Lakehead University

Computation using s-programs

Wen, Yandan

http://knowledgecommons.lakeheadu.ca/handle/2453/917
Downloaded from Lakehead University, KnowledgeCommons

COMPUTATION USING S-PROGRAMS

A Thesis Submitted
 to

LAKEHEAD UNIVERSITY

In Partial Fulfillment of the Requirement
 for the
 Degree
 MASTER OF SCIENCE C

by
 Yandan Wen

1987

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611762
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée a la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
INTRODUCTION iii
CHAPTER 1 Programming Language S. 1
1.1 S-Programs 1
1.2 Syntax of s-programs 2
1.2.1 Non-Deterministic Execution Rule-I 3
1.2.2 Deterministic Execution Rule-II 6
1.3 S-programs of Indeterminacy $\boldsymbol{\delta}$ 9
1.3.1 Algorithm for Indeterminacy-AFI 10
1.3.2 NDCSP Accepts the Same Sets as General(Non-Deterministic) Computation of ans-program14
CHAPTER 2 Simulation of General Computation by Deterministic Computation. 22
2.1 Clock Sequence for Simulation 22
2.2 Time Estimation 30
CHAPTER 3 T.M. Accepts the Same Class of Sets as NDCSP. 33
3.1 The Flowchart of T.M. Simulator for DCSP 33
3.2 Procedures of Simulation 36
3.3 A General S-program Accepts the Same Set as a T.M. 48
CHAPTER 4 Universal NDCSP. 55
4.1 Algorithm for Binary condition-AFBC 55
4.2 Universal BNDCSP 58
4.3 Universal S-program, Second Construction 60
CHAPTER 5 NP Completeness. 64
5.1Cook's Theorem for the programmingLanguage S_{n}-program64
5.2 Cook's Theorem, Necessity 66
5.2.1 The Initialization 67
5.2.2 Unique Configuration, $Q(k)$ 71
5.2.3 Change of State and of Control 72
5.3 Cook's Theorem, Sufficiency 81
REFERENCES 87

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor Dr. C. F. Kent for his guidance and encouragement in the preparation of this thesis.

ABSTRACT

The concepts of S and S_{n}-programs are given by Davis, Weyuker, 1983. Several parts of the complexity theory are carried out directly for S and S_{n}-programs. The concepts of non-deterministic and deterministic computation from s-programs are defined, and deterministic simulation of non-deterministic computation is proved. A universal s-program for general (non-deterministic) computation is shown to require only one duplicate line label. Complexity results are given for these and other simulations, e.g. Turing Machine by S-programs and the reverse. Cook,s Theorem for S_{n}-programs is proved in full.

In reference [2] Chapter 2 the authors use as their first model of abstract computation a very basic programming language, S. Their first definition uses a set of registers,
 labels, L, M, etc, possibly subscripted, and executable lines of only three types.

$$
\begin{aligned}
& \mathrm{V} \leftarrow \mathrm{~V}+1 \\
& \mathrm{~V} \leftarrow \mathrm{~V}-1 \quad \text { \{leaves a null register null\} } \\
& \mathrm{IF} \mathrm{~V} \neq 0 \text { GOTO } \mathrm{L}
\end{aligned}
$$

In this definition the concept of an alphabet is avoided or, equivalently, the alphabet can be thought of as a 1-symbol "tally" language. Other programs, called S_{n}-programs, are introduced which use "non-trivial" alphabets, A, and replace the first two rules above by $" V \leftarrow a V ", f o r ~ a \in A$, and $" V \leftarrow V^{-}$" (remove the rightmost symbol in V, if there is one), and the last by "IF V ENDS a GOTO L".

A certain portion of the usual theory of abstract computation is developed using these S symbols and, in due course, the theory is shown to be equivalent to the more usual formalization, the Turing Machine. After this equivalence is established, reference [2] becomes more conventional and develops much of its material using Turing Machines(TM's). In particular all results related to non-determinism are developed in the $T M$ context. In this thesis, we develop a larger part of the basic theory, including non-determinism, in the s-program context, directly.

In one small departure from the usual presentation (see[7]), we do not distinguish deterministic and non-deterministic s-programs. There is only one type of s-program, and it does both jobs depending upon whether the computation (execution) rules are deterministic or non-deterministic. The same could be done for TM's. We do not use indexings, or numberings of s-programs in our work, but if that were necessary, a possible economy would result from having only one class, indexed once.

A further small departure occurs in our use of the "non-operable" instruction, $V \leftarrow V$, as a basic instruction. In reference [2,pp.23], $V \leftarrow V$, is a small subprogram, and its introduction therefore introduces several lines, and would complicate our statement of several complexity relations. The use of $V \leftarrow V$ is inessential. The instruction $V_{0} \leftarrow V_{0}-1$, (or $V_{0} \leftarrow \mathrm{~V}_{0}{ }^{-}$), for a register which was conventionally always left empty, would accomplish the same purpose, i.e. it would pass control to the succeeding line of the s-program(S_{n}-program).

In Chapter 1 we define the basic concepts of (general) s-programs, indeterminacy of an s-program, state the execution rules, and show how to replace a general s-program by one in which each line label occurs the same number of times (constant indeterminacy). The chapter concludes with a formal proof that, from the viewpoint of set acceptance, a program, \mathbf{P}, and its constant indeterminacy companion, \mathbf{P}^{\prime}, are equivalent.

Chapter 2 is devoted to developing the usual result about simulating non-deterministic computation by deterministic
computation, but here for s-programs directly. The usual exponential increase in the time required is shown to apply.

Chapter 3 develops the equivalence between general s-programs and general(non-deterministic) TM's. This is a direct equivalence and avoids the usual chain of equivalences, from non-deterministic $T M$ to deterministic $T M$ to (deterministic) s-program to s-program. Complexity results, in terms of time requirements, are given, but a limitation of the first type of s-program emerges. This restriction is a consequence of the previously mentioned fact that ordinary s-programs use tally languages, for which the length and the value of words, x, coincide (or differ by at most 1).

Chapter 4 begins by showing how to replace constant-indeterminacy s-programs, of indeterminacy α, by programs of constant indeterminacy 2 . This result is used to exhibit a universal (non-deterministic) s-program, which differ from the universal (deterministic) s-program of reference [2,pp.58] by the insertion of only one duplicate line label, (one additional line). A second construction is given which does not depend upon the constant-indeterminacy result, but is more complex.

Finally, in Chapter 5, we return to a classic complexity result, Cook's Theorem, formulated here for S_{n}-programs. Because of the lack of distinction between value of x and length of x for tally languages, and consequently for reference [2]'s first model of an s-program, we change here to s_{n}-programs. In terms of complexity, s-program are equivalent to S_{1}-programs. Cook's Theorem is given the usual
sort of proof, by exhibiting an algorithm for constructing a conjunctive normal form, Ψ_{x}, for each S-program, P, and input x. However, we do go one step farther than most presentations by showing that the $C N F, \Psi x$, is satisfied if and only if, P accepts x .

CHAPTER 1

Programming Language S

In this Chapter, we describe the Programming Language S and the syntax of s-program. Our definitions follow closely these in reference [2,pp.15-17], with minor differences.

1.1 S-Programs

Like any other program languages, programming language S has
a. Input variables:

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

b. Local variables:

$$
z_{1}, z_{2}, z_{3}, \ldots
$$

c. Output variable:
Y
d. Label names:
$A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, \ldots$
e. One of the following statements(instructions) in the table 1.1

Instruction	Interpretation
$\mathrm{V} \leftarrow \mathrm{V}+1$	Increase by 1 the value of the variable V. Variables are the names for registers holding values during a computation from the program. At the beginning of each computation all variables have initial value 0 .
$\mathrm{V} \leftarrow \mathrm{V}-1$	If the value of V is 0 , leave it unchanged; otherwise decrease by 1 the value of V.
$V \leftarrow \mathrm{~V}$	A non-operable line, control passes to next line
IF $V \neq 0$ GOTO L	If the value of V is not zero, perform the instruction with label L next; Otherwise proceed to the next instruction in tine list.
where V may be	riable and L may be any label.

f. A Program is an ordered list of instructions (finite).
g. The length of the program is the length of the list of those instructions, i.e. the number of lines.
h. The empty program contains no instruction, its length is 0 .
i. A state of a program P is a list of equations of the form $V=m$, where V is a variable and m is a number, including exactly one equation for each variable that occurs in \mathbf{P}.
j. A label block is a maximal set of consecutive lines of the program, all bearing the same label.

1.2. Syntax of S-programs

Suppose we have a program P of length n. Let σ be a state of P and let V be a variable that occurs in σ. The value of V at σ is then the (unique) number q such that the equation $V=q$ is one of the equations making up σ. In order to say what happens "next", we also need to know which instruction of P is about to be executed. We therefore define a snapshot or instantaneous description of a program P of length n to be a pair (i, σ) where $1 \leq i \leq n+1$, and σ is a state of P. (Intuitively the number i indicates that it is the i th instruction which is about to be executed; $i=n+1$ corresponds to a "stop" instruction).

If $s=(i, \sigma)$ is a snapshot of P and V is a variable of P, then the value of V at s just means the value of V included in the state σ.

We shall handle the deterministic versus non-deterministic issue not by considering programs of the two types, but by considering only one type of program and representing deterministic computation, rule-II, as a special case of non-deterministic (ordinary) computation, rule-I. Non-determinism in computations is handled by use of multiple occurrences of the same line label, say L, so that in response to a "GOTO L"* the computation may choose non-deterministically any line labelled L just like non-deterministic Turing machine, which might have, for certain combinations of state and scanned symbol, more than one possible chice of behavior, defined in [4,pp.204]. In deterministic computation of [2,pp.25] a "GOTO L" command always chooses the first line of label L in the program.

1.2.1 Non-Deterministic Execution Rule-I

For a given S-program P, If (i, σ) is a non-terminal snapshot of P, we define the successor of (i, σ) to be the snapshot (j, $\boldsymbol{\tau}$) following the rules below.

* The unconditional GO TO L will be used below and represents the small subprogram $V \leftarrow V+1$, IF $V \neq 0$ GO TO L, using some variable V which does not appear elsewhere in the program.

Rule-I
Line changing flowchart

Fig 1.1

I-A. The $i^{\text {th }}$ line is not in any label block, i.e. is not a labelled line, σ, and contains the equation $V=m$. (a.1). The $i^{\text {th }}$ line is not the form "IF V $\neq 0$ GOTO L". $i=i+1 ;$
τ has three subcases:
i) The $i^{\text {th }}$ line is $" V \leftarrow \mathrm{~V}+1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $V=m+1$.
ii) The $i^{\text {th }}$ line is $" V \leftarrow V-1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $V=m-1$ if $m \neq 0$; if $\mathrm{m}=0, \tau=\sigma$.
iii) The $i^{\text {th }}$ line is $" V \leftarrow V$ ", $\tau=\sigma$.

```
(a.2).The ith line is the form "IF V#= GOTO L".
    \tau=\sigma;
```

 \(j\) has two subcases:
 i) If \(V=0, j=i+1\).
 ii) If \(V \neq 0, j\) is the number of any line in any
 L-block.
 I-B. The $i^{\text {th }}$ line is in the label block, B_{M} of label M, σ contains the equation $\mathrm{V}=\mathrm{m}$.
(b.1). The $i^{\text {th }}$ line is not the form "IF $V \neq 0$ GOTO $L^{\prime \prime}$.
(b.1.1). The $i^{\text {th }}$ line is " $V \leftarrow V$ ".
$\tau=\sigma ;$
$j=i+1$.
(b.1.2). The $i^{\text {th }}$ line is not " $V \leftarrow V$ ".
j is the number of the first line below B_{M}.
τ has two subcases:
i) The $i^{\text {th }}$ line is $" V \leftarrow V+1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $\mathrm{V}=\mathrm{m}+1$.
ii) The $i^{\text {th }}$ line $" V \leftarrow V-1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $V=m-1$, if $m \neq 0$; if $m=0, \tau=\sigma$.
(b.2). The $i^{\text {th }}$ line is the form "IF V $\neq 0$ GOTO L ". $\tau=\sigma$;
j has two subcases:
i) If $V=0, j$ is the number of the first line below B_{M}.
ii) If $V \neq 0$, j is the number of any line in any L-block.

1.2.2 Deterministic Execution Rule-II

Rule-II
Line changing flowchart

Fig 1.2

II-A The $i^{\text {th }}$ line is not the form "IF V $\neq 0$ GOTO L ". $i=i+1 ;$
τ has three subcases:
i) The $i^{\text {th }}$ line is $" V \leftarrow V+1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $V=m+1$.
ii) The $i^{\text {th }}$ line is $V \leftarrow V-1 ", \tau$ is obtained from σ by replacing the equation $V=m$ by $V=m-1$ if $m \neq 0$; if $m=0, \tau=\sigma$. iii) The $i^{\text {th }}$ line is "V $\leftarrow \mathrm{V}$ ", $\tau=\sigma$.

II-B The $i^{\text {th }}$ line is the form "IF V $\neq 0$ GOTO L ". $\tau=\sigma$;
j has two subcases:
i) If $V=0, j=i+1$.
ii) If $V \neq 0, j$ is the number of the first line in the first L-block.

DEFINITION 1.1 A computation, C, of a program P of length n is a sequence $s_{1}, s_{2}, \ldots, s_{k}$ of snapshots of P such that s_{i+1} is the successor of s_{i} for $i=1,2, \ldots, k-1 . s_{1}=\left(1, \sigma_{1}\right)$ which is initial snapshot, $s_{k}=\left(n+1, \sigma_{k}\right)$ which is terminal snapshot.

DEFINITION 1.2 Any computation C, which is being executed by Rule-I, is called a non-deterministic computation, for convenience, written NDC to emphasize this case.

DEFINITION 1.3 Any computation C under Rule-II is called a deterministic computation, for convenience, written DC to emphasize this case.

As stated earlier, we do not classify s-programs as "deterministic" or "non-deterministic", but have only one set of s-programs. It is the computations from these programs which are called deterministic, or non-deterministic. Our general term "computation" thus stands for what other authors call a non-deterministic computation (program, machine, etc.).

Frequently it happens that restricted classes of programs suffice for certain types of computations, we consider several results of this nature in this paper, but begin with a very simple example, which should not be confused with the more important results of the next section.

Example 1.1

$$
\begin{array}{ll}
\text { [L] } & X \leftarrow X+1 \\
\text { [L] } & I F X \neq 0 \text { GOTO } L \\
& X \leftarrow X-1 \\
& P \simeq 0.1 .1
\end{array}
$$

This program contains two instructions having the same label. According to the definition of $D C$, its snapshot, in effect, interprets a branch instruction as always referring to the first statement. So the program is equivalent to the following:

$$
\text { [L] } \quad \begin{aligned}
& \mathrm{X} \leftarrow \mathrm{X}+1 \\
& \mathrm{IF} \mathrm{X} \neq 0 \text { GOTO } \mathrm{L} \\
& \mathrm{X} \leftarrow \mathrm{X}-1 \\
& \\
& \\
& \text { Pro. } 1.2
\end{aligned}
$$

We use DCSP to represent the program which is executed by Rule-II.

Lemma 1.1 Given a general S-program, P, there is a companion program, $P *$, in which no line label occurs more than once, and so that the set of deterministic computations from \mathbf{P} is the same as the set of all computations from \mathbf{P} *.

Proof If line i of P has label L, but is not the top line of label L, then control in a deterministic computation can pass to line i only if the line immediately above i is executed. Since this happens whether or not the label L is present in line i, we can erase all prefix labels L in lines which are not the top one with label L. In this new program, \mathbf{P}^{*}, all computations become Rule-r computations. Therefore, for program P^{*}, the set of all computations is the same as the set of deterministic computations of \mathbf{P}.

```
1.3. S-programs of Indeterminacy \delta
```

In a general S-program, there may be several different occurrences of a label. One label that occurs may not have to occur the same number of times as another label. We refer to the number of occurrences of label L in the label block as the multiplicity of I, and the maximum multiplicity of any label in P as the indeterminacy of P, say $\boldsymbol{\delta}$.

Example 1.2

In Pro.1.3, the multiplicity of L in first L-label block is 2 , the multiplicity of M in first M-label block is 1 , and so on. The indeterminacy of this program, δ, is 2.

In our proof, in the next chapter, of the standard result on simulation of non-deterministic computation by deterministic, we will require an intermediate result, like Theoremi.l(below), to show that general S-program of indeterminacy, δ, can be replaced by program in which each labelled line has indeterminacy $\delta+1$. Thus, we next turn to the procedure for this replacement.

1.3.1 Algorithm for Indeterminacy-AFI

Let \mathbf{P} be a general \boldsymbol{S}-program
Step 1. Determine the indeterminacy δ, and let $\alpha=\delta+1$.

Step 2. For a fixed label L.
i). Put L-blocks in order as $B_{L_{1}}, B_{L_{2}}, \ldots, B_{L_{m}}$ (suppose there are m L-blocks in P).
ii). In $B_{L_{1}}$, replace all labels L by L_{i}.
iii). (a) The multiplicity of L_{i}, δ_{i}, will be made equal to $\boldsymbol{\alpha}$.
(a.1) $i \neq m$, add statement "GOTO L_{i+1} " with label I_{i} below the last line of the L_{i}-block. Call this new label block $B_{L_{1}}^{\prime}$.
(a.2) $i=m$, add statement "GOTO L_{1} " with label L_{m} below the last line of the L_{m}-block. Call this new label block $B_{L_{m}}^{\prime}$.
(b) The multiplicity of L_{i}, may not yet be equal to α. Insert statements "V $\leftarrow V$ " with label L_{i} between the last line of the old $L_{i}-b l o c k$ and the new last lines added in (a) until the multiplicity of I_{i} is equal to α. Call this new label block $B_{\mathrm{L}_{1}}^{\prime}$.

Step 3. Repeat step 2 until all L-blocks are treated.

Step 4.Inside any line which contains form "GOTO L", replace by "GOTO L_{1} "; Note that no line which lacks an internal or a prefix label is changed.

Step 5. Repeat step2, 3 and 4 until all labels have been treated.

Now we use NDCSP, P^{\prime}, to represent the program which has been changed by the Algorithm-AFI and is executed by Rule-I.

For use in the chapter 4 later, we give the simulation steps of P^{\prime} simulating a one step GOTO statement of P.

Corollary 1.1 An NDCSP, P^{\prime}, takes $\leq \boldsymbol{\alpha}$ steps to simulate a one step GOTO statement of a general S-program, \boldsymbol{P}.

Proof For a statement "GOTO L" in P, there is the corresponding line "GOTO L_{1} " in P^{\prime}. When a P-computation executes "GOTO L", the next step will go to one of lines labelled L in P. By $A F I$ step-2, the P '-computation, in simulating this step may go though all L-blocks, i.e. α steps, in the worst case. So P^{\prime} may take α steps to simulate a one step GOTO statement of P.
\#\#\#

In Ex.1.2, δ is 2 for label L; according to the above procedure after step 2, it looks like:

	$\mathrm{X} \leftarrow \mathrm{X}-1$
$\left[L_{1}\right]$	$\mathrm{X} \leftarrow \mathrm{X}$
$\left[\mathrm{L}_{1}\right]$	$\mathrm{X} \leftarrow \mathrm{X}+1$
$\left[\mathrm{~L}_{1}\right]$	$G O T O \mathrm{I}_{2}$
$[\mathrm{M}]$	$\mathrm{Z} \leftarrow \mathrm{Z}+1$
$\left[\mathrm{~L}_{2}\right]$	$\mathrm{IF} \mathrm{Z} \neq 0$ GOTO M
$[\mathrm{N}]$	$\mathrm{Z} \leftarrow \mathrm{Z}-1$

$$
\begin{array}{ll}
{\left[L_{3}\right]} & I F \quad X \neq 0 \text { GOTO } N \\
\text { [M] } & I F \quad Z \neq 0 \text { GOTO } L \\
& Y \leftarrow Y+1
\end{array}
$$

Pro. 1.4

After step 3 and step4, the program looks like:

	$\mathrm{X} \leftarrow \mathrm{X}-1$
[L_{1}]	$\mathrm{X} \leftarrow \mathrm{X}$
[L_{1}]	$\mathrm{X} \leftarrow \mathrm{X}+1$
[L_{1}]	GOTO L_{2}
[M]	$\mathrm{Z} \leftarrow \mathrm{Z}+1$
[L_{2}]	IF $\mathrm{Z} \neq 0$ GOTO M
[L_{2}]	$\mathrm{X} \leftarrow \mathrm{X}$
[L_{2}]	GOTO L ${ }_{3}$
[N]	$\mathrm{z} \leftarrow \mathrm{Z}-1$
[L_{3}]	IF $\mathrm{X} \neq 0$ GOTO N
$\left[L_{3}\right]$	$\mathrm{X} \leftarrow \mathrm{X}$
[L_{3}]	GOTO L_{1}
[M]	IF $\mathrm{z} \neq 0$ GOTO
	$\mathrm{Y} \leftarrow \mathrm{Y}+1$

Pro. 1.5

After step 5, we have:

	$\mathrm{X} \leftarrow \mathrm{X}-1$
$\left[\mathrm{~L}_{1}\right]$	$\mathrm{X} \leftarrow \mathrm{X}$
$\left[\mathrm{L}_{1}\right]$	$\mathrm{X} \leftarrow \mathrm{X}+1$
$\left[\mathrm{~L}_{1}\right]$	$\mathrm{GOTO} \mathrm{L}_{2}$
$\left[\mathrm{M}_{1}\right]$	$\mathrm{Z} \leftarrow \mathrm{Z}+1$
$\left[\mathrm{M}_{1}\right]$	$\mathrm{Z} \leftarrow \mathrm{Z}$
$\left[\mathrm{M}_{1}\right]$	GOTO M_{2}

[L_{2}]	IF $\mathrm{z} \neq 0$ GOTO M_{1}
[L_{2}]	$\mathrm{X} \leftarrow \mathrm{X}$
[L_{2}]	GOTO L_{3}
$\left[N_{1}\right]$	$\mathrm{Z} \leftarrow \mathrm{Z}-1$
$\left[\mathrm{N}_{1}\right]$	$\mathrm{Z} \leftarrow \mathrm{Z}$
$\left[N_{1}\right]$	GOTO N_{1}
$\left[L_{3}\right]$	IF $\mathrm{X} \neq 0$ GOTO N_{1}
[L_{3}]	$\mathrm{X} \leftarrow \mathrm{X}$
$\left[L_{3}\right]$	GOTO L_{1}
[M_{2}]	IF $\mathrm{z} \neq 0$ GOTO L_{1}
[M_{2}]	$\mathrm{Z} \leftarrow \mathrm{Z}$
[M_{2}]	GOTO M1
	$\mathrm{Y} \leftarrow \mathrm{Y}+1$

Pro. 1.6

1.3.2 NDCSP Accepts the Same Sets as General (Non-Deterministic) Computation of an S-Program

In this section we show that the replacement of an s-program, P of length n, by another, P^{\prime}, of constant label multiplicity, as in the last section, does not affect the set accepted by general computation.

DEFINITION 1.4 Let f be the one-to-one order preserving map of the lines of the original program P (of length n onto the lines of P^{\prime} of length N) that are not added in step-2 iii) of AFI. Call this the correspondence map, and for $i, 1 \leq i \leq n$, $f(i)$ is called the corresponding line for P, and $f(n+1)=N+1$.

Note that the difference between line i, of P, and line $f(i)$ of P^{\prime} are superficial. Line $f(i)$ differ from line i, at most, in change of the prefix label, and change of the internally mentioned label, if line i is a GOTO line.

Lemma 1.2 Function f which is defined as above is an injection from \mathbf{P} to $\mathbf{P '}^{\prime}$.

Proof For the line i in P.
(a) line i is not in any block. (a.1) line i is not of the form "GOTO L". There is exactly one corresponding line $f(i)$, which has the same form as i, by ArI-step 4. (a.2) line i is of the from "GOTO L". There is exactly one corresponding line $f(i)$, which is changed to "GOTO L_{1} ", by AFI-step 4.
(b) line i is in M-block B_{M}.
(b.1) line i is not of the form "GOTO L".

There is exactly one corresponding line $f(i)$, which has the same form as i, in $B_{M_{j}}^{\prime}$ by $A F I-s t e p-2$ (suppose
this M-block is the $j^{\text {th }}$ occurrence $M-b l o c k$ in P).
(b.2) line i is of the from "GOTO L".

There unique corresponding line $f(i)$ is the form that comes from (a.2) and (b.1) in this case. Thus, for all $i, 1 \leq i \leq n$, in P, there is exactly one corresponding line $f(i)$ in P^{\prime}. Therefore f is an injection from \mathbf{P} to $\mathbf{P '}^{\prime}$.
\#\#\#

For both lemmas below we assume that P has no "V $\leftarrow V$ " instruction. If so, then omitting such lines from P does not affect the inputs accepted. $P(x)$ denotes that x is the input of program P.

Lemma 1.3 If there is a k-step computation of $\mathbf{P}(x)$ leading to a snapshot $s=(i, \sigma)$, then there is a computation of $P^{\prime}(x)$ leading to a snapshot $c=(f(i), \sigma)$.

Proof By induction on k.

Basis $k=1$.
The only 1 -step computation of $P(x)$ leads to the snapshot $s_{1}=\left(1, \sigma_{1}\right)$, where σ_{1} is the initial state. By $A F I$, the initial snapshot of $P^{\prime}(x), C_{1}$, has the same state σ_{1}, and starts at first line, i.e. $C_{1}=\left(1, \sigma_{1}\right)$. Hence in this case the assertion is, correct.

Assume, for induction.
For any k-step computation C of $P(x)$ leading to the snapshot $s_{k}=\left(i_{k}, \sigma_{k}\right)$, there is a computation C^{\prime} of $P^{\prime}(x)$ leading to the snapshot $c_{k_{p}}=\left(f\left(i_{k}\right), \sigma_{k}\right)$.

Consider the $(k+1)^{\text {th }}$-step.
Suppose there is a $k+1$-step computation of $P(x)$ leading to the snapshot $s_{k+1}=\left(i_{k+1}, \sigma_{k+1}\right)$. We use the induction assumption on the part of that computation through step k, and we have three cases:
case 1) Line i_{k} is not of the form "GOTO L ", $i_{k} \neq n+1$.
In this case state σ_{k}, in both computations, passes to the same state σ_{k+1}, and we need only check that the control is correctly passed.
a) line i_{k} is not in a label block, then $i_{k+1}=i_{k}+1$. In $P^{\prime}(x)$, control passes from $f\left(i_{k}\right)$ to the next line, i.e. $f\left(i_{k}+1\right)=f\left(i_{k}\right)+1$, so the corresponding snapshot of s_{k+1} is: $c_{(k+1)_{p}}=\left(f\left(i_{k}\right)+1, \sigma_{k+1}\right)=\left(f\left(i_{k}+1\right), \sigma_{k+1}\right)=\left(f\left(i_{k+1}\right), \sigma_{k+1}\right)$.

Thus in this case, there is a computation of $P^{\prime}(x)$ leading to snapshot $c_{(k+1)_{p}}=\left(f\left(i_{k+1}\right), \sigma_{k+1}\right)$.
b) line i_{k} is in a label block, say B_{M}.
control passes from i_{k} to the top line i_{k+1} below B_{M} in P (since line i_{k} is not $\left.V \leftarrow V\right)$; In $P^{\prime}(x)$ control passes from $f\left(i_{k}\right)$ to the top line, below $B_{M_{j}}^{\prime}$ (suppose this M-block is the $j^{\text {th }}$ occurrence $M-b l o c k$ in P), and this line is $f\left(i_{k+1}\right)$, so the corresponding snapshot of s_{k+1} is again:

$$
c_{(k+1)_{p}}=\left(f\left(i_{k+1}\right), \sigma_{k+1}\right) .
$$

Thus, in this case, there is a computation of $P^{\prime}(x)$ leading to snapshot $c_{(k+1)_{p}}=\left(f\left(i_{k+1}\right), \sigma_{k+1}\right)$.
case 2) Line i_{k} is of the form "GOTO L", $i_{k} \neq n+1$.
In this case no change is made in the state, in either computation, so $\sigma_{k}=\sigma_{k+1}$.
Control passes from line i_{k} to some line i_{k+1} in one of the L-blocks in P. We must see that there is a P^{\prime} computation with correct transfer of control from snapshot $\left(f\left(i_{k}\right), \sigma_{k}\right)$ to $\left(f\left(i_{k+1}\right), \sigma_{k}\right)$. Since the executable command of line i_{k} is "GOTO L ", the command of $f\left(i_{k}\right)$, according to algorithm AFI is "GOTO L_{1} ". The correct computation for P^{\prime} in this case selects the last line of block $B_{L_{1}}^{\prime}$, last line of $B_{L_{2}}^{\prime}, \ldots$ last line of $B_{L_{q-1}}^{\prime}$, and last line of $B_{L_{q}}^{\prime}$. Thus there is a computation $\mathcal{P}^{\prime}(x)$ which eventually arrives at snapshot $\left(f\left(i_{k+1}\right), \sigma_{k}\right)$, as required.
case 3) $i_{k}=n+1$.
Then i_{k+1} stays on line $n+1$, state σ_{k+1} is unchanged. Since $f\left(i_{k}\right)$ is the corresponding line, then, by definition $f\left(i_{k}\right)=N+1$ (suppose program P^{\prime} is of length $N)$, thus the corresponding snapshot of s_{k+1} is:

$$
c_{(k+1)_{p}}=\left(f\left(i_{k+1}\right), \sigma_{k}\right)=\left(N+1, \sigma_{k}\right) .
$$

This complete the induction step, so the result of the lemma follows.
End of proof.

Lemma 1.4 If there is a k-step computation of $P^{\prime}(x)$ leading to a snapshot $c=(f(j), \sigma)$, where $f(j)$ is a corresponding line of P, then there is a computation of $P(x)$ leading to a snapshot $s=(j, \sigma)$.

Proof By complete induction on k.

Basis k=1.
The same argument as in the basis case of Lemma 1.3 applies.

Inductive step
Assume for all $h<k$, if there is a h-step computation of $P^{\prime}(x)$ leading to snapshot $c_{h}=\left(f\left(i_{h}\right), \sigma_{h}\right)$, where $f\left(i_{h}\right)$ is a corresponding line of P, then there is a computation of $P(x)$ leading to snapshot $s_{p_{h}}=\left(i_{h}, \sigma_{h}\right)$.

Now consider a k-step computation, $c_{1}, C_{2}, \ldots c_{k}$, of $P^{\prime}(x)$ leading to snapshot $c_{k}=\left(f\left(i_{k}\right), \sigma_{k}\right)$, where $f\left(i_{k}\right)$ is a corresponding line of \mathbf{P}.

Choose the largest $h_{0}<k$, so that the h_{0}-step part of the k-step computation gives snapshot $c_{h_{0}}=\left(f\left(i_{h_{0}}\right), \sigma_{h_{0}}\right)$, for a corresponding line $f\left(i_{h_{0}}\right)$. By assumption there is a computation of $P(x)$ leading to snapshot $s_{p_{h_{0}}}=\left(i_{h_{0}}, \sigma_{h_{0}}\right)$.

We diagram the present assumptions for greater understanding.

$$
\begin{aligned}
& \text { P-computation } P^{\prime} \text {-computation } \\
& \begin{aligned}
& s_{1}=\left(1, \sigma_{1}\right) \\
& \dot{\bullet} \\
& s_{P_{h_{0}}} \dot{\square} \\
&\left(i_{h_{0}}, \sigma_{h_{0}}\right)
\end{aligned} \\
& s_{p_{h_{0}+1}}=\left(i_{k}, \sigma_{h_{0}+1}\right) \\
& c_{1}=\left(1, \sigma_{1}\right) \\
& c_{h_{0}}=\dot{\cdot}\left(f\left(i_{h_{0}}\right), \sigma_{h_{0}}\right) \\
& c_{h_{0}+1}=\left(\underset{\text { results of }}{ }, \sigma_{h_{0}+1}\right) \\
& \text { - }\} \begin{array}{l}
\text { executing non- } \\
\text { corresponding } \\
\text { lines }
\end{array} \\
& c_{k}=\left(g, \sigma_{k}\right)
\end{aligned}
$$

use g to denote the first corresponding line number executed by P^{\prime} after step h_{0}. First we note that $\sigma_{h_{0}+1}$, the result of executing lines $i_{h_{0}}$, or equivalently $f\left(i_{h_{0}}\right)$, on the state $s_{h_{0}}$, is the same as σ_{k}, since in the P^{\prime}-computation the intervening steps do not change the state. Thus, to prove the lemma it is sufficient to show that $i_{k}=f^{-1}(g)$.

We consider cases on the joint form of the line $i_{h_{0}}$ and its correspondent $f\left(i_{h_{0}}\right)$.
a) lines $i_{h_{0}}$ and $f\left(i_{h_{0}}\right)$ are not GOTO lines.
a.i) both are labelled lines.

In this case \mathbf{P} control passes to the top line below the label block in which $i_{h_{0}}$ lies, and P^{\prime} control to the top line below the label block in which $f\left(i_{h_{0}}\right)$ lies. But, this is a corresponding pair of lines and $f^{-1}(g)=i_{k}$.
a.ii) neither line $i_{h_{0}}$ nor $f\left(i_{h_{0}}\right)$ is labelled.

In this case, control in both programs passes to the next line, i.e. $i_{k}=i_{h_{0}}+1, g=f\left(i_{h_{0}}\right)+1$ and $f^{-1}(g)=i_{k}$.
b) lines $i_{h_{0}}$ and $f\left(i_{h_{0}}\right)$ are GOTO lines.

In this case line $i_{h_{0}}$ is of the form "GOTO L " and line $f\left(i_{h_{0}}\right)$ of the form "GOTO L_{1} ". Now, line g is the first corresponding line of the $f\left(i_{h_{0}}\right)$. Thus line g must lie in same L_{i} block, since the actions of the non-corresponding lines in steps $h_{0}+1$ through $k-1$ cannot transfer control outside of the (set of) L_{i} blocks. Since g is a corresponding line in an L_{i} block, there is a line i_{k} in some L-block of P which contains the corresponding instruction, so that $f^{-1}(g)=i_{k}$.

This completed the induction step and, hence, the lemma is proved.
\#\#\#

From lemma 1.3 and lemma 1.4 , we can get a theorem as following:

Theorem1.1 Given a general S-program, P, there is another, \mathbf{P}^{\prime}, in which all line labels occur with the same multiplicity, such that P accepts X if and only if P^{\prime} accepts X.

Proof The lemmas above show that the same snapshots can be attained by P and P^{\prime}, then, for given X, there is a
halting computation of $P(x)$ if and only if there is a halting computation of $P^{\prime}(x)$.

CHAPTER 2

Simulation Of General Computation By Deterministic Computation

In this Chapter, we prove, for s-programs directly, that if a set X can be accepted by an S-program, P, then there is another S-program, \mathbf{P}^{*}, which accepts X and every computation from P^{*}, is deterministic(Lemma 4.6.1 of [4] proves that a non-deterministic Turing machine can be simulated by a deterministic one). In this sense general computation is no more powerful than deterministic computation except, of course, that it seems to require an exponential increase in time for the deterministic computation. The usual device used in simulating a non-deterministic computation by a deterministic one is to use a subprogram to generate instructions which remove choices from the main program in executing GOTO statements with multiple destinations. We refer to such instruction as "clock sequences", definition 2.1 , below. The subprogram generates a sequence, C, of numbers $c_{0}, c_{1}, \ldots, c_{m} ; 0 \leq c_{i}<\alpha$, where α is the indeterminacy of \mathbf{P}, and \mathbf{P}^{*} executes a computation simulating m steps of some \mathbf{P}-computation and consuming the clock sequence as it reads its values to direct the choice of GOTO destinations.

2.1 Clock Sequence for Simulation

DEFINITION 2.1 Any given non-negative integer c, can be represented by base $\alpha, \sum_{i=0}^{m} d_{i} \alpha^{i}, 0 \leq d_{i} \leq \alpha-1$. Call the sequence $\left\{d_{m}, d_{m-1}, \ldots, d_{0}\right\}$ a Clock Sequence for integer c.

The individual values $d_{i}, 0 \leq i \leq m$, will be used to instruct the simulator which of the α possible line labels involved in a "GOTO L" should be executed. We call each d_{i} a clock sequence value.

Theorem 1.1 tells us that for general s-program computation from P, it suffices to consider only S-programs, \mathbf{P}^{\prime}, of constant indeterminacy. Thus, in order to simulate P by a DCSP, P^{*}, we need only consider a NDCSP, P^{\prime}, in which all the labels in a label block occur α times, and simulate the computations of $\mathbf{P '}^{\prime}$ by to a DCSP, \mathbf{P}^{*}.

Theorem 2.1 If a NDCSP, P^{\prime}, accepts a set X, then there is a DCSP, P^{*}, which also accepts X.

Proof Suppose the constant indeterminacy of the given NDCSP, P^{\prime}, is α.
First we make an intermediate change in P^{\prime}. c1. In each L-block, replace the α occurrences of L by $L_{0}, L_{1}, \ldots, L_{\alpha-1}$, in order.
c2. Insert the unlabelled line "GOTO L_{α} " in the L-block immediately below each L_{j}-line, $0 \leq j \leq \alpha-2$. Here we use the unconditional "GOTO L_{α} " as a basic command, as an abbreviation for "IF V $\neq 0$ GOTO L_{α} " for same register, V, which is initialized non-zero. c3. Insert $" V \leftarrow V$ " with label L_{α} below line $L_{\alpha-1}$.

After this change, no label is used more than once in program P! and there is no L-line to support the "GOTO $L^{\prime \prime}$ statements of $P^{\prime}($ see pro2.2). Thus, execution of P^{\prime} would result in termination in response to each GOTO statement, however our attention is not on the execution of this temporary program, for which we retain the name $\mathbf{P '}^{\prime}$.

Now we turn to creation the simulator, DCSP, P^{*} from \mathbf{P}^{\prime} of length $\{$.

The flowchart for turning P^{\prime} into P^{*} follows.

Fig 2.1
I. P^{*} contains the following lines to create the clock
sequence, call CL which is:
CL

$$
\begin{aligned}
& \mathrm{C} \leftarrow \mathrm{C}+1 \\
& \mathrm{z}_{1} \leftarrow \mathrm{C}
\end{aligned}
$$

ic is the clock sequence, it is initially 0 \}
II. If the line is not of the form "GOTO L" , here L is not subscripted, then the corresponding form in p^{*} is the same as the one before in P^{\prime}.
III. If the line is of the form "GOTO L" but not "GOTO $L_{\alpha}{ }^{\prime \prime}$, then the corresponding form in $P *$ is changed to "GOTO LC" which transfers control to the subprogram LC, below:

LC $\quad Z_{4} \leftarrow 0$

IF $Z_{1} \neq 0$ GOTO RML \quad| (RML will compute the remainder |
| :--- |

GOTO CL \quad| and the quotient of z_{1} modulo α \} |
| :--- |
| (the current clock sequence has |
| been consumed. create another |
| clock sequence.) |

IV Read next line, if it is line $\mathbb{C}+1$, stop the simulation; Otherwise, go back to the step II.

Note that if the program P^{\prime} had h different labels, there are h kinds of Change-subprograms.

By definition $2.1 \mathrm{rm}\left(Z_{1}, \alpha\right)$ is the clock sequence value and $q t\left(Z_{1}, \alpha\right)$ is the new(reduced) clock sequence. We use registers z_{2} for $r m\left(z_{1}, \alpha\right)$ and z_{4} for $q t\left(z_{1}, \alpha\right)$, in subprogram RML. Now $\operatorname{rm}\left(Z_{1}, \alpha\right)=Z_{1}-\alpha *\left[Z_{1} / \alpha\right]$ and $q t\left(z_{1}, \alpha\right)=\left[z_{1} / \alpha\right]$, but to avoid analysing the complexity
of primitive recursive functions computed by s-programs, we compute these two quantities by the following straightforward program.

[RML]	$\mathrm{z}_{1} \leftarrow \mathrm{z}_{1}-1$	\{this part of the program reduces
	$\mathrm{Z}_{2} \leftarrow \mathrm{Z}_{2}+1$	z_{1} by α, If a 0 arises before the
	$\begin{aligned} & \text { IF } \mathrm{Z}_{1} \neq 0 \text { GOTO } \mathrm{RL}_{2} \\ & \text { GOTO } \mathrm{FL} \end{aligned}$	last line of this part, we exit with the present Z_{4} and Z_{2}.\}
$\left[\mathrm{RL}_{2}\right]$	$\mathrm{z}_{1} \leftarrow \mathrm{z}_{1}-1$	\{decrement clock\}
	$\mathrm{z}_{2} \leftarrow \mathrm{z}_{2}+1$	(increment remainder)
	$\begin{aligned} & \text { IF } Z_{1} \neq 0 \text { GOTO } \mathrm{RL}_{3} \\ & \text { GOTO } \mathrm{FL} \end{aligned}$	
		(there are $3(\alpha-1)$ lines until
$\left[R L_{\alpha-1}\right]$	$\mathrm{z}_{1} \leftarrow \mathrm{z}_{1}-1$	$\left.\mathrm{RL}_{\alpha-1}\right\}$
	$\mathrm{z}_{2} \leftarrow \mathrm{z}_{2}+1$	
	$\begin{aligned} & \text { IF } \mathrm{z}_{1} \neq 0 \text { GOTO } \mathrm{RL}_{\alpha} \\ & \text { GOTO } \mathrm{FL} \end{aligned}$	
$\left[R L_{\alpha}\right]$	$\mathrm{z}_{1} \leftarrow \mathrm{z}_{1}-1$	
	$\mathrm{z}_{2} \leftarrow 0$	(reset remainder value to 0 \}
	$Z_{4} \leftarrow Z_{4}+1$	(increment quotient)
	IF $z_{1} \neq 0$ GOTO RML GOTO FL	\{start another reduction of z_{1} by α,
[FL]	$\mathrm{Z}_{1} \leftarrow \mathrm{Z}_{4}$	
	IF $\mathrm{Z}_{2} \neq 0$ GOTO L_{1}	(this part of the program utilises
	GOTO L_{0}	the clock sequence value in
[$\left.L^{\prime}{ }_{1}\right]$	$z_{2} \leftarrow z_{2}-1$	register z_{2} to direct control to a
	IF $\mathrm{Z}_{2} \neq 0$ GOTO L' ${ }_{2}$	particular line $L_{0}, L_{1}, \ldots . L_{\alpha-1}$, the
	GOTO L_{1}	new labels for the α-tuple of lines
	\cdots	labelled L inthe program P'.)
[$L^{\prime}{ }_{\alpha-2}$]	$\mathrm{z}_{2} \leftarrow \mathrm{Z}_{2}-1$	
	IF $\mathrm{Z}_{2} \neq 0$ GOTO L' ${ }_{\alpha-1}$	
	GOTO $L_{\alpha-2}$	
[$\left.{ }^{\prime}{ }^{\prime}{ }^{\prime}-1\right]$	GOTO $L_{\alpha-1}$	\{end RML \}

There also are h kinds of RML-subprograms, since each label block, L, requires a different subprogram.

Therefore, if there is P'-computation which accepts the set X, then there is a clock sequence which generates a \mathbf{P} *-computation such that X is accepted.

Let us take an example.
Suppose P^{\prime} is following, and $\alpha=3$.

	$V \leftarrow V$	-		$V \leftarrow \mathrm{~V}+1$
	$\mathrm{V} \leftarrow \mathrm{V}+1$	-	M	$\mathrm{V} \leftarrow \mathrm{V}+1$
	GOTO L	-	M	$\mathrm{V}-\mathrm{V}$
L	IF $V \neq 0$ GOTO M	-	M	$\mathrm{V} \leftarrow \mathrm{V}-1$
L	$\mathrm{V} \leftarrow \mathrm{V}-1$	-		$\mathrm{Y} \leftarrow \mathrm{V}$
L	$\mathrm{V} \leftarrow \mathrm{V}+1$			

Pro 2.1

Then the temporary P^{\prime} is :

		-	L_{3}	$\mathrm{V} \leftarrow \mathrm{V}$
	$\mathrm{V} \leftarrow \mathrm{V}$	-		$\mathrm{V} \leftarrow \mathrm{V}+1$
	$\mathrm{V} \leftarrow \mathrm{V}+1$	-	M_{0}	$\mathrm{V} \leftarrow \mathrm{V}+1$
	GOTO L			GOTO M ${ }_{3}$
L_{0}	IF V $=0$ GOTO M		M_{1}	$\mathrm{V} \leftarrow \mathrm{V}$
	GOTO L_{3}			GOTO M3
L_{1}	$\mathrm{V} \leftarrow \mathrm{V}-1$		M_{2}	$\mathrm{V} \leftarrow \mathrm{V}-1$
	GOTO L_{3}	-		GOTO M_{3}
L_{2}	$\mathrm{V} \leftarrow \mathrm{V}+1$	-	M_{3}	$\mathrm{V} \leftarrow \mathrm{V}$
	GOTO I_{3}			Y ¢V

Pro 2.2

```
So the P* is :
    CL }\quad\textrm{C}\leftarrow\textrm{C}+
    GOTO LC
    IO IF V\not=0 GOTO MC
        GOTO I_3
    L
        GOTO LI
    L
        GOTO LI_
        V\leftarrowV
        V\leftarrowV+1
        Mo
        GOTO M3
    M1 V\leftarrowV
        GOTO M
    M
        V\leftarrowV-1
        GOTO M
    M3 
        Y\leftarrowV
    LC }\quad\mp@subsup{\textrm{Z}}{4}{}\leftarrow
        IF Z Z 
        GOTO CL
    MC }\quad\mp@subsup{Z}{4}{}\leftarrow
        IF Z Z FO GOTO RMM
        GOTO CL
    [RML] }\quad\mp@subsup{Z}{1}{}\leftarrow\mp@subsup{\textrm{Z}}{1}{}-
        Z2}\leftarrow\mp@subsup{Z}{2}{2}+
```



```
        GOTO FL
    [RL}\mp@subsup{\mp@code{L}}{2}{]}\quad\mp@subsup{Z}{1}{}\leftarrow\mp@subsup{Z}{1}{}-
    Z
```


$\begin{array}{lll} & \text { GOTO } M_{1} & \\ \text { [M }{ }_{2} \text {] } & \text { GOTO } M_{2} \\ & \text { Pro } 2.3\end{array} \quad$ (end of RMM $)$

Theorem 2.2 Given a set, X, accepted by an \boldsymbol{S}-program, \mathbf{P}, there is another S-program, P^{*}, which also accepts X, and each computation of P^{*} is deterministic.

Proof As commented above, it suffices to show that P * accepts the same set as the version of P^{\prime} which has constant indeterminacy. For each X, if there is a computation of P^{\prime} which terminates on input X, there will be a value of the clock sequence for which P^{*} also terminates on X. Since, eventually, arbitrarily large values of the clock sequence are generated by P^{*}, unless termination occurs, then P * accepts X. Conversely, if there is a P^{*} computation accepting X, then P^{\prime} will have an accepting computation based on the sequence of choices dictated by the appropriate clock sequence of P^{*}. Since no line label is repeated in P^{*}, each \mathbf{P}^{*} computation is deterministic.
\#\#\#

2.2 Time Estimation

We consider the number of steps required by $P *(x)$ to fully simulate t steps of $P^{\prime}(x)$.

Lemma 2.1 A single call to the subprogram LC(Change L), where the values of z_{1} is z_{1}, may require $P_{T L}\left(z_{1}\right)=5 z_{1}+2 \alpha+2$ computation steps of $\mathbf{p *}$.
proof Let us go back to look at the subprograms:

There are $1+z_{1}$ steps in CL, $3 z_{1}+\left[z_{1} / \alpha\right]+2 \alpha+1$ steps in LC in the worst case, and $\left(4 z_{1}+\left[z_{1} / \alpha\right]+2 \alpha+2\right) \leq\left(5 z_{1}+2 \alpha+2\right)$. Thus the total number of steps in the worst case is at most: $\mathrm{P}_{\mathrm{TL}}\left(\mathrm{z}_{1}\right)=5 \mathrm{z}_{1}+2 \alpha+2$.

Here α is a fixed number, $P_{T L}\left(z_{1}\right)$ is a linear polynomial.
\#\#\#

Theorem 2.3 Given an NDCSP, P^{\prime}, there is a DCSP, \mathbf{P} *, which will simulate a t-step computation of \mathbf{P}^{\prime} in $O\left(\alpha^{2 t}\right)$ steps.
proof To simulate t "steps" of NDCSP, P^{\prime}, the DCSP, P * must successively calculate for all clock sequences of length $1,2, \ldots, t$. Thus the value of $C l o c k$ sequence C must run from 1 to $C(t)=(\alpha-1) \alpha^{t-1}+\ldots+(\alpha-1) \alpha+(\alpha-1)$ (Unless, of course, P^{*} halts for one such value of C).

Now, to simulate 1 step of P^{\prime} which is not of the form "GOTO L" requires 1 step of $P *$.

Suppose the step i to be simulated is "GOTO L" in \mathbf{P}^{\prime} then in P^{*} it must be changed to "GOTO LC", and requires $\mathrm{P}_{\text {TL }}$ (C(i)) (C(i) is present clock sequence value) steps of $\mathbf{P *}$ by the lemma 2.1.

Thus, to simulate t steps of P^{\prime}, the worst simulation case would involve simulating t successive GOTO statements. \mathbf{P}^{*} must cycle through all of the

Clock strings of α-length 1 , then all of these of α-length $2, \ldots, a l l$ of α-length t. Since for each t there are α^{t} such strings, the worst case is:
$P_{T L}(1) \alpha+P_{T L}(2) \alpha^{2}+\ldots+P_{T L}(C(t-1)) \alpha^{t-1}+P_{T L}(C(t)) \alpha^{t}$.
Since $P_{T L}(C(t)) \alpha^{t}=(5 C(t)+2 \alpha+2) \alpha^{t}=\left(5\left(\alpha^{t}-1\right)+2 \alpha+2\right) \alpha^{t}$. Therefore $T=O\left(\alpha^{2 t}\right)$ 。

T.M.Accepts The Same Class Of Sets As NDCSP

In this chapter, we are going to prove that a general non-deterministic computation S-program, \mathbf{P}, can be simulated by a deterministic Turing machine, M, and conversely. Note that the present formulation (including the use of a two-way infinite tape) follows [6]. Actually Turing's original development employed quintuples rather than quadruples. As we know from Chapter 2, it is necessary only to consider a deterministic computation s-program, \mathbf{P}^{*}, because, a general \boldsymbol{s}-program \mathbf{P} can be simulated by a program \mathbf{P} *, which admits only deterministic computation.

3.1 The Flowchart of T.M. Simulator for DCSP

Since one P^{\star}-computation step is specified by its snapshot, which contains the line number to be executed and the content of each register, it is convenient to consider two-way infinite multiple-tape Turing machines, and then to appeal to the standard result for simulating multiple-tapes by a single tape. This simulation is refered in [2,pp.116] in which the authors mention that the contents of a two-way infinite k-tapes T.M. and the position of the tapehead on each can be represented as a single tape with $2 k$ tracks. Using this representation, the proof of Lemma 4.5.2 of [4], in fact, shows how to simulate any computation by a two-way infinite T.M. using only one tape.

We use $V_{3}, V_{4}, \ldots, V_{n+2}$ for, $x_{1}, x_{2}, \ldots, x_{n}$, the input variables of $P^{*}, V_{n+3}, V_{n+4}, \ldots, V_{n+p+2}$ for, $z_{1}, z_{2}, \ldots, z_{p}$, the local
variables of $P *$, and V_{n+p+3} for, Y, the output variable of $P *$. although it is possible to consider any s-program language, we simplify the discussion to a "Tally-language" in which $V_{j}=0$, is represented by 1 , and $V_{j}=m$ is represented by $1^{\left|v_{y}\right|+1}=11 \ldots 1$ (m+1 times).

To construct the simulating Turing machine, we adopt the convention that the input string is placed on the first tape, tape-1; the number of executed line in $P *$ is placed on the second tape, tape-2; the variable $V_{j}(3 \leq j \leq n+p+3)$ is initialized blank on the tape-j. At the end of a computation a $n+p+3-t a p e$ T.M. is to leave its output on its first tape; the contents of the other tapes are ignored.

Before proceeding to the T.M. code, we describe the idea of the construction for the simulating T.M. There are $n+p+3$ tapes, of which tape-1 is reserved for input and output, only. Tape-2 records the number of the next s-program line to be executed. Tape-3 through $n+2$ are reserved to receive the n inputs $V_{3}, V_{4}, \ldots, V_{n+2}$, which are the initial contents of the n input registers. Tape-($n+3$) through $n+p+2$ are initialized with value 0, and later become the locations of values for the variable registers. Execution of s-program instructions $" \mathrm{~V} \leftarrow \mathrm{~V}+1$ " and "V$\leftarrow \mathrm{V}-1$ " can be accomplished by modifying one register tape, and incrementing tape-2 by 1 , to record change of control. When the executed line is a GOTO, none of the input or local register tapes is altered, but tape-2 is erased and rewritten with the number of a line bearing the correct label. In this process, states of the TM. are used to remember the line numbers to be written on tape-2. The instruction " $V \leftarrow V$ " results in incrementing tape-2 only. A
flowchart which relates the various procedures follows. Note that the n initial inputs are all recorded on tape-1 initially as a concatenation.

Fig 3.1

3.2 Procedures of Simulation

First we initialize each tape as following:
tape-1 B $1^{\left|\mathrm{V}_{3}\right|+1}$ B $1^{\left|\mathrm{V}_{4}\right|+1}$ B $\ldots \boldsymbol{B}^{\left|\mathrm{B}_{2+n}\right|+1}$ B
\{the input string is
placed on the first
tape\}
\{number of executed
line is place on the
second tape\}
\{input variabletape\}
-
\{input variable tape \} \{local variable tape \}
tape $-(n+p+2)$ B $1 \mathbf{B}$
\{local variable tape \} \{output variable tape\}

Here α is equal to $n+p+3$, the underline " - " represents the head position on the each tape of the T.M..

In the following procedures, we use an α-tuple notation with superscripts, say $\left[B^{(1)} B^{(2)} \ldots B^{(\alpha)}\right](\alpha$ times $B)$ to represent the α-tuple of symbols which occur at the present head positions of the α-tape T.M. For example, $\left[B^{(1)} 1^{(2)}\right.$ $\left.\mathbf{B}^{(3)} \ldots \mathbf{B}^{(\alpha)}\right]$ denotes that the head points to blank on the first tape, the head points at 1 on the second tape, and the head points to blank on the other tapes. The second α-tuple in each T.M. instruction may contain, besides alphabet symbols, also the symbols R and L which are used in the standard T.M. sence to indicate moves of one square right, or left, on the indicated tape. Our T.M. instructions will be of the quadruple form, using the symbols just defined and states as needed. Since states are used by the T.M. to remember what to do, we invent and use MNEMONIC symbols for
states.
© where: $\mathrm{v}_{3}=\mathrm{x}_{1}, \mathrm{v}_{4}=\mathrm{x}_{2}, \ldots, \mathrm{v}_{\mathrm{n}+2}=\mathrm{x}_{\mathrm{n}}$.
(1) COPYINPUTS - copy the inputs $V_{3}, V_{4}, \ldots, V_{n+2}$ to tape-3 until tape $-n+2$ (n times) in order. We use $C_{i q}(0 \leq i \leq n, 0 \leq q \leq 2)$ to represent states.

$$
\begin{aligned}
& C_{10}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[R^{(1)} B^{(2)} R^{(3)} B^{(4)} \ldots B^{(\alpha)}\right] C_{11} \\
& \text { istart at blank for each tape, } \\
& \text { move the heads on tape-1 and } \\
& \text { tape-3 to the right, the rest are } \\
& \text { not to change.\} } \\
& C_{11}\left[1^{(1)} B^{(2)} B^{(3)} B^{(4)} \ldots B^{(\alpha)}\right]\left[1^{(1)} B^{(2)} I^{(3)} B^{(4)} \ldots B^{(\alpha)}\right] C_{12} \\
& \begin{array}{l}
\text { (read } 1 \text { on tape-1, write } 1 \text { on } \\
\text { tape-3 }\}
\end{array} \\
& C_{11}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] C_{20} \\
& \text { (if the head on tape-1 points } \\
& \text { to a blank, go to state } \mathrm{C}_{20} \text { which } \\
& \text { works on tape-1 and tape-4 \} } \\
& C_{12}\left[1^{(1)} B^{(2)} 1^{(3)} B^{(4)} \ldots B^{(\alpha)}\right]\left[R^{(1)} B^{(2)} R^{(3)} B^{(4)} \ldots B^{(\alpha)}\right] C_{11} \\
& \text { fif both heads on tape-1 and } \\
& \text { tape-3 point at } 1 \text {, then move the } \\
& \text { heads on both tapes to the right, } \\
& \text { go back to state } C_{11} \text { \} } \\
& \text { \{Then for the states } C_{20,} C_{21} \text {, } \\
& C_{22} \text { and } C_{30} \text {, the idea of } \\
& \text { operation is similar to } C_{10} \text {. } \\
& c_{11}, c_{12} \text { and } c_{20} \text {, so } c_{30}, \ldots . \\
& c_{n 0}, c_{n 1}, c_{n 2} \text { and } c_{n+10} \text {) } \\
& C_{n O}\left[B^{(1)} B^{(2)} \ldots B^{(n+2)} \ldots B^{(\alpha)}\right]\left[R^{(1)} B^{(2)} \ldots B^{(n+1)} R^{(n+2)} B^{(n+3)} \ldots B^{(\alpha)}\right] C_{n 1} \\
& C_{n 1}\left[1^{(1)} B^{(2)} \ldots B^{(n+2)} \ldots B^{(\alpha)}\right]\left[I^{(1)} B^{(2)} \ldots B^{(n+1)} 1^{(n+2)} B^{(n+3)} \ldots B^{(\alpha)}\right] C_{n 2} \\
& C_{n 1}\left[B^{(1)} B^{(2)} \ldots B^{(n+2)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} \ldots B^{(n+2)} \ldots B^{(\alpha)}\right] I_{0} \\
& \text { \{state } L_{0} \text { is in the next } \\
& \text { procedure\} }
\end{aligned}
$$

$C_{n 2}\left[1^{(1)} B^{(2)} 1^{(3)} B^{(4)} \ldots B^{(\alpha)}\right]\left[R^{(1)} B^{(2)} R^{(3)} \mathbf{B}^{(4)} \ldots B^{(\alpha)}\right] C_{n 1}$	
	(After we finish working on the
tape-1 and tape-(n+2), the inputs	
will be copied from tape-1 to	
tape-3 to tape-(n+2))	

After procedure COPYINPUTS, the T.M. looks like:
tape-1 \quad B $1^{\left|V_{3}\right|+1}$ B $1^{\left|V_{4}\right|+1}$ B \ldots B $1^{\left|V_{2+n}\right|+1}$ B
tape-2
B 1 R
tape-3
B $1^{\left|v_{3}\right|+1} B$
tape-4
B $1^{\left|\mathrm{V}_{4}\right|+1}$ B
.
.
$\begin{array}{lll}\text { tape- }(n+2) & \text { B } 1^{\left|V_{n+2}\right|+} \\ \text { tape- }(n+3) & \text { B } 1 \quad \text { B }\end{array}$
.
tape- $(n+p+2)$ B 1 B
tape- $\boldsymbol{\alpha}$ B1 B
(local variable tape) . .
(local variable tape)
\{output variable tape \}

The next procedure will be started at state L_{0}.
(2) INCLINE - increase the number of the executed line by 1.

$$
\begin{aligned}
& L_{0}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} L^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] I_{1} \\
& \text { \{move the head on tape-2 } \\
& \text { to left) } \\
& L_{1}\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} I^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] L_{1} \\
& \text { (read } 1 \text { on tape-2 until the } \\
& \text { first blank was found) } \\
& L_{1}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] L_{2} \\
& \text { (add } 1 \text { to the left end of } \\
& \text { tape-2 }
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}\left[B^{(1)} I^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} I^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] R_{0} \\
& \text { \{move the head on tape-2 to } \\
& \text { left, go to state } R_{0} \text { which } \\
& \text { is in the procedure cHECK\} }
\end{aligned}
$$

After execution of this procedure, the head on tape-2 is on the blank just to the left side of the string of 1 's. In this case the T.M. looks like:
tape-1
$\begin{array}{llll} & 1^{\left|V_{3}\right|+1} \\ \text { B } & 1 & 1 & \text { B }\end{array}$
tape-2
B $1^{\left|V_{3}\right|+1}$ B
tape-3
tape-4
B $1^{\left|\mathrm{V}_{4}\right|+1}$ B
tape- $(n+2)$
B $1^{\left|V_{n+2}\right|+1} B$
tape- $(n+3)$
B 1 B
\{local variable tape)
\cdot
tape $-(n+p+2)$ B 1 B
(local variable tape \}
tape- α
B1B
\{output variable tape\}

The next procedure will be started in state R_{0}.
(3) CHECK - reads the line number on the tape-2. If it is $[+1$, then the machine halts, here \mathbb{C} represents the length of the S-program P^{*}.
$R_{0}\left[\mathbf{B}^{(1)} \mathbf{B}^{(2)} \ldots \mathbf{B}^{(\alpha)}\right]\left[\mathbf{B}^{(1)} \mathbf{R}^{(2)} \mathbf{B}^{(3)} \ldots \mathbf{B}^{(\alpha)}\right] \quad R_{0} \quad$ (move the head on tape-2
$R_{0}\left[B^{(1)} I^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} R^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] R_{01}$

After this operation, the head on tape-2 moves to the blank just to the right side of the string of 1 's.

Now find the instruction on the $k^{\text {th }}$ line of program P^{*}. If the variable in the $k^{\text {th }}$ line is V_{j}, then the $T . M$ works on the tape-j, here $3 \leq j \leq \alpha, 1 \leq k \leq \leq$.

If the instruction is $\mathrm{V}_{\mathrm{j}} \leftarrow \mathrm{V}_{\mathrm{j}}+1$, we have subprocedure called INCV_{j}.
(4.1) INCV, -for tape-j

$$
\begin{aligned}
& F_{0}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} 1^{(j)}\right.\left.B^{(j+1)} \ldots B^{(\alpha)}\right] F_{1, j}^{[k]} \\
& \text { \{since the head on the } \\
& \text { tape-j, is immediately to } \\
& \text { the right of the last } 1 \text { and } \\
& \text { add } 1 \text { on tape-j, }
\end{aligned}
$$

$F_{1, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] L_{0}$
(move the head on the tape-j to the right one square, go to the state L_{0} which is in procedure INCLINE

If the instruction in $k^{\text {th }}$ line is $V_{j} \leftarrow V_{j}-1$, then we use subprocedure called DECV_{j}. The procedure checks whether $\mathrm{V}_{\mathrm{j}} \neq 0$, and takes action on the result of the check.
(4.2) DECV_{j}-for tape-j

$$
\begin{aligned}
& F_{0}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} L^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{1, j}^{[k]} \\
& \text { (move the head on the tape-j } \\
& \text { to the left one square ; } \\
& F_{1, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} I^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{2, j}^{(k]} \\
& \text { (continue left past the } \\
& \text { rightmost } 1 \text { on tape-j\} } \\
& F_{2, j}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{3, j}^{[k]} \\
& \text { f } v_{i}=0 \text {, move the head one } \\
& \text { square to the right , } \\
& F_{2, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{4, j}^{[k]} \\
& \text { there are two l's, } V_{i} \neq 0 \text {, } \\
& \text { move head one square to } \\
& \text { right) }
\end{aligned}
$$

$$
\begin{aligned}
& F_{3, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] L_{0} \\
& \text { (move the head to the right } \\
& \text { on the tape-j, then go to } \\
& \text { the state } L_{0} \text {, leaves tape-j } \\
& \text { unchanged) } \\
& F_{4, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} B^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] L_{0} \\
& \text { (change rightmost } 1 \text { to blank } \\
& \text { on tape-j, then go to state } \\
& \text { Lo\} }
\end{aligned}
$$

If the instruction is $V_{j} \leftarrow V_{j}$, we have subprocedure called $N C V_{j}$.
(4.3) $\mathrm{NCV}_{\mathrm{j}}$ - for tape-j

$$
F_{0}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} B^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] L_{0}
$$

\{leaves tape-j unchanged\}

If the instruction in $k^{\text {th }}$ line is "IF $V_{j} \neq 0$ GOTO L ", then we use a subprocedure called $U_{N C V}{ }_{j}$. The procedure first checks whether $V_{j} \neq 0$, and then takes appropriate action.
(4.4) $\mathrm{UNCV}_{\text {, }}$-for tape-j

$$
\begin{aligned}
& F_{0}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} I^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{1, j}^{(k]} \\
& \text { (head on the tape-j moves to } \\
& \text { the left one square) } \\
& F_{1, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} I^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{2, j}^{[k]} \\
& \text { \{continue left past right } \\
& \text { most 1) } \\
& F_{2, j}^{[k]}\left[B^{(1)} \ldots B^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{3, j}^{[k]} \\
& \text { (} \mathrm{V}_{\mathrm{i}}=0 \text {, move head on tape-j } \\
& \text { to right one square }\} \\
& F_{2, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] F_{4, j}^{[k]} \\
& \left\{V_{i} \neq 0\right. \text {, the head on tape-j } \\
& \text { goes back to right one } \\
& \text { square) }
\end{aligned}
$$

$$
\begin{aligned}
& F_{3, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] L_{0} \\
& \mathrm{~V}_{\mathrm{i}}=0 \text {, go to the state } \mathrm{L}_{0} \\
& \text { leave tape-j unchanged) } \\
& F_{4, j}^{[k]}\left[B^{(1)} \ldots 1^{(j)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \ldots B^{(j-1)} R^{(j)} B^{(j+1)} \ldots B^{(\alpha)}\right] N_{0, \beta} \\
& \left\{V_{i} \neq 0 \text {, go to state } N_{0}\right. \text { which } \\
& \text { is in the procedure } \\
& \text { CHANGELj, } \beta \text {, } \beta \text { is the number } \\
& \text { of the line with label } \\
& \text { L, } 1 \leq \beta \leq 1=\text { the (constant) } \\
& \text { multiplicity of line labels } \\
& \text { in the } s \text {-program }
\end{aligned}
$$

(5) CHANGELj, β - for the instruction of "IF $V_{j} \neq 0$ GOTO L", If there are m different labels in \mathbf{P}, then there will be m versions of this procedure, each with its own unique value of β.

$$
\begin{aligned}
& N_{0, \beta}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} L^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{1, \beta} \\
& \text { \{move the head on tape-2 one } \\
& \text { square left \} } \\
& N_{1, \beta}\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{2, \beta} \\
& \text { \{erase one } 1 \text { on tape-2\} } \\
& N_{2, \beta}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} L^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{1, \beta} \\
& \text { \{continuing move head on } \\
& \text { tape-2 to left\} } \\
& N_{1, \beta}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 0}^{[L]} \\
& \text { (finish by erasing all } \\
& \text { tallys, go to the state } \\
& N_{\beta}, 0^{[L]} \text {, move the head to } \\
& \text { left in order to print } \beta+1 \\
& \text { tallys on tape-2\} } \\
& N_{\beta, 0}^{[L]}\left[B^{(1)} B^{(2)} \ldots B^{(\alpha)}\right]\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 1}^{[L]} \\
& \text { fprint } \beta+1 \text { tally on tape-2 } \\
& \text { for the label } L \text {, there will } \\
& \text { be } m \text { kinds of this } \\
& \text { instruction if the program }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P* has m difference } \\
& \text { labels }\} \\
& N_{\beta, 1}^{[L]}\left[B^{(1)} 1^{(2)} \ldots B^{(\alpha)}\right]\left[B^{(1)} L^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 2}^{[L]} \\
& \text { \{after writing } 1 \text { in one } \\
& \text { square of tape-2, move the } \\
& \text { head to the left again) } \\
& N_{\beta, 2}^{[L]}\left[B^{(1)} B^{(2)} \ldots B^{(\alpha)}\right]\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 3}^{[L]} \\
& N_{\beta, 3}^{[L]}\left[B^{(1)} I^{(2)} \ldots B^{(\alpha)}\right]\left[B^{(1)} L^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 4}^{[L]} \\
& . \quad . \\
& N_{\beta, 2 \beta}^{[L]}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} \mathcal{I}^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 2 \beta+1}^{[L]} \\
& N_{\beta, 2 \beta+1}^{[L]}\left[B^{(1)} 1^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} I^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] N_{\beta, 2(\beta+1)}^{[L]} \\
& N_{\beta, 2 \beta+2}^{[L]}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] R_{0} \\
& \text { istate } R_{0} \text { is in the } \\
& \text { procedure } \mathrm{CHECK}_{j,} \beta \text {) }
\end{aligned}
$$

After this operation, the head on tape-2 is on the end left of the string
(6) HALT- if the program halts, copy the last tape, tape- α, to the tape-1, there are two steps:
(6.1)-erase the tape-1

$$
\begin{aligned}
& H_{0}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[I^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] H_{1} \\
& \begin{array}{l}
\text { (move the head on tape-1 } \\
\text { from right to left one } \\
\text { square) }
\end{array} \\
& H_{1}\left[1^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] H_{0} \\
& \begin{array}{l}
\text { lerase } 1 \text { on tape-1 of the } \\
\text { right end.) }
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{c}
H_{1}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[I^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] H_{2} \\
\begin{array}{l}
\text { \{reach another blank, move } \\
\text { the head on tape-1 to left } \\
\text { again. After this it erased }
\end{array} \\
\text { one input register\} }
\end{array}\right\}
$$

(6.2) COPY- copy tape- α to tape-1

$$
\begin{aligned}
& H_{3}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[R^{(1)} B^{(2)} B^{(3)} \ldots L^{(\alpha)}\right] H_{4} \\
& \text { (move the head on tape-1 to } \\
& \text { right, and the head on } \\
& \text { tape- } \alpha \text { to left } \\
& H_{4}\left[B^{(1)} B^{(2)} B^{(3)} \ldots 1^{(\alpha)}\right]\left[1^{(1)} B^{(2)} B^{(3)} \ldots 1^{(\alpha)}\right] H_{5} \\
& \begin{array}{ll}
\text { \{copy }{ }^{\text {tape-1 }}
\end{array} \text { from tape- } \alpha \text { to } \\
& \mathrm{H}_{4}\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right]\left[B^{(1)} B^{(2)} B^{(3)} \ldots B^{(\alpha)}\right] H_{6} \\
& \text { (finish copy \} } \\
& H_{5}\left[1^{(1)} B^{(2)} B^{(3)} \ldots 1^{(\alpha)}\right]\left[R^{(1)} B^{(2)} B^{(3)} \ldots \mathbf{L}^{(\alpha)}\right] H_{4} \\
& \text { \{continually copy\} }
\end{aligned}
$$

Here, the state H_{6} represents a "halt state", and does not appear in any other instructions.

From the procedures above we immediately get the following:

Theorem 3.1 Given a DCSP, P^{*}, with n inputs registers, there is a deterministic Turing Machine, M, which accepts the same set of n-tuples as P^{*}.

We now look at the number of steps taken in each procedure above.
a). Initialization configuration
T.M., M, takes one step to initialize the inputs register on tape-1.
b). In COPYINPUTS

There are $3\left|x_{i}\right|+1$ steps from state C_{10} to C_{20}, thus M takes totally $3 \sum_{i=1}^{n}\left|x_{i}\right|+n$ steps in this case.
c). In INCLINE

There are $(3+[)$ step in the worst case.
d). In CHECK

There are 3 steps from state R_{0} to R_{1}, and there are $(\mathbb{L}+1)$
steps from state R_{1} to H_{0} in the worst case.
Thus step (CHECK) $=[+4$ in the worst case.
e). It is very easy to find out:
step $\left(I N C V_{j}\right)=2$
step $\left(D E C V_{j}\right)=4$
step $\left(\mathrm{NCV}_{j}\right)=1$
step $\left(U N C V_{j}\right)=4$
f). In CHANGEL $_{j, \beta}$

There are $2\left[+2\right.$ steps from state $N_{0, \beta}$ to $N_{\beta, 0}^{[L]}$ in the worst case, and there are $2(\mathbb{L}+1)+1$ steps from state $N_{\beta, 0}^{[L]}$ to R_{0} in worst case.

Thus step $\left(\operatorname{CHANGEL}_{j, \beta}\right)=4 \mathbb{C}+5$ in the worst case.
g). In HALT

There are $2 \sum_{i=1}^{n}\left|x_{i}\right|+n+2$ steps from state H_{0} to H_{3} in which
all inputs are erased.
And there are $2|Y|+2$ steps from state H_{3} to H_{6} in which output is copied to tape-1.
Thus step $($ HALT $)=2 \sum_{i=1}^{n}\left|x_{i}\right|+|y|+n+4$.
Corollary 3.1 For a t-step deterministic computation S-program P^{*}, there is a T.M., M, which takes $O(t)$ steps to simulate $\mathbf{P *}^{*}$.

Proof First M would intialize the inputs and copy those inputs to the individual input register tape, that requires:

$$
1+3 \sum_{i=1}^{n}\left|x_{i}\right|+n
$$

And the worst simulation case would involve simulating t successive GOTO statements and require:

$$
t\left(\text { step }\left(U^{2} C V_{j}\right)+\text { step }\left(\operatorname{CHANGEL}_{j}, \beta\right)\right)
$$

If P^{*} halts at t step, then at this case M takes:

$$
2 \sum_{i=1}^{n}\left|x_{i}\right|+|y|+n+4 \text { steps }
$$

Thus, simulating a t-step computation of $P *$ in the worst case, M would require:

$$
\begin{aligned}
& t\left(\operatorname{step}\left(\mathrm{UNCV}_{j}\right)+\operatorname{step}\left(\operatorname{CHANGEL}_{j, \beta}\right)\right)+3 \sum_{i=1}^{n}\left|x_{i}\right|+n+1+2 \sum_{i=1}^{n}\left|x_{i}\right|+|Y|+n+4 \\
& =t\left(4+4[+5)+5 \sum_{i=1}^{n}\left|x_{i}\right|+|Y|+2 n+5\right. \\
& =O(t)
\end{aligned}
$$

Corollary 3.2 For t-steps of a non-deterministic computation s-program, \mathbf{P}, there is a T.M., \mathbf{M}, which takes $O\left(\alpha^{2 t}\right)$ steps to simulate P, here α is indeterminacy of \mathbf{P}.

Proof From Lemma 1.3, we know that a t-step P-computation can be a simulated by ($t+c$)-step $\mathrm{P}^{\prime-c o m p u t a t i o n, ~ h e r e ~} \mathrm{c}$ is
some constant, and each label block has the same indeterminacy α in \mathbf{P}^{\prime}.

And from Theorem 2.3 a ($t+c$)-steps of a P^{\prime}-computation can be simulated by $O\left(\alpha^{2(t+c)}\right)$-steps, which is $O\left(\alpha^{2 t}\right)-s t e p$ \mathbf{p}^{*}-computation.

Finally from Corollary $3.10\left(\alpha^{2 t}\right)$-step $p *$-computation can be simulated by a $O\left(O\left(\alpha^{2 t}\right)\right)$-step, which is $O\left(\alpha^{2 t}\right)$-step, M-computation of a Turing machine.

Therefore a t-step P-computation of s-program can be simulated by a $O\left(\alpha^{2 t}\right)$-step M-computation of Turing machine.
\#\#\#

3.3. A General s-program Accepts the Same Set as a T.M.

We now show how to find a general non-deterministic computation S-program for any given a NDTM (Non-deterministic Turing machine[2]).

For simplicity we consider quintuple Turing machines instead of quadruples, because a quadruple Turing machine can be simulated by a quintuple Turing machine [2,pp.101]. There are two kinds of quintuples:

$$
\begin{array}{lllll}
q_{i} & s_{j} & s_{k} & R & q_{l} \\
q_{i} & s_{j} & s_{k} & L & q_{l}
\end{array}
$$

We want to construct a program P in the language S which simulates NDTM, NM.

Let a quintuple non-deterministic tally Turing machine be NM with states $q_{1}, q_{2}, \ldots, q_{m}$ and alphabet $\{0,1\}$, here 0 represents the blank, B.
P will simulate $N M$ by using the numbers in base 2 to represent strings (on the NDTM tape). The tape configuration at a given stage in the computation by NM will be encoded by P using three numbers stored in the registers L, H, and R. The value of H will be the numerical value of symbol (0 or 1) currently being scanned by the NM's head. The value of L will be a number which represents in base 2 a string of symbols(\{0,1\}) which begins with the leftmost 1 to the current head position and ends at the square just left of the head. The value of R represents in a similar manner the string of symbols to the right of the head, ending with the rightmost 1 on the tape. Note that one or both of L and R may be 0 .

For example, consider the tape configuration of $N M$: ...0001111011100...

Here $\quad H=1$;

$$
\begin{aligned}
& \mathrm{L}=1 * 2^{4}+1 \star 2^{3}+1 \star 2^{2}+1 \star 2^{1}+0 * 2^{0}=30 ; \\
& \mathrm{R}=1 * 2^{1}+1 \star 2^{0}=3 ;
\end{aligned}
$$

The program \mathbf{P} will consist of three parts:
BEGINNING
MIDDLE
END

BEGINNING - Suppose the initial tape of NM is : B X_{1} B $X_{2} B \ldots B X_{n} B$
where the numbers $x_{1}, x_{2}, \ldots, x_{n}$ are represented by Tally
strings(see section 3.2). Thus the part BEGINNING has the initial value of L, H, R :

$$
\begin{aligned}
& L \leftarrow 0 \\
& H \leftarrow 0 \\
& R \leftarrow \operatorname{CONCAT}_{2}^{(2 n-1)}\left(x_{1}, 0, x_{2}, 0, \ldots, 0, x_{n}\right)
\end{aligned}
$$

here for given strings $u_{1}, u_{2}, \ldots, u_{n} \in A^{*}, \operatorname{CONCAT}_{m}{ }^{(n)}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is simply the string obtained by placing the string $u_{1}, u_{2}, \ldots, u_{n}$ one after the other.

MIDDLE - this part will simulate NM in a step-by-step "interpretative" manner.

Associate with each state q_{i} a label A_{i} and with each state-symbol pair $\left(q_{i}, j\right)$ a label $B_{i j}(j=0,1)$. For each label
 (for definitness, since the order does not matter) at the beginning of the \boldsymbol{S}-program MIDDLE.

$$
\begin{array}{ll}
{\left[\mathrm{A}_{\mathrm{i}}\right]} & \text { IF } \mathrm{H}=0 \text { GOTO } \mathrm{BiO}_{10} \\
& \text { IF } \mathrm{H}=1 \text { GOTO } \mathrm{B}_{\mathrm{i} 1}
\end{array}
$$

If $N M$ contains the quintuple $q_{i} j k \quad R \quad q_{q}(j, k=0,1)$, then we introduce the block of instructions

$\left[B_{i j}\right]$	$H \leftarrow 0$	$\{k=0\}$
$\left[B_{i j}\right]$	$H \leftarrow 1$	$\{k=1\}$
	$L \leftarrow \operatorname{CoNCAT}_{2}(L, H)$	
	$H \leftarrow \operatorname{LTEND}_{2}(R)$	
	$R \leftarrow \operatorname{LTRUNC}_{2}(R)$	
	GOTO A_{l}	

If NM contains the quintuple $q_{i} j k \quad L \quad q_{l}(j, k=0,1)$, then we introduce the block of instructions

$\left[B_{i j}\right]$	$H \leftarrow 0$	$\{k=0\}$
$\left[B_{i j}\right]$	$H \leftarrow 1$	$\{\mathrm{k}=1\}$
	$R \leftarrow \operatorname{CONCAT}_{2}(\mathrm{H}, \mathrm{R})$	
	$H \leftarrow \operatorname{RTEND}_{2}(L)$	
	$\mathrm{L} \leftarrow \operatorname{RTRUNC}_{2}(L)$	
	GOTO A_{i}	

If there is no quintuple in $N M$ beginning $q_{i} t(t \neq 0,1)$, we introduce the block

$$
\left[B_{i t}\right] \quad \text { GOTO END }
$$

Finally, the part END of P can be taken simply to be $Z \leftarrow \operatorname{CONCAT}_{2}^{(3)}(L, H, R)$
$\mathrm{Y} \leftarrow \mathrm{z}$
where functions (see [2])

1. RTEND $_{2}(L)$ gives the binary code for the rightmost symbol of a given word W_{L} when I is the binary code for W_{L};
2. $\operatorname{LTEND}_{2}(L)$ gives the binary code for the leftmost symbol of a given word W_{L} when L is the binary code for W_{L};
3. RTRUNC $C_{2}(L)$ gives the binary code for the result of removing the rightmost symbol from a given nonempty word W_{L} when L is the binary code for W_{L};
4. LTRUNC $_{2}(L)$ gives the binary code for the result of removing the leftmost symbol from a given nonempty word W_{L} when L is
the binary code for W_{L};

We have now completed the description of the program P which simulates the NDTM, NM. This gives us the proof of the following theorem.

Theorem 3.2 Given any non-deterministic quintuple Turing machine, there is a general s-program which accepts the same set as this Turing machine.

Summarizing results from Chapter one to this section, we observe the consequence as shown in the following:

Fig 3.2

In attempting to compute the time requirement for an s-program to simulate a T.M. computation we encounter a limitation of the first form of S-programs discussed in reference [2], Consider the problem of simulating a single move of the T.M. using the program of Theorem 3.2. Of the several string manipulation operations, CONCAT, LTEND, RTEND, LTRUNC and RTRUNC, even the simplest, RTEND, involves
evaluation of the remainder function, base 2 , because we are working with numbers and must use numerical codes for the argument strings. As we saw in Chapter 2 , the time required by an s-program to perform the remainder operation is linear in the value of its argument. Since the s-program must manipulate entire numerical register contents in simulating each T.M. step, and the time required is proportional to the values of these registers (here, in general, exponential in the lengths of the registers) the use of an s-program to simulate a T.M. would seem quite wasteful.

The limitation just discussed is imposed by the S-operations "V $\leftarrow V+1$ " and " $V \leftarrow V-1$ " which, in effect, force the S-program to work in a tally mode. In manipulating numerical codes for words of a T.M. language this is wasteful. Of course, in what we have done in Chapter 3 , the argument of waste is not really applicable because, for a tally language the length of a word and its value coincide. However, this is not the correct way out of the difficulty.

The correct way to simulate even a tally language T.M. is to use Davis' idea of a symbol manipulating S-program, which we will do in Chapter 5. The operations $" \mathrm{~V} \leftarrow \mathrm{~V}+1$ " and $" \mathrm{~V} \leftarrow \mathrm{~V}-1$ " are then replaced by operations "V↔aV", which adds a new symbol to the left end of the string in V, and $" \mathrm{~V} \leftarrow \mathrm{~V}^{-}$", which deletes the rightmost symbol of the string in V. Using these operations it is easy to see that the string manipulation functions CONCAT, LTEND, RTEND, LTRUNC and RTRUNC (as distinct from their primitive recursive counterparts performed on numerical codes) can all be carried at in times linear in the lengths of the argument strings. For example, LTEND (x), is performed by the S_{1}-program.

$$
\begin{array}{ll}
\text { [L] } \quad & Y \leftarrow X \\
& X \leftarrow X^{-} \\
& \text {IF X } \neq 0 \text { GOTO } L
\end{array}
$$

which requires $3(|x|-1)+2=3|x|-1$ steps to complete.

CHAPTER 4

Universal NDCSP

In the previous chapters, we discussed the special NDCSP in which each label occurs α times, and each label occurs only in one label block. We now can reduce the α to 2 , to provide the most direct modification of the universal deterministic s-program, of reference [2], to make it non-deterministic.

4.1 Algorithm for Binary Condition-AFBC

Suppose an NDCSP, P^{\prime}, contains condition instruction "IF $\mathrm{V} \neq 0$ GOTO L". If the condition is true in the "IF" statement, $\boldsymbol{\alpha}$ of possibilities will exist, since there are $\boldsymbol{\alpha} L$ statements. After executing one of L statements, the next statement to be executed may again be one statement, or one of α choices. The above condition is best illustrated by a α branching tree; the case $\alpha=4$ is shown below.

Fig 4.1

It is easy to reduce the value of α to 2 , as shown in the next algorithm.

Step 0 Replace any P^{\prime} line of the form IF (condition) GOTO L
by IF (condition) GOTO A_{1}

Step 1 Add these lines in blocks of 2.
$\begin{array}{lll}{\left[A_{1}\right]} & \text { GOTO } & L_{1} \\ {\left[A_{1}\right]} & \text { GOTO } & A_{2}\end{array}$
[$\left.A_{2}\right]$ GOTO L_{2}
$\left[A_{2}\right]$ GOTO A_{3}
[A_{α}] GOTO L_{α}
$\left[\mathrm{A}_{\alpha}\right]$ GOTO L_{α}

Step 2 Replace the original L-block by

$\left[L_{1}\right]$ $\left[L_{1}\right]$		\{first line of the L-block, repeated twice)
	GOTO M	
[L_{2}]	-••	(second line of the L-block,
[L_{2}]		repeated twice)
	GOTO M	
	-	
	-	
$\left[L_{\alpha}\right]$		($\alpha^{\text {th }}$ line of the L-block,
$\left[L_{\alpha}\right]$	\cdots	repeated twices

[M] $\quad \mathrm{V} \leftarrow \mathrm{V}$
[M] $\quad V \leftarrow V$

In algorithms AFI (Chapter 1) and AFBC it is mainly the GOTO statements of each corresponding program which are changed. When we come to analyse the simulation steps, the GOTO statement usually brings out the worst case. Thus we consider how many steps would be taken for simulating a one step GOTO statement of P^{\prime} by $P^{\prime \prime}$ (lemma 4.1). Since there are α steps taken by P^{\prime} to simulate a one step GOTO statement of P(corollary 1.1 Chapter 1), we have the result of Lemma 4.1. We will get the results of Corollary 4.1 and Corollary 4.2 in later sections of this chapter.

Lemma 4.1 The binary s-program, $\mathbf{P "}^{\prime \prime}$, takes $\alpha+3$ steps to simulate a one step GOTO statement of P^{\prime} in the worst case.

Proof For a one step "GOTO L" statement of P ', by AFBC, steps 0, 1 and 2, $\mathbf{P "}$ takes $\alpha+3$ steps in the worst case.
\#\#\#

Lemma 4.2 A binary \boldsymbol{s}-program, $\mathbf{P "}^{\prime \prime}$, takes $2 \boldsymbol{\alpha}+3$ steps to simulate a one step GOTO statement of a general \boldsymbol{S}-program, \mathbf{P}.
proof The result immediately follows Corollary 1.1 and Lemma 4.1.
\#\#\#

Theorem 4.1 Given an S-program, P^{\prime}, of constant multiplicity, α, there is another, P ", of constant multiplicity 2, which accepts the same set as $\mathbf{P '}^{\prime}$ does.

Proof(outline) The technique for a formal proof of Theorem 4.1 is essentially the same as that for Lemma 1.3. We establish a (2-valued) correspondence relation, g, between lines of P^{\prime} and lines of $P{ }^{\prime \prime}$. A non-GOTO line corresponds to
itself, and the $k^{\text {th }}$ line of on L-block corresponds to the pair of lines labelled L_{k}. One then shows, in the same manner as the proof of lemma 1.3, that there is a P'-computation leading to snapshot (i, \boldsymbol{f}) if, and only if, there is a P"-computation leading to (g(i), σ).

4.2 Universal BNDCSP

In this and the following section we give two constructions of a universal S-program (which in our terms includes both non-deterministic and deterministic). The first construction uses the idea of a binary S-program developed in section 4.1 , and varies little from the universal deterministic program of [2]. It is worth noting that both of our universal programs contain only one duplicated line label. Every general non-deterministic computation s-program can be simulated by NDCSP in which all similar labels occur in one block, and every NDCSP can be simulated by BNDCSP in which there are only two labels in the each block. Thus, in our first construction, we need only to give the universal program for every BNCDSP.

The non-deterministic computation universal program $U_{\text {UNSP1 }}$ is as follows. For definitions of the several primitive recursive functions used, and to follow the universal program itself, the reader may wish to consult [2,pp.58].

$$
\begin{aligned}
& \mathrm{Z} \leftarrow \mathrm{X}_{\mathrm{n}+1}+1 \\
& \mathrm{~S} \leftarrow \prod_{i=1}^{\mathrm{n}}\left(\mathrm{P}_{2 \mathrm{i}}\right)^{\mathrm{x}_{1}} \\
& \mathrm{~K} \leftarrow 1
\end{aligned}
$$

[C] IF $\mathrm{K}=\mathrm{Lt}(\mathrm{Z})+1 \mathrm{VK}=0$ GOTO F
$U \leftarrow r\left((Z)_{k}\right)$
$P \leftarrow P_{r(U)+1}$
IF $[(U)=0$ GOTO N
IF $[(U)=1$ GOTO A
IF ~ ($\mathrm{P} \mid \mathrm{S}$) GOTO N
IF $\lceil(U)=2$ GOTO M GOTO B
[B] $\quad \mathrm{K} \underset{\mathrm{i} \text { iLt }(\mathrm{Z})}{ }\left[\mathrm{C}\left((\mathrm{Z})_{1}\right)+2=[(U)]\right.$
[B] $\quad \mathrm{K} \leftarrow \min _{\mathrm{i} \leq \mathrm{Lt}(\mathrm{Z})}\left[\mathfrak{l}\left((\mathrm{Z})_{i}\right)+2=\mathfrak{l}(\mathrm{U})\right]+1$ GOTO C
[M] $\quad S \leftarrow[\mathrm{~S} / \mathrm{P}]$
GOTO N
[A] $S \leftarrow S \star P$
[N] $K \leftarrow K+1$
GOTO C
[F] $\quad \mathrm{Y} \leftarrow(\mathrm{S})_{1}$

Pro. 4.1

From Pro 4.1 we have the Theorem as follows:

Theorem 4.2 There is a universal s-program(for both non-deterministic and deterministic computation) which contains only one repeated line label.

Of course the result is best possible, if we wish to permit non-deterministic computation. Since each non-deterministic computation can be simulated by a deterministic one, there is another universal s-program with no repeated labels, i.e. the one in reference [2].

As we discussed earlier in this chapter, we now compute how many
steps a universal s-program, U UNSP1, takes to simulate a general S-program, P, by using the "middleman" programs P^{\prime} and P".

Corollary 4.1 A universal s-program, UuNPI, takes $2 \alpha+16$ steps to simulate a one step GOTO statement of a general \boldsymbol{S}-program, \mathbf{P}, by using program \mathbf{P}^{\prime} and $\mathbf{P "}^{\prime \prime}$ if we count each primitive recursive line as "1-step" in $U_{U N S P 1}$.

Proof In Pro.4.1, there are 13 steps to simulate a one step GOTO statement of $\mathbf{P}^{\prime \prime}$ in the worst case. And there are $2 \alpha+3$ steps to simulate a one step GOTO statement of \mathbf{P} by $\mathbf{P V}^{\prime \prime}$ by Lemma 4.2. Thus a universal s-program takes $2 \alpha+16$ steps to simulate one step GOTO statement of \mathbf{P}.
\#\#\#

4.3. Universal S-program, Second Construction

By going to a little more trouble, it is possible to construct a universal s-program which does not depend on any of the special reductions used in the last section.

In short, when the universal program encounters a GOTO to a labelled line, we can cause it to compute the number, μ, of occurrences of that label in the program being simulated, to seek the first(topmost) occurrence of that labelled line and (non-deterministically) either select that occurrence, or go into a loop which produces the second line of that label, etc.

For a "GOTO L" statement, we compute the following

functions:

$$
\begin{aligned}
\mu & =\sum_{i=1}^{\operatorname{It}(Z)} \alpha\left(\mathbb{C}\left((Z)_{i}+2-\mathbb{C}(U) \mid\right) \quad \begin{array}{c}
\text { \{here } \alpha \text { is a primitive recursive } \\
\text { function in }[2]\}
\end{array}\right. \\
\operatorname{LST}(Z, j) & =\min _{j<i \leq \operatorname{Lt}(Z)}\left[\left((Z)_{i}\right)+2=\mathbb{C}(U)\right]
\end{aligned}
$$

μ gives the total number of occurrences of label L in the s-program, P. Note that α, which is mentioned in previous two sections, is greater than μ, i.e. if μ is the indeterminacy of program P then $\alpha=\mu+1$.

IST(Z,j) gives the least line number of the line labelled L between the $j^{\text {th }}$ line and the Lt $(Z)^{\text {th }}$ line.

The loop which does the non-deterministic selection of the GOTO destination is:

B	```K}\leftarrow\operatorname{LST(Z,I) GOTO D```	(I initialized 0,k now gives the least line number of the line labelled L between the Ith line and the last one \}
D	GOTO C	(Either go back to C with the
D	$\mu \leftarrow \mu-1$	"present value" of K, and
	IF $\mu=0$ GOTO C	execute that line, or compute
	$\mathrm{I} \leftarrow \mathrm{K}+1$	a new line number and go to B
	GOTO B	l00p\}

Placing these subprograms in the universal program yields a new universal program, $U_{u n s p 2}$ as follows, and a second proof of Theorem 4.2.

$$
\begin{aligned}
& \mathrm{Z} \leftarrow \mathrm{X}_{\mathrm{n}+1}+1 \\
& \mathrm{~S} \leftarrow \prod_{i=1}^{\mathrm{n}}\left(\mathrm{P}_{2 i}\right)^{\mathrm{x}_{1}} \\
& \mathrm{~K} \leftarrow 1
\end{aligned}
$$

```
[C] IF K=Lt (Z) +1VK=0 GOTO F
    \(U \leftarrow r\left((Z)_{k}\right)\)
        \(P \leftarrow P_{r(U)+1}\)
        IF [(U)=0 GOTO N
        IF [(U)=1 GOTO A
        IF ~ (P|S) GOTO N
        IF \([(U)=2\) GOTO M
        \(\mu \leftarrow \sum_{i=1}^{\mathrm{LE}(Z)} \alpha\left(\mathbb{C}\left((Z)_{i}\right)+2-\mathbb{C}(U) \mid\right)\)
    [B] \(\quad K \leftarrow \operatorname{LST}(Z, I)\)
        GOTO D
[D] GOTO C
[D] \(\mu \leftarrow \mu-1\)
        IF \(\mu=0\) GOTO C
        \(\mathrm{I} \leftarrow \mathrm{K}+1\)
        GOTO B
[M] \(\quad \mathrm{S} \leftarrow[\mathrm{S} / \mathrm{P}]\)
        GOTO N
        [A] \(\quad S \leftarrow S * P\)
        [N] \(\quad \mathrm{K} \leftarrow \mathrm{K}+1\)
        GOTO C
[F] \(Y \leftarrow(S)_{1}\)
```

 Pro. 4.2
 Corollary 4.2 A universal s-program, U UNSP2, takes $6 \mu+11$ steps to simulate a one step GOTO statement of a general S-program, \mathbf{P}, without using program P^{\prime} and $P^{\prime \prime}$ if we count each primitive recursive line as "1-step" in U UNSP2.

Proof For a one step GOTO statement of P, in $U_{U N S P 2}$ the loop which does the non-deterministic selection of the GOTO destination in the worst case takes 6μ steps, Thus $U_{\text {UNSP2 }}$
takes $6 \mu+11$ steps to simulate a one step GOTO statement of P in the worst case.

CHAPTER 5

NP Completeness

5.1. Cook's Theorem for the Programming Language S_{n}.

The programming language S_{n} is specifically designed for string calculation on an alphabet A of n symbols. It is supplied with the same input, output and local variables as S, except that we now use them as having value in the set of all words on the alphabet A and we allow a unique null word as 0 (empty word). The instruction types are as following (see [2,pp.77]).

Instruction	Interpretation
$v \leftarrow \sigma v$	For each symbol σ in the alphabet place the symbol σ to the left of the string which is the value of V.
$\mathrm{V} \leftarrow \mathrm{v}^{-}$	Delete the final symbol of the string which is the value of V. If the value of V is 0 , leave it unchanged.
$V \leftarrow V^{\text {@ }}$	a non-operable line, control passes to next line.
If v ends σ GOTO L	For each symbol σ in the alphabet A and each label L, If the value of the string in register V ends in the symbol σ, execute next some instruction labeled L; otherwise proceed to the next instruction.

Table 5.1

```
@ Not a basic instruction in [2]. We include it for convenience although its
effect can be achieved under the rules of [2] by other means, e.g. V \leftarrow v for
some register V which is always void.
```

The following conventions apply to a set of lines which form an S_{n}-program, P.
(1). The alphabet of the language S_{n} is $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and we choose another symbol a_{0}, to represent $a \operatorname{bblank",~to~be~}$ used in a manner explained below. $A *$ is, as usual, the set of words on A.
(2). The set of variables (register names) which occur in \mathbf{P} is $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$.
(3). \mathbf{P} is of length \mathbb{C}.
(4). P has the different label names: L_{1} of multiplicity μ_{1}, L_{2} of multiplicity μ_{2}, \ldots, L_{m} of multiplicity μ_{m}.

In addition, we define a partition of the numbers of only the set of labelled lines, as follows: $h \in H_{L_{\beta}}$ if and only if line h is labelled by $L_{\beta}(\beta=1,2, \ldots, m)$.

For use in calculating the atom count and clause count of standard CNF (conjunctive normal form), S, we give following lemma.

Lemma 5.1 Suppose $A_{1}, A_{2}, \ldots, A_{m}$, each is a disjunction of literals ${ }^{\circledR}$, and the total literal count of A_{i} is Literal $\left(A_{i}\right)$. $B_{1}, B_{2}, \ldots, B_{m}$, each is a CNF, and the total clause count of B_{i} is Clause $\left(B_{i}\right)$, the total atom count of B_{i} is Atom (B_{i}). Then we can calculate the atom count and the clause count of the CNF reduction of the formula τ :

$$
\tau=\left(\mathrm{A}_{1} \supset \mathrm{~B}_{1}\right) \wedge\left(\mathrm{A}_{2} \supset \mathrm{~B}_{2}\right) \wedge \ldots \wedge\left(\mathrm{A}_{\mathrm{m}} \supset \mathrm{~B}_{\mathrm{m}}\right)
$$

by the formulas

$$
\begin{aligned}
& \text { Clause }(\tau)=\sum_{i=1}^{m} \operatorname{Clause}\left(B_{i}\right) ; \\
& \text { Atom }(\tau)=\sum_{i=1}^{m}\left(\operatorname{Literal}\left(A_{i}\right) \operatorname{Clause}\left(B_{i}\right)+\operatorname{Atom}\left(B_{i}\right)\right) .
\end{aligned}
$$

Proof Note that in each $\left(A_{i} \supset B_{i}\right)$:

$$
\text { Clause }\left(A_{i} \supset B_{i}\right)=\text { Clause }\left(B_{i}\right)
$$

$\operatorname{Atom}\left(A_{i} \supset B_{i}\right)=\operatorname{Literal}\left(A_{i}\right)$ Clause $\left(B_{i}\right)+\operatorname{Atom}\left(B_{i}\right)$.

Therefore

$$
\begin{aligned}
\text { Atom }(\tau) & =\sum_{i=1}^{m} \operatorname{Atom}\left(A_{i} \supset B_{i}\right) \\
& =\sum_{i=1}^{m}\left(\operatorname{Literal}\left(A_{i}\right) \operatorname{Clause}\left(B_{i}\right)+\operatorname{Atom}\left(B_{i}\right)\right) \\
\text { Clause }(\tau) & =\sum_{i=1}^{m} \operatorname{Clause}\left(A_{i} \supset B_{i}\right)=\sum_{i=1}^{m} \operatorname{Clause}\left(B_{i}\right) .
\end{aligned}
$$

\#\#\#

5.2 Cook's Theorem, Necessity.

Cook's Theorem states that the acceptance problem for an NP set can be "encoded" by conjunctive normal form propositional formulas, and that the code can be computed in polynomial time(see[1]). Specifically, given an NP set, S, accepted by an S_{n}-program, P, computing non-deterministically, there is for each $x \in A^{*}$ a polynomial-time computable $C N E, \Psi x$, so that $x \in S$ if and only if Ψx is satisfiable.

As the proofs of [2,pp.341] and [3] are usually done, we will not fully exhibit the polynomial time function which computes $\Psi \mathbf{x}$ from x and P , but only provide a count of the number of atoms used in Ψx. The proof of Cook's Theorem is given into two parts. The first part shows the construction of Ψx, from which the necessity that Ψx is satisfiable if P accepts x follows, immediately. The second part, Theorem 5.2, provides an induction argument that, when Ψ_{x} is satisfied, P accepts x, which is the sufficiency portion of the proof.

Theorem 5.1 Given P and x, there is a CNF Ψx, of $O\left(P^{3}(|x|)\right)$ atoms, which is satisfied if P accepts x in time $P(|x|))$.

Proof The atoms used in constructing Ψx are:
$R_{k, j, s, p}=\left\{\right.$ At the step k, symbol a_{s} is in the position p of register $\left.V_{j}\right\}(1 \leq k \leq P(|x|), 1 \leq j \leq r, 0 \leq s \leq n, 1 \leq p \leq P(|x|))$.
$H_{k, j, q}=$ \{At the step k, the length of the $A *$ string on register V_{j} is $\left.q\right\}(0 \leq q \leq P(|x|))$.
$I_{k, h}=\left\{\right.$ At the step k, the $h^{t h}$ program line of P is executed $\}(1 \leq h \leq[)$.
Next, we encode the computation of P on k, in three part.

5.2.1 The Initialization

Let $x=\alpha_{1} \alpha_{2} \ldots \alpha_{u}$, where each $\alpha_{i} \in A$ and, to simplify notation, the subscripts do not denote the order of the symbols of A, and we may have $\alpha_{i}=\alpha_{j}$ even if $i \neq j$.
(1.1) "Register 1 is initialized with input x, and the symbol on each position of the register is unique at this step"

For each $p, 1 \leq p \leq u$, each $s, 0 \leq s \leq n, s \neq \alpha_{p}$.

$$
\begin{aligned}
& R_{1,1, \alpha_{p}, p} \\
\sim & R_{1,1, s, p}
\end{aligned}
$$

The atom count is $(n+1)$ u.
(1.2) "The rest of register 1 after position u is initialized blank (a_{0}), and not any other symbols." For each $p, u+1 \leq p \leq p(|x|)$, each $s, 1 \leq s \leq n$.

$$
\begin{aligned}
& R_{1,1,0, p} \\
\sim & R_{1,1, \mathrm{~s}, \mathrm{p}}
\end{aligned}
$$

The atom count is $(n+1)(P(|x|)-u)$.
(1.3) "Each remaining register is initialized blank all the way to position $P(|x|)$, and not any other symbols."

For each $j, 2 \leq j \leq r$, and each $p, 1 \leq p \leq P(|x|)$, each s, $1 \leq s \leq n$.

$$
\begin{aligned}
& R_{1, j, 0, p} \\
\sim & R_{1, j, s, p}
\end{aligned}
$$

The atom count is $(n-1)(n+1) P(|x|)$.
(1.4) "The length of the string on register 1 is u, and not any other length."

For each $q, 0 \leq q \leq P(|x|), q \neq u$.

$$
\begin{gathered}
\mathbf{H}_{1,1, \mathrm{u}} \\
\sim \mathbf{H}_{1,1, \mathrm{q}}
\end{gathered}
$$

The atom count is $P(|x|)+1$.
(1.5) "The length of register $j(\neq 1)$ is 0, not any other length."

For each $j, 2 \leq j \leq r, ~ e a c h ~ q, ~ 1 \leq q \leq P(|x|)$.

$$
\begin{array}{r}
\mathbf{H}_{1, j, 0} \\
\sim \mathbf{H}_{1, j, q}
\end{array}
$$

The atom count is $(r-1)(P(|x|)+1)$.
(1.6) "Line 1 is being processed at step 1 , and not any other line."

For each $h, 2 \leq h \leq l+1$.

$$
\begin{aligned}
& \boldsymbol{I}_{1,1} \\
\sim & I_{1, h}
\end{aligned}
$$

The atom count is $\mathbb{L}+1$.

Thus the initial part is the conjunction of CNF's given by (1.1)-(1.6) above all the clauses, called Init. This expression is of length $O(P(|x|))$.

From this point onward, we present the CNF as a collection of clauses (disjunctions of atoms) which will be conjoined to form the final CNF. In each case we give the range of the subscripts, as in (1.3) above, so that for each selection of subscripts in the permitted range(s) there is an individual clause. I.E. in (1.3) there are ($r-1$) ($n+1$) $P(|x|)$ clauses and, since each is an atom in this case, the same number of atoms.

The remainder of the CNF will consist of one part, called $\mathrm{CNF}_{\mathrm{k}}$, for each computation step k.

In $P(|x|)$ computation steps, some legal computations may not halt while others may halt, i.e. reach line $[+1$. To write a $C N F_{k}$ in a uniform way, we consider line $\mathbb{L}+1$ as a "trapping state" which, once entered, causes each configuration to reproduce the one before. Using this device $C N F_{k}$ "states" that the $k^{t h}$ step of configuration results from the application of one of the four rules of P, or does nothing, if the trapping state has been reached.

In this Chapter the following terms are used:

```
state="Register length" + "Register Contents"
Configuration = State + Control
```

The clauses of $\mathrm{CNF}_{\mathrm{k}}$ are prepared so that an unique truth value is assigned to each atom whose step subscript is $k+1$, called (k+1)-atoms, by the operation of step k, from the truth value already held by that and other atoms at the previous step. One way to view this is that we are defining a vector valued function $V(k), 0 \leq k \leq P(|x|)$, by recursion on k. For each k the value of $V(k)$ is a vector of truth values of length equal to the number of k-atoms. $C N F_{k}$ is assembled in an obvious way from $V(k)$. We use the notations Atom(F) and Clause (F) for the number of atoms, clauses in the CNF, F.

We now discuss the construction of the $\mathrm{CNF}_{\mathrm{k}}$. We begin with a part of $\mathrm{CNF}_{\mathrm{k}}$ which is designed to state that configuration are unique.

5.2.2 Unique Configuration, $Q(k)$

(2.1) "There is exactly one line to be executed"

For each $h, 1 \leq h \leq \mathbb{l}+1$, and each $f, 1 \leq f \leq \mathbb{l}+1, f \neq h$.

$$
\sim I_{k, h} \vee \sim I_{k, f}
$$

The atom count is $\mathbb{L}(\mathbb{L}+1)$.
(2.2) "The length of each register is unique."

For each $j, 1 \leq j \leq r, ~ e a c h ~ q, ~ 0 \leq q \leq P(|x|)$, each q ', $0 \leq q^{\prime} \leq p(|x|), q^{\prime} \neq q$.

$$
\sim H_{k, j, q^{V}} \sim_{k, j, q^{\prime}}
$$

The atom count is $2 r P(|x|)(P(|x|)+1)$.
(2.3) "There is exactly one symbol in position p for each register."

For each $j, 1 \leq j \leq r$, each $p, 1 \leq p \leq p(|x|)$, each $s, 0 \leq s \leq n$, each s', $0 \leq s^{\prime} \leq n, s \neq s$.

$$
\sim R_{k, j, s, p} \vee \sim R_{k, j, s ', p}
$$

The atom count is $2 r(n-1) n P(|x|)$.

Let the collection of all clauses (2.1)-(2.3) above be $Q(k)$, which represents the unique configuration, at step k. Thus the total atom count of $Q(k)$ is $O\left(P^{2}(|x|)\right)$.

Next, we turn our attention to the part of $C N F_{k}$ which insures correct change of state and of control. First, we define a formula $C N F(h, k)$ for fixed line, h, of the program at step k. $\operatorname{CNF}(k, h)$ may be of several forms according to the type of line h being executed, thus we first give the flowchart to describe what is the special form for each case of $\operatorname{CNF}(k, h)$

Fig 5.1

5.2.3 Change of State and of Control

There is at most one register, say j, whose content will be altered by any instruction, so the content of the rest of registers, $i(\neq j)$, in each position is not changed. Also the length of the non-blank string in register i is the same as before.

We consider the following clauses for fixed k and fixed h.
(I) Nchange in register i
a). "No change in the content of the register i."

For fixed i, for each $s, 0 \leq s \leq n$, and each p, $1 \leq p \leq p(|x|)$.

$$
\sim R_{k, i, s, p} \vee R_{k+1, i, s, p}
$$

The atom count is $2(n+1) P(|x|)$.
The clause count is $(n+1) P(|x|)$.
b). "No change in the length of the register i."

For fixed i, for each $q, 0 \leq q \leq P(|x|)$.

$$
\sim \mathrm{H}_{\mathrm{k}, 1, \mathrm{q}} \vee \mathrm{H}_{\mathrm{k}+1,1, \mathrm{q}}
$$

The atom count is $2(P(|x|+1)$.
The clause count is $(P(|x|+1)$.

The CNF $N C_{i}(k, h)$ is the collection of all clauses in a) and b) aboves. And expresses the fact that there is no change in register i at step k, (if line h is executed ${ }^{@}$).

The atom count, Atom $\left(\mathrm{NC}_{1}(\mathrm{k}, \mathrm{h})\right)$, is: $(2(\mathrm{n}+1) \mathrm{P}(|\mathrm{x}|)+2(\mathrm{P}(|\mathrm{x}|+1))$.
The clause count, Clause $\left(\mathrm{NC}_{1}(\mathrm{k}, \mathrm{h})\right)$, is: $((\mathrm{n}+1) \mathrm{P}(|\mathrm{x}|)+(\mathrm{P}(|\mathrm{x}|+1))$.
(c) Let $N C_{\sim j}(k, h)$ be the collection of all clauses $N C_{i}(k, h)$, for $i \neq j, 1 \leq i \leq r . N C_{\sim j}(k, h)$ expresses that there is no change in any register $i(\neq j)$ at step k, if line h is executed.

The atom count, Atom ($\mathrm{NC}_{\sim j}(\mathrm{k}, \mathrm{h})$), is (r-1)Atom $\left(\mathrm{NC}_{i}(k, h)\right)$. The clause count is, Clause ($\mathrm{NC}_{\sim j}(k, h)$), is:
(r-1) Clause ($\mathrm{NC}_{i}(\mathrm{k}, \mathrm{h})$).
(d) Let

$$
\operatorname{NCA}(k, h)=\bigwedge_{i=1}^{r} N C_{i}(k, h)
$$

NCA(k, h) states that there is no change in any register content when line h is executed at step k. It corresponds to [Nchange all Registers] in fig 5.1.

The atom count, $\operatorname{Atom}(N C A(k, h))$, is $r\left(\operatorname{Atom}\left(N C_{i}(k, h)\right)\right)$.
The clause count is, Clause (NCA(k,h)), is

$$
r\left(C l a u s e\left(N C_{i}(k, h)\right)\right)
$$

(II) Change in register j
there are several possibilities for changing the content and the length of register j. Each case depends on the instruction of the S_{n} program P for the fixed k and fixed h.

Case 1 If at step k, line $\mathbb{l}+1$ is being executed.
1.i) [Nchange all Registers]- "No change in all registers."

$$
N C A(k,[+1)
$$

1.ii) [Stay in line [+1] - "The computation stays in line [+1."

$$
L_{k+1, L+1}
$$

Let $\operatorname{NOP}(k, l+1)$ denote the formula:

$$
\left(\tau_{k, L_{+1}} \supset \text { (collection of all clauses in case } 1\right. \text {) }
$$

By Lemma 5.1, the atom count, Atom (NOP $(k,[+1)$), is :
$\operatorname{Atom}(\operatorname{NOP}(k, l+1)=(\operatorname{Clause}(\operatorname{NCA}(k,[+1))+1)+(\operatorname{Atom}(\operatorname{NCA}(k,[+1))+1)$
and the clause count, Clause (NOP ($k,[+1$)), is :
Clause $(\operatorname{NOP}(k,\lceil+1))=C l a u s e(N C A(k,\lceil+1))+1$

Case 2 If at step k, the line $h(\neq[+1)$ is being executed.
Case 2.1 If the instruction is $" V_{j} \leftarrow a_{s} V_{j}$ " for fixed j.
2.1.i) [Nchange Register i] - "No change the content and the length of register i, for all $i \neq j . "$ $N C_{\sim j}(k, h)$
2.1.ii) [Augment] - "The string length of register j is increased by 1."

For each $q, 0 \leq q \leq P(|x|)-1$.

$$
\sim H_{k, j, q} \vee H_{k+1, j, q+1}
$$

The atom count is $2(P(|x|)+1)$.
The clause count is $(P(|x|)+1)$.

- "The content of the register j is changed by placing symbol a_{s} at position 1 , and shifting all other symbols which were in the register j to the right by one position."

For fixed s and each $s^{\prime}, 0 \leq s^{\prime} \leq n$, each $p, 1 \leq p \leq P(|x|)-1$.

$$
\begin{gathered}
\boldsymbol{R}_{\mathrm{k}+1, j, \mathrm{~s}, 1} \\
\sim \boldsymbol{R}_{\mathrm{k}, \mathrm{j}, \mathrm{~s}^{\prime}, 1} \vee \boldsymbol{R}_{\mathrm{k}+1, j, \mathrm{~s}^{\prime}, \mathrm{p}+1}
\end{gathered}
$$

The atom count is $(1+2(n+1)(P(|x|)-1))$.

The clause count is $(1+(n+1)(P(|x|)-1))$.
2.1.iii) [Next line] - "At the next step, the $(h+1)^{\text {th }}$ line will be processed."

$$
\sim I_{k, h} \vee I_{k+1, h+1}
$$

The atom count is 2.
The clause count is 1.

The CNF $A_{j, s}(k, h)$ is the collection of all clauses in case 2.1.

By Lemma 5.1, the atom count, $\operatorname{Atom}\left(A_{j, s}(k, h)\right)$, is:
$\operatorname{Atom}\left(A_{j, s}(k, h)\right)=\operatorname{Atom}\left(N C_{\sim j}(k, h)\right)+2(P(|x|)+1)$

$$
+1+2(n+1)(P(|x|)-1)+2
$$

and the clause count, Clause $\left(A_{j, s}(k, h)\right)$, is :
$\operatorname{Clause}\left(A_{j, s}(k, h)\right)=C l a u s e\left(N C_{\sim j}(k, h)\right)+(P(|x|)+1)+1$

$$
+(n+1)(P(|x|)-1)+1
$$

Case 2.2 If the instruction is $" V_{j} \leftarrow V_{j}{ }^{-1}$.
Case 2.2.1 V_{j} is empty.
2.2.1.i) [Nchange all Registers]-"No change in all registers."
NCA (k, h)
2.2.1.ii) [Next line] - "At the next step, the (h+1)th line will be processed."

$$
\sim L_{k, h} \vee L_{k+1, h+1}
$$

The atom count is 2.
The clause count is 1.

Let $2 N_{j}(k, h)$ denote the formula:
$\left(H_{k, j, 0} \supset\right.$ (collection of all clauses in case 2.2.1)
By Lemma 5.1, the atom count, Atom $\left(\mathrm{ZN}_{\mathrm{j}}(\mathrm{k}, \mathrm{h})\right)$, is :
$\operatorname{Atom}\left(\mathrm{ZN}_{\mathrm{j}}(\mathrm{k}, \mathrm{h})\right)=(\operatorname{Clause}(\mathrm{NCA}(k, h))+1)+\operatorname{Atom}(\operatorname{NCA}(k, h)+2$ and the clause count, $C l a u s e\left(Z N_{j}(k, h)\right)$, is:
Clause $\left(\mathrm{ZN}_{\mathrm{j}}(\mathrm{k}, \mathrm{h})\right)=\mathrm{Clause}(\mathrm{NCA}(\mathrm{k}, \mathrm{h}))+1$

Case 2.2.2 $\quad V_{j}$ is not empty.
2.2.2.i) [Nchange register i] - "No change the content and the length of register i, for all $i \neq j . "$ $N C_{\sim j}(k, h)$
2.2.2.ii) [Decrement] - "The string length of register j is decreased by 1 ".

For each $q, 1 \leq q \leq P(|x|)$.

$$
\sim \mathrm{H}_{\mathrm{k}, \mathrm{j}, \mathrm{q}} \vee \mathrm{H}_{\mathrm{k}+1, j, \mathrm{q}-1}
$$

The atom count is $2 \mathrm{P}(|x|)$.
The clause count is $P(|x|)$.

- "The symbol in end of the string is deleted, and the others are not changed".

For each $q, 1 \leq q \leq P(|x|)$, each $p, 1 \leq p \leq P(|x|), p \neq q$, each $s, 0 \leq s \leq n$.

$$
\begin{aligned}
& \sim H_{k, j, q} \vee R_{k+1, j, o, q} \\
& \sim H_{k, j, q} \vee \sim R_{k, j, s, p} \vee R_{k+1, j, s, p}
\end{aligned}
$$

The atom count is $2 P(|x|)+3(n+1) P(|x|)(P(|x|)-1)$.
The clause count is $P(|x|)+(n+1) P(|x|)(P(|x|)-1)$.
2.2.2.iii) [Next line] - "At the next step, the ($h+1)^{\text {th }}$ line will be processed."

$$
\sim L_{k, h} \vee L_{k+1, h+1}
$$

The atom count is 2.
The clause count is 1 .

Let $D_{j}(k, h)$ denote the formula:
$\left(\sim \mathrm{H}_{\mathrm{k}, \mathrm{j}, 0} \supset\right.$ (collection of all clauses in case 2.2.2)
By Lemma 5.1, the atom count, $\operatorname{Atom}\left(D_{j}(k, h)\right)$, is:
$\operatorname{Atom}\left(D_{j}(k, h)\right)=\left(\operatorname{Clause}\left(\mathrm{ZN}_{j}(k, h)\right)+P(|x|)+P(|x|)+\right.$

$$
\begin{aligned}
& (n+1) P(|x|)(P(|x|)-1)+1)+\left(\operatorname{Atom}\left(2 N_{j}(k, h)\right)\right. \\
& +2 P(|x|)+2 P(|x|)+3(n+1) P(|x|)(P(|x|)-1)+2)
\end{aligned}
$$

and the Clause $\left(D_{j}(k, h)\right)=\operatorname{Clause}\left(Z N_{j}(k, h)\right)+P(|x|)+P(|x|)+$

$$
(n+1) P(|x|)(P(|x|)-1)+1
$$

Case 2.3 The instruction is $" V_{j} \leftarrow V_{j}$ ".
This case is the same as case (2.2.1). that is:

$$
\mathrm{ZN}_{j}(k, h) .
$$

Case 2.4 The instruction is "IF V_{j} ENDS a_{s} GOTO L_{β} ".
Case 2.4.1 V_{j} does not end with symbol a_{s}.
2.4.1.i) [Nchange all Registers] - "No change all register."
NCA (k, h)
2.4.1.ii) [Change of Control] - "At the next step, the $(h+1)^{\text {th }}$ line will be processed."

$$
\sim L_{k, h} \vee L_{k+1, h+1}
$$

The atom count is 2.
The clause count is 1 .
Let $\operatorname{NSE}_{j, s}(k, h)$ denote the formula:

$$
\begin{gathered}
\bigwedge_{q=0}^{P(\| x)}\left[\left(H_{k, j, q} \sim_{k, j, s, q}\right) D(\text { collection of all clauses }\right. \\
\text { in case } 2.4 .1)] .
\end{gathered}
$$

By Lemma 5.1, the atom count of $\operatorname{NSE}_{j, s}(k, h)$ is:
P(|x|)(2(Clause (NCA $(k, h))+1)+$ Atom $(\operatorname{NCA}(k, h))+2)$.
and the clause count of $\operatorname{NSE}_{j, s}(k, h)$ is:
$P(|x|)(C l a u s e(N C A(k, h))+1)$.
Case 2.4.2 V_{j} ends with symbol a_{s}.
2.4.2.i) [Nchange all Registers] - "No change in all register."

$$
\text { NCA }(k, h)
$$

2.3.2.ii) [Change of control] - "One of the lines with label L_{β} will be executed at next step." $\sim L_{k, h} \underset{f \in H_{\beta}}{V} I_{k+1, f}$

The atom count is $1+\mu_{\beta}$.
The clause count is 1.

Let $G_{j, s, \beta}(k, h)$ denote the formula:

$$
\begin{gathered}
\bigwedge_{q=0}^{P\|x\|}\left[\left(H_{k, j, q} \wedge R_{k, j, s, q}\right) \supset(\text { collection of all clauses }\right. \\
\text { in case } 2.4 .2)] .
\end{gathered}
$$

By Lemma 5.1, the atom count of $G_{j, s, \beta}$ is:
$\operatorname{P}(|x|)\left(2(\operatorname{Clause}(\operatorname{NCA}(k, h))+1)+\operatorname{Atom}(\operatorname{NCA}(k, h))+1+\mu_{\beta}\right)$.
and the clause count of $G_{j, s, \beta}$ is:

$$
P(|x|)(C l a u s e(N C A(k, h))+1) .
$$

Now we can create the formula $C N F(k, h)$ as follows for fixed k and fixed h .

$$
\begin{aligned}
& \operatorname{CNF}(k, h)=\operatorname{NOP}(k, h) \quad \text { If line } l_{+1} \text { is to be executed \}} \\
& \left.\operatorname{CNF}(k, h)=A_{j, s}(k, h) \quad \text { Iff line } h \text { reads } " v_{j} \leftarrow a_{s} v_{j} "\right\} \\
& \operatorname{CNF}(k, h)=Z N_{j}(k, h) \wedge D_{j}(k, h) \text { \{If line } h \text { reads } " v_{j} \leftarrow v_{j} \text { ", or }{ }^{\prime} v_{j} \leftarrow v_{j}{ }^{-} \text {"\} } \\
& \operatorname{CNF}(k, h)=\operatorname{NES}_{j, s}(k, h) \wedge G_{j, s, \beta}(k, h) \\
& \text { \{If line } \left.h \text { reads "IF } v_{j} \text { ENDS } a_{s} \text { GOTO } L_{\beta} ",\right\}
\end{aligned}
$$

Although the particular choice of $\operatorname{CNF}(k, h)$ depends upon the instruction on line h of the program P, we see from the above atom count that, regardless of the line, the atom count of $\operatorname{CNF}(\mathrm{k}, \mathrm{h})$ is $\mathrm{O}\left(\mathrm{P}^{2}(|\mathrm{x}|)\right.$.

At step k, only one line will be executed in P, so we define a single $C N E$, call $\mathrm{CNF}_{\mathrm{k}}$ as follows.

$$
\begin{aligned}
& \operatorname{CNF}_{0}=\operatorname{Init}_{\mathrm{x}} \wedge Q(1) \\
& \operatorname{CNF}_{1}=\operatorname{CNF}(1,1) \wedge Q(2) \\
& \operatorname{CNF}_{\mathrm{k}}=\underbrace{\mathfrak{l}+1}_{\mathrm{h}=1}\left(\mathrm{~L}_{\mathrm{k}, \mathrm{~h}} \operatorname{DCNF}(\mathrm{k}, \mathrm{~h})\right) \wedge Q(\mathrm{k}+1) \quad \mathrm{k} \neq 0,1
\end{aligned}
$$

Although these formulas are not yet in CNF, Lemma 5.1 shows that the atom count of $\mathrm{CNF}_{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{P}^{2}(|\mathrm{x}|)\right)$.

Therefore, if there is an S_{n} program \mathbf{P} which accepts the
input x in time $P(|x|)$, then the $C N F \Psi x$ defined as follows will be satisfied.

$$
\Psi x=\bigwedge_{k=0}^{P(|x|)} \operatorname{CNF}_{k} \wedge I_{p(|x|), \mathfrak{q}+1}
$$

Since the atom count of $\mathrm{CNF}_{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{P}^{2}(|\mathrm{x}|)\right)$, thus the atom count of Ψx is $O\left(P^{3}(|x|)\right)$, and we have proved Theorem 5.1.

5.3 Cook's Theorem, Sufficiency

Lemma 5.2. For each $0 \leq T \leq P(|x|)$, if the $C N F$

$$
\bigwedge_{k=0}^{T} \operatorname{CNF}_{k}
$$

is satisfied, then there is a correct computation from program P, of length T, with input x.

For the proof of Lemma 5.2, as before we refer to the atoms $L_{k, h}, H_{k, j, q}$ and $R_{k, j, s, p}$ with first subscript k, as k-atoms, and denote the collection of all k-atoms by and the subset of those which are assigned the value TRUE by A_{k}. An examination of the construction of the formulas CNF $_{k}$ shows that to satisfy $C N F_{k}$ it is necessary to assign truth values to the set \mathbb{A}_{k+1} of $(k+1)$-atoms. The process can be thought of as proceeding according to the following table, from step 0 to k.

From the set of all step-1 atoms A_{1}, A_{1} assigned value TRUE;
From the set of all step-2 atoms $\mathbf{R}_{\mathbf{2}}, A_{2}$ assigned value TRUE;

From the set of all step-k atom $\mathbb{A}_{T^{\prime}} A_{T}$ assigned value TRUE; From the set of all step-K+1 atoms $\mathbf{A}_{\boldsymbol{T}+1}, A_{T+1}$ assigned value TRUE.

The Chart of Atoms Assigned Value

Step	Atom Assigned value TRUE					
0	A_{1}					
1	A_{1}	A_{2}				
2	A_{1}	A_{2}	A_{3}			
\cdot	\cdot		\cdot			
\cdot	\cdot		\cdot	\cdots		
$T-1$	A_{1}	A_{2}	A_{3}	\cdots	A_{T}	
T	A_{1}	A_{2}	A_{3}	\cdots	A_{T}	A_{T+1}

Fig 5,2

Proof By induction on T.
Basis $\mathrm{T}=1$.
Satisfaction of the initialization configuration, C_{0}, shows immediately that there is a correct computation C_{0} from P, of length 1.

For the induction step, the induction assumption is:
For $1 \leq T \leq P(|x|)$, if $\bigwedge_{k=0}^{T} C N F_{k}$ is satisfied, then there is a
correct computation, $C_{0}, C_{i-1} \mid-C_{i}, i=1,2, \ldots, T$, of length T. (ending with line number, register lengths, and
register contents determined by the TRUE atoms in CNF $_{k}$). Further, suppose that

$$
\bigwedge_{\mathrm{k}=0}^{\mathrm{T}+1} \mathrm{CNF}_{\mathrm{k}}
$$

is satisfied. Since we have

$$
\bigwedge_{\mathrm{k}=0}^{\mathrm{T}+1} \mathrm{CNF}_{\mathrm{k}}=\bigwedge_{\mathrm{k}=0}^{\mathrm{T}} \mathrm{CNF}_{\mathrm{k}} \wedge \mathrm{CNF}_{\mathrm{T}+1}
$$

then both $\bigwedge_{k=0}^{T} \mathrm{CNF}_{\mathrm{k}}$ and $\mathrm{CNF}_{\mathrm{T}+1}$ are satisfied.
i) $\bigwedge_{k=0}^{T} \mathrm{CNF}_{k}$ is satisfied;
ii) $\mathrm{CNF}_{\mathrm{T}+1}$ is satisfied.

The induction step proceeds from the above two assumptions, and the induction assumption.

We have just noted that the truth values of all atoms whose step subscript is $T+1$ have been determined in satisfying $C N F_{T}$. The part $Q(T+1)$ of $C N F_{T}$ guarantees unique line number, register lengths and register contents. From (i) and (ii) and the induction assumption we conclude there is a correct computation of T steps, and that $C N F_{T+1}$ is satisfied. We must see that truth value assigned the atoms of step subscript $T+2$ in satisfying $C N F_{T+1}$ determine one more correct computation step,the $(T+1)^{\text {th }}$. The reasons are eventually obvious, from the way in which $\mathrm{CNF}_{\mathrm{T}+1}$ was constructed.

Satisfaction of $C N F_{T}$ requires that exactly one of the atoms $\mathrm{I}_{\mathrm{T}+1, \mathrm{~h}}$ is TRUE. From $C N F_{\mathrm{T}+1}$ we see that for that value of h, denoted $h ', C N F\left(T+1, h^{\prime}\right)$ must be satisfied.

It remains to show that the truth values assigned in CNF ($T+1, h^{\prime}$) determine a correct $(T+1)^{\text {th }}$ step computation step.

Since we are arguing in general, we cannot commit to a fixed form for line h^{\prime} of the program P but must proceed by cases on the four possible forms line h may have. However, to avoid tedious repetition, we argue just one case, simply to show the form that the argument should take.

Suppose line h ' is of the form "IF V_{f}, ENDS a_{s}, GOTO L_{β} " and that the line numbers of \mathbf{P} whose labels are L_{β}, are $h_{1}, h_{2}, \ldots, h_{t}$, here $h_{i} \in H_{\beta}$, , $\left|H_{\beta},\right|=\mu_{\beta},=t$.

As above, exactly one atom $H_{T+1, j}, q^{\prime}$ has value TRUE and, by the induction assumption, this means that the true length of the register content in register j' is q' in the correct computation of length K. There are two corresponding possibilities for atom $R_{T+1, j ', s^{\prime}, q^{\prime}}$.
(a) $R_{T+1, j ', s^{\prime}, q^{\prime}}$ is FALSE. Then, from case (2.3.1.iii) we see that atom $I_{T+2, h+1}$ is TRUE, and that for each j, s, q, the "content" atoms $R_{T+2, j, s, q}$ retain the same values as $\mathbf{R}_{\mathrm{T}+1, \mathrm{j}, \mathrm{s}, \mathrm{q}}$.

Thus, in case (a), since $R_{T+1, j^{\prime}, s^{\prime}, q^{\prime}}$ FALSE means that if V_{j}, does not end with symbol a_{s}., the ($T+2$)-atoms in $\operatorname{ClNF}_{\mathrm{T}+1}$ have the correct values to determine the next computation step.
(b) $\mathbf{R}_{T+1, j \text {, }}{ }^{\prime}, q^{\prime}$ is TRUE. Then, from case (2.3.2.iii) we see that atom $I_{T+2, f}$ is TRUE for exactly one of $f \in H_{\beta, \prime}$, and that for each j,s,q, the "content" atom $R_{T+2, j, s, q}$ retain the same values as $\boldsymbol{R}_{\mathrm{T}+1, \mathrm{j}, \mathrm{s}, \mathrm{q}}$.

Thus, in case (b), since $R_{T+1, j \prime, s ', q}$ TRUE means that if V_{j}, ends with symbol $\mathrm{a}_{\mathrm{s}, \mathrm{\prime}}$, the ($\mathrm{T}+2$)-atoms in $\mathrm{CNF}_{\mathrm{T}+1}$ have the correct values to determine the next computation step. I.E. The line number, register length and register contents may be altered to agree with the truth values of the (T+2)-atoms and the result will be a correct computation step.

Completing the proof of the other cases in exactly the same manner leads to the completion of the induction step and thus the proof of the lemma.
\#\#\#
 is a S_{n}-program P which accepts x in time $P(|x|)$.

Proof By Lemma 5.2, there is a correct computation C_{0}, $C_{i} \mid-C_{i+1}, i=1,2, \ldots, P(|x|)-1$, of length $P(|x|)$. Satisfaction of CNF_{0} provide the truth values to establish C_{0}, the configuration corresponding to the initial line number(i.e. the first line), all register lengths and register contents with input x for P.
Lemma 5.2 shows that satisfaction of $\bigwedge_{k=0}^{P(\mid)} C N F_{k}$ causes a correct computation of length $P(|x|)$.
 length $P(|x|)$ results in acceptance of x.

As discussed earlier, Theorem 5.1 and 5.2 together constitute Cook's Theorem except for the usual omission, to show that Ψx is computable in polynomial time in $|x|$. We have shown that the atom count in Ψx is $O\left(P^{3}(|x|)\right)$ for each x belonging to a set X accepted in time $P(|x|)$. It remains to observe that Ψx is constructed in a uniform effective manner from the input x and the S_{n}-program P. Thus (by Church's Thesis) Ψx, or an appropriate code for Ψx, is computable by an S_{n}-program, in a computation time proportional to its atom count, i.e. in $O\left(P^{3}(|x|)\right)$.

REFERENCES

1. S. A. Cook, The complexity of theorem proving procedures, Proceedings of the Third ACM Symposium on Theory of Computing (1971), pp.151-158.
2. M. D. Davis and E. J. Weyuker, Computability, Complexity, and Languages (Fundamentals of Theoretical Computer Science), Academic press, 1983.
3. Herbert, Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1986, pp.197-201.
4. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
5. E. Mendelson, Introduction to Mathematical Logic, Second edition, D. Van Nostrand Company, 1979, pp. 28.
6. E. L. Post, Recursive unsolvability of a problem of Thue, The Journal of Symbolic Logic, Vol.11,1947, pp.1-11.

7 L. Stockmeyer, Classifying the computational complexity of problems, The Journal of Symbolic Logic, Vol.52, No 1, 1987, pp.1-43.

