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ABSTRACT 

The concepts of S and S^^-programs are given by Davis, 

Weyuker, 1983. Several parts of the complexity theory are 

carried out directly for S and S^^-programs. The concepts of 

non-deterministic and deterministic computation from 

S-programs are defined, and deterministic simulation of 

non-deterministic computation is proved. A universal 

5-program for general (non-deterministic) computation is 

shown to require only one duplicate line label. Complexity 

results are given for these and other simulations, e.g. 

Turing Machine by 5-programs and the reverse. Cook,s Theorem 

for 5^-programs is proved in full. 
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INTRODUCTION 

In reference [2] Chapter 2 the authors use as their first 

model of abstract computation a very basic programming 

language^ S. Their first definition uses a set of registers, 

denoted X, V, Z, etc, with possible subscripts, a set of line 

labels, L, M, etc, possibly subscripted, and executable lines 

of only three types. 

V<-V+l 

V<—V“1 {leaves a null register null} 

IF VjtO GOTO L 

In this definition the concept of an alphabet is avoided 

or, equivalently, the alphabet can be thought of as a 

l-symbol "tally" language. Other programs, called 

Sj^-programs, are introduced which use ”non-trivial” 

alphabets. A, and replace the first two rules above by 

”V<-aV”, for aeA, and (remove the rightmost symbol in 

V, if there is one), and the last by "IF V ENDS a GOTO L”. 

A certain portion of the usual theory of abstract 

computation is developed using these S symbols and, in due 

course, the theory is shown to be equivalent to the more 

usual formalization, the Turing Machine. After this 

equivalence is established, reference [2] becomes more 

conventional and develops much of its material using Turing 

Machines(TM*s). In particular all results related to 

non-determinism are developed in the TM context. In this 

thesis, we develop a larger part of the basic theory, 

including non-determinism, in the S-program context, 

directly. 
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In one small departure from the usual presentation 

(see [7]),. we do not distinguish deterministic and 

non-deterministic S-programs. There is only one type of 

S-program, and it does both jobs depending upon whether the 

computation (execution) rules are deterministic or 

non-deterministic. The same could be done for TM*s. We do not 

use indexingsf or numberings of S-programs in our work, but 

if that were necessary, a possible economy would result from 

having only one class, indexed once. 

A further small departure occurs in our use of the 

"non-operable” instruction, V<-V, as a basic instruction. In 

reference [2,pp.23], V4-V, is a small subprogram, and its 

introduction therefore introduces several lines, and would 

complicate our statement of several complexity relations. The 

use of V<-V is inessential. The instruction VQ<-VQ-1, (or 

VQ^-VQ") / for a register which was conventionally always left 

empty, would accomplish the same purpose, i.e. it would pass 

control to the succeeding line of the S-program (5^-program) . 

In Chapter 1 we define the basic concepts of (general) 

5-programs, indeterminacy of an S-program, state the 

execution rules, and show how to replace a general S-program 

by one in which each line label occurs the same number of 

times (constant indeterminacy). The chapter concludes with a 

formal proof that, from the viewpoint of set acceptance, a 

program, P, and its constant indeterminacy companion, P’, are 

equivalent. 

Chapter 2 is devoted to developing the usual result about 

simulating non-deterministic computation by deterministic 
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computation, but here for 5-programs directly. The usual 

exponential increase in the time required is shown to apply. 

Chapter 3 develops the equivalence between general 

5-programs and general(non-deterministic) TM's. This is a 

direct equivalence and avoids the usual chain of 

equivalences, from non-deterministic TM to deterministic TM 

to (deterministic) 5-program to 5-program. Complexity 

results, in terms of time requirements, are given, but a 

limitation of the first type of 5-program emerges. This 

restriction is a consequence of the previously mentioned fact 

that ordinary 5—programs use tally languages, for which the 

length and the value of words, x, coincide (or differ by at 

most 1) . 

Chapter 4 begins by showing how to replace 

constant-indeterminacy 5-programs, of indeterminacy a, by 

programs of constant indeterminacy 2. This result is used to 

exhibit a universal (non-deterministic) 5-program, which 

differ from the universal (deterministic) 5-program of 

reference [2,pp.58] by the insertion of only one duplicate 

line label, (one additional line). A second construction is 

given which does not depend upon the constant-indeterminacy 

result, but is more complex. 

Finally, in Chapter 5, we return to a classic complexity 

result. Cook *s Theorem, formulated here for 5^-programs . 

Because of the lack of distinction between value of x and 

length of x for tally languages, and consequently for 

reference [2]'s first model of an 5-program, we change here 

to 5j^-programs . In terms of complexity, 5-program are 

equivalent to 5^-programs. Cook's Theorem is given the usual 



vi 

sort of proof, by exhibiting an algorithm for constructing a 

conjunctive normal form, ^x, for each S-program, P, and input 

X. However, we do go one step farther than most presentations 

by showing that the CNF, ^x, is satisfied if and only if. P 

accepts X. 



CHAPTER 1 

Prograxnming Language S 

In this Chapter, we describe the Prograxnming Language S 

and the syntax of S-program. Our definitions follow closely 

these in reference [2,pp.l5~l7], with minor differences. 

1.1 S-Programs 

Like any other program languages, programming language S has 

a.Input variables 

h.Local variables 

c. Output variable 

d. Label names : 

X, . Xj . X3 ,... 

Zi.Z^.Za.... 

,B-| ^2 »®2 *' 

e. One of the following statements(instructions)in the table 1.1 

Instruction 

V v+i 

V 4- v-i 

V 4- V 

IF V^Q GOTO L 

Interpretation 

Increase by 1 the value of the variable V. Variables are 

the names for registers holding values during a computation 

from the program. At the beginning of each computation all 

variables have initial value 0. 

If the value of V is 0, leave it unchanged; otherwise 

decrease by 1 the value of V. 

A non-operable line, control passes to next line 

If the value of V is not zero, perform the 

instruction with label L next; Otherwise proceed to 

the next instruction in the list. 

where V may be any variable and L may be any label. 

Table 1.1 
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f. A Program is an ordered list of instructions (finite). 

a. The length of the program is the length of the list of 

those instructions, i.e. the number of lines. 

h. The empty program contains no instruction, its length is 0. 

i. A state of a program P is a list of equations of the form 

V=m, where V is a variable and m is a number, including 

exactly one equation for each variable that occurs in P. 

j. A label block is a maximal set of consecutive lines of the 

program, all bearing the same label. 

1.2. Syntax o£ 5~programs 

Suppose we have a program P of length n. Let a be a state 

of P and let V be a variable that occurs in a. The value of 

Y at a is then the (unique) number q such that the equation 

V=q is one of the equations making up cr. In order to say what 

happens ”next”, we also need to know which instruction of P 

is about to be executed. We therefore define a snapshot or 

instantaneous description of a program P of length n to be a 

pair (i,<i) where 1 <i < n+1, and a is a state of P. 

(Intuitively the number i indicates that it is the 

instruction which is about to be executed; i=n+l corresponds 

to a "stop” instruction). 
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If s=(i,a) is a snapshot of P and V is a variable of P, 

then the value of V at s just means the value of V included 

in the state a. 

We shall handle the deterministic versus non-deterministic 

issue not by considering programs of the two types, but by 

considering only one type of program and representing 

deterministic computation, rule-II, as a special case of 

non-determini Stic (ordinary) Gomp-Ut a.t.l.Q.Q, rule-I. 

Non-determinism in computations is handled by use of multiple 

occurrences of the same line label, say L, so that in 

response to a "GOTO L”* the computation may choose 

non-deterministically any line labelled L just like 

non-deterministic Turing machine, which might have, for 

certain combinations of state and scanned symbol, more than 

one possible chice of behavior, defined in [4,pp.204]. In 

deterministic computation of [2,pp.25] a "GOTO L" command 

always chooses the first line of label L in the program. 

1.2.1 Non-Deterministic Execution Rule-I 

For a given S-program P, If (i,a) is a non-terminal 

snapshot of P, we define the successor of (i,a) to be the 

snapshot (j,x) following the rules below. 

* The unconditional GO TO L will be used below and 

represents the small subprogram V 4— V + 1, IF V ^ 0 GO TO 

L, using some variable V which does not appear elsewhere in 

the program. 



Line changing flowchart 

Fig 1.1 

I—A. The line is not in any label block, i.e. is not a 

labelled line, a, and contains the equation V=m. 

(a.l). The i^^ line is not the form ”IF V^O GOTO L". 

i=i+l; 

X has three subcases: 

i) The line is ”V<-V+1”, x is obtained from a 

by replacing the equation V=m by V=m+1. 

ii) The line is ”V<-V-1”, x is obtained from a 

by replacing the equation V=m by V=m-1 if m;^0; if 

m=0, x=<j. 

iii) The line is ”V<-V”, x=<r. 
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(a. 2) .The line is the form ”IF V^O GOTO L”. 

x=a; 

j has two subcases: 

i) If V=0, j=i+l. 

ii) If V9^0/ j is the number of any line in any 

L-block. 

•B. The i^^ line is in the label block, of label M, a 

contains the equation V=m. 

(b.l). The i^^ line is not the form "IF V^O GOTO L". 

(b.1.1). The line is ”V<-V”. 

x=a; 

j=i+l. 

(b.l.2) . The line is not ”V<-V” . 

j is the number of the first line below 

X has two subcases; 

i) The line is "V<-V+l”, x is obtained 

from cr by replacing the equation V=m by 

V=m+1. 

ii) The line "V4-V-1”, x is obtained 

from a by replacing the equation V=m by 

V=m-1, if rn^Of if m=0, x=a. 

(b.2). The i^^ line is the form "IF V^O GOTO L”. 

x=a; 

j has two subcases: 

i) If V=0, j is the number of the first line 

below Bj^. 

ii) If j is the number of any line in any 

L-block. 



1.2.2 Deterministic Execution Rule-II 

Rule-II 

Line changing flowchart 

Fig 1.2 

II-A The line is not the form "IF V^O GOTO L". 

i=i+l; 

X has three subcases: 

i) The line is ”V<-Vtl", x is obtained from a by 

replacing the equation V=m by V=m+1. 

ii) The line is ”V<—V-1”, x is obtained from a by 

replacing the equation V=m by V=m-1 if m9^=0; if m=0, x=a. 

iii) The line is ”V<—V", x=a. 

II-B The i^^ line is the form "IF V^O GOTO L”. 

x=a; 

j has two subcases: 



i) If V=0, j=i+l. 

ii) If V^O/ j is the number of the first line in the 

first L-block. 

DEFINITION 1.1 A computation, C, of a program P of length n 

is a sequence s^, S2^ . . ., Sj^ of snapshots of P such that s^^^^ is 

the successor of s^^ for i=l, 2, . . ., k-1. Sj^=(l,aj^) which is 

initial snapshot, Sj^= (n+1,which is terminal snapshot. 

DEFINITION 1.2 Any computation C, which is being executed by 

Rule~I, is called a non-determiiiistic computation, for 

convenience, written NDC to emphasize this case. 

DEFINITION 1.3 Any computation C under Rule-II is called a 

deterministic computation, for convenience, written DC to 

emphasize this case. 

As stated earlier, we do not classify 5-programs as 

"deterministic” or "non-deterministic”, but have only one set 

of 5-programs. It is the computations from these programs 

which are called deterministic, or non-deterministic. Our 

general term "computation" thus stands for what other authors 

call a non-deterministic computation (program, machine, 

etc.). 

Frequently it happens that restricted classes of programs 

suffice for certain types of computations, we consider 

several results of this nature in this paper, but begin with 

a very simple example, which should not be confused with the 

more important results of the next section. 
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[L] X4-X+1 

IF X^O GOTO L 

[L] X4-X-1 

Pro.1.1 

This program contains two instructions having the same 

label. According to the definition of DC, its snapshot, in 

effect, interprets a branch instruction as always referring 

to the first statement. So the program is equivalent to the 

following: 

We use DCSP to represent the program which is executed by 

Rulo-II. 

Lemma 1.1 Given a general 5-program, P, there is a 

companion program, P*, in which no line label occurs more 

than once, and so that the set of deterministic computations 

from P is the same as the set of all computations from P*. 

Proof If line i of P has label L, but is not the top line of 

label L, then control in a deterministic computation can pass 

to line i only if the line immediately above i is executed. 

Since this happens whether or not the label L is present in 

line i, we can erase all prefix labels L in lines which are 

not the top one with label L. In this new program, 

P*, all computations become Rule-I computations. Therefore, 

for program P*, the set of all computations is the same as 

the set of deterministic computations of P. 

[L] X<~X+1 

IF X?tO GOTO L 

X4-X-1 

Pro. 1.2 

### 



1.3. S~programs of Indeterminacy 5 

In a general S-program, there may be several different 

occurrences of a label. One label that occurs may not have to 

occur the same number of times as another label. We refer to 

the number of occurrences of label L in the label block as 

the multiplicity of L. and the maximum multiplicity of any 

label in P as the indeterminacy of P, say 6. 

Example 1.2 

X<-X-l 

[L] X<-X 

[L] X<-X+l 

[M] Z<-Z + l 

[L] IF Z^Q GOTO M 

[N] Z<-Z-l 

[L] IF X^O GOTO N 

[M] IF Z?iO GOTO L 

Y^Y+1 

Pro. 1.3 

In Pro.1.3, the multiplicity of L in first L-label block 

is 2, the multiplicity of M in first M~label block is 1, and 

so on. The indeterminacy of this program, 5, is 2. 

In our proof, in the next chapter, of the standard result 

on simulation of non-deterministic computation by 

deterministic, we will require an intermediate result, like 

Theoreml.1(below), to show that general S-program of 

indeterminacy, 5, can be replaced by program in which each 

labelled line has indeterminacy 5+1. Thus, we next turn to 

the procedure for this replacement. 



- 10 - 

1.3.1 Algorithm for Indeterminacy-AFI 

Let P be a general S-program 

Step 1. Determine the indeterminacy 5, and let a=5+l. 

Step 2. For a fixed label L. 

i). Put L-blocks in order as B_ ,...,B^ (suppose 

there are m L-blocks in P). 

ii) . In B_ , replace all labels L by L. . 
Li 1 

iii) . (a) The multiplicity of L^^, 5^^, will be made 

equal to a. 

(a.l) i?^, add statement "GOTO with label 

Lj^ below the last line of the L^-block. Call this 

new label block B_' . 

(a.2) i=m, add statement "GOTO L^" with label L^^^ 

below the last line of the L -block. Call this 
m 

new label block B’ . 

(b) The multiplicity of L^^, may not yet be equal 

to a. Insert statements "V<-V" with label L^^ 

between the last line of the old Li-block and 

the new last lines added in (a) until the 

multiplicity of L^^ is equal to a. Call this new 

label block B* . 
Li 

Step 3. Repeat step 2 until all L-blocks are treated. 

Step 4. Inside any line which contains form "GOTO L", 

replace by "GOTO L^"; Note that no line which lacks an 

internal or a prefix label is changed. 
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step 5. Repeat step2, 3 and 4 until all labels have been 

treated. 

Now we use NDCSP, P* to represent the program which has 

been changed by the Algorithm-AFI and is executed by Rule-i. 

For use in the chapter 4 later, we give the simulation 

steps of P’ simulating a one step GOTO statement of P. 

Corollary 1.1 An NDCSP, P', takes^a steps to simulate a 

one step GOTO statement of a general 5-program, P. 

Proof For a statement "GOTO L” in P, there is the 

corresponding line "GOTO L^” in P'. When a P-computation 

executes "GOTO L", the next step will go to one of lines 

labelled L in P. By AFI steo-2, the P *-computation, in 

simulating this step may go though all L-blocks, i.e. a 

steps, in the worst case. So P* may take a steps to simulate 

a one step GOTO statement of P. 

### 

In Ex. 1.2, 6 is 2 for label L; according to the above 

procedure after step 2, it looks like: 

X<-X-l 

[L^] X«-X 

[L^] X<-X+l 

[L^] GOTO L2 

[M] Z<~Z + 1 

IF Z^O GOTO M 

[N] Z<-Z-l 
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[L3] IF X5^0 GOTO N 

[M] IF Z56O GOTO L 

Y<-Y+l 

Pro. Ic4 

After step 3 and step4, 

[Li] 

[Li] 

[Li] 

[M] 

[L2] 

[L2] 

[L2] 

[N] 

[L3] 

[L3] 

[L3] 

[M] 

After step 5. we have: 

[LJ 

[LJ 

[LJ 

[MJ 

[MJ 

[M^] 

the program looks like 

X^X“1 

x<-x 
X<-X+l 

GOTO L2 

Z<-Z + l 

IF GOTO M 

X<-X 

GOTO L3 

Z<-Z-l 

IF X96O GOTO N 

X4-X 

GOTO 

IF Z^fcO GOTO 

Y4-Y+1 

Pro. 1.5 

X4-X-1 

X<-X 

X<-X+l 

GOTO L2 

Z<“Z + 1 

Z<~Z 

GOTO M2 
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[L^] IF ZjtQ GOTO 

[L2] X«-X 

[L2] GOTO L3 

[NJ Z<r-Z-1 

[N^] Z4-Z 

[N^] GOTO 

[L3] IF X^O GOTO 

[L3] X«-X 

[L3] GOTO 

[M2] IF Z^O GOTO 

[M2] Z<-Z 

[M2] GOTO M^ 

Y<-Y+l 

Pro. 1.6 
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1.3.2 NDCSP Accepts the Same Sets as General 

(Non-Deteimiinistic) Computation of an 5-Program 

In this section we show that the replacement of an 

S-program, P of length n, by another, P*, of constant label 

multiplicity, as in the last section, does not affect the set 

accepted by general computation. 

DEFINITION 1.4 Let f be the one-to-one order preserving map 

of the lines of the original program P (of length n onto the 

lines of P' of length N ) that are not added in step-2 iii) 

of AFI. Call this the correspondence mao> and for i, l<iln, 

f(i) is called the corresponding line for P, and f(n+l)=N+l. 

Note that the difference between line i, of P, and line 

f(i) of P' are superficial. Line f(i) differ from line i, at 

most, in change of the prefix label, and change of the 

internally mentioned label, if line i is a GOTO line. 

Lemma 1.2 Function f which is defined as above 

injection from P to P*. 

Proof For the line i in P. 

(a) line i is not in any block. 

(a.l) line i is not of the form "GOTO L”. 

There is exactly one corresponding line f(i) 

has the same form as i , by AFI-step 4. 

(a.2) line i is of the from "GOTO L”. 

There is exactly one corresponding line f(i) 

is changed to "GOTO L^”, by AFI-step 4. 

(b) line i is in M-block Bj^. 

(b.l) line i is not of the form "GOTO L". 

There is exactly one corresponding line f(i) 

has the same form as i, in B' by AFI-step-2 

is an 

, which 

, which 

, which 

(suppose 
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this M-block is the occurrence M-block 

in P) . 

(b.2) line i is of the from "GOTO L". 

There unique corresponding line f(i) is the form 

that comes from (a.2) and (b.l) in this case. Thus, 

for all i, l<i<n, in P, there is exactly one 

corresponding line f(i) in P*. Therefore f is an 

injection from P to P*. 

### 

For both lemmas below we assume that P has no ”V4-V” 

instruction. If so, then omitting such lines from P does not 

affect the inputs accepted. P(x) denotes that x is the input 

of program P. 

Lexnma 1.3 If there is a k-step computation of P(x) leading 

to a snapshot s=(i,a), then there is a computation of P*(x) 

leading to a snapshot c=(f(i),a). 

Proof By induction on k. 

Basis k=l. 

The only 1-step computation of P (x) leads to the 

snapshot Sj^=(l,a^), where is the initial state. By 

AFI, the initial snapshot of P'(x), c^, has the same 

state o^, and starts at first line, i.e. C2^=(l,a^) . 

Hence in this case the assertion is,correct. 

Assume, for induction. 

For any k-step computation C of P(x) leading to the 

snapshot Sj^= (i,^,, there is a computation C of P'(x) 

leading to the snapshot c^^ = (f (i^^) , . 
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Consider the (k+1)^^-step. 

Suppose there is a k+l-step computation of P(x) leading 

to the snapshot . We use the induction 

assumption on the part of that computation through step 

k, and we have three cases: 

case 1) Line ij^ is not of the form "GOTO L”, ij^^tn+l. 

In this case state in both computations, passes to 

the same state and we need only check that the 

control is correctly passed. 

a) line i,^ is not in a label block, then ij^^^=ij^+l. in 

P*(x), control passes from next line, 

i.e. f (ij^+1) =f (ij^)+1, so the corresponding snapshot of 

* ^(k+l)p“^^ ' ^k+l^ '^k+l^ * 

Thus in this case, there is a computation of P' (x) 

leading to snapshot C(k+i)p"" ' ^k+i^ * 

b) line ij^ is in a label block, say 

control passes from ij^ to the top line below in P 

(since line ij^ is not V4-V) ; In P'(x) control passes from 

f(ij^) to the top line, below B^^ (suppose this M-block is 

the occurrence M-block in P), and this line is 

f(i.^), so the corresponding snapshot of s^ , is again: 

*^(k+l)p ^^k+l^ ' ^k+l^ * 

Thus, in this case, there is a computation of P' (x) 

leading to snapshot (f (i^^^^) , . 
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case 2) Line is of the form "GOTO L", i^^n+1. 

In this case no change is made in the state, in either 

computation, so • 

Control passes from line ij^ to some line in one of 

the L-blocks in P. We must see that there is a P * 

computation with correct transfer of control from 

snapshot (f(ij^),a^) to (f ,a^) . Since the executable 

command of line i^^ is "GOTO L", the command of f(ij^), 

according to algorithm AFI is "GOTO L^"o The correct 

computation for P* in this case selects the last line 

of block B' , last line of B_' , . . ,, last line of B* , and 
-1 

last line of B' . Thus there is a computation P' (x) 

which eventually arrives at snapshot (f ^ 3-S 

required. 

case 3) ij^=n+l. 

Then stays on line n+1, state is unchanged. 

Since f(ijc) is the corresponding line, then, by 

definition f(ij^)=N+l (suppose program P’ is of length 

N) , thus the corresponding snapshot of is: 

This complete the induction step, so the result of the 

lemma follows. 

End of proof. 

### 
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Lemma 1.4 If there is a k-step computation of P*(x) leading 

to a snapshot c=(f(j),a), where f(j) is a corresponding line 

of P/ then there is a computation of P (x) leading to a 

snapshot s=(j,a) . 

Proof By complete induction on k. 

Basis k=l. 

The same argument as in the basis ease of Lemma 1.3 

applies. 

Inductive step 

Assume for all h<k, if there is a h-step computation of 

P* (x) leading to snapshot (f ' where f(i^) is a 

corresponding line of P, then there is a computation of 

P(x) leading to snapshot Sp=(i^,a^). 

Now consider a k-step computation, c^, C2/ . . . Cj^, of P'(x) 

leading to snapshot (f (i,^) , , where f(i]^) is a 

corresponding line of P. 

Choose the largest hQ<k, so that the hQ-step part of the 

k-step computation gives snapshot c =(f(i ),0 ), for a 
HQ hg HQ 

cor responding line f (i>, ). By assumption there is a 
"0 

computation of P (x) leading to snapshot s = (i, , G, ) . 

We diagram the present assumptions for greater 

understanding. 
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P-computation P ’ -computation 

s 
Pho 

C = (f (i, ) f CTj. ) 
iln -fin Ho 

s 
Pho+l Vi> ■h„+l 

} 
results of 
executing ijon- 
corresponding 
lines 

use g to denote the first corresponding line number 

executed by P' after step hQ. 

First we note that CJ w the result of executing lines 
HQ+I 

i f or equivalently f(i. ) , on the state S , is the same 
to tg rig 

as since in the P *-computation the intervening steps 

do not change the state. Thus, to prove the lemma it is 

sufficient to show that i^=f^ (g) . 

We consider cases on the joint form of the line i^ and its 

correspondent f(i. ) . 

a) lines L and f(i^ ) are not GOTO lines, 

a.i) both are labelled lines. 

In this case P control passes to the top line below 

the label block in which i^ lies, and P' control to 
^0 

the top line below the label block in which f(i ) 
“0 

lies. But, this is a corresponding pair of lines 

-1 
and f (g)=ij^. 
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a.ii) neither line i^ nor f(i^ ) is labelled. 
1^0 “0 

In this case, control in both programs passes to the 

next line, i.e. i =i. +1, g=f (i, )+1 and f (g)=i, . 
JC HQ Hg X 

b) lines i^ and f(i, ) are GOTO lines. 

In this case line i^ is of the form "GOTO L” and line 

f(i, ) of the form "GOTO L " . Now, line g is the first 
hg 1 

corresponding line of the f(i, ). Thus line g must lie 

in same block, since the actions of the 

non-corresponding lines in steps hg+l through k-1 

cannot transfer control outside of the (set of) 

blocks. Since g is a corresponding line in an 

block, there is a line in some L-block of P which 

contains the corresponding instruction, so that 

f"^ (g)=ij^. 

This completed the induction step and, hence, the lemma is 

proved. 

### 

From lemma 1.3 and lemma 1.4 , we can get a theorem as 

following: 

Theoreml.l Given a general 5-program, P, there is another, 

P ' , in which all line labels occur with the same 

multiplicity, such that P accepts X if and only if P' accepts 

X. 

Proof The lemmas above show that the same snapshots can be 

attained by P and P', then, for given X, there is a 
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halting computation of P(x) if and only if there is a 

halting computation of P*(x), 

### 
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CHAPTER 2 

Simulation Of General Computation 

By Deterministic Computation 

In this Chapter;, we prove, for S-programs directly, that if 

a set X can be accepted by an S-program, P, then there is 

another S-program, P*, which accepts X and every computation 

from P*, is deterministic (Lemma 4.6.1 of [4] proves that a 

non-deterministic Turing machine can be simulated by a 

deterministic one) . In this sense general computation is no 

more powerful than deterministic computation except, of 

course, that it seems to require an exponential increase in 

time for the deterministic computation. The usual device used 

in simulating a non-deterministic computation by a 

deterministic one is to use a subprogram to generate 

instructions which remove choices from the main program in 

executing GOTO statements with multiple destinations. We 

refer to such instruction as "clock sequences”, definition 

2.1, below. The subprogram generates a sequence, C, of 

numbers CQ, c^^, . . ., Cj^^; 0<Cj_<a, where a is the indeterminacy of 

P, and P* executes a computation simulating m steps of some 

P-computation and consuming the clock sequence as it reads 

its values to direct the choice of GOTO destinations. 

2.1 Clock Sequence for Simulation 

DEFINITION 2.1 Any given non-negative integer c, can be 
m 

Call the sequence 

{d ,d d„} a Clock Sequence for integer c. m' m~ 1' ' u 
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The individual values dj^, 0<i^, will be used to instruct the 

simulator which of the a possible line labels involved in a 

"GOTO L” should be executed. We call each d^ a clock sequence 

value.. 

Theorem 1.1 tells us that for general S-program computation 

from P, it suffices to consider only S-programs, P’, of 

constant indeterminacy. Thus^ in order to simulate P by a 

DCSP/ P*/ we need only consider a NDCSP, P*/ in which all 

the labels in a label block occur a times, and simulate the 

computations of P' by to a DCSP, P*. 

Theorem 2.1 If a NDCSP, P*, accepts a set X, then there is 

a DCSP, P*, which also accepts X. 

Proof Suppose the constant indeterminacy of the given 

NDCSP, P\, is a. 

First we make an intermediate change in P'. 

cl. In each L-block, replace the a occurrences of L 

by LQ, L^, . . ., in order. 

c2. Insert the unlabelled line "GOTO in the 

L-block immediately below each L^-line, 0<j<a-2. Here 

we use the unconditional "GOTO L^j" as a basic 

command, as an abbreviation for "IF GOTO for 

same register, V, which is initialized non-zero. 

c3. Insert "V<-V" with label below line Lj^_|. 
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After this change, no label is used more than once in 

program P* and there is no L-line to support the "GOTO 

L" statements of P'(see pro2.2). Thus, execution of 

P' would result in termination in response to each 

GOTO statement, however our attention is not on the 

execution of this temporary program, for which we 

retain the name P *. 

Now we turn to creation the simulator, DCSP, P* from 

P' of length t. 

The flowchart for turning P* into P* follows. 

Fig 2.1 

I. P* contains the following lines to create the clock 
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sequence, call CL which is: 

CL C<—*C+1 {C is the clock sequence, it is 

initially 0 } 

Z^«-C 

II. If the line is not of the form "GOTO L” , here L 

is not subscripted, then the corresponding form in p* 

is the same as the one before in P'. 

III. If the line is of the form "GOTO L" but not "GOTO 

LQ^", then the corresponding form in P* is changed to 

"GOTO LC" which transfers control to the subprogram 

LC, below: 

LC Z4<-0 

IF GOTO RML {RML will compute the remainder 

and the quotient of modulo Ct} 

GOTO CL {the current clock sequence has 
been consumed. Create another 
clock sequence.} 

IV Read next line, if it is line D+1, stop the 

simulation; Otherwise, go back to the step II. 

Note that if the program P' had h different labels, 

there are h kinds of Change-subprograms. 

By definition 2.1 rm(Z^,a) is the clock sequence value 

and qt(Z^,a) is the new(reduced) clock sequence. We 

use registers for rm(Z^,a) and Z^ for qt(Z^,a), in 

subprogram RML. Now rm ( , a ) = Z a * [ Z ^ / a ] and 

qt (Z^, a) = [Z^/a], but to avoid analysing the complexity 
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of primitive recursive functions computed by 

S-programs, we compute these two quantities by the 

following straightforward program. 

[RML] 

[RL2] 

Z^^-l 

IF Z^5*0 GOTO RL2 

GOTO FL 

Z2^—Z2 + I 

IF Z^9fe0 GOTO RL3 

GOTO FL 

{this part of the program reduces 

by bt^ If a 0 arises before the 

last line of this part, we exit 

with the present and Z2.} 

(decrement clock} 

{increment remainder} 

[RL„_J Z^f-Z^-1 

Z2«-Z2+l 

IF Z^?fcO GOTO RL„ 

GOTO FL 

[RL„] Z^f- Z3-I 

Z2^—0 

Z^<—Z4 + I 

IF GOTO RML 

GOTO FL 

[FL] Zi<-Z4 

IF Z^i^O GOTO L'l 

GOTO LQ 

[L\] Z2<-Z2-l 

IF Z^jtQ GOTO L*2 

GOTO L3 

[^’a-2] Z2<—Z2-I 

IF GOTO L'a-i 

GOTO L„_2 

[L'„_i] GOTO L„_i 

{there are 3(a-1) lines until 

{reset remainder value to 0} 

{increment quotient} 

{start another reduction of Z-^ by 

a} 

{this part of the program utilises 

the clock sequence value in 

register Z2 to direct control to a 

particular line LQ, L]_, . . ., the 

new labels for the a—tuple of lines 

labelled L in the program P'.} 

{end RML} 
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There also are h kinds of RML-subprograms, since each 

label block, L, requires a different subprogram. 

Therefore, if there is P'-computation which accepts the set 

X, then there is a clock sequence which generates a 

P*-computation such that X is accepted. 

### 

Let us take an example. 

Suppose P' is following, and a=3 

L 

L 

L 

V4-V 

V4-V+1 

GOTO L 

IF V^fcO GOTO M 

V«-V-l 

Vf-V+1 

M 

M 

M 

V<“V+1 

V<-V+l 

V4-V 

V<-V-l 

Y<-V 

Pro 2.1 

Then the temporary P' is 

V4-V 

V^V+1 

GOTO L 

LQ IF V^tO GOTO M 

GOTO L3 

V<-V-l 

GOTO L3 

L2 V<-V+l 

GOTO L, 

M. 

M, 

M- 

V<-V 

V4-V+1 

V«6-V+l 

GOTO M. 

V4-V 

GOTO M, 

Vf-V-1 

GOTO M, 

V<-V 

Y<-V 

Pro 2.2 
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So the P* is : 

CL C^C+1 

—c 
v<-v 
V<-V+l 
GOTO LC 

LQ IF V?tO GOTO MC 

GOTO L3 

V«-V-l 

GOTO L3 

L2 V4-V+1 

GOTO L3 

L3 V<^V 

Vf-V+1 

MQ V4-V+1 

GOTO M3 

M3 V<-V 

GOTO M3 

M2 V4-V-1 

GOTO M3 

M3 Vf-V 

Y<~V 

LC 

IF GOTO RML 

GOTO CL 

MC 

IF GOTO RMM 

GOTO CL 

[RML] Z3<- Z3-I 

IF Z^^iO GOTO RL2 

GOTO FL 

[RL2] Z^^Z^-l 

Z2^—Z2+1 
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IF Z^?tO GOTO RL3 

GOTO FL 

[RL3] Z^^-l 

Z2«-0 

Z^i-Z^+l 

IF Z^9fc0 GOTO RML 

GOTO FL 

[FL] Zi^-Z^ 

IF Z2?^0 GOTO L'l 

GOTO LQ 

[L’l] Z2<-Z2-l 

IF GOTO L*2 

GOTO L^ 

[L'2] GOTO L2 { end of RML } 

[RMM] Z^4- Z-1 

Z2^~Z2 + 1 

IF Z^^ GOTO RM2 

GOTO FM 

[RM2] Z^f-Z^-1 

Z2<-Z2 + l 

IF Z^^O GOTO RM3 

GOTO FM 

[RM3] Z^<-Z^-l 

Z2^“0 

Z4^Z^ + 1 

IF Z^^ GOTO RMM 

GOTO FM 

[FM] Z^<-Z^ 

IF Z2^0 GOTO M’l 

GOTO MQ 

[M\] Z2<-Z2-l 

IF Z2^0 GOTO M*2 
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GOTO 

[M'2] GOTO M2 {end of RMM} 

Pro 2.3 

Theorem 2.2 Given a set, X, accepted by an 5-program, P, 

there is another 5-program, P*, which also accepts X, and 

each computation of P* is deterministic. 

Proof As commented above, it suffices to show that P* 

accepts the same set as the version of P* which has constant 

indeterminacy. For each X, if there is a computation of P' 

which terminates on input X, there will be a value of the 

clock sequence for which P* also terminates on X. Since, 

eventually, arbitrarily large values of the clock sequence 

are generated by P*, unless termination occurs, then P* 

accepts X. Conversely, if there is a P* computation accepting 

X, then P* will have an accepting computation based on the 

sequence of choices dictated by the appropriate clock 

sequence of P*. Since no line label is repeated in P*, each 

P* computation is deterministic. 

### 

2.2 Time Estimation 

We consider the number of steps required by P*(x) to fully 

simulate t steps of P*(x). 

Lemma 2.1 A single call to the subprogram LC (Change L) , 

where the values of is may require ^^^:^+2a+2 

computation steps of P*. 

proof Let us go back to look at the subprograms: 
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There are 1 + z^ steps in CL, 3z^+[z^/a]+2a+l steps in 

LC in the worst case, and (4zj^+[z^/a]+2a+2) < (5z^+2a+2). 

Thus the total number of steps in the worst case is at 

most: a+2 . 

Here a is a fixed number, ^ linear 

polynomial. 

### 

Theorem 2.3 Given an NDCSP, P', there is a DCSP, P*, 

which will simulate a t-step computation of P' in 0(a^^) 

steps. 

proof To simulate t "steps” of NDCSP, P', the DCSP, P* 

must successively calculate for all clock sequences of 

length 1,2, ...,t. Thus the value of Clock sequence C 

must run from 1 to C(t) = (a—l)a^"^+ . . . + (a—l)a+ (a—1) 

(Unless, of course, P* halts for one such value of C). 

Now, to simulate 1 step of P' which is not of the form 

"GOTO L" requires 1 step of P*. 

Suppose the step i to be simulated is "GOTO L" in P' 

then in P* it must be changed to "GOTO LC”, and requires 

P^j^(C(i)) (C(i) is present clock sequence value) steps 

of P* by the lemma 2.1. 

Thus, to simulate t steps of P', the worst 

simulation case would involve simulating t successive 

GOTO statements. P* must cycle through all of the 
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Clock strings of a-length 1, then all of these of 

a-length 2,...,all of a-length t. Since for each t 

there are a^ such strings, the worst case is: 

P^j^(l)a+ P^L<2)a2+. . P^^(C(t-l) )a^-i+ P^j^(C(t))a^ . 

Since P^^^ (C (t) ) a^= (5C (t) +2a+2) a^= (5 (a^-1) +2a+2) . 

Therefore T = 0(a^^) , 

### 
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CHAPTER 3 

T.M.Accepts The Same Class Of Sets As NDCSP 

In this chapter, we are going to prove that a general 

non-deterministic computation S-program, P, can be simulated 

by a deterministic Turing machine, M, and conversely. Note 

that the present formulation (including the use of a two-way 

infinite tape) follows [6], Actually Turing's original 

development employed quintuples rather than quadruples. As we 

know from Chapter 2, it is necessary only to consider a 

deterministic computation S-program, P*, because, a general 

S-program P can be simulated by a program P*, which admits 

only deterministic computation. 

3.1 The Flowchart of T.M. Simulator for DCSP 

Since one P *-computat ion step is specified by its 

snapshot, which contains the line number to be executed and 

the content of each register, it is convenient to consider 

two-way infinite multiple-tape Turing machines, and then to 

appeal to the standard result for simulating multiple-tapes 

by a single tape. This simulation is refered in [2,pp.ll6] in 

which the authors mention that the contents of a two-way 

infinite k-tapes T.M. and the position of the tapehead on 

each can be represented as a single tape with 2k tracks. 

Using this representation, the proof of Lemma 4.5.2 of [4], 

in fact, shows how to simulate any computation by a two-way 

infinite T.M. using only one tape. 

We use V3, V^, . . ., x^,X2, . . ., x^, the input variables 

' ^1' ^Z' ■ ■ ■ ’ the lOCal 



-34- 

variables of P*/ and for, Y, the output variable of P*. 

although it is possible to consider any S-program language, 

we simplify the discussion to a "Tally-language” in which 

Vj“0, is represented by 1, and Vj=m is represented by 

IV.1+1 
1 =ll...l (m+1 times) . 

To construct the simulating Turing machine, we adopt the 

convention that the input string is placed on the first tape, 

tape-1; the number of executed line in P* is placed on the 

second tape, tape-2; the variable (3<j^n+p+3) is initialized 

blank on the tape-j. At the end of a computation a n+p+3-tape 

T.M. is to leave its output on its first tape; the contents 

of the other tapes are ignored. 

Before proceeding to the T.M. code, we describe the idea of 

the construction for ,the simulating T.M. There are n+p+3 

tapes, of which tape-1 is reserved for input and output, 

only. Tape-2 records the number of the next 5-program line to 

be executed. Tape-3 through n+2 are reserved to receive the n 

inputs V3, V^, . . ., which are the initial contents of the n 

input registers. Tape-(n+3) through n+p+2 are initialized 

with value 0, and later become the locations of values for 

the variable registers. Execution of 5-program instructions 

"V<-V+l" and "V+-V-1” can be accomplished by modifying one 

register tape, and incrementing tape-2 by 1, to record change 

of control. When the executed line is a GOTO, none of the 

input or local register tapes is altered, but tape-2 is 

erased and rewritten with the number of a line bearing the 

correct label. In this process, states of the TM. are used to 

remember the line numbers to be written on tape-2. The 

instruction "V<-V" results in incrementing tape-2 only. A 
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flowchart which relates the various procedures follows. Note 

that the n initial inputs are all recorded on tape-1 initially 

as a concatenation. 

Fig 3.1 
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3.2 Procedures of Simulation 

First we initialize each tape as following: 
IV3I+I IV4I+I IV2+nl+l @ 

tape-1 ai B1 B...B1 B 

{the input string is 
placed on the first 
tape} 

(number of executed 
line is place on the 
second tape} 

(input variabletape} 

(input variable tape } 

(local variable tape } 

(local variable tape } 

(output variable tape} 

tape-2 B 1 a 

tape-3 a 

tape-(n+2) a 
tape-(n+3) B 1 a 

tape-(n+p+2)B 1 a 

tape-a B 1 a 

Here a is equal to n+p+3, the underline represents the 

head position on the each tape of the T.M.. 

In the following procedures, we use an a-tuple notation 

with superscripts, say [B^^^ . . . B^“^] (a times B) to 

represent the a-tuple of symbols which occur at the present 

head positions of the a—tape T.M.. For example, [B^^^ 1^^^ 

B^^^... B^“^] denotes that the head points to blank on the 

first tape, the head points at 1 on the second tape, and the 

head points to blank on the other tapes. The second a-tuple 

in each T.M. instruction may contain, besides alphabet 

symbols, also the symbols R and L which are used in the 

standard T.M. sence to indicate moves of one square right, or 

left, on the indicated tape. Our T.M. instructions will be 

of the quadruple form, using the symbols just defined and 

states as needed. Since states are used by the T.M. to 

remember what to do, we invent and use MNEMONIC symbols for 
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states . 

0 where: V3=Xj^,V^=X2, Vn+2=Xn- 

(1) COPYINPUTS - copy the inputs V3, , . . . , tape-3 

until tape-n+2 (n times) in order. We use (O^i^n^ 0^q<2) to 

represent states. 

{start at blank for each tape, 

move the heads on tape-1 and 
tape-3 to the right, the rest are 
not to change.} 

{read 1 on tape-1, write 1 on 

tape-3 } 

[B^^^B<2)B(3) _ .B<“)] [B^^*B<2)3(3) ^ ^ ,B<“)] C20 

{if the head on tape-1 points 

to a blank, go to state C20 which 

works on tape-1 and tape-4 } 

C^2 [1<^JB<2)I(3)B(4) ^ ^ .B<“)] [R<1)B<2)R<3)B(4) ^ ^ 

{if both heads on tape-1 and 
tape-3 point at 1, then move the 
heads on both tapes to the right, 
go back to state 

. . {Then for the states C20' ^21, 

. . C22 'and C3Q, the idea of 

. . operation is similar to ^lO' 

^11, ^12 ^20' ^30' ••*' 

^nO' ^nl' ^n2 ^n+10^ 

. . .B^“)] [R^^^B^2) ^ ^ 3(n+lJ3{n+2)B(n+3) ^ ^ 

C^^[B^^>B<2) ^ ^ B(n+2) ^ ^ .B^“)] [B<^^B<2^ . . . . .B^^^LQ 

{state LQ is 

procedure} 

in the next 
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. . .B'“>] [R<1)B<2)R(3)B'«' . . 

{After we finish working on the 

tape-1 and tape-(n+2), the inputs 

will be copied from tape-1 to 

tape-3 to tape-(n+2)} 

After procedure COPYINPUTS, the T.M. looks like 

tape-1 

tape-2 

tape-3 

tape-4 

IV3I+1 IV4I+1 

B 1 B 1 

B 1 a 
IV31 +1 

B 1 a 
1V4I+1 

B 1 a 

B ... B 1 
'2+n +1 

tape-(n+2) B 1 a 

tape-(n+3) B 1 a (local variable tape } 

tape-(n+p+2)B 1 a 

tape-a B 1 a 

(local variable tape } 

(output variable tape} 

The next procedure will be started at state LQ . 

(2) INCLINE - increase the number of the executed line by 1. 

[B B B ...B ] [B L B ...B ] 

(move the head on tape-2 

to left) 

(1) (2) (3) (a), (1) (2) (3) (a) ^ 
L^ [B 1 B ...B ] [B L B ...B ] 

(read 1 on tape-2 until the 

first blank was found} 

^ (1) (2)_(3) _(a) ^ ^_(1) (2)^(3) 
L^[B B B ...B ] [B 1 B ...B ] 

(add 1 to the left end of 

tape-2 
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L, [B 1 B ...B ] [B LB ...B ]R 2 0 

{move the head on tape-2 to 
left, go to state Rg which 

is in the procedure CHECK) 

After execution of this procedure, the head on tape-2 is 

on the blank just to the left side of the string of I's. In 

this case the T.M. looks like: 
1V31+1 IV4I+I IVz+nl+l 

tape-1 B1 B1 B... B1 a 

tape-2 

tape-3 

tape-4 

a 1 1 B 

IV, I +1 
B 1 a 

1V41 +1 

B 1 a 

|Vn^2l+l 
tape-(n+2) B 1 a 

tape-(n+3) B 1 a (local variable tape } 

tape-(n+p+2) B 1 a 

tape-a B1 a 

(local variable tape } 

(output variable tape) 

The next procedure will be started in state Rg. 

(3) CHECK - reads the line number on the tape-2. If it is 

t+1, then the machine halts, here t represents the length of 

the S-program P*. 

Rg [B<1^B<2) . . . .B^“)] Rg (move the head on tape-2 

to right} 

Rg [B<^^ 1^2)30) ^ ^ .B<“)] . .B<“)]RQ^ 

(the first 1 is reached) 
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RQ^ . . .B<*^)]R^ {the second 1 is reached} 

R^ [B<^>B<2) . . .B^“>] [B^^>B<2) _ ^B(a)jp^[i] ^ 

is read on tape-2 , then 
go to state which 

finds the instruction in 
line 1.} 

R^ [B(D I(2)B(3) ^ ^ .B^®)] [B<^^R^2)B(3) ^ ^ .B^“)]R2 

{in state R-j^, if a 1 is 

. . read on tape-2, then go to 

. . the state R2, continue to 

. . read tape-2} 

RJ^[B<^’B^2) ^ ^ .B<®)] [B<1’B<2) . . { in state R^, if a blank is 

read then go to the state 

FQ which corresponds to 

the k^^ line in P*} 

RJ^[B<^^1<2)B(3) ^ ^ .B<“)] [B<^^R^2^B^^>. . .B<“)]Rj^^^{ i^k<C} 

. . {in state Rj^, if a 1 is read 

. , then go to state Rj^+i and 

. . continue to read tape-2.} 

R^[B^^U<2)B(3) ^ ^ [B<^^R<2^B^^^ . . .B<“MRC+I 

Rj^^ [B<^^B<2)B(3> _B(a)j . .B<“M HQ {the program execution 

halts, so go to state HQ 

Rj;^^ [B<^> 1 . . .B<“)] [B^^>B^2)B(3) _B(a) J procedure 

HALT} 

After this operation, the head on tape~2 moves to the blank 

just to the right side of the string of I's. 

Now find the instruction on the k^^ line of program P*. If 

the variable in the k^^ line is V. then the T.M works on the 
J / 

tape-j, here 3<j<a , 1^^. 

If the instruction is Vj^-V^+l, we have subprocedure called 

INCVj. 
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(4.1) INCV^-for tape-j 

]F 
[k] 

1» j 

{since the head on the 

tape-j, is immediately to 

the right of the last 1 and 

add 1 on tape-j } 

F 
[k] 

j 

{move the head on the tape-j 

to the right one square, go 

to the state LQ which is in 

procedure INCLINE} 

If the instruction in line is Vj<—V^-l,. then we use 

subprocedure called DECV^. The procedure checks whether 

and takes action on the result of the check. 

(4.2)DECV^ -for tape-j 

F, [B ...B ...B [B 
(1) j-i),{ j)„( j+i) „(ct) 

..B L B ...B ]F 
[k] 

1, j 

{move the head on the tape-j 

to the left one square } 

Fi,j[B ...1 ...B ]F 
[k] 

2,1 

{continue left past the 

rightmost 1 on tape-j} 

F;;;;(B‘^’...B<'’...B‘“’ 

^[k] ^^(1) (j) ^(a) 

F2,j[B -1 -B 

] [B ...B R B ...B ]F^ j 

{ Vj^=0, move the head 

square to the right } 

] [B ...B R B ...B ]F . 
^, 1 

{there are two I's, Vj^^O, 

move head one square to 

right} 
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[k] (1) (j) «<«),.„(!) 
[B ...1 ...B ] [B ..B R B 

(a) 
.B ]L 

{move the head to the right 

on the tape-j, then go to 

the state LQ, leaves tape-j 

unchanged} 

„[H1 _(1) (1) 
...1 

(change rightmost 1 to blank 

on tape-j, then go to state 

LQ} 

If the instruction is we have subprocedure called NCV. 

(4.3) NCVj - for tape-j 

-.(j) (tt) (1) 
[B ...B ...B ] [B ...B B B 

(a) ^ 
...B ]L 

(leaves tape-j unchanged) 

If the instruction in line is ”IF GOTO L'\ then we 

use a subprocedure called UNCV^. The procedure first checks 

whether V^^Or and then takes appropriate action. 

(4.4) UNCVj -for tape-j 

[3c] ,_(1) (j) (a) (1) 
[B ...B ...B ] [B ...B 

j)_( j+l) _(«),_[k] 
L B ...B ]F 

1. j 

(head on the tape-j moves to 

the left one square } 

[k] _(1) (j) (tt) (1) 
^^^[B ...1 ...B ] [B ,..B 

F^ ^ [B ...B ...B ] [B ...B 
2,j '■ 

[k] ^^(1) ^ (j) ^(a) (1) 
F^ j [B ...1 ...B ] [B ...B 

L B 
(a) , [k] 

2, j 
...B ]F 

(continue left past right 

most 1} 

R B ...B ]F, . 
3, 3 

(Vj^=0, move head on tape-j 

to right one square) 

R B ...B ]F^_J 

(Vj^?*0, the head on tape-j 

goes back to right one 

square) 
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(j'l) J j)„( j+1) 
R B ...B ]L, 

{Vj_=0, go to the state LQ 

leave tape-j unchanged} 

F^^^[B ...1 .,.B ] [B ...B 
(1) _(j-i)^(j)„(j+i) 

R B ,..B ]N o,P 
{Vj^#0, go to state NQ which 

is in the procedure 

CHANGELj^p, P is the number 

of the line with label 

L,1^P^1 = the(constant) 

multiplicity of line labels 
in the S-program) 

(5) CHANGELj,p- for the instruction of "IF Vj^tO GOTO L", If 

there are m different labels in P, then there will be m versions 

of this procedure, each with its own unique value of p. 

B 
(2) 

B 

N 
l.P 

1 
(2)_(3) 
B 

N 
2,p 

N [B B ..,B 
P.0 

(3) _(a) ^ ,_(l)^(2)_{3) 
...B ] [B LB 

(a) 
.B ]N 

l,P 

{move the head on tape-2 one 
square left } 

[B'^’B'^’B'^' 

{erase one 1 on tape-2} 

(a) (1) (2) (3) (a) 
..B ] [B L B ...B ]N 

1, 

{continuing move head on 
tape-2 to left} 

..B 
(a) (1) (2) (3) 

[B B B ]N 
[L] 

P,0 

{finish by erasing all 
tallys, go to the state 

Np, move the head to 

left in order to print P + 1 

tallys on tape-2} 

]N 
[L] 

P.l 
{print p+1 tally on tape-2 

for the label L, there will 
be m kinds of this 
instruction if the program 
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P* has m difference 

labels} 

(2) (3) 
L B ]N 

[L] 

P.2 
{after writing 1 in one 
square of tape-2, move the 
head to the left again} 

N„ [B B ...B ] [B 1 B ...B ]N„ 
P.2 P,3 

[L] (1) (2) , ,«(1),(2) (3) 
N [B 1 ...B ] [B LB ...B ]N 

P.3 p,4 

P.2P ^ ••• J I J P2P+1 

N™ [B'^’I'^’B‘^>...B<“>] [B‘‘'L‘^’B' = ’...B'“>] N™ „ 
p,23+l P.2 (P+1) 

[L] (1) (2) (3) (a) (1 ) (2) (3) (a) 
N „ [B B B ...B^^ ] [B^^ ^B B ...B'^]R, 
P,2P+2 0 

{state RQ is in the 

procedure CHECKj^p) 

After this operation, the head on tape-2 is on the end left 

of the string 

(6) HALT- if the program halts, copy the last tape, tape-a, to 

the tape-1, there are two steps: 

(6.1)-erase the tape-1 

{move the head on tape-1 
from right to left one 
square) 

r, ^(a) [IBB ...B 
(1) (2) (3) (a) 

] [B B B ...B ]H 

{erase 1 on tape-1 of the 
right end. } 
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{reach another blank, move 
the head on tape-1 to left 
again. After this it erased 
one input register} 

(1) (2) (3) , r„(l) J2)^(3) ^iOL) 
K^[l B B ...B ] [B B B ...B ] 

{start to erase another 
input value} 

(3) (a) (3) „(a) 
[B B B ...B ] [B B B ...B ] 

{until the first double 
blanks reached} 

(6.2) COPY- copy tape-a to tape-1 

^ ^ Jl) (2)_{3) ^(a), 
Hj[B B B ...B ] [R B B ...L ]H 

4 

{move the head on tape-1 to 
right, and the head on 

tape-a to left} 

, (a) (1> J2)_{3) (a), 
H^[B B B ...1 ] [1 B B ...1 

{copy 1 from tape-a to 

tape-1} 

r, (3) (2)^(3) 
[B B B ...B ] [B B B ...B ] 

{finish copy } 

„ ^ (1)_(2)_(3) , (CO , ,J1) J2)_(3) ^(a), 
H^[l B B ...1 ] [R B B ...L ] 

{continually copy} 

Here^ the state Hg represents a "halt state”, and does 

not appear in any other instructions. 

From the procedures above we immediately get the following; 

Theorem 3.1 Given a DCSP, P*, with n inputs registers, 

there is a deterministic Turing Machine, M, which accepts the 

same set of n-tuples as P*. 
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We now look at the number of steps taken in each procedure 

above. 

a) . Initialization configuration 

T.M.^ M, takes one step to initialize the inputs register 

on tape-1. 

b) . In COPYINPUTS 

There are slx^^l+l steps from state to €30^ thus M 

n 

takes totally 32^|x.|+n steps in this case. 

c) . In INCLINE 

There are (3+t) step in the worst case. 

d) . In CHECK 

There are 3 steps from state RQ to R^, and there are (C+1) 

steps from state R^ to HQ in the worst case. 

Thus step (CHECK) =C+4 in the worst case. 

e) . It is very easy to find out: 

step (INCVj)=2 

step (DECVj)=4 

step(NCV.)=l 

step (UNCV.)=4 

f) . In CHANGELj p 

r [L] 
There are 21+2 steps from state N „ to N in the worst 

p,o 

« r [L] . case, and there are 2(i+l)+l steps from state N to R^ in 
0 

worst case. 

Thus step(CHANGELj p)=4C+5 in the worst case. 

g) . In HALT 
n 

2^^|x.|+n+2 steps from state H^ to H^ in which 
1-1 ^ 

There are 
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all inputs are erased. 

And there are 2| YI+2 steps from state H3 to Hg in which 

output is copied to tape-1. 
n 

Thus step (HALT) =2^|x. I +1 Y I+n+4. 

Corollary 3.1 For a t-step deterministic computation 

S-program P*, there is a T.M., M, which takes 0(t) steps to 

simulate P*. 

Proof First M would intialize the inputs and copy those 

inputs to the individual input register tape, that requires: 
n 

l+3^|Xi| +n 
i-l 

And the worst simulation case would involve simulating t 

successive GOTO statements and require: 

t (step (UNCV.) +step (CHANGELj^p) ) . 

If P* halts at t step, then at this case M takes: 
n 

2]^|x. I +1 Y I+n+4 steps 
i-l ^ 

Thus, simulating a t-step computation of P* in the worst 

case, M would require: 
n n 

t (Step (UNCV )+step (CHANGEL «))+3X|x.| +n+l+22^|x.| +|Y| +n+4. 
^ j/P i-l ^ i-l ^ 

n 

= t (4+4C+5)+sX|x. I +|Y| +2n+5 
i-l ^ 

= 0(t). ### 

Corollary 3.2 For t-steps of a non-deterministic 

computation S-program, P, there is a T.M., M, which takes 

0(a^^) steps to simulate P, here a is indeterminacy of P. 

Proof From Lemma 1.3, we know that a t-step P—computation 

can be a simulated by (t+c)-step P'-computation, here c is 
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some constant, and each label block has the same 

indeterminacy a in P' . 

And from Theorem 2.3 a (t+c)-steps of a P*-computation can 

be simulated by O (a^ -steps, which is 0(a^^)-step 

P*-computation. 

Finally from Corollary 3.1 0(a^^)-step P*-computation can 

be simulated by a O (O (a^^) )-step, which is 0<a^^)-step, 

M-computation of a Turing machine. 

Therefore a t-step P-computation of S-program can be 

simulated by a 0(a^^)-step M-computation of Turing machine. 

### 

3.3. A General 5-program Accepts the Same Set as a T.M. 

We now show how to find a general non-determinist ic 

computation 5-program for any given a NDTM (Non-deterministic 

Turing machine[2]) . 

For simplicity we consider quintuple Turing machines instead 

of quadruples, because a quadruple Turing machine can be 

simulated by a quintuple Turing machine [2,pp.l01] . There 

are two kinds of quintuples: 

R qj 

<3l Sj s,, L qj 

We want to construct a program P in the language S which 

simulates NDTM, NM. 
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Let a quintuple non-deterministic tally Turing machine be 

NM with states . . . / and alphabet {0,1}^ here 0 

represents the blank, B. 

P will simulate NM by using the numbers in base 2 to 

represent strings(on the NDTM tape). The tape configuration 

at a given stage in the computation by NM will be encoded by 

P using three numbers stored in the registers L, H, and R. 

The value of H will be the numerical value of symbol(0 or 1) 

currently being scanned by the NM's head. The value of L will 

be a number which represents in base 2 a string of 

symbols({0,1}) which begins with the leftmost 1 to the 

current head position and ends at the square just left of the 

head. The value of R represents in a similar manner the 

string of symbols to the right of the head, ending with the 

rightmost 1 on the tape. Note that one or both of L and R may 

be 0. 

For example, consider the tape configuration of NM : 

...0001111011100. .. 
t 
<53 

Here H=l; 

L=1*2^+1*2^+1*22+1*2^+0*2°=30; 

R^l*2i+l*2°=3; 

The program P will consist of three parts: 

BEGINNING 

MIDDLE 

END 

BEGINNING - Suppose the initial tape of NM is : 

B XT B x^ B ... B x„ B 12 n 

where the numbers x^, X2f . . . / are represented by Tally 
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strings (see section 3.2) , Thus the part BEGINNING has the 

initial value of L,H,R: 

L <— 0 

H 0 

(2n-l) 
R <- CONCAT^ (x^,0,X2/0, . . .,0,x^) 

here for given strings u^^, U2f .../u^^ € A*, CONCATj^<"^ (u3^,U2f . . . u^^) 

is simply the string obtained by placing the string 

Ui,U2/...fu^one after the other. 

MIDDLE - this part will simulate NM in a step-by-step 

"interpretative” manner. 

Associate with each state a label Aj^ and with each 

state-symbol pair (q^/j) a label Bj.j (j=0,l). For each label 

A^ ,place the following pairs of lines, in order i=l,2,..,m 

(for definitness, since the order does not matter) at the 

beginning of the S-program MIDDLE. 

[A^] IF H=0 GOTO Bio 

IF H=1 GOTO 

If NM contains the quintuple q^ j k R q^ (j,k=0,l), then 

we introduce the block of instructions 

[B^j] H 4“ 0 {k=o} 

[B^j] H 4- 1 {k=i} 

L 4- C0NCAT2(L,H) 

H 4- LTEND2(R) 

R 4- LTRUNC2 (R) 

GOTO At 
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If .NM contains the quintuple j k L (j,k=0,l), then 

we introduce the block of instructions 

H <— 0 {k=0} 

H 1 {k=l} 

R f- C0NCAT2 <H,R) 

H 4“ RTEND2 (L) 

L 4- RTRUNC2(L) 

GOTO Af 

If there is no quintuple in NM beginning q^^ t (t^O,l), we 

introduce the block 

[B.^] GOTO END 

Finally, the part END of P can be taken simply to be 

Z 4- CONCAT^^^ (L,H,R) 

Y 4- Z 

where functions (see [2]) 

1. RTEND2 (L) gives the binary code for the rightmost symbol 

of a given word when L is the binary code for 

2. LTEND2 (L) gives the binary code for the leftmost symbol of 

a given word Wj^ when L is the binary code for W^; 

3. RTRUNC2 (L) gives the binary code for the result of 

removing the rightmost symbol from a given nonempty word 

when L is the binary code for 

4. LTRUNC2 (L) gives the binary code for the result of removing 

the leftmost symbol from a given nonempty word when L is 
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the binary code for Wj^; 

We have now completed the description of the program P 

which simulates the NDTM, NM. This gives us the proof of the 

following theorem. 

Theorem 3.2 Given any non-deterministic quintuple Turing 

machine, there is a general 5-program which accepts the same 

set as this Turing machine. 

Summarizing results from Chapter one to this section, we 

observe the consequence as shown in the following: 

Fig 3.2 

In attempting to compute the time requirement for an 

5-program to simulate a T.M. computation we encounter a 

limitation of the first form of 5-programs discussed in 

reference [2], Consider the problem of simulating a single 

move of the T.M. using the program of Theorem 3.2. Of the 

several string manipulation operations, CONCAT, LTEND, RTEND, 

LTRUNC and RTRUNC, even the simplest, RTEND, involves 
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evaluation of the remainder function, base 2, because we are 

working with numbers and must use numerical codes for the 

argument strings. As we saw in Chapter 2, the time required 

by an S-program to perform the remainder operation is linear 

in the value of its argument. Since the 5-program must 

manipulate entire numerical register contents in simulating 

each T.M. step, and the time required is proportional to the 

values of these registers (here, in general, exponential in 

the lengths of the registers) the use of an 5-program to 

simulate a T.M. would seem quite wasteful. 

The limitation just discussed is imposed by the 

5-operations ”V«-V+1” and ”V<—V-1” which, in effect, force the 

5-program to work in a tally mode. In manipulating numerical 

codes for words of a T.M. language this is wasteful. Of 

course, in what we have done in Chapter 3, the argument of 

waste is not really applicable because, for a tally language 

the length of a word and its value coincide. However, this is 

not the correct way out of the difficulty. 

The correct way to simulate even a tally language T.M. is 

to use Davis * idea of a symbol manipulating 5-program, which 

we will do in Chapter 5. The operations ”V<-V+1” and ”V<-V-1” 

are then replaced by operations "V<-aV”, which adds a new 

symbol to the left end of the string in V, and ”V<—V"”, which 

deletes the rightmost symbol of the string in V. Using these 

operations it is easy to see that the string manipulation 

functions CONCAT, LTEND, RTEND, LTRUNC and RTRUNC (as 

distinct from their primitive recursive counterparts 

performed on numerical codes) can all be carried at in times 

linear in the lengths of the argument strings. For example, 

LTEND (x) , is performed by the 53^-program. 
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[L] Y4-X 

X<-X’ 

IF X^O GOTO L 

which requires 3(|x|-1)+2=3|x|-1 steps to complete. 
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CHAPTER 4 

Universal NDCSP 

In the previous chapters/ we discussed the special NDCSP 

in which each label occurs a times/ and each label occurs 

only in one label block. We now can reduce the a to 2, to 

provide the most direct modification of the universal 

deterministic S-program, of reference [2], to make it 

non-deterministic. 

4.1 Algorithm for Binary Condition-AFBC 

Suppose an NDCSP, P*, contains condition instruction ”IF 

GOTO L”. If the condition is true in the ”IF” statement, 

a of possibilities will exist, since there are a L 

statements. After executing one of L statements, the next 

statement to be executed may again be one statement, or one 

of a choices. The above condition is best illustrated by a a 

branching tree; the case a = 4 is shown below. 

If true 

Fig 4.1 
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It is easy to reduce the value of a to 2, as shown in the 

next algorithm. 

Step 0 Replace any P* line of the form 

IF (condition) GOTO L 

by IF (condition) GOTO 

Step 1 Add these lines in blocks of 2. 

[Aj^] GOTO 

[A^ ] GOTO A2 

[A2] GOTO L2 

[A2] GOTO A3 

[A„] GOTO L„ 

[aj GOTO L„ 

Step 2 Replace the original 

[LJ 

[LJ 

GOTO M 

[L2] ... 

[L2] ... 
GOTO M 

L-block by 

{first line of the L-block, 

repeated twice} 

{second line of the L-block, 

repeated twice} 

[LJ . . . {a^^ line of the L-block, 

[L„] . . . repeated twice} 

[M] V<-V 

[M] V4-V 
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In algorithms AFI (Chapter 1) and AFBC it is mainly the 

GOTO statements of each corresponding program which are 

changed. When we come to analyse the simulation steps, the 

GOTO statement usually brings out the worst case. Thus we 

consider how many steps would be taken for simulating a one 

step GOTO statement of P* by P”(lemma 4.1). Since there are a 

steps taken by P* to simulate a one step GOTO statement of 

P (corollary 1.1 Chapter 1), we have the result of Lemma 4.1. 

We will get the results of Corollary 4.1 and Corollary 4.2 in 

later sections of this chapter. 

Lemma 4.1 The binary S-program, P”, takes a+3 steps to 

simulate a one step GOTO statement of P' in the worst case. 

Proof For a one step "GOTO L” statement of P*, by AFBC, 

steps 0, 1 and 2, P” takes a+3 steps in the worst case. 

### 

Lemma 4.2 A binary 5-program, P”, takes 2a+3 steps to 

simulate a one step GOTO statement of a general S-program, P. 

proof The result immediately follows Corollary 1.1 and Lemma 

Theorem 4.1 Given an 5-program, P’, of constant 

multiplicity, a, there is another, P”, of constant 

multiplicity 2, which accepts the same set as P* does. 

"Broot (outline) The technique for a formal proof of Theorem 

4.1 is essentially the same as that for Lemma 1.3. We 

establish a (2-valued) correspondence relation, g, between 

lines of P' and lines of P”. A non-GOTO line corresponds to 
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itself/ and the line of on L-block corresponds to the pair 

of lines labelled Lj^. One then shows, in the same manner as 

the proof of lemma 1.3, that there is a P ’-computation 

leading to snapshot (i,a) if, and only if, there is a 

P''-computation leading to (g(i),a). 

4.2 Universal BNDCSP 

In this and the following section we give two constructions 

of a universal 5-program (which in our terms includes both 

non-deterministic and deterministic). The first construction 

uses the idea of a binary 5-program developed in section 4.1, 

and varies little from the universal deterministic program of 

[2] . It is worth noting that both of our universal programs 

contain only one duplicated line label. Every general 

non-deterministic computation 5-program can be simulated by 

NDCSP in which all similar labels occur in one block, and 

every NDCSP can be simulated by BNDCSP in which there are 

only two labels in the each block. Thus, in our first 

construction,we need only to give the universal program for 

every BNCDSP. 

The non-deterministic computation universal program 

is as follows. For definitions of the several primitive 

recursive functions used, and to follow the universal program 

itself, the reader may wish to consult [2,pp.58] . 

s - n 
K f- 1 
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[C] IF K=Lt(Z)+1VK=0 GOTO F 

U 4- r((Z)^) 

P 4“ P ^ ^ ^r(U)+l 

IF C(U)=0 GOTO N 

IF C(U)=1 GOTO A 

IF ~(P|S) GOTO N 

IF C(U)=2 GOTO M 
GOTO B 

[B] K<-min [D( (Z) +2 = C(U) ] 
i^Lt (Z) 

[B] K4-min [D( (Z) +2 = C(U) ]+1 
i^Lt (Z) 

GOTO C 

[M] S 4- [S/P] 
GOTO N 

[A] S <- S*P 

[N] K <-K+l 
GOTO C 

[F] Y 4- (S)^ 

Pro.4.1 

From Pro 4.1 we have the Theorem as follows: 

Theorem 4.2 There is a universal S-program (f or both 

non-deterministic and deterministic computation) which 

contains only one repeated line label. 

Of course the result is best possible, if we wish to permit 

non-deterministic computation. Since each non-deterministic 

computation can be simulated by a deterministic one, there is 

another universal S-program with no repeated labels, i.e. the 

one in reference [2]. 

As we discussed earlier in this chapter, we now compute how 

many 
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steps a universal S-program, ^UNSPI' takes to simulate a 

general 5-program, P, by using the "middleman” programs P' 

and P”. 

Corollary 4.1 A universal 5-program, ^ONSPI' takes 2a+16 

steps to simulate a one step GOTO statement of a general 

5-program, P, by using program P* and P” if we count each 

primitive recursive line as ” 1-step” in 

Proof In Pro.4.1, there are 13 steps to simulate a one step 

GOTO statement of P” in the worst case. And there are 2a+3 

steps to simulate a one step GOTO statement of P by P” by 

Lemma 4.2. Thus a universal 5-program takes 2a+16 steps to 

simulate one step GOTO statement of P. ^ 

### 

4.3. Universal 5-program, Second Construction 

By going to a little more trouble, it is possible to 

construct a universal 5-program which does not depend on any 

of the special reductions used in the last section. 

In short, when the universal program encounters a GOTO to a 

labelled line, we can cause it to compute the number, 4, of 

occurrences of that label in the program being simulated, to 

seek the first(topmost) occurrence of that labelled line and 

(non-deterministically) either select that occurrence, or go 

into a loop which produces the second line of that label, 

etc. 

For a "GOTO L” statement, we compute the following 
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functions 
Lt(Z) 

|1 = OC ( t( (Z) .+2 — C(U) I) {here a is a primitive recursive 
i=i function in [2] } 

LST(Z,j) = min [D((Z)^)+2 = C(U) ] 
j<i^Lt(Z) 

)Li gives the total number of occurrences of label L in the 

5-program, P. Note that a, which is mentioned in previous two 

sections, is greater than 4, i.e. if |i is the indeterminacy of 

program P then a=)i+l. 

LST(Z,j) gives the least line number of the line labelled L 

between the line and the Lt(Z)^^ line. 

The loop which does the non-deterministic selection of the 

GOTO destination is: 

Placing these subprograms in the universal program yields a 

new universal program, Uyjjgp2 as follows, and a second proof 

of Theorem 4.2. 

B K i- LST (Z, I) 
GOTO D 

(I initialized 0, k now gives 

the least line number of the 

line labelled L between the 

Ith line and the last one } 

D GOTO C 

D jj, 

IF p, = 0GOTO C 

I <- K+1 

GOTO B 

a new line number and go to B 

loop} 

execute that line, or compute 

{Either go back to C with the 

"present value" of K, and 

n 

K <- 1 
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[C] IF K=Lt(Z)+1VK=0 GOTO F 

U <- r ( (Z)j^) 

P 4— P 
^ ^ ^r(0)+l 

IF C(U)=0 GOTO N 

IF C(U)=1 GOTO A 

IF -(PIS) GOTO N 

IF C(U)=2 GOTO M 

i=l 

[B] K LST(Z,I) 

GOTO D 
[D] GOTO C 

[D] 

IF ^ = OGOTO C 

I K+1 
GOTO B 

[M] S <- [S/P] 
GOTO N 

[A] S <“ S*P 

[N] K 4-K+l 
GOTO C 

[F] Y <- (S)^ 

Pro.4.2 

Corollary 4.2 A universal 5-program, takes 

steps to simulate a one step GOTO statement of a general 

S-program, P, without using program P' and P” if we count each 

primitive recursive line as "1-step" in U^jjgp^. 

Proof For a one step GOTO statement of P, in Uujjsp2 loop 

which does the non-deterministic selection of the GOTO 

destination in the worst case takes 6p. steps. Thus UUNSP2 



takes 6\i+ll steps to simulate a one step GOTO statement 

of P in the worst case. 
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CHAPTER 5 

NP Completeness 

5.1. Cook's Theorem for the Programming Language 5^. 

The programming language is specifically designed for 

string calculation on an alphabet A of n symbols. It is 

supplied with the same input, output and local variables as 

S, except that we now use them as having value in the set of 

all words on the alphabet A and we allow a unique null word 

as 0(empty word). The instruction types are as following (see 

[2,pp.77]) . 

Instruction Interpretation 

V av For each symbol G in the alphabet place the symbol 

C to the left of the string which is the value of V. 

V V” Delete the final symbol of the string which is the 

value of V. If the value of V is 0, leave it 
unchanged. 

V ♦— V ® a non-operable line, control passes to next line. 

If V ENDS a GOTO L For each symbol G in the alphabet A and each label 

L, If the value of the string in register V ends 

in the symbol G, execute next some instruction 

labeled L; otherwise proceed to the next 
instruction. 

Table 5.1 

@ Not a basic instruction in [2]. We include it for convenience although its 

effect can be achieved under the rules of [2] by other means, e.g. V ♦- V“ for 

some register V which is always void. 
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The following conventions apply to a set of lines which 

form an S^-program, P . 

(1) . The alphabet of the language is A={a^, a2, . . . / a^^} and 

we choose another symbol a^, to represent a "blank”, to be 

used in a manner explained below. A* is, as usual, the set 

of words on A. 

(2) . The set of variables(register names) which occur in P 

is {V^,V2, . . .,V^}. 

(3) . P is of length t. 

(4) . P has the different label names: of multiplicity 

L2 of multiplicity \i2, . . .f multiplicity 

In addition, we define a partition of the numbers of only 

the set of labelled lines, as follows: 

h€H if and only if line h is labelled by L (p=l, 2, . . . ,m) , 
P 

For use in calculating the atom count and clause count of 

standard CNF(conjunctive normal form), S, we give following 

lemma, 

Lemma 5.1 Suppose A^,A2, . . each is a disjunction of 

literals®, and the total literal count of A^^ is Literal (A^^) . 

B^,B2/- . . ., each is a CNF, and the total clause count of B^^ 

is Clause (B^), the total atom count of B^^ is Atom(B^) . Then we 

can calculate the atom count and the clause count of the CNF 

reduction of the formula x: 

@ The present development follows [5] 
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X = (A 3B ) A(A,Z>B.) A. . .A(A 3B ) 
11 2 2 mm 

by the formulas 
m 

Clause (X) = ^Clause (B.) ; 
1-1 ^ 

m 

Atom(x) = ^ (Literal (A^) Clause (B^) + Atom(B^)). 

Proof Note that in each (Aj^Z)B^) : 

Clause (Aj^iDB^) = Clause (B^^) 

Atom (Aj^3Bj^) = Literal (Aj^) Clause (Bj^)+Atom (B^) . 

Therefore 

Atom (X) 

Clause (X) 

1-1 

m 

I 
1-1 

Atom (A.I5B,) 
1 i 

(Literal (A^) Clause (B^) +Atom (B^) ) 

^.Clause (A Z)B,) =y,Clause (B.) . 
1-1 ^ 1-1 ^ 

«## 

5.2 Cook's Theorem, Necessity. 

Cook's Theorem states that the acceptance problem for an NP 

set can be "encoded" by conjunctive normal form propositional 

formulas, and that the code can be computed in polynomial 

time(see[1]) . Specifically, given an NP set, S, accepted by 

an S^-program, P, computing non-deterministically, there is 

for each x6A* a polynomial-time computable CNF, 'Fx, so that 

XGS if and only if 'Fx is satisfiable. 
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As the proofs of [2,pp.34l] and [3] are usually done, we 

will not fully exhibit the polynomial time function which 

computes from x and P, but only provide a count of the 

number of atoms used in 'Fx. The proof of Cook's Theorem is 

given into two parts. The first part shows the construction 

of ^x, from which the necessity that ^x is satisfiable if P 

accepts X follows, immediately. The second part. Theorem 5.2, 

provides an induction argument that, when 'Fx is satisfied, P 

accepts X, which is the sufficiency portion of the proof. 

Theorem 5.1 Given P and x, there is a CNF 'Fx, of 0(P^(|x|)) 

atoms, which is satisfied if P accepts x in time P(lx|)). 

Proof The atoms used in constructing ^x are; 

Pv ^ « r^={At the step k, symbol a^ is in the position p of 

register V^} (l^k<P(|x|), l^j<r, 0^s<n, l<p<P(|x |)) . 

j q~ step k, the length of the A* string on 

register is q} (0<q<P ( | x |) ) . 

= {At the step k, the h^^ program line of P is 

executed} (l<h^) . 

Next, we encode the computation of P on k, in three part. 

5.2.1 The Initialization 

Let x==a^a2 ••.01^/ where each a^eA and, to simplify notation, 

the subscripts do not denote the order of the symbols of A, 

and we may have even if i;^=j . 



(1.1) "Register 1 is initialized with input x, and the 

symbol on each position of the register is unique at 

this step" 

For each p, l<p<u, each s, 0<s^n, 

R 

l.l.S,p 

The atom count is (n+l)u. 

(1.2) "The rest of register 1 after position u is 

initialized blank (ag) , and not any other symbols." 

For each p^ u+l^p^(|x|)/ each s, l<s^n. 

R, - 
1.1. o,p 

1.1.S,p 

The atom count is (n+1)(P(|x|)-u). 

(1.3) "Each remaining register is initialized blank all 

the way to position P(lx|), and not any other 

symbols." 

For each j, 2<j^r, and each p, l<p^(|x | ) , each s, 

l^s^n. 

1. D.0,p 

'•R, . 
1.3 .s.p 

The atom count is (r-1)(n+1)P(|x|). 

(1.4) "The length of the string on register 1 is u, and 

not any other length." 

For each q, 0<q< P ( 1 x | ), qAi. 

1 .1 .u 

1 ,1 , q 

The atom count is P(|x|)+1. 
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(1.5) "The length of register j (i«il) is 0, not any other 

length." 

For each j, 2^j<r, each q, l<q<P(|x|). 

H 1, j,o 

1 # j »q 

The atom count is (r-1)(P(|x|)+1). 

(1.6) "Line 1 is being processed at step 1, and not any 

other line." 

For each h, 2^^+l. 

L, 
1,1 

-L l,h 

The atom count is D+1. 

Thus the initial part is the conjunction of CNF's given by 

(1.1)-(1.6) above all the clauses, called . This 

expression is of length 0(P(|x|)). 

From this point onward, we present the CNF as a collection 

of clauses(disjunctions of atoms) which will be conjoined to 

form the final CNF. In each case we give the range of the 

subscripts, as in (1.3) above, so that for each selection of 

subscripts in the permitted range(s) there is an individual 

clause. I.E. in (1.3) there are (r-1)(n+l)P(|x|) clauses and, 

since each is an atom in this case, the same number of atoms. 

The remainder of the CNF will consist of one part, called 

CNFj^, for each computation step k. 
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In P(|x|) computation steps^ some legal computations may 

not halt while others may halt, i.e. reach line C+1. To write 

a CNFj^ in a uniform way, we consider line C+1 as a "trapping 

state” which, once entered, causes each configuration to 

reproduce the one before. Using this device CNF^ "states” 

that the step of configuration results from the 

application of one of the four rules of P, or does nothing, 

if the trapping state has been reached. 

In this Chapter the following terms are used; 

s-tate= "Register length" + "Register Contents" 

Configuration = State + Control 

The clauses of CNFj^ are prepared so that an unique truth 

value is assigned to each atom whose step subscript is k+1, 

called (k+1)-atoms, by the operation of step k, from the 

truth value already held by that and other atoms at the 

previous step. One way to view this is that we are defining a 

vector valued function V(k), 0<k<P(lx|), by recursion on k. 

For each k the value of V(k) is a vector of truth values of 

length equal to the number of k-atoms. CNF^^ is assembled in 

an obvious way from V(k). We use the notations Atom(F) and 

Clause (F) for the number of atoms, clauses in the CNF, F. 

We now discuss the construction of the CNFj^. We begin with 

a part of CNFj^ which is designed to state that configuration 

are unique. 

5.2.2 Unique Configuration, Q(k) 

(2.1) "There is exactly one line to be executed" 
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For each h, and each f, l<f^+l, f^h. 

^Ii V ^Ii k, h k,f 

The atom count is D(D+1) . 

(2.2) "The length of each register is unique.” 

For each j, l<j^r, each q, 0<q<P ( | x | ) , each 

0<q'^ (I X I) , q’=?^q. 

The atom count is 2rP ( | x |) (P ( | x |)+1). 

(2.3) "There is exactly one symbol in position p for each 

register.” 

For each j, l<j<r, each p, l<p^(|x|), each s, 0<s^, 

each s', 0<s*^, s^s. 

The atom count is 2r(n-1)nP{|x|). 

Let the collection of all clauses (2.1)-(2.3) above be 

Q(k), which represents the unique configuration, at step k. 

Thus the total atom count of Q(k) is 0(P^(|x|)). 

Next, we turn our attention to the part of CNFj^ which 

insures correct change of state and of control. First, we 

define a formula CNF(h,k) for fixed line, h, of the program 

at step k. CNF(k,h) may be of several forms according to the 

type of line h being executed, thus we first give the 

flowchart to describe what is the special form for each case 

of CNF(k,h) 
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Fig 5.1 

5.2.3 Change of State and of Control 

There is at most one register, say j, whose content will be 

altered by any instruction, so the content of the rest of 

registers, i(;^j), in each position is not changed. Also the 

length of the non-blank string in register i is the same as 

before. 
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We consider the following clauses for fixed k and fixed h. 

(I) Nchange in register i 

a) . "No change in the content of the register i. 

For fixed i, for each s, 0<s^, and each p. 

The atom count is 2 (n+1) P ( | x |). 

The clause count is (n+l)P(|xl). 

b) . "No change in the length of the register i." 

For fixed i, for each q, 0<q<P(|x|). 

k,i,q 

The atom count is 2(P(|x|+l). 

The clause count is (P(|x|+1). 

l<p<P(|x|), 

The CNF NCj^(k,h) is the collection of all clauses in a) and 

b) aboves. And expresses the fact that there is no change in 

register i at step k, (if line h is executed®) . 

The atom county Atom (NC^^ (k, h) ) ^ is: (2 (n+1) P ( | x |)+2 (P ( | x |+1)). 

The clause count. Clause (NC^^ (k, h) ) , is: ( (n+1) P ( | x |)+ (P ( | x |+1)). 

(c) Let NC^j(k,h) be the collection of all clauses NCj^(k,h), 

for i^j, l<i<r. NC^^(k,h) expresses that there is no change 

in any register i(^j) at step k, if line h is executed. 

0 As yet, the line h does not play a rule in the definitions, but it will below. 
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The atom count. Atom(NC^j (k,h) ) , is (r-1) Atom(NC^^ (k,h) ). 

The clause count is. Clause (NC^j (k,h) ) , is: 

(r-1) Clause (NCj_(k,h) ). 

(d) Let 

r 

NCA(k,h) = A NC. (k,h) 
i=l ^ 

NCA(k,h) states that there is no change in any register 

content when line h is executed at step k. It corresponds 

to [Nchange all Registers] in fig 5.1. 

The atom count. Atom(NCA(k,h) ) , is r (Atom(NC^^ (k, h) ) ). 

The clause count is. Clause(NCA(k,h)), is 

r (Clause (NC^^ (k, h) ) ). 

(II) Change in register j 

there are several possibilities for changing the content 

and the length of register j . Each case depends on the 

instruction of the program P for the fixed k and fixed h. 

Case 1 If at step k, line C+1 is being executed. 

l.i) [Nchange all Registers]- "No change in all registers.” 

NCA(k,C+l) 

l.ii) [Stay in line C+1] - "The computation stays in line 

C+1. ” 

^k+l,C+l 

Let NOP(k,C+1) denote the formula: 



-75- 

(Lj^ z> (collection of all clauses in case 1) 

By Lemma 5.1^ the atom count. Atom(NOP(k,C+1) ) , is : 

Atom (NOP (k,C+l) = (Clause (NCA(k,C+l) ) +1) +(Atom (NCA (k, C+1) ) +1) 

and the clause count. Clause (NOP (k,C+1) ) , is ; 

Clause (NOP (k, C+1) ) = Clause (NCA (k,C+1) )+1 

Case 2 If at step k, the line h(T^C+l) is being executed. 

Case 2,1 If the instruction is ”Vj<- for fixed j, 

2.1.i) [Nchange Register i] - "No change the content and 

the length of register i, for all 1=?*j . ” 

NC^j(k,h) 

2.1.ii) [Augment] - "The string length of register j is 

increased by 1." 

For each q, 0<q< P ( | x | )-l. 

^,j,q 

The atom count is 2(P(|x|)+l). 

The clause count is (P(|x|)+1). 

- "The content of the register j is changed by 

placing symbol a^ at position 1, and shifting all 

other symbols which were in the register j to the 

right by one position.” 

For fixed s and each s*, 0<s'<n, each p, l<p< P ( | x | )-l. 

^+1, j, s, 1 

'^^ + 1, j, S ' , P+1 

The atom count is (1+2(n+1) (P(|x|)-l) ) . 
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The clause count is (l+(n+l) (P(|xl)-1)) . 

[Next line] - ”At the next step, the (h+1)^^ line 

will be processed,” 

^ ^ J| 
k,h k+l,h+l 

The atom count is 2. 

The clause count is 1. 

The CNF A. „(k,h) is the collection of all clauses in case 

2.1. 

By Lemma 5.1, the atom count. Atom(A. „(k,h)), is: 
Jr S 

Atom(Aj g (k,h) )=Atom(NC,j (k,h) ) +2 (P ( (x|)+l) 

+1+2 (n+1) (P(|x|)-l)+2 

and the clause count. Clause(A. ^(k,h)), is : 

Clause (Aj ^ (k, h) ) =Clause (NC^^ (k, h) ) + (P ( | x | )+l)+l 

+ (n+l) (P ( |x|)-l)+l 

Case 2.2 If the instruction is . 

Case 2.2.1 is empty. 

2.2.1.i) [Nchange all Registers]-"No change in all 

registers." 

2.2.1.ii) [Next 

NCA(k,h) 

line] - ”At the next 

line will be 

vL 
k+l,h+l 

Step, the (h+1)^^ 

processed.” 

The atom count is 2. 

The clause count is 1. 

Let ZNj(k,h) denote the formula: 
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(collection of all clauses in case 2.2.1) 

By Lemma 5.1, the atom count. Atom(ZN^ (k,h) ) , is : 

Atom(ZNj (k,h) ) = (Clause (NCA(k,h) )+1)+Atom(NCA(k,h)+2 

and the clause count. Clause(ZN^(k,h) ) , is: 

Clause(ZNj(k,h) ) = Clause(NCA(k,h))+1 

Case 2.2.2 is not empty. 

2.2.2.i) [Nchange register i] - "No change the content 

and the length of register i, for all i^tj . " 

NC^j (k,h) 

2.2.2.ii) [Decrement] - "The string length of register j 

is decreased by 1". 

For each q, l<q<P(|x|). 

-H ^ VH , . 
Jc,j,q k+l,j,q-l 

The atom count is 2P(|xl). 

The clause count is P(|xl). 

- "The symbol in end of the string is deleted, 

and the others are not changed". 

For each q, l<q<P(|x|), each p, l<p< P ( | x | ), p=:^q, 

each s, 0^s<n. 

vR 
k,j,q K+l,j,o,q 

. V vR . 
k,j,q K,3,s,p k+l,D,s,p 

The atom count is 2P ( 1 x | )+3 (n+1) P (1 x 1) (P ( | x | )-l) . 

The clause count is P ( | x |)+(n+1) P (| x | ) (P ( | x f )-l) . 
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2.2.2.iii) [Next line] - ”At the next step, the (h+1)^^ 

line will be processed.” 

~L VL k,h k+l,h+l 

The atom count is 2. 

The clause count is 1. 

Let Dj(k,h) denote the formula: 

j Q ID (collection of all clauses in case 2.2.2) 

By Lemma 5.1, the atom count. Atom(D^(k,h) ) , is: 

Atom (D j (k, h) ) = (Clause (ZN^ (k, h) ) +P ( | x | )+P ( | x |)+ 

(n+l)P( |x|)(P( |x|)-l) +l) + (Atom(ZNj(k,h)) 

+2P ( IXI )+2P ( I XI )+3 (n+1) P ( IX I ) (P ( I XI )-l) +2) 

and the Clause(Dj(k,h)) = Clause(ZN^(k,h))+P( | x |)+P(|x|)+ 

<n+l)P(lxl)(P(|x|)-l)+l 

Case 2.3 The instruction is 

This case is the same as case (2.2.1). that is: 

ZN. (k,h) . 

Case 2.4 The instruction is "IF ENDS a^ GOTO Lp”. 

Case 2.4.1 does not end with symbol a^. 

2.4.1.i) [Nchange all Registers] - ”No change all 

register.” 

NCA(k,h) 

2.4.1.ii) [Change of Control] - "At the next step, the 

(h+1)^^ line will be processed.” 

vli k,h k+l,h+l 
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The atom count is 2. 

The clause count is 1. 

Let NSE. ^(k,h) denote the formula: J # S 

P (| X I ) 

A [ (H . A-R , ) 3(collection of all clauses 
q_Q 

in case 2.4.1)]. 

By Lemma 5.1, the atom count of NSE. ^(k,h) is: 
J# S 

P ( |x I) (2 (Clause (NCA(k,h) ) +1) +Atom( NCA(k,h) ) +2) . 

and the clause count of NSE. ^(k,h) is: 

P ( I x|) (Clause (NCA(k,h) ) +1) . 

Case 2.4.2 ends with symbol a^. 

2.4.2.1) [Nchange all Registers] - "No change in all 

register.” 

NCA(k,h) 

2.3.2.ii) [Change of control] - "One of the lines with 

label Lp will be executed at next step." 

-.L VVL k,h k+l,f 
f€Hp 

The atom count is l+|lp- 

The clause count is 1. 

Let Gj^g^p(k,h) denote the formula: 

P(|x|) 

A[(H . AR , ) 3 (collection of all clauses 

in case 2.4.2)]. 

By Lemma 5.1, the atom count of G 
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P(|x|)(2 (Clause (NCA(k,h))+l)+Atom( NCA(k,h))+ 1+^ip) 

and the clause count of G j»s,p IS: 

P (|x|)(Clause (NCA(k,h)) +1) . 

Now we can create the formula CNF(k,h) as follows for fixed 

k and fixed h. 

CNF(k,h) = NOP(k,h) 

CNF(k,h) = A. 3(k,h) 

{If line C+1 is to be executed } 

{If line h reads "Vj^ a^Vj"} 

CNF(k,h) = ZNj (k, h) AD j (k, h) {if line h reads or "Vj«-Vj~ ”} 

CNF(k,h) = NESj 3(k,h) AGj 3 p(k,h) 

{If line h reads "IF Vj ENDS a.^ GOTO Lp", } 

Although the particular choice of CNF(k,h) depends upon the 

instruction on line h of the program P, we see from the above 

atom count that, regardless of the line, the atom count of 

CNF(k,h) is 0(p2 ( |x| ) . 

At Step k, only one line will be executed in P, so we 

define a single CNF, call CNF^^ as follows. 

CNFQ = Init^AQ(l) 

CNF^ = CNF(1,1)AQ(2) 

C+i 

CNF, = A (L. ,3CNF (k,h) ) AQ(k+l) k^tQ,! 
K 1^-1 K ^ il 

tl—1 

Although these formulas are not yet in CNF, Lemma 5.1 shows 

that the atom count of CNFis 0(P^(|x|)). 

Therefore, if there is an program P which accepts the 



-81- 

input X in time P(lx|), then the CNF defined as follows 

will be satisfied. 

p <1X I) 

'Fx = A CNF^ 
k=0 

A L 
P({ X ), C+1 

Since the atom count of CNFis 0(P^(|x|)), thus the atom 

count of is 0(P^(|x|)), and we have proved Theorem 5.1. 

5.3 Cook's Theorem, Sufficiency 

Lemma 5.2. For each 0!^T<P ( | x | ) , if the CNF 

T 
ACNF, 
k=0 

is satisfied, then there is a correct computation 

from program P, of length T, with input x. 

For the proof of Lemma 5.2, as before we refer to the atoms 

Lk h/ ®k j q' with first subscript k, as k-atoms> 

and denote the collection of all k-atoms by and the subset 

of those which are assigned the value TRUE by An 

examination of the construction of the formulas CNFj^ shows 

that to satisfy CNFj^ it is necessary to assign truth values 

to the set of (k+1)-atoms. The process can be thought of 

as proceeding according to the following table, from step 0 

to k. 

From the set of all step-1 atoms assigned value TRUE; 

From the set of all step-2 atoms assigned value TRUE; 
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From the set of all step-k atom assigned value TRUE; 

From the set of all step-K+1 atoms ^T+I 3-Ssigned value 

TRUE. 

Fig 5,2 

Proof By induction on T. 

Basis T=l. 

Satisfaction of the initialization configuration, CQ, 

shows immediately that there is a correct computation CQ 

from P, of length 1. 

For the induction step, the induction assumption is: 

T 

For 1<T^ (I X I ) , if A CNF is satisfied, then there is a 
k=o ^ 

correct computation, CQ, |-C^, i=l,2,...,T, of length 

T. (ending with line number, register lengths, and 
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register contents determined by the TRUE atoms in CNFj^) . 

Further, suppose that 

T +1 

ACNF^ 
k=0 

is satisfied. Since we have 

T +1 T 

A CNF, = A CNF, A CNF^ , 
k=0 k=*0 

T 

then both A CNF,, and CNF„, , are satisfied. 
, . k T +1 
k=0 

T 

i) A CNF, is satisfied; 
k=0 

ii) CNF^^^ is satisfied. 

The induction step proceeds from the above two 

assumptions, and the induction assumption. 

We have just noted that the truth values of all atoms 

whose step subscript is T+1 have been determined in 

satisfying CNF,j. The part Q(T+1) of CNF^ guarantees 

unique line number, register lengths and register 

contents. From (i) and (ii) and the induction assumption 

we conclude there is a correct computation of T steps, 

and that CNF^^^ is satisfied. We must see that truth 

value assigned the atoms of step subscript T+2 in 

satisfying CNF^^^ determine one more correct computation 

step,the (T+1)^^. The reasons are eventually obvious, 

from the way in which CNF^^^^ was constructed. 

Satisfaction of CNF,^. requires that exactly one of the 

atoms ^ is TRUE. From CNF^^^ we see that for that 

value of h, denoted h', CNF(T+1, h*) must be satisfied. 
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It remains to show that the truth values assigned in 

CNF(T+l,h*) determine a correct (T+1)^^ step computation 

step. 

Since we are arguing in general, we cannot commit to a 

fixed form for line h* of the program P but must proceed 

by cases on the four possible forms line h* may have. 

However, to avoid tedious repetition, we argue just one 

case, simply to show the form that the argument should 

take. 

Suppose line h' is of the form "IF V^, ENDS a^, GOTO Lp," 

and that the line numbers of P whose labels are Lp, are 

h^,h2, . . . ,h^, here h^sHp,, |Hp. |= ^lp. = t. 

As above, exactly one atom j, has value TRUE 

and, by the induction assumption, this means that the 

true length of the register content in register j' is q* 

in the correct computation of length K. There are two 

corresponding possibilities for atom . 

(a) j, s' q' FALSE. Then, from case (2.3.1.iii) we 

see that atom h'+i TRUE, and that for each j,s,q, 

the "content" atoms R™., . , „ retain the same values as 

^ + 1, j,S,q- 

Thus, in case (a), since q* FALSE means that 

if V., does not end with symbol a ., the (T+2)-atoms in 

CNF^^^ have the correct values to determine the next 

computation step. 
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(b) j, q, is TRUE. Then, from case (2.3.2.iii) we 

see that atom TRUE for exactly one of feHp,, and 

that for each j,s,q, the "content” atom j s q ^^tain 

the same values as RT+i,j s q* 

Thus, in case (b) , since R^+i, j',s',q* TRUE means that if 

Vy ends with symbol a^,, the (T+2)-atoms in have 

the correct values to determine the next computation 

step. I.E. The line number, register length and register 

contents may be altered to agree with the truth values of 

the (T+2)-atoms and the result will be a correct 

computation step. 

Completing the proof of the other cases in exactly the same 

manner leads to the completion of the induction step and thus 

the proof of the lemma. 

### 
P (| X I ) 

Theorem 5.2 If ^x = /\ CNF, A L , is satisfied, then there 
k=o ^ P (| XI), t+i 

is a S^-program P which accepts x in time P(|x|). 

Proof By Lemma 5.2, there is a correct computation CQ, 

+ i = l/ 2,...,P(|xl)-l, of length P(|xl). 

Satisfaction of CNFQ provide the truth values to 

establish CQ, the configuration corresponding to the 

initial line number(i.e. the first line), all register 

lengths and register contents with input x for P. 

p (| X I) 
Lemma 5.2 shows that satisfaction of A CNF, causes a 

k-O 

correct computation of length P(|x|). 
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Finally, since d x |) ,c+i' satisfied, computation of 

length P(|x|) results in acceptance of x. 

### 

As discussed earlier. Theorem 5.1 and 5.2 together 

constitute Cook’s Theorem except for the usual omission, to 

show that 'Fx is computable in polynomial time in |x|. We have 

shown that the atom count in Tx is 0(P^(|x|)) for each x 

belonging to a set X accepted in time P(|x|). It remains to 

observe that 'Fx is constructed in a uniform effective manner 

from the input x and the S^-program P. Thus (by Church’s 

Thesis) 'Fx, or an appropriate code for ^x, is computable by 

an S^-program, in a computation time proportional to its atom 

count, i.e. in 0{P^(|x|)). 
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