
STRENGTHENING OF THE NET SECTION OF STEEL ELEMENTS1

UNDER TENSILE LOADS WITH BONDED CFRP STRIPS2

Penagos-Sanchéz D.M.1, Légeron F.2, Demers M. 3 and Langlois, S.43

ABSTRACT4

The use of CFRP is increasingly common as a solution for the strengthening of structures, but5

the majority of research and applications have focused on the retrofit of concrete structures. The6

application of CFRP adhesively bonded to enhance the load carrying capacity of metallic elements7

has been widely studied in the aeronautical industry but is also a promising technique for the civil8

engineering area. This paper presents an experimental study to verify the effectiveness of the use9

of CFRP for the strengthening of the net section of steel elements under tensile loading. A series of10

tensile tests were conducted with different bond lengths, different number of layers and different11

surface preparation of steel elements in double lap joints and steel plates. The ultimate load, the12

failure mode and the effective bond length for CFRP strengthened specimens were determined.13

The results showed that using CFRP sheets for the strengthening against net area failure provides14

no gain on the ultimate state, provides a small gain at the elastic limit, and provides a larger gain if15

the designer accepts to increase the capacity from the elastic limit to the debondig limit.16

Keywords: bonded CFRP strips, surface preparation, lap joint, net section, reinforcement of steel17

elements.18

INTRODUCTION19

The standard techniques of rehabilitation of steel structures that include bolting or welding of20

steel plates to the existing system has some drawbacks such as the durability, the use of lifting and21
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drilling/welding equipment, the placement of falsework and the addition of permanent load to the22

structure and the difficulty of fitting complex profiles.23

For this reason, there is a growing need for the development and implementation of new meth-24

ods for fast and efficient rehabilitation of deteriorated structural steel components.25

Fiber reinforced polymer (FRP) materials combine high-strength, high-modulus fibers with a26

polymeric matrix that ensures load transfer between the fibers. FRP materials are recommended27

for structural rehabilitation solutions, as these materials are lightweight, corrosion resistant and28

can fit complex geometry.29

In the construction sector, the use of FRP is increasingly common as a solution for the strength-30

ening or retrofitting of structures, but the majority of the research and applications of FRP has31

focused on the retrofit of concrete structures. There is comparatively little work investigating the32

use of bonded FRP for the strengthening of steel members. Most of the available research and33

guidance to strengthen steel structures focuses on the use of FRP to improve the behavior of com-34

ponents subject to bending, applying these materials to the tensile flange of a section to increase its35

capacity (Mertz and Gillespie 1996; Schnerch et al. 2007; Rizkalla et al. 2008); to enhance fatigue36

performance (Bassetti et al. 1999; Bocciarelli et al. 2009; Jones and Civjan 2003; Tavakkolizadeh37

and Saadatmanesh 2003a), to improve local or member stability (Harries et al. 2008; Harries et al.38

2009; Shaat and Fam 2006) and to repair fractures of steel members (Colombi et al. 2003; Photiou39

et al. 2006; Tavakkolizadeh and Saadatmanesh 2003b). Limited research has been conducted to40

improve the behavior of steel members under tensile loading (Bocciarelli et al. 2007; Colombi and41

Poggi 2006; Lam et al. 2007).42

The challenges to the use of FRP reinforcement in steel structures are: the FRP adhesion to43

steel, because the weakest link in the bonding of carbon fiber reinforced polymer (CFRP) elements44

to metallic joints is the adhesive bond (Al-Emrani et al. 2005; Buyukozturk et al. 2004; Fernando45

2010; Qaidar and Karunasena 2010; Zhao and Zhang 2007); the surface preparation because the46

integrity of the joint is dependent on preparation procedures (Cadei et al. 2004; Harris and Beevers47

1999; Packham 2003; Schnerch et al. 2004); and the prevention of galvanic corrosion resulting48
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from the contact of carbon fibers and steel (Tavakkolizadeh and Saadatmanesh 2001). In particular,49

the bonding of CFRP on steel is critical because steel may undergo very large deformations before50

reaching complete failure. In the case of net area failure at connections, the yielding zone is very51

localized and it may be possible to strengthen the connection with CFRP layers.52

The objective of this paper is to identify configurations that allow the strengthening of bolted53

steel section against net-section rupture. The experimental results of a series of double lap shear54

specimens tested in tension to investigate the effect of surface preparation on the bond strength55

between CFRP and steel plates are presented and compared to analytical predictions. Discussions56

are made on failure modes, ultimate load carrying capacity and effective bond length for these57

specimens. Then, the experimental results of a series of steel plate specimens reinforced by CFRP58

strips and tested under tensile loading to investigate the effect of net area/gross area (An/Ag) ratio59

are presented and compared with a theoretical model. Finally, the effect of the numbers of layers60

and their configuration is studied with a second series of steel plate specimens.61

EXPERIMENTAL PROGRAM62

The experimental program consists of three phases:63

1. Effect of anchor length and surface preparation.64

2. Evaluation of the composite material contribution with changing net / gross area ratio.65

3. Effect of the number of layers of CFRP composite sheet materials on steel plates.66

Phase I was conducted to determine the optimal steel surface preparation and to select the67

CFRP material and the minimal lap length. Phases II and III were conducted to study the influence68

of the amount and configuration of CFRP according to the joint characteristics.69

The tests were carried out on two basic types of specimen:70

• Double lap joints for Phase I71

• Steel plate with single and double side reinforcement for Phases II and III72

All the specimens were subjected to axial tensile load.73
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Material Properties74

Tension coupons of steel plates were prepared and tested according to ASTM A370-02. The75

average elastic modulus (Es), yield strength (fy) and ultimate strength (σult) are shown in Table 1.76

All the steel plates are from the same batch, therefore the values for fy and σult are the same for77

all the specimens.78

Two different types of CFRP material were used in the experimental program: sheets and79

plates. The sheets used were bidirectional carbon fabric (Foreva TFC) with a width of 90 mm80

and the thickness of the ensemble (fiber and epoxy) is 0.48 mm. The properties provided by the81

manufacturer are reported in Table 1. A bi-component epoxy resin Foreva Epx TFC was used for82

bonding the fabric to the specimens. The mixing ratio of the epoxy by weight was two parts of83

component A (resin) to one part of component B (hardener). The epoxy had a pot life of 1h30min84

at 20◦C.85

The CFRP plates used were pultruded carbon fiber laminates (Sika Carbodur S1525) with a86

width of 15 mm and a thickness of 2.5 mm. The properties provided by the manufacturer are87

reported in Table 1. A two component epoxy resin Sikadur 330 was used to bond the carbon plates88

to the specimens. The mixing ratio in this case was four part of component A (resin) to one part89

of component B (hardener) by weight. The epoxy had a pot life of 30 min and was cured at room90

temperature.91

Specimen Preparation and Test Setup92

The steel plates surfaces were treated using three different techniques: by abrasive disk or93

sandpaper in the case of common steel and by steel brush for galvanized steel. A white steel surface94

to expose bare metal was reached with the abrasive disk. The sandpaper surface preparation left95

most of the black scale but removed any debris and protuberances. Only the steel brush was used96

on the galvanized steel to avoid damaging the zinc coat while removing dirt and debris. Before97

bonding, the steel plates and CFRP laminates were cleaned with methyl ethyl ketone to remove98

dust and grease. The two component epoxy resin was prepared according to the instruction manual99

provided by the manufacturer. To form the bond, the resin was applied to the steel surfaces with a100
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roller in the case of CFRP sheets and with a spatula in the case of CFRP laminates. The surfaces101

were then squeezed together with a small pressure to force out air voids and excess epoxy adhesive.102

Subsequently, specimens were allowed to cure at room temperature for a minimum of 7 days before103

testing. A special attention was taken to keep a uniform thickness of the adhesive. However, this104

thickness was not measured and controlled in order to reproduce field conditions.105

Effect of anchor length and surface preparation106

The specimens consist in double lap joints that were made using two CFRP strips bonded to107

two steel plates separated by a gap of 2 mm (Fig. 1). The aim of the experiment was to investigate108

the optimal anchor length of CFRP material in accordance to steel surface preparation. The study109

of the effect of anchor length was performed for anchor lengths ranging from 100 mm to 200 mm110

with two CFRP materials types: sheet and plate. For both CFRP types, three surface preparations111

were evaluated, namely: white metal with abrasive disk, sandpaper cleaning of black steel and112

steel brush cleaning of galvanized steel. Two repetitions were made for each condition for a total113

of 36 specimens. The details dimensions of the specimens are shown in Table 2 and the geometry114

is illustrated in Fig. 1.115

Evaluation of the composite material contribution according to the net / gross area ratio116

The specimens were made of 6.35 mm (1/4”) thick by 100 mm wide steel plates character-117

ized by three different configurations of one or two circular holes of 17.5mm (11/16”) or 23.8118

mm (15/16”) diameter and reinforced with one layer of CFRP sheets. The anchor length of the119

CFRP layer measured from the end of the hole was of 150 mm or 225 mm, and the steel surface120

preparation was with steel brush for all the specimens. In each specimen’s hole a bolt and washer121

were installed to reproduce the condition and the real difficulties during the placement of the CFRP122

sheets. The CFRP was applied after the bolt and washer were inserted into the hole and the fiber123

was split to go around the bolt. Bolt diameter was 15.9 mm (5/8”) and 22.2 mm (7/8”) for the 17.5124

mm and 23.8 mm holes respectively. Steel specimens without CFRP sheets were tested to provide125

a reference. The aim of the experiment was to investigate the contribution of CFRP material in126

accordance to the variability of the net/gross cross sectional area of steel ratio, An /Ag. Two rep-127
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etitions were made of each test configuration for a total of 36 specimens. The dimensions of the128

specimens and the three hole configurations are illustrated in Fig.2.129

Effect of the number of layers of CFRP130

The specimens were made of 6.35 mm thick by 100 mm wide steel plates characterized by131

one circular hole of 23.8 mm (15/16") diameter (i.e. An/Ag = 76%) and single or double side132

reinforcement using different number of CFRP sheets layers (one to six layers) as shown the figure133

3. The anchor length of the CFRP layers was measured from the end of the hole and surface134

preparation was made with steel brush or abrasive disk. In each specimen’s hole was installed a135

22.2 mm (7/8”) diameter bolt to reproduce the conditions and real difficulties during the placement136

of the CFRP sheets. The CFRP was applied after the bolt and washer were inserted into the hole137

and the fiber was split to go around the bolt.138

The main objective of this part of the experiment was to investigate the contribution of the139

number of layers of CFRP material for a given An/Ag. On the other hand, it was attempted to140

study other variables such as: the effect of tapering and anchor length between layers of CFRP;141

the effect of reinforcing one side or both sides of the steel plate and; the effect of partial surface142

preparation. The partial surface preparation consisted in to expose bare metal with the abrasive disk143

only in the LL section which is anchored the CFRP. The dimensions of the specimens are shown144

in the figure 3 and Table 6. A total of 26 specimens were prepared with 18 different configurations145

because eight configurations have two specimens.146

The axial tensile static tests for all phases were performed in a universal testing machine with a147

nominal capacity of 500 kN. The double lap specimens of Phase I were tested under displacement148

control at a constant rate of 0.5 mm/min. Continuous steel plates specimens for Phases II and III149

were tested at 0.5 mm/min up to 2.5 mm and then the rate was increased to 3 mm/min up to failure.150

TEST RESULTS151
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Effect of anchor length and surface preparation152

Failure mode153

The failure of bonded CFRP-steel joints could occur in the base material, in the adhesive layer154

or at an interface between two materials (Zhao and Zhang 2007). The rupture of all specimens in155

this part of the study occurred at or near the adhesive-steel interface. On the sanded black steel156

specimen almost all epoxy adhesive was removed from the steel surface and part of the scale layer157

formed during the rolling of the steel was also removed (Fig. 4(a)). On the ground white steel158

surface a significant part of the epoxy adhesive was ripped off the steel (Fig. 4(b)). As shown in159

Fig. 4(c) the epoxy adhesive was completely detached from the galvanized steel surface but the160

zinc coat was not ripped off.161

Prediction of ultimate load and effective bond length162

Various theoretical analyses of adhesively bonded joints have been derived. (Hart-Smith 1973)163

extended the elastic analysis for double lap joints of (Volkersen 1938) by considering the nonlinear164

behavior of the adhesive. He proposed that the joint reaches its maximum strength when the165

maximum shear strain of the adhesive reaches its failure shear strain value. Detailed derivations166

can be found in (Hart-Smith 1973; Hart-Smith 1974).167

Hart-Smith proposed expressions to predict the ultimate load carrying capacity per unit width168

for the inner and outer adherent of an adhesively bonded double-lap joint, taken as the lesser of:169

Pi =

√
2τpta

(
1

2
γe + γp

)
2Eiti

(
1 +

Eiti
2Eoto

)
(1)170

Po =

√
2τpta

(
1

2
γe + γp

)
4Eoto

(
1 +

2Eoto
Eiti

)
(2)171

where Ei and Eo are the Young’s modulus of the inner and outer adherent layers, ti and to are172

the thickness of inner and outer adherent layers, τp is the adhesive shear strength, γe and γp are173

the elastic and plastic adhesive shear strains respectively, and ta is the adhesive thickness. For the174

configuration studied, the inner adherent is the steel plate and the outer adherend is the CFRP.175
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Therefore, the ultimate load carrying capacity Pult predicted by Hart-Smith model becomes:176

Pult = bc min[Pi, Po] (3)177

Hart-Smith also proposed the following equation to predict the effective bond length, Le, of a178

double lap joint:179

Le =
σult ti
2τp

+
2

λ
(4)180

where σult is the ultimate strength of the steel plate and181

λ =

√
Ga

ta

(
1

Eoto
+

2

Eiti

)
(5)182

in which Ga is the adhesive shear modulus.183

The load carrying capacity PCFRP for any bonded length, LL, can be evaluated with Eq. 6 and184

Eq. 7 (Liu et al. 2005), assuming that the load is linearly proportional to the bond length:185

PCFRP = LL
Pult

Le

if LL≤Le (6)186

PCFRP = Pult if LL>Le (7)187

The Hart-Smith model was used to predict the strength of the double lap specimens with the fol-188

lowing assumptions: the adhesive shear strength is estimated at about 80% of the ultimate strength189

of adhesive, the value of γp is taken as 3 times γe (Liu et al. 2005), the Poisson’s ratio for the190

adhesive is assumed equal to 0.37 (Mays and Hutchinson 1992), the ta is taken as 0.25 mm and191

1.50 mm for the specimens fabricated with CFRP sheets and CFRP plates respectively.192

The ultimate loads obtained for the double lap joints in the tests are summarized in Table 3.193

The LL has been plotted against the ultimate loads and compared with the Hart-Smith model in194

Figs. 5 and 6 for CFRP sheets and CFRP plates respectively.195
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It can be seen from these two figures that the ultimate load obtained using Eq.3 is 64 kN for the196

CFRP sheets-steel double lap joints and 48 kN for the CFRP plates-steel double lap joints, which197

has good agreement with the average ultimate load for specimens for which the surface preparation198

was made with an abrasive disk. From the Hart-Smith model the values of Le are 85mm and 97mm199

for the CFRP sheets-steel double lap joints and CFRP plates-steel double lap joints; respectively.200

For the CFRP sheets (Fig.5), the ultimate average load increased from 38.9 kN to 65.3 kN201

when the surface preparation is improved from steel brush to abrasive disk. The same occurs for202

the CFRP plates specimens (Fig.6), where the ultimate average load increased from 24.7 kN to203

48.5 kN when the surface preparation is changed. Therefore, an LL of 100mm is needed to reach204

the plateau capacity, which is in agreement with the theoretical prediction.205

Outcomes of Eq.3 are also compared with the proposed expressions by (Bocciarelli and Colombi206

2012) which predict the load carrying capacity of a CFRP reinforced tensile steel element in the207

elasto-plastic regime, taken as the lesser of:208

P el−pl
f =



αPy + 2As

√
Hs

ts
(1 + δ)γ(Gf − αGp) ≥ Py

2As

δ

√
Es

ts
(δ + 1)Gf ≤ Py

2As

√
Es

ts
(δ + 1)Gf ≤ Py

(8)209

where210

δ =
EsAs

2EfAf

; α =
(Es −Hs)(1 + δ)

Es(1 + δ)−Hsδ

γ =
Es

Es(1 + δ)−Hsδ

bf
bs
; Gp =

1

4bf

P 2
y

EsAs(1 + δ)

211

The fracture energy was assumed equal to Gf = 0.815 N/mm (Bocciarelli and Colombi 2012)212

for both CFRP materials and the steel hardening modulus was 788 MPa. It can be seen from Figs.213

5 and 6 that the ultimate load obtained using Eq.8 is 83 kN for the CFRP sheets-steel double lap214

joints and 40 kN for the CFRP plates-steel double lap joints. There is a better agreement with the215
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average ultimate load for CFRP plates-steel double lap joints specimens tested which the surface216

preparation was made with an abrasive disk. However, a fracture energy value of 0.5 N/mm is217

suggested for the CFRP sheets-steel double lap joints due to the difference of the CFRP. As a218

result, an ultimate load of 65 kN will be obtained which is in better agreement with the average219

load of tested specimens.220

The surface preparation has an important effect on the ultimate load of the joint. It is important221

to note that surface preparation with an abrasive disk takes more effort and time, and it can be222

complicated to do in field applications. For the next phase, the CFRP sheets were used, because223

they showed greater capacity and ease of installation around bolts.224

Evaluation of the composite material contribution according to the net / gross area ratio225

Some axial load versus displacement curves of the specimens with and without CFRP sheet226

reinforcement are shown in Fig. 7, 8 and 9. The results are summarized in Table 4. For all227

specimens, debonding occurred at adhesive-steel interface.228

It can be seen from Fig. 7, 8 and 9 that the initial loading was shared by the steel plate and229

the CFRP sheet. Then, after steel yielding of the minimum cross section, the additional load was230

mainly supported by the CFRP. As the load increased, the capacity of the specimen reached its peak231

when full CFRP sheet debonding occurred. At debonding, the load sharply decreased and from232

that point, the load is supported only by the steel up to the failure. In summary, specimens showed233

steel yielding first; which is the ideal failure mode. This is followed by the fiber debonding, and234

finally net section rupture occurred.235

Table 5 shows that experimental values for the elastic F ref
el and ultimate F ref

u limits of reference236

specimens (specimens without composite) correspond to those predicted with the theory, fyAn237

and σultAn. Therefore, for the analysis only the experimental values F ref
el and F ref

u will be used238

to compare the capacity of steel plates when adding CFRP sheets. Whereas some design codes239

allow the yielding of the net area around a connexion, limiting the capacity to σultAn (S16-09),240

other design codes, (for example ASCE 10-97 for the design of transmission line towers), limit241

the capacity to fyAn. Due to the debonding that occurs when the gross section starts to yield, the242
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ultimate capacity of the specimens with CFRP does not increase compared to F ref
u of the steel243

plate alone. However, the CFRP sheets permit an increase in the elastic limit Fel as seen in the244

close ups of Fig. 7 to 9. The difference between Fel and F ref
el is shown in Fig. 10 for one layer of245

CFRP. It can be seen in this figure that the increase is small an that it shows a large scatter for high246

An/Ag ratios.247

It is also interesting to calculate the difference between the debonding force and F ref
el . At the248

point just before debonding is reached, the response of the connection is mainly elastic. The de-249

signer may want to accept these small inelastic deformations and base the capacity of the assembly250

on Fdebonding rather than Fel. Fig. 11 shows that the differnce between Fdebonding and F ref
el is im-251

portant and can reach 56% of F ref
el . It can be also seen from this figure, that the contribution of252

CFRP is greater when An /Ag decreases (approximately 68 kN for An/Ag of 52% and 37 kN for253

An/Ag of 83%). This is explained by the fact that for smaller An/Ag ratios, net failure occurs well254

before the gross section failure of the plate. Also, it can be noticed that there is not a significant255

difference if the anchor length of CFRP is 150mm or 225mm, because once the effective anchor256

length of the CFRP sheet is reached; no significant increase in axial load capacity will occur.257

Effect of the number of layers of CFRP258

The results are summarized in Table 6. As for the previous parts of the study, all specimens259

experienced debonding at the adhesive-steel interface.260

The number of CFRP layers have been plotted against the difference between the debonding261

and elastic force of reinforced steel plates in Fig. 12. It can be seen from this figure, as previously262

observed, that specimens with surface preparation with an abrasive disk have higher strengths than263

specimens prepared with a steel brush. For the tested Np, the difference between the debonding264

and elastic force of reinforced steel plates decreases when the number of layers increases for both265

surface preparations. This is because the interfacial stress between the steel and the CFRP increases266

when the CFRP stiffness increases.267

As mentioned in the previous section, the addition of CFRP changes the linear behavior of268

the steel plate. Fig. 13 presents the results of the difference between the elastic force of steel269
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plates with and without reinforcement versus the number of CFRP layers. It can be noticed from270

Fig. 13 that the elastic force increases (5 kN approximately for each additional CFRP layer for271

single side reinforcement) when adding CFRP layers for this steel plate configuration (An/Ag =272

76%). This means that the elastic limit of a steel connection may be increased significantly if using273

several layers of CFRP. However, this is true only for the surface preparation with the abrasive disk.274

Indeed, it can be observed that the contribution of CFRP to the elastic force for specimens with the275

steel brush surface preparation reaches a plateau at n = 2 because the adherence of the composite276

is limited by the scale layer of the steel plate, which is ripped off at failure.277

Results show that, for the double side reinforced specimens, the elastic force increases between278

10kN to 20kN for specimens with two and four layers of CFRP due to surface preparation (Fig. 13)279

compared with unreinforced specimens.280

Using CFRP sheets of different length is introduced in some specimens to create a tapered ef-281

fect to provide a gradual reduction of the CFRP stiffness in order to reduce the stress concentration282

at the extremities of the CFRP reinforcement. For specimens with four CFRP layers whose surface283

preparation was made with the abrasive disk (C3-S-4-taper-S2 tapered specimen and C3-S-4-210-284

S2 equal length specimens) it can be noticed that the value of elastic force is similar, but that there285

was an increase of about 6% for the maximal debonding load due to tapering of layers.286

Results for specimens with two CFRP layers show that the elastic and debonding force in-287

creases between 3% and 4% if the lap length of the second layer is longer, no matter the surface288

preparation.289

Regarding the results of debonding and elastic force for specimens whose surface preparation290

was made partially or complete, it can be concluded that these two types of surfaces preparation are291

equivalent, because the difference between those loads are approximately 2%. This indicates that292

surface preparation does not need to be perfect near bolts without compromising the performances293

of the CFRP reinforcement.294

In summary, these experimental results showed that, adding CFRP layers decreased signifi-295

cantly the debonding load but increased significantly the elastic load. A designer may want to296
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limit the number of layers if he or she is considering Fdebonding as the capacity limit, or contrarily297

use a larger number of layers if considering Fel as the capacity limit. The results also showed a298

small increase in debonding load when tapering layers and a very small influence of partial versus299

complete surface preparation with abrasive disk.300

CONCLUSIONS301

In this paper, an experimental study to verify the effectiveness of the use of CFRP strips for the302

strengthening of steel members under tensile loading was presented. The test parameters included:303

types of CFRP composite material (sheets and plates), lap length, steel surface preparation, number304

and configurations of CFRP layers.305

Based on the experimental results, the following conclusions were made:306

1. The axial load capacity of the bonded CFRP - steel joint is significantly affected by surface307

preparation.308

2. As predicted by Hart-Smith, an anchor length of 100 mm is sufficient to develop the full309

capacity of CFRP sheets.310

3. The Hart-Smith model predicts well the debonding force for specimens with the abrasive311

disk surface preparation.312

4. A similar behavior was observed for specimens reinforced with CFRP sheets and CFRP313

plates. The CFRP sheets provided larger capacity and were easier to install around bolts.314

5. All specimens failed by debonding at the adhesive-steel interface.315

6. The contribution of CFRP is greater when An/Ag decreased.316

7. For the number of layers tested, the debonding load decreases with the increases of number317

of layers regardless of the surface preparation, but yielding load increases with the number318

of layers, in particular for the abrasive disk surface preparation.319

8. The contribution of CFRP reinforcement to the elastic limit of the specimens is small for320

one layer, but becomes significant for multilayered configurations.321

9. If considering that the capacity limit of the steel connection can be extended to the debond-322
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ing force, the gain due to CFRP may reach up to 56% for An/Ag of 52%.323
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NOTATION428

The following symbols are used in this paper:429

Af = cross sectional area of CFRP

Ag = gross cross sectional area of steel

An = net cross sectional area of steel

At = total cross section area of steel plate with CFRP

bc = width of CFRP strip

bs = width of steel element

Ci = hole configuration with i=1,2,3 where C1=two holes staggered, C2=two

holes side by side and C3=one hole centered; see Figure 3.8

d = bolt diameter

E = elastic modulus

Ef = elastic modulus of CFRP

Ei = Young’s modulus of the inner adherend layer

Eo = Young’s modulus of the outer adherend layer

Es = elastic modulus of steel

Fdebonding = debonding load of CFRP

fy = yield stress of steel

Fel = elastic force of specimen

F ref
el = elastic force of specimen without CFRP

Ga = adhesive shear modulus

Gf = fracture energy

Gp = strain energy release rate at the elastic limit

Hs = steel hardening modulus

Lc = length of CFRP strip

Le = effective bond length

LL = anchor length of CFRP

Ls = length of steel plate

430
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Np = number of layer of CFRP sheet

Pi = bond strength of inner adherend

Po = bond strength of outer adherend

PCFRP = load carrying capacity of the CFRP

P el−pl
f = elastoplastic debonding strength

Py = yield force

Pult = ultimate load carrying capacity per unit width

Si = steel surface preparation with i=1,2,3 where S1=sandpaper,

S2=abrasive disk and S3=steel brush.

ta = adhesive thickness

tc = thickness of CFRP strip

ti = thickness of inner adherend layer

to = thickness of outer adherend layer

ts = thickness of steel element

γe = elastic adhesive shear strain

γp = plastic adhesive shear strain

δ = unbalance stiffness between adherents

δdebonding = displacement at debonding

δel = displacement at elastic force

λ = coefficient of elastic shear stress distribution

σult = ultimate strength of steel plate

τp = adhesive shear strength

φh = hole diameter

431

20 Penagos-Sanchéz et al., Jun. 06, 2014



List of Tables432

1 Material properties of steel plates, CFRP and epoxy . . . . . . . . 22433

2 Dimensions of the specimens for anchor length study . . . . . . . . 23434

3 Double lap joint test results . . . . . . . . . . . . . . . 24435

4 Steel plates specimen’s results . . . . . . . . . . . . . . 25436

5 Theoretical and experimental values for the elastic and ultimate limits . . . . . . . 26437

6 Phase III results . . . . . . . . . . . . . . . . . . 27438

21 Penagos-Sanchéz et al., Jun. 06, 2014



TABLE 1. Material properties of steel plates, CFRP and epoxy

Elastic modulus
(MPa)

Yield strength
(MPa)

Ultimate strength
(MPa)

Steel plate 203000 384 537
Foreva TFC 230000 – 4900
Foreva Epx TFC 2300 – 27
Sika Carbodur S1525 165000 – 2800
Sikadur 330 4500 – 30
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TABLE 2. Dimensions of the specimens for anchor length study

Specimen
Steel element geometry CFRP strip geometry

LL(mm) Si
Ls(mm) bs(mm) Lc(mm) bc(mm) tc(mm)

S-100-S1 250 100 200 90 0.48 100 S1
S-150-S1 300 100 300 90 0.48 150 S1
S-200-S1 350 100 400 90 0.48 200 S1
S-100-S2 250 100 200 90 0.48 100 S2
S-150-S2 300 100 300 90 0.48 150 S2
S-200-S2 350 100 400 90 0.48 200 S2
S-100-S3 250 100 200 90 0.48 100 S3†
S-150-S3 300 100 300 90 0.48 150 S3†
S-200-S3 350 100 400 90 0.48 200 S3†
P-100-S1 250 32 200 15 2.50 100 S1
P-150-S1 300 32 300 15 2.50 150 S1
P-200-S1 350 32 400 15 2.50 200 S1
P-100-S2 250 32 200 15 2.50 100 S2
P-150-S2 300 32 300 15 2.50 150 S2
P-200-S2 350 32 400 15 2.50 200 S2
P-100-S3 250 32 200 15 2.50 100 S3†
P-150-S3 300 32 300 15 2.50 150 S3†
P-200-S3 350 32 400 15 2.50 200 S3†

Designation of specimens: S(or P)-LL-Si means S=sheet, P=plate, LL =anchor length and Si=surface prepa-
ration with i = 1, 2, 3 where S1=sandpaper, S2=abrasive disk and S3=steel brush.

† Galvanized steel
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TABLE 3. Double lap joint test results

Specimen
Ultimate
load (kN)

Specimen
Ultimate
load (kN)

Specimen
Ultimate
load (kN)

S-100-S1 #1 45.8 S-100-S2 #1 55.9 S-100-S3 #1 39.6
S-100-S1 #2 42.3 S-100-S2 #2 63.7 S-100-S3 #2 37.6
S-150-S1 #1 46.9 S-150-S2 #1 78.0 S-150-S3 #1 35.7
S-150-S1 #2 42.5 S-150-S2 #2 70.9 S-150-S3 #2 38.6
S-200-S1 #1 49.4 S-200-S2 #1 59.8 S-200-S3 #1 40.8
S-200-S1 #2 45.2 S-200-S2 #2 63.2 S-200-S3 #2 41.2

Average 45.4 Average 65.3 Average 38.9
P-100-S1 #1 19.8 P-100-S2 #1 49.2 P-100-S3 #1 28.0
P-100-S1 #2 20.4 P-100-S2 #2 47.9 P-100-S3 #2 20.9
P-150-S1 #1 24.7 P-150-S2 #1 59.0 P-150-S3 #1 35.8
P-150-S1 #2 29.2 P-150-S2 #2 50.8 P-150-S3 #2 21.7
P-200-S1 #1 25.4 P-200-S2 #1 40.4 P-200-S3 #1 27.3
P-200-S1 #2 28.9 P-200-S2 #2 43.5 P-200-S3 #2 33.5

Average 24.7 Average 48.5 Average 27.9
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TABLE 4. Steel plates specimen’s results

Specimen LL(mm) d(mm) An
Ag

(%) Fel(kN) δel(mm)
Fdebonding

(kN)
δdebonding
(mm)

C1-150-B16 #1 150 15.9 75 177 1.41 213 3.09
C1-150-B16 #2 150 15.9 75 177 1.44 215 3.11
C1-225-B16 #1 225 15.9 75 173 1.36 220 3.96
C1-225-B16 #2 225 15.9 75 172 1.37 189 2.04
C1-B16 #1 - 15.9 75 163 1.36 - -
C1-B16 #2 - 15.9 75 163 1.26 - -
C1-150-B22 #1 150 22.2 62 147 1.18 195 4.52
C1-150-B22 #2 150 22.2 62 147 1.15 196 4.53
C1-225-B22 #1 225 22.2 62 146 1.39 200 7.50
C1-225-B22 #2 225 22.2 62 146 1.15 190 4.13
C1-B22 #1 - 22.2 62 135 1.04 - -
C1-B22 #2 - 22.2 62 138 1.06 - -
C2-150-B16 #1 150 15.9 65 158 1.27 210 2.96
C2-150-B16 #2 150 15.9 65 158 1.25 207 2.85
C2-225-B16 #1 225 15.9 65 158 1.29 211 3.16
C2-225-B16 #2 225 15.9 65 158 1.27 209 2.99
C2-B16 #1 - 15.9 65 151 1.23 - -
C2-B16 #2 - 15.9 65 152 1.19 - -
C2-150-B22 #1 150 22.2 52 128 1.03 182 4.24
C2-150-B22 #2 150 22.2 52 125 1.07 181 4.20
C2-225-B22 #1 225 22.2 52 128 1.02 191 5.51
C2-225-B22 #2 225 22.2 52 127 1.05 189 5.69
C2-B22 #1 - 22.2 52 122 1.04 - -
C2-B22 #2 - 22.2 52 121 1.02 - -
C3-150-B16 #1 150 15.9 83 199 1.69 206 2.24
C3-150-B16 #2 150 15.9 83 202 1.75 227 3.14
C3-225-B16 #1 225 15.9 83 203 1.72 230 3.40
C3-225-B16 #2 225 15.9 83 193 1.54 218 3.33
C3-B16 #1 - 15.9 83 187 1.61 - -
C3-B16 #1 - 15.9 83 187 1.67 - -
C3-150-B22 #1 150 22.2 76 172 1.64 213 6.06
C3-150-B22 #2 150 22.2 76 173 1.64 211 5.63
C3-225-B22 #1 225 22.2 76 172 1.71 213 6.61
C3-225-B22 #2 225 22.2 76 185 1.70 222 3.62
C3-B22 #1 - 22.2 76 169 1.30 - -
C3-B22 #2 - 22.2 76 171 1.26 - -

Designation of specimens: Ci-LL-Bd means Ci=configuration with i = 1, 2, 3 where C1=two
holes staggered, C2=two holes side by side and C3=one hole centered, LL=anchor length and
Bd=bolt diameter in millimeters.
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TABLE 5. Theoretical and experimental values for the elastic and ultimate limits

Specimen An/Ag (%) F ref
el (kN) fyAn (kN) F ref

u (kN) σultAn (kN)

C1-B16 75 163 173 237 242
C2-B16 65 151 150 217 210
C3-B16 83 187 190 264 266
C1-B22 62 137 144 200 201
C2-B22 52 121 121 170 169
C3-B22 76 170 176 247 245

26 Penagos-Sanchéz et al., Jun. 06, 2014



TABLE 6. Phase III results

Specimen LL(mm) Np Si Fdebonding (kN) Fel(kN)

C3-S-1-150-S3 #1 150 1 S3 213 171
C3-S-1-150-S3 #2 150 1 S3 211 170
C3-S-1-225-S3 #1 225 1 S3 213 171
C3-S-1-225-S3 #2 225 1 S3 222 177
C3-S-1-150-S2 #1 150 1 S2 226 182
C3-S-1-150-S2 #2 150 1 S2 229 181
C3-S-1-225-S2 #1 225 1 S2 234 186
C3-S-1-225-S2 #2 225 1 S2 239 185
C3-S-1-150-S2p #1 150 1 S2 (partially) 230 187
C3-S-1-150-S2p #2 150 1 S2 (partially) 231 184
C3-D-1-150-S3 150 1 S3 213 194
C3-D-1-150-S2 150 1 S2 221 199
C3-D-2-taper-S3 150, 170 2 S3 201 199
C3-D-2-taper-S2 150, 170 2 S2 226 223
C3-S-2-taper1-S3 #1 150, 250 2 S3 211 190
C3-S-2-taper1-S3 #2 150, 250 2 S3 222 190
C3-S-2-taper1-S2 #1 150, 250 2 S2 226 193
C3-S-2-taper1-S2 #2 150, 250 2 S2 215 196
C3-S-2-taper2-S3 150, 170 2 S3 208 185
C3-S-4-taper-S3 150, 170, 190, 210 4 S3 194 187
C3-S-6-taper-S3 150, 170, 190, 210, 230, 250 6 S3 197 190
C3-S-2-taper2-S2 150, 170 2 S2 227 182
C3-S-4-taper-S2 150, 170, 190, 210 4 S2 225 203
C3-S-6-taper-S2 150, 170, 190, 210, 230, 250 6 S2 224 207
C3-S-4-210-S2 #1 210 4 S2 217 201
C3-S-4-210-S2 #2 210 4 S2 207 200
C3-B22 #1 - 0 - - 169
C3-B22 #2 - 0 - - 171

Designation of specimens: C3-S/D-Np-LL-Si means C3 =one hole centered, S/D =one side or two side
reinforcement, Np =number of CFRP layers, LL =anchor length or taper if many layers attached and
Si =surface preparation with i = 1, 2, 3 where S1=sandpaper, S2=abrasive disk and S3=steel brush.
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FIG. 1. Typical double lap joint specimen.
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(a) Configuration 1

(b) Configuration 2

(c) Configuration 3

FIG. 2. Steel plates specimens reinforced with one layer of CFRP sheet.
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(a) Double side reinforcement.

(b) Single side reinforcement.

FIG. 3. Steel plate specimens phase III.
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(a) Sanded double lap joint specimens

(b) Grinded double lap joint specimens

(c) Galvanized double lap joint specimens

FIG. 4. Failure modes.
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FIG. 5. Maximum axial load capacity vs lap length with different surface preparation
for CFRP sheets-steel double lap joints.
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FIG. 6. Maximum axial load capacity vs lap length with different surface preparation
for CFRP plates-steel double lap joints.
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FIG. 7. Axial load vs displacement for two holes staggered configuration with and
without CFRP reinforcement.
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FIG. 8. Axial load vs displacement for two hole in a row configuration with and
without CFRP reinforcement.
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FIG. 9. Axial load vs displacement for one center hole configuration with and with-
out CFRP reinforcement.
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FIG. 10. Ratio between the elastic force of steel plates with CFRP and the elastic
limit of steel plates alone vs An/Ag.
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FIG. 11. Ratio between the debonding force of steel plates with CFRP and the elas-
tic limit of steel plates alone vs An/Ag.
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FIG. 12. Ratio between the debonding and elastic force of reinforced steel plates
vs Number of CFRP layers.
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