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Chapter 1 

INTRODUCTION AND LITERATURE OVERVIEW 

1.1 Introduction 

In many process industries (e.g., VLSI production lines, Automotive industries, IC 
welding process, inspections, manipulations), robot manipulators are used to perform 
the same tasks repeatedly over a finite time interval. The ultimate goal of robotic 
research is to design intelligent and autonomous robot control systems to perform 
repetitive tasks that are dull, hazardous, or require skill beyond the capability of 
humans. The nonlinear nature of the robot dynamics has made this problem a chal-
lenging one in robotics research. This highly demanding control problem of driving an 
industrial robot to follow a desired trajectory perfectly under constrained or uncon-
strained environment has led to the application of sophisticated control techniques. 
From the classical or modern control view point, it is a very difficult task to design 
an intelligent robot control system that can achieve perfect tracking over a finite time 
interval due to the effect of highly coupled robot dynamics and the presence of the 
unmodeled dynamics such as friction and backlash that are usually exhibited in the 
robot system during actual operation. 
As robot manipulators are generally used to perform repetitive tasks in many indus-
trial processes, researchers have been motivated to investigate new types of control 
techniques that can utilize the repetitive nature of the robot dynamics and improve 
the tracking performance from iteration to iteration. This new technique is known as 
iterative learning control (ILC). Specifically, ILC aims to enhance the feedback control 
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performance by modifying the current control input using the previous control infor-
mation. Compared with other existing control methods, ILC is simpler in structure 
and easier to implement in the real world operation as it requires less computational 
efforts and less a priori knowledge of system dynamics. Since early works Arimoto et 
al. (1984), Casalino and Bartolini (1984) and Craig (1984), various ILC algorithms 
for robot manipulators have been studied in the past two decades that can be used 
for improving the tracking performance by compensating the unknown parametric 
uncertainties or unmodeled dynamics from operation to operation through memory 
based learning techniques. 

1.2 Literature review 

In the last two decades, several control strategies for uncertain robot manipulators 
have been presented in the literature, see for instance (Takegaki and Arimoto 1981; 
Arimoto and Miyazaki 1984; Ortega and Spong 1988; Khorrami and Ozguner 1988; 
Sadegh and Horowitz 1990; Tomei 1991; DeLuca and Siciliano 1992; Wen and Mur-
phy 1990; Slotline and Li 1987 and 1991; Ge 1998). Among these designs, PD and 
PID controllers have attracted the attention of the control community for their sim-
plicity and performance. In fact, a PD controller with gravity compensation is able to 
asymptotically stabilize rigid robot manipulators around a given joint configuration. 
In practice, however, the exact knowledge of gravitational forces is a very difficult 
task because the payloads manipulated by the robot during the execution of a given 
task are generally varying. As a result, a steady state error is always present with 
this control technique. An alternative solution to this problem is to use high-gain 
feedback that dominates over the gradient of the gravity forces in the whole robot 
work space. In fact, the high-gain feedback solution reduces the error but does not 
eliminate the error completely. The major drawback of using high-gain feedback is 
that it may saturate the actuators and excite the unmodeled dynamics. The existing 
steady state error in PD controller can be eliminated by adding an integral term. 
But several problems may arise with the design of a PID controller due to the non-
linear nature of the robot manipulators. Moreover, from a theoretical point of view, 
a PID controller is able to locally asymptotically stabilize the joint positions of rigid 
robot manipulators around the desired configuration under some complex inequalities 

10 
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among the proportional, derivative and integral gains (Arimoto et al. 1996). In prac-
tice, the tuning of the PID gains is a very difficult task for nonlinear systems such as 
robot manipulators. In industrial applications (Wen 1990), these drawbacks can be 
compensated by using the integral action at the desired final configuration. In this 
framework, gross motion is performed with a PD control action and fine positioning 
can be achieved with PID action. This is a common strategy for industrial robot 
controllers, but there is no formal proof of the convergence of this method. Another 
interesting method (Slotine and Li 1987 and 1991) has been developed for trajectory 
tracking of robot manipulators instead of set-point regulation. This approach consists 
of a PD action plus an appropriate adaptation rule in order to compensate the gravity 
forces and the time-derivatives of the reference trajectory. However, this technique is 
valid only when the robot parameters are time-invariant. 
As a matter of fact, the performance of the above mentioned controllers are consid-
erably affected when the robot parameters are time-varying and unstructured uncer-
tainties such as frictions and disturbances are involved. As robot tasks are repetitive 
in nature, researchers have been motivated to investigate a new type of control tech-
niques that can exploit this property in order to enhance the tracking performance 
from iteration to iteration. The key feature of this control technique is the abil-
ity to compensate for the unmodeled dynamics and parametric uncertainties, that 
are mainly exhibited during the actual system operation, without using a high-gain 
feedback. In the past two decades, many ILC schemes for robot manipulators were 
reported in the literature (Mita and Kato 1985; Gu and Loh 1987; Bondi et al.1988; 
Kawamura et al. 1988; Moore et al. 1989 and 1990; Arimoto et al. 1990; Kuc et al. 
1991; Horowitz et al. 1991; DeLuca et al. 1992; Kavli 1992; Horowitz 1993; Moon et 
al. 1997; Norrlof and Gunnarsson 1997; Gunnarsson and Norrlof 1997; Moore 1998; 
Norrlof 2000; Wang 2000; Ye and Wang 2002). These ILC schemes are generally 
based upon the use of the contraction mapping approach and require a certain a 

priori knowledge of the system dynamics. On the other hand, in some ILC schemes 
the sup-norm or oo-norm of the output tracking error can grow quite large before 
it converges to the desired level even if the convergence and stability conditions are 
satisfied. This is due to the fact that the learning convergence is based upon the use 
of the exponentially weighted sup-norm analysis. This transient behavior, which is a 
serious concern in practical applications of ILC schemes, can be improved by using the 
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exponentially decaying learning gain (Lee and Bien 1997). The convergence nature of 
classical ILC schemes for robot manipulators has been analyzed by Longman (1998) 
from a frequency domain perspective. In order to achieve a monotonic convergence 
of the sup-norm of the tracking error, one can use a high-gain feedback as discussed 
by Owen (1992). However, this is not a practical solution because high-gain feedback 
may saturate the actuator dynamics. 
In the search of a robust approach to ILC design, Moon et al. (1998) developed a 
frequency-domain design method for uncertain linear systems. They showed that the 
ILC design problem can be reformulated as a general robust control problem and thus 
can be solved by well-established robust control design procedures such as p-synthesis. 
Based on the same idea, Tayebi and Zaremba (2000, 2001 and 2003) proposed a robust 
ILC technique for uncertain systems based upon the use of the robust performance 
condition. They have shown that if the feedback controller can be designed such that 
it satisfies the well known robust performance condition, then an iterative updating 
rule can be generated by using the performance weighting function. However, the 
robust controller design is based on the nominal model of the plant that has to be 
controlled, and the performance will be seriously affected by parametric inaccuracies. 
Due to some difficulties in applying traditional ILC algorithms for certain systems, 
recently a new type of ILC algorithms that can handle broader class of nonlinear 
systems with parametric or non-parametric uncertainties have been widely studied. 
One of the most interesting and significant development in the recent years in ILC 
research is the so-called adaptive iterative learning control (AILC). This method is 
based upon the use of standard Lyapunov and Lyapunov-like energy functions. In 
the past decade, several adaptive ILC schemes have been reported in the literature 
(Park et al. 1996 and 1998; Kaneko and Horowtiz 1997; French and Rogers 1998; 
Seo et al. 1999; Kuc et · al. 2000; Kuc and Han 2000; Choi and Lee 2000; Ham et 
al. 2000 and 2001; Xu et al. 2000; Xu and Tan 2001; Xu 2002; Hsu et al. 2003). 
The main idea behind the adaptive ILC approach is to estimate the uncertain system 
parameters and disturbances in order to generate a current control input that can 
improve the output tracking performance from trial to trial. Most adaptation laws 
for uncertain parameter estimations are designed in the iteration-domain because of 
the iteration based control problem (Park et al. 1996 and 1998; Kuc et al. 2000; Xu 
and Wiswanathan et al. 2000). In this case, the projection or dead zone mechanism 
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is required to guarantee the stability and convergence of the learning process. Among 
the AILC techniques mentioned above, Park et al. (1996) proposed an adaptive it-
erative learning controller for uncertain robot manipulators based upon the use of 
a Lyapunov function. Xu and Qu (1998) utilize a Lyapunov-based energy function 
to illustrate how an ILC can be combined with a variable structure controller in or-
der to handle a broader class of nonlinear systems. It was shown that a nonlinear 
feedback controller can be combined with a learning control scheme to achieve as-
ymptotic convergence for a class of nonlinear systems. Xu et al. (2000) have shown 
that this nonlinear scheme can be extended to a broader class of nonlinear systems 
with both periodic and non-periodic uncertainties by introducing a sliding mode into 
the learning control techniques. In (Ham et al. 2000), a Lyapunov-based technique is 
utilized to develop an ILC scheme that is combined with a robust control design. This 
design was extended to a broader class of non-linear systems in Ham et al. (2001). In 
(Choi and Lee 2000), an AILC scheme for robot manipulators with both time-domain 
and iteration-domain adaptations was proposed. However, this design requires the 
unknown system parameters to be constant. 
Xu and Tan (2001) proposed an AILC algorithm based upon the use of a positive 
definite Lyapunov-like energy function which is made monotonically decreasing along 
the iteration axis via a suitable choice of the control input. In this framework, the 
control scheme can learn iteration-independent time-varying uncertainties. In (Hsu 
et al. 2003), a new adaptive ILC scheme was developed for uncertain robot manip-
ulators. The proof of convergence of this AILC algorithm is based on a Lyapunov 
energy function. As a matter of fact, the above mentioned adaptive ILC algorithms 
for robot manipulators require a certain a priori knowledge of system dynamics. 
Most recently, some interesting AILC schemes have been proposed for the position 
tracking control of rigid robot manipulators without any a priori knowledge of the 
system dynamics in Tayebi (2004). This new generation of adaptive schemes can 
handle a broader class of parametric or nonparametric uncertainties, which opens a 
new avenue for the learning control design. The control schemes are build around a 
classical PD feedback control structure, for which an iterative term is added in order 
to ensure asymptotic convergence along the iteration axis. The proof of convergence 
is based upon the use of a composite energy function, which is made monotonically 
decreasing through an adequate choice of the control law and the iterative adaptation 
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rule. The implementation results of these AILC can be found in Tayebi and Islam 
(2004). In practice, the velocity signals in the adaptation law are not measured but 
estimated using the so-called "dirty derivative" which generates considerable amount 
of noise and this noise amplifies from iteration to iteration. A potential solution to 
this crucial practical problem is to design AILC schemes that are based upon the use 
of joint position signals only. 

1.3 Objectives 

The main objective of this thesis is to test experimentally various classical and adap-
tive ILC approaches on a 5-DOF industrial robot manipulator. The thesis also gives 
a comparison of these implementation results by observing the learning ability of the 
industrial robot manipulator executing the same desired trajectory repetitively over 
a finite time interval. 
The thesis is divided into eight chapters. Chapter 2 gives the ILC research back-
ground, main idea of the ILC method as well as its introductory examples. A brief 
history of ILC methodology and its connection with other control paradigms will be 
covered in this chapter. 
Some classical linear ILC schemes with their simulation results will be discussed in 
Chapter 3. Various classical ILC techniques for robot manipulators are presented in 
Chapter 4. Chapter 5 discusses some adaptive ILC schemes for uncertain nonlinear 
systems. The implementation results of these classical and adaptive ILC approaches 
on a 5-DOF CRS255 robot manipulator are presented in chapter 7. 
Chapter 6 gives a brief discussion on the experimental platform that is used for the ex-
perimental evaluation of the ILC algorithms presented throughout the thesis. Finally, 
the conclusion and future work are given in Chapter 8. 
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Chapter 2 

BACKGROUND 

This chapter gives the main idea behind ILC method as well as a brief history of iter-
ative learning control methodology and its connection with other control techniques. · 

2.1 Why ILC? 
Most existing control methods, devised in the time domain, are based upon the use of 
a mathematical model of the controlled plant. In order to get a better performance, 
however, a more accurate model of the plant is required. In fact, the following prob-
lems can be encountered (Harris et al. 1993) during the modeling of a plant 

a) The system is too complicated to understand or represent in a simple way. 

b) The model is very difficult and/ or expensive to evaluate. 

c) It is not so easy to obtain the characteristics of some non-linear effects such as 
coulomb friction. 

d) The plant parameters may be time-varying. 

e) It is very difficult to predict or estimate the plant disturbances which may be 
large. 

On the other hand, tracking tasks in most practical control applications have to be 
accomplished over a finite time interval. Generally, the scale of finite time interval can 
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processes. Generally, the term Iterative indicates a kind of action that needs the 
dynamic process to be repeatable, i.e., the dynamic system is deterministic and the 
tracking control tasks are repeatable over a finite time interval. The term Learning 
implies a gain of knowledge through the iterative process. Learning can be repre-
sented as a bridge between knowledge and experience, where insufficient knowledge 
is bridged by learning through repetitive practice. Now, the question is: How can 
we gather knowledge without dynamic process model? When a target trajectory is 
performed repeatedly, one can gain extra information from a new source such as past 
control input and output tracking error profiles, which can be viewed as a kind of 
"experience" . This kind of "experience" serves as a new source of knowledge related 
to the dynamic process model, and reduces the need for the process model knowl-
edge and computational efforts are less than any other existing control techniques. 
The new knowledge is learned from the previous control "experience" that provides 
the possibility of improving the tracking performance (see more on this issue from 
dedicated ILC home www.csois.usu.edu/ilc/). 

2.3 Relation between ILC and other control tech-. n1ques 

In recent years, ILC has seen a growing interest in the control community for its 
simplicity and performance for systems that execute the same control task over and 
over. So, it is natural to know the main difference between ILC and other common 
control techniques. In most industrial applications, the performance of the process 
is generally improved by conventional control methods. Generally, the ILC method 
is combined with the conventional control method for further improvement of the 
control performance by utilizing the fact that the system is operated repeatedly. 
It is well known in modern control engineering that if the system description is avail-
able, then the optimal solution can be generated by inverting the system description 
in order to produce a control input such that the system output follows the desired 
control task as close as possible. In this case, the controller performance totally de-
pends on the system description. This method can be considered as a feedforward 
control scheme and applied successfully in robot control applications where it is called 
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inverse dynamics. If the system model, describing the mapping from input to output, 
is not totally known, then it is clear that the inverse dynamics technique will never 
achieve a perfect tracking of the desired control tasks. 
Another well known method, namely identification, can be used if the system struc-
ture is known while the exact value of parameters is unknown. In fact, one can design 
a controller together with identification that can generate an appropriate control in-
put to track the desired control task. This approach is referred to as adaptive control. 
It should be pointed out that the adaptive controller performance is good as long as 
the structure of the system is correct. 
As a matter of fact, the ultimate goal of most existing control methods is to achieve 
exponential or asymptotic convergence in the time domain which is obviously inad-
equate if the objective is to achieve perfect tracking from the very beginning of the 
execution. ILC is a technique that can be applied to repetitive processes in order 
to get a perfect output tracking from the very beginning of the execution when the 
number of iterations goes to infinity. ILC differs from most existing control methods 
in the sense that it tries to utilize every possibility of the past control experience: 
the past tracking error profiles and control input signals in order to construct the 
current control input. This experience can be accumulated through memory based 
learning technique. Mainly, memory components are used to capture the past control 
information, and then the captured control information is retrieved to construct the 
feedforward part of the current control action. 

2.4 Main idea 

ILC is a relatively new control technique that can be used for improving the tracking 
performance and transient response of systems that execute the same control task 
repeatedly. The main idea behind this technique is to construct the optimal input 
in a recursive manner such that the system output can follow a desired control task 
perfectly from the very beginning of the execution. Consider the case where an input 
Uk(t) is applied to a process that produces an output Yk(t) at the k-th iteration. The 
control input Uk and output trajectory Yk are stored in the memory until the trial 
is over. The new control input Uk+l, where k E {1,2,3 ..... }, is then updated based 
upon the use of the previous control information. In order to design successful ILC 
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algorithms, the following set of postulates are to be imposed: 

(Pl). The time duration of the target trajectory, T, is fixed for each operation. 

(P2). The initial resetting condition is satisfied for each operation, i.e., Yd(O) = Yk(O). 

(P3). The input to the systemUk is stored along with the system output Yk at each 
operation, and then past control information is retrieved to construct the cur-
rent control input Uk+1(t) for improving the tracking performance in the next 
operation. 

A numerical example is the best way to make the concept of iterative learning control 
understandable. In the ILC design, the previous error and control input signals are 
mainly used to construct the current control input such that it can identify and com-
pensate uncertain sources of system dynamics and improve the control performance 
from operation to operation. 
Consider a desired control task, Bd(t) = sin2wt, over a finite time interval [0, 20s] is 
given to a one DOF robot manipulator for perfect tracking which is shown in figure 
2.1. A closed-loop transfer function of a single robot joint can be approximated as 
(Ye and Wang 2002) 

P. (s) _ 948 
r - S 2 + 42s + 948 (2.1) 

The main control objective is to design a learning controller such that the robot 
position trajectory Bk(t) converges to the desired one Bd(t), for all t E [0, 20s] when 
k tends to infinity. Consider the Laplace transform of the well-known ILC algorithm 
(Arimoto et al, 1984, Togai and Yamano 1985) 

(2.2) 

where L(s) is the learning compensator in Laplace form and k E {1, 2, 3, ..... }. A 
sufficient condition for the tracking error convergence is 

Ill- Pr(jw)L(jw)ll < 1 (2.3) 

This is a standard stability criterion for the ILC updating formula (2.2). The overall 
control scheme is depicted in figure 2.1. The simulation results, with three different 
values of L(s), are presented in figure 2.2 and 2.3. From the simulation results, it is 
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range from milliseconds to months. Tracking over a finite-time interval implies the 
performance in transient process becomes more important. Often, perfect tracking 
performance is necessary from the very beginning of the system execution. Obviously, 
traditional control techniques designed in time domain are inadequate because they 
only ensure the performance at the steady state when the time goes to infinity. 
When the system structure is unknown and perfect output tracking is required from 
the very beginning of the execution over a finite time interval, then ILC techniques 
can be applied for the repetitive process. The main advantage of ILC technique is that 
it requires less computational efforts and less a priori knowledge about the system 
dynamics as compared with other classical control methods. The ILC technique has 
the following key features: 

1. A very simple structure - an integral action along the iteration-domain. 

2. Output tracking control without using any a priori knowledge of the system 
state is the ultimate goal of ILC methods. 

3. ILC differs from most existing control methods in the sense that it tries to 
capture and utilize the past control information completely in order to construct 
current control input. The previous control information can be realized through 
memory based learning. In this case, memory components are used to record 
the past control information: error profiles and control input signals over the 
entire time interval. 

4. The current control input is usually generated by the combination of the error 
signals and input signals of the previous iteration. 

5. The initial resetting condition, i.e. Yd(O) - Yk(O) = 0, plays an important role 
in the learning convergence of the iterative process. 

6. The desired control tasks Yd(t) must be identical for all repeated operations. 

2.2 What is ILC? 
ILC is a relatively new approach in system control engineering, aiming to improve the 
transient and tracking performance in the face of modeling uncertainty of repetitive 
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obvious that the tracking error can be reduced by using this learning technique (2.2). 
However, this algorithm shows good convergence only when the filter L( s) satisfies 
equation (2.3). 

2.5 Brief history of ILC 

As robotic tasks are repetitive in nature, researchers have been motivated to investi-
gate new control approaches that can use the repetitive nature of the robot dynamics 
in order to enhance the tracking performance iteratively. The idea of using infor-
mation from the previous iteration was originally introduced by Uchiyama (1978) 
in order to improve the performance of robot motion by observing the tracking error 
from iteration to iteration. Since there was no specific details how the learning scheme 
improves the performance in repetitive trials, the ideas were not widely known until 
1984. The first step to show the complete convergence proof of the learning process 
for the robot manipulators was proposed by Arimoto and his co-researcher (1984). 
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The name which is called today iterative learning control was first presented as a 
betterment process (Arimoto et al. 1984). Casalino and Bartolini (1984) and Craig 
(1984), independently proposed ILC techniques that can also compensate for model 
errors and disturbances from operation to operation. Based on this idea, several ILC 
control schemes have been reported in the literature (Arimoto et al. 1985; Moore et 
al. 1989 and 1990; Chen et al. 1999; Chow and Fang 1988; Kurek and Zaremba 1993). 
These ILC schemes were developed as a feedforward control action applied directly to 
the open-loop system. The main drawback of the feedforward open-loop ILC control 
schemes is related to the fact that an inappropriate initial control effort may generate 
harmful effects for the system. To overcome this drawback, several feedback-based 
ILC schemes have been proposed in the literature (Kawamura et al. 1985; Atkeson 
and Mcintyre 1986; Kuc et al. 1991; Jang et al. 1995; De Roover 1996; Moon et al. 
1998; Doh et al. 1999; Arimoto et al. 2000). 
Many contributions have been reported in the literature where ILC schemes are ap-
plied to robotic manipulators (Arimoto et al. 1985 and 1991; Mita and Kato 1985, 
Bondi et al. 1988; Kawamura et al. 1988; Bien et al. 1988; Moore et al. 1990; Poloni 
and Ulivi 1991; Horowitz et al. 1990, 1991 and 1993; Guglielmo and Sadegh 1996; 
Burdet et al. 1997; Moon et al. 1997; Norrlof and Gunnarsson 1997; Kazumasa et 
al. 1997; Kuc and Han 1999; Jiang et al. 1999; Lange and Hirzinger 1999; Norrlof 
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2000; Norrlof and Gunnarsson 2002; Kim et al. 2000; Wang 2000; Ye and Wang 
2002). There are number of survey papers on ILC, see for instance (Moore 1993 and 
1998 and Bien and Xu 1998). Detailed literature reviews and overall developments 
on ILC can be found in Moore (1999), Bien and XU (1998), Chen and Wen (1999). 
Due to some important implementation difficulties of classical ILC schemes, new 
types of ILC schemes have been extensively studied in the literature in the recent 
years. Motivated by Lyapunov direct method, the concept of energy function opens 
a new avenue for the ILC design. Various ILC algorithms based on Lyapunov energy 
function in the iteration-domain have been developed in Park et al. (1996 and 1998), 
Kuc et al. (2000), Xu et al. (2000), Chien et al.(2002). Choi and Lee and Chun-Te 
et al. (2003) developed another adaptive iterative learning control scheme with both 
time-domain and iteration-domain adaptation laws for uncertain robot manipulators. 
Most recently, the composite energy function ( CEF), has been used to design AILC 
schemes for uncertain robot manipulators in Tayebi (2004). Implementation results 
of these adaptive ILC schemes for an industrial robotic system are studied by Tayebi 
and Islam ( 2004). 
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Chapter 3 

CLASSICAL ILC FOR LINEAR SYSTEMS 

A large part of the ILC research has been focused on the design of learning algorithms 
for linear systems. The basic difference of various ILC approaches is in how the error 
is used to construct the learning control schemes. The purpose of this approach is 
to find a suitable learning rule that allows the controller to learn from the previous 
operation, and improve the tracking performance from operation to operation. In this 
chapter, some classical linear ILC schemes will be discussed and simulation results 
will be presented. 

3.1 P-type ILC scheme 

The most general linear learning algorithm can be expressed as 

(3.1) 

where 
(3.2) 

This is an open loop learning scheme and the excitation of the system at k = 0 has 
to be chosen arbitrarily. During the (k + 1)-th iteration, the control input is updated 
in such a way that the previous control input at the k-th trial is refined by adding 
a correcting term depending on the tracking error at the k-th iteration. Thus, the 
combination of the previous control input and error data pair generates the current 
learning control input that allows the system to learn a desired task and improves 

23 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

the tracking and transient performance from iteration to iteration. For the following 
linear system 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

(3.3) 

if the initial resetting condition i.e., Yd(O) -yk(O) = Yd(O) -yk(O) = 0 and III-rCBII < 
1 Vk E N are satisfied then the P-type learning process is monotonically convergent 
(Arimoto et al. 1984) in the sense that 

and liekll ---+ 0 when k goes to infinity, where 

llell~ = 1T er(t)re(t)dt 

T .! 

llell = [1 eT(t)e(t)dt] 
2 

and r is a positive definite matrix. Therefore, one can conclude that the error between 
Yd(t) and Yk(t) approaches zero as k tends to infinity. In order to show the learning 
ability of the P-type ILC algorithm, let us consider the following simple linear system 

(3.4) 

The control objective is to track the following reference trajectory over a finite time 
interval [0, lOs] 

qd(t) =sin 2wt. (3.5) 

where w = 1. By applying the P-type learning scheme to the system (3.4), the 
obtained results are shown in figures 3.1, 3.2 and 3.3. Figure 3.1 and 3.3 illustrate 
the evolution of the £ 2-norm and sup-norm of the tracking error with respect to the 
number of iterations. Figure 3.2 shows the time-evolution of the desired trajectory 
qd(t) and the actual tracking trajectory qk(t). 

3 .1.1 0 bservation 

• The P-type ILC algorithm is simpler in structure and easier to implement than 
other linear ILC algorithms. However, it is not robust against initial state or 
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Figure 3.2: Desired trajectory Qd(t) and the 
output Qk(t) for k=3, 10 and 50 with r = 1 
under P-type ILC 

output error. It can be easily seen that, when Yd(O) - Yk(O) =1- 0 Vk ~ 0, then 
the P-type algorithm can result in uk(O) - oo as iteration goes to infinity. In 
order to design robust P-type ILC schemes against uncertainties, one can add a 
scalar forgetting factor in (3.1) (Arimoto 1990, Saab 1994, Chien and Liu 1996). 
In this framework, one can show that the tracking error will be bounded under 
various assumptions and strict conditions, which is usually very difficult to meet 
in the real operation. In fact, Chien and Liu (1996) have shown that the bounds 
on the tracking errors are inversely proportional to the forgetting factor. This 
means that the smaller the forgetting factor, the larger is the tracking error 
bound. 

• The P-type learning law cannot capture proper direction of errors that occur 
in the previous operations. To the best of one's knowledge, the convergence 
results of the P-type ILC schemes can be found in Saab (1994), Chien and 
Liu (1996) and Arimoto et al. (1990). As a matter of fact, these learning 
schemes showed limited success in proving theoretically the effectiveness for 
generalized continuous dynamic systems. However, P-type ILC is able to ensure 
the convergence of the tracking errors only without considering the initial state 
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Figure 3.3: Sup-norm of the tracking error versus the number of iterations under P-type ILC 

error, uncertainties and disturbances. 

3.2 D-type ILC for linear LTI systems 

The first and earliest ILC algorithm is the derivative type (Arimoto et al. 1984) which 
has the following form 

(3.6) 

where r is a constant learning gain. Given an arbitrary control input, uk(t), that 
excites the system at the k-th trial and corresponding system output response, Yk(t), 
then the error ek(t) = Yd(t)-yk(t) may arise. The learning input Uk+t(t) is constructed 
on the basis of the previous control input profiles uk(t) and derivative of the output 
tracking error profiles. 
Consider the following LTI system: 

x(t) - Ax(t) + Bu(t) 
y(t) - Cx(t) 

(3.7) 

where x E ]Rn u E Rr, y E Rr denote state, input and output respectively. A, B 
and Care matrices with appropriate dimensions with CB =f. 0. Consider, xd(t) and 
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Yd(t) as the desired state trajectory and the desired output trajectory, respectively. 
The aim is to find a recursive control law guaranteeing the boundedness of state 
xk(t), Vt E [0, T] and Vk E N, and the convergence of xk(t) to the desired state xd(t) 
over a finite interval [O,T] when k tends to infinity. If the following condition and 
assumptions are satisfied, then the D-type iterative learning process is convergent 
and the state trajectory xk(t) tends to the desired one xd(t) for all t E [0, T], when 
k---+ 00. 

Condition 

A. The induced operator norm III- rCBII has to meet the following condition 

III- rCBII < 1 (3.8) 

Assumptions 

B. It is assumed that the resetting condition at each iteration is satisfied, i.e., 
Yd(O) - Yk(O) = Yd(O) - Yk(O) = 0, Vk E N 

and 

C. u0 (t) and Yd(t) are continuous and continuously differentiable, respectively, 
namely u0 (t) E C[O, T] and Yd(t) E C 1[0, T] 

As a matter of fact, the D-type ILC scheme improves the tracking performance of the 
system from operation to operation in the sense that the A-norm or the time-weighted 
norm of the tracking error, i.e., 

tends to zero when k---+ oo. 
In order to show the learning ability of the D-type ILC, we consider a simple linear 
system which is defined by the equation (3.4). The control objective is to track the 
following reference trajectory over a finite time interval [0, lOs) 

qd(t) =sin 2wt (3.9) 
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with w = 1. By applying the D-type learning scheme to the system (3.4), the obtained 
results are shown in figures 3.4, 3.5 and 3.6. Figures 3.4, 3.5 and 3.6 illu.strate the 
evolution of the £ 2-norm and sup-norm of the tracking error with respect to the 
number of iterations. Figure 3. 7 and 3.8 shows the time-evolution of the desired 
trajectory Qd(t) and the actual tracking trajectory Qk(t). 

3.2.1 Observation 

• The convergence analysis of the D-type iterative process is based upon the use 
of the exponentially weighted norm (.A-norm). Lee and Bien (1997) proved that 
the .A-norm of the tracking error can decay monotonically from operation to 
operation but the sup-norm or oo-norm of the tracking error may increase to 
a large value before it converges to the desired level. This arguments can be 
clearly shown from the simulation results of the oo-norm and the £ 2-norm of 
the output tracking error in figures 3.5 and 3.6. The transient behavior is a 
serious problem in the practical application of ILC schemes. 

• The derivative signals of dynamical systems are required in order to design and 
implement the D-type ILC scheme. In fact, most systems are only equipped 
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with high-precision sensors for position measurements, and velocity sensors are 
frequently omitted in order to make considerable savings in cost, volume and 
weight. Furthermore, measurements from the velocity sensors are often conta-
minated with a considerable amount of noise. In practice, the velocity signals 
are estimated from the joint positions, using a filtered derivative, which is often 
contaminated by severe noises. Therefore, the noise level reduces the effec-
tiveness and performance of the learning process when the number of iteration 
increases. 

3.3 PID-type learning scheme 

The most general linear ILC algorithm presented in Arimoto (1985) is given as follows: 

Uk+l(t) = Uk(t) + rek(t) + "(ek(t) + ¢J 1t ek(T)dT (3.10) 

Where r, 'Y and ¢ are constant gain matrices. This algorithm forms a PID-like 
system for the error that are measured from the previous operation. It is already 
shown that when ILC algorithm (3.10) is applied to the system (3.7), the output 
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Figure 3. 7: Desired trajectory Yd(t) and the 
output tracking trajectory, Yk(t), at the 3rd 
and lOOth iteration with r = 0.5 under D-type 
ILC scheme. 

Figure 3.8: Desired trajectory Yd(t) and the 
system output response, Yk(t), at the 3rd and 
lOOth iteration with r = 1 under D-type ILC 
scheme. 

trajectory converges to the desired trajectory. However, this learning scheme is not 
robust against initial state error. Park and Bien {1999) generalized this algorithm 
and showed that the tracking performance can be improved by using the following 
updating rule against initial state error. 

Uk+t(t) = Uk(t) + f ( ek(t) + Qoek(t) + Ql 1t ek(r)dr) (3.11) 

It can be shown that when this updating formula is applied to the system (3.7), the 
output trajectory converges to the following form: 

(3.12) 

with 

AR 0 J l -
-Ql -Qo 

CR -

I 0 J 
eo - -~o C[yk(O) - Yd(O)] 
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The equation (3.12) implies that the output trajectory can be controlled in various 
ways by introducing the integral-term if satisfying the following condition 

III- rCBIIoo::; p < 1 (3.13) 

The tracking error generated by this algorithm depends on the eigenvalues of the 
matrix An, which can be selected through Q0 and Q1. In fact, the tracking error 
decreases as time increases, and the performance of the learning law (3.11) against 
initial state error is better than the PID law (3.10). The learning convergence of 
these iterative processes are based upon the use of the exponentially weighted norm. 
Therefore, the .A-norm of the tracking error decreases monotonically from iteration to 
iteration with the large value of>. but the sup-norm or oo-norm of the tracking error 
may increase its value before it converges to the desired level. 

3.3.1 Numerical Example 

Applying PID schemes (3.10) and (3.11) to the system (3.4), the obtained results are 
shown in figures 3.9 to 3.12 for the following desired trajectory over the finite time 
interval [0, lOs] 

Qd(t) =sin 2wt (3.14) 

with w = 1. The convergence of the .A-norm of the output tracking error is in-
vestigated in the presence of initial state errors. The desired trajectory and output 
tracking trajectory are shown in figures 3.10 and 3.12 without the resetting condition. 

3.3.2 Observation 

• The main drawback of the PID learning scheme is that the convergence proof 
of the iterative process is based upon the use of the .A-norm. However, the 
oo-norm of the tracking error may increase to a large value before it converges 
to zero. This transient behavior may cause serious problems in the real world 
operation because the learning algorithm usually depends on the previous error 
which may cause hardware failure. 
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Figure 3.9: .A-norm of the output tracking error versus the number of iterations under the PID-type 
ILC law (3.10) without resetting condition 
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Figure 3.10: Desired trajectory and output tracking trajectory under the PID-type ILC law (3.10) 
without resetting condition with r = 1 
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3.4 Concluding remarks on Linear ILC methods 

Based on the simulation results of classical ILC schemes, the following conclusion can 
be drawn: 

• In the ILC method, it is assumed that the initial state of the process is equal 
to that of the desired trajectory for perfect tracking. However, it is practically 
impossible to set such initial resetting conditions in various plants perfectly. 
Therefore, the robustness of existing linear ILC schemes against random initial 
state error, noise and state disturbances is still an open problem. 

• The learning stability and convergence analysis of these iterative processes are 
generally based upon the use of the .\-norm, which is a serious concern in prac-
tical applications. In practice, the sup-norm of the tracking error is more ap-
propriate than any other measurements of error performance. However, the 
convergence analysis of ILC techniques is still an open field in ILC research, for 
further investigation in achieving monotonic convergence in a suitable norm-
topology other than the exponentially-weighted norm. 

• The most significant drawback of existing classical linear ILC schemes is that 
they are applied as a feedforward action directly to the open-loop system. 
Hence, these control schemes may generate harmful effects if the open-loop 
system is unstable or inappropriate control law is designed at the first opera-
tion. 
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Figure 3.11: .A-norm of the output tracking error versus the number of iterations without initial 
resetting condition under control law (3.11) 
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Chapter 4 

ILC FOR ROBOT MANIPULATORS 

ILC research is motivated by robots doing repetitive tasks. Hence, there are several 
ILC applications to robotic manipulators in the literature. The existing results of 
these ILC algorithms are mainly characterized by the use of acceleration and veloc-
ity measurements, contraction mapping theorem, high feedback and learning gains, 
linearization of robot dynamics closer to the desired trajectory and a priori knowl-
edge of the robot dynamics. In this section, some classical ILC algorithms for highly 
nonlinear and coupled dynamics of robotic manipulators are analyzed . 

D-type ILC 

AD-type ILC algorithm is given by 

(4.1) 

where ek(t) = Yk(t) - Yd(t) and r is a constant matrix. A D-type ILC scheme is a 
simple learning law that generates the control action uk+I(t) at the (k + 1)-th trial 
on the basis of the previous control input and the derivative of the error signals. The 
differentiation of the previous error plays a significant role in the robot dynamics for 
the learning of desired control tasks. The constant matrix r can be chosen arbitrarily 
to some extent and fixed constant without the description of system dynamics. It was 
shown in Arimoto et.al (1984) that the updating control input uk+I(t) can improve 
the system response in comparison with the previous control input uk(t). Arimoto 
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et.al (1984) have shown that the error at the (k + 1)-th iteration, namely ek+l(t), is 
less than the tracking error at the k-th iteration, ek(t), in the sense ofthe A-norm, and 
the system response Yk(t) approaches to the desired trajectory, Yd(t), ask--+ oo. The 
convergence analysis of this iterative process is based upon the use of the contraction 
mapping approach. 

4.1 D-type ILC for robot manipulators 

Using the Lagrangian equation, the dynamical equations of motion of a rigid robot 
manipulator can be expressed as 

(4.2) 

where L denotes the Lagrangian defined as L = K - V, the difference between the 
kinetic energy K and potential energy P of the robot manipulator, 8( t) E lRn is a vetor 
containing the joint angles and r(t) E lRn is a vetor of the control input torques to be 
applied at each joint of robot manipulator. The kinetic energy K can be expressed as 

(4.3) 

with M(O) is real symmetric, bounded and positive definite inertia matrix. It is 
also pointed out that the potential energy P is independent of O(t) and is a simple 
trigonometric function of O(t). Therefore, the robot dynamics can be expressed as 
follows: 

iJ = M-1(8)q 
q. = _ 8Kt _ 8P + T 

88 88 
(4.4) 

where K 1 = ~qT M-1(8)q. Consider, a desired motion trajectory, Od(t), as given in 
terms of the joint angle coordinates as O(t) = Od(t) for a fixed time interval [0, T]. 
Assuming that the derivative of the desired trajectory is twice continuously differen-
tiable, Od(t) E C2 [0, T]. 
Consider the following control law 

(4.5) 
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Applying (4.5) to (4.4) leads to 

(4.6) 

where Kp and Kd are symmetric positive definite constant matrices. The first term 
~~ in the right hand side of the equation ( 4.5) is in charge of compensating the torque 
due to the gravity effect and the second and third terms represent the local position 
and angular velocity feedback, respectively. The effectiveness of this classical control 
structure has already been shown in Takegai and Arimoto (1981). 
In general, it is very difficult to achieve a perfect tracking of the desired trajectory by 
using this control law. As a result, there will be always a tracking error with every 
trial. In order to reduce this error, the aim is to design an additional feed-forward 
learning control algorithm with this classical control structure (4.5) that can improve 
the tracking performance with every new operation and to achieve perfect output 
tracking when iteration goes to infinity. To meet this control objective, it is assumed 
that the joint velocities are available for feedback. Then, the overall control scheme 
for robot manipulators can be expressed as 

(4.7) 

where TJb(t) is the feedback and Tkff(t) is feed-forward learning control input. The 
fixed feedback control input is given as 

(4.8) 

This control input is used to stabilize the closed-loop system and keep its error 
bounded. The learning input Tkf!(t) is mainly used to identify and compensate 
uncertain nonlinear dynamics and disturbances when the robot system repeats its 
operations to follow the desired control trajectory so that the system can improve 
the tracking performance from operation to operation. This learning input at the 
k-th trial is modified on the basis of the previous control input signals TkJJ(t) and the 
time-derivative of the output tracking error ek(t) as 

(4.9) 
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where r is an appropriate constant matrix and ek(t) = Od(t) - Ok(t). In order to 
show the convergence of the D-type learning technique, the system has to satisfy the 
reseting condition, i.e. Od(O)- Ok(O) = Od(O) - Ok(O) = 0 for all k E N. If the learning 
gain r is such that the following inequality is satisfied 

(4.10) 

for any 0, then lim !iek(t)IL~ = 0 and lim IIOd(t)- Ok(t)il>. = 0. The convergence 
k->oo k--->oo 

proof of this learning algorithm can be found in Arimoto et al. (1985). The presented 
ILC scheme is tested experimentally on a 5-DOF CRS255 robot manipulator. The 
experimental results are presented in chapter 7. 

4.2 PD-type ILC scheme for robot manipulators 

The control objective is to find a control input rk(t) such that the system output 
Ok(t) follows Od(t) for all t E [0, T] as closely as possible. In order to meet the control 
objective, PD-type ILC law is used for learning which ensures the convergence of Ok(t) 
to the desired control trajectory Od(t) for all t E [0, T] when k tends to infinity. The 
overall control scheme comprises a classical PD structure plus an additional iteratively 
updated term designed as 

(4.11) 

where TJb(t) is a classical PD feedback, which is used to stabilize the closed-loop 
system and keep the tracking error bounded. The learning term TkJJ(t) is updated 
iteratively as follows: 

(4.12) 

where r and ¢ are constant learning gain matrices. The iteratively updated con-
trol input is designed to learn and compensate the unstructured uncertainties and 
then improve the tracking performance from iteration to iteration. The convergence 
analysis of this learning scheme can be found in Arimoto (1985). This PD-type ILC 
algorithm has been tested on a 5-DOF robot manipulator CRS255. The experimental 
results are presented in chapter 7. 
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4.3 Concluding remarks on classical ILC for robot 
manipulators 

From a theoretical point of view, it can be shown that the highly coupled nonlinear 
uncertain robot manipulators are able to learn a desired motion perfectly through 
repeated trials. However, there are many important problems arising during the 
practical implementation of the presented classical ILC mechanism which need to be 
explored further: 

• The resetting condition of the robot manipulator is the first concern that has to 
be satisfied at the beginning of each operation in order to show the learnability 
of the presented learning schemes. Fortunately, the initial condition 8k(O) -
8d(O) = 0 is usually realized by the industrial robots with high precision. So, 
iJd(t) = iJk(O) = 0 for all k E {1, 2, 3 ..... } is also satisfied automatically. 

• It should also be pointed out that the convergence condition ( 4.10) is not so 
restrictive because it is possible to a choose suitable r as M(8) is symmetric, 
bounded and positive definite. 

• The main problem is the presence of unknown disturbances in the robot dy-
namics, mainly due to the frictional torques that are exhibited during actual 
operation. However, if there are unknown disturbances f(8, q) in the dynamic 
equation that satisfy the Lipschitz condition such that 

(4.13) 

with constant o:1 and o:2 for any pair (8, q) and (8', q'), then the convergence of 
the learning process is also assured in a certain domain. 

4.4 Passivity and dissipativity based ILC approach 

In recent years the theory of dissipativity has become an essential part in the control 
theory in designing more elegant, robust and adaptive control algorithms for non-
linear systems. In contrast, with the Lyapunov theorem, where state variables are 
considered, the passivity theory is based on the input-output properties of a system. 
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It plays a crucial role in building a bridge between the energy conservation law in 
physics and the input-output characterization in the control system theory. Physi-
cally, a system is called dissipative if it does not produce energy. The storage function 
of a dissipative system, which represents the amount of stored energy, often plays an 
important role of a Lyapunov function of the system. This storage function provides 
a connection between the theory of dissipative systems and a variety of nonlinear 
control problems. The learnability of robot dynamics in terms of passivity and dissi-
pativity concepts are discussed in this part of thesis based upon the work of Arimoto 
et al. (1996, 2000), Kawamura et al. {1984) and Naniwa (1996). 

Learning ability of robot manipulators through passivity ap-
proach 

The motion equation of rigid robot manipulators can be expressed as 

M(q)ij + C(q, q)q + G(q) = r(t) (4.14) 

where q(t) denotes the joint angle vector, M(q) is the inertia matrix, C(q, q) is the 
matrix of Coriolis and centrifugal forces, G(q) is the vector of gravity forces and r(t) 
is the vector composed of joint torques. The pair of input r(t) and output q(t) of 
robot dynamics (4.14) satisfies the passivity condition, i.e., 

(4.15) 

with a positive constant f3 2: 0. Where E represents the total energy of the robotic 
arm which can be expressed as 

E(q, q) = ~qT M(q)q + U(q) (4.16) 

This relationship plays a fundamental role in the convergence analysis of the learning 
process. 

Algorithm 1 

Consider the problem of tracking a reference trajectory Qd(t) over a finite time interval 
[0, T]. The control objective is to find a learning control law such that the output 
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tracking error liekil -+ 0 in the sense of the £ 2-norm ask-+ oo. In order to do that, 
one can use P-type ILC algorithm (Arimoto et al. 1996, Kawamura et al. 1984 and 
Naniwa 1996) for refining the current control input recursively as 

(4.17) 

where ek(t) = 6.yk = qk(t) - qd(t). Subtracting the desired control input Td(t) on 
both sides of the above equation, equation ( 4.17) becomes 

6.rk+l(t) = 6.rk(t)- rek(t), 

with 6.rk(t) = Tk(t) - rd(t) and 

M(qd)iid + C(qd, Qd)Qd + G(qd) = Td(t). 

(4.18) 

(4.19) 

The function rd(t) does not need to be computed but it is sufficient to know that this 
function does exist. Using equation (4.18), one can write 

r-1 ll6.rk+III 2 = r-1 ll6.rkll 2 + filekil 2
- 21t ek{6)6.rk(6)d6 (4.20) 

where liekil denotes the norm of ek(t) in £ 2 [0, T]. The input and output pair (6.rk, 6.yk) 
satisfies the passivity condition. Based on this phenomenon, one has the following 
inequality 

(4.21) 

with a positive definite storage function Ek and a positive constant (3. From (4.21), 
one has 

r-1 il6.rk+Iii 2 + Ek+l :S r-1 jj6.rkli 2 + Ek- 2(3jjekii 2 + fliekii 2 (4.22) 

This inequality implies that the sequence [r-1 jj6.rkii 2 +Ek] is monotonically decreas-
ing with increasing kif r is chosen as 0 < r < 2(3. As [r-1 jj6.rkii2 + Ek] is bounded 
from below and monotonically decreasing, then one can conclude that llekll -+ 0, i.e., 
the output tracking trajectory qk(t) converge to desired one qd(t) when k tends to 
infinity. 
The convergence proof of the above learning process can be found in Kawamura et al. 
(1984) and Naniwa (1996). The presented algorithm 1 has been experimentally tested 
on the 5-DOF CRS255 robot manipulator for tracking a repetitive circular trajectory 
over a finite time interval [0, 63]. The implementation results are presented in chapter 
7. 
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Algorithm 2 

In this section, we present a second learning scheme for robot manipulators on the 
basis of the passivity approach, which was developed by Arimoto et al. (2000). A 
linear combination of velocity and saturated position errors signals are used in the 
learning control input as follows 

(4.23) 

with 
(4.24) 

where a is a positive constant. It is assumed that an ideal input rd(t) realizes the 
desired output qd(t). Therefore, subtracting rd(t) from both sides of (4.24), one 
achieves 

~Tk+l(t) = ~Tk(t)- f~yk(t), 

with ~rk(t) = (rk(t)- rd(t)) and 

M(qd)qd_ + C(qd, qd)qd + G(qd) = rd(t) 

(4.25) 

(4.26) 

The pair (~rk, ~Yk) satisfies the passivity condition. Based on this condition, one can 
show that there exists a positive definite storage function Vk(ek(t), ek(t)) in ek(t) = 
qk(t) - qd(t) and ek(t) = iJk(t)- qd(t) and a scalar-valued dissipation function "'with 
"' > 0 such that 

Then, from (4.26), one gets 

which implies that the output tracking error ~Yk -+ 0 in the sense of L2-norm, as 
k-+ oo if r is chosen as 0 < r < 2Kl. Finally, one can conclude that ek(t) -+ 0 for 
all t E [0, T] when k -+ oo as ~Yk -+ 0 when k -+ oo. 
The convergence proof of this result can be found in Arimo to et al. ( 2000). The above 
presented algorithm 2 has been implemented and evaluated on a 5-DOF CRS255 robot 
manipulator. The experimental results are shown in chapter 7. 

42 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 5 

ADAPTIVE ILC 
Most existing ILC schemes in the literature are based upon the contraction mapping 
approach. Recently, researchers have been working on the design of adaptive ILC 
schemes based on the use of Lyapunov theory. This new approach allows to avoid 
some of the technical difficulties attached to the contraction mapping based ILC such 
that the use of the output time derivative for systems with high relative degree, the 
use of the .A-norm and the requirement of the lipschitz condition. In this chapter, we 
will present some adaptive ILC schemes for uncertain nonlinear systems proposed in 
Xu (2002) and Tayebi (2004). 

5.1 Adaptive ILC for uncertain nonlinear system 

It is well known that traditional adaptive control techniques cannot deal with time 
varying parameters. Under repeatable control environments, if the time-varying pa-
rameters are assumed invariant in the iteration domain, then one can use a simple 
integrator along the iteration axis in order to update the unknown system para-
meters. The parametric updating law can be designed by choosing an appropriate 
Lyapunov-like composite energy function (CEF), which is a combination of a stan-
dard Lyapunov function and a £ 2-norm of the parametric errors. To motivate this 
approach, we will present a simple adaptive ILC for uncertain systems (Xu, 2002). 
Consider the following nonlinear system at the k-th iteration 

(5.1) 
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where <f>(t) E C1[0, T] and k denotes the iteration or operation number. The control 
objective is to find a sequence of control input Tk(t) for system (5.1) such that the 
system output trajectory Qk(t) converges to the desired trajectory Qd(t). It is assumed 
that the desired trajectory Qd(t) and it's first derivative Qd(t) are bounded. 

Adaptive ILC design 

The error dynamics of this nonlinear system can be expressed as 

(5.2) 

The control law is 
(5.3) 

with the parameter adaptation rule 

(5.4) 

where ~-1 (t) = 0. 

Learning convergence with composite energy function (CEF) 

The proof of convergence of the above learning process has two parts. Part A finds 
an appropriate energy function, Vk(t), and then proves that this function, Vk(t), is 
a non-increasing sequence and bounded if Vo(t) is bounded. In part B, the uniform 
convergence of the output tracking error to zero is proven as iteration goes to infinity. 

PART A 

In order to prove the convergence of the above ILC, one needs to find a suitable 
energy function which plays a similar role as Lyapunov function in adaptive control. 
Consider the following CEF 

1 1 r 
Vk(t) = 2e~(t) + 2 Jo ¢~(a)da (5.5) 

with Jk(t) = </>(t)- ~k(t), where ~k(t) is the estimated value of </>(t) and Jk(t) is the 
estimation error. The difference of the energy function, 6 Vk(t), at the k-th operation 
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is given by 
(5.6) 

(5.7) 

(5.8) 

Now, using the control law (5.3) and the error dynamics (5.2) in (5.8), one has 

12 12 r 2 -2 2ek = 2ek(O) + Jo ( -Kek- ¢kqkek)da. (5.9) 

Using the initial resetting condition, i.e., ek(O) = 0, the equation leads to 

12 1t 2 -2 -ek = (-K ek - cf>kqkek)da 
2 0 

(5.10) 

Using the parametric updating law (5.4), the second term of the equation (5.7) be-

(5.11) 

(5.12) 

Here, Vk is a non-increasing sequence. Therefore, Vk is bounded if V0 is bounded. 
This implies that ek(t) and ~ J; ~~(a)da are bounded for all k E N as the iteration 
goes to infinity. In order to show the boundedness of Vo, one can take the derivative 
of Vo, i.e., 

-2 -2 · . ¢o 2 ¢o - 2 Vo = eoeo + 2 = -Ke0 + 2- cf>oq0 eo (5.13) 

At k = 0, J>_1(t) = 0 \It E [0, T], then Vo becomes 

0 2 ~5 - A 2 ~5 -Vo = -Ke0 + 2 + c/>oc/>o = -Ke0 - 2 + c/>oc/> (5.14) 

Using Young's inequality, one can write 

- -2 1 2 
cf>oc/> ::; "'cPo + 4"' c/> (5.15) 

45 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

with "' > 0. Hence, 
(5.16) 

with 0 < "'< ~· 
Since, <P(t) E C1[0, T] i.e., there exists a finite bound <Pm ~ <P(t) for all t E [0, T]. 
Hence, one can conclude that Vo is negative semi-definite outside the region 

]_ <P2 > K e2 + ¢2 (! _ "') 4K, m- 0 0 2 (5.17) 

which also implies the boundedness of V0 for all t E [0, T]. 

PART B 

Uniform convergence of the tracking error: 
Using the equation (5. 7) repeatedly, one achieves 

k 

VJ.(t) = Vo(t) + L 6Vm (5.18) 
m=l 

k t k-l 
lim Vl.(t):::; Vo(t)- lim ""'1 Ke'!tdu- lim ""'e'!t(t) (5.19) 

k-+oo k-+oo ~ 0 k-+oo ~ 
m=l m=l 

So, one can write 

k t k-l 
V0(t)- lim Vk(t) ~ lim ""'1 Ke'!tdu + lim ""'e'!t(t) (5.20) 

k-+oo k-+oo ~ 0 k-+oo ~ 
m=l m=l 

which implies that llek(t)ll ----t 0 for all t E [0, T] as k ----t oo, since Vk(t) is bounded 
\;ft E [0, T] and Vk E [0, T] when k goes to infinity. 

5.1.1 Numerical example 

Consider the nonlinear dynamic system 

(5.21) 

With the unknown time varying parameter 

</J(t) = COS7rt + 3 
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where t E [0, 20]. Consider, the desired trajectory qd(t) = sin27rt+0.5 overt E [0, 20s] 
with qk(O) = 0.5. In this case, the objective is to design a bounded control law rk(t) 
for the system (5.21) that guarantees the boundedness of qk(t) over the finite time 
interval [0, 20s] and the convergence of output trajectory, qk(t), to the desired one, 
qd(t). Using the control algorithm (5.3) and the parameter updating law (5.4), the 
results are shown in figure 5.1 and 5.2 for different values of K. 
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5.2 Adaptive ILC for robot manipulators 

In this part of the thesis, we present a new generation of adaptive iterative learn-
ing control (AILC) techniques proposed in (Tayebi 2004) for the trajectory tracking 
control problem of rigid robot manipulators with unknown parameters and subject 
to external disturbances. The learning schemes are designed based upon the use of a 
composite energy function, which reflects the system energy. The idea of using CEF 
in the ILC method opens a new avenue for the learning control design and conver-
gence analysis. The control strategy consists of using a classical PD structure plus 
an additional iteratively updated term designed in order to cope with the unknown 
parameters and disturbances. 

Preliminaries 

The equations of motion of a n degrees-of-freedom rigid robot manipulator can be 
expressed as 

(5.22) 

where t E ~+ denotes the time, k E N represents the iteration or trial number. 
The signals qk(t) E IRn, Qk(t) E IRn and Qk(t) E IRn are the joint position, velocity 
and acceleration vectors at the k-th iteration. M(qk) E IRnxn is the inertia matrix, 
C(qk, Qk)Qk E IRn is the vector of coriolis and centrifugal forces. G(qk) E IRn is the 
vector of gravitational forces, rk(t) E IRn is the control input containing the torques 
and forces and dk(t) E IRn is the vector containing the unmodeled dynamics and other 
unknown external disturbances. 
In order to design an adaptive ILC scheme, the following assumptions need to be 
imposed 

A. The desired control trajectory qd(t), its first derivative i}d(t), second derivative 
Qd(t) and disturbance dk(t) are bounded \It E [0, T] and \lk E N. 

B. The resetting condition is satisfied, i.e., Qd(O) - Qk(O) = Qd(O) - Qk(O) - 0, 
Vk EN. 

C. The joint positions and velocity measurements are available for feedback. 
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The following structural properties of robot manipulators are well known and are 
utilized in order to facilitate the adaptive ILC design 

L1) M(qk) E lRnxn is symmetric, bounded, and positive definite. 

£3) G(qk) + C(qk,clk)cld(t) = 'll(qk,clk)~(t), ":here 'll(qk,clk) E IRnx(m-1) is a known 
matrix and ~(t) E JR(m-1) is an unknown bounded vector. 

L4) IIC(qk,cJk)ll :S kcllcikll and IIG(qk)ll < kg, Vt E [0, T} and Vk E N, where kc and 
kg are unknown positive parameters. 

Adaptive ILC schemes 

In this section, three adaptive ILC schemes and their convergence properties are 
presented (Tayebi 2004). The overall control scheme is shown in figure 5.3. 

Scheme 1 

Consider the robot system (5.22) with properties £ 1 , £ 2 and £ 3 under the following 
control law 

(5.23) 

with the parametric adaptation law 

(5.24) 

where 0_1 (t) = 0, Qk(t) = Qd(t) - qk(t) and Qk(t) = qd(t) - cJk(t). The matrix 
¢>(qk, qk, Qk) E IRnxm is known and can be expressed as 

(5.25) 

where sgn(qk) is the vector obtained by applying the signum function to all elements of 
Qk(t). The matrices Kp E lRnxn, Kn E JRnXn andrE JRnXn are symmetric positive def-
inite. If assumptions A and Bare satisfied, then Qk(t), Qk(t) and J~ Of(r)r-10k(r)dr 
are bounded for all t E [0, T] and all kEN and lim Qk(t) = lim Qk(t) = 0, \It E [0, T] 

k-+oo k-+oo 
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Convergence analysis with composite energy function 

The proof of convergence of the above ILC scheme has two parts (Tayebi 2004). Part 
A finds an appropriate energy function Ek and then proves that this function is a 
non-increasing sequence and bounded if E0 is bounded overt E [0, T]. In the second 
part, the uniform convergence of the output tracking error is proven when iteration 
goes to infinity. 

PART A 

Consider the following CEF 

Ek(qk(t), qk(t), ok(t)) = vk(qk(t), Qk(t)) + ~ 1t of(T)r-18k(r)dT 
2 0 

with Ok(t) = O(t)- Ok(t), where O(t) = [~T(t) ,BJT E lRm, Ok(t) = [tf(t) ~k(t)]T is the 
estimated value of O(t) and Ok(t) is the estimation error. The unknown parameter ~(t) 
is defined in (L3) and ,B is obtained according to (L1) and (A) such that II M(qk)Qd-
dk II~ ,BVt E [O,T] and Vk EN . 

. The first term Vk ( Qk ( t), Qk ( t)) is a combination of the kinetic and potential energy of 
the manipulator, 

Vk(qk(t), Qk(t)) = ~qf M(qk)Qk + ~qf Kpqk 

One can rewrite Vk as follows: 

(5.26) 

Vk(Qk(t), Qk(t)) = Vk(Qk(O), Qk(O)) + 1t (qf Mqk + ~qf Mqk + qf Kpqk)dT (5.27) 

Using the initial resetting condition (B), equations (5.22) and properties (L2 , L3 ), 

equation (5.27) leads to 

Vk(Qk(t), Qk(t)) ~ 1t qf(¢(qk, Qk, Qk)Ok- KDQk)dT 

The difference of the energy function Ek at k-th iteration is given by 
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where Ok = {Jk- {Jk-1· 

PD 
Controller 

Figure 5.3: Adaptive ILC structure 

Substituting (5.24), (B) and Vk(Qk(t), iik(t)) in D.Ek, one has 

D.Ek :::; -Vk-1- ~ 1t qf{<jJ(qk, Qk, Qk)f<fJT(qk, Qk, Qk) + 2KD)Qkdr:::; 0 

which implies that Ek is a non-increasing sequence. Hence, one can conclude that the 
energy function Ek is bounded as E0 is uniformly bounded. This implies that iik(t), 
. t- -iik(t) and fo ek(r)f-1(}k(r)dr are bounded for all kEN. 
To show the boundedness of E0 for all repeated operations and operation time period, 
one can take the derivative of E0 , i.e., 

· ·r · - · 1-r 1-Eo :::; iio ( </J( Qo, Qo, iio)(}o - KDiio) + 2,(}o r- (}o 

Since B_1(t) = 0 V[O, T], thus B0 (t) = f<PT(q0 , q0 , q0 )q0 (t) and Eo leads to 

Eo < 

Using Young's inequality, one has for any K, > 0 
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Hence, E0 becomes 

. . 2 - 2 1 2 
Eo :S -PIIII]oll2- P2i1Boll + 4/(IIBII , (5.31) 

"th - ' . (K ) - 1' . (r-1) 1('2 (r-1) d 0 < J( < Amin(r- 1
) Wl P1- Amm D ' P2- 2"'m~n - "'max an - 2A;,a,.(r 1). 

Since e(t) is bounded over t E [0, T], then B(t) is bounded for all t E [0, T], i.e., 
IIB(t)llooe :S Bmax· Therefore, one can write from (5.31) that Eo(t):::; 4kiiBII~x• which 
implies that E0(t) is uniformly continuous and bounded over [0, T]. Finally, one can 
conclude that E0(t) is bounded over [0, T] as E0 (t) is bounded over the finite interval 
t E [O,T]. 

PART B 

One can write 6Ek repeatedly 

k 

Ek :::; Eo- LVJ-1 
j=1 

1~-T - 1~.:..r .:.. < Eo- 2 ~qi_1KP%-1- 2 ~%-1M(qi_I)qj-l 
j=1 j-1 

which implies that 

k k 

E 1 '""' -T K - 1 '""' .:..r M( ) .:.. 0 2:: 2 ~ qj-1 pqj-1 + 2 ~ %-1 %-1 qj-1 
j=1 j-1 

(5.32) 

(5.33) 

(5.34) 

Hence, the boundedness of E0 (t) implies that qk(t) and qk(t) converges to zero point-
wisely as the iteration goes to infinity. 

Observation 

The control design requires m iterative parameters, which is generally larger than the 
number of degrees-of-freedom n. Therefore, large memory components are necessary 
to implement this scheme in real-time applications. It also requires the knowledge of 
the matrix '1/J(qk, qk)· 

52 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Scheme 2 

Consider the control law for the dynamical equation of the robot manipulator (5.22) 
with properties (L1, L2 , L4) (Tayebi 2004). 

(5.35) 

with the parametric adaptation law 

(5.36) 

where o_l(t) = 0. The control gains Kp E JRnXn and KD E JRnXn and learning 
gain r E JR2x 2 are symmetric positive definite matrices. The function 'TJ(qk) can 
be defined as 'TJ(qk) = [qk sgn(qk)]. If the assumptions A and B are satisfied, then 

. t - -iik(t), iik(t), fo Bk(r)r-1 fh(r)dr are bounded for all t E [0, T] and all k E N and 
lim iik(t) = lim qk(t) = 0, Vt E [0, T]. 

k--+oo k--+oo 

Learning convergence 

Consider, the Lyapunov-like composite energy functions 

Ek(qk(t), iik(t), Bk(t)) = Vk(qk(t), iik(t)) + ~ t Bf(r)r-1Bk(r)dr (5.37) 
2 Jo 

with Ok(t) = B(t) -Ok(t). The vector B(t) is defined as(}= [a 6JT E JR2 . The unknown 
parameters a and IS can be determined as follows: 

qf(M(qk)qd + C(qk, Qk)Qd + G(qk)- dk) < lliikii(,B +kg+ kcllcidllllcikll) 
< llqkii(,B +kg+ kcll4dll 2 + kcllcidllllqkll) 

where kc, kg are unknown positive parameters and ,8 is obtained according to (L1 , A) 
such that II M(qk)qd- dk II :::; ,B. As Qd(t) is bounded, the unknown parameter a 
and 6 are defined as follows: 

ql(M(qk)qd + C(qk, Qk)Qd + G(qk)- dk) < qf{aqk + 6sgn(qk)) (5.38) 
"T • < ijk 'TJ(iik)(} (5.39) 

where a= kcSUPtE[O,T] llcidll and 6 = ,8 +kg+ kcSUPtE[O,T] lltid(t)ll2 

The remaining proof of convergence of this adaptive iterative process is similar to the 
proof of scheme 1. 
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Observation 

• The control design does not require any a priori knowledge of the robot dynam-
ics which is an interesting and significant development in the ILC research. 

• In contrast with other classical and adaptive ILC schemes, the control scheme 
is simpler in structure and easier to implement in view of the necessary memory 
space and computing power for the real-time application. 

• In this framework, the acceleration measurements and the bounds of the robot 
parameters are not needed and the only requirement on the control and learning 
gains is the positive definiteness condition. 

Scheme 3 

Consider the robot model (5.22) with properties (L1, L2 , L4 ) under the following con-
trol Law 

(5.40) 

with the adaptation law 

(5.41) 

where 3_1(t) = 0. The gains Kp E ~nxn and Kn E ~nxn are symmetric positive 
definite matrices, and 1 is a positive scalar. If (Kn -a!) is positive semi-definite, 
with a = kcSUPtE[O,TJIIcid(t)ll and properties (A, B), then ifk(t), Qk(t) and J; i~(r)dr 
are bounded for all t E [0, T] and kEN and lim ifk(t) = lim Qk(t) = 0, Vt E [0, T] 

k-+oo k-+oo 

Learning convergence · 

In order to show the convergence of the above ILC scheme, the following composite 
energy function can be used 

(5.42) 
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with Jk(t) = 6- bk(t), where 6 is the unknown parameter. The unknown parameter 
6 is obtained as follows: 

qf(M(qk)Qd + C(qk, iJk)iu + G(qk)- dk) < liqkii(,B +kg+ kclliJdlllliJkll) (5.43) 

< liqkii(,B +kg+ kclliJdll 2 + kclliJdllllqkll) 

where kc, kg are unknown parameters and ,8 is obtained according to (£1, A) such 
that II M(qk)Qd- dk II :S ,8. Then the equation (5.43) leads to 

qf(M(qk)Qd + C(qk, Qk)Qd + G(qk)- dk) :S . q[(aqk + 6sgn(qk)) 
(5.44) 

where a= kcSUPtE(O,Tj lliJdll and 6 = ,8 +kg+ kcSUPtE(O,Tj lliJd(t)ll2 

The remaining proof of convergence of this adaptive iterative process is similar to the 
proof of scheme 1. 

Observation 

• The number of iterative variables used in this learning scheme is just one, which 
is an interesting fact because it saves memory components and computing power 
in real-time applications. 

5.3 Concluding remarks on adaptive ILC approach 

• The presented control strategy can be used in a straightforward manner for 
industrial robot manipulators that are already working under a PD controller 
by just adding the iterative term to the control input in order to enhance the 
tracking performance from operation to operation. 

The presented adaptive ILC schemes have been implemented and evaluated on a 
5DOF CRS255 industrial robot manipulator. The experimental results will be pre-
sented in chapter 7. 
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5.4 Adaptive ILC without using the joint velocity 
in the parametric adaptation law 

Many industrial robot manipulators today are only equipped with high precision 
sensors for the position measurements. Velocity sensors are frequently omitted due to 
saving cost, volume and weight. Therefore, in the presented AILC implementation on 
the robot manipulators, the velocity signals are not measured but estimated from the 
joint position signals using a filtered derivative which produces considerable amount 
of noise. A major drawback of any ILC scheme in practical applications is that 
it amplifies the noise present in the measurements, which leads to poor learning 
performance and forces to stop the learning process. In this section, we present a 
new AILC scheme for rigid robot manipulators that does not use the velocity in the 
parametric adaptation law. As a result, the learning process of the proposed AILC 
strategy can be continued until the output trajectory fh(t) converge to the desired 
control trajectory Od(t) without having any difficulties from the measurement noise. 
The control scheme consists of a linear parameterized feedback control structure and 
a feed-forward learning term in order to cope with the unknown parameters and 
disturbances. It is worth noting that, at this point in time, we don't have any rigorous 
proof for this control scheme. 

Adaptive Scheme 4 

The following adaptive ILC control law is proposed for the repetitive robot dynamics 
(5.22) 

(5.45) 

with the learning parametric adaptation law 

(5.46) 

with iL1(t) = 0. Where v E !Rnxn and K 1 E IR2x 2 are symmetric positive definite 
matrices. The matrix ry(ijk) is defined as ry(ijk) = [ijk sign(ijk)]. The convergence 
analysis of the above adaptive learning control technique will be part of our future 
research work. The presented AILC scheme 4 has been tested experimentally on a 
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5-DOF robot manipulator as shown in figure 6.1. The experimental results wiil be 
presented in chapter 7. 

57 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 6 

EXPERIMENTAL SETUP 

In this chapter, we introduce the experimental platform used for the real-time imple-
mentation of the presented ILC algorithms. 

6.1 Experimental platform 

The robot used in this thesis is the 5-DOF CRS255 (CATALYST5) industrial robot 
manipulator manufactured by CRS robotics depicted in figure 6.1. The robot arm is 
constructed of high tensile strength aluminum alloy components. The side panels of 
this manipulator are held rigid by cross members and linked by an aluminum plate. 
This construction technique provides lightweight while contributing to the rigidity of 
the robot, which in part allows for the high speed and accuracy of the system. As 
the gravity forces are not counterbalanced, motors for vertical joints are equipped 
with automatic brakes to prevent the collapse of the manipulator configuration if the 
motor power supply at each joint is interrupted. 
CRS255 has five revolute joints powered by five DC motors. At each joint, an incre-
mental encoder is employed for joint position measurement. The robot system comes 
with a CRS-C500 control box, which contains five PID feedback controllers, operat-
ing at each motor and their structure cannot be modified. In order to implement the 
learning control strategy to CRS robotic system, one has to by-pass the CRS-C500 
controller through the Quanser open-architecture control mode which allows the de-
signer to use Simulink for real-time control implementations. In order to do this job, 
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Figure 6.1: 5-DOF CRS255 industrial robot manipulator 

a Quanser-MultiQ acquisition board is used together with a Quanser-WinCon soft-
ware to generate real-time code from Simulink. A switch mounted on the CRS-C500 
control box allows the designer to switch back and forth from the Quanser-open-
architecture mode to the CRS mode. The following components are installed in the 
host/supervisor Pentium III PC: MATLAB/Simulink/Realtime Workshop/Control 
systems toolbox, WinCon, Visual C++ professional, RTX and NT or Windows 2000. 

6.2 Real-time implementation 

In this thesis, several classical and adaptive ILC algorithms are implemented and 
evaluated on the 5-DOF CRS255 robot manipulator. The implementation block dia-
gram is depicted in figure 6.2. The experimental results will be presented in chapter 
7. 
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Figure 6.2: ILC implementation block diagram on a 5DOF CRS255 robot manipulator 
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Chapter 7 

IMPLEMENTATION RESULTS 

In this chapter, the presented ILC schemes for robot manipulators are tested experi-
mentally on the robot system CRS255 (CATALYSTS) shown in figure 6.1. 

7.1 Classical ILC approach 

The classical ILC schemes discussed in the thesis are implemented on the 5-DOF 
CRS255 robot manipulator in order to enhance its tracking performance from opera-
tion to operation. Generally, the repeatable control environment implies an identical 
control task and the same initialization condition for all repeated control operations, 
i.e., Qd(O) - Qk(O) = Qd(O) - Qk(O) = 0. 
The control objective is to track an identical circular trajectory in the Y-Z plane as 
shown in figure 7.1, which can be described as 

y(t) - 6 + V72cos0.1t mm 
z(t) - 6+V'72sin0.1t mm 

with t E [0, 63s]. In order to realize this desired control trajectory, robot joints 1, 2 
and 3 are used. The desired joint variables q~(t), qJ(t) and qJ(t) corresponding to the 
control task for the first three joints are obtained by taking the inverse kinematics 
of the world cordinates x(t), y(t), and z(t). Under a repeatable control environment, 
the robot dynamics is assumed to be repetitive for all t E [0, 63] in the sense that the 
robot parameters never change when the robot repeats the same control tasks. 
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In the implementation, the joint position signals are available from sensors for feed-
back and the velocity signals are not measured but estimated because the robot 
system has no velocity sensors. 

Algorithm 1 

Two experimental results with the algorithm 1 are shown in figures 7.2 to 7.9. The 
sampling period is taken as O.Ols. The control and learning parameters used in the 
experimental tests are listed in table lA and table lB. The output tracking error 
convergence of robot joint positions are investigated in the sense of the various norm-
topologies. 

Table lA 
Parameters Link 1 Link 2 Link 3 
Kp 2.5 1.2 2.2 
Kn 0.0005 0.0005 0.0005 
Learning gain f 2 2 3 

Table lB 
Parameters Link 1 Link 2 Link 3 
Kp 2 1 2 
Kn 0.0005 0.0005 0.0005 
Learning gain r 2 2 2 

Observation 

• The P-type ILC is simple in structure and easy to implement in real-time ap-
plications. However, in our several experimental results, we noticed that the 
convergence of the tracking error is not monotonic. We also noticed the over-
shoot at the beginning of the robot trajectory after certain iteration which forces 
the learning process to stop. 

Algorithm 2 

The learning algorithm 2 is tested experimentally on the same 5-DOF robot manipu-
lator in order to track a desired circular trajectory under a repeatable control environ-
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Figure 7.1: Desired tracking trajectory for the experimental study of classical ILC algorithms 

ment. To implement this learning control technique, one has to estimate the velocity 
signals using the filtered derivative i.e., Qk is replaced by l+~18 qk, with AJ = 2;fc in 
the control law. In this implementation, the cutoff-frequency of the low-pass filter for 
the three joints is taken as fc1 = fc2 = fc3 = 0.1592H z. The desired trajectory is a 
circle shown in figure 7.1. The saturation function is taken as 

(7.1) 

Table 1 
Parameters Link 1 Link 2 Link 3 
Kp 2 2 2.5 
Kn 0.005 0.005 0.005 
Learning gain a 1 1 1 
Learning gain ¢ 1 1 1 

Applying the algorithm 2, with the control and learning parameters listed in table 1 
and table 2, we obtain the two experimental results shown in figures 7.10 to 7.14. The 
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Figure 7.2: RMS of the tracking error ver-
sus the iteration number for joints 1, 2, and 3 
under the P-type scheme with the parameters 
listed in table 1A 
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Figure 7.3: L2-norm of the tracking error 
versus the iteration number for joints 1, 2, and 
3 under the P-type ILC scheme with the pa-
rameters listed in table 1B 

sampling period is taken as 0.01s. The output tracking error convergence of robot 
joint positions are investigated in the sense of the L2-norm and the sup-norm. 

Table 2 
Parameters Link 1 Link 2 Link 3 
Kp 2 2 3 
KD 0.5 0.5 0.5 
Learning gain a 2 2 2 
Learning gain ¢ 1 1 1 
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Figure 7.5: control input for joints 1, 2 and 
3 at the 5th iteration under the P-type ILC 
algorithm with the parameters listed in table 
lA 

• From our implementation results, we observed that the convergence of the track-
ing error is not monotonic. We also noticed the overshoot at the beginning of 
the robot trajectory after certain iteration which forces us to stop the learning 
process. 

D-type ILC scheme 

In order to study the effectiveness and feasibility of the D-type ILC scheme in practice, 
this learning algorithm is tested experimentally on the 5-DOF CRS255 robot manip-
ulator tracking a circular trajectory repeatedly over a fixed time interval [0, 63s]. In 
this implementation, velocity signals in the control and learning laws are not measured 
but estimated using the filtered derivative(qk is replaced by 1+~18 qk with AJ = 2; 1). 

The acceleration signals are also estimated twice from the joint positions using fil-
tered derivatives. In this design, the cutoff-frequency for the three joints is taken as 
fcl = fc2 = fc3 = 0.1592H Z. 
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Figure 7.7: Sup-norm of the tracking error 
versus the number of iterations for link 1, 2 
and 3 under P-type ILC scheme with the pa-
rameters listed in table 1B 

Using the D-type learning control scheme, with the parameters listed in table 3, the 
experimental results shown in figures 7.15 to 7.17 are obtained. The sampling period 
is taken as 0.01s. The convergence of the output tracking error is investigated in the 
sense of the £ 2-norm and the sup-norm topology. 

Table 3 
Parameters Link 1 Link 2 Link 3 
Kp 1 1 3 
Kn 1 1 1 
Learning gain r 0.9 0.9 0.9 

Experiment 2: 

The objective of this test is to track a desired trajectory only for the first joint of 
the 5-DOF robot manipulator. The desired joint position trajectory for this test is 
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Figure 7.8: Desired trajectory and robot 
trajectory at the 1st and the 7th iteration un-
der P-type ILC scheme with the parameters 
listed in table 1B 

Figure 7.9: Control input for joints 1, 2 and 
3 at the 7th iteration under the P-type ILC 
scheme with the parameters listed in table lB 

given by qt(t) = rsinw(t) with r = 1 and w = ~. The time length of this control 
task is taken as 6s. Using the D-type ILC algorithm, with Kp = 1, Kn = 0.005 and 
r = 0.5, the experimental results are shown in figures 7.18 to 7.20. The sampling 
period is taken as O.Ols. The convergence of the tracking error is investigated in 
various norm-topologies. 

Observation 

• In this design, the joint accelerations are estimated from the joint position using 
the filtered derivative which leads to an amplification of the measurement noise. 
As a result, the measurement noise reduces the effectiveness of the D-type ILC 
scheme in real-time applications (Heinzinger et al. 1992, Oh et al. 1994 and 
Wang and Cheah 1998). 

• The convergence proof of the D-type ILC scheme is based upon the use of 
the global Lipschitz condition (GLC). In fact, for robotic applications, this 
condition is not so restrictive since it is possible to choose many r's owing to 
symmetric, boundness and positive definiteness property of the inertia matrix. 
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under the SP-D type ILC with the parameter 
listed in table 2 

However, the convergence analysis of most existing D-type learning schemes are 
starightforward and ensures zero tracking errors in the absence of uncertainities 
and noises. 

• In our experimental tests, we noticed that the convergence of the tracking er-
ror is not monotonic. The reason of the non-monotonic convergence is closely 
related with the .\-norm, which plays an important role in the proof of conver-
gence of this learning method. In many control applications like robot tracking, 
the sup-norm is more appropiate for the measurement of error performance than 
the .\-norm topology. Therefore, it is important to show the convergence of the 
iterative process in the sup-norm topology because the absolute magnitude of 
the variables is of major concern to protect hardware components from failure. 

PD-type ILC scheme 

The PD learning control algorithm presented in the thesis is tested and evaluated on 
the same industrial robot manipulator depicted in figure 6.1, which tracks a circular 
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Figure 7.13: Desired trajectory and robot 
trajectory at the 1st and the 5th iteration un-
der the SP-D type ILC with the parameter 
listed in table 2 

trajectory in the (Y- Z) plane over a finite time interval [0, 63s]. The velocity signals 
in the learning and control laws are replaced by the filtered derivative of the robot 
joint positions (i.e. iJk is replaced by 1+~18 qk with AJ = 2;fc, where cutoff-frequency 
fc = 0.1592Hz). The implementation results of the PD-type ILC scheme, with the 
parameters listed in table 4, are shown in figures 7.21 to 7.24. The convergence of the 
£ 2-norm and the sup-norm of the tracking error for joints 1, 2, and 3 are investigated. 

Table 4 
Parameters Link 1 Link 2 Link 3 
Kp 2 2 3 
Kn 0.5 0.5 0.5 
Learning gain r 2 2 3 
Learning gain ¢ 0.1 0.1 0.1 
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Figure 7.14: Sup-norm of the tracking error versus the number of iterations for link 1, 2 and 3 
under SP-D type ILC scheme with the parameters listed in table 2 

Observation 

• From our experimental tests, we observed that the convergence of the tracking 
error of the PD-type ILC scheme is not monotonic in the sense of the £ 2-norm 
and the sup-norm. This is due to the fact that the convergence analysis of this 
iterative process is based upon the use of the .X-norm. 

7.2 Concluding remarks on classical ILC approach 
for robot manipulators 

ILC is now a powerful control technique for repetitive processes. Various ILC schemes 
have been proposed in the literature, since the early 1980's. Despite much research, 
very few ILC schemes have been applied in commercial products. For practical ap-
plications in the real world, however, a number of limitations found in the existing 
ILC. algorithms need to be dealt with. 

• In some ILC schemes the tracking error can increase quite largely before it 
converges to the desired level even if the convergence and stability conditions 
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Figure 7.15: The £ 2-norm of the tracking 
error as a function of the iteration number for 
link 1, 2 and 3 under D-type ILC scheme with 
the parameter listed in table 3 

Figure 7.16: Sup-norm of the tracking er-
ror versus the iteration number for link 1, 2 
and 3 under the D-type ILC scheme with the 
parameter listed in table 3 

are satisfied (Jang and Longman 1994 and Longman 2000). This undesirable 
phenomenon comes from the fact that the >.-norm is generally used to prove the 
convergence of the iterative process. In real-time applications, the >.-norm is 
not a satisfactory measure of error performance because a large overshoot of the 
tracking error may occur befo~e it converges to the desired level which may cause 
system hardware failure. A possible solution to make the convergence monotonic 
in sup-norm (Owens 1992) is to use a high-gain feedback. However, this is not 
a practical solution because high-gain may saturate the actuator dynamics. 
There are very few theoretical results that ensure monotonic convergence of the 
iterative process in the literature (Ishihara et al. 1992, Hillenbrand and Pandit 
2000 and Tayebi and Zaremba 1999). Therefore, it is important to analyze 
the convergence property in the sense of the sup-norm because the absolute 
magnitude is more adequate as an error measurement of performance than the 
>.-norm. 

• Most existing ILC frameworks are based upon the use of the contraction map-
ping approach and require a certain a priori knowledge of plant dynamics. 
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Figure 7.17: Desired trajectory and robot trajectories at the 1st and the 31st iteration under the 
D-type ILC algorithm with the parameter listed in table 3 

Some of the limitations of traditional ILC algorithms have been discussed in 
Xu (2002). 

• The number of iterative variables used in existing classical ILC methods for 
robot manipulators is equal to the number of degrees-of-freedom n. As a result, 
large memory components and high computing power are essential to store past 
control information in real-time applications. 
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Figure 7.20: Desired trajectory and position trajectories of the robot joint 1 at the 1st and 41st 
iteration under the D-type ILC with Kv = 1, Kv = 0.005 and r = 0.5 
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Figure 7.25: Desired tracking trajectory for the experimental evaluation of the Adaptive ILC 
approach 

7.3 Adaptive ILC approach 

In this section, the four adaptive ILC algorithms for robot manipulators presented 
in the thesis are tested experimentally on the 5-DOF CRS255 robot system. The 
obtained experimental results are compared with experimental results of classical ILC 
algorithms. The main target of AILC experiments is to track a circular trajectory in 
the (Y-Z) plane under a repeatable control environment over the finite time interval 
[0, 63s] which is shown in figure 7.25. This desired circular trajectory can be expressed 
as 

y(t) - 10 + J200cos0.1t mm 

z(t) 10 + J200sin0.1t mm 

Only the first three joints of the robot manipulator are used to realize this circular 
motion. The desired joint positions QJ(t), q~(t) and q~(t) are generated by taking 
the inverse kinematics of the world co-ordinates x(t) = 0, y(t) and z(t). The initial 
resetting condition, i.e., Qd(O)-qk(O) = Qd(O)-qk(O) = 0 is satisfied for each iteration. 
In practice, the signum function used in the adaptation law can cause the chattering 
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phenomenon. In order to avoid this problem and generate a smooth control input, we 
replaced the signum function, i.e., sgn(qk), by a saturation function defined as follows 

. . . T 
sat(ijk) = [sat(ii1,k), .... , sat(iin,k)] 

with 

{ 

Qi,k if I Qi,k I< o.o1 
sat( Qi,k) = 1 if .Qi,k ~ 0.01 

-1 if ili,k :::; -0.01 
(7.2) 

where i E {1, 2, 3}. In order to implement presented AILC algorithms on the 5-
DOF CRS255 robot manipulator, we need to estimate the velocity signal using the 
filtered derivative in the control and learning laws, i.e., Qk is replaced by 1+~18 Qk with 
AJ = 2; !c , where fc is the cut-off frequency. 

Adaptive scheme 1 

The presented AILC scheme 1 is tested experimentally on the CRS255 robot manip-
ulator, where the known matrix <f;(qk, qk, Qk) given by the following equation 

with 

¢13 ¢14 ¢15 ¢16 ¢17 ¢18 ] 
¢23 ¢24 ¢25 ¢26 ¢27 ¢28 . 
¢33 ¢34 ¢35 ¢36 ¢37 ¢38 

<Pu = -cos q2 sin (q2 + q3)q3- sin (2q2 + q3)q1, 
</J12 = -0.5 cos (q2 + q3) sin (q2 + q3)q3- 0.5 cos (q2 + q3) sin (q2 + q3)q1, 
¢13 = 0. 5 sin Q2 cos q2ci1, 
¢14 = -2 sin Q2 cos q2q1, 
¢15 = ¢16 = ¢17 = 0, 
¢18 = sgn(qt), 
<P21 = 0.5 sin (2q2 + q3)q1 - 1.5 sin q3q3, 
<P22 = 0.25 cos (q2 + q3) sin (q2 + q3)q1, 
¢23 = -0.25 cos Q2 sin q2q1, 
¢24 = cos Q2 sin Q2ci1 , 
<P25 = -0.5 sin Q2, 
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¢26 = -sin q2 , 

¢27 = -0.5 sin (q2 + qa), 
¢2s = sgn(fh), 
¢al = 0.5cosq2sin (q2 + qa)ql + 0.5sinqaq2, 
¢a2 = 0.25 cos (q2 + qa) sin (q2 + q3)q1, 
¢33 = ¢34 = ¢35 = ¢36 = 0, 
¢a7 = -0.5sin (q2 + qa), 
¢as= sgn(qa). 

Experiment 1: 

Using the adaptive scheme 1, we obtained the experimental results shown in figures 
7.26 to 7.28. The cutoff-frequency for the velocity estimations are taken as fc1 = 
fc2 = jc3 = 0.08H z. The sampling period is taken as 3 ms. The learning and control 
gains used in this experiment are taken as follows: Kp = diag(1, 1, 4), Kn = 0.0513x 3 
and r = 2Isxs, where Iixi is an i X i identity matrix. 
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Figure 7.26: RMS of the tracking error as 
a function of the iteration number for link 1, 
2 and 3 under the adaptive learning scheme 1 
with the 1st experimental test 
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Figure 7.28: Target trajectory and robot trajectory at the 1st and the 39th iteration under the 
adaptive learning scheme 1 with the 1st experimental test 
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Figure 7.29: Target trajectory and robot trajectory at the 1st and the 14th iteration with the 
adaptive learning control scheme 1 with the 2nd experimental test 
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Experiment 2: 

In order to examine the convergence speed of this adaptive scheme, we performed an-
other experimental test on the same system with the control and learning parameters 
as follows: Kp = diag(1, 1, 4), KD = 0.05I3x3 and r = 8lsx8· The implementation re-
sults are shown in figures 7.29 to 7.31. The sampling period and the cutoff-frequency 
for the velocity estimations are taken as 3 ms and /c1 = fc2 = f c3 = 0.08H z respec-
tively. 

Observation 

• The control law uses 8 updating parameters. As a result, the real-time imple-
mentation requires a considerable amount of memory components and comput-
ing power. 

• The design also requires the knowledge of the matrix '1/J(qk, qk, Qk)· 
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Figure 7.30: RMS of the tracking error as 
a function of the iteration number for link 1, 
2 and 3 under the adaptive learning control 
scheme 1 with the 2nd experimental test 
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Adaptive scheme 2 

Experiment 1: 

Using the AILC scheme 2 presented in the thesis, with Kp = diag(1, 1, 4), KD = 
0.00513x3 and r = 312x2, the experimental results are shown in figures 7.32 to 7.34. 
In this test, the sampling period and the cutoff-frequency for the velocity estimation 
are used as follows: 1 ms and fc1 = fc2 = jc3 = 0.1592H z. 

025 ' 

02 

0,15 

0.1 
--~-lirl<3 

10 12 

Figure 7.32: The RMS of the tracking error 
as a function of the iteration number for link 
1, 2 and 3 under the adaptive learning scheme 
2 with the 1st experimental test 
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Figure 7.33: Sup-norm of the tracking error 
as a function of the iteration number for link 
1, 2 and 3 under the adaptive learning scheme 
2 with the 1st experimental test 

The control and learning gains for this implementation are taken as follows: Kp = 
diag(2, 1, 4), KD = 0.0513x3 and r = 412x2. The implementation results are shown 
in figures 7.35 to 7.37 for robot tracking the same circular trajectory over a finite 
time interval. The time length of the desired control trajectory is taken as 63s with 
the sampling period of 1 ms. In this test, the cutoff-frequencies used for the velocity 
estimation for the three robot joints are as follows: fc1 = 0.08H z, fc2 = 0.08H z and 
jc3 = 0.1592Hz. 
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Figure 7.34: Desired trajectory and robot trajectory at the 1st, the 5th and the 15th iteration 
with the adaptive learning control scheme 2 with the 1st experimental test 

Experiment 3: 

Using the AILC scheme 2, with the control and learning parameters as follows: Kp = 
diag(1, 1, 4), Kn = 0.0513 x 3 and r = 812x 2 , we obtain the experimental test results 
shown in figures 7.38 to 7.40 for robot tracking a circular trajectory over a finite 
time interval [0, 63s]. The sampling period is taken as 1 ms. In this test, the cutoff-
frequencies used for the velocity estimation for the three joints are as follows: fc1 = 
0.08Hz, fc2 = 0.08Hz and jc3 = 0.08Hz. 

Experiment 4: 

In order to examine the convergence speed of this adaptive scheme, another exper-
imental test is performed on the same robot system using the control and learning 
parameters as follows: Kp = diag(1, 1, 4), Kn = 0.0513x 3 and r = 2012x 2 • The sam-
pling period and the cutoff-frequency for the velocity estimations are taken as 1 ms 
and fc1 = fc2 = f c3 = 0.0177 Hz respectively. The experimental results are shown in 
figures 7.41 to 7.43. 
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Figure 7.37: Target trajectory and robot trajectory at the 1st and the 51st iteration under the 
adaptive learning scheme 2 with the 2nd experimental test 
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Figure 7.38: Target trajectory and robot trajectory at the 1st and the 25th iteration under the 
adaptive learning scheme 2 with the 3rd experimental test 
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Figure 7.41: The RMS of the tracking error 
as a function of the iteration number for link 
1, 2 and 3 under the adaptive learning scheme 
2 with the 4th experimental test 

20 

15 

E' s 10 
N 

10 12 14 

11erationnoom 

Figure 7.42: Sup-norm of the output track-
ing error as a function of the iteration number 
for link 1, 2 and 3 under the adaptive learning 
scheme 2 with the 4th experimental test 

1st iteration 

-5L_ __ _L ___ ~--~----~--~L---~ 

-5 10 15 20 25 
y(mm) 

Figure 7.43: Desired trajectory and robot trajectory at the 1st and the 20th iteration under the 
adaptive learning scheme 2 with the 4th experimental test 
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Figure 7.44: The sup-norm of the output tracking error as a function of the iteration number for 
link 1, 2 and 3 under the adaptive learning scheme 2 with the 5th experimental test 

Experiment 5: 

The control and learning gains for this experiment are taken as follows: Kp = 
diag(1, 1, 4), Kn = 0.05hx2 and r = 2012x2 • The implementation results are shown 
in figure 7.44 and 7.45 for robot tracking a circular trajectory. The time length of 
the desired control task is taken as 63s with the sampling period of 1 ms. In this test, 
the cutoff-frequencies used for the velocity estimation for the three robot joints are 
as follows: fc1 = !c2 = jc3 = 0.02Hz. 

Observation 

• The control approach does not require any a prwrz knowledge of the robot 
dynamics. 

• The number of iterative variables used in this design is equal to two which is 
an interesting fact in real-time applications because it saves memory space and 
computing power. 
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Figure 7.45: Desired trajectory and robot trajectory at the 1st and the 34th iteration under the 
adaptive learning control scheme 2 with the 5th experimental test 

• The acceleration measurements and the bounds of the robot parameters are not 
needed for this design and implementation. 

• The convergence of the iterative process can be guaranteed for any Kp, KD, r 
symmetric positive definite. 

Adaptive Scheme 3 

Experiment 1: 

The adaptive scheme 3 presented in the thesis is implemented on the 5DOF CRS255 
robot system with the control and learning parameters as follows: Kp = diag(2, 1, 4), 
KD = 0.05l3x 3 and 'Y = 8. The sampling period and the cutoff-frequencies for the 
velocity estimations are taken as 1 ms and fc1 = !c2 = f c3 = 0.08H z respectively. 
The implementation results are shown in figures 7.46 to 7 .48. 
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Figure 7.47: Sup-norm of the tracking error 
versus the iteration number for link 1, 2 and 3 
under the adaptive control scheme 3 with the 
1st experimental test 

Using the adaptive scheme 3, with Kp = diag(1, 1, 4), Kn = 0.00513 x 3 and 'Y = 10, 
we obtained the experimental results shown in figures 7.49 to 7.51 for the 5-DOF 
CRS255 robot manipulator tracking a circular trajectory over the finite time interval 
[0, 63s]. In this experiment, the cutoff-frequencies used for the velocity estimations 
are as follows: Jc1 = 0.08H z, !c2 = 0.08H z and f c3 = 0.0637 Hz. The sampling period 
is taken as 1 ms. 

Experiment 3: 

The control and learning gains for this experimental evaluation are taken as follows: 
Kp = diag(1, 1, 4), Kn = 0.0513 x 3 and 'Y = 15. The implementation results are 
shown in figures 7.52 to 7.54 for the same robot system tracking a circular trajectory 
over a finite time interval. The time length of the desired control task is taken as 63s. 
The sampling period and the cutoff-frequencies for the velocity estimations are taken 
as 1 ms and /c1 =fez= jc3 = 0.0159H z respectively. 
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Figure 7.48: Target trajectory and robot trajectory at the 1st and the 20th iteration under the 
adaptive learning scheme 3 with the 1st experimental test 

Experiment 4: 

In order to investigate the convergence speed of the AILC scheme 3, we performed 
another experimental test on the 5-DOF CRS255 robot system with the control and 
the learning parameters as follows: KP = diag(0.5, 0.5, 2), KD = 0.0513 x 3 and 'Y = 15. 
The sampling period is taken as 1 ms. In this test, the cutoff-frequency used for the 
velocity estimations is as follows: fc1 = fc2 = jc3 = 0.08H z. The convergence of the 
output tracking error of the robot joint positions are investigated. The implementa-
tion results are shown in figures 7.55 to 7.57. 
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Figure 7.50: Sup-norm of the tracking error 
versus the iteration number for link 1, 2 and 3 
under the adaptive control scheme 3 with the 
2nd test 
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Figure 7.51: Target trajectory and robot trajectory at the 1st and the 16th iteration with adaptive 
learning scheme 3 with the 2nd test 
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Figure 7.54: Desired trajectory and robot trajectory at the 1st and the 30th iteration with the 
adaptive scheme 3 with the 3rd experimental test 
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• The control approach requires only one iterative variable which is an interesting 
development for real-time applications of ILC technique in the sense that it 
requires less memory space and computational effort. 

• The design does not require any a priori knowledge of the robot dynamics which 
is also a significant development in the ILC research. 

Adaptive scheme 4 

The presented AILC scheme 4 is tested experimentally on the CRS255 robot ma-
nipulator. In order to generate a smooth control input and avoid the chattering, we 
replaced the signum function in the adaptation law by a saturation function defined 
in equation 7.2. 
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Figure 7.57: Desired trajectory and robot trajectory at the 1st and the 8th iteration with the 
adaptive learning scheme 3 with the 4th experiment 

Experiment 1: 

The adaptive scheme 4 is implemented on the 5-DOF CRS255 robot manipulator to 
track a desired circular trajectory which is shown in figure 7.25. The control and learn-
ing gains for this experimental evaluation are taken as follows:a = 1, v = diag(2, 2, 2) 
and Kt = 8hx2 . The sampling period is taken as 0.001 s. The convergence of the out-
put tracking error of the robot joint positions are investigated. The implementation 
results are shown in figures 7.58 to 7.59. 

Experiment 2: 

In this experimental evaluation, our main target is to track a circular trajectory in 
the (Y-Z) plane which can be expressed as follows: y(t) = 25 + v'625cos0.1t mm 
and z(t) = 25+ v'625sin0.1t mm with t E [0,63]. Using the AILC scheme 4, with 
a = 1, v = diag(1, 1, 2) and learning gain Kt = 0.512x2, we obtained the experimental 
results shown in figure 7.60 and 7.61 for the 5-DOF CRS255 robot manipulator. In 
this test, the sampling period is taken as 0.001 s . 
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Figure 7.61: Desired trajectory and robot trajectory at the 1st and the 16th iteration under the 
adaptive scheme 4 with the 2nd experiment 
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Observation 

• The design does not require a priori knowledge of the robot dynamics. 

• It requires only two updating parameters which reduces memory components 
and computing power in real-time applications. 

• The key feature of this AILC scheme is that the parametric adaptation law 
does not require velocity signals. Therefore, the noise accumulation through 
the iterative process is considerably reduced. As a result, the learning process 
can be continued until the robot trajectory converges to the desired one. 

• Unfortunately, we don't have any proof of convergence for this algorithm. The 
proof of convergence of this learning process will be part of our future research 
work. 

7.4 Concluding remarks on Adaptive ILC approach 

From our several experimental tests, one can draw the following conclusions: 

• The beauty of the implemented adaptive ILC algorithms (Tayebi 2004) that is 
they can be used in a straightforward manner for any industrial robot manipu-
lator that is already working under a traditional PD controller by just adding 
the iterative term in order to enhance the tracking performance from operation 
to operation. 

• In order to achieve faster convergence of the output tracking error, a high learn-
ing control gain can be used. In this case, lower cut-off frequency in the esti-
mated velocity signals is necessary to reduce the noise effect in the adaptation 
laws that are based on the use of the velocity estimation. 

• The "dirty derivative" signals in the adaptation laws is the main drawback of the 
presented AILC approach in the real-time implementation because the filtered 
derivative signals are contaminated by noise which amplifies from iteration to 
iteration. As a result, the learning process has to stop because of the chattering 
phenomenon that appears when the number of iteration is increased. As a 
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matter of fact, the amount of noise amplification in the real-time application can 
be attenuated by reducing the cut-off frequency. On the other hand, undesirable 
oscillations may occur in the robot joints causing the robot to become unstable 
at low cut-off frequencies. 
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Chapter 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this thesis several classical and adaptive iterative learning control algorithms have 
been tested experimentally on a 5-DOF CRS255 (CATALYSTS) robot manipulator. 
The carried out tests have shown that the adaptive scheme 3 and 4 produce the best 
results in the sense of the requirement of memory components, computing power, a 
priori knowledge of robot dynamics and the tracking error convergence. Based on the 
implementation results, one can draw the following conclusions: 

• In contrast with the experimental results of classical ILC schemes, the tracking 
error convergence of the adaptive ILC approach shows monotonic convergence. 

• The presented adaptive ILC approach is simple in the sense that it requires 
only a positive definiteness condition on the control and learning gains. More-
over, compared with other classical and adaptive ILC schemes, the implemented 
adaptive ILC schemes require less memory space and computing power. In this 
approach, the acceleration measurements and the bounds of the robot parame-
ters are not needed. 

• The AILC framework allows the designer to make the output tracking error 
and its time derivative arbitrarily small, at the first operation, over the finite 
time interval [0, T], by increasing the minimum eigenvalues of the control and 
learning gains. 
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• Today, many industrial robot manipulators are equipped with high precision 
sensors for the position measurements. Velocity sensors are frequently omit-
ted due to saving cost, volume and weight. Therefore, the velocity signals in 
the AILC schemes 1, 2 and 3 are not measured but estimated from the joint 
encoder positions using a filtered derivative. As a result, in practice, the learn-
ing performance of these adaptive schemes is seriously affected at high cut-off 
frequency of the filtered derivative signals because of the amplification of the 
measurement noise. 

• In practice, the signum function used in the adaptation law might cause the 
chattering phenomenon. In order to avoid this problem and to smooth out the 
control input, the signum function can be replaced by a saturation function 
which also leads to a poor learning performance. 

• From our experimental evaluation of the AILC schemes it is seen that a faster 
convergence rate can be achieved by increasing the learning and control gains. 
However, chattering phenomenon appears when the number of iterations is in-
creased. This is due to the fact that the parametric adaptation law uses the 
"dirty derivative" tracking error signals obtained from the previous iteration. As 
a matter of fact, this noise amplification problem forces us to stop the learning 
process after a certain umber of iterations. 

8.2 Future Work 

In order to avoid the noise amplification problem and improve the learning perfor-
mance of the AILC schemes 1, 2 and 3, one has to design P-type adaptive ILC schemes 
that do not require velocity measurements. In fact, the adaptive ILC scheme 4 is an 
interesting step towards achieving that goal, since it provides quite interesting results, 
but, unfortunately, we don't have any proof of convergence for this algorithm yet. 
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Appendix A 

MODELLING AND DYNAMICS 

In this part of the thesis we give a short description and modeling of the CRS255 
robot manipulator that is used in our experimental evaluation. 

A.l Indus trial robot system 

The robot used in this thesis for real-time implementation of ILC algorithms is a 
5-DOF CRS255 (CataLystS) industrial robot system shown in figure 6.1. This is a 
5DOF open-chain articulated industrial robot arm. The articulated links are : the 
waist qb shoulder or upper-arm q2 , elbow or fore-arm q3, wrist bend or pitch q4 and 
wrist roll q5 . The motion equation relates only to the principal structures of the 
system that performs gross motions (major linkage). In this analysis, the wrist and 
end-effectors will be considered as a single inertia because wrist joints are usually 
dominated by inertia, with gravity and inertial coupling effects in comparison with 
the other links. So, the gross motion links considered for optimization are two main 
movable links in the upper-arm, forearm and the robot waist. 

A.2 Mechanical modelling 

The modeling of industrial robots can be divided into kinematic and dynamic mod-
eling. The dynamic part will only be discussed in this section and the materials 
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partly based on Spong and Vidyasagar (1989). There are a number of procedures for 
generating the dynamic equations of motion for a robot manipulators: 

• Euler-Lagrange(E-L) method 

• Newton-Euler (N-E) method 

• Recursive Lagrangian method 

• Kane's method 

• Appel's method 

• Generalized D'Alambert principle method 

Basically, the models are obtained from known Newtonian physical laws and these 
methods are equivalent to each other in the sense that they describe the dynamic 
nature of the same physical robot systems. However, the structure of these equations 
and the computational efficiency of the equations may differ because they are obtained 
for various reasons and purposes, such as adequate for simulation, controller design, 
real-time control etc. Among these technique, the E-L and the N-E formulation 
have been frequently used to generate the dynamical model of the robot manipula-
tors. These methods have their own advantages and disadvantages. In this thesis, 
the E-L formulation will be the used for the dynamical model in the design of the ILC. 

A.2.1 Dynamics 

The Euler-Lagrange equations are a tool from analytical mechanics that can be used 
to derive the equations of motion for a mechanical system. In this approach the 
joint variables are considered as generalized coordinates. The kinetic energy of the 
manipulator can be defined as 

K(q, q) = ~qM(q)q (A.1) 

where inertia matrix M(q) E Rnxn is symmetric, bounded and positive definite. Let 
P(q) be a continuously differentiable function, called the potential energy. For a rigid 
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robot, the potential energy is due to the gravity forces only. The potential energy 
P(q) is independent of joint velocity vector q. So, the Lagrangian function can be 
defined for such system as 

L(q, q) = K(q, q)- P(q) (A.2) 

The Euler-Lagrange equations can be written as 

! (;~)- ;~ = 7k,k = 1,2,3 .... n (A.3) 

where, 7 1,72 , 73 ....•..• 7n represent the input forces and torques to be applied at each 
joint. Using the potential and kinetic energy for the Lagrangian L, the above equation 
leads to 

M(q)ij + C(q, q)q + g(q) = 7 (A.4) 

where M(q) is a positive definite inertia matrix, C(q, q)q is a vector containing all 
inter-axial velocity-dependent coupling terms arising from centripetal and Coriolis 
forces, g(q) represents gravitational forces term and 7 is the vector of joint input 
containing the torques and forces to be applied at each joint. There are some impor-
tant properties of the Lagrangian dynamics ( A.4) that are helpful in the analysis and 
design of the manipulator control system. These properties are found in Spong and 
Vidyasagar (1989): 

1. The inertia matrix M(q) is a positive definite and symmetric, and there exist 
scalars such that 

for revolute joints &1 and &1 are constants. 

2. The matrix M(q}- 2C(q, q) is skew symmetric. 

3. The mapping 7 ~ q is passive, i.e., there exists {3;::: 0 such that 

1T qT(u)7(u)dt;::: -{3 

(A.5) 

(A.6) 

4 The equations of motion given in ( A.4) are linear in the inertia parameters. 

These properties have already been used in several stability and convergence of adap-
tive, robust and learning controllers analysis for robot manipulators. 

110 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

A.3 Dynamical equation for the CRS-255 robot 
manipulator 

In this section, we use the Euler-Lagrange approach to obtain the dynamical equations 
associated with the 5-DOF open-chain articulated robot manipulator shown in figure 
6.1. For convenience, and without much loss of generality, the gross motion links 
are selected for the mathematical modelling of CRS255 robot that includes two main 
movable links in the upper-arm, forearm and the robot waist. In this case, the 
orientation links i.e., wrist and end-effectors will be considered as a single inertia. 
This is due to the fact that, in comparison with oither links, the wrist joints are 
usually dominated by inertia, gravity forces and coupling effects (Corke 1986). In 
fact, this assumption comes from the practical consideration because link 4 and 5 
are light and move with low velocities. In order to utilize Lagrange's method for 
modelling, we must first find the kinetic energy of each of the links with the following 
notations 
h : length of the 1st link 
12 : length of the 2nd link 
13 : length of links 3, 4 and 5 
m1 : weight of the 1st link 
m2 : weight of the 2nd link 
m3 :weight of the links 3, 4 and 5 
/ 1 :moment of inertia of link 1 
12 : moment of inertia of link 2 
13 :moment of inertia of link 3 including link 4 and link 5 

Link 1 

Since the center of mass of the first link does not move, it's kinetic energy consists 
only the angular velocity part. The total kinetic energy of the moving rigid link 1 
relative to the motion of it's mass 
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Figure A.1: Co-ordinate frames for CRS Robot Manipulator 

Link 2 

The rotational part of the kinetic energy of link 2, K2rot, is 

K 1 TI 1 [I ·2 ° 2 I ·2 2 I ·2] 2rot = 2W2 2W2 = 2 2Q1 sm Q2 + 2Q1 cos Q2 + 2Q2 

The translational part of kinetic energy for the link 2, K2trans, is 

The total kinetic energy of the link 2, K 2 , is 

112 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Link 3 

The translational part of the kinetic energy for link 3 is 

K3trans 
1 T - 2m3Vc3Vc3 

1 [ ( l~ 2 ( ) ( ) 2 2 ) . 2 ( 2 l~ - 2m3 4 cos Q2 + Q3 + hh cos Q2 cos Q2 + Q3 + 12 cos Q2 q1 + 12 + 4 

l l ) ·2 15 ·2 ( l5 1 1 ) . . ] + 2 3 cos Q3 q2 + 4q3 + 2 + 2 3 cos Q3 Q2Q3 

The rotational part of kinetic energy is 

K 1 TI 1 ( ·2 ( . . )2] I 3rot = 2W3 3W3 = 2 ql + Q2 + Q3 3 

The total kinetic energy of the link 3, K3 , is 

1 [ ( 15 2 ( ) ( ) 12 2 ) . 2 ( 12 15 K3 = 2m3 4 cos Q2 + Q3 + l2b cos Q2 cos Q2 + Q3 + 2 cos Q2 q1 + 2 + 4+ 

l2l3 cos q3)q~ + ~ 4i + C1 + 12b cos Q3) 4243 J + ~ [4; + (42 + 43)2] 13 

The potential energy, P, of the system is given by 

The Lagrangian function, L, is given by 

L - K1 + K2 + K3 - P 

[
1 1 1 12 . 2 1 2 2 ) ( ) - 2 lr + 212 + 213 + 8m2 sm Q2 + 8m3l3 cos ( Q2 + Q3 + O.Sm3l2l3 cos q2 cos Q2 + q3 

2 2 ] 2 [ 1 2 2 1 2 1 1 ] ·2 +O.Sm3l2 cos Q1 41 + 0.512 + 8l2m2 + O.Sm3l2 + 8l3m3 + 2m3hl3 cos Q3 + 213 q2 

[
1 1 ] ·2 [ 1 2 1 ] . . [h + 8l3m3 + 213 q3 + 13 + 4m3l3 + 2m3l2l3 cos q3 q2q3 - 2m2g cos Q2 + l2m3g 

cosq2 + ~m3gcos(q2 + q3)] 
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The dynamical equations for the manipulator are given by, 

(A.7) 

Substituting for the various quantities in the above equations and after some math-
ematical manipulations, the differential equations that describes the dynamical be-
havior of this manipulator can be derived as 

[ 
1 ·2 1 2 2 2 /1 + /3 + /2 + 4m2l2 sm Q2 + 4m3l3 cos (q2 + q3) + m3l2l3 cosq2 cos(q2 + q3) + m3l2 

cos2 q2] ii1 + [~l2ffi2 sin Q2 cosq2- ~m3l~ cos(q2 + q3) sin(q2 + q3) - m3l2l3 sin(2q2 + q3) 

-2m3l~ cosq2sinq2] Q1Q2- [~m3l~cos(q2+q3)sin(q2+q3)+m3l2l3cosq2 
sin(q2 + q3)] Q1Q3 = 71 (A.8) 

[ /2 + /3 + ll~m2 + lm3l~ + m3l~ + m3l2l3 cos q3] ii2 + [ /3 + lm3l~ + ~m3l2l3 cos q3] ij3 

l l . . . 1 z z . ·2 [ 1z . 1 z2 ( ) -m3 2 3 sm Q3Q2Q3 - 2m3 2 3 sm q3q3 - 4 2m2 sm Q2 cos q3 - 4m3 3 cos Q2 + q3 

sin( Q2 + q3) - ~m3l2l3 sin(2q2 + q3) - m3l~ cos Q2 sin Q2 - ~m3hl3 cos Q2 sin( Q2 + q3] q~ 

- [~m2l2gsinq2 + m3l2gsinq2 + ~l3m3gsin(q2 + q3)] = 72 (A.9) 

[ 1 J .. [ 1 2 1 J .. [ 1 z2 ( ) . ( ) /3 + 4m3l3 q3 + /3 + 4m3l3 + 2m3hh cos q3 Q2 + 4m3 3 cos Q2 + q3 sm Q2 + q3 

+O.Sm3l2l3 cosq2 sin(q2 + q3) J iii+ ~m3l3l2 sin q3q~- ~l3m3gsin(q2 + q3) = 73 (A.lO) 
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Appendix B 

GENERAL PROCEDURES FOR RUNNING AN ILC EXPERI-

MENT 

Suppose you have an ILC scheme that you want to implement on a 5DOF CRS255 ro-
bot system in open architectural mode. The following steps are essential to implement 
it properly: 

a) First of all open Robcomm3 by clicking the green icon from the task bar. To 
open a new terminal, click on the Terminal icon from the Robcomm3 menu 
bar. 

b) Now go to CRS-C500 controller box and turn on the power. After booting up 
the CRS-C500 controller, there will be a display$$ pendant in the Robcomm3 
terminal. To release the teach pendant, just press ESC and then press Fl on 
the teach pendant keypad. Now release the teach pendant red Reset button 
by rotating it in a clockwise direction. 

c) Before applying the power to the robot, please make sure that the work enve-
lope of the robot is clear. If it is, then apply power to the robot by pressing 
the ARMPOWER button on the CRS-C500 control box and promptly the 
Robcomm3 terminal window will display$. 

d) Now type Home which will start the robot homing. When the robot is finished 
homing then Robcomm3 terminal display will show$ again. Now type ready 
in the terminal window which will bring the robot into a ready position. 
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e) Develop the desired ILC algorithm in Matlab simulink with the switching model 
and save the simulink model file to this directory: C : \ designername \ Quanser-
CRS 255 OA. The switching model is designed by the simulink blocks: stop, 
switch and clock block. The timer of the clock simulink block is chosen by 
the designer which will start the program calculations and data collections. 
To control program calculations and data collections, the output port of the 
switching model is placed through switching block to the desired data collec-
tion and control input ports. For real-time ILC implementations, this switching 
model is very important to start the program calculations and to store the data 
simultaneously. 

f) Now open the Matlab command window and type crs...startup and then type 
the desired Simulink model file name. If a PD controller is used to develop an 
ILC algorithm in Simulink model then type Gains otherwise it is not necessary. 

g) In order to build the desired simulink ILC model, select the WinCon menu bar 
from simulink model and click Build. If the model is successfully built then a 
new WinCon window will appear which means that the desired ILC model is 
ready to run in real-time. 

h) To start an experiment, click the start button of the Wincon window. To take 
control of the robot manipulator, change the Mode bit from 1 to 0 in the 
simulink model. Now promptly go to Robocomm3 window, where Robocomm3 
terminal is already open, and type limp. Then there will be a question of 
whether you want to limp all robot axes or not. Simply type y to run the 
experiment and collect the data for the upcoming operation. After finishing the 
1st operation, go back to the Robcomm3 terminal window and type nolimp. 

i) In the next operation, collected data is retrieved by typing load filename in the 
matlab command window. Then go back to the Robcomm3 terminal window 
and type ready, and follow the steps from f as explained. 

j) To end the experiment, reapply the brakes of the robot arm by typing nolimp in 
the Robcomm3 terminal window and then click the stop button on the WinCon 
window. Now press Reset button of the teach pendant to turn off the robot 
power. 
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k) To turn off the CRS-C500 controller, just type shutdown now in the Rob-
comm3 terminal window. Now you can turn off the main power supply to the 
robot arm. 
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