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In this dissertation, we first present a brief overview of various theoretical approaches 

used to examine the electronic structure and optical properties of defects in GaN. Using the  

Heyd-Scuseria-Ernzherof (HSE06) hybrid functional method along with photoluminescence 

experimental measurements, we analyze the properties of intrinsic defects such as vacancies, 

interstitials, antisites, and common complexes. By using configurational coordinate diagrams, we 

estimate the likelihood of defects to be radiative or non-radiative. Our calculations show that 

gallium vacancies exhibit a large magnetic moment in the neutral charge state and are most 

likely non-radiative. This is in contrast to nitrogen vacancies, which are probable sources of the 

experimentally observed green luminescence band (labeled GL2) peaking at 2.35 eV in undoped 
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GaN. We also investigate the correlation between the observed infrared PL bands created in 2.5 

MeV electron-irradiated GaN samples and the formation of native defects. It is found that 

gallium-nitrogen divacancies are possible sources of the broad PL band peaking at 0.95 eV while 

interstitial gallium is likely to be responsible for the narrow infrared PL band centered around 

0.85 eV, with a phonon fine structure at 0.88 eV.  

In addition to native defects, we also investigate the blue luminescence band (BL2) 

peaking at 3.0 eV that is observed in high-resistivity GaN samples. Under extended ultraviolet 

(UV) light exposure, the BL2 band transforms into the yellow luminescence (YL) band with a 

maximum at 2.2 eV. Our calculations suggest that the BL2 band is related to a hydrogen-carbon 

defect complex, either CNON-Hi or CN-Hi. The complex creates defect transition level close to the 

valence band, which is responsible for the BL2 band. Under UV illumination, the complex 

dissociates, leaving as byproduct the source of the YL band (CNON or CN) and interstitial 

hydrogen.  

In conclusion, theoretical predictions of thermodynamic and optical transitions of defects 

in GaN via the HSE06 method are found to be within less than 0.2 eV when compared to 

experiment. Hence the HSE formalism is a powerful tool for the identification and 

characterization of the microscopic sources of observed PL bands in GaN.    
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0. Introduction 

Gallium nitride (GaN) has emerged as an important wide bandgap semiconductor because of 

its proven success in the fabrication of light emitting devices (LEDs),
1
 lasers,

2
 solar cells

3
 and its 

potential for high-temperature/power applications. However, more research still needs to be 

performed so that high quality and cost effective GaN may be synthesized. An important issue 

associated with the growth of GaN is the creation of defects, which may prove damaging to the 

electrical and optical properties of the host material. These point defects include native defects 

(vacancies, interstitial and antisites), intentional or unintentional impurities and complexes 

involving various combinations of isolated point defects. In LEDs, the generation of light is 

hindered by point defect assisted non-radiative recombination (Shockley-Reed-Hall). 

Furthermore, point defects tend to cause a reduction in responsivity and an increase of noise in 

detectors.
4
 Although tremendous progress has been made in the efficient fabrication of electronic 

devices based on GaN, a theoretical understanding of the optical and electronic properties of 

defects in GaN still remains unclear. One of the main reasons is the large amount of 

contradictory results produced by both theory and experiment. Hence, theoretical analysis of 

defects in GaN, based on first-principles calculations that could complement experiments and 

therefore serve as a predictive tool is necessary. 

Kohn Sham Density Functional Theory (DFT)
5
 has proven to be a prevailing tool for 

analyzing and understanding defect energetics and electronic structure in semiconductors. Good 

progress for approximating the crucial exchange-correlation (XC) energy from the Kohn-Sham 

approach has been made in the last decades. One of the most relevant formalisms for the analysis 

of the electronic structure of spin systems is the local spin density approximation (LSDA)
6
. 

Although the construction of the LSDA is based on the uniform electron gas, it has provided 
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acceptable results in crystal structure, bond lengths and vibrational frequencies
7,8

 in both 

homogenous and inhomogeneous systems. However, the LSDA leads to major drawbacks such 

as the inability to describe the magnetic configuration of transition metals, the lack of 

cancelation of self-interaction which is crucial for strongly localized states and the severe 

underestimation of the band gap in semiconductors and insulators. Such shortcomings have 

stimulated ideas for the creation of improved functionals such as non-empirical generalized 

gradient approximations
9
 (GGA). Several sophisticated adaptations of GGA have been 

developed in the last decades
10,11,12,13

, but the most commonly used version is the Perdew-Burke-

Ernzerhof (PBE)
14

 method that employs both the density and its gradient at each point in space. 

Both GGA and LSDA were derived in the limits of the homogeneous electron gas theory and are 

therefore expected to be useful for systems with slowly varying charge densities
15

. These 

formalisms have provided satisfactory results for the computation of molecular binding energies, 

atomic ionization energies and geometrical structure of molecules and solids. The partial error 

cancellation in the exchange and correlation energy parts integrated in both first-principles 

calculations methods provided the accuracy required for DFT to be used in solid states physics as 

well as in chemistry
7,16

. Nevertheless, the underestimation of the band gap in solids remains one 

of the major drawbacks of both LSDA and GGA formalisms.
17,18

  

To remedy the band gap problem and several other unphysical results of LSDA and 

GGA, much effort has been put into the improvement of the XC-parameter
19,12,20

. One of the 

most fruitful approximations in the computation of band gap is described by a combination of 

Green Function and screened Coulomb interaction, often referred to as the GW method
21

. 

However, the GW method happens to be computationally expensive for complex systems. 

Alternative approach that rectified the band gap problem was the construction of a hybrid 
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functional theory that contains a mixture of a certain amount of non-local Fock exchange and a 

part of local/semilocal LSDA/PBE exchange
22,23,24

. Due to the periodicity of the lattice, that 

generates a long range Hartree-Fock (HF) exchange interactions, the use of hybrid functional in 

solid states physics has been inadequate
15,25

. Significant progress into reducing the computational 

effort of calculating the long range Fock exchange has been achieved by the development of the 

range-separated Heyd-Scuseria-Ernzherof (HSE03) functional
26

. This newly derived formalism 

separates the Fock exchange into short-range and long-range components. The short-range 

exchange energy is made of 25% of HF and 75% of PBE, while the long range exchange energy 

and correlation term are entirely represented by the semi-local PBE method.
26

 Such 

modifications would cause major corrections to the electronic properties of the system and can 

therefore be used to compute improved band gaps, bulk moduli and atomization energies of 

solids including semiconductors and metals
26,8,27,28,29

. An in-depth study of electronic structure of 

solids has not yet reached its peak with the development of HSE03 formalism. More detailed 

analysis of energetics of defects in semiconductors
30

, vibrational frequencies of lattice
31,32

, and 

optical properties of semiconductors
33,34,35,36,37

 have been recently performed with the creation of 

the HSE06
31

 approximation. In the HSE06 formalism, further tuning of the screening parameter 

is performed in such way that improved agreement with experimental data is obtained. 

In the first part of this dissertation, we provide a brief description of the nature of defects 

we shall be investigating, followed by a literature review of intrinsic defects in GaN and the 

observed BL2 band in high-resistivity GaN. In sections 2-3, we present an overview of the 

methodology used to perform first-principles calculations of defects and impurities in 

semiconductors. In the last section of the dissertation, we investigate the electronics and optics of 
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intrinsic defects in GaN and the microscopic origin of the BL2 band in high-resistivity GaN 

samples. 
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Section 1. Doping and Photoluminescence in GaN 

 The introduction of defects in a host crystal alters the characteristics of the material in 

various ways. Because of the multiplicity of imperfections that can occur within the lattice, we 

will first describe ways of classifying them and later discuss their role in various observed PL 

bands in GaN.  

 

1.1. Creation of Native Point Defects  

 In this section, the brief analysis on some characteristics of defects in semiconductors is 

based on the detailed review written by S. T. Pantelides (1979)
38

.  Native defects are intrinsic 

imperfections that are formed within the “pure” host lattice and can either be: 

 point defects, which correspond to the imperfect location of atoms  

 planar defects, which describe misplaced planes of atoms 

 line defects which correspond to misplaced line of atoms.  

Since we are only investigating point defects as lattice-type defects in GaN, the characteristics of 

either planar or line defects shall not be discussed in this dissertation. Native point defects 

usually occur in vacant and interstitial sites. In case of vacancies, atoms are missing from their 

regular atomic site. Interstitial point defects describe extra-atoms that occupy highly symmetric 

interstitial sites in the crystal. More details regarding the exact location of various vacant and 

interstitial sites in GaN is given in section 4.1. In addition to native point defects, foreign or 

external impurities may occur inside the crystal and can be classified in terms of their crystal 

locations.  
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1.2. Incorporation of Impurities in the Crystal Lattice 

 Foreign impurities may occur in either interstitial locations or substitutional sites in 

which case the impurity replaces the host atom. Substitutional atoms that generally have more 

valence electrons than the host atoms are called donors since they must donate electrons to the 

host atoms in order to fulfill local bonding requirements. While on the other hand, substitutional 

atoms that possess less valence electrons are called acceptors since they must accept electrons 

from the host atoms in order to bond with their nearest neighbors.  Our definition of donors and 

acceptors is quite general so far, but more descriptive details are given in section 3.4.1. 

Defects may be called shallow when their respective energy levels are very close to the 

conduction or valence band edges. On the contrary, defects are called deep when their respective 

energy levels are far from the band edges. Shallow and deep defects play an important role in the 

properties of a given material and will be discussed in the following section. 

In addition to isolated defects, one must also notice that it is sometimes possible for 

defects to interact with one another and form complexes. The simplest situation is a complex pair 

consisting of two isolated impurities occupying neighboring sites, a vacancy defect and the 

nearest neighbor impurity, and two vacancies defects in neighboring sites. More details on swirl 

defect complexes in Si and dark-like defect complexes in GaAs-GaAlAs can be found in reviews 

written by De Kock (1973)
39

 and Petrov and Hartmann (1973)
40

, respectively.  
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1.3. Shallow and Deep Impurities in Semiconductors 

 Throughout this dissertation, we will be using first-principles electronic structure 

calculations of defects in GaN bulk. In other words, we are solving the Schrödinger equation in 

GaN lattice containing a defect, using periodic boundary conditions. The use of periodically 

repeated supercells
41

 provides a physically appealing description of the defect and its closest 

neighbors. These supercells are composed of numerous primitive unit cells which contain a 

single defect. Even though the supercell technique precisely describes the local arrangements of 

bonding between atoms and the defect crystal structure, it unfortunately introduces some 

drawbacks that need to be corrected such as the divergence of the Coulomb energy for charged 

defects
41

, the possible band-filling error
42

 and the potential alignment
42

 for charged impurities.  

The role that most impurities and defects play in a given semiconductor often depends on the 

concentration in which they can be incorporated in the material and the kind of localized states 

they create in the band gap. In fact, there are fundamental differences in defects’ properties 

depending on the proximity of the defects to the band edges.  

Shallow levels are characterized by their extreme closeness to the band edges at room 

temperature. At such levels, impurities have ionization energies comparable to Bk T  and 

therefore will play a crucial role in controlling conductivity. The case of neutral shallow donor 

impurities in semiconductors requires careful investigation because of its weakly localized 

characteristic. Based on effective mass theory, the wave functions of shallow defects are 

Hydrogen-like and thus relatively spread out in real space. However within the supercell 

formalism, typical supercell is not large enough to completely encompass such widespread wave 

function. In fact, supercells that could contain a weakly localized wave function of a shallow 

impurity would contain tens of thousands of atoms and would therefore be computationally 
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“impossible”. When a shallow defect is computed in relatively small supercell, the impurity band 

level becomes resonant with the CBM. As a result, the electron located at the impurity level will 

drop into the conduction band maximum which becomes a delocalized perturbed host state. Our 

neutral system will therefore be composed of a positive ion surrounded by completely 

delocalized electron charge which is similar to the case of a positive ion sitting in uniform 

negatively charged compensating background. In order to correct such unphysical interactions, 

one must include a special correction scheme, which will be discussed later in Section 3.3.2.1.  

On the other hand, deep impurities have localized wave functions and therefore provide 

levels inside the band gap that could increase the probability of recombination between the 

electrons and holes. In addition to emitting phonons during the recombination process (see 

section 3.4.2.2), photons may also be produced and PL could therefore be measured.  

Now that we have provided a brief introduction of the type of defects we will be looking into, 

a literature review describing previous experimental and theoretical results related to native 

defects in GaN and the observed BL2 band in high-resistivity GaN samples is given in the next 

two sections. 
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1.4. Experimental and Theoretical Background on Native Defects in 

Gallium Nitride  

Knowledge of the electronic properties of defects is important to assess their formation 

during material fabrication and processing. Of particular interest, are the native point defects of 

GaN, such as vacancies and interstitial defects, which may form naturally during sample growth, 

or can be formed as a result of electron irradiation. 

Some native defects, such as vacancies, have been extensively studied experimentally 

throughout the past two decades, while others have been less scrutinized. Isolated Ga vacancies
43

 

(VGa) and the possible complexes with oxygen donors (VGa-ON)
44,45

 have been experimentally 

investigated by positron annihilation spectroscopy (PAS) in bulk GaN crystals and epitaxial GaN 

samples. Based on these experiments, Saarinen et al.
43

 concluded that Ga vacancies are 

negatively charged in both bulk GaN crystals and layers, playing a major role in electrical 

compensation of n-type GaN. Later, Oila et al.
46

 using PAS demonstrated that negatively charged 

Ga vacancy is the most stable acceptor defect in n-type GaN grown by hydride vapor phase 

epitaxy (HVPE). Optical properties of Ga vacancies and related complexes were also 

investigated, and an apparent correlation of the yellow luminescence (YL) intensity with the 

concentration of Ga vacancies was suggested.
43,47,48

 However, other experimental studies have 

shown that vacancies of Ga alone do not account for the YL observed in GaN, with the 

possibility that carbon-related defects are involved as well.
49,50

  

Among other native defects, interstitial Ga has also been extensively studied experimentally. 

In 2.5 MeV electron-irradiated GaN epilayers, optically detected magnetic resonance (ODMR) 

signals at 1.5 K were observed in PL bands peaking at ~0.85 eV and ~0.95 eV.
51

 Based on the 

obtained resolved hyperfine structure, it was suggested that the microscopic origin of one of the 
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ODMR signals was a complex formed by interstitial Ga and another unidentified defect. Further 

ODMR studies on the 0.85 eV PL band were performed by Buyanova et al.
52

 at 2 K and 30 K. It 

was shown that the defect responsible for the 0.85 eV PL band has its principal symmetry axis 

along the c-axis of wurtzite GaN. Bozdog et al.
53

 performed ODMR studies at room temperature 

on electron–irradiated GaN samples, also observing the two infrared (IR) bands centered at 0.85 

eV and 0.95 eV. Two out of the three observed EPR signals revealed strong hyperfine interaction 

with a single Ga nucleus, suggesting that they are related to the isolated interstitial Ga.  More 

recent ODMR studies on electron-irradiated GaN samples were performed at various 

temperatures by Watkins et al.
54

 and Chow et al.,
55,56

 where only the broad 0.95 eV PL band was 

observed from 4.2 K (in-situ irradiation) up to 295 K. Two of the obtained ODMR signals were 

attributed to the isolated interstitial Ga located in either octahedral or tetrahedral sites in GaN. 

Above 295 K, the 0.95 eV PL band lost 80-90% of its intensity while the sharp 0.85 eV PL band 

and its characteristic ODMR signal started emerging.  The changes of ODMR signals band were 

explained by the possible migration of interstitial Ga near the vacant Ga site, from which they 

were created by electron irradiation. However, despite thorough experimental studies of the 

effect of electron irradiation on the properties of GaN, the microscopic origin of the near IR PL 

bands peaking at 0.85 eV and 0.95 eV is still not entirely clear.  

Electrical and optical properties of nitrogen vacancies (VN) and related complexes were 

also investigated in recent experiments, mostly in Mg-doped p-type GaN.
57,58,35

 Nitrogen 

vacancies associated with magnesium acceptors (VN-MgGa), were identified by Hautagankas et 

al.
57

 using positron annihilation spectroscopy (PAS) in Mg-doped GaN. It was suggested that 

VN-MgGa complexes behave as compensating centers in p-type GaN, and that vacancies of Ga 

and N are abundant in both n-type and p-type GaN. Using a combination of ODMR and PAS 
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experiments, Zeng et al.
58

 suggested that the red PL band peaking at 1.80 eV in Mg-doped GaN 

is caused by the donor-acceptor pair recombination, where electrons localized on deep donor VN-

MgGa complexes recombine with holes on deep VGa acceptors. Further investigation of the 

optical properties of nitrogen vacancies performed by Reshchikov et al.
35

 using PL spectroscopy, 

proposed that VN is the best candidate for the green luminescence band (labeled GL2) occurring 

at 2.35 eV in high-resistivity undoped and Mg-doped GaN. However, it was noted that N 

vacancy is present with relatively low concentrations in both types of samples.  

While positron annihilation allows detection of vacancies, the experimental identification 

and characterization of other types of native defects (interstitials, antisites) have been proven 

difficult. Other experimental techniques, such as ODMR or PL spectroscopy provide only certain 

partial information about the nature and properties of these native defects. Therefore, sparse (and 

in some cases contradictory) experimental data suggests that revisiting the basic questions of 

native defects in GaN from the theoretical point of view is in order.  

Theoretical investigations of native defects in GaN have been performed using various 

methods, such as tight binding approximation
59

, empirical potential methods
60

, ab-initio 

Molecular Dynamics
61

, and the density functional theory (DFT).
62,63,64,65

 Early atomistic 

theoretical studies of the electronic structure of vacancies and antisites in GaN were performed 

by Jenkins and Dow
59

 using the tight binding approximation. It was shown that N vacancy is a 

shallow donor in GaN, also creating a doubly occupied deep level within the band gap. Further 

analysis on intrinsic defects using DFT was performed in Refs. [62-64,66] where it was found 

that the most stable native defects in GaN are the compensating defects, i.e. donor nitrogen 

vacancies in p-type GaN and acceptor Ga vacancies in n-type GaN. Antisites and interstitial 

native defects were found to be less favorable. Other theoretical calculations based on the local 
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density approximation (LDA)
5
 using scissor corrections agreed well with previous predictions of 

the deep acceptor properties of VGa but unexpectedly predicted the existence of both donor and 

acceptor states  (up to 3- charge state) for nitrogen vacancy.
65

 Similar DFT calculations 

performed in Ref. [67] suggested that VN should be the dominant defect in both p-type and n-

type GaN annealed samples.
 
 

Although less studied than vacancies, antisites and native interstitials were also addressed 

by theory, producing varying results. By using both DFT and empirical potential methods, Gao 

et al.
60

 obtained the formation energy of neutral antisite NGa which agreed with the value 

obtained by Gorczyca et al.
68

 where the Green’s function technique
69

 was used. However, these 

results were significantly higher than the DFT values obtained by Neugebauer et al.
62

 In the case 

of neutral Ga interstitial, the results obtained using empirical potential methods (Ref. [60]) also 

differ from previous ab-initio calculations performed in Refs. [62-64, 66]. 

In addition to isolated intrinsic defects, properties of di- and trivacancies in bulk GaN 

were also investigated. DFT calculations performed in Ref. [65] showed that Ga-N mixed 

divacancy (VGaVN) behaved as a deep acceptor center. The calculations yielded the divacancy 

formation energy lower than that of VGa, with a substantial binding energy of 2.34 eV (for Fermi 

energy EF >1.5eV). However, more recent generalized gradient approximation (GGA)
9
 

calculations performed by Gohda et al.
70

 and Puzyrev et al.
71

 suggested that divacancies display 

both donor and acceptor properties and are less energetically stable than VGa in n-type GaN (with 

the energy difference ~1 eV). Trivacancies (VGaVNVGa) were also investigated in Ref. [70], 

where it was shown that VGaVNVGa are unstable in p-type GaN but exhibit formation energy 

identical to that of divacancies in n-type GaN.  
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Calculations of defect properties using local (or semi-local) approximations to the DFT 

are prone to inaccuracies due to the known underestimation of the band gap. Recent studies of 

vacancies
72,73,74

 in GaN used non-local screened exchange LDA (sX-LDA) and Heyd-Scuseria-

Ernzerhof (HSE) hybrid functional, which can circumvent the band gap problem. These studies 

showed substantial differences in the electronic structure of defects compared to the results of the 

(semi)local approximations to the DFT. While considered a step forward, the results obtained 

with these new computational methods are also a subject of interpretation. For example, using 

HSE calculations, Yan et al.
72

 suggested that nitrogen vacancy could be a possible source of the 

YL band observed in Mg-doped GaN. On the other hand, hybrid functional calculations based on 

sX-LDA performed by Gillen and Robertson,
73

 associated the YL with the 0/- transition level of 

the gallium vacancy. Recent HSE calculations performed by Lyons et al.
74

 proposed that while 

transitions via 2-/3- level of isolated VGa are most likely non-radiative, VGa complexes with 

oxygen and hydrogen can contribute to the YL band in GaN.  Most recent HSE calculations 

performed in Refs. [75,76] also describe the energetics of native defects in GaN. Both 

calculations indicated that in Ga-rich conditions, VN is the most energetically stable native 

defect.  

Overall, both experiment and theory have produced large amounts of widely varying 

results. On one hand, only limited information for some defects is accessible from experiments, 

while on the other hand, different theoretical approaches often yield conflicting results. 

Consequently, many details of the electronic properties of native defects in GaN remain unclear. 

In addition to native defects, external defects also play a major role in the electrical and optical 

properties of GaN semiconductors.  
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1.4. Blue Luminescence (BL2) in GaN 

For semi-insulating GaN grown by metalorganic chemical vapor deposition (MOCVD), 

two defect-related luminescence bands are typically observed: the omnipresent yellow 

luminescence (YL) band with a maximum at 2.2 eV and a broad band in the blue spectral region. 

The latter has a maximum at 3.0 eV and is labeled BL2 to distinguish it from the blue 

luminescence (BL) band with a maximum at 2.9 eV which is assigned to the zinc substituting 

gallium (ZnGa) acceptor in undoped or Zn-doped GaN.
4,77

 In the literature, the BL and BL2 bands 

are often undistinguished, and both called “the blue band” because they have similar positions. 

However, detailed studies reveal unique features which make it possible to reliably distinguish 

these two defect-related bands.
78,79,80

 The BL2 band usually has a characteristic fine structure at 

low temperatures, with the zero-phonon line (ZPL) at 3.33-3.34 eV and a few phonon replicas 

corresponding to the LO phonon mode (91 meV) and a local or pseudo-local mode (36 meV). On 

the other hand, the Zn-related BL band has a ZPL at 3.10 eV. The BL2 band is observed only in 

high-resistivity or semi-insulating GaN, while the BL band is also observed in conductive GaN 

samples. With increasing temperature, the BL2 band is quenched at temperatures above 100 K, 

revealing an activation energy of 0.15 eV. The activation energy is consistent with the ZPL at 

3.33 eV for this band and indicates that the transition level for the related defect is located at 0.15 

eV above the valence band maximum (VBM). The BL band is quenched at T > 200 K with an 

activation energy of about 0.35 eV. The activation energy is consistent with the ZPL at 3.10 eV 

and it corresponds to the position of the transition level for the ZnGa acceptor at 0.35-0.40 eV 

above the VBM. Comparing these properties, we can conclude that a blue band with a maximum 

at 3.0 eV observed in high-resistivity or semi-insulating GaN grown by the MOCVD technique,
6-

11
 was in fact the BL2 band. 
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An important feature of the BL2 band is that it bleaches during continuous UV 

illumination, indicating unstable behavior (note that the BL band is stable under these 

conditions). Simultaneously with the bleaching of the BL2 band under continuous above-

bandgap illumination, the intensity of the YL band rises. However, in the samples with the Zn-

related BL band, the YL band is always stable. The characteristic transfer of PL intensity from 

the BL2 band (referred to as the “blue band”) to the YL band at low temperature under 

continuous UV illumination has often been reported
7-9,12-15 

and is usually attributed to the 

metastable nature of the related defects.   

Previous predictions suggested that carbon (C) plays a major role in the appearance of the 

BL2 band, since high-resistivity GaN was typically obtained by compensating shallow donors 

with C acceptors. However, the BL2 band can also be observed in high-resistivity undoped GaN 

and GaN doped with Fe.
79

 It was proposed that the BL2 band is associated with some defect 

complex containing hydrogen, and the bleaching is caused by the dissociation of this complex 

under UV exposure.
78,79

 Such an attribution can be supported by the fact that a blue band with a 

maximum at 3.05 eV in Ref. [86] (supposedly BL2) became much stronger after being treated by 

hydrogen plasma at 200C for one hour. Since at the time, the YL band was assumed to be 

caused by the VGaON complex, the BL2 band was tentatively attributed to the VGaON-H 

complex.
79

 However, recent calculations based on hybrid functionals indicate that, depending on 

the sample growth procedure, the YL band can be caused by the isolated CN defect or the CNON 

complex.
33,91,92,93,94

 Furthermore, these calculations suggest that neither the isolated VGa nor the 

VGaON complex can be responsible for the YL band,
92,93,73

 because the related energy levels are 

much deeper than what was previously suggested from density functional theory (DFT).
48,95
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Overall, due to the incessant improvement of first-principles calculations, a more 

contemporary theoretical analysis of the behavior of the bleaching of the BL2 band under UVL 

exposure might be required. In the next section, we will provide a description of various methods 

used for the analysis of the electronic and optical properties of defects in GaN. 
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Section 2. Approximations to the many-body Schrödinger equation 

2.1. Foundation and Importance 

 The understanding of the electronic structure and optical properties of defects in 

semiconductors is based upon theoretical methods of statistical and quantum mechanics. If one 

wishes to discuss the properties of interacting defects within the bulk, it is natural to consider the 

time-independent Schrödinger equation for M electrons with P ions, 

ˆ
Tot Tot Tot TotH E   ,           (2.1.1) 

where ETot represents the total energy of the system and the many-body wave function 

1 1 1 1( ,..., , ,..., ; ,..., , ,..., )Tot M M P Pr r s s r r s s   gives all the necessary information about the 

system. The position and spin of the m-th electron are respectively denoted by ,m mr s  and the 

position and spin components of the p-th nuclei are represented by ,p pr s . The nature of the 

electronic spin component will further discussed in section 2.2.2. The Hamiltonian of our 

previous equation describes the correlated motion of the electrons and nuclei in a many-body 

system that is represented by:  

2 22 2 2
2 2

1 1 1 1 1 1

ˆ ,
2 2

M P M N M P P L
p p l

Tot m p

m p m n m m p p l pe p m n m p p l

Z e Z Z ee
H

m m r r r r r r       

       
  

      (2.1.2)     

where electrons are represented with charge –e and mass me while the nuclei are denoted by 

charge pZ e  and mass mp. In the above equation,  and M N P L  ; the use of different letters 

to denote the maximum number of electrons (M or N) and the maximum number of ions (P or L) 

is for mathematical simplicity that shall become more obvious in the derivation of Koopman’s 

theorem in section 2.2.5. In our molecular Hamiltonian, we suppose that the motion of both the 
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electrons and the nuclei are treated strictly non-relativistically. Although the relativistic 

corrections of the kinetic energy are completely neglected, one must not forget that for heavy 

atoms, relativistic effects play a major role in the structure of the Hamiltonian.
96

  Furthermore, 

the description of ˆ
TotH  will be restricted to a zero temperature formalism. 

The terms of this quite complex molecular Hamiltonian describe 

 The kinetic energy operators for the electrons  ˆ
mT and ions  ˆ

pT : 

 

2
2

1

ˆ
2

M

m m

me

T
m 

             (2.1.3) 

 

2
2

1

ˆ
2

P

p p

pp

T
m 

                 (2.1.4) 

 The potential energy due to electron-electron repulsion and the potential acting on the 

electrons due to the nuclei, ˆ
mpU and ˆ

mpU respectively: 

 

2

1

ˆ
M N

mn

m n m m n

e
U

r r 




           (2.1.5) 

 

2

1 1

ˆ
M P

p

mp

m p m p

Z e
U

r r 




           (2.1.6) 

 And the ion-ion nuclear repulsion potential energy, ˆ
plU : 

 

2

1

ˆ
P L

p l

pl

p l p p L

Z Z e
U

r r 




           (2.1.7) 

A rather rough estimate of the computational complexity of the many-body Schrödinger 

equation is to visualize the fairly vast scale of our resulting Hamiltonian operator. For a typical 

system, the number of electrons is approximately ten times greater than the number of ions and 

the total amount of P ions is quite close to Avogadro’s number, where 
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23 16.02 10AP N mol   . Hence the total number of variables is to the order of 10
24

. For M 

electrons and P ions, the many-body wave function reaches the degree of freedom of 4M+4P and 

therefore the computation of the full many-body wave function remains impossible for real 

systems with more than few electrons. Even though analytical solutions of the Schrödinger 

equations can be solved for few very simple systems
97

,
 
our cases of interest involve optical 

properties of systems that contain tremendous amount of electrons and also thermodynamic 

transition levels associated with deep and shallow defects. A complete description of such 

systems with quantum mechanics is quite complex and thus one requires the use of an 

approximate, more simplified representation of our initial system. 

A convenient way to reduce the scale of our Hamiltonian is to make use of the Born-

Oppenheimer approximation
98

, where the nuclear motion can be separated from the electronic 

motion. Basically in our system, since the nuclei are much heavier than the electrons 

(m )p em , the inverse mass of the p-th nuclei 
1

pm
 becomes extremely small and hence the 

kinetic energy operator for ions 
2

2

1

ˆ
2

P

p p

p p

T
m

    becomes the only negligible term in our 

many-body Hamiltonian. In the Born-Oppenheimer approximation, the electrons will organize 

themselves as if the ions were static and those fixed ions will not affect the states of the electrons 

except as a potential ˆ
mpU . Consequently, the interaction potential between “fixed” m-th and p-th 

ions will become a constant classical electrostatic potential. Hence, by neglecting the kinetic 

energy of ions and setting their potential as a constant electrostatic potential, the many-body 

Hamiltonian becomes the electronic Hamiltonian ˆ
elecH , in which the position of the nuclei are 

only parameters
7
 where: 
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ˆ ˆ ˆ ˆ
elec m mn mpH T U U   ,          (2.1.8)  

By a parametric dependence, we imply that the electrons can instantly adjust to any 

modifications in the nuclear configurations. This means that if one is interested in modifying the 

nuclear positions in any type of calculations, then it is necessary to add the ion-ion repulsion 

energy ˆ
plU  to the electronic Hamiltonian in order to calculate the total energy of the new 

structure.
99

 In order to avoid the messiness of the units of ˆ
elecH , we adopt Hartree atomic units 

04 1ee m     , then the kinetic energy operator for electrons becomes: 

2

1

1ˆ
2

M

m m

m

T


                           (2.1.9) 

The electron-electron interaction potential ˆ
mnU  and the potential acting on the electrons due to 

nuclei ˆ
mpU  are expressed as: 

1

1ˆ
M N

mn

m n m m n

U
r r 




                     (2.1.10) 

 
1 1

ˆ
M P

p

mp

m p m p

Z
U

r r 




                                (2.1.11) 

Even though we have marginally reduced the number of variables in the general Hamiltonian, 

the obtained electronic Hamiltonian still achieves frightening proportions. 

One of the earliest and traditional formalisms that approximates the many-body wave 

function Tot  was derived by Hartree
100

 in 1928 who rewrote Tot  as a product of single particle 

functions, i.e,  

1 2 1 2( , ,..., ) ( ) ( ).... ( )Tot N Nr r r r r r     
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Here we are not accounting for electron spins yet and more details regarding the Hartree 

approximation is given in the next section. Each one of the obtained wave functions ( )m mr  

satisfies a one-electron Schrodinger equation, and the Hartree Hamiltonian yields: 

2 2

2

1 1 1 1

( ) ( )1ˆ
2

M M N M P
pm m n n

Har m m n

m m n m m pm n m p

Zr r
H dr dr

r r r r    

 
    

 
               (2.1.12) 

The second term in the above equation describes the Hartree energy:  

2 2

1

( ) ( )ˆ ,
M N

m m n nHar

mn m n

m n m m n

r r
U dr dr

r r 

 



                 (2.1.13) 

that arises solely from the electrostatic repulsion between electrons (Coulomb’s integral). Further 

analysis of the Hartree formalism and the peculiar structure of its wave function are postponed 

until it can be thoroughly discussed in the next chapter. Although the Hartree model drastically 

decreases the complexity of the many-body Hamiltonian, it does violate the anti-symmetry 

principle of fermions (see section 2.2.1). By implementing the Pauli spin rule into the Hartree 

method, the Hartree-Fock (HF) approach is developed in which the wave function is 

approximated by a combination of anti-symmetric one-electron wave functions (section 2.2.2). 

Nevertheless, the number of variables from such mathematical construct remained very large.  

The very first approach based on electronic density calculations in a many-body system 

was performed by Thomas
101

 and Fermi
102

 in the late twenties. In this scheme, the motion of 

electrons is completely uncorrelated and their corresponding kinetic energies can be described as 

a “functional” of a local density based on free electrons density in a homogeneous electron gas.
97

      

However, in the original Thomas-Fermi (TF) method, the exchange and correlation energies 

among electrons were completely neglected. In 1930, the local exchange effects
103

 were 

proposed by Dirac and became incorporated into the TF original formalism. In the mid-fifties, 
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Slater
104

 proposed a simplification of the HF potential in the  scheme by setting up an average 

local potential field based on the uniform electron gas.
97

 Countless improvements of the HF 

method have been made in the last decades and have been essential to the development to 

modern density functional theory (DFT). In fact, traditional HF wave functions can be used to 

compute fairly precise results for smaller systems, providing benchmarks for further developing 

density functionals, which can hence allow precise electronic calculations of larger systems.
105

  

However, one must wait until the mid-sixties to finally obtain a formalism that does not start 

with too crude approximations
106

, and yet provides certain equilibrium between accuracy and 

computational cost.  

The first thorough and complete proof of the existence of DFT was given by Hohenberg 

and Kohn in 1964.
107

 These authors demonstrated that the ground state electron density of a 

system contains all the information included within its ground state many-electrons wave 

function.
107

 In other words, all characteristics of the systems can be considered as functionals of 

the ground state density.7 Furthermore, they argue that, for any given external potential ˆ
extU  

(which corresponds to the potential acting on the electrons due to nuclei or ˆ
mpU ) if a “universal 

functional” for the total energy of our system were to be known, one would be able to obtain the 

exact ground state energy of multi-electron system by minimizing the total energy of the system, 

with respect to the ground state density.
7
 Such method would allow much larger systems to be 

solved by ab-initio methods, while retaining much of their precision. Nonetheless, precision is a 

quite relative term. Even though theoretically, DFT is an exact theory, its actual performance 

relies on the quality of the approximate density functionals employed.  
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2.2. The Hartree-Fock (HF) method 

2.2.1. Overview of the Hartree approximation 

One of the very first approaches to the multi-electrons problem was proposed by Hartree 

(1928)
100

, in which he assumed that each electron is subjected to a field arising from the 

averaged charge density of each other electron. A very thorough and intuitive description of the 

Hartree method is given by Slater in his first volume of Quantum Theory of Atomic Structure 

(pps. 189, 213). In Slater’s book, it is argued that the sum of the charge densities of the 

remaining electrons surrounding the nucleus is approximately spherically symmetric. As a result, 

the potential arising from the average charge density of electrons and the nucleus is also 

spherically symmetric. In other words, in the Hartree approach, every electron moves in an 

averaged spherical potential field arising from the nucleus and the remaining electrons in the 

system. Such approach is called the central-field approximation and is described in any advanced 

electromagnetism and quantum mechanics book. In order to solve the Schrödinger equation of an 

electron moving in an averaged spherical potential, we first compute the total charge density 

created from the other electrons surrounding the nucleus. Then, we calculate the potential arising 

from the total charge density and we finally ensure that the obtained potential matches the initial 

one that was used in the calculation (self-consistent procedure). However, in the case of electrons 

subjected to a self-consistent field, the motion of the electrons must be solved quantum 

mechanically which therefore over-complicates the solution of the problem. Hartree 

circumvented this problem by using the method of iterations in which: 

 A trial wave function hopefully closed to the final one is initially used. 

 From the trial wave function, the charge density is defined. 
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 Insert the charge densities into the Hamiltonian and solve for the potential. 

 Use the obtained potential in the Schrödinger equation and calculate new wave functions.  

 Start the process again until convergence is obtained. 

Before implementing the SCF approach via the iteration method, one needs to inquire about the 

construction of a wave function of an electron that is subjected to a central potential field. Here, 

each electron interacts with one another only in an average manner. Therefore the probability 

density of an electron must be a product of the probability distributions of the remaining 

electrons. As a result, a trial wave function can be written as a product of one-electron orbitals of 

the form: 

1 2 1 2

1

( , ,..., ) ( ) ( ) ( ) ( )
M

Trial M m M

m

r r r r r r r


                       (2.2.1.1) 

However, electrons are indistinguishable spin particles (fermions), and by exchanging two 

electrons, the wave function must correspondingly switch sign according to the anti-symmetry 

principle. The simple product form in the Hartree wave function is in fact unacceptable since 

interchanging the indices of electrons does not yield the negative of the wave function. Even 

though the Hartree approach is not quite realistic enough for multi-electrons systems, it is briefly 

included in this section just to describe the basic foundations of one-electron approaches. 
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2.2.2. Slater Determinant 

In 1930, Fermi-Dirac statistics
108,109

 became incorporated into the Hartree formalism by 

Fock and Slater
104

, in which the total wave function of an M-electron system is approximated by 

an anti-symmetrized product of I orthonormal spin orbitals ( )i m  110
. The newly derived 

formalism became known as the HF method and the spin orbitals ( )i m   represent one-electron 

wave functions that result from the product of a spatial orbital ( )mr  with a spin part 

 

 

m

s

m

s
m

s






 


. Here  and   are referred as the “up-spin” and “down-spin”, respectively. By 

incorporating a Slater determinant
111

 into the Hartree approximation, Fock proposed an 

antisymmetric M-electron wave function in the form of: 

1 2

1 1 2 1 1

1 2 2 2 2

1 2

1
( , ,..., )

( ) ( ) ( )!

( ) ( ) ( )

          

( ) ( ) ( )

HF M

I

I

M I I M

M
  

     

     

     

                  (2.2.2.1) 

Here m  indicates both spatial  mr  and spin coordinates of the m-th electron. The coefficient in 

front of the matrix represents a normalization factor and within the matrix, we notice that M 

electrons can occupy I orbitals without specifying which electron is in which spin orbital. For 

any arbitrary number of electrons, the Slater determinant expression can be shown to satisfy the 

conditions of the Pauli Exclusion Principle. Although we have satisfied the anti-symmetry 

principle with a Slater determinant, nothing has been said so far about the form of the spin 

orbitals. In order to obtain the best set of wave functions that minimize the total energy of the 

electronic Hamiltonian, one can subject the Slater determinant to the variational principle. In the 
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following section, we describe the variational principle which plays a major role in the Hartree-

Fock formalism.  

2.2.3. The Variational Principle 

We initially start by remembering that any wave function in Hilbert space can be written 

as an infinite linear combination of basis functions  j : 

1 2

1

( , ,..., ) ,HF M j j

j

c  




                     (2.2.3.1) 

where cj are the expansion coefficients.  

The expectation value of the total energy HFE  associated with the above HF wave function is 

given by: 

ˆ
HF elec HF

HF

HF HF

H
E

 


 
                 (2.2.3.2) 

By substituting Eq. 2.2.3.1 into the above equation, we obtain: 

*

*

ˆ ˆ
j j elec j j j j j elec j

j j j

HF

j jj j j j
jj j

c H c c c H

E

c cc c

  

 

   

 

 

  

 

             (2.2.3.3) 

2
*

2 2
*

2

ˆ

ˆ
j j elec j

j

HF j j elec j j j

j j
j

j

c H

E c H c E

c



 



 

     


 


           (2.2.3.4)  

where jE  is the expectation value of the j-th eigenstate of the electronic Hamiltonian for a 

properly normalized HF wave function.  
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By using the same procedure described in Ref. [112], we expand the expression of the average 

HF energy HFE  by explicitly including its 0j   term (ground state energy) in the summation: 

22

0 0

1

HF j j

j

E c E c E




                    (2.2.3.5) 

Here the expansion coefficient  2

0c  corresponding to the true ground-state 0E  can be 

obtained from the definition of the normalization condition: 

 

2 22

0

1

22

0

1

1 1

1

j j

j j

j

j

c c c

c c

 







   

  

 


 

By substituting the above equation in Eq. 2.2.3.5, we obtain: 

2 2

0

1 1

2 2

0 0

1 1

2

0 0

1

1HF j j j

j j

HF j j j

j j

HF j j

j

E c E c E

E E c E c E

E E c E E

 

 

 

 





 
   
 

   

    
 

 

 



  

0 0,HFE E                       (2.2.3.6) 

since 
2

1

0j

j

c




  and we are subtracting the lowest value of the sum of the Ej terms from 

2

0

j j

j

c E




 . Therefore Eq. 2.2.3.6 can be re-written as: 

0HFE E                     (2.2.3.7) 

This means that regardless of the shape of the trial wave function, the expectation value of the 

Hamiltonian operator subjected to the variational principle is always greater than, or equal to the 
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true ground state of the many-body system. Such result is quite encouraging since it appears that 

any variations in the trial wave function which minimize its corresponding energy 
jE  are 

automatically bringing the HF energy HFE  closer to the exact ground state energy 0E . 

However, the practicality of the variational principle depends strongly on the ability to make an 

acceptable initial guess of the unknown wave function, the symmetry of the system and various 

other physical properties.
113

 Now that we have explained the variational principle, let us apply it 

to the HF Hamiltonian and analyze the components of the resultant expectation value.  
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2.2.4. The Hartree-Fock Hamiltonian 

After lengthy mathematical derivations that can be found in most advanced quantum 

chemistry books, we define the expectation value of the HF energy as: 

   

       

1 2 1 2

1

1 1

ˆ( , ,..., ) ( , ,..., )

ˆ       

1 1
                              

2

           

HF HF HF N elec HF N

I

HF i m m i m

i

ii

I J

i n j n i m j m

i j mn

ij

E E H

E h

H

r

J

     

   

       



 

   

 

 
  

 





       
1 1

1 1
                             ,

2

I J

i m j n j m i n

i j mn

ij

r

K

       
 

 

          (2.2.4.1) 

The maximum number of orbitals I is equal to J and mn m nr r r   denotes the distance between 

the m-th and n-th electron. Here, 
2

1

ˆ
2

m K
m

K m K

Z
h

r R


  


  is the one-electron Hamiltonian that 

corresponds to the energy of a single electron moving in the average field of the nuclei alone. 

The Jij term or the Coulomb integral:        
1

,ij i n j n i m j m

mn

J
r

                 (2.2.4.2)          

describes the average electrostatic repulsion energy between electrons occupying the i-th spin 

orbitals  i n  and the j-th spin orbital  j m  . The last component Kij, called the exchange 

integral, is purely quantum mechanical and prevents electrons with identical spins to occupy the 

same orbital. Furthermore, for i = j, the Kij term cancels out the Jij term which consequently 

eliminates the spurious self-interaction term that appears in the approximations to the DFT (see 

sections 2.6.3-2.6.4).  
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From Eq. 2.2.4.1, it appears that the HF energy values is dependent on the form of the 

spin orbital       *or    instead of the variable   which hence makes  HFE      

  *or HFE      a functional of     or   *  . By allowing small arbitrary variations in 

the spin orbital       * * *       , the HF energy functional  *

HFE      can be 

written as: 

         

   

 

   

         

* *

*

* * *

ˆ

ˆ ˆ                                    

ˆ

HF elec

elec elec

HF

HF HF elec

E H

H H

E

E E H

         

       

 

         

    

 

  

         

 

         * * * ˆ
HF HF elecE E H                    

                                  * ˆ
HF elecE H                                  (2.2.4.3) 

where  *

HFE      is the first linear variation of the functional  *

HFE     . Here we have 

chosen small arbitrary variations on  *   instead of  *   for mathematical simplicity. Had 

we decided to select variations on  *   instead of  *  , the end results would be identical.  

By setting  * 0HFE      , for small arbitrary variations, we are seeking the set of spin 

orbitals  *   that yields a minimum energy. However, any arbitrary variations of the form 

     * * *        do not necessarily ensure the orthonormality of the spin orbitals and 

possibly violate the use of HF energy functional which is a function of orthonormal spin orbitals.   
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Therefore, one must constrain the first linear variation of the energy functional   HFE    
 

to the orthonormality conditions or in other words: 

  0HFE       is subjected to    ij i m j m ij                    (2.2.4.4) 

Whenever a minimum is sought and subjected to a specific constraint, the method of Lagrange 

multipliers is generally used in which a linear combination of the variations of the functionals 

EHF and ij  is simultaneously equal to zero. In our case, we obtain: 

 
1 1

0
I J

E HF ij ij

i j

c E c   
 

        

     
1 1

0,
I J

E HF ij i m j m

i j

c E c       
 

                    (2.2.4.5) 

where Ec  and ijc  are arbitrary multipliers attached to the  HFE      and ij , respectively. 

Here, we are enforcing the arbitrarity of the variations of the linear combinations of both EHF and 

ij  functionals, and at the same time automatically incorporating the orthonormality conditions.  

For mathematical simplicity, we divide the above equation by Ec  which yields: 

     

     

*

1 1

*

1 1

1
0

0

I J

E HF ij i m j m

i jE

I J
ij

HF i m j m

i j E

c E c
c

c
E

c

       

       

 

 

 
     

 

    





 

     *

1 1

0,
I J

HF ij i m j m

i j

E        
 

                    (2.2.4.6) 

where 
ij

ij

E

c

c
    are the Lagrange multipliers. More details on the derivation of Lagrange 

multipliers are described by Szabo and Ostlund
114

.  



 

32 

 

By subjecting the expression for the HF functional energy (Eq. 2.2.4.1) to linear variation of first 

order, we obtain:  

1 1 1 1 1

1 1

2 2

I I J I J

HF ii ij ij

i i j i j

E H J K   
    

                    (2.2.4.7) 

The first term of the above equation can be written as: 

   

         

           

1 1

ˆ

ˆ ˆ            

ˆ ˆ ˆ            

I I

ii i m m i m

i i

k m k m k k m k m k k m

k m k k m k m k k m k m k k m

H h

h h

h h h

     

         

           

 



  

  

 

  

   *

1

ˆ
I

ii k m k k m

i

H h    


                   (2.2.4.8) 

Regarding the disappearance of the sum over the i terms, we have dropped all the i terms except 

the one for which its functional derivative yields a non-zero value (denoted with the subscript k). 

For instance, if one is interested in calculating a specific derivative of the summation 
1

I

i

i

x


 , the 

expression can be written as: 

1

13 3

I

i

i

d d
x x

dx dx


0

2

3

d
x

dx


0

3

3 3

I

d d
x x

dx dx
 

0

1 3

                1
I

i

i

d
x

dx

 
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By subjecting the Coulombic term from the HF energy functional to a first order linear variation, 

we obtain: 

       

         

       

1 1 1 1

1

1

1
                

1
                                

                          

I J I J

ij i m j n i m j n

j i i j mn

J

k m k m j n k m j n

j mn

k m j n k m j n

mn

J
r

r

r

         

         

       

   






    




 



 



         

       

1

1
                

1
                                                        

I

i m k n k n i m k n

i mn

i m k n i m k n

mn

r

r

         

       




    




 





 

After cancelation of some of the terms included in the curly bracket, the above equation is 

simplified as: 

               
1 1 1 1

1 1I J I J

ij k m j n k m j n i m k n i m k n

j i j imn mn

J
r r

                
   

     

Since i and j are dummy variables, the above equation can be re-written as: 

               
1 1 1 1

1 1I J J J

ij k m j n k m j n j m k n j m k n

j i j jmn mn

J
r r

                
   

         (2.2.4.9) 

Due to the hermiticity of the 
1

mnr
 operator, the second term of the above equation becomes: 

               
1 1J J

j m k n j m k n k n j m k n j m

j jmn mnr r
                  

By substituting the above equation into Eq. 2.2.4.9, we obtain: 

       
1 1 1

1
2

I J J

ij k m j n k m j n

i j j mn

J
r

        
  

              (2.2.4.10) 
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By applying the same first linear variation procedure to the exchange term, we have: 

       
1 1 1

1
2

I J J

ij k m j n j m k n

i j j mn

K
r

        
  

              (2.2.4.11) 

Now that we have obtained the expression of each component of  *E     , we also subject 

the orthonormality functional  *

ij m      to a first order linear variation where: 

     

           
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1 1
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Ω

Ω

I J
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j
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 
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     *

1

Ω
J

ij m kj k m j m

j

       


                    (2.2.4.12) 

By inserting Eqs. 2.2.4.8, 2.2.4.10, 2.2.4.11 and 2.2.4.12 into Eq. 2.2.4.6, we obtain: 

           
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J J
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         *

1

ˆ ˆ ˆ 0
J

m k m k k m k m k m kj j m

j

d h J K           


 
     

 
           (2.2.4.13) 

where        *

1

1ˆ
J

k m n j n k m j n

j mn

J d
r

        


  is the Coulomb sum,       (2.2.4.13.a) 

and        *

1

1ˆ  is the exchange sum.
J

k m n j n j m k n

j mn

K d
r

        


        (2.2.4.13.b) 
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The Coulomb sum can be written as a product of the Coulomb operator acting upon the  k m   

spin orbital: 

       *

1

1ˆ  
J

k m n j n j n k m

j mn

J d
r

        


 
  
 
                      (2.2.4.14) 

Here the Coulomb operator Ĵ  describes the electrostatic potential felt by an electron located at 

position 
m  from the average electronic charge distribution of the j-th electron at 

n . 

The exchange sum  ˆ
k mK   involves a lot more complexity when compared to the 

Coulombic term as one cannot factor out the  j m   term out of the summation. Since the 

 k m   spin orbital does not appear in the right hand side of the exchange sum equation, the K̂  

operator must involve some type of permutation operation that interchanges the indices of the 

two spin orbitals  k n   and  i m  .
115

 Let us define a permutation operator ˆ
jkP  that acts upon 

the ket-vector    
1

k n j m

mnr
     in such way that: 

       
1 1ˆ

jk j n k m k n j m

mn mn

P
r r

                        (2.2.4.15) 

Let us multiply both sides of the above equation with the bra-vector  j n  : 

           
1 1ˆ

j n jk j n k m j n k n j m

mn mn

P
r r

             
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Then we sum each side of the previous equation over the j terms: 

           

     

1 1

1

1 1ˆ

1
                                                           

                                                        

J J

j n jk j n k m j n k n j m

j jmn mn

J

j n k n j m

j mn

P
r r

r

           

     

 





 
  

 

 



     

 

*

1

1
    

ˆ                                                             

J

n j n k n j m

j mn

k m

d
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      

 









 

Although we have proven that the exchange operator involves some permutation function, we 

have not been able to completely isolate the K̂  operator and derive its corresponding expression. 

Following the derivations of the exchange operator from Kryachko and Ludena
116

 and David B. 

Cook,
115

 we obtain an explicit expression for the exchange operator by multiplying the right-

hand side of Eq. 2.2.4.13.b with a unity expression of the form 
 

 
1

k m

k m

 

 
 , which yields: 
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   
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 
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1ˆ
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n j n j m

j mn k m

K d
r

 
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 

                (2.2.4.16) 

The peculiar looking exchange operator K̂  describes the non-local nature of the exchange 

potential since it operates in both j  and k  spin orbitals which are functions of different 

coordinates   and m n  .  

Now that we have provided a mathematical and physical definition of both Coulombic and 

exchange operator in the HF formalism, let us further simplify Eq. 2.2.4.13. 
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Equation 2.2.4.13 is equal to zero if the variation of the wave function  * 0k m    or the factor 

in the integrand which is multiplied by  *

k m   vanishes. Since  *

k m   was initially defined 

as an arbitrary variation different than 0, the factor in the integrand 

       
1

ˆ ˆ ˆ
J

k k m k m k m kj j m

j

h J K        


 
   

 
  must be equal to zero which results in: 
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       

   

1

1

1

ˆ ˆ ˆ 0

ˆ ˆ ˆ

ˆ ˆ ˆ  which yields:

J

k k m k m k m kj j m

j

J

k k m k m k m kj j m

j

J

k k m kj j m

j

h J K

h J K

h J K

        

        

    







   

    
 

    
 







 

   
1

ˆ
J

k m kj j m

j

f    


               (2.2.4.17) 

where ˆ ˆ ˆ ˆ
kf h J K    is the Fock operator which operates on a single spin orbitals and yields a 

linear combination of spin orbitals multiplied with the Lagrange multipliers. Unfortunately, the 

above equation yields multiple different solutions of the HF equations with each corresponding 

to a different set of Lagrange multipliers. In order to decrease the complexity of the above 

equation, we will be using a unitary transformation matrix U which operates on the HF 

eigenfunctions without modifying the orthonormality conditions.
114,115,117

 By rewriting            

Eq. 2.2.4.17 in matrix form, we obtain: 

ˆ fψ ψε                   (2.2.4.18) 

where  1 2 3, , M   ψ  is the row matrix of the M solutions of Eq. 2.2.4.17. We define the 

unitary M M  matrix U in such way that 1 † †
U U UU .  
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Let us multiply each side of the equation with the unitary matrix U which gives: 

f̂ψU = ψεU  

Then, we will insert the unit matrix of the form †
UU  between ψ andε yielding: 

†

1

2†

ˆ

             

        
ˆ ' ' '  where  '  and '

             

                   M







 
 
     
 
 
 

fψU = ψUU εU

0

fψ ψ ε ψ ψU ε U εU
0

         (2.2.4.19) 

Here 'ε  becomes a unique diagonal matrix which reduces the once complex coupled HF 

equations into individual eigenvalue equations. The above equation can therefore be written in 

the canonical form: 

   ˆ  k m i k mf                      (2.2.4.20) 

Although we have decreased the complexity of the HF equations, we are still left with the 

calculation of the  k m   spin orbitals in multiple regions in space. By using the HF-Roothan 

procedure
111

, we first express the HF spin orbitals as linear combinations of basis functions 

 j m : 

   
1

J

k m ij j m

j

a  


                  (2.2.4.21)          

where ija are the expansion coefficients and J is the size of the basis set. This procedure is very 

similar to the one described in section 2.2.3 but here, we are truncating our basis set to J in order 

to decrease the mathematical complexity.  
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Then, we use an iterative process to solve the one-electron HF equation, in which: 

 we initially generate a Slater determinant from the trial basis set. 

 We later subject the Slater determinant to the Fock operator which encompasses the one-

electron operator, a local Coulomb operator and a non-local exchange operator.  

 We diagonalize the Fock Hamiltonian and obtain its corresponding eigenvalues and 

eigenvectors.  

 In the final step, we compare the obtained spin orbitals with the ones we initially 

estimated. In case that the obtained spin orbitals correspond to our initial guess, the total 

energy and other characteristics of the system can therefore be calculated. On the other 

hand, if the calculated spin orbitals are inconsistent with the initial ones (within some 

acceptable margin error), the trial spin orbitals must be updated by using the same 

iterative process. Such procedure is called the HF self-consistent-field method since 

orbitals are obtained from their own effective HF potential and keep being updated 

trough an iterative process until convergence is reached.  

More details regarding the derivation of the HF-Roothan
111

 equations and the description of each 

step in the SCF calculation equations are given in Ref. [114]. Although at first, solving the 

canonical HF equations appears achievable, the accuracy of the HF formalism relies heavily on 

the specification of the expansion coefficients. Furthermore, the Fock operator includes an 

average local Coulombic term and a complicated non-local exchange operator which depend on 

a set of spatial orbitals in both positions nr  and mr . Accurate calculations of either term require 

drastic computational time and effort for systems with more than few electrons.  

In the derivation of the Fock operator, we have so far restricted the wave function of the 

system to a single Slater determinant in which electrons of both spin quantum numbers occupy 
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the same spatial orbital. Such mathematical construct is called the restricted HF (RHF) wave 

function. Although the HF guarantees a minimum in the total energy associated with the basis 

set, it does not necessarily guarantee a physical meaning of the resulting spin orbitals. This point 

is described in the simple example of the H2 molecule in which a RHF wave function yields 

ionic terms and hence completely wrong dissociation energies.
118

 Circumventing such problem 

could be obtained by approximating the wave function of a many-body system with a linear 

combination of Slater determinants (unrestricted Hartree-Fock). In other words, the calculation 

in the unrestricted HF (UHF) approach allows either paired or unpaired electrons to occupy 

different spatial orbitals. As a result, the total HF energy from the UHF methods yields lower 

energy than the one obtained from the RHF method. However, for the case where both nuclei in 

the H2 molecule are widely separated, the UHF methods yields unphysical mixture between the 

singlet and triplet state of the H2 molecule and also still slightly overestimates the total energy of 

the system.
118

 This overestimation of the ground state energy whether it is in the RHF or UHF, 

emerges from the many-body correlation effects which correspond to the energy of the correlated 

motion of electrons.  

Within the HF approach, although the exchange energy is treated exactly, the Coulombic 

term is computed in an average manner. Consequently, the electrostatic repulsion between 

electrons is overestimated yielding the value of the total HF energy functional greater than the 

true ground-state energy.  In other words, within the HF scheme, electrons tend to be too close to 

one another regardless of their spin quantum number. This correlation error in the HF method 

 HF

CE  is defined as the difference in energy between the total HF energy (EHF) and the true 

ground state energy  0E  of a many-body system: 

0

HF

C HFE E E  .  
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Since the HF energy is derived from the variational principle in which 
0HFE E , the correlation 

energy must be positive.  

If one is interested in circumventing the correlation effects and going beyond “simple” 

HF-SCF procedures, the use of expensive post-HF methods such as the configuration interaction, 

coupled cluster, Moller-Plesset perturbation theory and the quadratic configuration interaction is 

required.  Unfortunately, several of these post-HF methods are only possible for relatively small 

number of atoms due to the exponential increase of computational expense associated with the 

size of the system and the number of basis functions.  

Although we have discussed the intrinsic errors associated with the HF formalism, we 

have not discussed the obtained orbital energies 
i   derived from the canonical HF equations in 

Eq. 2.2.4.19. Further physical insight regarding 
i   is done in the next section.  
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2.2.5. Koopman’s Theorem 

From the compact form of the canonical HF equations (Eq. 2.2.4.20) that resemble the 

Schrödinger equation, one would be tempted to deduce that the orbital energy corresponds to the 

eigenvalue of an electron occupying the spin orbital  k m  . However, by multiplying both 

sides of the canonical HF equation by  *

k m   and integrate over the 
m  coordinates, we obtain: 

       

   

       

* *

*

* *

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

k m k m m k m k k m m

k m k k m m k

k m k k m m k m k m m k

f d d

h J K d

h d J K d

          

     

          

    

      
 

          
  

 



 

 

   

       

       

1

1

ˆ

1
                      + + 

1
                                    

k k m k k m

J

k m j n k m j n

j mn

J

k m j n j m k n

j mn

h

r

r

    

       

       





   

 

 





            (2.2.5.1) 

Let k i , lift the prime indexes and sum both sides of the above equation over the i terms: 

   

       

       

1

1 1

1 1

ˆ

1
                      + + 

1
                                    

I I

i i m k i m

i i

I J

i m j n i m j n

i j mn

I J

i m j n j m i n

i j mn

h

r

r

    

       

       



 

 





 





           (2.2.5.2)         
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By comparing the expression of the sum of the orbital energies 
i  to the expression of the total 

HF functional (EHF) derived in Eq. 2.2.4.1, we notice that: 

       

       

1 1

1 1

1 1
+ 

2

1 1
                                    +

2

I I J

HF i i m j n i m j n

i i j mn

I J

i m j n j m i n

i j mn

E
r

r

        

       

 

 

  



           (2.2.5.3) 

Therefore within the HF approximation, the total energy is not equal to the sum of the orbital 

energies since such a sum double counts the electron-electron interactions. This difference in 

energy arises from the approximation of a true many-body system in terms of single-particle spin 

orbitals. 

In order to obtain a physical interpretation of the orbital energy, let us compare the 

difference in energy between the total HF energy of an I-orbital-electrons system and an ionized 

system in which an electron has been removed from the highest occupied level of the I-th spin 

orbital, i.e,  the  1I  orbital configuration.  

Assuming that the remaining 1I   electrons do not re-arrange their distribution (electronic 

relaxation) once the electron is ejected, the difference in energy is written as: 

           

       

   

1

1

1 1 1

1 1

1

1

1 1ˆ         
2

1 1
                  

2

ˆ                                 +

J

HF HF HFI I

I I J

i m i i m i m j n i m j n

i i j mn

I J

i m j n j m i n

i j mn

I

i m i i m

i

E E E

h
r

r

h

           

       

   





  

 





  


 



 



 



        

       

1 1

1 1

1 1

1 1

1 1

2

1 1
                                                             

2

I J

i m j n i m j n

i j mn

I J

i m j n j m i n

i j mn

r

r

       

       

 

 

 

 







 






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         (2.2.5.4) 

In order to simplify the above expression, let us first work on a simple example that involves the 

difference between two summations that involve inner products of spin orbitals. Define a 

function 
I

F where: 

       

     

3 3

1 1

* * * * * *

1 2 3 1 2 3 1 2 3 1 2 3 ,

i j i jI
i j

I

F

F d d

       

             

 

 

          



 

 

       

     

2 2
1

1
1 1

1 * * * *

1 2 1 2 1 2 1 21

and

.

J

i j i jI
i j

J

I

F

F d d

       

         




 





 

      



 

 

   

       

1 * * * *

3 1 2 3 3 1 2 31

3
1

3 31
1

Then: 2

2

J

I I

J

j jI I
j

F F F d d

F F F

         

       










          
 

     

 


 

By applying the same logic into Eq. 2.2.5.4, HFE is simplified as: 

   

       

       

1

1

1

1

ˆ         

1 1
                        2

2

1 1
                                  2

2

J

HF HF HFI I

I m I I m

J

I m j n I m j n

j mn

J

I m j n j m I n

j mn

E E E

h

r

r

   

       

       









  

 

 
  

 

 
  

 





             (2.2.5.5) 
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Since 
1

mnr
 is a Hermitian operator, we can exchange the indices of the orbitals if performed 

simultaneously in either side of the operator: 

   

       

       

1

1

1

1

ˆ         

1
                        

1
                                  

J J

HF HF HFI I

I m I I m

J

I m j n I m j n

j mn

J

I m j n j m I n

j mn

E E E

h

r

r

   

       

       









  

 

 
  

 

 
  

 





            (2.2.5.5) 

where  I m  is the highest occupied spin orbital. By comparing the above equation with        

Eq. 2.2.5.1, we notice that: 

1

1
,

J J

HF HF HF II I
E E E 




      

where I  is the energy of the highest occupied molecular orbital. From the definition of the 

ionization potential IP from which: 

1

1
,

J J

HF HF HF II I
IP E E E 




                      (2.2.5.6) 

we have proven Koopman’s theorem which states that for “frozen” orbitals, the negative of the 

orbital energy of the highest occupied molecular orbital corresponds to the first ionization 

energy.  
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Likewise, the HF orbital energy can also be related to the electron affinity (A), i.e, the 

energy required to add an electron into an empty HF orbital. By definition, the electron affinity is 

expressed as: 

1

11
,

J J

HF HF II I
A E E 




                     (2.2.5.7) 

where 
1I 
 corresponds to the energy of the lowest unoccupied orbital. Nevertheless, we expect 

Koopman’s predictions for the first ionization potential and electron affinity to be only an 

approximation. The use of Eqs. 2.2.5.6 and 2.2.5.7 views the ionization potential (electron 

affinity) as a simple removal (addition) of an electron without reorganization of the remaining 

electronic charge. This complete lack of relaxation overestimates both the values of 
1

1

J

HF I
E




 for 

the IP and 
1

1

J

HF I
E




 in the calculation of A. Consequently, one would deduce that Koopman’s 

theorem would yield ionization potentials that are too positive when compared to experimental 

data while it would underestimate the electron affinities of molecules. In addition to relaxation 

errors, Koopman’s approximation does not take into account correlation effects (intrinsic 

inaccuracy in HF theory) of a many-body system. As we have previously discussed, the HF 

correlation energy is calculated to be positive and we hence expect the energy of the neutral 

molecule 
J

HF I
E  to yield greater correlation energy than the energy of the cation 

1

1

J

HF I
E




 (since 

the neutral molecule possesses more electrons than its corresponding cation). Given that the 

relaxation energy overestimates 
1

1

J

HF I
E




 and the correlation energy overestimates the value of 

J

HF I
E , we should presume a partial cancellation of errors in using Koopman’s approximation of 

the first IP of molecules. Nonetheless, regarding the calculation of the electron affinity, the 
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correlation error of the anion adds to the relaxation error when computing the value of 
1

1

J

HF I
E




 

which consequently yields inaccurate predictions of the first electron affinities in molecules.  

Overall, Koopman’s predictions of first ionization potentials are only reasonable first 

approximation to experimental IP in molecules. However, in solids, Koopman’s approximation 

of the IP tends to produce worse results since the correlation and screening effects become more 

pronounced due to periodic boundary conditions.  

In conclusion, we have seen that in the HF method, the many-body wave function is 

expressed a Slater determinant that is constructed from a set of I one-electron spin orbitals. 

However, from the constrained form of a Slater determinant and the treatment of the electrostatic 

interaction between electrons in an average manner, we either obtain optimized spin orbitals that 

are physically unreasonable or an overestimation of the ground state energy of a multi-electron 

system.   

Instead of approaching the multi-electron problem from a rather complex wave function 

standpoint, one might reconsider approximating the solution of the many-body Schrodinger 

equation from an electron density perspective. By using an electron density type of approach, 

one can tentatively decrease the complexity of the non-local exchange interaction term and 

possibly improve inter-electronic correlation effects. To appreciate the full extent of the use of 

electron density in the approximation of the Schrödinger equation of a many-body system, a 

brief analysis of the concept of functionals is given in the following section. 
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2.3. Functional and Functional derivatives 

 The mathematical and physical explanations of functional and functional derivatives are 

crucial if one needs to understand the quantum mechanical treatment of interacting electrons in 

terms of DFT or hybrid functional theories.   

A functional is closely related to the more familiar concept of a function and one recalls 

that a function f is defined to be a mapping of a variable y to a number f(y). A functional, on the 

other hand, i.e [ ( )]F f y , assigns a unique number to an entire function and is therefore a 

mapping of a function f onto a value or number.
110

 In other words, a functional can be roughly 

defined as a function of a function. A fairly simple example of a functional can be 

conceptualized by looking at the total charge enclosed Q  in a closed surface S bounded by a 

given volume  : 

( ) [ ( )]Q n r dr Q n r


            (2.3.1) 

where ( )n r  is the total charge density of the system. From this functional, we notice that 

[ ( )]Q n r  is a rule for going from a function ( )n r to a number Q . The square bracket notation 

[ ( )]Q n r  indicates that Q  depends on ( )n r everywhere in the volume  . Moreover, [ ( )]Q n r  is a 

local-functional since the functional does not depend on its gradient, Laplacian or other higher-

order derivatives. More detailed analysis of functionals is given by Volterra
119

 (1959), and Parr 

and Yang
110

 (1989). 

Differentiation of functionals is an extension of the concept of partial differentiation for 

multi-variable functions
120

. Functional derivatives basically allow us to study how a functional 

changes with respect to variation of a function f at the point y. Let a function f(y) be defined over 

a specific interval min max[ , ]y y , and be a subject to an arbitrary small perturbation ( )f y  that is 
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of the form      f y f y f y  . Then the perturbation ( )f y  is also defined over the same 

interval 
min max[ , ]y y . For some functional [ ( )]F f y , the value of    [ ]F f y f y  can be 

therefore approximated by using a Taylor’s
121

 expansion in powers of the perturbation ( )f y :  

     
max

min

1[ ] [ ] ( ) ( )

y

y

F f y f y F f y y f y dy       

max

min

2 1 1 1 2

1
( , ) ( ) ( ) ...

2!

y

y

y y f y f y dy dy        (2.3.2) 

              

where 
 

1( )
( )

F f y
y

f y





     is the first Taylor’s expansion coefficient and describes the rate of 

change of the functional or the functional slope for a small variation of f at y. Correspondingly, 

 2

2 1

1

( , )
( ) ( )

F f y
y y

f y f y



 

     is the second Taylor’s expansion coefficient and described the rate of 

change of the functional when f is simultaneously subjected to small perturbations at y and y1. 

Since the functional derivative only measures the first order change in a functional, the second 

integral of Eq. 2.3.2 is neglected; hence the quantity 
 

( )

F f y

f y





    becomes the functional 

derivative of F with respect to f at the point y and Eq. 2.3.2 can be approximated as: 
110

 

     
 

     
 

max

min

max

min

( )
( )

( )
( )

y

y

y

y

F f y
F f y f y F f y f y dy

f y

F f y
F f y f y F f y f y dy

f y


 




 



          

           





  

 
 max

min

( )  
( )

y

y

F f y
F f y f y dy

f y


 



              (2.3.3) 



 

50 

 

If the functional is a function of another function and a constant k, i.e.  ,F f y k   , then 

according to Ref. [110], the partial derivative of F with respect to the constant k is expressed as: 

   

 

 , ,F f y k F f y k f y
dy

k f y k





        
          (2.3.4) 

In case that a function of a functional such as   F f y     is differentiable, we obtain from the 

chain rule:
110

 

  
 

  
 

 

 

F f y d F f y F f y

f y f ydF f y

 

 

           
  

       (2.3.5) 

Now that we have briefly described what a functional is and how to differentiate functionals, we 

can introduce the Hohenberg-Kohn theorems in the following section. 
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2.4. The Hohenberg-Kohn (HK) theorems 

 One may argue that the very core of the entire field of DFT rests on the two HK 

theorems.
7
 Before introducing the HK theorems, let us introduce the concept of electron density 

and the components of the HK Hamiltonian.  

Associated with each individual electron, there is a spin orbital  ,m r s  whose intensity 

at position r  denotes the probability P of finding the m-th electron in a volume element dr  at a 

point r : 

   

 

*

2

, ,

,

m m

m

P r s r s dr

P r s dr

  

  
  

By dividing both sides of the above equation by the volume element dr , we obtain the 

probability density or the charge density of the m-th electron ( )mn r  which is expressed as: 

 
2

( , ) ,m mn r s r s   

The total charge density is then expressed as: 

 
2

, 1 , 1

( , ) ( ) ( ) ( , ) ,
M M

m m

s m s m

n r s n r n r n r s r s 
   

 
     

 
     
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By taking the integral of each side of the above equation over the volume element dr : 

 

 

2

, 1

2

, 1

, 1

( , ) ,

( , ) ,

( , ) 1

M

m

s m

M

m

s m

M

s m

n r s dr r s dr

n r s dr r s dr

n r s dr







 

  

 

 

 



 

( , )n r s dr M            (2.4.1) 

where M is the total number of electrons. The inclusion of spin is mathematically intricate and 

not necessary for the discussion of the HK theorems. Further discussion related to spin character 

of the charge density is given in section 2.6.  In non-spin polarized systems, the total number of 

electrons M is expressed as: 

( )M n r dr                        (2.4.2) 

Now let’s consider M interacting electrons subjected to an external potential energy ˆ
extU , which 

operates on the coordinates of each electron as: 

 
1 1 1

ˆ ˆ
M P M

p

ext mp ext m

m p mm p

Z
U U u r

r r  

  


          (2.4.3) 

where  
1

P
p

ext m

p m p

Z
u r

r r




 . 

Thus far, we have defined ˆ
extU  as an operator function of the position of each electron and nuclei 

while M denotes the total number of electrons in the system.  



 

53 

 

Therefore, ˆ
extU  and M establish all properties for the construction of the electronic HK 

Hamiltonian: 

ˆ ˆ ˆ ˆ +HK m mn extH T U U             (2.4.4) 

Here ˆ ˆ and m mnT U  are the kinetic and electron-electron potential operator describes in Section 2.1. 

By applying the variational principle (see section 2.2.3) to the HK Hamiltonian, one can 

“technically” obtain the ground state wave function which consequently allows the calculation of 

the ground state energy and any other properties of the system.  Therefore, the external potential 

and M indirectly determine all the properties required for the calculation of the ground-state 

density ( )n r  of the system. 
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2.4.1. The first HK Theorem  

The first theorem established by Hohenberg and Kohn substitutes ˆ
extU  and M for the use 

of the electronic density ( )n r as a variable. The correlation between the external potential and the 

electronic density can be regarded as follows: 

For any system of M interacting electrons subjected to an external potential, the external 

potential is a unique functional (within a trivial additive constant) of the electronic 

density ( )n r .
110,107

 Schematically, this can be expressed as: 

   ˆ ˆ( ) , ( )ext HKn r M U H E n r                                 (2.4.1.1) 

In other words, the electron density uniquely defines all electronic properties of the system. The 

proof of the first theorem is quite straight-forward and can be obtained via the indirect 

contradiction method (reduction ad absurdum) described in any DFT book. Since the total 

energy is a unique functional of the electron density, the expectation values of each component 

of the previously derived HK Hamiltonian (Eq. 2.4.4) can be expressed as: 

        ( ) ( ) ( ) ( )  HK m mn extE n r T n r U n r u r n r dr                  (2.4.1.2) 

     ( ) ( ) ( )HK HK extE n r F n r u r n r dr    ,                                                                      (2.4.1.3) 

Here  ( )HKF n r  is the HK functional that describes the expectation value of the kinetic and 

electron-electron potential energy operators. On the contrary to the   ( )extu r n r dr  term, the HK 

functional  ( )HKF n r  is completely independent of the total number electrons M, the nuclei 

configurations rp and atomic number Zp of the nuclei. Hence  ( )HKF n r  is a universal functional 

that can in principle be used to solve exactly the many-body Schrödinger equation. Although the 
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first HK theorem rigorously proves the existence of  ( )E n r  that can be used to solve the many-

electron system, the theorem says nothing on how to minimize it and how to obtain a correct 

electronic density.  

2.4.2. The second HK Theorem      

Fortunately, the second HK theorem describes a central property of the functional. It 

states that for any positive trial electron density ( )Trialn r  such that ( )TrialM drn r  , its 

corresponding HK energy functional  ( )TrialE n r  is always greater than or equal to the true 

ground state energy. In other words: 

     

     

0 0

0 0 0 0 0

( ) ( ) ( )  if ( ) ( )

or ( ) ( ) ( )  if ( ) ( )

Trial HK Trial ext Trial Trial

HK ext Trial

E n r F n r u r n r dr E n r n r

E n r F n r u r n r dr E n r n r

   

   




  

From the above expressions, one can therefore vary the electron density until the energy of the 

functional is minimized, hence giving a prescription for the calculation of the appropriate 

electron density.
122

 Nevertheless, the domain over which  0 ( )E n r  is defined is only for the set 

of electronic densities for which one must find a ground state (belonging to some external 

potential ˆ
extU ) that minimizes the total energy. More details regarding the M- and ˆ

extU -

representability is given in Engel and Dreizler (2009)
96

 [pps. 29-31]. Further simplicity over the 

domain search of  0 ( )E n r  is obtained via the Levy constrained-search-formalism
123,124,125,126

  in 

which an extra step is added to the HK search method. Here the search for the true ground state 

energy is performed in two stages:
 118,127  
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 Stage 1: 

We initially search over a subset 
1  of all antisymmetric M-electron wave functions that 

upon integration generate a specific density  
1

n r


 (subjected to the constraint 

( )M drn r  ) that gives the overall lowest energy for this particular density  n r


. This 

can be pictorially expressed as: 
 

1

ˆ ˆ ˆmin  +U Um mn ext

n r

T




    

 Stage 2: 

We then eliminate the constraint of a specific density and spread the search over the set 

of all densities  1 2, , M   until we find the density that yields the overall lowest total 

energy. This is schematically represented as: 

 
   

 1 2

0

, ,

ˆ ˆ ˆmin min  +U U

M

m mn ext

n r n r

E n r T


  

  
       

  

             (2.4.2.1) 

In other words, we are searching over all allowed antisymmetric M-particle wave functions until 

finding an electronic density which, among the set of densities, generates the minimum value of 

ˆ ˆ ˆ +U Um mn extT  . By applying the Levy-constrained
123-126

 search formalism to the HK universal 

functional FHK, we have:  

 
( )

ˆ ˆ( ) min  +UHK m mn

n r

F n r T


    

Here, FHK searches over all the ensemble of statistical mixtures which yield the best density 

( )n r , and provides the minimum expectation value ˆ ˆ +Um mnT . This approach eliminates the M- 

and ˆ
extU -representability problems from the second HK theorem and provides an easier way to 
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carry out the domain search. Such method is analogous to the variational principle discussed in 

section 2.2.3 and the method of Lagrange multipliers described in section 2.2.4. However, in the 

HK case, instead of imposing the constraints of orthonormality conditions (HF formalism), we 

shall impose the constraint ( )M drn r  , which can be written as: 

  0,HKE n r      

subjected to     0.n r M drn r                       (2.4.2.2) 

By using the same procedure used in the derivation of the Lagrange multipliers for the HF 

functional, we obtain: 

   Θ 0,HKE n r n r                                      (2.4.2.3) 

where   is the Lagrange multipliers that ensures the correct value of M. For any small variations 

of the electron density of the form      n r n r n r  , the functional derivative of  n r    

can be expressed as:  

       

     

  

 

       

n r

n r n r M dr n r n r

n r n r M drn r dr n r

n r n r n r dr n r

 

 

 



           

       

          



 



 

   Θ n r dr n r                       (2.4.2.4) 

By inserting the above equation into Eq. 2.4.2.3, we obtain the following: 

    0HKE n r dr n r         

 

 
 

HKE n r

n r






                      (2.4.2.5) 
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From the above equation, we are allowing any infinitesimal variations of the electron density, 

which indirectly suggest the existence of the total HK energy functional  ( )E n r  for fractional 

particle numbers. Nonetheless, all energy functionals that were described up to now were only 

defined for the integer number M. Consequently, one needs to find a way to extend the 

expression of the total HK energy functional to non-integer numbers.  

 

2.4.2.1. Non-Integer Particle Number and Derivative Discontinuity 

 Very thorough mathematical and physical explanations of the derivative discontinuity in 

DFT is given in Ref. [141] and by Engel and Dreizler 
96

 (pps. 37-39). In this section, we will be 

using the very intuitive description of C. Ullrich
127

 (pp. 24-25) to introduce the concept of 

derivative discontinuity. Let us define a trial density  Trialn r  that integrates up to M q  as: 

 Trialdrn r M q   

where M = 1, 2, 3,… and 0 1q  . At the extremum values of   0 or 1q q q  , the trial density 

integrates to the integer number M and Eq. 2.4.2.5 can be expressed as: 

 

 

   

 
,

HK HK
E M n r M n rdE M

n r dM n r

 


 

                     (2.4.2.1.1) 

which follows from the differentiable functional rule of Eq. 2.2.5.   
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For any small variations of the form      n r n r n r  , the functional derivative of M from 

Eq. 2.4.2.2 can be written as: 

     

  

 

       

   

 

 
1

M n r

M n r n r drn r dr n r

M n r n r M n r dr n r

M n r dr n r

M n r

n r

 

 

 





    

         

   

   

 




 

By substituting the above equation into Eq. 2.4.2.1.1, the Lagrange multipliers can be expressed 

as: 

 
,

HKdE M

dM
                  (2.4.2.1.2) 

In other words, the Lagrange multipliers   denote the chemical potential of an M –integer 

electrons system. 

Now, let us create an open M-electrons system containing a gap that is attached to some 

type of electron reservoir. In such case, the chemical potential   behaves very much like the 

Fermi level in semiconductors at low temperatures; where all levels below   become occupied 

and the levels above   are completely empty. Once the levels’ occupational number in the open 

system changes, i.e. the lowest unoccupied level becomes occupied, an additional electron is 

therefore allowed to be added into the system and the total number of electrons will immediately 

change from M to M+1. In order to reflect the new change in occupational number, the chemical 

potential will increase by a value consistent with M+1. Therefore,   can be represented as a 

mathematical step function of the total particle number. Now that we have briefly described how 
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an M-electrons system changes once we add an electron, let us relate it to the trial density 

 Trialn r  that integrates to non-integer particle number M q .  

From statistical mechanics, the probability density  1

0

MP   for an M+1-electrons pure 

state  1

0

M   containing fractional occupation number q is given by:
141

 

     1 1 1* 1

0 0 0 0 ,M M M MP qn r q r r                    (2.4.2.1.3) 

while the electronic probability density  0

MP  of the M-electrons pure state is expressed as:
141

 

         *

0 0 0 01 1M M M MP q n r q r r                 (2.4.2.1.4) 

Therefore, the total probability density that integrates to a non-integer particle number is 

achieved via the sum of the probability ground state densities of the M- and M+1-electrons 

system: 

1

0 0 0

M MP P P   

         1* 1 *
0 0 0 0 01M M M MP q r r q r r                   (2.4.2.1.5) 

The derivation of 0P  is based on quite loose mathematical arguments, but more accurate 

formulation is described in Ref. [141]. By using the same statistical argument from the previous 

equation on the total HK energy for fractional number, we obtain:  

       1E M q qE M q q E M                  (2.4.2.1.6) 

From the above expression, we therefore conclude that the energy for fractional numbers is a 

piecewise linear function that displays kinks or derivative discontinuities at integer values 

(schematically shown in Fig. 1).  
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Now let us relate the bandgap of our open system to the HK derivative discontinuities 

that we just discussed. By definition, the bandgap (Eg) is given by: 

gE IP A                   (2.4.2.1.7) 

where IP and A are the ionization potential and electron affinity discussed in section 2.2.5, 

respectively. For mathematical simplicity, let us define the fractional particle number M q  as: 

N M q  .                 (2.4.2.1.8) 

For any infinitesimal deviations of N  of the form N  , the limits of the derivatives of the 

piecewise function    E M q E N   (shown in Fig. 1) can be expressed as: 

   

 
   

0 0
lim lim 1 ,

HK

N

N N

E n rE N
E M E M IP

N n r 
 




 
 

         


                (2.4.2.1.9) 

   

 
   

0 0
lim lim 1 ,

HK

N

N N

E n rE N
E M E M A

N n r 
 




 
 

         


         (2.4.2.1.10)   

where 
N 




 is the chemical potential described in Eq. 2.4.2.5 which can either correspond to the 

ionization potential (IP) or the electron affinity (A).  Therefore, the HK bandgap is given by: 

 

 

 

 
,

HK HKHK

g

N N

E n r E n r
E IP A

n r n r
 

 

 
 

                   (2.4.2.1.11) 

which means that 
HK

g gE E  since 
 

 
HKE n r

n r





    is undefined at the extremum values of q. In 

other words, the band gap of an interacting system differs from the HK bandgap by the 

magnitude of the derivative discontinuity. More details on the physical meaning of the derivative 

discontinuity are given in page 27 of Ref. [127]. 
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Although the two HK theorems discussed in the above sections provide an exact 

approach to solve the many-body Schrödinger equation via the electronic density, nothing about 

the explicit form of the universal function FHK  is discussed. Hence, we are still left with the 

initial problem of a multi-electrons system subjected to an external potential with no acceptable 

solution in sight. In the following chapters, we will discuss various methods that allow possible 

construction or approximation of the universal functional.  

 

 

Figure 1: Schematic illustration of the Hohenberg-Kohn total energy ( )E N  as a function of 

non-integer number N. At extremum values of q, there are kinks for which 
( )dE N

dN
 does not 

exist. Here IP and A denote the ionization potential and electron affinity, respectively.   
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2.5. Thomas-Fermi-Dirac approximation 

 Even though the Thomas-Fermi-Dirac (TFD)
101,102,103

 approximation historically 

precedes the HK theorems, we decided to introduce the TFD method right after the brief 

description of the HK theorems. Such odd structured plan can be justified since one requires the 

HK theorems to validate the use of electron density functional as a method to possibly solve a 

multi-electrons system. 

A simple, although crude method to solve the many-body Schrödinger equation was 

provided in the early days of quantum mechanics by expressing the total energy of the system as 

a functional of a one-electron density: 

     
1 ( ) ( )ˆ ˆ ( ) .
2

TF TF ext

n r n r
H n r T n r dr dr u r n r dr

r r


                             (2.5.1) 

In such formalism, the electron-electron interaction potential is approximated with the Hartree 

term that was introduced in section 2.1 while the electron-ion term is represented by the external 

potential (cf. section 2.1). However, we are still left with the construction of the complex kinetic 

energy functional.  

The starting point for the development of the kinetic energy functional in the TF method 

was to express the kinetic operator as the sum of one-electron kinetic operator: 

   
1

ˆ ˆ
M

TF TF m

m

T n r t n r


                             (2.5.2) 

The expectation value of the above expression is given by: 

     ˆ ˆ
TF TF TFT T n r t n r n r dr                  (2.5.3) 
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The TF approach to the description of the kinetic operator is based on the motion of non-

interacting electrons in the uniform gas model. In such model, electrons are completely free, 

except for an attractive potential of a smeared out positive background. The confinement of 

electrons in the cube is imposed by subjecting the system to periodic boundary conditions. Then, 

we define a Fermi sphere of radius kF (Fermi momentum) for which all states outside of the 

sphere are empty and the ones inside the sphere are occupied by two electrons subjected to the 

Pauli spin exclusion principle. As a result, the total number of electrons Mk in allowed k-states, is 

given by the ratio of the total volume of the sphere 34

3
FV k

 
  
 

 divided by the volume of k-

space per k-point 

3

3 2
k

L




 
  
 

: 

3 3
3 3

3 2

4
2 2

3 2 3
k F F

V L L
M k k

k



  

  
      

  
        (2.5.4) 

Here, L is the length of the side of the cube and the factor “2” corresponds to the number of 

electrons with opposite quantum numbers occupying the same k-state. Therefore, the 

corresponding uniform electron density  kn r  is given by: 

 

3

3

3

3

3

3

4 2
2

3

4
2

3 2
        

F

k
k

F

k
M L

n r
V L

L
k

L

 







  
  
  

 

  
  
  



   

   
23

2 2 3
2

 or 3
3

F
k F k

k
n r k n r



 
      

 
        (2.5.5) 
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By solving the Schrödinger equation of our simple system subjected to periodic boundary 

conditions, the available kinetic energy of each region in k-space is given by: 

2 2

2
k

k

m
               (2.5.6) 

Then the total kinetic energy (Tk) of the electrons within the volume V is the sum of the occupied 

k values in the Fermi sphere:  

2
Fk

k k

k

T   .  

By multiplying the right-hand side of the above equation by unity of the form 
3

3

1
1k

k



  , we 

obtain:  

 

3
3 3

33

1
2 2

2

F Fk k

k k k

k k

L
T k k

k
   
 

      

 

3
3

3
2

2

Fk

k k

k

L
T k 


             (2.5.7) 

One can transform the above summation term into an integral by taking the limit of the sum as 

0k  or L goes to infinity
161

, yielding: 

 

 

3
3

3
0

23 2 2
2

3

0 0 0

2 lim
2

2 sin  (spherical coordinates)
22

F

F

k

k k
k

k

k

k

k

L
T k

L k
T d d k dk

m



 

 


  





 

 



  
 

3 2 2 2 3
2 5

3 2

0

4
4 2 10

Fk

k F

L k L
T k dk k

m m


 
                       (2.5.8) 
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The kinetic energy per electron  k̂t , in the ground state, is obtained by dividing the previous 

expression by the total number of electrons Mk within the Fermi sphere: 

2 3 2
5

2 3 3

2 2

3
ˆ ˆ

10

3
ˆ

10

k
k TF F

k F

F
TF

T L
t t k

M m L k

k
t

m




   

 

 

One can express T̂Ft  as a functional of the electron density by substituting the value of kF from 

Eq.  2.5.5 into the above equation yielding: 

 
 

2
2 2 33 3

ˆ
10

k

TF k

n r
t n r

m

  
    

   

2

2 2 23

3
3 (3 )

ˆ
10

TF k kt n r n r
m


                (2.5.9) 

By inserting the above equation into Eq. 2.5.3, we obtain the TF kinetic energy functional: 

 
5

33ˆ [ ] ( )TF kT n r C n r d r  , where 

2

2 2 33 (3 )

10
kC

m


                 (2.5.10) 

Such approximation is quite decent for slow variations of the electron density in an 

homogeneous medium. However, it includes self-interaction and it violates the Pauli principle. In 

1930, Dirac
103

 formulated a local approximation to the Hartree exchange energy: 

4
3ˆ [ ] ( )D DK n C n r dr    with 

1
33 3

4
DC



 
  

 
                           (2.5.11) 
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By inserting the previously derived expressions for the kinetic energy and the expression of 

exchange energy in the original TF equation (Eq. 2.5.1), we obtain the TFD formulation for 

electrons subjected to an external potential,  

   
5 4

3 3
1 ( ) ( )

( ) ( ) ( ) ( )
2

TFD k D ext

n r n r
E n r C n r dr C n r dr u r n r dr drdr

r r


   

                (2.5.12) 

The ground state energy and density can be found by minimizing the functional  ( )TFDE n r  

under the condition that the total number of electrons is given by ( )M n r dr  . 

By incorporating this constraint by the method of Lagrange multipliers (
TFD ), the 

ground state density must therefore satisfy the variational principle: 

    ( ) 0.TFD TFDE n r n r dr M                         (2.5.13) 

Even though the TF approach provides reasonably good predictions for atoms, it leads to severe 

inaccuracies for the description of more complex systems since it does not encompass the true 

orbital structure of electrons. In fact, one notices that as we get further away from the nucleus, 

the charge density is represented by a power function and as we infinitesimally approach the 

nucleus, the charge density blows up to infinity.
97

 As a result of such crude approximation, the 

shell structure of atoms and binding of molecules are described incorrectly.
128,129,130

 In order to 

overcome those deficiencies, future works on improvements and modifications of the original 

TFD approximation have mainly been conveyed by Weisacker (1935)
131

, Gross and Dreizler 

(1981)
132

 and Perdew (1985)
9
.  

Countless implementations into DFT have continued for many years but it should be 

realized that one cannot truly provide a way to fully understand the properties of a material by 

simply investigating the nature of the electronic density.
 
This therefore leads us to the Kohn-
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Sham approach, in which an accurate kinetic energy functional is computed in terms of orbitals 

of non-interacting electrons. 
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2.6. The Kohn-Sham (KS) approach 

By realizing the complexity of constructing the true kinetic energy of a multi-electron 

system, Kohn and Sham introduced the concept of an auxiliary non-interacting electrons system 

so that the major part of the unknown true kinetic energy can be computed with good accuracy.
5
 

For mathematical simplicity, in this section we will only be discussing the KS approach in non-

spin-polarized system. Detailed derivation of the spin-polarized KS ansatz is given in most 

advanced DFT books. The KS Hamiltonian of non-interacting electrons in an unpolarized system 

is represented by: 

 
2

1

ˆ ˆ ˆ ,
2

M
m

KS KS ext ext m

m

H T U u r


 
     

 
         (2.6.1) 

where ˆ ˆ and KS extT U  denote the kinetic and potential operators. By subjecting the KS equation to 

the first HK theorem, we obtain: 

       KS KS extE n r T n r u r n r dr                              (2.6.2) 

As discussed in section 2.2.2, the exact wave-function of non-interacting electrons is represented 

by a Slater determinant composed of one-electron orbitals: 

1 2

1 1 2 1 1

1 2 2 2 2

1 2

1
( , ,..., ) ,

( ) ( ) ( )!

( ) ( ) ( )

          

( ) ( ) ( )

KS M

I

I

M M I M

r r r
r r rM

r r r

r r r

  

  

  

   

where ( )r  is the KS one-electron orbital.  
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The connection between the artificial KS system and the real many-body system is the choice of 

an effective potential  effU r  such that the ground-state density of our collection of non-

interacting electrons can represent the exact ground state density of the system: 

   
2

0

1

( ) ( ).
I

eff KS i m

i

U r n r r n r


             (2.6.3) 

By constructing non-interacting electrons with the same density as the real system, the KS 

orbitals would yield the exact non-interacting kinetic energy, which includes most of the true 

kinetic energy.
105

 The residual difference between the exact independent-particle kinetic energy 

and the true kinetic energy can be obtained by adding to the right-hand-side of the HK functional 

(see Eq. 2.4.1.2) the expression:          0 0 0 0( ) ( ) ( ) ( )Har Har

KS KS mn mnT n r T n r U n r U n r    

yielding: 

       

       

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( )

                                                + ( ) ( ) ( ) ( )

KS m mn ext

Har Har

KS KS mn mn

E n r T n r U n r u r n r dr

T n r T n r U n r U n r

   

  


 

       

         

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( )

                                                 + ( ) ( ) ( ) ( ) ,

Har

KS KS ext mn

Har

m KS mn mn

XC

E n r T n r u r n r dr U n r

T n r T n r U n r U n r

U

    

  


   (2.6.4) 

where the exchange-correlation parameter XCU  describes the residual kinetic part, the self-

interaction terms, the exchange components and the Coulomb correlation energy. In other words, 

the exchange-correlation energy corresponds to anything that is not explicitly known in the 

system.  
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In analogy to the derivation of the HF integro-differentiable equation (section 2.2.4), one can 

obtain the best KS orbitals by subjecting the KS Hamiltonian to linear variations of first order 

constrained to the orthonormality conditions of the KS orbitals: 

     *

1 1

0
J I

KS ij i j

j i

E r r r     
 

         

 

 

   

 

*

1

* *
0

J

kj k j
KS j

k k

r r
E r

r r

  
 

 



 
   

  


       (2.6.5) 

 
 

 *
1

( ) ( )
0

( )

J
KS

kj j

jk

E n r n r
r

n r r

 
 

  

           (2.6.6) 
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 

 
 

*

*

1
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*

( )
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( )

J

j j
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k

k

r r
r rn r

r r r

n r
r

r

  
 

  







 

 



 

By inserting the above equation into Eq. 2.6.6, we obtain: 

 
   

1

( )
0

( )

J
KS

k kj j

j

E n r
r r

n r


  

 

    

         

 
 

   

1

2

1

1 ( ) ( )
( ) ( ) ( )

( ) 2

( )( )
( )

( ) 2 ( )

J

KS ext XC k kj j

j

J
XC

ext k kj j

j

n r n r
T n r u r n r dr drdr U n r r r

n r r r

U n rn r
n r dr u r dr r r

n r r r n r


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


  

 





 
     

 

   
          

  

 

 

       
2

1

( )
( )

2

J

ext XC k kj j

j

n r
u r dr u n r r r

r r
  



 
      

 
        (2.6.7) 

where the functional derivative of XCU  with respect to ( )n r is given by: 

 
 ( )

( )
( )

XC

XC

U n r
u n r

n r




            (2.6.8) 
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Now, Eq. 2.6.7 can be written in a more compact form as: 

   
2

1

( )
2

J

eff k kj j

j

u r r r  


 
   
 

           (2.6.9) 

where  
 ( )( )

( )
( )

XC

eff ext

U n rn r
u r u r dr

r r n r






  

  is the KS effective potential and 

1

( )
P

p

ext

p m p

Z
u r

r r




  is the one-electron external potential.  

Although the KS equations resemble the ones of HF, one needs to realize that if the 

explicit form of 
XCU  was to be known, the KS method would yield the exact solution of multi-

electrons systems. Unlike in the HF approach, which from the beginning assumes the wave 

function as an antisymmetric Slater determinant, the KS method is exact in principle. The 

approximation in the KS formalism only comes into play when describing the exchange-

correlation parameter. Unfortunately, unlike in the HF approach, the relationship between the 

exchange and correlation is quite intimate and it is fairly complicated to explicitly separate 

exchange from correlation. Now that we have briefly discussed the KS approach to multi-

electrons system and the complexity into approximating the exchange-correlation parameter, we 

shall be investigating the physical meaning (if any) of the KS Lagrange multipliers derived in 

Eq. 2.6.9 in the following subsection. 
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2.6.1. Kohn-Sham eigenvalues and Janak’s theorem  

In analogy to the method used for the derivation of the HF canonical equations, by 

subjecting a unitary transformation to the KS one-electron Hamiltonian, we obtain the KS 

canonical equation: 

     
2 ( )ˆ ( ) ( ) ( ),

2
KS k ext XC k k k

n r
f r u r dr u n r r r

r r
   

 
      

 
              (2.6.1.1) 

which must be solved iteratively as in the HF formalism. A schematic representation of the self-

consistent-field KS loop is represented in Figure 2 which is based on the non-interacting-Uext-

representability assumption. Although the constructions of the HF and KS formalisms differ in 

principle, their similitude is quite intriguing. Analogous to the HF total energy, the KS total 

energy is not a simple sum of its corresponding eigenvalues since: 

     
1

1 ( ) ( )
( )

2

I

KS i XC XC

i

n r n r
E n r drdr U n r u r n r dr

r r




 
            

                (2.6.1.2) 

Here the expression of 
i  is obtained by re-writing Eq. 2.6.1.1 as: 

   
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              (2.6.1.3) 
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     
1
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( ) ( ) ( ) ,

I

i KS ext XC

i

n r n r
T n r u r n r dr drdr u r n r dr

r r





    


                 (2.6.1.4) 

*

1

where ( ) ( ) ( )
I

i i

i

n r r r 


  
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By using the same notation described in Parr and Yang
110

 (pps. 164-165), let us extend the above 

definition of the charge density to non-integral occupation numbers q (see section 2.4.1.1) of the 

form: 

*

1

( ) ( ) ( )
I

J i i i

i

n r q r r 


                              (2.6.1.5) 

where 0 1iq   and the total number of electrons M is defined as: 
I

i

i

M q . The fractional 

occupation of a KS eigenstate is physically implausible since the total number of electrons 

cannot vary by non-integers number but from a mathematical perspective, it can be 

investigated.
133

 Now that we have extended our system to fractional occupational numbers, the 

constrained search formulation discussed in section 2.4.2 searches over all the ensemble of 

statistical mixtures (with non-integer electron values) yielding the best density ( )n r , and 

ultimately providing the minimum expectation value of the KS total energy  KSE n r   . Such 

generalization is introduced by Janak
134

 (J) in which the KS total energy from Eq. 2.6.4 is re-

written as  JE n r   : 

           

         

 

( )

                                                         + ( ) ( ) ( ) ( )

Har

HK J J KS J ext J mn JJ

Har

HK J KS J mn J mn J

XC J

E n r E n r T n r u r n r dr U n r

T n r T n r U n r U n r

U n r

              

  

  


 

Minimization of the Janak’s functional  J JE n r    with respect to undetermined orbitals and 

under the normalization condition *( ) ( ) 1i ir r dr    (orthogonality is not required due to 

hermiticity of  J JE n r   )
96

 yields: 
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 

   
   

*

* *
1

1 0
J

J

j j j

jk k

E r
r r

r r

  
  

  

       
              (2.6.1.6) 

   

 

   

 * *
0

( )

k k kJ J J

J k k

r rE n r n r

n r r r

   

  

                         

   

 
 *

0
( )

J J J

k k

J k

E n r n r
r

n r r

 
 

 

                   (2.6.1.7) 
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   

 

   

 

*

*

1

* * *
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J

i j j

jJ k k k

k k k

q r r
n r q r r

r r r

  
  

  


 


  

 

 
 *

J

k k

k

n r
q r

r





                                (2.6.1.8) 

By substituting the above expression into Eq. 2.6.1.7, we have: 

 
 

    0,
( )

J J

k k k k

J

E n r
q r r

n r


  



      

which means that: 

         

 
 

   

 

2

2

( ) ( )1
( ) ( ) ( )

( ) 2

( )( )
( )

( ) 2 ( )

2

J J
KS J ext J XC J k k k k

J
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J ext k k k k

J
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n r n r
T n r u r n r dr drdr U n r q r r

n r r r

U n rn r
n r dr u r dr q r r

n r r r n r

u r


  




  

 

 
    

 

   
          


  

  

 

 
   

 
 

   
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( )( )

( )

( )( )
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XC JJ
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J

XC JJ k
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J k

U n rn r
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U n rn r
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
  



 
 



 
   

 

 
     

 





 

 
 

   
2 ( )( )

2 ( )

XC JJ
ext k J k

J

U n rn r
u r dr r r

r r n r


  



 
     

 
           (2.6.1.9) 
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where k
J

kq


  . The above equation is identical to the KS canonical equations given that 

*

1

( ) ( ) ( )
I

J i i i

i

n r q r r 


 . Let us evaluate the partial derivative 
 ,J J k

k

E n r q

q

    
 
  

 of Janak’s 

total energy functional  ,J J kE n r q    with respect to occupation number qk. Since qk is a 

constant, we follow the chain rule described in Eq. 2.2.4 and the expression 
 ,J J k

k

E n r q

q

   


 can 

hence be evaluated as: 

   

 

 ,J J k J J J

k J k

E n r q E n r n r
dr

q n r q





        
   

 
 

 2,
Then, 

2

J J k Jeff

J

k k

E n r q n r
u r dr

q q

        
  

                       (2.6.1.10) 

where     
 ( )( )

( )

XC Jeff J
J ext

J

U n rn r
u r u r dr

r r n r





 
   

 
 . 

Now let us simplify 
 J

k

n r

q




 from Eq. 2.6.1.10: 

 
 

*

*1

( ) ( )

( ) ( )

I

i i i
J i

k k

k k

q r r
n r

r r
q q

 

 




 
 


.  

By inserting the above expression into Eq. 2.6.1.10, we obtain the following expression: 

 
 

2,
( ) ( ) ,

2

J J k eff

k J k

k

E n r q
r u r r

q
 

      

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The right-hand side of the above equation was already defined in Eq. 2.6.1.3 as the KS 

eigenvalue. Then: 

 ,J J k

k

k

E n r q

q


    


                 (2.6.1.11) 

The above equation is Janak’s theorem
134

 which states that the partial derivative of the total 

energy with respect to fractional occupational numbers corresponds to the k-th KS eigenvalue. 

From the Fundamental Theorem of Calculus, the above equation can be rewritten in an integral 

form: 

   

   

1 1( )

1

0

1

                    1

J

M M

k

kM Mn r

I

E
dq E M E M dq

q

E M E M dq





 


   



   

 



 

      

1

0

,IIP dq                  (2.6.1.12) 

where IP is the ionization potential. Here I  denotes the eigenvalue of the highest occupied 

molecular orbital (HOMO) and for that reason Janak’s theorem can only be applied to the 

addition or subtraction of an electron to the highest occupied orbital.
135

 This is in contrast to 

Koopmans’ theorem in the Hartree-Fock formalism, where electrons can technically be 

added/subtracted to any state (although the Koopman’s approximation worsens as one further 

adds/removes electrons from occupied orbitals). Furthermore, correlation and wave function 

relaxation (used within the optimized effective potential
136

) are taken into consideration into the 

derivation of the IP in the KS ansatz, given the exact form of the exchange-correlation parameter 

is known.  
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However, the integral derived in Eq. 2.6.1.12 is complex in a multi-electron system but can be 

approximated using the trapezoid formula: 

   1

0

1
,

2

I I

I

M M
IP dq

 


 
                  (2.6.1.13) 

which corresponds to the average value between the HOMOs of the neutral system and the 

ionized system. The same procedure can be applied into the calculation of the electron affinity 

yielding: 

1

1

0

,IA dq                      (2.6.1.14)     

where 1I   corresponds to the lowest unoccupied molecular orbital (LUMO). Recall from section 

2.4.2.1 that the chemical potential in the HK equations is subjected to a derivative discontinuity 

of the form: 

   

 
   

0 0
lim lim 1 ,

HK

N

N N

E n rE N
E M E M IP

N n r 
 




 
 

         


        

   

 
   

0 0
lim lim 1 ,

HK

N

N N

E n rE N
E M E M A

N n r 
 




 
 

         


               

where N is an average total number of electrons that includes non-integers values. By comparing 

the above equations to the Janak’s definition of the KS eigenvalues, we notice that the highest 

occupied KS eigenvalue and the chemical potential are related: 

   

   

0

1
0

lim 1          ( 1 )                   (2.6.1.15)

lim 1         ( 1)                   (2.6.1.16)

I N

I N

Vacuum E M E M IP M N M

Vacuum E M E M A M N M





 

 



 

          



         

 

where M corresponds to the integer value of the total number of electrons.  
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Let us further discuss the physical meaning of the above equation by first recalling the definition 

of the HK bandgap: 

 

 

 

 
,

HK HKHK

g

N N

E n r E n r
E IP A

n r n r
 

 

 
 

                    

and the expression of the KS canonical equations: 

 
 

 
   

( ) ( )( )
.

( ) ( )

KS J XC

ext k k k

T n r U n rn r
u r dr r r

n r r r n r

 
  

 

 
    

 
  

We notice from the above equation that the only components that involve variations of the 

charge density are the KS non-interacting kinetic energy and the exchange-correlation parameter. 

By inserting the variations of TKS and the XC-parameter into the definition of the HK gap, we 

obtain the KS gap: 

       ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )

KS J KS J XC J XC JKS

g

J J J JN N N N

T n r T n r U n r U n r
E IP A

n r n r n r n r
   

   

   
   

   
        
      

 

                           (2.6.1.15) 

which means that the band structure computed from the Kohn Sham ansatz underestimates the 

actual gap width by an amount equal to the derivative discontinuity of the KS non-interacting 

kinetic energy and the XC-energy.
137

 In other words, the difference in energy between the KS 

HOMO and LUMO eigenvalues is unphysical and does not describe the actual band gap of a 

given system.  

Nevertheless, although the KS HOMO-LUMO gap is incorrect, the correlation between 

the IP/A and the KS eigenvalues is of paramount importance. For instance, in intrinsic 

semiconductors, the previously discussed HOMO is physically equivalent to the valence band 

maximum (VBM) while the LUMO denotes the conduction band minimum (CBM). If one is 
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interested in calculating the thermodynamic transition levels (cf. section 4.4.1) or optics (see 

section 4.4.2) of defects in the gap, the exact positions of both CBM or VBM are not required. In 

fact, from Eq. 2.6.1.15 or Eq. 2.6.1.17, we can define the CBM/VBM positions with respect to 

vacuum level and hence circumvent the problem of derivative discontinuity (intrinsic to the DFT 

approach) or any other problems related to the calculation of the exact bandgap of a many-body 

system.  

In summary, we have seen that in the KS method, the multi-electrons interacting system 

is mapped into an auxiliary non-interacting system and their difference in energy is encompassed 

in the exchange-correlation functional. An explicit form of the exchange-correlation parameter is 

required if one needs to solve the canonical KS equations and ultimately obtain the exact 

solution of complex multi-electrons systems. The quest into obtaining accurate exchange-

correlation parameter is at the heart of modern DFT and remains the greatest task for the 

application of DFT to many-body systems. In the next section, we described a simple, yet not too 

crude approximation of the exchange-correlation term that was initially proposed by Kohn and 

Sham.  
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Figure 2: Schematic representation of the self-consistent loop in real space where the charge 

density  ,n r s   and wave function   ,i r s  are spin-dependent. The first (1) and second (2) loop 

must be iterated simultaneously for both spins.
7
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2.6.2. Local Density Approximation (LDA) of the Exchange and Correlation 

Energy 

In the LDA method, the exchange-correlation energy can be approximated by treating the 

exchange-correlation term as a local functional in the uniform-electron gas model: 

  ( ) ,LDA LDA

XC XCE u n r n r dr                     (2.6.2.1) 

where  LDA

XCu n r    designates the exchange-correlation energy per electron at r  in a uniform 

electron gas of density  n r . For small perturbations of the electronic density in the form of 

     n r n r n r  , linear variation of the corresponding exchange-correlation potential is 

written as: 
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   

 
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u n r n r dr u n r n r dr
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n r
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 

 


 







   

         

         

  
 



 

 

 ) ( ) ( )

From the definition of functional derivatives described in Eq. 2.3.3, the above equation becomes:

LDA

XCn r dr u n r n r dr     

 

 
 ( )

( ) ( )

LDALDA
XC LDAXC

XC

u n rE
n r u n r

n r n r



 

                                  (2.6.2.2) 

In the homogeneous gas model, the second term  LDA

XCu n r    in the right-hand side of the above 

equation can be divided into exchange and correlation components: 

     LDA LDA LDA

XC X Cu n r u n r u n r                                       (2.6.2.3) 

Hence Eq. 2.6.2.1 becomes: 

   ( ) ( ) ,LDA LDA LDA LDA LDA

XC X C X CE E E u n r n r dr u n r n r dr                            (2.6.2.4) 
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where   ( ) ,LDA LDA

X XE u n r n r dr                  (2.6.2.4.a) 

and   ( )LDA LDA

C CE u n r n r dr    .                        (2.6.2.4.b) 

By comparing the Dirac exchange energy expressed in Eq. 2.6.12 with the previous equation, the 

exchange LDA potential becomes: 

1
3( )LDA

X Du C n r   where 

1
33 3

4
DC



 
  

 
                (2.6.2.5) 

Unfortunately, the correlation parameter is far more complicated and can only be calculated 

analytically in the high density and the low density limits.
133

 The correlation energy can be 

vaguely conceptualized as the energy that is created from the correlated motion of the electrons 

due to electrostatic repulsion and attraction to the compensated positively charged background. 

Over the years, various approximations of the correlation energy have been made and one of the 

most accurate calculations was the quantum Monte Carlo computations for uniform gas.
138

 

By looking back at the derivation of the exchange and correlation potential described in 

Eq. (2.6.2.2), we define the first term 
 

( )
( )

LDA

XCu n r
n r

n r





     as the “response function”. This 

“response function” is explicitly defined by Gritsenko et al. (1994)
139

 as the response potential of 

the exchange correlation hole subjected to perturbation of the density. In other words, the ( )XCu r  

term can be pictured as if the electron creates a hole around itself and interacts with the 

exchange-correlation hole via electrostatic Coulombic repulsion.
140

 More details regarding the 

physical meaning of the response function can be found in Refs. [141,142].  
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After locally approximating the exchange-correlation potential, the KS orbital equations can be 

rewritten as: 

     
2 ( )

( ) ( ),
2

LDA

ext XC k k k

n r
u r dr u n r r r

r r
  

 
     

 
              (2.6.2.6) 

which are solved in a self-consistent manner.  

Before further introducing any approximation to the exchange-correlation parameter, we 

first recall that the KS approach has been restricted so far to non-spin-polarized systems. By 

adding a magnetic field to the usual scalar external potential acting on the many-electrons 

systems, we are building more physical insight into the approximation of the exchange 

correlation functional. The next two sections are devoted to describing relevant functionals that 

approximate the spin dependent exchange correlation parameter. 
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2.6.3. Local Spin Density Functional (LSDA) 

 By inserting spin dependence into the homogenous exchange correlation parameter from 

the LDA formalism, we obtain: 

       , ( , ) , ( , )LSDA LSDA LSDA

XC X C X CE E E u n r n r n r s dr u n r n r n r s dr   
                (2.6.3.1) 

The LSDA can be described in terms of the up and down spin densities, but it is usually 

expressed in terms of the total charge density ( ) ( )n r n r   and the local relative spin 

polarization: 

( ) ( )
( ) .

( ) ( )

n r n r
r

n r n r

 

 







                  (2.6.3.2) 

For the far more sophisticated case of spin dependent correlation energy, there have been some 

serious attempts to parameterize the uniform gas correlation energy as a function of spin 

polarization, ( , )Cu n  .
143,144

  Even though the LSDA principles were funded on the basis of a 

homogenous gas approximation, its success for very inhomogeneous cases are not to be 

overlooked. One reason for such success might be the cancellation of errors between exchange 

and correlation. In 1966, Tong and Sham
145

 noticed that in LSDA calculations, the total 

exchange energy is typically underestimated by about 10% while the correlation energy is 

overestimated by a factor of two or more. Since for many physical systems, the exchange energy 

is about four times greater than correlation,
105

 the overestimation of the correlation energy 

greatly cancels the underestimation of the exchange energy. Due to the partial cancellation of 

errors, the LDSA gives excellent approximations of bond lengths, ionization and binding and 

dissociation energies. Unfortunately, LSDA tends to fail into describing weak bondings, systems 

with slowly varying densities, correct band gaps and magnetism of transition metals. To improve 
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upon the local spin density formalism, one should take into account the problem of the 

unphysical self-interaction term in the approximation of the exchange and correlation parameter. 

In order to remove those spurious self-interaction terms, Perdew and Zunger (1981)
146

 suggested 

a self- interaction correction (SIC) to LSDA. In such corrections, the newly obtained Kohn Sham 

orbitals vary for different potentials hence causing non-orthogonality of the orbitals. Further 

physical insight into the non-orthogonality of the orbitals is given in the original review.
146

  

Even after improving the LSDA, one observes that the exchange correlation potential has a quite 

short range and it only depends on the local density. Consequently, the LSDA potential has the 

wrong asymptotic dependence as r tends to infinity and one might consider a functional that 

depends not only on the electronic density at a specific point but also depends on the magnitude 

of the gradient of the density that would describe the inhomogeneity of the true electron density.  
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2.6.4. Generalized Gradient Approximations (GGA) 

 The idea of constructing a functional that is not as computationally demanding as non-

local functionals ( due to HF exchange) and yet possesses a potential that does not diverge for 

exponentially decaying densities would be groundbreaking. One of the first suggestions into 

expanding the exchange correlation parameter in function of the magnitude of the gradient of the 

density was given in the original paper of Hohenberg and Kohn
107

 and it was referred to as a 

gradient expansion approximation (GEA). The insertion of gradient-dependent functionals into 

the local approximation of the exchange correlation parameter was first thought to be very 

attractive for applications but unfortunately most gradient expansion approximations did not lead 

to consistent improvements over the LSDA. In fact, the major drawbacks of the GEA were that 

its corresponding exchange correlation hole was not physical, nor did it satisfy the normalization 

conditions of the exchange and correlation holes and the negativity state of the exchange 

hole.
9,147

 By eliminating the spurious long-range term of the second order expansion of the GEA 

exchange-correlation hole, generalized gradient approximations
148,149,150

 (GGAs) were created 

and their corresponding exchange-correlation energy were expressed as: 

         , ( ) ( ) , , ,GGA LSDA

XC XC XCE n r n r drn r u n r F n r n r n n     
                         (2.6.4.1) 

where 
XCF  is called the enhancement factor which adjusts the XC-parameter from the 

homogeneous gas model (LSDA) based on variations of the electronic density in the 

neighborhood of the considered region in space.
151
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Unlike its GEA predecessors, GGA functionals arise from the second order gradient expansion 

and can be derived with two different approaches: 

 Method 1: empirical fitting. 

Here the second order expansion is obtained by fitting as much experimental data as possible.
149

  

As a general trend, such GGAs yield more accurate atomization energies
152,153

 and barriers to 

chemical reactions,
154

 compared to LSDA when applied to molecular systems, and provides 

mixed results when applied to solids. As a result, an entire zoo of GGA functionals emerged in 

the early eighties which forced most computational physicists/chemists to use large sets of 

benchmark systems in order to find the optimum GGA that would yield the most accurate data.  

 Method 2: mathematical construct of the enhancement factor 
XCF . 

In order to distinguish a GGA that would offer a consistent improvement over the previous 

LSDA, several authors
155 

decided to plot the GGA dimensionless enhancement factor 

 ( ), ( )XC sF s r r r  in function of reduced density gradient: 

( )
( ) ,

2 ( )F

n r
s r

k n r


  

where  
1

2 33 ( )Fk n r  is the local Fermi wavevector, for various values of Wigner-Seitz radius 

1
33

( )
4 ( )

sr r
n r

 
  
 

. Here the Wigner-Seitz radius denotes the radius of a sphere for which its 

volume is computed as the expected value of the volume per atom in solids.
156

  

By using this method, the GGA functional is built from a mathematical construct of the 

exchange-correlation parameter that satisfies as many of the known properties of the exact XC-

hole. 
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 Such GGA construction was met with success since it improved upon the predictions of:
 157

 

a) electron affinities and first ionization potentials of several atoms 

b) atomization energies of various hydrocarbon molecules  

c) lattice constants and bulk moduli of Li and Na that used to be slightly underestimated by 

the LSDA 

d) the ferromagnetic configuration of bcc ground state of metallic iron.  

The culmination of the complex derivation of GGA functionals is arguably reached with the 

Perdew-Burke-Enzherof (PBE)-GGA functional
14

 since it succeeded into including a relatively 

simple mathematical construct of a gradient correction without introducing experimentally fitted 

parameters. Here the exchange functional was rewritten as: 

     ( ), ( )PBE LDA

X X X sE n r dru n r F s r r r                       (2.6.4.2) 

where  
 

2

22

3
( ), ( ) 1

3 ( )
X sF s r r r

s r




 
  


, 0.804   and 0.066725  . Here the values 

of   and  are derived in such way that the Lieb-Oxford inequality
158

 is satisfied and response 

function of the LDA exchange is restored.
7 

A detailed description of the correlation term and the 

physical meaning of every single component the PBE exchange term are given in the original 

review.
14

 The PBE is commonly known for its applicability to both homogenous and 

inhomogenous systems and tends to accurately predict various electronic properties in a wide 

range of complex systems. Although the PBE-GGA predicts several correct physical properties, 

it highly underestimates the values of bandgaps in semiconductors/insulators and tends to fail to 

accurately describe weak Van der Waals interactions. A way forward into improving the 

shortcomings of the PBE functional might be a density functional theory in which there would be 

a combination of the HF exact exchange functional which would partially cancel fictitious self-
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interaction with a GGA semi-local functional that would accurately describe the correlation 

component. In the next section, we will focus on giving a brief overview of this new class of 

mixed functionals called “hybrid functionals”. 



 

91 

 

2.7. Hybrid Functionals 

 In the last decades, wave-functions-based methods and DFT have proven to be very 

powerful tools in describing various properties in a wide range of materials. Nevertheless, the 

explicit derivation of the exchange correlation parameter in DFT and the computational cost of 

post-HF methods are still methodological barriers that have not been overcome. First-principles 

method based on DFT such as LSDA has been quite successful, especially for those where the 

electronic density is quite uniform. In order to address the main limitations of LSDA, an 

expansion of the density in terms of the gradient and higher order derivatives has been carried 

out. Unfortunately, the improvement of GGAs over LSDA is not substantial since GGAs still 

underestimate the band gap in many systems and do not satisfy known asymptotic behaviors for 

isolated atoms. The main reasons of such limitations is probably due to the fact that self-

interaction are still present in the Hartree term, the non-locality of the exchange component is not 

fully taken into account and the complexity of computing the correlation term. The next step 

beyond first-principles methods based on DFT might be the introduction of so-called hybrid 

functionals which are obtained by an admixture of a non-local fixed amount of Fock exchange to 

GGA-type functionals. The theoretical justification behind this approach is explained via the 

adiabatic connection, which is briefly discussed in the next section. 
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2.7.1. Adiabatic approach 

Let us first recall the expression of the HK universal functional of a many-body system: 

   ˆ ˆ ˆ
HK m mnF T n r U n r        ,       

where each component was described in section 2.4. Let us define a switching parameter   

which describes the strength of the electron-electron interactions and can vary from 0 to 1. One 

can connect the above fully interacting Hamiltonian to the KS non-interacting system by steadily 

increasing the coupling parameter   via the adiabatic equation:
110

 

   ˆ ˆ ˆ
HK m mnF T n r U n r                          (2.7.1.1) 

Here for 0  ,  the above system becomes the Hamiltonian of the KS non-interacting system: 

   0 0ˆ ˆ ˆ ,HK m KSF T n r T n r                         (2.7.1.2) 

while for 1  , the full electron-electron interaction is recovered and we obtain the ˆ
HKF  

universal functional. Although the parameter switches gradually from 0 to 1, the electronic 

density remains constant throughout the process. By subtracting the universal functional energy 

of the fully interacting system from the energy of the KS auxiliary system we obtain: 

     

          
       

1 0 ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ                  

ˆ ˆ ˆ ˆ                  

m mn KS

Har Har

m mn KS mn mn

Har

m KS mn mn

XC

F F T n r U n r T n r

T n r U n r T n r U n r U n r

T n r T n r U n r U n r

E n

               

                      

                 

 

 ˆ Har

mnU n r

r

   

  

  

   
1

0

ˆ  .Har

XC mndF E n r U n r                        (2.7.1.3) 

To exactly solve the above equation, one requires the value of the exchange correlation 

parameter at intermediate values of  . However such information is unobtainable and one can 
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approximate the above integral by mixing a certain fraction of the pure HF exact exchange with 

local GGA/LDA XC-hole.   

Starting from this approach, several hybrid formalisms have been constructed but the pioneering 

work in hybrid schemes construction was proposed by Becke
22

 where he suggested a single 

coefficient 
1a   to be shared between the HF and GGA exchange energy: 

 1

Becke GGA HF GGA

XC X X XCE a E E E                     (2.7.1.4) 

Recent work done in Ref. [23] has shown that by using perturbation theory, one can obtain the 

optimum amount of exact exchange 
1 0.25a   to be admixed with a density functional 

approximation. As a result, the parameter free hybrid scheme Perdew-Burke-Ernzherof-zero-

parameter (PBE0)
159,160

 was constructed and so far seems to correctly predict band gaps, bulk 

moduli, lattice constants and thermochemical
22

 properties of many complex systems. 

Nevertheless, the computational cost of calculating the exact Fock exchange in systems 

subjected to periodic boundary conditions (solids), made the use of PBE0 problematic. In 

addition to the intractability of the Fock exchange parameter, one should notice in metallic 

systems, the divergence
96

 of the partial derivative of the single particle Hartree-Fock eigenvalue 

 k , with respect to the crystal momentum k at the Fermi level kF, where Aschcroft and 

Mermin (1976, Chap. 17)
161

 defined the single particle HF energy  k  as: 

 
2 2 2

2
2

F

F

k e k
k k F

m k




 
   

 
                            (2.7.1.5) 

Here 
2 21

ln
2 4

F F

F F F

k k k kk
F

k kk k k

   
  

 
                (2.7.1.6) 



 

94 

 

Such logarithmic divergence can be explained by the divergence of the Fourier transform 

2

2

4 e

k


of the Coulomb interaction 

2e

r
 at 0k  .

161
  

In order to make the Fock exchange parameter tractable in periodic systems and 

circumvent possible divergence of the exact exchange term in metallic systems, Heyd (2006)
25

 

argued that the spatial decay of the exchange interactions must be either be accelerated or one 

might artificially cut off or truncate part of the exchange interactions.  The first alternative, 

which is the acceleration of spatial decay, might well predict the total energy of the system but 

would still neglect long range exchange-correlation. The second approach, truncating the 

exchange interactions are known to work quite well in localized systems. Nevertheless, in case of 

delocalized charge distribution where the HF exchange does not rapidly decay over distance, 

such truncation methods appear completely unphysical and create some severe convergence 

problems in the self-consistent-field process. Hence, in order to accelerate the HF decay without 

neglecting long range interactions, the 1/r part of the exchange interaction can be replaced with a 

Coulomb screened potential.  

By screening the 1/r part of the exchange interaction, we obtain a potential that has a 

shorter range than 1/r and we can therefore diminish the computational complexity of the Fock 

exchange and eliminate the unphysical singularity of the anomalous divergence of the derivative 

of the one-electron HF energy. 
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2.7.2. Heyd-Scusseria-Ernzherof (HSE) hybrid functionals  

 The starting point of this new class of hybrid screened functionals or the so-called Heyd-

Scusseria-Ernzherof screened hybrid functional (HSE03)
26

 is the separation of the Coulomb 

interaction operator into short-range (sr) and long-range (lr) components
162

, respectively: 

1 ( ) ( )

short range long range

erfc wr erf wr

r r r
 

                   (2.7.2.1) 

where 

  

w =
2

R
sr

 is an adjustable parameter that describes the range of short-range interactions 

 
R

sr( ) . Choosing the error function erf(wr) and its complementary error function 

  1 ( )erfc wr erf wr   to achieve the Coulomb partition, ensures that the short-range component 

( )erfc wr

r
 is singular and rapidly decays as a Gaussian, while the long-range part 

( )erf wr

r
 is 

nonsingular and smoothly decays as r tends to infinity. Figure 3 illustrates the behavior of 1/r as 

r increases, the fast decay of 
( )erfc wr

r
 and the smooth decay of 

( )erf wr

r
 for 1w  .  

The construction of HSE screened hybrid functionals is based on the admixture of both HF and 

PBE-GGA exchange in the short range parts while the long range term is solely represented by 

the PBE-GGA functional.
8
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Before further describing the HSE hybrid functional, we initially start by writing the exchange 

correlation parameter PBE0 hybrid functional as: 

0

1 1

0

1 1

(1 )PBE HF PBE PBE

XC X X C

PBE HF PBE PBE PBE

XC X X X C

E a E a E E

E a E E a E E

   

    
              (2.7.2.2) 

where a1 = 1/4 is the exchange coefficient that is determined by an adiabatic expansion 

calculated by Perdew et al. (2006).
23

 

By partitioning all terms of the above PBE0 exchange energy into short range (sr) and 

long-range (lr) components, we obtain the HSE functional: 

       

   

, , , ,

1

, ,

1                                                               

HSE HF lr HF sr PBE lr PBE sr

XC X X X X

PBE lr PBE sr PBE

X X C

E a E w E w E w E w

a E w E w E

          

    

  

       

   

, , , ,

1 1

, ,                                                                 

HSE HF lr PBE lr HF sr PBE lr

XC X X X X

PBE lr PBE sr PBE

X X C

E a E w E w a E w E w

E w E w E

          

    

          (2.7.2.3) 

By performing benchmark numerical tests on physically acceptable values of w, Ref. [26] 

noticed that the lr HF and PBE exchange terms tend to cancel each other out, yielding: 

       

       

, , , ,

1

, , ,

1 11

HSE HF sr PBE lr PBE lr PBE sr PBE

XC X X X X C

HSE HF sr PBE sr PBE lr PBE

XC X X X C

E a E w E w E w E w E

E a E w a E w E w E

          

     
               

By substituting the value of the coefficient a1 into the above expression, we obtain: 

, , ,1 3
( ) ( ) ( )

4 4

HSE HF sr PBE sr PBE lr PBE

XC X X X CE E w E w E w E                  (2.7.2.4) 

In order to achieve balance between physically accurate results and computational effort, 

the screening parameter for the HF and PBE was chosen to be 
0.15

2
HFw   Bohrs

-1
 (or 

9.97HF

srR  Å) and
1/30.15 2PBEw    Bohrs

-1
 (or 5.6PBE

srR  Å). As the adjustable parameter w 

goes to 0, the HSE functional becomes very similar to the original hybrid PBE0 method 
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(discrepancies are caused by the mathematical construct of the XC-hole)
26

 and is equivalent to 

pure PBE-GGA as w approaches infinity. The elimination of the long-range component of the 

Fock exchange drastically reduces the range over which the integral of the exact exchange is 

computed.
8
 Subsequently, in real space, the HSE03 is less computationally demanding than most 

hybrid functionals and can therefore be applied to solids and large molecules. Furthermore, in 

reciprocal space, due to the increased locality of the Fock exchange in the HSE03 formalism, the 

Fock exchange can be computed in a much coarser mesh of points in the Brillouin zone.
8
  

The precision of the HSE03 method is illustrated in Fig. 4 where theoretical band gaps of 

various materials are compared with their respective experimental band gaps. The band gaps 

obtained by the PBE formalism (blue circles) are largely underestimated due to the 

approximation of the exchange and correlation energy. The hybrid functional PBE0 (green 

squares) yields better results than the PBE but it still tends to overestimate the band gaps of some 

materials because of the incorporation of unscreened Fock exchange in their formalism. The 

HSE03 functional computed with the standard amount of Fock exchange (25 %) provides better 

agreement with the experimental results. Even though HSE03 functional allows some 

improvements in the correct prediction of thermochemical energies, band-gaps and atomization 

energies, its precision is yet to be desired. Paier et al. (2006)
8
 argue that the HSE03 functional is 

not mature enough to fully replace well-known semi-local functionals because of the severe 

underestimation of the cohesive energy in several systems, the overestimation of the magnetic 

moment of transition metals and incorrect prediction of large gaps materials. Such inaccuracy 

might be traced back to the use of different values of w in the development of the original 

functional.  
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The construction of a new screened hybrid functional (HSE06)
31

 was based on the 

reexamination of the screening parameter w  in which: 

0.11HF PBEw w   Bohr
-1

 or 9.62HF PBE

sr srR R   Å 

With such adjustment, better thermochemical predictions are obtained while equilibrium 

between computational cost and accurate physical results is still maintained.  

Now that we have provided a brief overview of the state-of-the-art methodology for performing 

first-principles calculations, we will introduce in the next section how to implement these 

calculations to investigate the electronics and optical properties of defects in GaN. 

 

 

Figure 3: Graphs of 
1

r
, 

( )erf wr

r
 and 

( )erfc wr

r
 in function of r from Eq. 2.7.2.1 for 1w  . In the 

short range, one notices that 
( )erfc r

r
 (red color) displays a rapid decay similar to the inverse 

function 
1

r
 (blue color), while in the long range 

( )erf r

r
 (green color) is identical to 

1

r
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Figure 4: Illustrative comparison of band gaps done by Marsman et al.
163

 where the theoretical 

band gaps obtained from PBE, PBE0 and HSE03 calculations are plotted against the 

experimental band gaps. 
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Section 3. Techniques for estimating supercell defects calculations 

 In the preceding KS chapter (section 2.6), it was discussed that several observables of the 

many-body system can be mapped into corresponding observables in a single-particle problem 

subjected to an effective potential. Nevertheless, the heavy task of computing the electronic 

density of a system that is subjected to periodic boundary conditions still remains. Such dilemma 

can be overcome by applying Bloch’s theorem to the HSE06 formalism and by introducing plane 

waves basis set. Plane waves are aesthetically appealing for periodic systems since they possess 

the advantage of completely spanning the Hilbert space and they also provide mathematical 

simplicity for practical calculations. The following section is organized first to describe the 

HSE06 method in reciprocal space via the use of Bloch’s theorem. Then, the remaining sections 

are devoted to explaining relevant concepts that enter in the computation of formation energies 

and optics of defects in GaN.  

 

3.1. Plane waves (PW) basis sets in HSE06 formalism 

 In this chapter, the derivation of the basis sets used in our calculations is based on the 

description of PW used in Refs. [12,151]. We initially start by recalling Bloch’s theorem
161

 

stating that within a perfectly periodic potential, each electronic wave function can be rewritten 

as a product of a wavelike part and a cell-periodic part where: 

, ,
( ) ( ),ik r

j k j k
r e u r              (3.1.1) 

where k  represents the wave vector of the PW confined within the first Brillouin zone (BZ) and 

j describes the band index. Here 
,

( )
j k

u r  possesses the periodicity of the potential and obeys the 
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relation 
, ,

( ) ( )
j k j k

u r u r R   for all R  in a Bravais lattice vector. Since 
,

( )
j k

u r  is a periodic 

function, it can be expanded using a basis set of plane waves whose wave vectors are reciprocal 

lattice vectors of the crystal,  

, ,
0

( ) iG r

j k j k
G

u C G e




            (3.1.2)  

Here, G are the reciprocal lattice vectors defined by 2G R m   for all R , m is any integer and 

,
( )

j k
C G  are the plane wave coefficients. By inserting Eq. 3.1.2 into Eq. 3.1.1, each electronic 

wave function in a cell of volume V can be described by: 

( )

, ,
0

1
( ) ( ) i k G r

j k j k
G

r C G e
V






            (3.1.3) 

where the plane waves basis functions are defined by 

1
( ) iG r

G
r e

V
             (3.1.4) 

which satisfy the orthonormality conditions: 

( ')

' , '

1 i G G r

G G G GV
e dr

V
             (3.1.5) 

where  and  differ by a reciprocal latticevector ,or G G G G G G      

Now Eq. 3.1.3 can be rewritten as: 

, ,
0

( ) ( ) ( )ik r

Gj k j k
G

r C G e r




           (3.1.6) 

From the previous equation, one remarks that except for 0G  , the reciprocal lattice vectors G  

that describe the plane wave expansion always lie outside the first BZ, while the wavelike part 

ik re  involves a wave vector k  in the first BZ.
151

 However, if one is interested into solving the 

HSE06 canonical equations in a self-consistent manner, the electronic density must be expressed 
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as a BZ average
151

 where the k  wave vectors must occupy the entire BZ. Thus one must 

incorporate the wavelike part into our previous plane wave basis functions in order to cover the 

entire BZ: 

( )

,

1 i k G r

k G
e

V
             (3.1.7) 

Now the electronic wave function can be expressed as: 

, , ,
0

( ) ( ) ( )
j k j k k G

G

r C G r




  , anywhere in the BZ.       (3.1.8) 

Here the coefficient 
,

( )
j k

C G  is given by: 

 

* *

, , , , ,
0

* *

, , , , ,
0

*

,, , ,
0

*

, ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k G j k k G j k k G
G

k G j k k G j k k G
G

G Gk G j k j k
G

j k k G j

r r r C G r

r r dr r C G r dr

r r dr C G

C G r

  

  

 





 




 







 

  

  

  



 



,
( )

k
r dr

 

The expansion of the kinetic energy term from the HSE06 canonical equations in term of plane 

waves gives rise to a diagonal kinetic energy operator which is given by: 

       

   

   

2 * 2

, ' , , , ,

2

* ( ) ( )

, ' , ,

2

* ( )

, ' , ,

1 1ˆ
2 2

1ˆ
2

1ˆ
2

j jG G j k j k j k j k

i k G r i k G r

G G j k j k
G G

i G G r

G G j k j k
G G

T r r r r dr

k G
T C G e C G e dr

V V

k G
T C G C G e dr

V

 
  



 




 
           

 


  


 







 

   
2

*

, ' ,, ,
ˆ

2G G G Gj k j k
G G

k G
T C G C G 

 






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 
2 2

, ' ,

1ˆ
2G G j k

G

T C G k G


            (3.1.9) 

In addition to the kinetic energy, the Hartree potential can also be computed in reciprocal space 

where the Hartree term is expressed in terms of its Fourier transforms: 

 

   

1 1 ( )
( )

1 ( )

Hart Hart iG r iG r

iG r rHart iG r

n r
u G u r e dr e dr dr

V V r r

n r
u G e e dr dr

V r r

 

  


 




 



  

 
  

Let v r r  , then: 1
dv

dr
  or dv dr  and the above equation becomes: 

 

 

 

2

2

1 ( )

1 1
( )

4

4 1
( )

Hart iG v iG r

Hart iG v iG r

Hart iG r

n r
u G e e dr dv

V v

u G e dv n r e dr
v V

G

u G n r e dr
G V





 

 






   

  

 

 



 

     2

4 1
 where ( )Hart iG ru G n G n G n r e dr

G V

                        (3.1.10) 

From the expression of the above equation, we notice a divergence of the Hartree potential in 

reciprocal space at 0G  . More details regarding the physical meaning of the 0G   are given in 

section 3.3.2. 
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 By expanding the Hartree term in function of the electronic PWs, we obtain: 

       

       

       

       

, ,

* ( ')

2, ,

* ( ')

2, ,

*

2 ,, ,
,

1 4

4 1

4

Hart Hart

j k j k

Hart i G G r

j k j k
G G

Hart i G G r

j k j k
G G

Hart

G Gj k j k
G G

u G r u G r

u G C G C G e n G dr
V G

u G C G C G n G e dr
G V

u G C G C G n G
G








 




 







  

 

 
   

 

 



  




 

     
2

2,

4Hart

j k
G

u G C G n G
G



                  (3.1.11) 

Contrary to the Hartree term, we do not have an explicit form for the XC-potential, hence its 

general form in reciprocal space is given by: 

             

       

* ( ')

, , , ,

* ( ')

, ,

1

1

i G G r

XC XC XCj k j k j k j k
G G

i G G r

XC XCj k j k
G G

u G r u r r C G C G e u r dr
V

u G C G C G e u r dr
V

 




 




   

 
   
 



  

 

       *

, ,
,

XC XCj k j k
G G

u G C G C G u G G




                   (3.1.12) 

In addition to the XC-potential, we can also rewrite the external potential in function of G  in the 

same form as in the above equation: 

       *

, ,
,

ext extj k j k
G G

u G C G C G u G G




                   (3.1.13) 

One can also show that similarly to the Hartree term, the external potential also displays a 

divergence for the 0G   term and details regarding its derivation can be found in pps. 241-242 

of Ref. [7].  
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Now that we have described each component of the HSE06 canonical equations in reciprocal 

space, Eq. 2.6.1.1 is rewritten as:  

       

           

2 2
*

, , ,
,

2 2
*

2, , , , ,
,

1

2

4
                     

extj k j k j k
G G G

XCj k j k j k j k k j
G G G G

C G k G C G C G u G G

C G n G C G C G u G G C G
G




 



  

 

    

    

 

  
 

                      (3.1.14)  

Here the canonical equations are self-consistently solved for each k vector in the Brillouin zone 

(BZ).  

Since we derived the expression of the electronic wave function, the electronic charge 

density is derived from an average of the BZ as: 

   *

, , ,
1

( )
BZ J

k k j k j k j
jk

n r Q r r


                       (3.1.15) 

The first sum in the right hand side of the above equation denotes the sum over all k  vectors 

belonging to the BZ while the second sum runs from the j-th band to the total number of bands J 

occupied at each k  vector. Here 
k

  denotes the weight factors which depend on the symmetry 

of the system and 
,k j

Q  describes the occupation number of the j-th band at each k .   

In principle, provided that each electron occupies a band j corresponding to a specific k , 

we require an infinite number of reciprocal lattice vectors G  to represent the wave functions 

with absolute accuracy. However, it can be shown that the contributions of Fourier coefficients 

,
( )

j k
C G  of the plane wave function are inversely proportional to 

2

k G  which means that the 

infinite plane wave expansion can be efficiently shortened to a finite number of terms. By 

introducing a kinetic cut-off energy, we can choose all basis functions into the basis set that 
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fulfill 
21

2
Cutoffk G E  . At the   point, we obtain a cutoff sphere whose radius is given by: 

 
1

22 CutoffG E .                    (3.1.16) 

Nevertheless, the optimum value of the cutoff energy is not trivially defined.  In a real many-

body system, the electronic wave functions react to the nuclear potential. This means that as one 

gets closer to the nuclei, the spatial variation of wave functions becomes quite fast and one must 

require an infinitely large number of plane waves. To overcome these difficulties, we will be 

using a pseudopotential method, i.e the projector-augmented-wave (PAW) method in which the 

KS PW electronic wave function is substituted by an auxiliary smooth wave function within a 

cutoff radius of an augmentation sphere centered on the nuclei. In the PAW method, the KS core 

states are identical to the atomic core states (frozen core approximation) and the valence wave 

functions within the augmentation sphere become extremely smooth. As a result, the previously 

discussed energy cutoff can directly be approximated from the atomic pseudopotentials but it 

usually needs to be tested in sets of benchmark systems. More details on the linear 

transformation of the KS PW into pseudized smooth wave functions can be found in Refs. 

[164,165]. 

Although technically appealing, the application of Bloch’s theorem is not valid in 

semiconductors containing impurities since the incorporation of external defects breaks the 

perfect periodicity of the system. In order to overcome such problem, one might require the 

creation of a large cell (supercell) that would be periodically reproduced throughout space.   
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3.2. Supercell method using HSE06 

 Before creating a supercell, one might be interested into calculating the theoretical lattice 

constant of the host crystal which is obtained by relaxing atoms in the primitive unit cell. 

Relaxation is obtained by displacing atoms in such way that energy, forces, stresses and any 

other output quantities of the HSE06 self-consistent loop (Fig. 2) are minimized. Once we obtain 

a converged lattice constant, we create a supercell in which the defect is surrounded by a region 

of bulk crystal that is subjected to periodic boundary conditions. The supercell method is quite 

convenient since it allows the use of Bloch’s theorem which requires translational periodicity of 

the system. However, it is crucial to include enough bulk solid in the supercell such that the 

defects are sufficiently separated and properties of isolated defects can thus be computed. In case 

of a charged system, the supercell approximation introduces the concept of uniform, neutralizing 

jellium background charge that circumvents the divergence of the Coulomb energy between the 

periodic charged defect images. However, the inclusion of a jellium background creates fictitious 

interactions which need to be corrected (cf. section 3.5). By using appropriate corrections, the 

supercell method becomes quite accurate and can be used within the HSE06 formalism to 

investigate the total energy of a system containing defects. Before describing the nature of any 

type of corrections, in the next section, we shall discuss how to compute the likelihood of a 

defect to be formed in a perfect lattice within the supercell method.  
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3.3. Defect Formation Energy 

 The probability of realizing a particular defect configuration D in a host lattice containing 

p-type atoms in the charge state q within the supercell formalism is given by: 

[ ] [ ] [ ] ( )
P

q q

f tot tot VBM F p p PA LZ

p

E D E D E bulk q E E n E E           (3.3.1) 

where [ ]q

totE D  and [ ]totE bulk  are the total energies of the bulk+defect and bulk-only supercell, 

respectively. The third term ( )VBM F Fq E E qE     is the amount of energy it cost to charge the 

neutral impurity assuming that the exchange of electrons occurs at the Fermi level EF. The 

number of atoms of type p (bulk atoms or defect atoms) that have been removed from or added 

to the host lattice are represented by the variable pn . Here, p  indicates the elemental chemical 

potential of its corresponding p-th atom. 

In principle, in thermodynamic equilibrium, Gibbs free energy of formation should be 

used instead of Eq. 3.3.1 in order to estimate the concentration of defects in GaN.
64,204

 One 

reason is that defect concentrations are determined by the free energy of defects, and in cases of 

high temperature growth such as MOCVD, entropic contributions are significant.
36,166

 This 

means that it is difficult to expect direct correspondence between computed formation energies 

and measured defect concentrations. Furthermore, experimentally measured defect 

concentrations also tend to be very sensitive to atomic fluxes in the growth chamber, orientations 

of the facets being grown, and many other “uncontrolled” factors. All of them are not included in 

any of our calculations, and therefore defect concentrations dictated by the equilibrium formation 

energies are most likely very different from measured defect concentrations.  



 

109 

 

However, although absolute values of formation energy are quite uncertain, the 

intersections of the formation energy lines, i.e. thermodynamic transition levels (see section 

3.4.1) are well defined quantities, since any uncertainty in calculation of formation energy, due 

to either the choice of the elemental chemical potentials or discrepancies between the computed 

formation energies and actual concentrations of defects in the sample, cancels out. Thus, 

transition levels (including thermodynamic and optical) can be directly compared to PL 

experimental results.  

3.3.1. Chemical potentials 

 Chemical potentials in semiconductors are typically obtained by: 

a) initially establishing the competing phases for all atomic elements involved in the 

semiconductor growth, 

b) subsequently selecting the most energetically stable energy phases of  the corresponding 

atomic elements when compared to bulk GaN energy phase. 

Nevertheless, accurate identification of all existing competing phases of the atomic elements 

involved in the semiconductor formation is far from trivial due to the variety of growth methods 

and environmental growth conditions. Therefore, exact computation of elemental chemical 

potentials is often impossible and one usually estimates atomic chemical potentials in limiting or 

extreme growth regimes.  

For instance, in a host GaN lattice, the chemical potentials of its individual constituents 

gallium (Ga) and nitrogen (N), can be theoretically estimated in extreme Ga-rich and N-rich 

environmental growths. According to Van de Walle et al. (2004)
64

, these limiting environmental 

conditions correspond to placing upper and lower bounds on the chemical potentials of Ga and 

N, respectively. As a result, Ga-rich conditions are present when Ga chemical potential is 
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subjected to an upper bound and equals that of metal Ga, where
 metalup

Ga Ga  .  

Here for Ga atom, we are assuming that the formation of metallic Ga is the next competing phase 

to the growth of bulk GaN. Similarly, extreme nitrogen (N)-rich conditions occur when the 

chemical potential of N is also subjected to an upper bound and equals that of N2 gas, 

where
 2Nup

N N  . Here in the case of N, we are presuming that the formation of N2 gas is the 

secondary phase to the formation of GaN. The sum of the chemical potentials of Ga and N atoms 

denotes the energy of bulk GaN, which describes the stability condition for the growth of GaN. 

For a primitive GaN unit cell composed of two atoms, its energy is defined as: 

 prim

GaN Ga NE                       (3.3.1.1) 

Enforcing an upper bound on
Ga , obtained from the energy of metallic Ga leads to a lower 

bound on 
N : 

   [ ]low prim metal

N GaN GaE                             (3.3.1.2) 

Analogically, enforcing an upper bound on 
N  , given by the energy of N2 gas yields a lower 

bound on 
Ga : 

   2Nlow prim

Ga GaN NE    .                            (3.3.1.3) 

By definition, the enthalpy of formation  H GaN  or the energy gain in forming the crystal 

bulk GaN is defined as: 

     2[ ] Nprim metal

GaN Ga NH GaN E      
 

             (3.3.1.4) 

     2 [ ]Nprim metal

GaN N GaE H GaN                       (3.3.1.5) 

By substituting Eq. 3.3.1.5 into Eq. 3.3.1.3, we notice that Ga-rich environment is achieved by 

setting: 



 

111 

 

   

   

2

2

[ ] [ ]Nlow metal metal

N N Ga Ga

Nlow

N N

H GaN

H GaN

   

 

    

   
                (3.3.1.6) 

given that 
 metal

Ga Ga  . 

Similarly, N-rich condition is also obtained by setting: 

   metallow

Ga Ga H GaN    given that 
 2N

N N                  (3.3.1.7) 

Here,  H GaN  can be calculated using total energies of the primitive GaN unit cell, 

orthorhombic metal Ga, and N2 molecule, with volumes and atomic coordinates fully relaxed 

within the HSE method. Furthermore, the formation of other solubility-limiting phases due to the 

incorporation of impurities should also be considered. For instance, it has been suggested by Ref. 

[93] that when oxygen (O) is being incorporated in GaN, the O atom can interact with N and 

form Ga2O3 which corresponds to the next competing phase to the growth of GaN, yielding: 

       2 3 2 3 2

2 32 3 2 3 ( )
Ga O Ga O metal O

Ga O Ga O H Ga O                                                                 (3.3.1.8) 

In the left-hand side of the equation, Ga and O are taken from the Ga2O3 reservoir and in the 

right-hand side, Ga and O are taken from metallic Ga and O2 molecule gas reservoirs, 

respectively. Here 
2 3( )H Ga O is the enthalpy of formation of Ga2O3, experimentally measured 

to be approximately -11.29 eV.
167

 Following Ref. [64], we calculated that the solubility limit of 

Ga2O3 occurs under Ga-rich environmental growth, i.e Ga-rich, which means that the chemical 

potential of Ga is expressed as: 

   2 3Ga O metal

Ga Ga                              (3.3.1.9) 

and in N-rich:  

   2 3 ( )
Ga O metal

Ga Ga H GaN                          (3.3.1.10)  
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By combining Eqs. 3.3.1.9 and 3.3.1.8, the chemical potential of O in Ga-rich conditions that is 

taken from the Ga2O3 reservoir is described as: 

   2 3 2

2 3

1
3 ( ) ,

3

Ga O O

Ga O H Ga O    
                                      (3.3.1.11) 

while in N-rich, the chemical potential of O is expressed as: 

   2 3 2

2 3

1
3 2 ( ) ( )

3

Ga O O

O O H GaN H Ga O      
               (3.3.1.12) 

In principle, for gas-phase molecules such as N2 or O2, it is crucial to take into account 

temperature and pressure dependence in the calculation of chemical potentials. In this work, 

neither pressure nor temperature are taken into consideration since, as previously discussed in 

section 3.3, the calculated thermodynamic transition levels (that can be compared to experiment), 

are obtained from formation energy differences; hence any ill-defined physical quantities such as 

chemical potentials will be subtracted out and will not affect the calculations of the 

thermodynamic or optical transition levels.  
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3.3.2. Adjustment of finite-size effects in supercell calculations 

 Describing defects in a supercell method from a band structure perspective seems quite 

intuitive. Interactions between defects in neighboring supercells usually lead to a dispersed 

impurity band instead of a single localized eigenstate. In case of an infinitely large supercell in 

which the impurity would be totally isolated, the defect-induced band would be completely flat. 

According to Van de Walle et al. (2004)
64

, one might avoid choosing the   point as one of the 

sampling points since at such high symmetry point, defect-defect interactions reach its maximum 

which would thus lead to mediocre description of the band structure of a given system. One way 

to circumvent such difficulty would be the use of special k-points which provides a way of 

averaging over the defect band and therefore offers a better way to plot the band structure. Such 

method would essentially compute the impurity band’s center of mass whose band level would 

be quite similar to the case of a completely isolated impurity embedded in a SC.  

One may disagree with such method by arguing that in the case that the VBM/CBM-

defect band interactions becomes so strong that the actual level of the defect would be shifted 

and would never correspond to the approximated center of mass that is computed from the 

special k-points method. Furthermore, for the case of deep defects, by using large supercells (up 

to 300 atoms), interactions between neighboring defects is almost negligible and including the   

point would lead to acceptable description of the band structure of the system. Therefore, the 

incorporation of the   point in the BZ integration results to adequate accuracy and further 

numerical simplicity for first-principles computations when compared to the use of the more 

complex special k-points method.  

The use of the supercell method within the HSE06 self-consistent calculations includes 

several physical errors that need to be corrected. While various approaches for such corrections 
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have been suggested in the literature
42,168,169

, we will be briefly discussing two different sets of 

corrections methods used in our calculations. 

 

3.3.2.1. Image-charge correction 

 Computations of total energies or formation energies of a periodically repeated charged 

system require care because of the divergence of the 0G   terms in the Hartree and ionic 

potentials in the canonical KS equations (Eq. 3.1.11). In the neutral case, the 0G   term is 

dropped because of the exact cancellation between the positive kinetic energy associated with the 

rapid fluctuations of the wave function and the negative potential energy of the electron close to 

the nuclei.
170

 In a charged supercell, we are eliminating the 0G   component in the Fourier 

expansion of the canonical KS equations by introducing a compensating background charge 

(jellium) that restores the neutrality of the system and hence avoids divergence of long-range 

Coulomb terms. Even though this artificial background takes care of the calculation of the 0G   

terms, the charge compensation only affects the total potential while the jellium’s corresponding 

charge density is usually not included in the KS self-consistent calculations.
171

 Furthermore, the 

use of periodically repeated finite-sized supercells in our calculations introduces fictitious long-

range electrostatic and elastic interactions of charged defects with its periodic images and 

compensating background.  These spurious electrostatic interactions have to be corrected for, 

which is the LZE  correction term of Eq. 3.3.1.  

The incorporation of image-charge corrections in the treatment of charged supercell has 

been a debatable issue in the last decade.
168,169,172 

For the purpose of our calculations, we will be 

using a modified version of Makov and Payne (MP)
173

 corrections described in the Lany and 
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Zunger review.
174

 In the original MP review, the fictitious interactions are corrected by using a 

multipole expansion of the electrostatic potential energy, due to a charge density  n r  of the 

defect contained in the supercell.
 173

 In such expansion, the first order term (monopole) and the 

third order term (quadrupole) dominate the interaction energy as: 

 

2
2

1
3

2
( ) ,

32

where ( ) ( ) ( )

MP h

SC
SC

Quadrupole
Monopole

h h d h

q q
E r n r dr

VV

n r n r n r

 





   

  


                   (3.3.2.2.1) 

The first component (monopole interactions) is the Madelung energy describing the electrostatic 

interaction due to periodically repeated point charges interacting with a uniform background. In 

this case,  is the crystal structure-dependent Madelung constant and SCV  is the volume of the 

supercell. In the derivation of Eq. 3.3.2.2.1, Makov and Payne took into account the simplest 

type of screening effects of the host lattice by scaling the interaction terms with the macroscopic 

dielectric constant  .  

Following Oba’s procedure, one can also use Madelung’s corrections for the case of 

neutral shallow defects.
175

 This is because a supercell cannot encompass a shallow defect wave 

function, and in a neutral charge state, a carrier (electron or hole) occupies the CBM which 

becomes a delocalized perturbed host state. This leads to artificial interactions, similar to those 

for a charged defect in a compensating charge density, pushing shallow transition levels deeper 

into the bandgap. For this reason, in the literature, somewhat deep transition levels (several 

hundred meV) are sometimes reported for cases of shallow defect states.  

The second term (quadrupole interactions) from the above equation describes the 

interaction between the uniform compensating background and the electron density difference 

between the host with defect and pure-crystal lattice. However, for realistic cases of defects in 
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solids, MP corrections are found not to always improve the convergence of the formation energy 

in function of the size of the supercell.
176,177,178

 Furthermore, the exact computation of the 

quadrupole term is quite complex because of complications encountered in defining ( )n r . 

Following the Lany and Zunger approach, ( )n r  is computed from direct DFT calculations of 

the differences in total charge densities between the charged and neutral system.
174

 From 

benchmark numerical tests performed on selenium substituting arsenide in GaAs bulk, Ref. [174] 

found that beyond the immediate neighborhood of the defect, the charge density difference is 

dominated by the delocalized part of the defect density expressed as: 

 
1 ( )

( )
screened

SC

q r
n r q r

V 

 
   

 
              (3.3.2.2.2) 

The logic behind using the above expression is explained in Ref. [204] as such: 

 Upon incorporation of a defect with total charge ( )q r  in the host lattice, the localized 

charge ( )q r  electrostatically attracts a screening charge 
( )q r


  yielding a potential of 

( )
( )

q r
u r

r r
 


 where r r  is the distance between the screening charge and the 

localized charge q. As a result, the total amount of the screening charges is computed as: 

 
( )

( ) ( )screen

q r
q r q r


   

For defects in solids subjected to PBC, the screening charges must originate from the host 

lattice. This consequently changes the average charge density far from the defect from its 

bulk value by an amount of  
1

screened
SC

q
n r q

V 

 
   

 
. More details regarding the 

derivation of the average density difference applied to the case of diamond vacancy in the 

2- charge state is discussed in Ref. [204]. 
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Now that  n r  is represented by a simple expression, the once complex quadrupole term of the 

MP corrections (Eq. 3.3.2.2.1) can be expressed in function of the Madelung corrections as: 

 

2
2

1
3

2
( )

3 2
h

SC
SC

q q
r n r dr f

V V

 

 
      

where f is a proportionality constant that depends on the shape of the supercell. Hence, following 

the Lany-Zunger
174

 approach, the previously derived MP correction is re-written as: 

   

2 2

1 1
3 32 2

LZ

SC SC

q q
E f

V V

 

 
                  (3.3.2.2.3) 

Although the LZ scheme has been successfully applied to various practical systems, one of its 

potential drawbacks is that it does not yield the exact energy corrections for the special cases of 

point charges as it was initially derived in the MP review.
179
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3.3.2.2. Potential alignment (PA) correction for neutral and charged 

supercells 

 In the previous section, for the neutral case, we have discussed that the otherwise 

divergent electrostatic potential ( 0G  ) is set to zero in reciprocal space. Consequently, the 

spectrum of HSE06 eigenvalues is defined up to an unknown constant which depends on the 

average potential of the supercell and the choice of the pseudopotentials.
42

 In the case of charged 

systems, the eigenvalues will also shift by the same unknown constant since the KS eigenvalue is 

related to the change in total energy with respect to occupation numbers (Janak’s theorem
134

, see 

section 2.7.1). In order to obtain consistency in the potentials, we decide to examine the potential 

in the supercell far from the impurity and align it with the average electrostatic potential of the 

pure host crystal. Such alignment gives rise to a shift or potential alignment
PAE  which is 

expressed as: 

( ) (0)q

PA R
E q V D V                   (3.3.2.2.1) 

Here ( ) (0)q

R
V D V   is the difference of potentials between the host + defect and pure-crystal 

lattice at a specific reference point R. However, it has been reported
180

 that taking into account 

PA corrections may overestimate the corrections of fictitious interactions within the supercell 

method when applied conjointly with electrostatic interaction corrections. As a result, the PA 

correction has not been used in several defects studies and still remains a controversial 

subject.
181,182,183,184
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3.4. Defects Levels 

3.4.1. Thermodynamic Transitions 

 The incorporation of neutral and charged impurities in any material plays a major role in 

its electrical and optical properties. Upon changing the charge state, the defect undergoes two 

types of transitions: 

 Thermodynamic transition: 

Thermodynamic transitions occur when a defect D in its q1 charge state changes into the q2 

charge state, given that for each charge state, the atomic structure corresponds to its relaxed 

atomic configuration. The Fermi-level position at which two different charge states 
1q and 

2q  

have equal formation energy corresponds to the thermodynamic transition level  1 2/T q q  

which is defined as: 

 
   

1 2

1 2

1 2

2 1
0

/ ,

q q

f fq q

T

FE

E D E D
q q

q q


 

      



                (3.4.1.1) 

when referenced from the VBM  0FE  . Here the formation energies are calculated from the 

relaxed atomic configuration {qi} of its corresponding q-ith charge state.  Thermodynamic 

transitions typically occur on the phonons time scale
185

 and also correspond to thermal ionization 

energies of defects that can be observed in PL experiments. More details regarding the 

correlation between experimentally observed ionization energies and the theoretically predicted 

 1 2/T q q  are given in sections 3.4.2.2. Here,  1 2/T q q  are not to be confused with the KS 

eigenvalues derived from Janak’s theorem discussed in section 2.6.1.  
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By re-writing  1 2/T q q in function of total energies instead of formation energies, we obtain: 
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Given that 2 1 1q q e  , the above equation is written as: 
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Here the first component of the above equation corresponds to the ionization potential (IP) 

previously derived in section 3.4.2.2. Therefore the thermodynamic transition level is related to 

the KS eigenvalues via the equation: 
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          (3.4.1.3) 

In section 1.3, we have discussed that deep defects have localized wave functions which 

give rise to defect levels far from band edges. Such spatially confined states can assimilate 

multiple electrons depending on the electronic structure of the defect state.
 
The occupation of 

these localized states by several electrons gives rise to positive Coulombic repulsion between the 

electrons.
185

 A direct correlation between the electronic repulsion in deep localized states and the 

formation energies of the defect is schematically shown in Fig. 6. Following Ref. [185], in order 
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to differentiate between the lattice and the electronic contributions to the changes of the 

formation energies of the defect, we fix the (–) and (+) charge states of the defect into the atomic 

configuration of the defect’s neutral charge state. By not allowing atomic distortion of either the 

(+) and (–) charge state of the defect, we can deduce that any resulting variations in the 

formation energy (or thermodynamic transition level) would be a direct consequence of the 

variations in the electronic structure of the defect’s state. As shown in Fig. 6, dropping/removing 

electrons into the defect state while the system is kept in the atomic structure of the neutral 

charge state would raise the formation energy of the (+) and (–) charge states, which 

consequently shifts the position of the thermodynamic transition level in the bandgap. Such shift 

is an immediate result of the formerly discussed positive electronic Coulombic repulsion 

between electrons in the defect state and is called the +U electronic parameter (UCoulomb). 

If one allows atomic distortions to take place in the (+) and (–) charge states, the 

formation energies would become lower due to the negative value of the relaxation energy and 

the thermodynamic transition level would subsequently shift to new Fermi-level positions in the 

bandgap. 

Nevertheless, if the addition/removal of electrons in the deep defect state is accompanied 

with substantial lattice relaxation, a new situation arises. In such case, the lattice relaxation 

energy becomes larger than the electronic U repulsion which gives rise to a negative-U potential 

energy calculated as: 

 given that Coulomb relaxation relaxation CoulombU U U U U                  (3.4.1.4) 

In other words, the relaxation around the defect is significant enough that it overcomes the 

positive electrostatic repulsion and creates “attraction” between electrons located in the defect 

state. This consequently means that the system can transition from charge state 1q  (represented 
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by (+) charge state in Fig. 6) to another charge state 3 1 2q q e   (denoted by (–) charge state in 

Fig. 6), implying that the in-between charge state 
2q  (displayed as the 0 charge state in Fig. 6) 

becomes thermodynamically unstable.
190

 As a result the –U potential energy can be computed as: 

   3 2 1 2/ /T TU q q q q                     (3.4.1.5) 

More details regarding the negative-U parameter is given in Ref. [185]. 

 

 Optical transition: 

Here the transition occurs rapidly enough so that the defect in the initial charge state q1 is 

frozen and does not have time to relax into the relaxed configuration of the q2 charge state.  Such 

fast transition corresponds to optical transitions and is described in more thorough details in the 

following section.  
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Figure 5: Schematic representation of the formation energy as a function of the Fermi level of a 

defect D according to Eq. 3.3.1. Here, the zero and maximum of the Fermi level axis correspond 

to the VBM and the CBM, respectively. The solid lines correspond to the formation energies for 

the most stable charge states of the defect D, while the dashed lines correspond to the higher 

energy charge states. The points where each line changes slope denotes the thermodynamic 

transition levels in the band gap. In n-type GaN (Fermi levels close to the CBM), the defect D 

behaves as a deep acceptor (negative charge state) with acceptor transition level at  / 0T   . 

For the Fermi level closer to the VBM, the defect acts as a deep donor (positive charge state) 

defect with  0 /T  . 
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Figure 6: Schematic representation of the formation energy in function of the Fermi level for a 

negative-U behavior of a defect D based on Fig. 7 of Ref. [185]. 
 

i

j

q

q
D denotes the defect D in its 

corresponding q-ith charge state while {qj} corresponds to the equilibrium atomic configuration 

of its q-jth charge state. The dotted lines correspond to the formation energy of the defect D in 

the frozen atomic configuration  0  of the neutral charge state D
0
. The dashed lines correspond 

to the higher formation energies of 
   

 and D D 

 
. Here +UCoulomb and –U describe the positive 

electrostatic repulsion within the defect state and the negative U parameter, respectively. In the  

(-) charge state, the lattice relaxation is large enough that it overcomes the positive electrostatic 

Coulombic repulsion and makes the formation energy of the defect in the (-) charge state lower 

than in the neutral state (see Eq. 3.4.1.1). As a result, the in-between neutral state becomes 

unstable and the system transitions from the positive (+) charge state to the (-) charge state via 

the +/- crossover.  
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3.4.2. Optical Transition Levels and the Configuration Coordinate Diagram 

(CCD) 

One of the most common approaches to describe optical transitions between different 

charge states of defects is the configuration coordinate diagram (CCD)
186,187

. The CCD used in 

this work is based on the harmonic approximation and describes the total energies of the system 

(electronic energy lattice energy) containing defects as a function of a generalized 

configuration coordinate (schematically shown in Fig. 7). In such approximation, the potential 

curves are assumed to be simple parabolas and the configurational coordinate corresponds to a 

one dimensional mapping of the coordinates of a defect with its surrounding lattice in a three 

dimensional host lattice. The total energy U of the impurity in its ground (g) and excited (e) 

electronic states can be written as: 

     

   

2

2

1
( )                                                                                         

2

1
( )                                                           

3.4.2.
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e e C e C

U r k r r U r

U r k r r U r

  

                        3.4.2     .2







Here, kg and ke are the generalized force constants (spring stiffness) of the ground and excited 

electronic states, respectively. The relaxed atomic configurations of the defect in its ground and 

excited electronic states are denoted by 
Ar  and 

Cr .  

In the ground state, the system is on the lower parabola   gU r  and oscillates around 

the minimum A. The analysis of possible optical transitions from the vibrational ground level of 

the lower parabola to the vibronic levels of the upper parabola is based on the Franck-Condon 

principle which is discussed in the following section. 
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3.4.2.1. Franck-Condon Approximation 

In the Franck-Condon approach, the transitions between electronic states occur within a 

stationary nuclear framework. In other words, since the mass of electrons is much lighter than 

the nuclear masses, the nuclear configurations remain unchanged during absorption of a photon, 

and therefore, in the schematic diagram of Fig. 7 (or Fig. 8), it is represented by a vertical 

transition between points A and B.  A more detailed justification of the vertical transition is based 

on the evaluation of the electric dipole moment operator between the ground vibrational state of 

the lower parabola and vibrational states of the upper parabola.  

  Let us assume that the overall ground electronic state   ,i

g R  of the lower parabola 

corresponds to an electronic quantum number g and a vibrational quantum number i while the 

overall excited electronic state of the upper parabola   ,f

e R corresponds to an electronic 

quantum number e and a vibronic quantum number f. Here,   indicates both electronic spin and 

space coordinates while R  denotes only nuclear coordinates. Within the Born-Oppenheimer 

approximation, the wave functions of these states are written as the product of the individual 

electronic and vibrational wave functions: 

     

     

,

,

, ,

, ,

i

g g g i
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
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The overall dipole moment operator  D̂  is characterized by the charges (+q) and nuclear 

positions (Rp) of the p-th nucleus, as well as the charges (-q) and the positions (rm) of the m-th 

electron: 

ˆ ˆ ˆ
p m p m

p m

D q R q r D D      

where ˆ
pD  and ˆ

mD are the corresponding nuclei and electronic dipole moment operators, 

respectively. The matrix elements of the overall dipole operator can therefore be written as: 
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            (3.4.2.1) 

Due to the orthonormality nature of the electronic orbitals in which: 

   *

,, ,e g e gd R R     , 

the integral over the electronic coordinates in the first term of Eq. 3.4.2.1 is zero. Therefore the 

overall dipole operator can be simplified as: 

       * *

, ,
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   , ,
ˆ ,f i

e g f i e gD D R D R    ,                (3.4.2.2) 
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The expression  ,f iD R  describes the overlap integral between the vibrational states in their 

respective electronic states f and i, while  , ,e gD R  corresponds to the electric dipole moment 

of the electrons within the nuclear configuration R .   

Let us suppose that the electric dipole operator  , ,e gD R  is weakly dependent on the 

nuclear coordinates, and subsequently perform a Taylor expansion of the matrix elements about 

the nuclear equilibrium position vector R :
186

 

       0 1 2 2

, , , ,

1
, ...

2!
e g e g e g e gD R D D R D R        

Within the Condon approximation, the matrix elements of  , ,e gD R  are independent of the 

nuclear coordinates, given the atoms do not undergo large displacement from equilibrium.  

Therefore, the once complicated matrix  , ,e gD R  is replaced by its zeroth order term 

(constant), yielding an approximated overall transition moment of: 

         0 0*

, , , , ,
ˆf i

e g f i e g e f g i e gD D R D dR R R D     
   

According to the above equation, the optical transition moment is the largest between vibrational 

states that yield the highest overlap  ,f iD R . Therefore, the probability for optical transitions 

between different vibrational levels in their respective electronic states is proportional to the 

squares of the modulus of the vibrational wave functions of the initial and final states: 

     
2 2 2

0*

, , ,
ˆ .f i

e g e f g i e gD dR R R D                              (3.4.2.3) 

More details regarding the Franck-Condon principle as a selection rule can be found in Ref. 

[186]. A schematic diagram shown in Fig. 7 shows a comparison of the transition probability 
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between vibronic states in different electronic states by arrow vectors AB , A F  and A C . Here 

the A F  and A C  vertical transitions correspond to much lower values of the overlap integral 

between vibrational states and therefore yields lower transition probabilities. The vertical 

transition represented by AB  corresponds to the maximum overlap integral and hence yields 

maximum transition probability between the vibrational state centered at A and the vibronic state 

peaking at the classical turning point B.  Therefore, for a vertical transition AB , a photon of 

energy equal to    abs e B g AE U r U r   is absorbed.  

However, at the classical turning point B, the system is in non-equilibrium position, since 

it corresponds to one of the excited vibrational levels of the upper parabola. Subsequently, the 

system rearranges itself in order to minimize the interaction energy and gradually relaxes into the 

minimum C of the upper potential curve by emitting phonons: 

   rel

e e B e CE U r U r  .                  (3.4.2.4) 

Here rel

eE  corresponds to the relaxation energy of the excited electronic state. At the minimum of 

the upper potential curve (C), the system exists in its excited electronic state for a period 

determined by its lifetime. Eventually, the system transitions to the vibrational ground state of 

the lower potential curve (point A) radiatively or non-radiatively.     
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Figure 7: The quantum mechanical description of the FC approach. Only the lowest vibronic 

levels and corresponding wave functions are displayed. The vertical line shows the most 

probable optical transition (resonant excitation or Eabs) between the ground vibrational state of 

the ground electronic state and the excited vibrational state of the excited electronic state. There 

is a significantly less overlap between the vibrational wave functions of the ground electronic 

state and the vibrational state at points F and C which leads to lower probabilities for optical 

transition between the electronic states. 
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3.4.2.2. Non-radiative transitions using the CCD 

The likelihood of a non-radiative transition can be estimated by finding the intersection          

(point E) of the two potential curves.
188,189

 The energy of this intersection with respect to the 

vibrational ground state of the upper curve (excited state of the defect) represents the potential 

energy barrier given by: 

    ,b e E e CE U r U r                 (3.4.2.2.1) 

for a non-radiative transition. Depending on the coherence lifetime and temperature of the 

sample for the resulting excited vibrational state (Fig. 8), the defect can either drop to point D of 

the lower parabola or transfers into the lower parabola at the crossover point E. In the former 

case, the recombination is radiative. When the barrier Eb is too high for thermal activation, or the 

lifetime of the excited state is short, (for example, due to high electron concentrations in n-type 

GaN) the system drops to point D of the lower parabola by emitting a photon of energy equal to 

   max e C g DPL U r U r  . Since point D corresponds to a non-equilibrium position of the ground 

electronic state, the system re-arranges its atomic configuration and relaxes to point A by 

emitting phonons with energies adding up to the FC shift: 

    i

g D g A R gFC U r U r S    .               (3.4.2.2.2) 

Here 
i

g  denotes the vibrational frequency of the ground electronic state (g) and the 

dimensionless term SR is called the Huang-Rhys factor for radiative recombination. The 

parameter SR corresponds to the mean number of phonons emitted from point D to A.  In other 

words, SR describes the strength of electron-phonon coupling between the defect and its host 

lattice. The stronger the electron-phonon coupling is, the larger the parameter SR becomes and 

the greater is the shift between the equilibrium minima of the respective electronic 
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states
CA C Ar r r   . Following the PLmax, the zero-phonon line (ZPL) which corresponds to 

direct optical transition between two vibrational ground states of the defect can be calculated as: 

maxZPL PL FC                  (3.4.2.2.3) 

Furthermore, the ZPL can also be expressed in terms of the previously discussed thermodynamic 

transition levels where: 

 1 2/g TZPL E q q                               (3.4.2.2.3.a) 

Regarding Eq. 3.4.2.2.1, if the barrier height Eb is not too high compared to the temperature of 

the sample, and the photoluminescence lifetime is long, the system can transition to the lower 

curve non-radiatively, by thermally jumping over the barrier and emitting dissipating phonons 

ENR:
188

  

    f

NR e E e A NR eE U r U r S    ,              (3.4.2.2.4) 

where f

e  describes the frequency of the vibrational ground state (f=0) of the excited electronic 

state (e) and SNR is the Huang-Rhys factor for non-radiative recombination. Here, the 

dimensionless SNR describes the mean number of phonons emitted via the non-radiative path 

(NR) depicted by a curved arrow in Fig. 8. Furthermore, one can estimate the frequency of 

attempts  NR  to jump over a thermal potential barrier of energy bE  and transfer into the lower 

parabola with the Boltzmann probability equation
66

: 

  exp /f

NR e b BE k T   ,                (3.4.2.2.5) 

where 13 1~ 10f

e s   is the typical phonon frequency at which the vibrational ground state (f =0) 

of the excited state (e) of the defect oscillates. The frequency f

e  can be computed more 

accurately if one can determine experimentally or theoretically the phonon energy f

eE  of the 

vibrational ground state of the excited electronic state. In other words, from the expression of the 
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energy of the vibrational ground state of a simple quantum harmonic oscillator, one can relate the 

phonon energy f

eE with the phonon frequency f

e : 

.
2

2 4
Then,  or ,

f f

e e

f f
f fe e

e e

E

E E

h




 



 

 

where h is the Planck’s constant.  

Now that we have obtained the frequency of attempts to jump over Eb, we can calculate 

the time it takes for non-radiative recombinations  NRt  to occur as: 

 
2

NR

NR

t



  

If NRt  is much smaller than the photoluminescence lifetime  PLt , we estimate that the defect is 

likely to be non-radiative. In this case, the ratio of 
PLt  over 

NRt  would correspond exactly to the 

amount of quenching that the observed PL band would undergo. In the other hand, if 
NR PLt t , 

radiative recombination should prevail.  

Accurate predictions of radiative versus non-radiative transition rates require calculations 

of electron-phonon interactions, and are currently a subject of intensive development (see for 

example recent Refs. [190,191]). The simple method presented here based on the intersection 

point between two potential curves for different charge states within the harmonic 

approximation, has been successfully used for predicting radiative versus non-radiative 

transitions in F-centers in the alkali halides.
188,192,193,194 

Nonetheless, this method has not been 

thoroughly tested in GaN, which is why here we only draw preliminary conclusions about 

radiative or non-radiative nature of recombination via common native defects, based on the 

excitation and barrier energies obtained from CCD.   
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Now that we have shown that the CCD provides a way to estimate whether or not defects 

are radiative, we will show in the next section how to construct a CCD using the HSE electronic 

structure calculations.  

 

 

Figure 8: Schematic configuration coordinate diagram, displaying possible radiative and non-

radiative transitions between the excited (e) and ground (g) electronic states of a defect. The 

potential curve of the excited state is vertically displaced from that of the ground state according 

to their formation energies and assuming the presence of an electron in the conduction band. The 

ZPL (zero-phonon line) describes the transition between the zero-point vibrational states in 

excited state and ground-state configurations. Here, Eabs denotes the resonant excitation energy 

(absorption energy) while PLmax corresponds to the peak of the PL band. rel

eE  and FC  

describe the relaxation energies of the excited state and the ground electronic states, respectively.            
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Eb denotes the energy barrier between the vibrational ground state of the upper curve and the 

crossover between the two curves. The dashed arrow labeled NR represents a non-radiative 

transition. The highest probability of occurrence for the vibrational ground state in the ground 

and excited electronic states occur at points A and C, respectively. Following the FC principle 

(see section 3.4.2.1), the vertical lines AB  and CD  correspond to the most probable optical 

transitions which respectively correspond to the absorption and photo-emission energies. 
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3.4.2.3. Construction of the CCD with the HSE06 formalism 

Let us suppose we are investigating optical transitions of a deep defect (D) in GaN. By 

definition, the resonant excitation energy or absorption energy of a defect D is caused by the 

excitation of an electron  1e  from the defect level into the CBM. By using the formation 

energy formula (Eq. 3.3.1), the absorption energy (Eabs) is calculated as: 

 
   

1 1

1 1

1

1 1/ 1
q qf f

abs Opt gq q
E q q e E D E D E                                   (3.4.2.3.1) 

where 
 

1

1

1f q

q
E D

 
  is the formation energy of the deep defect D in the q1+1 state from the q1 

state atomic configuration and 
 

1

1

f q

q
E D 

   is the formation energy of defect D in the q1 charge 

state from the q1 relaxed atomic structure. Eg is the amount of energy it costs to add one electron 

to the CBM during the transition which should correspond to the band gap of the system where 

the transition occurs. According to Eq. 3.4.2.2.3, the absorption energy expression can also be 

written in function of the previously discussed thermodynamic transition level as: 

 1 1/ 1rel rel

abs e g T eE ZPL E E q q e E       
 

            (3.4.2.3.2) 

As we have previously discussed, the atomic configuration of the newly obtained charged defect 

 
1

1

1q

q
D

 
   is not the most stable structure and loses the excess energy through phonons emission 

and therefore ends up in the relaxed structure of the q1+1 state (point C in Fig. 8).  
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If radiative, the subsequent optical emission, which corresponds to the optical transition 

describing the recombination of the electron from the CBM (or shallow donor states in some 

cases) with the defect, is given by: 

 
   

1 1

11
max 1 1

1

11
PL 1 / f f

Opt g

q q

qq
q e q E D E D E  


            

        (3.4.2.3.3) 

where 
 

1

1 1

f q

q
E D


 
   is the formation energy of defect D in the q1 state from the q1+1 relaxed 

atomic structure and 
 

1

1

1

1

f q

q
E D




 
   is the formation energy of defect D in the q1+1 charge state 

from the relaxed q1+1 state atomic configuration. Maximum photoemission can also be 

calculated from the thermodynamic transition level as: 

 max 1 1PL / 1g TZPL FC E q q e FC       
 

             (3.4.2.3.4) 

Now that we know how to calculate optical transition levels via the HSE method, let us 

further investigate possible computations of each component, i.e spring stiffness and equilibrium 

positions, of Eqs. 3.4.2.1 and 3.4.2.2 within the HSE06 method.  

By substituting the expression of the potential energy of the ground electronic state (Eq. 

3.4.2.1) into the equation defining the FC shift (Eq. 3.4.2.2.2), we obtain: 

   

     

 

2

2

1

2

1

2

g D g A

g D A g A g A

DA

g DA

FC U r U r

FC k r r U r U r

r

FC k r

 

 
 

     
  

  

 

1

22
,DA

g

FC
r

k

 
     

 

                (3.4.2.3.3) 
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which is an equation of two unknown variables,  and DA gr k . In order to calculate either 

unknown variables, we will insert the expression describing the potential energy of the excited 

electronic state (Eq. 3.4.2.2) into the equation describing the relaxation energy (Eq. 3.4.2.4):  

   

     

 

2

2

1

2

1

2

rel

e e B e C

rel

e e B C e C e C

BC

rel

e e BC

E U r U r

E k r r U r U r

r

E k r

 

 
 

     
  

  

.  

1

22 rel

e
BC

e

E
r

k

 
    

 
                (3.4.2.3.4)            

Since optical transitions are assumed to be vertical (FC principle), the displacement from the 

equilibrium position in both ground and excited electronic states are identical: BC DAr r   . As a 

result, the spring constants of both excited and ground electronic states are related by: 

1 1

2 222
rel

e

g e

EFC

k k

   
    
  

rel

e e

g

k E

k FC
                         (3.4.2.3.5) 

The above equation describes the ratio between the stiffness of the excited and ground electronic 

states. Since neither spring constant’s individual values can be obtained without the use of 

complex electron-phonon calculations, we can assign a random value to the spring constant of 

the ground (excited) electronic state and subsequently compute the value of the excited (ground) 

spring constant from the above equation. In other words, one can only obtain the ratio of the 

spring constants corresponding to the ground and excited electronic states.  In fact, such inability 

to compute the individual values of the spring constant does not affect in any way the value of 
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the potential barrier (Eb) for NR transitions since at the intersection point (E) of the two potential 

curves: 

           
2 21 1

 
2 2

e E g E e EC e C g EA g AU r U r k r U r k r U r         

       
2 21 1

0
2 2

BC EC

e EC g EA e C g A

r r ZPL

k r k r U r U r

 

                (3.4.2.3.6) 

   

     
2

1

2

However, since 

1
Then, 

2

2
The above equation can be simplified as: 

b e E e C

b e EC e C e C

b
EC

e

E U r U r

E k r U r U r

E
r

k

 

 
    
 

 
   

 

 

By substituting the expression of 
ECr  into Eq. 3.4.2.3.6, we obtain: 

 

   

2

2 2

1 1

2 2

21 1
0

2 2

1
2 0

2

2 2 2 21
2 0

2

b
e g BC EC

e

b g BC BC EC EC

rel rel

e e b b
b g

e e e e

E
k k r r ZPL

k

E k r r r r ZPL

E E E E
E k ZPL

k k k k

 
       
 

          
 

 
                  
     
  

 

 
1

2
1

2 4 2 0
2

g g grel rel

b e e b b

e e e

k k k
E E E E E ZPL

k k k

 
        

 
         (3.4.2.3.7) 

From the above equation, we notice that the calculation of the potential barrier (Eb) only requires 

the value of the ratio of the spring constants and therefore is independent of the individual values 

of k. This consequently means that first-principles methods provide a valid way to construct the 

CCD accurately and hence can be used to estimate the probability of radiative versus non-

radiative transitions of defects in GaN.  
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Now that we have provided a brief overview of the theoretical approach used for the 

analysis of defects in GaN, in the next section, we will describe the electronics and optical 

properties of native defects in GaN. 
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Section 4. Results 

4.1. Theoretical investigation of Intrinsic Defects in GaN and their role in 

observed IR bands in electron-irradiated GaN samples  

 In section 1.4, we discussed the controversial issues regarding both the electronic 

properties of native defects in GaN and the microscopic sources of the observed IR bands in 

electron-irradiated GaN epilayers. In the following section, we shall perform a systematic study 

of the electronic and optical properties of common native defects, namely Ga vacancy (VGa), N 

vacancy (VN), Ga-N divacancy (VGaVN), interstitial Ga (Gai), Ga antisite (GaN), interstitial N 

(Ni), N antisite (NGa), the complex consisting of Ga interstitial and vacancy of Ga (GaiVGa), and 

the complex consisting of gallium antisite and vacancy of Ga (GaNVGa). We use the previously 

discussed exchange tuned HSE hybrid functional for the analysis of our native defects and 

compare our results to the most recent theoretical calculations and experimental observations.  
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4.1.1. Theoretical Methods  

  In order to study the electronic, structural and optical properties of native defects in GaN, 

we use the HSE06 method and the projector-augmented wave (PAW)
164

 formalism as 

implemented in the VASP code.
195

 Here, the Ga 3d valence electrons are not included in the 

PAW pseudopotentials. As typical for defect calculations in GaN, we adjusted the amount of 

exact exchange to 31% and the screening parameter is kept at typical 0.2 Å
-1

. These parameters 

result in a band gap of 3.487 eV which is in a good agreement with the low temperature 

experimental value of 3.50 eV.
196

  Calculated lattice parameters a = 3.210 Å, c = 5.198 Å and    

u = 0.377 Å for relaxed wurtzite GaN (see figure 9) are also in good agreement with 

experimental values.
197

 Good convergence was achieved using the cutoff energy of 400 eV, the 

 -point only and hexagonal supercells containing 128 atoms. All structural relaxations were 

also performed within the same exchange tuned HSE to reduce forces to less than 0.05 eV/Å. 

Using larger supercells (up to 300 atoms) or denser k-point mesh (222), we estimate that 

above parameters produce errors of less than 0.05 eV in formation energies and transition levels. 

In order to calculate the probability of defect formation in bulk GaN, we use the previously 

discussed concept of formation energy (cf. section 3.3) where: 

[ ] [ ] [ ] ( )
P

q q

f tot tot VBM F p p PA LZ

p

E D E D E bulk q E E n E E                                           

Although each the component of the above equation is discussed in details in section 3.3, the 

calculations of the elemental chemical potential of the p-th atom require careful attention. Here, 

the formation enthalpy  H GaN  was calculated using total energies of a two-atom unit 

primitive GaN cell, orthorhombic metal Ga, and N2 molecule, with volumes and atomic 

coordinates fully relaxed with HSE parameterization described above. The resulting 
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  1.249 H Ga eVN   is in reasonably good agreement with previous theoretical 

calculations
36,72

 and the experimental value of -1.34 eV reported recently.
198

 In addition to the 

potential alignment correction  PAE  and Lany-Zunger corrections  LZE 174
, we are also 

using Madelung’s corrections
175

 for the case of neutral shallow defects. Details regarding each 

correction were given in section 3.3.2.1 and 3.3.2.2.   

As previously discussed in section 3.3, formation energies cannot be expected to yield 

realistic defect concentrations due to the lack of entropic contributions and various other factors, 

which means that the values of defect formation energy should only be used as rough guidelines 

for defect formation. However, these complications do not affect the results of this work, since 

defect transition levels are calculated from formation energy differences.  

 

           

Figure 9: 128-atoms GaN supercell (left picture) with its corresponding wurtzite primitive cell 

(right picture) obtained with HSE lattice parameters of a = 3.210 Å, c = 5.198 Å and u = 0.377 

Å.  Small grey spheres represent N atoms and large green spheres represent Ga atoms. 
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4.1.2. Gallium vacancy (VGa) 

4.1.2.1. Formation Energy and Optical properties of VGa 

Figure 10 (a, b) shows the formation energies of Ga vacancy in Ga-rich and N-rich 

growth conditions obtained from our HSE calculations. The slope of each line corresponds to a 

charge state of the defect, while the intersection points represent thermodynamic transition 

levels. We find that VGa exhibits both donor and acceptor properties, and four thermodynamic 

transition levels are predicted within the bandgap, namely the  / 0 0.94T    eV, the 

 0 / 1.73T  
 
eV, the  / 2 1.87T   

 
eV, and  2 /3 2.34T   

 
eV, above the VBM. For 

Fermi levels close to the CBM (Fig. 10), Ga vacancies exhibit the lowest formation energy 

among all investigated native defects in all growing environments. This indicates that VGa can 

play a role as a compensating center in n-type GaN, which is consistent with previous 

experimental predictions.
43

 In all other kinds of samples, i.e, high resistivity, p-type and 

compensated GaN, isolated vacancies of Ga exhibit fairly high formation energies and are 

unlikely to occur, unless created by electron irradiation.  

While VGa has been widely discussed as a possible source of the yellow and green 

luminescence bands in GaN, the exact attribution of these PL bands is still not entirely settled. 

As we previously discussed in section 3.4.2, by fitting the CCD into calculated optical transitions 

and lattice relaxation energies, one can estimate whether the recombination via the defect is 

radiative or non-radiative. The CCD shown in Fig. 11 describes the optical transitions via the      

2-/3- level of VGa. The lower potential curve ( 3

GaV  ) is obtained by fitting a parabola into the two 
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calculated total energies of the 3

GaV   in the relaxed defect lattices of the 3- and 2- charge states 

(this energy difference is the calculated Franck Condon shift of 0.54 eV). The upper potential 

curve is also obtained in similar manner, where a parabola is fitted into the calculated total 

energies of the 2

GaV  in the relaxed defect lattices of the 3- and 2- charge states (the energy 

difference is the calculated relaxation energy of 0.46 eV). Note that in this CCD, all optical 

transitions are calculated directly from HSE, while the energy crossover for the non-radiative 

transition relies on the harmonic approximation (Eq. 3.4.2.2.1 and Eq. 3.4.2.3.7).  

In order to demonstrate the validity of the harmonic approximation, we perform a linear 

interpolation between the two minima points in the 3- and 2- charge states. We subsequently 

compute HSE total energies of the intermediate geometries where the atomic configuration of 

each intermediate geometry is kept frozen (unrelaxed). We are not allowing atomic relaxation of 

the intermediate geometries because they would eventually relax into the ground state of 3

GaV   (or 

3

GaV   
in the 3- atomic configuration) making our computation quite trivial. As shown in Fig. 11, 

direct HSE calculations yields results that are very similar to the harmonic approximation, with 

average energy difference of 4 meV. In case of deep defect such as VGa where distortions tend to 

be large, the harmonic approximation still remains an accurate approach to describing the 

potential curves of the CCD. 

Now that we have demonstrated that the CCD is a valid approach for the case of VGa, we 

calculated that the resonant excitation 3 2

Ga GaV V   is expected to have a maximum at 1.60 eV, 

which is 0.33 eV higher than the intersection of the two potential curves. Losing the excess 

energy through phonon emission, the system can either relax into the vibrational minimum of the 

2

GaV   state, or undergo a non-radiative transition to the ground state 3

GaV  . In the former case, the 
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subsequent recombination of the hole localized on the vacancy and an electron from the CBM, 

returns the vacancy from 2

GaV   to the 3

GaV 

 
 state, with a PL maximum computed at 0.60 eV. This 

transition is then followed by lattice relaxation (FC shift) of 0.54 eV, resulting in a ZPL of 1.14 

eV. However, based on the CCD (Fig. 11), the barrier for the non-radiative transition is 0.13 eV, 

suggesting that at room temperature the average time of the thermal jump over this barrier is 

several orders of magnitude shorter than a typical defect PL lifetime. Thus, the VGa is likely non-

radiative.  

 

    

 

Figure 10: Formation energy of VGa as a function of the Fermi energy in (a) Ga-rich and (b) N-

rich growth conditions. Ga vacancies display high formation energies in p-type and compensated 

GaN while it appears fairly energetically stable for Fermi level positions close to the CBM.  
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Figure 11: CCD of VGa obtained from the harmonic approximation fitting of total energies at 

relaxed defect lattices only (solid black lines), and direct HSE calculations (filled circles). The 

filled circles correspond to the total energies of ten intermediate defect geometries between two 

minima in the 3- and 2- charge states. An average difference in energy of 4 meV is found 

between the CCD based on the harmonic approximation and the CCD obtained from direct HSE 

calculations. A calculated emission of 0.60 eV, a FC shift of 0.54 eV and a ZPL of 1.14 eV are 

obtained. The energy barrier for a non-radiative transition is 0.13 eV, making the VGa likely non-

radiative. 
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4.1.2.2. Atomic and Electronic Structure of VGa 

HSE calculations show that in the singly positive charge state (+), the N atoms near the 

vacant Ga site, relax away from the vacancy by 12.3%, while with addition of electrons, the 

outward distortions decrease. For instance, in the 3- charge state (Fig. 12), the distances between 

neighboring N atoms and the vacant Ga site decrease by 9.38% (compared to the ideal bulk Ga-

N bond length). Further calculations also show that removal of Ga atom in bulk GaN, i.e. 

breaking four bonds with nearest N atoms, introduces four defect levels within the bandgap.  

The atomic structure and charge density of each of the four defect levels are displayed in 

Fig. 12. In this example, the VGa is in the 3- charge state, where all defect states are occupied by 

electrons. The Ga vacancies’ defect states are linear combinations of nitrogen p-orbitals, which 

vary in the degree of localization. Each state displayed in Fig. 12 is degenerate with respect to 

spin. These defect states form four transition levels within the bandgap shown in Fig. 10.  

The HSE calculated single electron energies and their changes with addition/removal of 

electrons to the Ga vacancy are shown in Fig. 13. For example, in the 3- charge state, the highest 

energy occupied defect states (spin-up and down) are located at 1.12 eV above the VBM. When 

VGa traps a hole, leading to 2- charge state of the defect, the highest spin-up state is shifted to 

2.83 eV above the VBM. This, along with energy of accompanying atomic relaxations, results in 

the 2-/3- transition level occurring at 2.34 eV in Fig. 10. Another example is the spin-down 

defect state located at 1.29 eV above VBM in the 1- charge state (Fig. 11). Removing an electron 

from this defect state leads to the 0/- transition level at 1.68 eV in Fig 10.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 12: Charge density isosurfaces of the four defect states of VGa. The wave functions are 

calculated in the 3- charge state of the defect. For clarity, two different orientations are used for 

states (a, b) and (c, d), indicated by the lattice vectors. The (a)-(d) charge densities correspond to 

the eigenvalues shown in Fig. 13 (right panel, 3- charge state of VGa), from lowest (a) to highest 
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(d) energy. The small (grey) and large (green) spheres indicate the nitrogen and gallium atoms, 

respectively. The isosurface values are set at 5% of the maximum. 
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4.1.2.3. Magnetic properties of VGa 

As shown in Fig. 13, unpaired spins of the electrons localized at the Ga vacancy lead to 

the local magnetic moment of VGa. When all defect states are occupied by electrons in 3- charge 

state, the charge density is equally distributed over four spin-up and four spin-down states, 

resulting in zero magnetic moment of the vacancy. Removing one electron, i.e. introducing one 

hole to the highest energy spin-up state leads to the magnetic moment of 1 B  for the 2- charge 

state of the defect. In this case, approximately 80% of magnetization is localized on one of the 

nearest nitrogen atoms. In the singly negative charge state, the magnetic moment is 2 B , with 

most of the magnetization density (about 90%) localized on the three neighboring nitrogen 

atoms, about ~0.59 B each. In this case, two of the four spin-down states are occupied by 

electrons (Fig. 13). Finally, in 0 and + charge states of VGa, the spin-down defect states have 

three and four localized holes, respectively, while in both cases all spin up states are occupied by 

electrons. This results in the vacancy magnetic moments of 3 B and 4 B , in 0 and + charge 

states, respectively. In this case, calculations show that each of the four neighboring nitrogen 

atoms has local magnetic moments of 0.64 B and 0.82 B  in 0 and + charge state respectively, 

and all local magnetic moments are ferromagnetically (FM) ordered. In both cases, the nearest 

neighbor nitrogen atoms provide around 85% of the total vacancy magnetic moment, while the 

remaining magnetization of the VGa comes from farther nitrogen atoms.  

Large magnetic moments of VGa in + and 0 charge state raise questions about whether 

these ferromagnetic alignments of spins on neighboring N atoms are of the lowest energy. HSE 

calculations show that the antiferromagnetic (AFM) spin configuration on the four nearest N 

around the vacant Ga site in the + charge state is more energetically favorable than the FM 
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alignment by 75fE 
 
meV. In AFM configuration, two of the spin-up and two of the spin-

down defect states are occupied by electrons while the remaining two states of each spin have 

two localized holes, as shown in Fig. 13, leading to a net magnetic moment of 0 B . Comparison 

of the magnetization density of GaV   in both AFM and FM spin configurations are displayed in 

Fig. 14. The defect states consisting of linear combination of p-orbitals localized at the four 

nearest N atoms create four aligned magnetic moments in the FM spin configuration (Fig. 14(a)). 

In the AFM configuration, each pair of the local magnetic moments is antiparallel (Fig. 14(b)). 

Similarly to FM case, local magnetic moments of each of the four neighboring N atoms are 

computed to be about 0.80 B , while the remaining magnetization mostly originates from next 

nearest N atoms. In contrast to the  +  charge state, the magnetic moment of 3 B  in the neutral 

charge state of VGa is more energetically favorable with respect to the possible AFM alignment 

by 47.5 meV. Thus, following Fig. 10, in p-type or high resistivity samples, VGa is predicted to 

have a magnetic moment of zero for Fermi energies up to 0.94 eV above the VBM, then a large 

3 B  for Fermi levels between 0.94 eV and 1.73 eV, 1 B  
for Fermi levels between 1.87 eV and 

2.34 eV, and zero again for Fermi levels over 2.34 eV above the VBM.  
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Figure 13: Single-electron energy levels of VGa for all the possible charge states q with their 

respective magnetic moments m. Zero energy corresponds to the VBM. 
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(a) 

 

(b) 

 

 

Figure 14: Magnetization density isosurfaces of VGa in the singly positive charge state in the (a) 

FM spin configuration and (b) AFM spin configuration. The positive (yellow) and negative (light 

blue) isosurface values are plotted at 10% of the maximum. AFM spin alignment has lower 

energy than FM alignment by 75 meV. 

 



 

155 

 

4.1.3. Nitrogen vacancy (VN) 

4.1.3.1. Formation energy and Electronic Structure of VN 

Figure 15 shows formation energies of the nitrogen vacancy (VN) in the lowest energy 

charge states + and 3+. HSE calculated 2+/+ and 3+/2+ transition levels are located at 0.47 eV 

and 0.61 eV above the VBM, respectively. The formation energy of the 2+ charge state is always 

higher than the + and 3+ charge states, hence VN exhibits properties of a negative-U center (with 

U = -0.13 eV, see section 3.4.1). The crossover 3+/+ occurs at 0.54 eV above the VBM, which is 

between the value of 0.47 eV reported in Refs. [72,76] and the value of 0.70 eV obtained in 

recent HSE calculations.
36

 Overall, nitrogen vacancy is a donor defect with both deep and 

shallow levels.  Relatively high formation energy of VN for Fermi-level positions near the CBM 

indicates that nitrogen vacancies are unlikely to be an effective n-type source in GaN. However, 

in high resistivity and p-type samples, nitrogen vacancies can be a compensating defect.  

A nitrogen vacancy in GaN introduces two nearly degenerate localized defect states 

within the electronic bandgap, and a weakly localized shallow donor state, which is too shallow 

to be accurately described in our supercell calculations. The charge density of one of the nearly 

degenerate localized defect states (computed in 3+ charge state of VN) is displayed in figure 16. 

This defect state is a spd-hybridized orbital. The charge density strongly localized at the vacancy 

site consists of mostly s-character. The defect state also spreads to nearest Ga atoms (where it 

has 10% s-, 70% p-, and 20% d-character) and next nearest N atoms (80% p- and 20% s-

character). The degeneracy of the two defect states along with large lattice relaxation causes the 

negative-U behavior of VN. In the singly positive charge state, the Ga nearest neighbor along the 

c-axis relaxes away from the N vacant site by 2.15%, while the remaining three Ga neighbors 
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also undergo an outward relaxation of 1.60%, compared to ideal Ga-N bond length. In the +3 

charge state (Fig. 16), the breathing relaxation is much larger, where the neighboring Ga atom 

moves away from the N vacant site by 22.1% (Ga atom along the c-axis) and 19.5% (atoms in 

Ga plane).  
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Figure 15: Formation energies of the VN defect in GaN grown under (a) Ga-rich and (b) N-rich 

conditions. The dashed lines are used to emphasize the presence of negative-U behavior where 

0.13U    eV. The insets show the regions with the 2+/+ and 3+/2+ transition levels located at 

0.47 eV and 0.61 eV above the VBM, respectively. 
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4.1.3.2. Optical Transitions Levels of VN 

A detailed experimental and theoretical analysis of the optical properties of VN in bulk 

GaN has been previously published in Ref. [35]; here we briefly outline them to present a 

complete picture of native defects in GaN. The optical transition through the VN 2+/+ level is 

internal, as previously suggested.
35

 Initially, a positive +

NV  ground state cannot efficiently trap a 

photo-generated hole, instead it traps an electron at the shallow +/0 level, making the defect 

overall neutral. It then traps a hole at a deep 2+/+ level, transferring the VN into excited + charge 

state. The optical transition due to the recombination of the weakly localized electron at the 

shallow +/0 level and a hole localized at the 2+/+ level has a calculated energy of 2.24 eV. The  

FC shift of the + charge state following this transition is 0.78 eV, yielding a ZPL of 3.02 eV. The 

CCD (Fig. 17) fitted into the calculated optical transitions show that the resonant excitation 

energy is 0.77 eV below the energy of the crossover of the parabolas. The barrier for the thermal 

jump via this crossover from the vibrational ground state is 1.53 eV.  This makes nitrogen 

vacancy most likely a radiative defect via the +/2+ transition level. The calculated optical 

transitions are in good agreement with the experimentally measured GL2,
36

 i.e. PL maximum of 

2.35 eV, and estimated ZPL in the range of 2.85-3.0 eV. The assumption that the GL2 band is 

caused by an internal transition between the excited and ground states of +

NV , is supported by the 

experimentally observed exponential decay of the GL2 emission after pulsed excitation at low 

temperature, and invariance of the GL2 band’s shape and position with changing excitation 

intensity.
35
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HSE calculations of optical transitions of VN in p-type GaN, via the 3+/2+ level, can also 

be performed, where the emission line is computed to be 2.09 eV and the ZPL at 2.88 eV.
35

 

However, no experimental PL band for such transition has been observed.  

 

 

Figure 16: Charge density of the localized defect state of VN calculated in the 3+ charge state. 

The isosurfaces with the value 6 % of the maximum are shown. There is a strongly localized 

charge density at the vacancy site, which is of s-character, while s- and p-hybridized parts of the 

defect state are formed at the neighboring N sites. 
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Figure 17: Configuration coordinate diagram of optical transitions for VN. The PL maximum is 

2.24 eV. Here the vibrational ground state of 2+

NV
 
is 1.53 eV lower than the energy of the 

crossover of the potential curves, which makes transitions via the +/2+ level of VN most likely 

radiative. The Franck–Condon shift of +

NV
 
is computed to be 0.78 eV and the ZPL is 3.02 eV. 

These parameters are in close agreement with experimentally observed GL2 band. 
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4.1.4. Ga-N divacancy (VGaVN) 

4.1.4.1. Formation energy of VGaVN 

The relatively low formation energies of both VGa and VN in n-type and p-type GaN, 

respectively, prompt the question of whether the isolated vacancies could bind into a stable 

complex (VGaVN) divacancy. Figure 18 (a) displays the formation energies of the divacancy in its 

most stable charge states, i.e, 3+, +, 0, -, and 2-. The divacancy behaves as a deep donor as well 

as a deep acceptor, with calculated transition levels 3+/2+, 2+/+, +/0, 0/- and -/2- occurring at 

0.81 eV, 0.68 eV, 0.98 eV, 1.48 eV and 1.95 eV above the VBM, respectively. The lack of 

stability of the 2+ charge state, being a characteristic of a negative-U defect, is a result of large 

charge-dependent atomic relaxations around the divacancy. In the 3+ charge state, the nearest N 

atoms around the vacant Ga site relax away by 11.7%, while the neighboring Ga atoms around 

the vacant N site move outwardly by 19.3%, compared to bulk Ga-N bonds.  The 2- charge state 

is associated with smaller breathing relaxations around the empty Ga site (5.95 %) and vacant N 

site (5.33 %). According to Fig. 18 (a), divacancies (VGaVN) display relatively low formation 

energies for Fermi levels close to the CBM. Note that the formation energy of the complex is 

comparable to that of VGa ( ~ 0.08fE eV) in n-type GaN, making it the second most probable 

intrinsic defect to occur in n-type GaN.  In addition to the divacancy being fairly favorable in n-

type GaN, it also displays a significantly large binding energy of 3.04 eV (Fig. 18 (b)) for Fermi 

levels above 2.34 eV from the VBM. In p-type GaN, the divacancy exhibits a binding energy     

of approximately 1 eV. Hence, divacancies are expected to be stable in bulk GaN if they are 

formed during growth or as a result of the electron irradiation. The stability of divacancies in n-
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type GaN was also suggested in Refs. [65,70]; however no definite experimental identification of 

divacancies in n-type GaN has been demonstrated to date.  

 

 

Figure 18: (a) Formation energy of the most stable charge states of the VGaVN defect (solid black 

line), in GaN grown under either Ga- or N-rich conditions. The dashed lines display the 

instability of the 2+ charge state or the negative-U behavior ( 0.13U    eV). The insets show the 

2+/+ and 3+/2+ transition levels occurring at 0.68 eV and 0.81 eV, above the VBM, respectively. 

(b) Binding energy (B) of VGaVN as a function of the Fermi level across the band gap. In n-type 

GaN, the binding energy is calculated to be 3.04 eV. 
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4.1.4.2. Optics of VGaVN 

Figure 19 displays the CCD obtained by parabolic fits into the calculated optical 

transitions of divacancy via the 2-/- transition level. Starting from Ga N

2-V V  as the ground state in 

typical n-type GaN, the resonant excitation energy is predicted at 2.00 eV. A negatively charged 

Ga N

2-V V
 
captures a free hole at the 2-/- level. If radiative, the subsequent recombination of an 

electron in the conduction band (or bound to a shallow donor) and the hole localized at Ga NV V  , 

has a calculated energy of 0.99 eV, with a Franck–Condon shift of 0.54 eV, and a ZPL of 1.53 

eV. The calculated 0.99 eV emission peak is very close to the maximum of the experimentally 

observed broad structureless near-IR band (~0.95 eV) in electron irradiated GaN epilayers (Fig. 

20),
51-56

 thus making divacancy a possible candidate for this PL band. However, in the divacancy 

case, the calculated absorption energy is 0.12 eV larger than the energy of the crossover of the 

potential curves. The barrier for a non-radiative transition from the vibrational ground state of 

Ga NV V   via this crossover is 0.35 eV. This value of the energy barrier suggests significant 

temperature dependence of the non-radiative transition probability. Assuming a typical phonon 

frequency of 10
13

 s
-1

 and following Ref. [66], an estimation of the thermal jump probability 

suggests that at room temperature this defect is likely non-radiative. However, depending on the 

radiative lifetime of the PL, (the time the defect remains in the excited state), at a certain low 

temperature, the radiative recombination should prevail. Estimating this temperature requires the 

knowledge of the PL lifetime. This is in reasonable agreement with recent experimental studies 

of electron-irradiated GaN samples where appearance of the broad 0.95 eV PL band at low 

temperature (4.2 K) was observed and its near disappearance (~85%) after room temperature 

annealing (295 K) occurred.
56
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An alternative explanation of 0.95 eV near-IR band (shown in Fig. 20) has been 

discussed based on experiments (Refs. [54-56]). It was suggested that the migration of interstitial 

Ga (Gai defects will be analyzed in Section 4.5.2) near a vacant Ga site could play an important 

role in the broad 0.95 eV PL band. We performed HSE calculations of various configurations of 

defect complexes consisting of Gai with neighboring VGa. However, as a result of relaxation, 

interstitial Ga relocates into the vacancy making the complex VGaGai unstable. Therefore, if 

electron irradiation creates Gai in the immediate vicinity of VGa, the resulting complex quickly 

annihilates. In addition to VGaGai, several atomic configurations of the complex GaNVGa were 

investigated. However, upon relaxation, Ga antisite also relocates into the Ga vacancy, yielding 

the isolated nitrogen vacancy.  
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Figure 19: Configuration coordinate diagram for the optical transitions via the VGaVN defect in 

GaN. The emission is predicted to occur at 0.99 eV while the FC shift and ZPL are calculated to 

be 0.54 eV and 1.53 eV, respectively. Here the vibrational ground state of Ga NV V   is 0.35 eV 

below the energy of the crossover of the potential curves, suggesting that this defect is radiative 

only at low temperatures. 
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Figure 20: Broad PL band peaking at approximately 0.95 eV observed by Ref. [53] in electron-

irradiated GaN samples. The arrow indicates the range of filter used to distinguish the broad 

band from the PL-ODEPR spectra.  
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4.1.5. Interstitial Ga (Gai) 

4.1.5.1. Atomic Structure and Formation energy of Gai 

HSE calculations show that interstitial Ga occurs in the +, 2+ and 3+ charge states and its 

most stable configuration is a near octahedral site, which is in agreement with recent HSE 

results.
75,76

 Interstitial Ga at the tetrahedral site is found to be 93 meV higher in energy than a 

near octahedral Gai. Figure 21(a) displays the ideal atomic configurations of the tetrahedral and 

octahedral interstitial sites in the primitive wurtzite GaN unit cell. For comparison, the relaxed 

geometry of Gai in the + charge state is shown in Fig. 21(b). In a singly positive charge state (+), 

the distances from interstitial Ga to the two neighboring Ga planes are 2.52 Å and 2.39 Å, and 

the distances between Gai and N atoms in the two nearest N planes are 2.00 Å and 2.75 Å. In the 

3+ charge state, when compared to the corresponding bonds of Gai
+
, the Gai-Ga bonds exhibit 

slight outward breathing relaxation of 3.38% and 0.89%, respectively, while the Gai-N distances 

decrease by 1.76% and 12.2%. The attraction between interstitial Ga and nearest N atoms in the 

3+ charge state obtained from HSE calculations also agrees well with previous DFT results.
66

 

The formation energies and transition levels of interstitial Ga are shown in Fig. 22. This 

defect forms two deep donor transition levels 3+/2+ and 2+/+ at 2.33 eV and 2.64 eV, above the 

VBM, respectively. The +/0 transition level is found to be resonant with the CBM, suggesting 

the existence of a shallow donor state inaccessible in our supercell calculations. In both growing 

environments, for Fermi level values close to the VBM, Gai is the most energetically favorable 

defect among substitutional and interstitial native defects (i.e. excluding vacancies). Since Gai is 

a donor defect, it could therefore act as compensating center for p-type GaN. On the other hand, 
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interstitial Ga has high formation energy for Fermi levels near the CBM, suggesting that it is 

unlikely to form in n-type GaN. 

 

(a) 

 

(b) 

 

 

Figure 21: (a) Atomic configuration of the tetrahedral (labeled T) and octahedral (labeled O) 

interstitial sites in the wurtzite GaN. Large green spheres represent Ga atoms and small grey 

spheres represent N atoms. (b) Relaxed atomic structure of Gai in the + charge state. The Ga 

atom occupies a slightly distorted octahedral site, where the distances between Gai and nearest N 

atoms decrease by 4.28%, when compared to ideal octahedral configuration. 
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4.1.5.2. Optical Transitions of Gai 

Our calculations of interstitial Ga can help explain the nature of the sharp near-IR band 

observed in 2.5 MeV electron-irradiated GaN samples. This PL band displayed in Fig. 24 peaks 

at 0.85 eV, and has a ZPL at 0.88 eV. Based on the slight shift of the peak of this PL band 

observed in different GaN epilayers, Buyanova et al.
52,199

 argued that it could be caused by an 

internal transition between the excited state close to the CBM and the ground state of a deep 

isolated defect. Further experimental study on this PL band performed by Chen et al.
200

 

suggested that the sharp near IR PL peak is related to either isolated substitutional ON impurity 

(which is unexpected since ON is known to be a shallow donor) or a complex associated with ON. 

Overall, to our knowledge, no conclusive experimental or theoretical explanation of the 

microscopic origin of the sharp 0.85 PL band in electron-irradiated GaN has been provided thus 

far. Our HSE calculations suggest that an internal transition between the excited and ground state 

of the + charge state of the interstitial Ga is responsible for this PL band.
51-56,199

 

For Fermi levels close to the CBM, interstitial Ga has the lowest energy in the + charge 

state (Fig. 22). As mentioned above, in our calculations, the +/0 transition level is resonant with 

the conduction band, which implies a shallow donor level likely a few tens of meV below the 

CBM. At low temperatures and under the ultraviolet (UV) illumination, generating an electron-

hole pair, the unoccupied shallow donor level of iGa

 
can capture the electron, transferring the 

defect into neutral charge state 0

iGa . Since the captured electron is weakly localized on Gai, 

almost no relaxation of the lattice occurs. Subsequently, a free hole from the VBM is captured by 

the neutral defect at the 2+/+ transition level. Since this defect state is strongly localized, the hole 

capture leads to the lattice relaxation, which corresponds to the minimum energy lattice of 2

iGa  . 
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Consequently, the defect is now converted into 2

iGa  plus a weakly localized electron. Finally, an 

internal transition occurs, i.e. the recombination of the weakly localized electron from the 

shallow +/0 level and a hole strongly localized at the 2+/+ deep defect level. We calculate the 

energy of this transition to be 0.72 eV, which should cause a near IR PL band. The obtained 

relaxation energy (Franck-Condon shift) following this transition is 0.12 eV, yielding a ZPL of 

0.84 eV, suggesting that this transition produces a sharp PL band. 

 The calculated CCD and the optical transitions via interstitial Ga are displayed in Fig. 23. 

In this case, the potential curves are found to never intersect; hence the path for non-radiative 

transitions described above in section 3.4.2.2 is unavailable. This defect is therefore likely to be 

radiative. Our calculated optical transitions (shown in Fig. 23) for interstitial Ga are in good 

agreement with the previously observed 0.85 eV PL band associated with a sharp ZPL of 0.88 

eV in electron-irradiated GaN samples (Fig. 24).
51-56,199

 Most recent HSE calculations of the 

migration mechanisms of interstitial Ga in the + charge state show a diffusion energy barrier of 

1.6 eV.
76

  In n-type GaN, Gai occurs in the + charge state (Fig. 22). Using the approximation for 

thermal jump rate (discussed in section 3.4.2.2), it can be estimated that Gai become mobile at 

temperatures around 620 K.  
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Figure 22: Formation energies of the Ga native defects as a function of the Fermi energy 

calculated for (a) Ga-rich and (b) N-rich growth conditions. In p-type GaN and Ga-rich 

environment, both interstitial and antisite Ga possess the lowest formation energies among 

investigated substitutional and interstitial native defects, while displaying very high formation 

energies in n-type GaN in both growth conditions. 
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Figure 23: Configuration coordinate diagram for the isolated interstitial Ga, displaying 

calculated optical transitions via the +/2+ transition level. The peak of the PL band is at 0.72 eV. 

The two potential curves never intersect, making Gai likely a radiative defect. The ZPL is found 

to be 0.84 eV and the Franck-Condon shift (relaxation energy) is 0.12 eV. 
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Figure 24: Sharp PL band with a ZPL at 0.88 eV observed by Ref. [53] in 2.5 MeV electron-

irradiated samples. The use of the arrow indicates the range of filter used in the experiment in 

order to separate the fine structure band from the PLODEPR band. 
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4.1.6. Gallium antisite (GaN) 

HSE calculations show that Ga antisite exhibits multiple stable charge states, depending 

on the Fermi level within the gap, i.e, 4+, 3+, 2+, +, 0, - and 2-. The 4+ charge state (shown in 

Fig. 25 (a)) is associated with considerable atomic distortions where the antisite defect relaxes 

along the c-axis which consequently pushes away its c-axis neighboring Ga atom by ~0.50 Å 

from its initial site. As a result, the GaN-Ga bond parallel to the c-axis is 36.8% longer than the 

ideal bulk Ga-N bond length. The three remaining GaN-Ga bonds are 24.3% longer. In contrast, 

in the 2- state (displayed in Fig. 25(b)), the GaN-Ga bonds undergo weaker outward relaxations 

of 11.1% and 10.3%, respectively.  

Figure 26 displays the formation energy as a function of the Fermi level for Ga antisite in 

GaN grown under (a) Ga-rich and (b) N-rich conditions. Ga antisite behaves as a donor and an 

acceptor defect and exhibits six transition levels within the bandgap. The 4+/3+ occurs at 0.52 

eV, 3+/2+ at 1.24 eV, 2+/+ at 1.50 eV, +/0 at 2.42 eV, 0/- at 2.99 eV and -/2- at 3.44 eV, above 

the VBM. Note that the -/2- transition level is very close to the CBM (~0.06 eV), making it 

difficult to confirm the stability of the 2- charge state. In Ga-rich conditions and for Fermi level 

close to the CBM, Ga antisites display formation energies lower to that of interstitial Ga 

( ~ 2.67fE eV), whereas in p-type GaN, GaN is less energetically favorable than Gai by ~ 0.7eV.  
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(a) 

 

(b) 

 

 

Figure 25: Relaxed atomic configurations of GaN in (a) the 4+ state and in the (b) 2- charge state. 

The 4+ charge state is accompanied with huge lattice distortions (~37%) in the neighborhood of 

the defect while the 2+ charge state induces smaller atomic relaxations (~11%).   
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4.1.7. Nitrogen antisite (GaN) 

The formation energies of N antisite (NGa) are shown in Fig. 26 (a) and (b). N antisite is a 

deep donor, stable in the 2+ charge state for Fermi levels below ~2.40 eV from the VBM, and in 

the neutral state above that value. In the neutral charge state, the distance between N antisite and 

its three nearest N atoms decrease by 6.3 %, compared to bulk Ga-N bond length. The 2+ charge 

state of NGa is associated with substantial inward relaxation of 23.9% of NGa-N bonds, where the 

neighboring N atoms relax towards N antisite (Fig. 27). Note that the + charge state is higher 

than both 2+ and 0 charge states; this is a characteristic of a negative-U defect, which is 

associated with large lattice relaxations in 2+ charge state. Among all possible native defects 

investigated in this paper, NGa possesses the highest formation energy in both growing 

environments, and in both n-type and p-type GaN. Such high formation energy implies that NGa 

defects are unlikely to form. 
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Figure 26: Formation energies of native nitrogen defects as a function of the Fermi energy for 

GaN grown in (a) Ga-rich and (b) N-rich environments. The dashed lines are used to show the 

instability of the + charge state for the N antisite, displaying a negative-U character ( 0.73U    

eV). 
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Figure 27: Relaxed atomic structure of NGa in the 2+ charge state. Here the next nearest N atom 

located along the c-axis and the neighboring N located in the basal plane relax inwardly towards 

the N antisite by approximately 24 %.  
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4.1.8. Interstitial Nitrogen 

4.1.8.1. Formation Energy of Interstitial Nitrogen 

Figure 26 (in the above section 4.1.7) shows calculated formation energies of the N split 

interstitial (Ni-Ni) as a function of the Fermi energy in Ga- and N-rich growth conditions. N split 

interstitial displays both acceptor 0/- transition level at 0.48 eV below the CBM, and several 

deep donor levels, namely, the +/0, 2+/+ and 3+/2+, respectively occurring at 2.45 eV, 0.51 eV 

and 0.22 eV above the VBM. Overall, nitrogen interstitial defect has relatively low formation 

energy, compared to other interstitial and antisite defects in GaN.  

In addition to N split interstitial, the possible incorporation of the nitrogen molecule (N2) into 

the GaN lattice was investigated. The N2 molecule was placed at the center of the hexagonal 

cage in various directions relative to the c-axis and at the Ga-N bond center. HSE calculations of 

the various relaxed configurations of N2 yield formation energies that are significantly higher 

than that obtained for the N split interstitial ( 4.81fE   eV), hence making the interstitial N2 

molecules incorporation into bulk GaN unlikely. 

 

4.1.8.2. Atomic Structure of Interstitial Nitrogen 

As possible interstitial configurations of N in wurtzite GaN, we consider two distinct 

hexagonal sites (NHex-Ga and NHex-N), the channel-centered site
201

 (NCC), the two octahedral sites 

(NO), and the split interstitial geometry (Ni-Ni). The two interstitial hexagonal configurations, 

NHex-Ga and NHex-N, are located at the centers of the Ga and N triangles in hexagonal planes, 

respectively. The channel-centered site (NCC) is located at the center of the hexagonal channel 

between the two adjacent Ga and N planes. The two NO sites are octahedrally coordinated by Ga 
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and N atoms respectively, and located symmetrically at ~0.32 Å away from the NCC cite along 

the wurtzite c-axis. Finally, the split-interstitial site corresponds to the two neighboring N atoms 

sharing the same N site as shown in Fig. 28(b, c), compared to ideal GaN lattice (Fig. 28(a)).  

Neutral interstitial N in the channel-centered site  0

CCN
 
is slightly distorted as a result of 

relaxation. Interstitial N atom moves along the wurtzite c-axis into a site located at about 2.10 Å 

and 2.22 Å from the Ga and N planes, respectively. Both neutral octahedral interstitial N sites are 

unstable, and the N atom relaxes into the above mentioned near channel-centered site. Similarly, 

nitrogen interstitial in the hexagonal site (NHex-Ga) is unstable, and upon relaxation, the N atom 

also relocates to the near channel-centered site (NCC). The other hexagonal geometry NHex-N in 

the neutral state is also distorted, i.e. the N atom is pushed away by one of three adjacent N 

atoms toward the other two by ~0.2 Å within the same nitrogen layer.  

Our HSE calculations show that among all investigated interstitial N sites, the most stable 

configuration is the split-interstitial geometry (Fig. 28(b, c)). This defect was recently observed 

using high frequency EPR and electron nuclear double resonance (ENDOR) measurements in 

irradiated n-type GaN.
202

 In the calculations, the initial Ni-Ni bond distance was chosen to be 

1.13 Å, which is comparable to the bond distance of ideal N2 molecule (1.1 Å).
66

 N split 

interstitial defect exhibits multiple charge states, 3+, 2+, +, 0 and -. The relaxed atomic structures 

of the singly negative (-) and 3+ charge states of split interstitial N are displayed in Figs. 28(b) 

and 28(c). In the negative charge state, the Ni-Ni bond length is 1.41 Å while the distances from 

the Ni atoms to their nearest Ga atoms decrease by 7.48% and 6.82%, respectively, when 

compared to corresponding ideal Ga-N bonds. In the 3+ charge state, the Ni-Ni bond length is 

1.11 Å and the Ni-Ga bonds undergo outward breathing relaxations of 29.7% and 17.4%, 

respectively. After relaxation, N split interstitial defect has formation energy that is 2.58 eV and 
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2.97 eV lower than those obtained in the NHex-N and the near channel-centered sites, respectively. 

The obtained large differences in formation energies are also in good agreement with previous 

DFT calculations.
62,66

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 28: (a) Atomic structure of a section of ideal wurtzite GaN; (b) equivalent section of the 

relaxed N split interstitial (Ni-Ni) in the singly negative (-) charge state and (c) in the 3+ charge 

state. Large green spheres represent Ga atoms and small grey spheres represent N atoms. In the - 

charge state, the Ni-Ni bond is 1.41 Å; in the 3+ charge state, the Ni-Ni bond is reduced to 1.11 

Å. 
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4.1.9. Summary of thermodynamic transition levels
 
of native defects in GaN 

Table 1: Thermodynamic transition levels  1 2/T q q  of all investigated native defects in GaN, 

with the reference to the VBM, and their comparison with previous theoretical works.  

 

Defects 

 

 

1 2/q q  

 

 1 2/T q q  

in eV 

Present 

work 

 

 1 2/T q q  

in eV 

HSE 

 

 

 1 2/T q q  

in eV 

sX-LDA 

 

 1 2/T q q  

in eV 

LDA and 

PBE-GGA 

VGa +/0 

0/- 

-/2- 

3-/2- 

0.94 

1.73 

1.87 

2.34 

0.82
g
; 0.97

d
 

1.63
g
; 1.88

b
; 1.68

d
 

2.09
g
; 2.10

b
; 2.33

d
 

2.3-2.4
g
; 3.13

b
; 2.80

d
 

… 

1.37
e 

1.88
e
 

2.09
e
 

… 

0.25
a
 

0.64
a
 

1.10
a
 

VN 3+/2+ 

3+/+
** 

2+/+ 

+/0 

+/-
** 

0/- 

0.61 

0.54 

0.47 

CBM
* 

… 

… 

… 

0.50
g
; 0.68

b
; 0.47

f
; 0.70

i 

… 

3.21
g
; 3.17

b
; 3.26

f
 

… 

3.4
g
 

… 

0.68
e
 

… 

… 

3.32
e
 

… 

1.18
a
 

… 

… 

… 

VGaVN 3+/2+ 

3+/+
** 

2+/+ 

+/0 

0/- 

0.81 

0.74 

0.68 

0.98 

1.48 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

0.5
c
 

0.65
c
 

… 
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0/2-
** 

-/2- 

… 

1.95 

… 

… 

… 

… 

~0.66-0.7
c
 

… 

Gai 3+/2+ 

2+/+ 

+/0 

2.33 

2.64 

CBM*
 

2.18
g
; 2.43

b
 

2.42
g
; 2.83

b
 

… 

… 

… 

… 

2.55
a 

2.39
a
 

… 

GaN 4+/3+ 

3+/2+ 

2+/+ 

+/0 

0/- 

-/2- 

0.52 

1.24 

1.50 

2.42 

2.99 

3.44 

1.56
b
 

1.60
b
 

2.13
b
 

2.50
b
 

3.23
b
 

… 

… 

… 

… 

… 

… 

… 

0.93
h
 

1.86
h
 

2.08
h
 

2.27
h
 

2.70
h
 

… 

Ni 3+/2+ 

2+/+ 

+/0 

0/- 

0.22 

0.51 

2.45 

3.02 

VBM
ǂ(g)

; 0.77
b
 

0.50
g
; 1.80

b
 

2.16
g
; 2.20

b
 

2.82
g
; 3.28

b
 

… 

… 

… 

… 

0.74
a
 

0.90
a
 

1.48
a
 

2.00
a
 

NGa 2+/+ 

+/0 

2+/0
** 

0/- 

2.76 

2.03 

2.40 

… 

1.70
b
 

2.67
b
 

… 

… 

… 

… 

… 

… 

0.88
h
 

1.68
h
 

… 

2.70
h
 

 

*
: Shallow transition level resonant with the CBM. 

**
: Crossover due to –U behavior. 

ǂ: Transition level resonant with the VBM. 
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a 
Reference 66. 

b 
Reference 75. 

c
 Reference 70. 

d 
Reference 74.  

e 
Reference 73 with Freysoldt corrections.

203,204 
 

f
 Reference 72. 

g
 Reference 76. 

h
 Reference 64. 

i
 Reference 36.  

 

Transition levels of all investigated intrinsic defects in this paper are shown in Fig. 29. 

Also, a comparison between defect transition levels obtained here and in previous theoretical 

works is displayed in Table 1.  

In the case of VGa, the absence of the +/0 transition level in Ref. [66] (using LDA) and 

Ref. [73] (using sX-LDA), and the differences in other transition energies could be attributed to 

the use of different exchange-correlation functionals in these works. The application of different 

functionals can also lead to different atomic relaxations of the nearest N atoms around the vacant 

Ga site. For example, in the 3- charge state, our HSE calculations yield an outward breathing 

relaxation of ~9-10%, which is approximately twice of that previously obtained with LDA 

(4%).
66

 The differences in lattice relaxations of a defect also contribute to the discrepancies in 

calculated transition levels. However, our calculated relaxations of nearest N atoms around VGa
3-

 

are similar to the 11-12% relaxation values obtained by sX-LDA in Ref. [73], while the resulting 
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2-/3- transition levels differ by 0.25 eV. Therefore the difference in defect relaxations in different 

methods is not the only contributing factor in the transition level discrepancies.  

The transition levels for vacancy of Ga described here mostly agree with most recent 

HSE calculations (see Table 1). However, Ga vacancy transition levels 2-/3- and -/2- obtained in 

Refs. [74,75], were found to occur deeper with respect to VBM in the band gap. Although the Ga 

3d electrons were used in those calculations, our tests show that the inclusion of Ga 3d electrons 

results in negligible differences for calculated transition levels. Other possible sources of the 

discrepancies are the k-point sampling methods and supercell sizes. For example, in Ref. [38], 

using a 222 k-point mesh and 96-atom supercells, a formation energy of 4.42 eV (calculated 

at CBM) was obtained for 3

GaV   
which is 1.10 eV higher than our obtained values of 3.32 eV 

(calculated at -point in 128-atom hexagonal supercell). In Ref. [75], HSE calculation with an 

off-center single k-point and 108 atom-supercells, formation energy of 3.2 eV (at CBM) was 

obtained for 3

GaV    which only differs from our result by 0.1 eV. Our tests also show that using the 

above k-point sampling methods produces formation energy differences of ~0.05 eV.  

Finally, the difference in the results could be due to the use of different electrostatic 

correction schemes. Two common approaches are the Freysoldt corrections
203,204

, used in Refs. 

[74-76], and the Lany and Zunger corrections
174 

used in this dissertation. As could be seen from 

Table 1, our results tend to be similar to HSE results of Refs. [74,75] for transition levels 

between the low charge states, and significantly different for high charge state transition levels. 

However, the discrepancies between our results and the results from Ref. [76] tend to be small 

even for high charge state transition levels (in the latter work, a slightly smaller amount of exact 

exchange of 29% was used). 
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For the nitrogen vacancy, the crossover 3+/+ (negative-U center) is also similar in most 

recent HSE calculations.
72,76

 Nevertheless, in contrast to this work, the shallow +/0 transition 

level was not obtained, rather a +/0 level was predicted to be deep, occurring at 0.15-0.2 eV 

below the CBM.
72,75,76

 

Although the negative-U character of divacancies was also described in Ref. [70] using 

GGA, authors obtained a 0/2- crossover at ~0.66-0.7 eV above the VBM, while we obtain a 3+/+ 

crossover at 0.74 eV. The formation energy calculated in Ref. [70] for the divacancy in the 2- 

charge state is ~1.2 eV lower than in this work.  

Previous LDA predictions of negative-U center of interstitial Ga are not reproduced in 

this paper.
64,66

 The atomic relaxations obtained here are very similar to previous LDA results for 

interstitial Ga in the 2+ charge state. The use of the LDA functional in Refs. [64, 66] is the 

source of the transition levels discrepancies. Recent HSE calculations
75

 of Gai show a difference 

in transition levels of the 3+/2+ and 2+/+ of 0.1 eV and 0.2 eV, in the + and 3+ charge states, 

respectively, when compared to our work. Here, we also notice that the differences are not 

following the charge states of the defects. Comparison of transition levels of antisite defects (GaN 

and NGa) and N split interstitial with previous HSE results show similar trends as previously 

discussed.  
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Figure 29: Thermodynamic transition levels  1 2/T q q
 
of all investigated native defects in 

GaN, with the reference to the VBM. The solid lines denote the positions of the deep defect 

transition levels. The +/0 transition levels of Gai and VN are calculated to be resonant with the 

conduction band, which suggests that experimentally, shallow donor levels (black dashed lines) 

of these defects should be observed. The straight arrows display HSE calculated optical 

transitions (emission lines) of Gai, VN and VGaVN defects.  
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4.1.10. Concluding remarks regarding the analysis of native defects in 

GaN 

In this section, we have performed theoretical investigation of the electronic and optical 

properties of most common native defects, i.e, VGa, VN, VGaVN, Gai, GaN, Ni-Ni, NGa, GaiVGa and 

GaNVGa. As predicted, the use of exchange tuned HSE leads to significant changes in the 

predictions of thermodynamic transition levels and optical transitions for several intrinsic defects 

in GaN compared to local approximations to the DFT.  

Analysis of the configuration coordinate diagram constructed from the computed HSE 

transition energies suggests that Ga vacancy is likely a non-radiative defect. Our calculations of 

Ga vacancy show that VGa in the neutral state exhibits a large magnetic moment of 3
B , while in 

the + charge state, the spins on the four neighboring nitrogen atoms around the vacant Ga site 

favor an AFM order over a FM spin configuration with energy difference of 75 meV.  

Nitrogen vacancy is found to be the most energetically stable native defect in p-type GaN 

and for Fermi levels up to ~3 eV above the VBM. Calculated transitions via the 2+/+ level of VN 

show an emission occurring at 2.24 eV and a zero-phonon line of 3.02 eV, which is in good 

agreement with recent experimental data on observed GL2 band.
35

 The PL band of VN is 

predicted to originate from internal transitions between a shallow and a deep level of the same 

defect. The HSE fitted configuration coordinate diagram suggests that VN is a radiative defect.  

In n-type GaN, we show divacancies to be fairly energetically stable with a binding 

energy of 3.04 eV. We also calculate an optical transition (emission) at 0.99 eV via the 2-/- level 

of the divacancy, with ZPL of 1.53 eV. This transition could be related to the near IR broad 0.95 

PL band, frequently observed in 2.5 MeV electron irradiated GaN samples.
51-56

 The calculations 
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also suggest that the transitions via this defect level are radiative at low temperatures and become 

non-radiative at room temperature.  

Among investigated interstitial and antisite defects, both Gai and GaN were found to be 

energetically favorable in p-type GaN while split interstitial Ni-Ni exhibits the lowest formation 

energy in n-type GaN. Since calculations predict both a shallow donor level and deep levels of 

Gai, the optical transition via this defect is also suggested to be internal, with an electron weakly 

localized on the shallow level and a hole localized on a deep level of same defect prior to the 

recombination. Configuration coordinate diagram fitted into the HSE computed optical 

transitions and lattice relaxations, suggests that Ga interstitial is a radiative defect. Furthermore, 

interstitial Ga was found to be a good candidate for a defect responsible for the sharp near-IR 

0.85 eV PL band associated with a ZPL at 0.88 eV observed in electron-irradiated GaN 

epilayers.
51-56,199

 Calculations also suggest that N antisites are unlikely to occur in bulk GaN.  

In addition to intrinsic defects, external defects also play a major role in the electrical and 

optical properties of bulk GaN. In the following section, we experimentally analyze the BL2 

band in semi-insulating GaN grown by hydride vapor phase epitaxy (HVPE) and present 

theoretical results which allow the identification of the defect responsible for BL2. We attribute 

the BL2 band to the CNON-H complex, or possibly to the CN-H complex.  
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4.2. Experimental and theoretical analysis of hydrogen-carbon complexes 

and the blue luminescence band in GaN  

4.2.1. Experimental Method 

Here, we observed the BL2 band in several high-resistivity GaN samples grown by MOCVD 

and HVPE techniques. In all cases, the intensity of the BL2 band gradually decreased under 

continuous UV exposure, and simultaneously with this bleaching the YL band intensity 

increased. For detailed study in this work, we selected a freestanding GaN sample grown by 

HVPE at Kyma Technologies. The 200-μm-thick sample was doped with iron to make it semi-

insulating. The presented PL spectra are obtained from the Ga face, which was chemically-

mechanically polished.  

Steady-state PL was excited with an unfocused He-Cd laser (30 mW, 325 nm), dispersed 

by a 1200 rules/mm grating in a 0.3 m monochromator and detected by a cooled photomultiplier 

tube. Calibrated neutral-density filters were used to attenuate the excitation power density (Pexc) 

over the range of 10
-5 

- 0.2 W/cm
2
. The absolute internal quantum efficiency of PL,  , is defined 

as /PLI G  , where PLI  is the integrated PL intensity from a particular PL band and G  is the 

concentration of electron-hole pairs created by the laser per second in the same volume. To find 

  for a particular PL band, we compared its integrated intensity with the PL intensity obtained 

from a calibrated GaN sample.
205,206
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4.2.2. Experimental Results and Discussion 

Figure 30 shows a PL spectrum at photon energies above 2.6 eV at 18 K and with relatively 

high excitation intensity (Pexc = 200 mW/cm
2
). The BL2 band has a maximum at about 3.0 eV 

and a characteristic fine structure at its high-energy side. In the excitonic region, the strongest 

line at 3.479 eV with the full width at half maximum (FWHM) of about 5 meV is presumably 

due to annihilation of an exciton bound to a neutral shallow donor. The lines at 3.446 eV and 

3.356 eV labeled R4 and R5, respectively, are most probably the resonant Raman lines because 

their separations from the HeCd laser line (at 3.814 eV) are multiples of the LO phonon energy 

in GaN (about 91-92 meV). The line at 3.326 eV is identified as the ZPL of the BL2 band. The 

fine structure at the high-energy side of the BL2 band is identical to that observed in other 

samples, such as undoped or C-doped GaN grown by MOCVD.
79,80

  

The shape of the BL2 band is asymmetric, corresponding to the case of a defect with a 

moderately strong electron-phonon coupling. The shape can be modeled with the following 

formula derived from a one-dimensional configuration coordinate model:
35

 

2

0
max

0 max

0.5
( ) exp 2 1

0.5

PL PL

e

E
I I S

E






   
         

,              (4.2.2.1) 

where max

PLI  is the PL intensity in the maximum of the broad band, Se and   are the Huang-

Rhys factor (previously discussed in section 3.4.2.2) and the dominant phonon energy for the 

excited state, respectively,   is the photon energy, and 0E  is the ZPL energy. The value of   

for the BL2 band is unknown and will be assumed to be 0.04 eV for definiteness. Then, the value 

of 0E  in this fit (3.33 eV) practically coincides with the experimentally observed ZPL. The value 

of Se (4.3) is smaller than that for the YL band in GaN (7.4);
93

 i.e., the electron-phonon coupling 

for the BL2 defect is weaker. 
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 The low-temperature PL spectra at low excitation intensity (Pexc = 1 mW/cm
2
), shown in 

Fig. 31, were measured before and after prolonged exposure with a HeCd laser at Pexc = 200 

mW/cm
2
. The scans with Pexc = 1 mW/cm

2
 were taken with a relatively large step in wavelength 

(2 nm) and wide slits of a monochromator. These conditions were chosen to keep a high signal-

to-noise ratio and to avoid any distortion of the PL spectra during the scan due to changes of the 

PL intensities caused by UV exposure. Because of this, the fine structure at photon energies 

above 3 eV cannot be observed in Fig. 31. 

Before the UV exposure with Pexc = 200 mW/cm
2
, the PL spectrum at photon energies below 

2.6 eV contains a green band with a maximum at 2.36 eV, identified as the GL2 band caused by 

the nitrogen vacancy (VN).
35

 The shape of the GL2 band can be fitted well with Eq. (4.2.2.1), and 

in the fit shown in Fig. 31, we used previously reported parameters.
35

 The YL band with a 

maximum at ~2.2 eV is not observed before the UV exposure, but it may contribute as a low-

temperature shoulder to the GL2 band. The inclusion of the YL band with relatively low peak 

intensity and other parameters found in Ref. [93] greatly improves the fit of the overall PL 

spectrum (Fig. 31).  

During the UV exposure with Pexc = 200 mW/cm
2
, the BL2 band intensity gradually 

decreased, very similarly to our previous observations of the BL2 band in MOCVD-grown high-

resistivity GaN samples.
78,79,80

 Simultaneously with the bleaching of the BL2 band, the YL band 

intensity increased. After 290 min of the high-intensity UV exposure, the BL2 band intensity 

significantly decreased, whereas the YL band intensity greatly increased and became higher than 

that of the GL2 band.  

In the fit shown with open circles in Fig. 31, all the parameters for the YL and GL2 bands 

remain unchanged except for the peak intensities. In the energy range above 2.6 eV, the best fit 
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was obtained when 
max  for the BL2 band was changed from 2.98 eV (before the UV 

exposure) to 2.96 eV (after 290 min of UV exposure). This indicates that under illumination, the 

source of the BL2 band undergoes some small changes, which could be possibly a rearrangement 

of H atoms around the defect, as will be discussed below. Other parameters describing the shape 

and width of the BL2 band remained unchanged.  

By performing deconvolution of the PL spectrum while changing only the peak intensities 

of the YL, GL2 and BL2 bands and keeping intact the parameters describing the shapes and 

positions of these PL bands, we obtained the dependences of the quantum efficiencies for the 

major PL bands as a function of the UV exposure time (Fig. 32). The intensity of the GL2 band 

is practically independent of the UV exposure time, indicating a stable defect. The BL2 band 

intensity gradually decreased, while that of the YL band increased. The absolute reduction of the 

BL2 quantum efficiency (about 1.810
-4

) is just slightly larger than the absolute increase of the 

YL quantum efficiency (about 1.010
-4

). The difference can be explained by gradually 

increasing the non-radiative recombination efficiency (the total PL intensity decreased by 28% 

and the exciton emission intensity decreased by 57% during 5 hours of UV exposure). This 

suggests that the source of BL2 band converts into the source of YL band, as the sum of the two 

remains nearly constant. However, the reverse process is also possible, since the intensities of the 

BL2 and YL bands are restored to their original values after storing the sample at room 

temperature. The restoration times vary in different samples, from several hours for some 

samples to several days for other samples. 
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Figure 30: Low-temperature (T = 18 K) PL spectrum at Pexc = 200 mW/cm
2
. The ZPL of the 

BL2 band at 3.326 eV is indicated with an arrow. The dashed line is a fit using Eq. (4.2.2.1) with 

the following parameters: 6

0 6 10PLI   , Se = 4.3, 0 0.5 3.35E    eV, max 2.985   eV. The 

inset shows the high resolution of the ZPL of the BL2 band and the higher energy lines. 
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Figure 31: Low-temperature (T = 18 K) PL spectra measured at Pexc = 1 mW/cm
2
 before (thick 

solid line) and after (thick dotted line) UV illumination with Pexc = 200 mW/cm
2
 for 290 min. 

The PL intensity is divided by the excitation intensity. The contributions of three PL bands to the 

PL spectrum before illumination are shown with dashed and dash-dotted lines. The dash-dotted 

thin line 1 represents the shape of the YL band and is calculated using Eq. 4.2.2.1 with the 

following parameters: 5

0 (YL) 3.0 10PLI   , Se = 7.4, 0 0.5 2.67E    eV, max 2.21   eV. The 

long-dashed thin line 2 represents the shape of the GL2 band and is calculated using Eq. 4.2.2.1 

with the following parameters: 6

0 (GL2) 1.0 10PLI   , Se = 26.5, 0 0.5 2.87E    eV, 

max 2.36   eV. The short-dashed thin line 3 represents the shape of the BL2 band and is 

calculated using Eq. 4.2.2.1 with the following parameters: 
6

0 (BL2) 4.2 10PLI   , Se = 4.5, 
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0 0.5 3.35E    eV, 
max 2.98   eV. The sum of the three band shapes is shown with empty 

triangles. The contributions of the individual PL bands to the PL spectrum after illumination are 

not shown for clarity, but their sum is shown with open circles. The individual band shapes after 

illuminations were calculated using Eq. (1) with the same parameters as before illumination, 

except for the following parameters: 6

0 (YL) 1.47 10PLI   , 6

0 (GL2) 1.04 10PLI   , 

6

0 (BL2) 2.1 10PLI   , and max (BL2) 2.96   eV. The small shift in the PL band maximum is 

needed to obtain a good fit.  
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Figure 32: Evolution of the PL quantum efficiency for the main PL bands at T = 18 K and        

Pexc = 1 mW/cm
2
 with time of UV exposure with Pexc = 200 mW/cm

2
. 
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4.2.3. Theoretical Approach 

The theoretical method used to investigate the behavior of the observed BL2 band is 

identical to the one used in the analysis of intrinsic defects in GaN (cf. section 4.1.1). However, a 

brief comment regarding the chemical potential of oxygen needs to be given. Contrary to our 

earlier work
92

, in which the chemical potential of oxygen was obtained from the O2 molecule, 

here we are deriving the chemical potential of O2 using the HSE computed formation enthalpy of 

Ga2O3 (see section 3.3.1). The change in method in the calculation of the chemical potential of 

oxygen is based on a description given in Ref. [93].    

4.2.4. Theoretical Results and Discussion 

Since the PL experiments suggest that the defects responsible for the BL2 band under the 

UV illumination are being converted into the defects responsible for YL band, it is logical to 

assume that both BL2 and YL sources are carbon related. YL has been proposed to be 

originating from either the CN acceptor or the CNON donor-acceptor pair complex, depending on 

the amount of oxygen in the samples.
93

 The two sources of YL in different samples can be 

distinguished by the emergence of the secondary green PL band (labeled GL) with increased 

excitation intensity, which is possible only in samples where the isolated CN acceptor is 

generating YL. This is due to the CN defect creating two transition levels in the bandgap, 0/+ and 

–/0. The recombination via –/0 levels creates YL, while GL emerges with increased excitation 

intensity when the 0/+ transition levels are activated upon saturation of the –/0 levels with holes. 

On the other hand, the CNON complex creates a single 0/+ optically active transition level in the 

bandgap;
207

 therefore, in samples where CNON is the primary source of YL, the secondary GL is 

not observed (detailed analysis of carbon related YL and GL can be found in Ref. 93). The 
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samples studied in this work do not exhibit GL for any excitation intensity, suggesting that YL in 

this case is generated by CNON complexes. Taking this as a starting point, and taking into 

account that the HVPE growth method leaves significant amounts of hydrogen in the studied 

samples, in the next section we analyze the possibility of hydrogen being bound to carbon-

related defects, and show that this complex, either CNON-Hi or CN-Hi can explain the 

experimentally observed BL2 band.  

4.2.4.1. Properties of Isolated Hydrogen 

The technological importance of hydrogen in the fabrication of p-type GaN has been 

understood, since the passivation of Mg acceptors by hydrogen has been demonstrated.
208

 

Because of this, interstitial hydrogen has been extensively investigated by the first principles 

methods in the past two decades. DFT studies revealed complex behavior of hydrogen in 

GaN,
209,211,212

 suggesting that it is a negative-U center with a very large U value of -2.4 eV. Here, 

we calculate the properties of interstitial hydrogen in GaN using the HSE06 hybrid functional. 

Figure 33 shows the formation energies of interstitial hydrogen Hi, for several high symmetry 

sites in the GaN wurtzite lattice.  

Our results are qualitatively similar to previous DFT findings, with some notable 

quantitative differences. Hydrogen has multiple metastable interstitial sites, with relatively small 

energy differences (~0.2 eV), separated by barriers varying from 0.2 to ~1 eV in height. Here, we 

show the results for only a few of the lowest energy sites. We find the positive charge state of 

interstitial hydrogen (Hi
+
) to be the most stable for Fermi levels below 3 eV in the bandgap. The 

most stable site for the + charge state (as well as the neutral state) is the bond center site along 

the wurtzite c-axis (labeled as BC|| in Fig. 33). Recent hybrid functional calculations showed Hi 

in the BC site (one of the other three Ga-N bonds) to be 0.2 eV higher in energy.
213

 The anti-
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bonding nitrogen (AB(N)) site only slightly higher in energy (~0.1 eV) than the bond-center site, 

indicating roughly similar stability of the two for all values of EF. For the Fermi energies above 3 

eV, Hi exhibits acceptor type properties, with the anti-bonding gallium (AB(Ga) in Fig. 33) site 

being the most stable in singly negative charge state. The neutral charge state has higher 

formation energy for any position of the Fermi level. This negative-U behavior, however, is not 

as strong as was previously found in local approximations to the DFT. We estimate the value of 

U to be -0.77 eV. We also find the formation of the H2 molecule to be unfavorable for any Fermi 

energy. As shown in Fig. 33 (dotted line), the H2 molecule has a formation energy that is at least 

1.5 eV higher than that of interstitial hydrogen for EF ~3 eV and this difference is larger 

elsewhere.  

 Previous studies using GGA found that the potential barrier for H
+
 to jump from the BC|| 

site to the AB(N) site is 0.22 eV, and a barrier between two adjacent AB(N) sites is 0.85 eV.
213

 

Assuming the typical phonon frequency of 10
13

 s
-1

 (section 3.4.2.2) it can be estimated that these 

migration barriers indicate that H
+
 is mobile at room temperature. This means that interstitial 

hydrogen atoms, which are expected to be present in large concentrations in HVPE grown 

samples, will migrate and could form defect complexes due to an attractive interaction with other 

defects.  
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Figure 33: Formation energies of several configurations of interstitial hydrogen Hi as a function 

of the Fermi level. Labels correspond to AB(N) – hydrogen in anti-bonding nitrogen site, 

AB(Ga) – anti-bonding gallium site, hydrogen molecule H2 (dotted line), and BC|| - bond-center 

site along the wurtzite c-axis.  
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4.2.4.2. General Properties of Carbon in GaN 

Carbon can form several defects in GaN, the most stable of which are the CN acceptor 

and the CNON deep donor complex. Our calculations of electronic and optical properties of the 

CN acceptor and the CNON complex, and their comparison to experimental measurements have 

been published elsewhere.
92,93

 Here, we only briefly summarize them in order to discuss the 

properties related to their possible interaction with hydrogen. The CN defect creates two 

transition levels in the bandgap: the 0/+ transition level at 0.48 eV above the VBM, and the /0 

transition level at 1.04 above the VBM. This suggests that for Fermi level above ~1 eV in the 

bandgap, a negatively charged CN defect can attract a positively charged hydrogen interstitial Hi, 

forming the CN-Hi complex. Another carbon defect is the CNON complex, which is a deep donor, 

with the 0/+ transition level calculated at 0.75 eV above the VBM (as well as the +/2+ level at 

~0.14 eV above the VBM). Optical transitions via the 0/+ transition level of CNON complex and 

/0 transition level of CN defect were suggested to lead to two slightly different YL bands.
93

 As 

we show below, the interstitial hydrogen can form a weakly stable complex with CNON and CN, 

which also explains the experimentally observed photo-bleaching of the BL2 band.  
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4.2.4.3. Properties of the CNON-Hi complex 

Here, we consider the possibility of hydrogen creating a stable complex with one of the 

sources of the YL band, the CNON complex. The CNON-Hi complex in turn could be responsible 

for the BL2 band. As was mentioned above, the BL2 band is observed in high-resistivity GaN, 

including undoped, Fe-doped, and C-doped samples.
79

 According to early PL excitation studies, 

FeGa acceptors in GaN have the -/0 transition level at ~1.0 eV below the CBM.
214

 More recent 

measurements on high-quality GaN:Fe samples suggested the value of 0.68±0.06 eV below the 

CBM for this transition level.
215

 The FeGa acceptors compensate the shallow donors (such as 

oxygen), making the samples semi-insulating.
216

 In this case, the Fermi level in GaN:Fe should 

be located in the vicinity of this transition level. In carbon-doped GaN samples, the Fermi level 

is expected to be located near the CN or CNON transition levels; i.e., 0.9-1.0 eV above the VBM. 

However, the BL2 band is not observed in some carbon-doped GaN samples,
93,217

 and is 

observed in all iron-doped samples studied in this work. This indicates that the BL2 band is 

sensitive to the position of the Fermi energy (similarly to the case of the nitrogen vacancy
35

). In 

other words, the BL2 related defect is not formed when the Fermi level is pinned by the carbon-

related transition levels (~0.9-1.0 above the VBM), and it is formed when the Fermi level is 

pinned by the FeGa acceptor levels (~0.6 below the CBM). As we show in Fig. 35, within certain 

range of Fermi energies interstitial hydrogen can bind to the CNON complex (or CN) as mobile Hi 

diffuses throughout the sample.  

 



 

203 

 

4.2.4.3.a. Atomic Configuration of the CNON-Hi complex 

Our calculations show that hydrogen has numerous metastable sites around the carbon 

atom in the CNON complex and around isolated CN defect. These complexes with hydrogen 

occupying different sites show similar electronic and optical properties. Figure 34 shows the 

three lowest-energy basic structures of the CNON-Hi complex, with three locations of hydrogen. 

The lowest energy configuration is formed when H is attached to the CNON complex on the 

carbon side at the carbon anti-bonding site, closest to oxygen (lower right H in Fig. 34). Other C 

anti-bonding sites, where the C-H bond is pointing away from the oxygen (lower left H in Fig. 

34), are only 0.1 eV higher in energy. There are other lower symmetry sites, for example an off 

C anti-bonding site, that is ~0.2 eV higher in energy (higher H in Fig. 34), which has a number 

of equivalent sites around the C atom. The lowest energy bond-center site is the Ga-N bond 

center site, where H is in the bond center between the Ga atom (common to C and O) and N 

along the wurtzite c-axis (not shown here). However, this bond center CNON-Hi complex has an 

energy of 0.78 eV higher than the lowest energy anti-bonding geometry, indicating that bond-

center CNON-Hi complexes are energetically unfavorable.   

We have also performed calculations for hydrogen occupying all possible bond-center, as 

well as O and Ga anti-bonding sites, which are nearest neighbors of the CNON complex; 

however, these hydrogen geometries lead to energies higher by 1 eV or more. Thus, interstitial 

hydrogen is most likely attached to carbon, with numerous carbon anti-bonding Hi geometries of 

the CNON-Hi complex of similar energies that could be realized in experiment. Hydrogen exhibits 

similar behavior around the isolated carbon acceptor CN and can form stable CN-Hi complexes. 

However, the presence of oxygen modifies the electronic states, leading to somewhat different 

optical properties for the CNON-Hi and CN-Hi defects, as discussed below.  
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Figure 34: Three low energy structures of the CNON-Hi complex. Large green atoms are Ga 

while the medium sized atom on the left (in brown color) is C and the atom in the right (in red 

color) is O. Small atoms are H, occupying C anti-bonding sites (lower H atoms), and off anti-

bonding site (higher H atom) which has a number of equivalent positions.  
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4.2.4.3.b. Formation energy of the CNON-Hi complex 

Figure 35 shows the formation energies of the CNON-Hi and CN-Hi complexes in their 

lowest energy configurations, compared to the lowest energy configurations of interstitial 

hydrogen, CN acceptor, and the CNON complex. The CNON-Hi and CNON complexes have similar 

formation energies, for Fermi levels below ~0.8 eV in the gap, where both complexes are 

positively charged in the lowest energy charge state. For higher Fermi levels, the CNON complex 

is more energetically favorable, since it becomes neutral, while the CNON-Hi complex behaves as 

a shallow donor with a computed donor level at ~0.1 eV below the conduction band. The CN-Hi 

complex is more favorable for Fermi levels above 2 eV in the bandgap, where the formation 

energy of the shallow donor CNON-Hi complex increases considerably due to its + charge state. 

The CN-Hi complex creates the 0/+ deep donor transition level at 0.3 eV above the VBM. This 

transition level is in the energy range that makes it a possible candidate for the BL2 band. The 

CNON-Hi complex creates the +/2+ transition level due to a weakly localized defect state close to 

the valence band in the + charge state, and a localized hole in the 2+ state, leading to large 

relaxation energies between the two states. The weakly localized nature of the electron in the 

defect state makes it problematic to calculate this transition level accurately (as with all shallow 

states). HSE calculations with supercells containing 300 atoms suggest this +/2+ transition level 

is at roughly 0.06-0.1 eV above the VBM. Subsequent calculations show that optical transitions 

through this +/2+ level of the CNON-Hi complex also can explain the observed properties of the 

BL2 band.  

The CNON complex is neutral for Fermi levels above 0.8 eV, therefore there is no long-

range electrostatic attraction between this complex and interstitial hydrogen. Nevertheless, the 

calculated binding energy of the CNON-Hi complex (lower panel in Fig. 35) is ~0.9 eV for most 
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Fermi levels in the bandgap, indicating a relatively stable complex. The isolated CN is negatively 

charged for Fermi levels above 1 eV, and can attract positive hydrogen for Fermi levels below 3 

eV, above which hydrogen becomes negative. The CN-Hi complex is slightly more stable for a 

similar range of Fermi energies; i.e., between 1 and 3 eV in the bandgap, and is ~1.2 eV.  Since 

the binding energy provides information about the energy differences between the equilibrium 

lowest energy configurations of the complex and its constituents, the diffusion barriers for 

hydrogen dissociation are also needed to estimate the stability of the complex (discussed below).  
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Figure 35: Formation energies of CNON-Hi, CN-Hi, CNON, CN, and hydrogen interstitial Hi as a 

function of the Fermi level in the GaN band gap (upper panel). The Fermi energies where lines 

change slope correspond to the thermodynamic transition levels. Binding energy (B) of CNON-Hi 

and CN-Hi complexes as a function of the Fermi level in the gap (lower panel).  
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4.2.4.3.c. Optics of the CNON-Hi complex 

Calculated results for optical transitions via the CNON-Hi complex are shown in Figure 

36. After optical band-to-band excitation (upward vertical arrow), a free hole is unlikely to be 

captured by this defect because it is positively charged in its ground state, and the efficiency of 

such a recombination channel would be very low. However, since the CNON-Hi complex also has 

a shallow donor state, a free electron can be captured first by the (CNON-Hi)
+
 defect at its 0/+ 

shallow donor level. This would transfer the CNON-Hi complex into a neutral excited state; i.e., 

(CNON-Hi + e
*
)
0
, where e

*
 represents a weakly bound electron. Subsequently, a hole can be 

captured by the neutral complex to the +/2+ defect state, lowering the system’s energy by 

roughly 0.1 eV. The electron-hole recombination will then occur as an internal transition, where 

a weakly localized electron recombines with the hole localized on the same CNON-Hi defect. 

Preliminary time-resolved PL experiments indicate that at least in some high-resistivity GaN 

samples, the decay of the BL2 band after a pulse excitation is nearly exponential, with a 

characteristic lifetime of about 0.4 μs at temperatures between 15 and 100 K,
80

 which agrees with 

the above-described internal transition mechanism. Detailed studies of the time-resolved PL are 

underway. 

The optical transition calculations performed for the lowest energy structure of this 

complex yield a PL maximum at 3.03 eV, which is very close to the experimentally observed 

BL2 band maximum (at 2.98-3.03 eV in different samples). The calculated excitation energy of 

3.69 eV is larger than the bandgap, and therefore cannot be observed experimentally. The 

thermodynamic transition level for the +/2+ transition level responsible for this optical line is 

very close to the valence band, leading to a significant delocalization error. Examining the 

electronic structure of the defect shows one distinct defect state roughly 0.1 eV above the 
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valence band, which in the + charge state has a delocalized (or weakly localized) wave function. 

As a consequence, it can only be estimated that this electronic state is within 0.1 eV from the 

VBM. This leads to the estimated value of the ZPL of about 3.4 eV. The Franck-Condon shift is 

calculated to be 0.37 eV. These values are in good agreement with the experimentally observed 

values of 3.33-3.34 eV for the ZPL of the BL2 band, suggesting that the CNON-Hi complex is the 

defect responsible for it. 

The existence of other possible carbon anti-bonding sites for hydrogen in the complex 

leads to varying emission energies within ~0.15 eV (the bond-center Hi geometry yields 

significantly lower PL maximum at 2.75 eV), which may lead to additional broadening of the PL 

band due to statistical averaging of different positions of hydrogen in the sample. Moreover, 

defects with different positions of hydrogen would have different barriers for the complex 

dissociation. Thus, we may expect a slight shift of the BL2 band with prolonged UV exposure. 

To verify the above predictions, we have carried out an experiment with a focused laser beam 

(with a diameter of the spot of about 0.2 mm) to cause greater bleaching of the BL2 band. The 

results are shown in Fig. 37. After 2.5 hours of this UV exposure, the intensity of the BL2 band 

decreased by a factor of four, and the intensity of the YL band increased by the same factor. 

Interestingly, the maximum of the BL2 band shifted to lower photon energies by about 50 meV 

and the full width at half maximum of the BL2 band increased from 386 to 460 meV after the 

prolonged UV exposure (Fig. 37). This indicates that various similar configurations of BL2 

defect could exist, as discussed above. Some of these are being destroyed under UV illumination, 

while others appear to be more stable which leads to the broadening and shift of the BL2.  
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Figure 36: Configuration coordinate diagram and calculated optical transitions for the CNON-Hi 

complex. The upward vertical arrow represents the band-to-band excitation, with the generation 

of an electron-hole pair. The following transition of the system from the solid parabola to the 

dashed parabola corresponds to the capture of a free electron at the 0/+ shallow level of the 

CNON-Hi defect.  The transition from the upper-right parabola (solid one if the electron is free or 

dashed one if the electron is captured at the 0/+ level) to the upper-left parabola corresponds to 

the nonradiative capture of a free hole at the +/2+ transition level of the CNON-Hi complex. The 

thermodynamic +/2+ transition level is at ~0.1 eV above the VBM, and the Franck-Condon shift 

is 0.37 eV. The downward arrow represents the optical recombination producing a PL band with 

a maximum at 3.03 eV and ZPL at 3.4 eV. Resonant excitation of the CNON-Hi complex is 

expected to produce a PL excitation band with a maximum at 3.69 eV, which cannot be observed 

experimentally since the energy is higher than the GaN bandgap.  
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Figure 37: The YL and BL2 bands before and after 2.5 hours of UV exposure with a focused 

HeCd laser at Pexc  100 W/cm
2
 and T = 18 K. The measurements are done at Pexc  0.4 W/cm

2
. 

The solid line is calculated using Eq. (1) with the following parameters: 5

0 8 10PLI   , Se = 4.5, 

0 0.5 3.35E    eV, max 3.005   eV. The dashed line is identical to the solid line but shifted 

vertically (by a factor of 4.5) and horizontally (by 50 meV).  The vertical lines show positions of 

the BL2 band maximum, and the arrow indicates the shift of the BL2 band maximum by about 

50 meV. 
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4.2.4.4. Properties of the CN-Hi complex 

According to the above-discussed model in section 4.2.4.3.a, hydrogen binds to the 

carbon side of the CNON complex, whereas the complexes with Hi near oxygen have substantially 

higher energy. A question arises concerning what role the oxygen plays in the electronic and 

optical properties of the defect responsible for the BL2 band. Below, we examine the CN-Hi 

complex as another possible candidate for the BL2 band.  

As in the previous case, hydrogen has numerous metastable locations around CN, which 

appears to be common for interstitial hydrogen. The lowest energy CN- Hi complex is formed for 

Hi located ~1.1 Å away from carbon, at one of the three equivalent anti-bonding sites. Hi 

occupying fourth anti-bonding site along the wurtzite c-axis has an energy that is 0.27 eV higher. 

The C-Ga bond center site has 0.6 eV higher energy, with the C-Ga bond stretched from ~2 Å to 

2.8Å. The situation is similar to the case of the CNON-Hi complex, creating a number of complex 

geometries with slightly different transition levels, all of which could be realized according to 

their formation energies.  
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4.2.4.4.a. Optical Transitions of the CN-Hi complex 

Figure 38 shows optical transitions via the CN-Hi complex. After band-to-band excitation (the 

upward arrow), the neutral CN-Hi defect captures a free hole (transition from the upper right 

parabola to the upper left parabola) due to the existence of the 0/+ level at 0.3 eV above the 

VBM. The defect becomes positively charged and the free electron recombines with the hole 

localized on the defect, producing a PL band. The lowest formation energy CN-Hi defect would 

produce the PL band with a maximum at 2.72 eV, which is ~0.3 eV lower than the observed BL2 

band maximum in experiment. However, some slightly higher energy complex geometries do 

show optical transitions closer to the experimental results for the BL2 band. For example, CN-Hi 

with hydrogen at the anti-bonding site along the wurtzite c-axis has a thermodynamic transition 

level at 0.24 eV above the VBM, and it would produce a PL band with a maximum at 2.95 eV 

and a ZPL at 3.26 eV. This site is only 0.23 eV higher in energy than the lowest energy anti-

bonding site described above, and therefore it is possible that it contributes to the BL2 band. In 

contrast to the CNON-Hi case, the excitation energy for this defect is below the band gap, and has 

a value of 3.38 eV.  

 In all geometries, the CNON-Hi defect creates two transition levels in the bandgap, leading 

to the predicted internal optical transition with electron-hole pair localized on the same defect. At 

the same time, the CN-Hi defect creates only one deep donor level, suggesting an external 

transition, with conduction band electron (or a shallow donor-bound electron) recombining with 

the hole localized on the defect. It should be noted that in its excited state, positively charged CN-

Hi defect can also create hydrogenic levels below the CBM, since it can weakly bind a 

conduction band electron. In this case an internal transition is also possible. Early experiments on 

time-resolved PL revealed that the decay of the BL2 intensity after pulse excitation is nearly 
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exponential, even at 15 K. The characteristic PL lifetime for the BL2 band in undoped GaN has 

been determined to be about 400 ns.
79

 This is in contrast to typical transitions from a shallow 

donor to a deep acceptor for a majority of defect-related PL bands in GaN.
4
 These donor-

acceptor pair (DAP)-type transitions produce non-exponential and a very slow decay of PL 

intensity at low temperature due to random separations of bound electrons and holes in DAPs. 

Transitions from the conduction band to the deep defect levels can be ignored at low 

temperatures for both n-type conductive GaN samples and the high-resistivity samples, because 

non-radiative capture of photo-generated electrons by shallow and deep donors is much faster 

than the radiative recombination. Our preliminary experimental results on time-resolved PL 

indicate an internal transition, because the decay of the BL2 intensity in time-resolved PL 

measurements is nearly exponential at low temperatures.  
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Figure 38: Configuration coordinate diagram and calculated optical transitions for the CN-Hi 

complex. The upward vertical arrow represents the band-to-band excitation, with the generation 

of an electron-hole pair. The transition from the upper-right parabola to the upper-left parabola 

corresponds to the nonradiative capture of a free hole at the 0/+ transition level of the CN-Hi 

complex. The thermodynamic 0/+ transition level is at 0.3 eV above the VBM, and the Franck-

Condon shift is 0.48 eV. The downward arrow represents the optical recombination producing a 

PL band with a maximum at 2.72 eV and ZPL at 3.2 eV. Resonant excitation of the CN-Hi 

complex would produce a PL excitation band with a maximum at 3.38 eV.  
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4.2.4.5. Summary of thermodynamic and optical transitions of various 

configurations of the carbon-hydrogen related complexes 

Figure 39 shows the schematic band diagram with the thermodynamic transition levels 

and optical transitions via the CNON-Hi and CN-Hi complexes. As mentioned above, hydrogen 

has numerous locations around carbon, with similar formation energies, leading to a number of 

possible transition levels close to each other that can contribute to the PL, since all of these 

possible geometries can be realized in experiment. This would lead to a broadening of the PL 

bandwidth, in addition to the common electron-phonon coupling. In both cases, a set of the most 

typical hydrogen sites produces transition levels within ~0.2 eV from each other, as shown with 

the shaded areas in Fig. 39. Hydrogen sites with formation energies larger than 1 eV can have 

different electronic structure, and are not shown here. For both defects, the lowest energy defects 

create transition levels that are the lowest in the gap (~0.1 and 0.24 eV for the CNON-Hi and CN-

Hi complexes, respectively). The lowest energy structures for both defects are anti-bonding sites: 

in the CN-Hi complex, interstitial H is located in one of the three equivalent anti-bonding Ga sites 

and in the CNON-Hi complex the hydrogen-carbon bond is pointing toward the oxygen. Next in 

formation energy, there are a few alternative anti-bonding sites, that are about 0.1 eV higher for 

each complex, also producing transition levels ~0.1 higher. Finally, the highest formation energy 

defects states with transition levels of 0.35 and 0.44 eV shown in Fig. 39, correspond to the Ga-

N bond center site for the CNON-Hi, complex and the C-Ga bond-center site in the CN-Hi 

complex. These configurations are 0.78 eV and 0.6 eV higher in formation energy than the 

lowest energy geometry, respectively. The presence of oxygen lowers all transition levels by 

~0.1-0.15 eV, bringing the PL maximum created by the CNON-Hi complex closer to experiment.  
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Figure 39: Schematic band diagram illustrating the optical transitions via CNON-Hi and CN-Hi 

complexes. A variety of possible positions of interstitial hydrogen leads to a variety of similar 

transition levels, which would be distributed in the sample according to their formation energies. 

Shaded areas represent the energy range within which most low energy defect configurations 

vary.  
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4.2.4.6. Stability of the CNON-Hi complex and PL photo-bleaching  

The experimentally observed BL2 band exhibits photo-bleaching under laser exposure, 

with the PL intensity dropping by a factor of four after 290 min of UV illumination, while the 

YL band intensity increases by approximately the same amount (Fig. 37). This can be explained 

with the assumption that the BL2 source is unstable and is being destroyed, either by the UV 

laser or subsequent non-radiative recombination, leaving the source of YL as a byproduct of this 

decomposition. Since our HSE calculations indicate that the CNON-Hi complex is a possible 

source of the BL2 band, we have performed diffusion barriers calculations, for the dissociation 

of hydrogen from the complex. The diffusion barriers were calculated using the nudged elastic 

band method
218

 within the GGA approximation to the DFT. The initial most stable geometry for 

the CNON-Hi complex is taken from above HSE calculations, with hydrogen occupying the anti-

bonding C site. The isolated hydrogen in the + state has similar formation energies in both the 

bond-center and nitrogen anti-bonding sites; therefore, these two final geometries are also 

calculated. All calculations were performed in the + charge state of the complex.  

Figure 40 shows the diffusion barriers, as well as the diffusion path of the H atom in GaN 

containing the CNON-Hi complex. When being dissociated from the CNON-Hi complex, hydrogen 

has to overcome the potential barrier of 1.1 eV. It should be noted that these GGA results imply 

slightly lower binding energy of the hydrogen atom to CNON within GGA approximation, about 

0.75 eV (roughly the energy difference between points AB(N) and AB(C) points in Fig. 40). 

More accurate HSE calculations (when possible to perform) usually yield larger diffusion 

barriers for hydrogen in GaN by ~0.1-0.2 eV,
213

 suggesting that actual dissociation barrier could 

be slightly larger. An additional jump from the nitrogen anti-bonding site into the bond-center 

site requires an additional 0.25 eV. As shown in Fig. 40, the bond-center site is unstable in GGA 
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(there is no energy minimum); however, HSE calculations show that it has an energy that is 

actually a little lower than that of the nitrogen anti-bonding site. Therefore a more accurate HSE 

calculation is expected to predict the 0.25 eV barrier between these two sites of similar energy.  

 The potential barrier of ~1.1 eV for detachment of hydrogen from the CNON-Hi complex 

suggests that it is weakly stable at room temperature. For optical transitions corresponding to the 

PL maximum, the thermal energy released following the radiative recombination via the CNON-

Hi complex (equal to Franck-Condon shift of 0.37 eV) is not sufficient for the dissociation. 

However, the significant PL bandwidth allows for the following explanation of the hydrogen 

detachment from the complex via the recombination enhanced defect reaction mechanism,
219,187 

as shown schematically in Fig. 41. Upon photon absorption the defect is transferred into the 2+ 

charge state. In this 2+ charge state there is a certain spread of the defect vibrational wave 

function, which defines the PL bandwidth. Therefore, radiative recombination events occur 

(albeit with lower probabilities) at both sides of the upper parabola. Thus, the vibrational lattice 

energy (ZPL minus the photon energy), larger than 1.1 eV dissociation barrier, can be released 

following the radiative recombination. This corresponds to the radiative transitions (left 

downward arrow in Fig. 41) with photon energies lower than 2.3 eV, leaving enough lattice 

relaxation energy for complex dissociation. Thus, complex dissociation via relaxation following 

the radiative transition, turns the CNON-Hi or CN-Hi (the BL2 band source) into the CNON or CN 

(the YL band source). At room temperature, mobile hydrogen will be moving throughout the 

sample until it is attached again to a more stable site, such as the CNON or CN defect. Thus, 

photo-bleaching under illumination should be followed by a slow recovery of the BL2 band in 

the dark at room temperature. In experiment, the BL2 band is bleached in a few hundred minutes 

at low temperature, followed by the BL2 recovery, which takes from several hours to several 
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days at room temperature (the restoration time was sample-dependent) Thus, optical transitions 

and energetics of the CNON-Hi complex (or the CN-Hi complex) explain all the experimentally 

observed aspects of BL2, both qualitatively and quantitatively. 
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Figure 40: GGA Calculated hydrogen diffusion barriers determining the dissociation energies of 

the CNON-Hi complex, and the corresponding diffusion path. Initially bound to the complex at 

the anti-bonding carbon site, labeled AB(C), the hydrogen atom can jump into the neighboring 

anti-bonding nitrogen site AB(N). Subsequently, the hydrogen can jump into the Ga-N bond-

center site, labeled BC.  
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Figure 41: The configuration coordinate diagram schematically explaining the bleaching of the 

BL2 band. The radiative transition producing the BL2 band is shown with right downward 

arrow. However, a smaller fraction of recombinations occurs with lower photon energies, shown 

with left downward arrow, which can cause the dissociation of the complex (the processes shown 

with dashed arrows). 
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4.2.5. Concluding remarks regarding the BL2 band in GaN 

In the last section of this dissertation, we performed first-principles calculations to 

explain the properties of the BL2 band that peaks at 3.0 eV and is only observed in high-

resistivity GaN samples grown by MOCVD or HVPE techniques. The characteristic feature of 

the BL2 band is its significant bleaching under UV exposure, with the concurrent emergence of 

the YL band around 2.2 eV. Since the YL band is attributed to either the CN defect or the CNON 

complex, and both the MOCVD and HVPE growths may produce the abundance of hydrogen in 

GaN samples, we have explored the possibilities that the CN-Hi and CNON-Hi complexes 

dissociate under UV exposure by releasing a hydrogen atom.  The calculated and experimental 

results agree very well, especially for the CNON-Hi complex as the source of the BL2 band. In 

particular, the calculated PL band maximum and the position of the zero-phonon line for the 

CNON-Hi complex (3.03 eV and 3.4 eV, respectively) are almost identical to the values observed 

experimentally (3.0 eV and 3.33 eV, respectively), while the predicted values for the CN-Hi 

complex (2.73 eV and 3.1 eV, respectively) are off by 0.2-0.3 eV. Moreover, we predict that an 

electron is first captured by a shallow donor level of the CNON-Hi complex, located at about 0.1 

eV below the conduction band, and it recombines with a hole captured at the level close to the 

valence band. Such internal transition would produce PL decaying exponentially in time after a 

laser pulse. Preliminary time-resolved PL experiments indicated such behavior. Furthermore, in 

Fe-doped GaN, where the BL2 band is usually observed, the Fermi level is expected to be 

located at about 0.6 eV below the conduction band. In these conditions, both CN-Hi and CNON-Hi 

complexes are stable with binding energies of 1.2 and 0.9 eV, respectively. The barrier for 

detachment of hydrogen in CNON-Hi complex is about 1.1 eV. We suggest that the bleaching of 

the BL2 band occurs via the photo-induced defect reaction, whereby a fraction of electron-hole 
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recombinations at the CN-Hi or CNON-Hi complex, occurring at the lower energy tail of PL 

spectrum, leave enough lattice relaxation energy to detach the hydrogen atom. 
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Future work 

Throughout this dissertation, we have seen that theoretical predictions of thermodynamic 

transitions  1 2/T q q  or optical transition of a defect between two different charge states q1 and 

q2 can either be obtained from (a) the single particle eigenvalue based on Janak’s 

theorem,
220,221,222

 or (b) the formation energy differences of the defect in charge states q1 and q2. 

The latter method (method (b)) requires total energy calculations in SCs which involves 

spurious interactions between the compensating background (jellium) and the periodically 

repeated images of the defect in non-neutral charged systems
173

. Although using the formation 

energy method reproduces the experimental bandgap of 3.5 eV for GaN, it yields incorrect 

ionization potential (IP) since neither the CBM nor the VBM values computed within the KS 

method are physically meaningful. Furthermore, it is also found that the position of calculated 

transition levels of deep defects such as VGa (Table 1) or carbon related impurities,
91,92,93

 is 

dependent on the method used for fictitious interactions corrections. An identical trend is also 

observed for defects close to band edges, i.e VN, in which transitions levels are underestimated 

by approximately 0.2-0.3 eV across the bandgap, when compared to experiment.
73,75

 Therefore, 

accurate computations of thermodynamic or optical transition levels of deep and shallow defects 

via the formation energy method might not be the most reliable of approaches.  

The former method (b) involves Janak’s theorem
134 

which states that the k-th Kohn-Sham 

eigenvalue  k  is equal to the change in the KS total energy   J JE n r    with respect to the 

electron occupancy ( kq ) of the k-th level,  

 
 

J J

k

k

E n r

q


    

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By implementing Janak’s theorem
134

 in the SC formalism subjected to the “simplest” correction, 

i.e Madelung corrections, we obtain: 

 
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According to the above equation, by dropping or adding an electron into a SC subjected to 

Madelung corrections, its corresponding k-th KS eigenvalue will be shifted by a value of 

 
1

3

 2
2 SCV




 . In case of defects fairly close to band edges, this might consequently make the 

eigenvalue of the defect state resonant with the CBM/VBM, which would hence yield inaccurate 

thermodynamic and optical transition levels.  

In order to circumvent the difficulties encountered using either previously discussed 

methods [(a) or (b)], future work regarding the restoration of the experimental ionization 

potential of GaN by tuning the screening parameter w from the HSE functional while using the 

standard value of the amount of exact exchange a1 = 0.25 can be performed. Although in such 

method, the position of the CBM is incorrect, by reestablishing the correct IP, we are defining 

the correct value of the VBM with respect to vacuum level and hence possibly setting up a 

benchmark for which better comparison between experiment and theory could be done for future 

investigation of thermodynamic and optical transition levels of defects in semiconductors. 
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