universal 5-program, Second Construction

By going to a little more trouble, it is possible to

construct a universal 5-program which does not depend on any

of the special reductions used in the last section.

In short, when the universal program encounters a GOTO to a

labelled line, we can cause it to compute the number, 4, of

occurrences of that label in the program being simulated, to

seek the first(topmost) occurrence of that labelled line and

(non-deterministically) either select that occurrence, or go

into a loop which produces the second line of that label,

etc.

For a "GOTO L” statement, we compute the following

-61-

functions
Lt(Z)

|1 = OC (t((Z) .+2 — C(U) I) {here a is a primitive recursive
i=i function in [2] }

LST(Z,j) = min [D((Z)^)+2 = C(U)]
j<i^Lt(Z)

)Li gives the total number of occurrences of label L in the

5-program, P. Note that a, which is mentioned in previous two

sections, is greater than 4, i.e. if |i is the indeterminacy of

program P then a=)i+l.

LST(Z,j) gives the least line number of the line labelled L

between the line and the Lt(Z)^^ line.

The loop which does the non-deterministic selection of the

GOTO destination is:

Placing these subprograms in the universal program yields a

new universal program, Uyjjgp2 as follows, and a second proof

of Theorem 4.2.

B K i- LST (Z, I)
GOTO D

(I initialized 0, k now gives

the least line number of the

line labelled L between the

Ith line and the last one }

D GOTO C

D jj,

IF p, = 0GOTO C

I <- K+1

GOTO B

a new line number and go to B

loop}

execute that line, or compute

{Either go back to C with the

"present value" of K, and

n

K <- 1

-62-

[C] IF K=Lt(Z)+1VK=0 GOTO F

U <- r ((Z)j^)

P 4— P
^ ^ ^r(0)+l

IF C(U)=0 GOTO N

IF C(U)=1 GOTO A

IF -(PIS) GOTO N

IF C(U)=2 GOTO M

i=l

[B] K LST(Z,I)

GOTO D
[D] GOTO C

[D]

IF ^ = OGOTO C

I K+1
GOTO B

[M] S <- [S/P]
GOTO N

[A] S <“ S*P

[N] K 4-K+l
GOTO C

[F] Y <- (S)^

Pro.4.2

Corollary 4.2 A universal 5-program, takes

steps to simulate a one step GOTO statement of a general

S-program, P, without using program P' and P” if we count each

primitive recursive line as "1-step" in U^jjgp^.

Proof For a one step GOTO statement of P, in Uujjsp2 loop

which does the non-deterministic selection of the GOTO

destination in the worst case takes 6p. steps. Thus UUNSP2

takes 6\i+ll steps to simulate a one step GOTO statement

of P in the worst case.

-64-

CHAPTER 5

NP Completeness

5.1. Cook's Theorem for the Programming Language 5^.

The programming language is specifically designed for

string calculation on an alphabet A of n symbols. It is

supplied with the same input, output and local variables as

S, except that we now use them as having value in the set of

all words on the alphabet A and we allow a unique null word

as 0(empty word). The instruction types are as following (see

[2,pp.77]) .

Instruction Interpretation

V av For each symbol G in the alphabet place the symbol

C to the left of the string which is the value of V.

V V” Delete the final symbol of the string which is the

value of V. If the value of V is 0, leave it
unchanged.

V ♦— V ® a non-operable line, control passes to next line.

If V ENDS a GOTO L For each symbol G in the alphabet A and each label

L, If the value of the string in register V ends

in the symbol G, execute next some instruction

labeled L; otherwise proceed to the next
instruction.

Table 5.1

@ Not a basic instruction in [2]. We include it for convenience although its

effect can be achieved under the rules of [2] by other means, e.g. V ♦- V“ for

some register V which is always void.

-65-

The following conventions apply to a set of lines which

form an S^-program, P .

(1) . The alphabet of the language is A={a^, a2, . . . / a^^} and

we choose another symbol a^, to represent a "blank”, to be

used in a manner explained below. A* is, as usual, the set

of words on A.

(2) . The set of variables(register names) which occur in P

is {V^,V2, . . .,V^}.

(3) . P is of length t.

(4) . P has the different label names: of multiplicity

L2 of multiplicity \i2, . . .f multiplicity

In addition, we define a partition of the numbers of only

the set of labelled lines, as follows:

h€H if and only if line h is labelled by L (p=l, 2, . . . ,m) ,
P

For use in calculating the atom count and clause count of

standard CNF(conjunctive normal form), S, we give following

lemma,

Lemma 5.1 Suppose A^,A2, . . each is a disjunction of

literals®, and the total literal count of A^^ is Literal (A^^) .

B^,B2/- . . ., each is a CNF, and the total clause count of B^^

is Clause (B^), the total atom count of B^^ is Atom(B^) . Then we

can calculate the atom count and the clause count of the CNF

reduction of the formula x:

@ The present development follows [5]

-66-

X = (A 3B) A(A,Z>B.) A. . .A(A 3B)
11 2 2 mm

by the formulas
m

Clause (X) = ^Clause (B.) ;
1-1 ^

m

Atom(x) = ^ (Literal (A^) Clause (B^) + Atom(B^)).

Proof Note that in each (Aj^Z)B^) :

Clause (Aj^iDB^) = Clause (B^^)

Atom (Aj^3Bj^) = Literal (Aj^) Clause (Bj^)+Atom (B^) .

Therefore

Atom (X)

Clause (X)

1-1

m

I
1-1

Atom (A.I5B,)
1 i

(Literal (A^) Clause (B^) +Atom (B^))

^.Clause (A Z)B,) =y,Clause (B.) .
1-1 ^ 1-1 ^

«##

5.2 Cook's Theorem, Necessity.

Cook's Theorem states that the acceptance problem for an NP

set can be "encoded" by conjunctive normal form propositional

formulas, and that the code can be computed in polynomial

time(see[1]) . Specifically, given an NP set, S, accepted by

an S^-program, P, computing non-deterministically, there is

for each x6A* a polynomial-time computable CNF, 'Fx, so that

XGS if and only if 'Fx is satisfiable.

-61-

As the proofs of [2,pp.34l] and [3] are usually done, we

will not fully exhibit the polynomial time function which

computes from x and P, but only provide a count of the

number of atoms used in 'Fx. The proof of Cook's Theorem is

given into two parts. The first part shows the construction

of ^x, from which the necessity that ^x is satisfiable if P

accepts X follows, immediately. The second part. Theorem 5.2,

provides an induction argument that, when 'Fx is satisfied, P

accepts X, which is the sufficiency portion of the proof.

Theorem 5.1 Given P and x, there is a CNF 'Fx, of 0(P^(|x|))

atoms, which is satisfied if P accepts x in time P(lx|)).

Proof The atoms used in constructing ^x are;

Pv ^ « r^={At the step k, symbol a^ is in the position p of

register V^} (l^k<P(|x|), l^j<r, 0^s<n, l<p<P(|x |)) .

j q~ step k, the length of the A* string on

register is q} (0<q<P (| x |)) .

= {At the step k, the h^^ program line of P is

executed} (l<h^) .

Next, we encode the computation of P on k, in three part.

5.2.1 The Initialization

Let x==a^a2 ••.01^/ where each a^eA and, to simplify notation,

the subscripts do not denote the order of the symbols of A,

and we may have even if i;^=j .

(1.1) "Register 1 is initialized with input x, and the

symbol on each position of the register is unique at

this step"

For each p, l<p<u, each s, 0<s^n,

R

l.l.S,p

The atom count is (n+l)u.

(1.2) "The rest of register 1 after position u is

initialized blank (ag) , and not any other symbols."

For each p^ u+l^p^(|x|)/ each s, l<s^n.

R, -
1.1. o,p

1.1.S,p

The atom count is (n+1)(P(|x|)-u).

(1.3) "Each remaining register is initialized blank all

the way to position P(lx|), and not any other

symbols."

For each j, 2<j^r, and each p, l<p^(|x |) , each s,

l^s^n.

1. D.0,p

'•R, .
1.3 .s.p

The atom count is (r-1)(n+1)P(|x|).

(1.4) "The length of the string on register 1 is u, and

not any other length."

For each q, 0<q< P (1 x |), qAi.

1 .1 .u

1 ,1 , q

The atom count is P(|x|)+1.

-69-

(1.5) "The length of register j (i«il) is 0, not any other

length."

For each j, 2^j<r, each q, l<q<P(|x|).

H 1, j,o

1 # j »q

The atom count is (r-1)(P(|x|)+1).

(1.6) "Line 1 is being processed at step 1, and not any

other line."

For each h, 2^^+l.

L,
1,1

-L l,h

The atom count is D+1.

Thus the initial part is the conjunction of CNF's given by

(1.1)-(1.6) above all the clauses, called . This

expression is of length 0(P(|x|)).

From this point onward, we present the CNF as a collection

of clauses(disjunctions of atoms) which will be conjoined to

form the final CNF. In each case we give the range of the

subscripts, as in (1.3) above, so that for each selection of

subscripts in the permitted range(s) there is an individual

clause. I.E. in (1.3) there are (r-1)(n+l)P(|x|) clauses and,

since each is an atom in this case, the same number of atoms.

The remainder of the CNF will consist of one part, called

CNFj^, for each computation step k.

-70-

In P(|x|) computation steps^ some legal computations may

not halt while others may halt, i.e. reach line C+1. To write

a CNFj^ in a uniform way, we consider line C+1 as a "trapping

state” which, once entered, causes each configuration to

reproduce the one before. Using this device CNF^ "states”

that the step of configuration results from the

application of one of the four rules of P, or does nothing,

if the trapping state has been reached.

In this Chapter the following terms are used;

s-tate= "Register length" + "Register Contents"

Configuration = State + Control

The clauses of CNFj^ are prepared so that an unique truth

value is assigned to each atom whose step subscript is k+1,

called (k+1)-atoms, by the operation of step k, from the

truth value already held by that and other atoms at the

previous step. One way to view this is that we are defining a

vector valued function V(k), 0<k<P(lx|), by recursion on k.

For each k the value of V(k) is a vector of truth values of

length equal to the number of k-atoms. CNF^^ is assembled in

an obvious way from V(k). We use the notations Atom(F) and

Clause (F) for the number of atoms, clauses in the CNF, F.

We now discuss the construction of the CNFj^. We begin with

a part of CNFj^ which is designed to state that configuration

are unique.

5.2.2 Unique Configuration, Q(k)

(2.1) "There is exactly one line to be executed"

-71-

For each h, and each f, l<f^+l, f^h.

^Ii V ^Ii k, h k,f

The atom count is D(D+1) .

(2.2) "The length of each register is unique.”

For each j, l<j^r, each q, 0<q<P (| x |) , each

0<q'^ (I X I) , q’=?^q.

The atom count is 2rP (| x |) (P (| x |)+1).

(2.3) "There is exactly one symbol in position p for each

register.”

For each j, l<j<r, each p, l<p^(|x|), each s, 0<s^,

each s', 0<s*^, s^s.

The atom count is 2r(n-1)nP{|x|).

Let the collection of all clauses (2.1)-(2.3) above be

Q(k), which represents the unique configuration, at step k.

Thus the total atom count of Q(k) is 0(P^(|x|)).

Next, we turn our attention to the part of CNFj^ which

insures correct change of state and of control. First, we

define a formula CNF(h,k) for fixed line, h, of the program

at step k. CNF(k,h) may be of several forms according to the

type of line h being executed, thus we first give the

flowchart to describe what is the special form for each case

of CNF(k,h)

-72-

Fig 5.1

5.2.3 Change of State and of Control

There is at most one register, say j, whose content will be

altered by any instruction, so the content of the rest of

registers, i(;^j), in each position is not changed. Also the

length of the non-blank string in register i is the same as

before.

-73-

We consider the following clauses for fixed k and fixed h.

(I) Nchange in register i

a) . "No change in the content of the register i.

For fixed i, for each s, 0<s^, and each p.

The atom count is 2 (n+1) P (| x |).

The clause count is (n+l)P(|xl).

b) . "No change in the length of the register i."

For fixed i, for each q, 0<q<P(|x|).

k,i,q

The atom count is 2(P(|x|+l).

The clause count is (P(|x|+1).

l<p<P(|x|),

The CNF NCj^(k,h) is the collection of all clauses in a) and

b) aboves. And expresses the fact that there is no change in

register i at step k, (if line h is executed®) .

The atom county Atom (NC^^ (k, h)) ^ is: (2 (n+1) P (| x |)+2 (P (| x |+1)).

The clause count. Clause (NC^^ (k, h)) , is: ((n+1) P (| x |)+ (P (| x |+1)).

(c) Let NC^j(k,h) be the collection of all clauses NCj^(k,h),

for i^j, l<i<r. NC^^(k,h) expresses that there is no change

in any register i(^j) at step k, if line h is executed.

0 As yet, the line h does not play a rule in the definitions, but it will below.

-74-

The atom count. Atom(NC^j (k,h)) , is (r-1) Atom(NC^^ (k,h)).

The clause count is. Clause (NC^j (k,h)) , is:

(r-1) Clause (NCj_(k,h)).

(d) Let

r

NCA(k,h) = A NC. (k,h)
i=l ^

NCA(k,h) states that there is no change in any register

content when line h is executed at step k. It corresponds

to [Nchange all Registers] in fig 5.1.

The atom count. Atom(NCA(k,h)) , is r (Atom(NC^^ (k, h))).

The clause count is. Clause(NCA(k,h)), is

r (Clause (NC^^ (k, h))).

(II) Change in register j

there are several possibilities for changing the content

and the length of register j . Each case depends on the

instruction of the program P for the fixed k and fixed h.

Case 1 If at step k, line C+1 is being executed.

l.i) [Nchange all Registers]- "No change in all registers.”

NCA(k,C+l)

l.ii) [Stay in line C+1] - "The computation stays in line

C+1. ”

^k+l,C+l

Let NOP(k,C+1) denote the formula:

-75-

(Lj^ z> (collection of all clauses in case 1)

By Lemma 5.1^ the atom count. Atom(NOP(k,C+1)) , is :

Atom (NOP (k,C+l) = (Clause (NCA(k,C+l)) +1) +(Atom (NCA (k, C+1)) +1)

and the clause count. Clause (NOP (k,C+1)) , is ;

Clause (NOP (k, C+1)) = Clause (NCA (k,C+1))+1

Case 2 If at step k, the line h(T^C+l) is being executed.

Case 2,1 If the instruction is ”Vj<- for fixed j,

2.1.i) [Nchange Register i] - "No change the content and

the length of register i, for all 1=?*j . ”

NC^j(k,h)

2.1.ii) [Augment] - "The string length of register j is

increased by 1."

For each q, 0<q< P (| x |)-l.

^,j,q

The atom count is 2(P(|x|)+l).

The clause count is (P(|x|)+1).

- "The content of the register j is changed by

placing symbol a^ at position 1, and shifting all

other symbols which were in the register j to the

right by one position.”

For fixed s and each s*, 0<s'<n, each p, l<p< P (| x |)-l.

^+1, j, s, 1

'^^ + 1, j, S ' , P+1

The atom count is (1+2(n+1) (P(|x|)-l)) .

-76-

The clause count is (l+(n+l) (P(|xl)-1)) .

[Next line] - ”At the next step, the (h+1)^^ line

will be processed,”

^ ^ J|
k,h k+l,h+l

The atom count is 2.

The clause count is 1.

The CNF A. „(k,h) is the collection of all clauses in case

2.1.

By Lemma 5.1, the atom count. Atom(A. „(k,h)), is:
Jr S

Atom(Aj g (k,h))=Atom(NC,j (k,h)) +2 (P ((x|)+l)

+1+2 (n+1) (P(|x|)-l)+2

and the clause count. Clause(A. ^(k,h)), is :

Clause (Aj ^ (k, h)) =Clause (NC^^ (k, h)) + (P (| x |)+l)+l

+ (n+l) (P (|x|)-l)+l

Case 2.2 If the instruction is .

Case 2.2.1 is empty.

2.2.1.i) [Nchange all Registers]-"No change in all

registers."

2.2.1.ii) [Next

NCA(k,h)

line] - ”At the next

line will be

vL
k+l,h+l

Step, the (h+1)^^

processed.”

The atom count is 2.

The clause count is 1.

Let ZNj(k,h) denote the formula:

-77-

(collection of all clauses in case 2.2.1)

By Lemma 5.1, the atom count. Atom(ZN^ (k,h)) , is :

Atom(ZNj (k,h)) = (Clause (NCA(k,h))+1)+Atom(NCA(k,h)+2

and the clause count. Clause(ZN^(k,h)) , is:

Clause(ZNj(k,h)) = Clause(NCA(k,h))+1

Case 2.2.2 is not empty.

2.2.2.i) [Nchange register i] - "No change the content

and the length of register i, for all i^tj . "

NC^j (k,h)

2.2.2.ii) [Decrement] - "The string length of register j

is decreased by 1".

For each q, l<q<P(|x|).

-H ^ VH , .
Jc,j,q k+l,j,q-l

The atom count is 2P(|xl).

The clause count is P(|xl).

- "The symbol in end of the string is deleted,

and the others are not changed".

For each q, l<q<P(|x|), each p, l<p< P (| x |), p=:^q,

each s, 0^s<n.

vR
k,j,q K+l,j,o,q

. V vR .
k,j,q K,3,s,p k+l,D,s,p

The atom count is 2P (1 x |)+3 (n+1) P (1 x 1) (P (| x |)-l) .

The clause count is P (| x |)+(n+1) P (| x |) (P (| x f)-l) .

-78-

2.2.2.iii) [Next line] - ”At the next step, the (h+1)^^

line will be processed.”

~L VL k,h k+l,h+l

The atom count is 2.

The clause count is 1.

Let Dj(k,h) denote the formula:

j Q ID (collection of all clauses in case 2.2.2)

By Lemma 5.1, the atom count. Atom(D^(k,h)) , is:

Atom (D j (k, h)) = (Clause (ZN^ (k, h)) +P (| x |)+P (| x |)+

(n+l)P(|x|)(P(|x|)-l) +l) + (Atom(ZNj(k,h))

+2P (IXI)+2P (I XI)+3 (n+1) P (IX I) (P (I XI)-l) +2)

and the Clause(Dj(k,h)) = Clause(ZN^(k,h))+P(| x |)+P(|x|)+

<n+l)P(lxl)(P(|x|)-l)+l

Case 2.3 The instruction is

This case is the same as case (2.2.1). that is:

ZN. (k,h) .

Case 2.4 The instruction is "IF ENDS a^ GOTO Lp”.

Case 2.4.1 does not end with symbol a^.

2.4.1.i) [Nchange all Registers] - ”No change all

register.”

NCA(k,h)

2.4.1.ii) [Change of Control] - "At the next step, the

(h+1)^^ line will be processed.”

vli k,h k+l,h+l

-7 9-

The atom count is 2.

The clause count is 1.

Let NSE. ^(k,h) denote the formula: J # S

P (| X I)

A [(H . A-R ,) 3(collection of all clauses
q_Q

in case 2.4.1)].

By Lemma 5.1, the atom count of NSE. ^(k,h) is:
J# S

P (|x I) (2 (Clause (NCA(k,h)) +1) +Atom(NCA(k,h)) +2) .

and the clause count of NSE. ^(k,h) is:

P (I x|) (Clause (NCA(k,h)) +1) .

Case 2.4.2 ends with symbol a^.

2.4.2.1) [Nchange all Registers] - "No change in all

register.”

NCA(k,h)

2.3.2.ii) [Change of control] - "One of the lines with

label Lp will be executed at next step."

-.L VVL k,h k+l,f
f€Hp

The atom count is l+|lp-

The clause count is 1.

Let Gj^g^p(k,h) denote the formula:

P(|x|)

A[(H . AR ,) 3 (collection of all clauses

in case 2.4.2)].

By Lemma 5.1, the atom count of G

-80-

P(|x|)(2 (Clause (NCA(k,h))+l)+Atom(NCA(k,h))+ 1+^ip)

and the clause count of G j»s,p IS:

P (|x|)(Clause (NCA(k,h)) +1) .

Now we can create the formula CNF(k,h) as follows for fixed

k and fixed h.

CNF(k,h) = NOP(k,h)

CNF(k,h) = A. 3(k,h)

{If line C+1 is to be executed }

{If line h reads "Vj^ a^Vj"}

CNF(k,h) = ZNj (k, h) AD j (k, h) {if line h reads or "Vj«-Vj~ ”}

CNF(k,h) = NESj 3(k,h) AGj 3 p(k,h)

{If line h reads "IF Vj ENDS a.^ GOTO Lp", }

Although the particular choice of CNF(k,h) depends upon the

instruction on line h of the program P, we see from the above

atom count that, regardless of the line, the atom count of

CNF(k,h) is 0(p2 (|x|) .

At Step k, only one line will be executed in P, so we

define a single CNF, call CNF^^ as follows.

CNFQ = Init^AQ(l)

CNF^ = CNF(1,1)AQ(2)

C+i

CNF, = A (L. ,3CNF (k,h)) AQ(k+l) k^tQ,!
K 1^-1 K ^ il

tl—1

Although these formulas are not yet in CNF, Lemma 5.1 shows

that the atom count of CNFis 0(P^(|x|)).

Therefore, if there is an program P which accepts the

-81-

input X in time P(lx|), then the CNF defined as follows

will be satisfied.

p <1X I)

'Fx = A CNF^
k=0

A L
P({ X), C+1

Since the atom count of CNFis 0(P^(|x|)), thus the atom

count of is 0(P^(|x|)), and we have proved Theorem 5.1.

5.3 Cook's Theorem, Sufficiency

Lemma 5.2. For each 0!^T<P (| x |) , if the CNF

T
ACNF,
k=0

is satisfied, then there is a correct computation

from program P, of length T, with input x.

For the proof of Lemma 5.2, as before we refer to the atoms

Lk h/ ®k j q' with first subscript k, as k-atoms>

and denote the collection of all k-atoms by and the subset

of those which are assigned the value TRUE by An

examination of the construction of the formulas CNFj^ shows

that to satisfy CNFj^ it is necessary to assign truth values

to the set of (k+1)-atoms. The process can be thought of

as proceeding according to the following table, from step 0

to k.

From the set of all step-1 atoms assigned value TRUE;

From the set of all step-2 atoms assigned value TRUE;

-82-

From the set of all step-k atom assigned value TRUE;

From the set of all step-K+1 atoms ^T+I 3-Ssigned value

TRUE.

Fig 5,2

Proof By induction on T.

Basis T=l.

Satisfaction of the initialization configuration, CQ,

shows immediately that there is a correct computation CQ

from P, of length 1.

For the induction step, the induction assumption is:

T

For 1<T^ (I X I) , if A CNF is satisfied, then there is a
k=o ^

correct computation, CQ, |-C^, i=l,2,...,T, of length

T. (ending with line number, register lengths, and

-83-

register contents determined by the TRUE atoms in CNFj^) .

Further, suppose that

T +1

ACNF^
k=0

is satisfied. Since we have

T +1 T

A CNF, = A CNF, A CNF^ ,
k=0 k=*0

T

then both A CNF,, and CNF„, , are satisfied.
, . k T +1
k=0

T

i) A CNF, is satisfied;
k=0

ii) CNF^^^ is satisfied.

The induction step proceeds from the above two

assumptions, and the induction assumption.

We have just noted that the truth values of all atoms

whose step subscript is T+1 have been determined in

satisfying CNF,j. The part Q(T+1) of CNF^ guarantees

unique line number, register lengths and register

contents. From (i) and (ii) and the induction assumption

we conclude there is a correct computation of T steps,

and that CNF^^^ is satisfied. We must see that truth

value assigned the atoms of step subscript T+2 in

satisfying CNF^^^ determine one more correct computation

step,the (T+1)^^. The reasons are eventually obvious,

from the way in which CNF^^^^ was constructed.

Satisfaction of CNF,^. requires that exactly one of the

atoms ^ is TRUE. From CNF^^^ we see that for that

value of h, denoted h', CNF(T+1, h*) must be satisfied.

-84-

It remains to show that the truth values assigned in

CNF(T+l,h*) determine a correct (T+1)^^ step computation

step.

Since we are arguing in general, we cannot commit to a

fixed form for line h* of the program P but must proceed

by cases on the four possible forms line h* may have.

However, to avoid tedious repetition, we argue just one

case, simply to show the form that the argument should

take.

Suppose line h' is of the form "IF V^, ENDS a^, GOTO Lp,"

and that the line numbers of P whose labels are Lp, are

h^,h2, . . . ,h^, here h^sHp,, |Hp. |= ^lp. = t.

As above, exactly one atom j, has value TRUE

and, by the induction assumption, this means that the

true length of the register content in register j' is q*

in the correct computation of length K. There are two

corresponding possibilities for atom .

(a) j, s' q' FALSE. Then, from case (2.3.1.iii) we

see that atom h'+i TRUE, and that for each j,s,q,

the "content" atoms R™., . , „ retain the same values as

^ + 1, j,S,q-

Thus, in case (a), since q* FALSE means that

if V., does not end with symbol a ., the (T+2)-atoms in

CNF^^^ have the correct values to determine the next

computation step.

-85-

(b) j, q, is TRUE. Then, from case (2.3.2.iii) we

see that atom TRUE for exactly one of feHp,, and

that for each j,s,q, the "content” atom j s q ^^tain

the same values as RT+i,j s q*

Thus, in case (b) , since R^+i, j',s',q* TRUE means that if

Vy ends with symbol a^,, the (T+2)-atoms in have

the correct values to determine the next computation

step. I.E. The line number, register length and register

contents may be altered to agree with the truth values of

the (T+2)-atoms and the result will be a correct

computation step.

Completing the proof of the other cases in exactly the same

manner leads to the completion of the induction step and thus

the proof of the lemma.

P (| X I)

Theorem 5.2 If ^x = /\ CNF, A L , is satisfied, then there
k=o ^ P (| XI), t+i

is a S^-program P which accepts x in time P(|x|).

Proof By Lemma 5.2, there is a correct computation CQ,

+ i = l/ 2,...,P(|xl)-l, of length P(|xl).

Satisfaction of CNFQ provide the truth values to

establish CQ, the configuration corresponding to the

initial line number(i.e. the first line), all register

lengths and register contents with input x for P.

p (| X I)
Lemma 5.2 shows that satisfaction of A CNF, causes a

k-O

correct computation of length P(|x|).

-86-

Finally, since d x |) ,c+i' satisfied, computation of

length P(|x|) results in acceptance of x.

As discussed earlier. Theorem 5.1 and 5.2 together

constitute Cook’s Theorem except for the usual omission, to

show that 'Fx is computable in polynomial time in |x|. We have

shown that the atom count in Tx is 0(P^(|x|)) for each x

belonging to a set X accepted in time P(|x|). It remains to

observe that 'Fx is constructed in a uniform effective manner

from the input x and the S^-program P. Thus (by Church’s

Thesis) 'Fx, or an appropriate code for ^x, is computable by

an S^-program, in a computation time proportional to its atom

count, i.e. in 0{P^(|x|)).

REFERENCES

1. S. A. Cook, The complexity of theorem proving procedures,
Proceedings of the Third ACM Symposium on Theory of
Computing (1971) ,pp.151-158.

2. M. D. Davis and E. J. Weyuker, Computahility, Complexity,
and Languages(Fundamentals of Theoretical Computer
Science), Academic press, 1983.

3. Herbert, Wilf, Algorithms and Complexity, Prentice-Hall,
Englewood Cliffs, New Jersey, 1986, pp.197-201.

4. H. R. Lewis and C. H. Papadimitriou, Elements of the
Theory of Computation, Prentice-Hall, Englewood Cliffs,
New Jersey, 1981.

5. E. Mendelson, Introduction to Mathematical Logic, Second
edition, D. Van Nostrand Company, 1979, pp.28.

6. E, L. Post, Recursive unsolvability of a problem of Thue,
The Journal of Symbolic Logic, Vol.11,1947, pp.1-11.

7 L. Stockmeyer, Classifying the computational complexity of
problems, The Journal of Symbolic Logic, Vol.52, No 1,
1987, pp.1-43.

