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a b s t r a c t 

In many applications of information systems learning algorithms have to act in dynamic environments 

where data are collected in the form of transient data streams. Compared to static data mining, process- 

ing streams imposes new computational requirements for algorithms to incrementally process incoming 

examples while using limited memory and time. Furthermore, due to the non-stationary characteristics 

of streaming data, prediction models are often also required to adapt to concept drifts. Out of several 

new proposed stream algorithms, ensembles play an important role, in particular for non-stationary en- 

vironments. This paper surveys research on ensembles for data stream classification as well as regression 

tasks. Besides presenting a comprehensive spectrum of ensemble approaches for data streams, we also 

discuss advanced learning concepts such as imbalanced data streams, novelty detection, active and semi- 

supervised learning, complex data representations and structured outputs. The paper concludes with a 

discussion of open research problems and lines of future research. 

Published by Elsevier B.V. 

1. Introduction 

The analysis of huge volumes of data is recently the focus of 

intense research, because such methods could give a competitive 

advantage for a given company. For contemporary enterprises, the 

possibility of making appropriate business decisions on the basis 

of knowledge hidden in stored data is one of the critical success 

factors. Similar interests in exploring new types of data are present 

in many other areas of human activity. 

In many of these applications, one should also take into con- 

sideration that data usually comes continuously in the form of 

data streams . Representative examples include network analy- 

sis, financial data prediction, traffic control, sensor measurement 

processing, ubiquitous computing, GPS and mobile device track- 

ing, user’s click log mining, sentiment analysis, and many others 

[19,59,60,203,208] . 

Data streams pose new challenges for machine learning and 

data mining as the traditional methods have been designed for 

static datasets and are not capable of efficiently analyzing fast 
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growing amounts of data and taking into consideration character- 

istics such as: 

• Limited computational resources as memory and time, as well 

as tight needs to make predictions in reasonable time. 
• The phenomenon called concept drift , i.e., changes in distribu- 

tion of data which occur in the stream over time. This could 

dramatically deteriorate performance of the used model. 
• Data may come so quickly in some applications that labeling all 

items may be delayed or sometimes even impossible. 

Out of several tasks studied in data streams [60] , supervised 

classification has received the most research attention. It is often 

applied to solve many real life problems such as discovering client 

preference changes, spam filtering, fraud detection, and medical di- 

agnosis to enumerate only a few. The aforementioned speed, size 

and evolving nature of data streams pose the need for develop- 

ing new algorithmic solutions. In particular, classifiers dedicated to 

data streams have to present adaptation abilities, because the dis- 

tribution of the data in motion can change. To tackle these chal- 

lenges, several new algorithms, such as VFDT [44] , specialized slid- 

ing windows, sampling methods, drift detectors and adaptive en- 

sembles have been introduced in the last decade. 

In our opinion, ensemble methods are one of the most promis- 

ing research directions [188] . An ensemble, also called a multiple 

classifier or committee, is a set of individual component classi- 

http://dx.doi.org/10.1016/j.inffus.2017.02.004 
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Fig. 1. A diagram of the classifier ensemble. 

fiers whose predictions are combined to predict new incoming in- 

stances. Ensembles have been shown to be an efficient way of im- 

proving predictive accuracy or/and decomposing a complex, diffi- 

cult learning problem into easier sub-problems. 

The main motivation for using classifier ensembles is the no free 

lunch theorem formulated by Wolpert [185] . According to it, there 

is not a single classifier that is appropriate for all the tasks, since 

each algorithm has its own domain of competence. Usually, we 

have a pool of classifiers at our disposal to solve a given problem. 

Turner [176] showed that averaging outputs of an infinite num- 

ber of unbiased and independent classifiers may lead to the same 

response as the optimal Bayes classifier [48] . Ho [75] underlined 

that a decision combination function must receive useful represen- 

tation of each individual decision. Specifically, they considered sev- 

eral methods based on decision ranks, such as Borda count. 

We also have to mention another of Ho’s work [74] , who dis- 

tinguished two main approaches to design a classifier ensemble: 

• Coverage optimization focuses on the generation of a set of mu- 

tually complementary classifiers, which may be combined to 

achieve optimal accuracy using a fixed decision combination 

function. 
• Decision optimization concentrates on designing and training an 

appropriate decision combination function, while a set of indi- 

vidual models is given in advance [151] . 

Other important issues that have be taken into consideration 

when building classifier ensembles are the following: 

• Proposing interconnections among individual classifiers in the 

ensemble. 
• Selecting a pool of diverse and complementary individual clas- 

sifiers for the ensemble. 
• Proposing a combination rule, responsible for the final deci- 

sion of the ensemble, which should exploit the strengths of the 

component classifiers. 

The general diagram of a classifier ensemble is depicted in 

Fig. 1 . 

The selection of classifiers for the ensemble is a key factor. An 

ideal ensemble includes mutually complementary individual classi- 

fiers which are characterized by high diversity and accuracy [106] . 

It is generally agreed that not only the accuracy, but also the di- 

versity of the classifiers is a key ingredient for increasing the en- 

semble’s accuracy [195] . Classifiers must be selected to obtain pos- 

itive results from their combination. Sharkley et al. [159] proposed 

four levels of diversity based on the majority vote rule, coincident 

error, and the possibility of at least one correct answer of ensem- 

ble members. Brown et al. [24] reflected that it is inappropriate 

for the case where diversity of an ensemble is different in various 

subspaces of the feature space. For comprehensive reviews on en- 

semble methods developed for static datasets see, e.g., [108] . 

Classifier ensembles are an attractive approach to construct 

data stream classifiers, because they facilitate adaptation to 

changes in the data distribution. Their adaptation could be done 

by changing the line-up of the ensemble, e.g., by adding compo- 

nents classifiers trained on the most recent data and/or removing 

the outdated classifiers, or by retraining the ensemble components. 

There are several interesting books or surveys on the data 

stream analysis and classification, but most of them focus on gen- 

eral methods of data stream analysis, not dedicating too much 

space to ensemble approaches [43,60,64,114,131] , and some have 

been written several years ago [59,107,109] . Therefore, there is still 

a gap in this literature with respect to present the development in 

learning ensembles from data streams. This survey aims to fill this 

gap. 

It is also worth mentioning the work [105,207] , where data 

stream mining challenges have been discussed. We will discuss 

open research problems and lines of future research in the specific 

area of ensemble approaches for data streams. 

We will pay the most attention to classifier ensembles, given 

that most existing literature is in this area. However, we will also 

discuss research on regression (or prediction model) ensembles. 

Furthermore, we will review recent ensemble approaches dedi- 

cated to various more complex data representations in streams. 

This survey is organized as follows. Section 2 focuses on the 

main characteristics of data streams and methods dedicated to 

their analysis, as well as on the type of data streams and drift de- 

tection methods. Section 3 presents methods for evaluating clas- 

sifiers over streaming data. In Section 4 , a comprehensive survey 

on ensemble techniques for classification and regression problems 

is presented. Section 5 enumerates advanced problems for data 

stream mining, such as imbalanced data, novelty detection, one- 

class classification, and active learning, as well as focuses on non- 

standard and complex data representations or class structures. The 

final section draws open challenges in this field for future research. 

2. Data stream characteristics 

In this section we will provide a general overview of the data 

stream domain, discussing different types of streaming data, learn- 

ing frameworks used for its analysis, and the issue of changes in 

the data stream distribution, known as concept drift. 

2.1. General issues 

A data stream is a potentially unbounded, ordered sequence of 

data items which arrive over time. The time intervals between the 

arrival of each data item may vary. These data items can be simple 

attribute-value pairs like relational database tuples, or more com- 

plex structures such as graphs. 

The main differences between data streams and conventional 

static datasets include [11,60,169] : 

• data items in the stream appear sequentially over time, 
• there is no control over the order in which data items arrive 

and the processing system should be ready to react at any time, 
• the size of the data may be huge (streams are possibly of infi- 

nite length); it is usually impossible to store all the data from 

the data stream in memory, 
• usually only one scan of items from a data stream is possible; 

when the item is processed it is discarded or sometimes stored 

if necessary, or aggregated statistics or synopses are calculated, 
• the data items arrival rate is rapid (relatively high with respect 

to the processing power of the system), 
• data streams are susceptible to change (data distributions gen- 

erating examples may change on the fly), 
• the data labeling may be very costly (or even impossible in 

some cases), and may not be immediate. 

These data stream characteristics pose the need for other algo- 

rithms than ones previously developed for batch learning , where 
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Fig. 2. Difference between incremental and block base classifier updating. 

data are stored in finite, persistent data repositories. Typical batch 

learning algorithms are not capable of fulfilling all of the data 

stream requirements such as constraints of memory usage, re- 

stricted processing time, and one scan of incoming examples [25] . 

Note that some algorithms, like Naïve Bayes, instance based learn- 

ing or neural networks are naturally incremental ones. However, 

simple incremental learning is typically insufficient, as it does not 

meet tight computational demands and does not tackle evolving 

nature of data sources [60] . 

Constraints on memory and time have resulted in the develop- 

ment of different kinds of windowing techniques, sampling (e.g. 

reservoir sampling) and other summarization approaches. How- 

ever, the distribution in the data source generating the stream data 

items may change over time. Thus, in case of non-stationary data 

streams, data from the past can become irrelevant or even harm- 

ful for the current situation, deteriorating predictions of the clas- 

sifiers. Data management approaches can play the role of a forget- 

ting mechanism where old data instances are discarded. 

2.2. Types of data streams and learning frameworks 

If a completely supervised learning framework is considered, it is 

assumed that after some time the true target output value y t of the 

example is available. Thus, data stream S is a sequence of labeled 

examples z t = (x t , y t ) for t = 1 , 2 , . . . , T . Usually, x is a vector of at- 

tribute values, and y is either a discrete class label ( y ∈ { K 1 , . . . , K l } ) 
for classification problems or numeric output (independent) val- 

ues for regression problems. The general task is to learn from the 

past data (a training set of examples) the relationship between 

the set of attributes and the target output. In the case of classi- 

fication, this relationship corresponds to discovered classification 

knowledge and it is often used as classifier C to determine the 

class label for the new coming example x t 
′ 
. In the case of regres- 

sion, the learned model is used to predict a numeric value. Note 

that the classifier or the regression model is supposed to provide 

its prediction at any time based on what it has learned from the 

data items { z 1 , z 2 , . . . , z t } seen so far. This prediction 

ˆ y t and true 

target value y t can be used by the learning algorithm as additional 

learning information. 

As most of the current research on data stream ensembles con- 

cerns classification, we will present the remaining of this section 

using the classification terminology. However, nearly all of these 

issues are also valid for regression cases. 

The majority of proposed algorithms for learning stream clas- 

sifiers follow the supervised framework (i.e. with a complete and 

immediate access to class labels for all processed examples). How- 

ever, in some applications the assumption of a complete labeling 

of learning examples may be unrealistic or impractical, as the class 

labels of newly coming examples in data streams are not immedi- 

ately available. For instance, in the financial fraud detection, infor- 

mation on fraud transactions is usually known after a long delay 

(e.g. when an account holder receives the monthly report [52] ), 

while for a credit approval problem the true label is often avail- 

able after 2–3 years. Moreover, the acquiring of labels from ex- 

perts is costly and needs substantial efforts [204] . Therefore some 

researchers consider other frameworks such as: 

• learning with delayed labeling when an access to true class la- 

bels is available much later than it is expected; the classifier 

may adapt to the stream earlier without knowing it [104] , 
• semi-supervised learning where labels are not available for all 

incoming examples; They are provided in limited portions from 

time to time; alternatively, the system employs an active learn- 

ing technique, which selects unlabeled examples for acquiring 

their labels [52,97,110,204] , 
• unsupervised framework or learning from initially labeled ex- 

amples; An initial classifier is learned from a limited number 

of labeled training examples, and then it processes the upcom- 

ing stream of unlabeled examples without any access to their 

labels [49] . 

We will come to these issues in Section 5.3 . 

Examples from the data stream are provided either online , i.e., 

instance by instance, or in the form of data chunks (portions, 

blocks). In the first approach, algorithms process single exam- 

ples appearing one by one in consecutive moments in time, while 

in the other approach, examples are available only in larger sets 

called data blocks (or data chunks ) S = B 1 ∪ B 2 ∪ . . . ∪ B n . Blocks are 

usually of equal size and the construction, evaluation, or updat- 

ing of classifiers is done when all examples from a new block are 

available. This distinction may be connected with supervised or 

semi-supervised frameworks. For instance, in some problems data 

items are more naturally accumulated for some time and labeled 

in blocks while an access to class labels in an online setup is more 

demanding. Moreover, these types of processing examples also in- 

fluence the evaluation of classifiers. Both discussed modes are de- 

picted in Fig. 2 . 

2.3. Stationary and non-stationary (drifting) data streams 

Two basic models of data streams are considered: stationary , 

where examples are drawn from a fixed, albeit unknown, proba- 

bility distribution, and non-stationary , where data can evolve over 

time. In the second case, target concepts (classes of examples) 

and/or attribute distributions change. In other words, the concept 

from which the data stream is generated shifts after a minimum 

stability period [60] . This phenomenon is called concept drift , a.k.a, 

covariant shift. Concept drifts are reflected in the incoming in- 

stances and deteriorate the accuracy of classifiers/regression mod- 

els learned from past training instances. Typical real life streams 

affected by concept drift could include [200] : 
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Fig. 3. Type of drifts. 

• computer or telecommunication systems, where attackers look 

for new ways of overcoming security systems, 
• traffic monitoring, where traffic patterns may change over time, 
• Weather predictions, where climate changes and natural 

anomalies may influence the forecast, 
• system following personal interests, like personal advertise- 

ment, where users may change their preferences, and 

• medical decision aiding, where disease progression may be in- 

fluenced and changed in response to applied drugs or natural 

resistance of the patients. 

Other examples of real life concept drifts include spam catego- 

rization, object positioning, industrial monitoring systems, financial 

fraud detection, and robotics; and they are reviewed in the recent 

survey [208] . 

Concept drift can be defined from the perspective of hid- 

den data contexts, which are unknown to the learning algorithm. 

Zliobaite also calls it an unforeseen change as the change is un- 

expected with respect to the current domain knowledge or previ- 

ous learning examples [200] . However, a more probabilistic view 

on this matter is usually presented, e.g. [60,183] . 

In each point in time t , every example is generated by a source 

with a joint probability distribution P t ( x , y ). Concepts in data are 

stable or stationary if all examples are generated by the same dis- 

tribution. If, for two distinct points in time t and t + �, there exits 

x such that P t (x , y ) � = P t+�(x , y ) , then concept drift has occurred. 

Different com ponents of P t ( x , y ) may change [60] . In particu- 

lar, when concept drift occurs, either one or both of the following 

changes: 

• prior probabilities of classes P ( y ), 
• class conditional probabilities P ( x | y ). 

As a result, posterior probabilities of the classes P ( y | x ) may (or 

may not) change. 

Based on the cause and effect of these changes, two types of 

drift are distinguished: real drift and virtual drift . 

A real drift is defined as a change in P ( y | x ). It is worth not- 

ing that such changes can occur with or without changes in P ( x ). 

Therefore, they may or may not be visible from the data distri- 

bution without knowing the true class labels. Such a distinction 

is crucial, as some methods attempt to detect concept drifts using 

solely input attribute values. Real drift has also been referred to as 

concept shift and conditional change [64] . 

A virtual drift is usually defined as a change in the attribute- 

value P ( x ), or class distributions P ( y ) that does not affect decision 

boundaries. In some work virtual drift is defined as a change that 

does not affect the posterior probabilities, but it is hard to imag- 

ine that P ( x ) is changed without changing P (y | x ) = 

P (y ) P (x | y ) 
P(x ) 

in 

real world applications. However, the source and therefore the in- 

terpretation of such changes differs among authors. Widmer and 

Kubat [184] attributed virtual drift to incomplete data represen- 

tation rather than to true changes in concepts. Tsymbal [175] on 

the other hand defined virtual drift as changes in the data dis- 

tribution that do not modify the decision boundary, while Delany 

[40] described it as a drift that does not affect the target concept. 

Furthermore, virtual drifts have also been called temporary drifts, 

sampling shifts or feature changes [25] . 

Most current research on learning classifiers from evolving 

streams concentrates on real drifts. However, it is worth mention- 

ing that even if the true class boundaries do not change in virtual 

drifts, this type of drift may still result in the learnt class bound- 

aries to become inadequate. Therefore, techniques for handling real 

drifts may still work for certain types of virtual drifts. If posterior 

probabilities do not change, it is worthless to rebuild the model, 

because the decision boundaries are still the same. Virtual drift de- 

tection is also important, because even though it does not effect 

the decision boundaries of the classifier, its wrong interpretation 

(i.e., detecting and classifying as real drift) could provide wrong 

decision about classifier retraining. 

Apart from differences in the cause and effect of concept 

changes, researchers distinguish between several ways of how such 

changes occur. Concept drifts can be further characterized, for ex- 

ample, by their permanence, severity, predictability, and frequency. 

The reader is also referred to the recent paper by Hyde et al. [183] , 

which is the first attempt to provide the more formal framework 

for comparing different types of drifts and their main properties. 

These authors also proposed a new, quite comprehensive taxonomy 

of concept drift types. 

The most popular categorizations include sudden (abrupt) and 

gradual drifts [175] . The first type of drift occurs when, at a mo- 

ment in time t , the source distribution in S t is suddenly replaced 

by a different distribution in S t+1 . Gradual drifts are not so rad- 

ical and are connected with a slower rate of changes, which can 

be noticed while observing a data stream for a longer period of 

time. Additionally, some authors distinguish two types of gradual 

drift [126] . The first type of gradual drift refers to the transition 

phase where the probability of sampling from the first distribu- 

tion P j decreases while the probability of getting examples from 

the next distribution P j+1 increases. The other type, called incre- 

mental (stepwise) drift, consists of a sequence of small (i.e., not 

severe) changes. As each change is small, the drift may be noticed 

only after a long period of time, even if each small change occurs 

suddenly. 

In some domains, situations when previous concepts reappear 

after some time are separately treated and analyzed as recurrent 

drifts. This re-occurrence of drifts could be cyclic (concepts reoccur 

in a specific order) or not [175] . Moreover, data streams may con- 

tain blips (rare events/outliers) and noise, but these are not consid- 

ered as concept drifts and data stream classifiers should be robust 

to them. The differences among the drifts are depicted in Fig. 3 . 

Some other drift characteristics are also considered in the liter- 

ature. Typically, real concept drift concerns changes for all exam- 

ples but it could be also a sub-concept change where drift is lim- 
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Fig. 4. The idea of the model restoration time. 

Fig. 5. The idea of drift detection based on tracking classifier errors. 

ited to a subspace of a domain – see discussions on the drift sever- 

ity in [126] . Moreover, in real life situations, concept drifts may be 

a complex combination of many types of basic drifts. 

For more information on these and other changes in underly- 

ing data distributions, the reader is referred to [60,64,114,175,183] . 

These studies, and more application oriented papers, such as 

[208] , demonstrate that the problem of concept drift has also been 

recognized and addressed in multiple application areas. This shows 

the strong requirement for streaming classifiers to be capable of 

predicting, detecting, and adapting to concept drifts. 

2.4. Drift detection methods 

Concept drift detectors are methods, which on the basis of 

information about classifier’s performance or the incoming data 

items themselves, can signal that data stream distributions are 

changing. Such signals usually trigger updating/retraining of the 

model, or substituting the outdated model by the new one. Our 

aim is on the one hand to reduce the maximum performance de- 

terioration and on the other hand to minimize so-called restoration 

time (see Fig. 4 ). 

The detectors may return not only signals about drift detection, 

but also warning signals, which are usually treated as a moment 

when a change is suspected and a new training set representing 

the new concept should start being gathered. The idea of drift de- 

tection is presented in Fig. 5 . 

Drift detection is not a trivial task, because on the one hand we 

require sufficiently fast drift detection to quickly replace outdated 

model and to reduce the restoration time. On the other hand we 

do not want too many false alarms [69] . Therefore, to assess a con- 

cept drift detector’s performance, the following metrics are usually 

considered: 

• number of true positive drift detections, 
• number of false alarms, i.e., false positive drift detections, 
• drift detection delay, i.e., time between real drift appearance 

and its detection. 

One difficulty arises because there is typically a trade-off be- 

tween different metrics. For instance, a drift detector can typically 

be tuned to decrease the detection delay, but this may lead to a 

higher number of false alarms. In view of that, Alippi et al. [7] have 

recently used the following procedure to evaluate their drift detec- 

tion method when using artificial data streams. They generates a 

stream that contains enough instances after a drift so that drifts 

are always detected by all drift detection methods being evaluated. 

They then plotted the number of false alarms versus the drift de- 

tection delay for all drift detectors, using several different parame- 

ter configurations. This lead to a curve that resembles the Receiver 

Operating Characteristics curve, but used to evaluate drift detection 

methods rather than classifiers. 

In a few papers aggregated measures, which take into consid- 

eration the aforementioned metrics, are also proposed. It is worth 

mentioning the work of Pesaranghader and Victor [141] , where the 

acceptable delay length was defined to determine how far the de- 

tected drift could be from the true location of drift, for being con- 

sidered as a true positive. A recent experimental framework for the 

drift detection evaluation can be found in [89] . 

The authors of [64] propose to categorize the drift detectors 

into the following four main groups: 

1. Detectors based on Statistical Process Control. 

2. Detectors based on the sequential analysis. 

3. Methods monitoring distributions of two different time win- 

dows. 

4. Contextual approaches. 

In the next paragraphs, we briefly describe a few drift detection 

methods. 

DDM ( Drift Detection Method ) [62] is the most well known rep- 

resentative of the first category. It estimates classifier error (and 

its standard deviation), which (assuming the convergence of the 

classifier training method) has to decrease as more training exam- 

ples are received [147] . If the classifier error is increasing with the 

number of training examples, then this suggests a concept drift, 

and the current model should be rebuilt. More technically, DDM 

generates a warning signal if the estimated error plus twice its de- 

viation reaches a warning level. If the warning level is reached, 

new incoming examples are remembered in a special window. If 

afterwards the error falls below the warning threshold, this warn- 

ing is treated as a false alarm and this special window is dropped. 

However, it the error increases with time and reaches the drift 

level, the current classifier is discarded and a new one is learned 

from the recent labeled examples stored in the window. Note that 

this detection idea may be also used to estimate time interval be- 

tween the warning and drift detection, where shorter times indi- 

cate a higher rate of changes. 

EDDM ( Early Drift Detection Method ) is a modification of DDM 

to improve the detection of gradual drifts [10] . The same idea of 

warning and drift levels is realized with a new proposal of com- 

paring distances of error rates. Yet another detector ECDD employs 

the idea of observing changes in the exponentially weighted mov- 

ing average [152] . 

The sequential probability ratio tests, such as the Wald test, 

are the basis for detectors belonging to the second category. The 

cumulative sum approach (CUSUM) [138] detects a change of a 

given parameter value of a probability distribution and indicates 
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when the change is significant. As the parameter the expected 

value of the classification error could be considered, which may 

be estimated on the basis of labels of incoming examples from 

data stream. A comprehensive analysis of the relationship between 

CUSUM’s parameters and its performance was presented in [64] . 

PageHinkley is modification of the CUSUM algorithm, where the 

cumulative difference between observed classifier error and its av- 

erage is taken into consideration [156] . 

Yet other drift detectors based on non-parametric estimation of 

classifier error employing Hoeffding’s and McDiarmid’s inequalities 

were proposed in [22] . 

ADWIN is the best known representative of methods comparing 

two sliding windows. In this algorithm [14] a window of incoming 

examples grows until identifying a change in the average value in- 

side the window. When the algorithm succeeds at finding two dis- 

tinct sub-windows, their split point is considered as an indication 

of concept drift. 

Besides the use of parametric tests for concept drift detection, 

some non-parametric tests have also been investigated, such as the 

computational intelligence cumulative sum test [8] and the inter- 

section of confidence intervals-based change detection test [6] . 

Alippi presents an interesting comparison of different trigger- 

ing mechanisms for concept drift detection [5] . It is worth noting 

that drift detectors frequently rely on continuous access to class 

labels, which usually cannot be granted from the practical point of 

view. Therefore, during constructing the concept drift detectors we 

have to take into consideration the cost of data labeling, which is 

usually passed over. A very interesting way to design detectors is 

to employ the active learning paradigm [68] or unlabeled examples 

only. 

Unsupervised detection of virtual concept drift is most often 

performed with statistical tests [120] , which check whether a cur- 

rent data portion comes from the same distribution as the refer- 

ence data. Obviously, not all statistical tests are suited for this task, 

e.g., two-sample parametric tests such as a T2 statistic [79] assume 

a specific distribution, which might not be a correct approach in 

the real data case. Also, the distributions may not be similar to 

any standard distribution, what moreover suggests non-parametric 

tests for the task of unsupervised concept drift detection. Examples 

of such tests include [164] : 

• CNF Density Estimation test introduced in [45] , describes the 

data by vectors of binary features, assigned by discretizing at- 

tributes into sets of bins. Then, it creates a set of Boolean 

attributes, which covers all of the examples in the reference 

dataset, meaning that each true feature in attribute set is the 

same as in at least one of the vectors describing the data points 

in the reference set. Next, another set of data is drawn from the 

same distribution as the data in the reference set, represented 

as binary vectors, and compared to the attribute set by applying 

a Matt–Whitney test. If the difference is insignificant, all data 

is considered to come from the same distribution, otherwise a 

difference in distributions is detected. 
• The multivariate version of the Wald–Wolfowitz test [57] con- 

structs a complete graph, with examples as vertices and dis- 

tances between them as edges. This graph is then transformed 

into a forest and a test statistic is computed basing on the 

amount of trees. 

Furthermore, non-parametric univariate statistical tests are of- 

ten used for detecting concept drift in data distribution [160] : 

• Two-sample Kolmogorov–Smirnov test, 
• Wilcoxon rank sum test, 
• Two-sample t -test. 

Unfortunately, it is easy to show that without access to class 

labels the real drift could be undetected [163] if they are not asso- 

ciated to changes in P ( x ). 

As yet not so many papers deal with combined drift detectors. 

Bifet et al. [21] proposed the simple combination rules based on 

the appearance of drift once ignoring signals about warning level. 

It is worth mentioning Drift Detection Ensemble [119] , where a 

small ensemble of detectors is used to make a decision about the 

drift and Selective Detector Ensemble [46] based on a selective de- 

tector ensemble to detect both abrupt and gradual drifts. Some ex- 

perimental studies showed that simple detector ensembles do not 

perform better than simple drift detection methods [191] . 

3. Evaluation in data stream analysis 

Proper evaluation of classifiers or regression models is a key 

issue in machine learning. Many evaluation measures, techniques 

for their experimental estimation and approaches to compare al- 

gorithms have already been proposed for static data scenarios. A 

comprehensive review is presented in [88] . 

In the context of data stream mining, especially in non- 

stationary environments, new solutions are needed. While evalu- 

ating predictive ability, it is necessary to consider both incremen- 

tal processing as well as evolving data characteristics and the clas- 

sifier reactions to changes. New classes may appear, feature space 

changes and decision rules lose relevance over time. Moreover, one 

should take into account computational aspects such as processing 

time, recovery of the model after the change, and memory usage. 

Fast updating of a learning model and gradual recovery is often 

more reasonable than gathering data for a longer period of time 

and trying to rebuild the model in a single time consuming step. 

Instead of examining point or average prediction measures of the 

classifier, one is usually more interested in tracking its working 

characteristics over the course of stream progression. 

The authors of several papers often present graphical plots for 

a given dataset presenting the algorithms’ functioning in terms of 

the chosen evaluation measure, such as e.g. training time, testing 

time, memory usage, and classification accuracy over time. By pre- 

senting the measures calculated after each data chunk or single 

example on the y-axis and the number of processed training ex- 

amples on the x-axis, one can examine the dynamics of a given 

classifier, in particular, its reactions to concept drift. Such plots also 

nicely support a comparative analysis of several algorithms. 

Additionally, one must also consider the availability of informa- 

tion regarding the true target values of incoming examples. The 

majority of current measures and evaluation techniques assume 

immediate or not too much delayed access to these labels. How- 

ever, in some real life problems, this assumption is unrealistic. 

It is also worth mentioning that a thorough evaluation of pre- 

dictive models in non-stationary environments typically requires 

the use of not only real world data streams, but also data streams 

with artificially generated concept drifts. Real world data streams 

enable us to evaluate how helpful a predictive model is in real 

world situations. However, they usually do not allow us to know 

when exactly a drift occurs, or even if there are really drifts. This 

makes it difficult to provide an in depth understanding of the 

behaviour of predictive models or drift detection methods. Data 

streams with artificially induced drifts enable a more detailed anal- 

ysis. Therefore, both real world data streams and data streams with 

artificially induced drifts are important when evaluating predic- 

tive models and concept drift detectors in non-stationary environ- 

ments. 

The comparison of algorithms proposed in the literature is not 

an easy task, as authors do not always follow the same recom- 

mendations, experimental evaluation procedures and/or datasets. 
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Below, we discuss the most popular evaluation measures and then 

their experimental estimation procedures. 

3.1. Evaluation measures 

The predictive ability of classifiers or regression models is usu- 

ally evaluated with the same measure as proposed for static, non- 

online learning which are also the least computationally demand- 

ing ones. Below we list the most popular ones: 

• Accuracy : the proportion of all correct predictions to the total 

number of examples, or its corresponding measure classifica- 

tion error , are the most commonly used for classification. 
• Mean square error or absolute error is a typical measure for 

regression. 
• Sensitivity of the class of interest (also called Recall or True 

Positive Rate) is accuracy of a given class. 
• G-Mean : the geometric mean of sensitivity and specificity is 

often applied on class-imbalanced data streams to avoid the 

bias of the overall accuracy. 
• Kappa Statistic : K = 

p 0 −p c 
1 −p c 

, where p 0 is accuracy of the clas- 

sifier and p c is the probability of a random classifier making a 

correct prediction. 
• Generalized Kappa Statistics such as Kappa M proposed in 

[20] , which should be more appropriate than the standard 

Kappa Statistics for dealing with imbalanced data streams. 

Furthermore, in the case of static data the area under the Re- 

ceiver Operating Characteristics curve, or simply AUC , is a popu- 

lar measure for evaluating classifiers both on balanced and imbal- 

anced class distributions [54] . However, in order to calculate AUC 

one needs to sort scores of the classifiers on a given dataset and 

iterate through each example. This means that the traditional ver- 

sion of AUC cannot be directly computed on large data streams. 

The current use of AUC for data streams has been limited only to 

estimations on periodical holdout sets [76] or entire streams of a 

limited length [42] . A quite recent study [30] introduces an effi- 

cient algorithm for calculating Prequential AUC , suitable for assess- 

ing classifiers on evolving data streams. Its statistical properties 

and comparison against simpler point measures, such as G-mean 

or Kappa statistics, has been examined in [33] . 

When analyzing the performance of classifiers dedicated to 

drifted data, we should also take into consideration their adapta- 

tion abilities, i.e., evaluating the maximum performance deteriora- 

tion and restoration time, as mentioned in Section 2.4 . 

Apart from the predictive accuracy or error, the following per- 

formance metrics should be monitored and taken into account dur- 

ing properly executed evaluation of streaming algorithms: 

• Memory consumption : it is necessary to monitor not only the 

average memory requirements of each algorithm, but also their 

change over time with respect to actions being taken. 
• Update time : here one is interested in the amount of time that 

an algorithm requires to update its structure and accommodate 

new data from the stream. In an ideal situation, the update 

time should be lower than the arrival time of a new example 

(or chunk of data). 
• Decision time : amount of time that a model needs to make a 

decision regarding new instances from the stream. This phase 

usually comes before the updating procedure takes place. So, 

any decision latency may result in creating a bottleneck in the 

stream processing. This is especially crucial for algorithms that 

cannot update and make predictions regarding new instances at 

the same time. 

Nevertheless, in order to calculate reaction times and other 

adaptability measures, usually a human expert needs to determine 

moments when a drift starts and when a classifier recovers from 

it. Alternately, such evaluations are carried out with synthetic data 

generators. 

More complex measures have also been proposed to evaluate 

other properties of algorithms. Shaker and Hüllermeier [158] pro- 

posed a complete framework for evaluating the recovery rate of 

the algorithm once a change has occurred in the stream. They con- 

sider not only how well the model reduced its error in the new 

decision space, but also what was the time necessary to achieve 

this. Zliobaite et al. [207] introduced the notion of cost-sensitive 

update in order to evaluate the potential gain from the cost (un- 

derstood as time and computational resources) put into adapting 

the model to the current change. The authors argue that this al- 

lows to check if the actual update of the model was a worthwhile 

investment. Hassani et al. [71] proposed a new measure for eval- 

uating clustering algorithms for drifting data streams, with special 

attention being paid to the behavior of micro-clusters. 

3.2. Estimation techniques 

In the context of static and batch learning the most often used 

scenario for estimating prediction measures is cross validation. 

However, in the context of online learning with computationally 

strict requirements and concept drifts, it is not directly applicable. 

Other techniques are considered. Two main approaches are used 

depending whether the stream is stationary or not, as shown be- 

low. 

• Holdout evaluation : In this case two sub-sets of data are need: 

the training dataset (to learn the model) and the independent 

holdout set to test it. It is arranged that, at any given moment 

of time when we want to conduct model evaluation, we have 

at our disposal a holdout set not previously used by our model. 

By testing the learning model on such a continuously updated 

set (it must be changed after each usage to ensure that it rep- 

resents the current concept well), we obtain an unbiased esti- 

mator of the model error. When conducted in a given time or 

instance interval, it allows us to monitor the progress of the 

model. 
• Prequential evaluation is a sequential analysis [177] where the 

sample size is not fixed in advance. Instead, data are evaluated 

as they are collected. Predictive sequential evaluation, or pre- 

quential, also referred to as interleave train and test, follows the 

online learning protocol. Whenever an example is observed, the 

current model makes a prediction; when the system receives 

feedback from the environment, we can compute the loss func- 

tion. 

Prequential measures can be calculated only for selected in- 

stances, thus allowing to accommodate the assumption of lim- 

ited label availability. On the other hand, simply calculating a 

cumulative measure over the entire stream may lead to strongly 

biased results. One may easily imagine a situation in which the 

overall cumulative evaluation is strongly influenced by a cer- 

tain time period, when, e.g., access to training data was limited, 

the decision problem was much more simple, or drift was not 

present. Thus, to make the error estimation more robust to such 

cases, a proper forgetting mechanism must be implemented –

sliding windows or fading factors. With this, an emphasis is put 

on error calculation from the most recent examples. Indeed the 

term prequential (combination of words predictive and sequen- 

tial) stems from online learning and is used in the literature 

to denote algorithms that base their functioning only on the 

most recent data. Prequential accuracy [63] is popularly used 

with supervised learning, but also a prequential version of AUC 

metric was proposed by Brzezinski and Stefanowski [30] , being 

suitable for streams with skewed distributions. This issue was 
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Fig. 6. The taxonomy of ensemble learning methods for data streams discussed thorough this survey. 

also addressed by Bifet and Frank [12] , who also proposed a 

prequential modification of kappa statistic suitable for streams. 

A more elaborated approach to evaluate and compare algo- 

rithms in streaming scenarios have been introduced recently. 

Shaker and Hüllermeier [158] proposed an approach, called re- 

covery analysis , which uses synthetic datasets to calculate classi- 

fier reaction times. The authors proposed to divide a dataset with 

a single drift into two sets without drifts. Afterwards, they pro- 

pose to plot the accuracy of the tested classifier on each of these 

datasets separately. The combination of these two plots is called 

the optimal performance curve and serves as a reference that 

can be compared with the accuracy plot of the classifier on the 

original dataset. Zliobaite proposed to use modify a real stream 

by controlled permutations to better study the reaction of classi- 

fiers to drifts [201] . Recently Bifet at al. considered a prequential 

and parallel evaluation strategy inspired by cross-validation, which 

switches new incoming examples between copies of classifiers –

some of them use it for updating while others for testing [12] . 

Statistical tests have gained a significant popularity in the ma- 

chine learning community [66] . In the area of data streams there 

were few approaches to using these tools [20] . However, they usu- 

ally concentrated on applying standard tests over the averaged re- 

sults or by using sliding window technique. One may be critical to 

such approaches, as they either try to transform a dynamic prob- 

lem into a static one, or take under consideration only local charac- 

teristics. So far, there has been no unified statistical testing frame- 

work proposed for data streams that would seem fully appropriate. 

4. Ensemble learning from data streams 

This section discusses supervised data stream ensemble learn- 

ing approaches for classification and regression problems. To orga- 

nize the subjects discussed in this survey and to offer a navigation 

tool for the reader, we summarize the proposed taxonomy of en- 

semble learning approaches for data streams in Fig. 6 . Content pre- 

sented there will be discussed in detail in Sections 4 and 5 , with 

in-depth presentation of advances in the respective areas. Here, we 

would like to explain a disproportion in the subcategories between 

supervised learning in classification and regression problems. The- 

oretically, the same taxonomy used for the classification ensembles 

could be used for the regression ones. However, as there are still 

very few methods developed in this area, we have opted for not 

proposing a separate taxonomy for the streaming regression en- 

sembles yet. 

4.1. Supervised learning for classification problems 

Ensembles are the most often studied new classifiers in the 

data stream community, see e.g. lists of methods in [43,60] . The 

proposed stream classifiers can be categorized with respect to dif- 

ferent points of view. The most common categorizations are the 

following: 

• stationary vs. non-stationary stream classifiers, 
• active vs. passive approaches, 
• chunk based vs. on-line learning modes, 
• distinguishing different techniques for updating component 

classifiers and aggregating their predictions. 

Approaches for stationary environments do not contain any 

mechanism to accelerate adaptation when concept drift occurs. Ap- 

proaches for non-stationary environments are approaches specifi- 

cally designed to tackle potential concept drifts. 

When studying approaches to tackle concept drift, researchers 

usually distinguish between active vs. passive (also called trigger vs. 

adaptive ) approaches, see e.g. a discussion in [43,169,200] . Active 

algorithms use special techniques to detect concept drift which 

trigger changes or adaptations in classifiers (e.g., rebuilding it from 

the recent examples) – see the discussion in earlier Section 2.4 . 

Passive approaches do not contain any drift detector and continu- 

ously update the classifier every time that a new data item is pre- 

sented (regardless whether real drift is present in the data stream 
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or not). The majority of current ensembles follow a passive schema 

of adaptation, while triggers are usually used mainly with single 

online classifiers. A few rare cases of integrating them with en- 

sembles, such as ACE [133] , BWE [38] or DDD [127] , will be further 

discussed. 

Then, with respect to the way of processing examples, the clas- 

sifiers can be categorized into chunk-based approaches and on- 

line learning approaches. Chunk-based approaches process incom- 

ing data in chunks, where each chunk contains a fixed number 

of training examples. The learning algorithm may iterate over the 

training examples in each chunk several times. It allows to exploit 

batch algorithms to learn component classifiers. Online learning ap- 

proaches , on the other hand, process each training examples sepa- 

rately, upon arrival. This type of approach is intended for appli- 

cations with strict time and memory constraints, or applications 

where we cannot afford processing each training example more 

than once, e.g., applications where the amount of incoming data 

is very large. 

It is worth noting that the above categorization does not mean 

that chunk-based approaches must be used only for situations 

where new training examples arrive in chunks. They can also be 

used to learn training examples that arrive separately, because 

each new training example can be stored in a buffer until the size 

of this buffer reaches the size of the chunk. Then, chunk-based ap- 

proaches may process all these examples stored in the buffer. Sim- 

ilarly, this categorization does not mean that online learning ap- 

proaches must be used only for situations where new training ex- 

amples arrive separately, one-by-one. Online learning approaches 

can process each training example of a chunk separately. They can 

be used for applications where training examples arrive in chunks. 

Finally, considering different strategies for re-constructing en- 

semble component classifiers and aggregating their predictions, 

one can recall Kuncheva’s categorization [107] , where she has dis- 

tinguished the following four basic strategies: 

• Dynamic combiners – component classifiers are learnt in ad- 

vance and are not further updated; the ensemble adapts by 

changing the combination phase (usually by tuning the classi- 

fier weights inside the voting rule, e.g., the level of contribu- 

tion to the final decision is directly proportional to the rele- 

vance [86,117] ). The drawback of this approach is that all con- 

texts must be available in advance; emergence of new unknown 

contexts may result in a lack of experts. 
• Updating training data – recent training examples are used 

to online-update component classifiers (e.g. in on-line bagging 

[137] or its further generalizations [16,180] ). 
• Updating ensemble members – updating online or retraining in 

batch mode (using chunks) [15,55,100,136,150] . 
• Structural changes of the ensemble – replacing the worst per- 

forming classifiers in the ensemble and adding a new compo- 

nent, e.g., individual classifiers are evaluated dynamically and 

the worst one is replaced by a new one trained on the most 

recent data [84,98] 

In this paper, the main criterion used to categorize classification 

ensemble approaches is the data processing method, i.e., whether 

examples are processed in chunks or one-by-one. Then, as the sec- 

ond criterion we use information on whether the approaches are 

designed to deal with stationary or non-stationary data streams. 

We consider these two criteria first because approaches within 

each of these categories tackle different types of data stream appli- 

cations. Within each of these categories, we will then use further 

criteria to distinguish among existing approaches. 

Section 4.1.1 presents chunk-based ensemble approaches for 

stationary environments, Section 4.1.2 presents online learning 

approaches for stationary environments, Section 4.1.3 presents 

chunk-based ensemble approaches for non-stationary environ- 

Table 1 

Chunk-based ensembles for stationary data streams. 

Algorithm Description 

Learn ++ [143] Incremental neural network ensemble 

Ada.Boost RAN-LTM [92] Combination of AdaBoost.M1 and RAN-LTM 

classifier 

Growing NCL [124] Incremental version of the Negative Correlation 

Learning 

Bagging ++ [197] Training classifiers with Bagging from incoming 

chunks of data 

ments, and Section 4.1.4 presents online learning approaches for 

non-stationary environments. 

4.1.1. Chunk-based ensembles for stationary streams 

Chunk-based ensembles for stationary data streams are not so 

well developed as online versions and did not receive so significant 

attention from the research community. They are also related to 

the issue of batch processing of larger sets of data, and often do 

not explicitly refer to this as stream mining. This section reviews 

the most popular methods in this area. They are summarized in 

Table 1 . 

Learn 

++ is one of the most well recognized approaches to sta- 

tionary streams [143] . This ensemble constructs new neural net- 

work models on each incoming chunk of data, and then combines 

their outputs using majority voting. This allows to accommodate 

new incoming instances into the ensemble. This approach however 

retains all previously learned classifiers, thus being inefficient for 

handling massive datasets as the size of the ensemble continuously 

grows. 

Kidera et al. [92] proposed a combination of AdaBoost.M1 and 

Resource Allocating Network with Long-Term Memory, a stable 

neural network classifier for incremental learning. They used a pre- 

determined number of base classifiers for the entire stream pro- 

cessing and incrementally updated them with new chunks. They 

suppressed the forgetting factor in these classifiers in order to al- 

low an efficient weight approximation for weighted voting combi- 

nation. This however limits the usability of this approach for po- 

tentially unbounded streams. 

Minku et al. [124] introduced an incremental version of Nega- 

tive Correlation Learning that aimed at co-training an ensemble of 

mutually diverse and individually accurate neural networks. At the 

same time their proposed learning scheme allowed to maintain a 

trade-off between the forgetting rate and adapting to new incom- 

ing data. Two models were discussed: fixed size and growing size, 

differing in their approach to maintaining the ensemble set-up. Ex- 

perimental results showed that the fixed size approach has better 

generalization ability, while the growing size may easily overcome 

the impact of too strong forgetting. 

Bagging ++ [197] was developed as an improvement over 

Learn 

++ by utilizing Bagging to construct new models from incom- 

ing chunks of data. Additionally, the ensemble consisted of hetero- 

geneous classifiers selected from a set of four different base classi- 

fiers. Authors showed that their approach gives comparable results 

to Learn 

++ and Negative Correlation Learning, while being signifi- 

cantly faster. 

4.1.2. Online ensembles for stationary streams 

Online ensembles for stationary data streams have gained sig- 

nificantly more attention than their chunk-based counterparts. This 

was caused by a general popularity of online learning and its appli- 

cation to various real-life scenarios, not only limited to streaming 

data. Let us review the most representative proposals in this area. 

They are summarized in Table 2 . 

Oza and Russel [137] introduced Online Bagging, which alle- 

viates the limitations of standard Bagging of requiring the entire 



B. Krawczyk et al. / Information Fusion 37 (2017) 132–156 141 

Table 2 

Online ensembles for stationary data streams. 

Algorithm Description 

Bagging-based 

OzaBag [137] Online Bagging 

ASHT [17] Ensemble of adaptive-size Hoeffding trees 

LevBag [16] Leveraging Bagging with increased resampling and 

output detection codes 

ORF [41,153] Online Random Forest 

MF [111] Online Mondrian Forest 

Boosting-based 

OzaBoost [137] Online Boosting 

Others 

UFFT [61] Ultra fast forest of binary trees 

HOT [60] Hoeffding Option Trees 

EOS-ELM [112] Ensemble of online extreme learning machines 

training set available beforehand for learning. They assumed that, 

in online learning, each new incoming instance may be replicated 

zero, one or many times during the update process of each base 

classifier. Thus each classifier in the ensemble is updated with k 

copies of the newly arrived instance. The value of k is selected on 

the basis of Poisson distribution, where k ∼ Poisson (1). This comes 

from the fact that for potentially unbounded data streams the bi- 

nominal distribution of k in standard Bagging tends to this spe- 

cific Poisson distribution. Theoretical foundations of this approach 

were further developed by Lee and Clyde [113] . They proposed a 

Bayesian Online Bagging that was equivalent to the batch Bayesian 

version. By combining it with a lossless learning algorithm, they 

obtained a lossless online bagging approach. 

Bifet et al. introduced two modifications of Oza’s algorithm 

called Adaptive-Size Hoeffding Trees (ASHT) [17] and Leveraging 

Bagging [16] , which aim at adding more randomization to the in- 

put and output of the base classifiers. ASHT synchronously grows 

trees of different sizes, whereas Leveraging Bagging increases re- 

sampling from Poisson (1) to Poisson ( λ) (where λ is a user-defined 

parameter) and uses output detection codes [16] . 

Another online ensemble developed by Oza and Russel is Online 

Boosting [137] . This ensemble maintains a fixed size set of classi- 

fiers trained on the examples received so far. Each new example 

is used to update each of the classifiers in a sequential manner. 

Examples misclassified by the former classifiers in the sequence 

have their weights updated so as to be emphasized by the latter 

classifiers. This is done in the following way. For each new incom- 

ing example, one initially assigns the highest possible weight λ = 1 

to it. The first classifier in the pool is updated with this example 

k = Poisson (λ) times. After the update, this classifier is used to pre- 

dict this example, and the weighted overall fraction ε of examples 

that it misclassified is updated. If the example is correctly classi- 

fies the example, the example’s weight λ is multiplied by 1 
2(1 −ε) 

. 

If this classifier misclassified the example, we multiply the weight 

associated to this example by 1 
2 ε . This procedure is then repeated 

for the next classifier in the pool, but using the new weight λ. 

Several researchers developed ensembles based on a combina- 

tion of decision trees. Hoeffding Option Trees (HOT) can be seen as 

an extension of Kirkby’s Option Tree [142] . It allows each training 

example to update a set of option nodes rather than just a sin- 

gle leaf. It provides a compact structure that works like a set of 

weighted classifiers, and just like regular Hoeffding Trees, they are 

built in an incremental way – for a more detailed algorithm refer 

to its description in [25,60] . 

Ultra Fast Forest of Trees, developed by Gama and Medas [61] , 

uses an ensemble of Hoeffding trees for online learning. Their split 

criterion is applicable only to binary classification tasks. To handle 

multi-class problems, a binary decomposition is applied. A binary 

tree is constructed for each possible pair of classes. When a new 

instance arrives, each classifier is updated only if the true class la- 

bel for this instance is used by the binary base classifier. 

Ensemble of Online Extreme Learning Machines [112] was de- 

veloped by Lan et al. It is a simple combination of online random- 

ized neural networks, where initial diversity of the pool is achieved 

by a randomized training procedure. Base models are combined 

using averaging of individual outputs. Each base model is updated 

with the incoming instances, but no discussion of verification of 

how the diversity in the ensemble is maintained during the course 

of stream processing was given. 

Some other researchers focused their work on proposing online 

versions of the popular Random Forest algorithm [41,153] . They 

introduced online Random Trees that generate test functions and 

thresholds at random and select the best one according to a qual- 

ity measure. Their online update methodology is based on the idea 

of generating a new tree having only one root node with a set of 

randomly selected tests. Two statistics are calculated online: min- 

imum number of instances before split and minimum gain to be 

achieved. When a split occurs statistics regarding the instances 

that will fall into left and right node splits are propagated into 

children nodes, thus they start already with the knowledge of their 

parent node. Although the authors acknowledge the existence of 

the Hoeffding bound, they argue that using online updated gain is 

closer to the real idea behind decision trees. Additionally, a forget- 

ting mechanism via temporal knowledge weighting is applied to 

reduce the influence of old instances. This is realized as pruning 

random trees, where a classifier is discarded from the ensemble 

based on its out-of-bag error and the time its age (time spend in 

the ensemble). 

This idea was further developed by Lakshminarayanan et al. 

into online Mondrian Forest algorithm [111] . They used Mondrian 

processes for their tree induction scheme, which are a family of 

random binary partitions. As they were originally introduced as in- 

finite structures, the authors modified them into finite Mondrian 

trees. The main differences between this approach and standard 

decision trees are the independence of splits from class labels, us- 

age of split time at every node, introduction of parameter control- 

ling dynamically the number of nodes and that the slit is bounded 

by the training data and is not generalized over the entire fea- 

ture space. The ensemble is constructed identically as in standard 

Random Forest, but another difference lies in online update pro- 

cedure. Mondrian trees can accommodate new instances by creat- 

ing a new split that will be on higher level of tree hierarchy than 

existing ones, extending the existing split, or splitting the exist- 

ing leaf into children nodes. Please note that standard online Ran- 

dom Forest can only update their structure using the third of men- 

tioned methods. This makes Mondrian Forests much more adapt- 

able to streaming data, allowing for more in-depth modifications 

in ensemble structure. The authors report that their method out- 

performs existing online Random Forests, achieves accuracy similar 

to batch versions and is at least an order of magnitude faster than 

reference ensembles. 

4.1.3. Chunk-based ensembles for non-stationary streams 

Chunk-based approaches for non-stationary environments usu- 

ally adapt to concept drifts by creating new component (a.k.a. 

base) classifiers from new chunks (blocks or batches) of training 

examples. In general, component classifiers of the ensemble are 

constructed from chunks which correspond to different parts of 

the stream. Therefore, the ensemble may represent a mixture of 

different distributions (concepts) that have been present in the 

data stream. Learning a new component from the most recent 

chunk is also a natural way of adaptating to drifts [200] . Addition- 

ally, some chunk-based ensembles maintain an additional buffer 

for storing old classifiers that can be reused when needed, offer- 

ing a potential to handle recurring concepts. 
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Table 3 

Chunk-based ensembles for non-stationary data streams. 

Algorithm Description 

Typical approaches 

SEA [170] Streaming Ensemble Algorithm 

AWE [178] Accuracy Weighted Ensemble 

Aboost [36] Adaptive, fast and light Boosting 

Learn ++ .NSE [50] Learn ++ for non-stationary environments 

Alternative approaches 

KBS [154] Boosting-like method using knowledge-based sampling 

AUE [31] Accuracy Updated Ensemble 

WAE [189] Weighted Aging Ensemble 

BWE [38] Batch Weighted Ensemble 

ET [146] Ensemble tracking for recurring concepts 

Learning component classifiers from complete chunks enables 

applying standard, batch learning algorithms. Forgetting of old 

classification knowledge can be done by eliminating too poorly 

performing components. This offers a way to limit the amount of 

memory required to store the ensemble, even though it impedes 

the ensemble of recovering deleted classifiers if and when their 

corresponding concept reoccurs. 

Most of the chunk-based ensembles periodically evaluate their 

components with the newest chunk. The results of this evaluation 

are used to update weights associated to each component classi- 

fier. These weights can be used to emphasise the classifiers that 

best reflect the most recent data distribution when making an en- 

semble prediction, or to decide which unhelpful classifiers should 

be discarded. 

One of the main features to distinguish between differ- 

ent chunk-based ensembles for non-stationary environments is 

whether or not they always create new classifiers for each new 

chunk of data in order to deal with concept drift. So, we discuss 

these approaches under this perspective below. Presented algo- 

rithms are summarized in Table 3 . 

Typical Chunk-based Approaches. Typically, chunk-based ensembles 

are constructed according to the following schema: 

1. For each new chunk B i ∈ S , evaluate component classifiers C j in 

the ensemble with respect to a given evaluation measure Q ( C j ); 

2. Learn a new candidate classifier C c using B i ; 

3. Add C c to the ensemble if the ensemble size is not exceeded; 

otherwise replace one of the existing components of the en- 

semble. 

Each of these approaches implements a different strategy to re- 

strict the ensemble size and to weight different classifiers in the 

ensemble. 

As a new classifier is always created to learn each new data 

chunk, the size of the chunk plays a particularly important role. A 

too large chunk size would result in slow adaptation to drifts. On 

the other hand, a too small chunk size would not be enough to 

learn an entire stable concept well, would increase computational 

costs, and may result in poor classification performance [178] . 

One of the earliest well known approaches in this category is 

the Streaming Ensemble Algorithm (SEA), proposed by Street and 

Kim [170] . This approach creates a new classifier to learn each 

new chunk of training data. If the maximum ensemble size has 

not been reached yet, this new classifier is simply added to the 

ensemble. Otherwise, the quality of the new classifier is first eval- 

uated based on the next incoming training chunk. Then, the new 

classifier replaces an existing classifier whose quality is worse than 

the quality of the new classifier on this training chunk. One of the 

key features for the success of this approach is its quality measure. 

It favours the classifiers which correctly classify examples that are 

nearly undecided by the ensemble. In this way, this approach can 

avoid overfitting and maintain diversity. The predictions given by 

the ensemble are based on the majority voting. This approach has 

been shown to recover faster from concept drift than single classi- 

fiers. One of its potential problems is that old classifiers can out- 

weigh the new classifier, potentially slowing down adaptation to 

new concepts. How fast the ensemble can recover from drifts de- 

pends not only on the chunk size, but also on the ensemble size. 

A similar way of restructuring an ensemble was proposed by 

Wang et al. as the algorithm called Accuracy Weighted Ensemble 

(AWE) [178] . The key idea of AWE is to assign weights to each 

classifier of the ensemble based on their prediction error on the 

newest training chunk. A special variant of the mean square er- 

ror (which allows to deal with probabilities of a component classi- 

fier predictions) is used for that purpose. The assumption made 

by this approach is that the newest training chunk is likely to 

represent the current test examples better. Classifiers that have 

equal or worse performance than a random classifier (in terms of 

their mean square errors) are discarded. Pruning can also be ap- 

plied to maintain only the K classifiers with the highest weights. 

In this way, it is possible to remove classifiers that would hinder 

the predictions and include new classifiers that can learn the new 

concepts. For cost-sensitive applications, it is also possible to use 

instance-based dynamic ensemble pruning [51] . This approach was 

shown to be successful in achieving better accuracy than single 

classifiers when the ensemble size becomes large enough (i.e., af- 

ter enough data chunks are received). However, as noticed in [27] , 

the AWE’s pruning strategy may sometimes delete too many com- 

ponent classifiers in the case of certain sudden drifts and decrease 

too much of AWE’s classification accuracy. Another problem con- 

cerns the evaluation of the new candidate classifier – it requires k- 

fold cross-validation inside the latest chunk, which increases com- 

putational time. 

Chu and Zaniolo [36] proposed a chunk-based approach in- 

spired by the boosting framework. When a training chunk is re- 

ceived, the ensemble error is calculated. After that, a mechanism 

based on statistical tests is used to detect concept drifts. If a con- 

cept drift is detected, all the classifiers composing the ensemble 

are deleted. After the concept drift detection mechanism is applied 

(and the possible deletion of ensemble members), a new classifier 

is created to learn the training chunk. The training examples of the 

chunk are associated to weights determined in an AdaBoost way 

based on the ensemble error. If the ensemble error on the current 

chunk is e and the example i is misclassified, then this example’s 

weight is set to w i = (1 − e ) /e . If the example was correctly classi- 

fied, its weight is maintained as 1. If the inclusion of the new clas- 

sifier makes the ensemble exceed the maximum size M , the oldest 

ensemble member is eliminated. The classification is done by av- 

eraging the probabilities predicted by the classifiers and selecting 

the class with the highest probability. This approach was shown to 

be able to improve predictive performance in comparison to pre- 

vious approaches such as SEA [170] and Wang et al.’s [178] in the 

presence of concept drift. A potential problem of this approach is 

that it resets the whole ensemble upon drift detection. This strat- 

egy can be sensitive to false alarms (false positive drift detections) 

and is unable to deal with recurring concepts. 

Another approach inspired by the boosting framework is El- 

well and Polikar’s generalization of Learn++ for Non-Stationary En- 

vironments (called Learn++.NSE) [50] . This approach also sets the 

weights of the training examples from a new data chunk based 

on the ensemble error on this chunk. If an example i is misclassi- 

fied, its weight is set to w i = 1 /e . Otherwise, it is set to 1. One of 

the main differences between this approach and Chu and Zaniolo’s 

[36] is that it does not use a concept drift detection mechanism. 

Instead, reaction to drifts is based on weights associated to each 

base classifier. These weights are higher when the corresponding 

base classifier is able to correctly classify examples that were mis- 



B. Krawczyk et al. / Information Fusion 37 (2017) 132–156 143 

classified by the ensemble. Weights are lower if the corresponding 

base classifier misclassifies examples that were correctly classified 

by the ensemble. Weights are also set to give more importance 

to the misclassifications on more recent data chunks, which are 

believed to represent the current concept better. The predictions 

given by the ensemble are based on weighted majority voting. 

Therefore, base classifiers that were poorly performing for some 

period of time can be automatically re-emphasised through their 

weights once they become useful. The fact that base classifiers are 

not deleted can help dealing with recurrent drifts. However, as the 

ensemble size is unlimited and a new base classifier is added for 

every new data chunk, the number of base classifiers may become 

high. 

Alternative Chunk-Based Approaches. Chunk-based ensembles are 

typically quite sensitive to a proper tuning of the size of the data 

chunk. In particular, a too large chunk size may delay reaction to 

drifts, while a too small chunk size may lead to poorly performing 

base classifiers. Moreover, learning every new data chunk may in- 

troduce a learning overhead that could be unnecessary when exist- 

ing classifiers are considered good enough for the current concept. 

Some researchers proposed approaches that deviate from the typi- 

cal chunk-based learning schema in an attempt to overcome some 

of these issues. We discuss some representative approaches in this 

section. 

Scholz and Klinkenberg’s approach [154,155] decides, for each 

new training chunk, whether to train a new classifier or update 

the newest existing classifier with it. This decision is based on the 

accuracy resulting from training the most recent classifier with the 

new chunk in comparison with the accuracy obtained by training a 

new classifier on the new chunk. Only the best between these two 

classifiers is kept. This strategy may reduce the problem of creat- 

ing poor base classifiers due to small chunk sizes, because exist- 

ing classifiers can be trained with more than one chunk. Besides 

assigning weights to the examples within a training chunk in a 

boosting-like style, each classifier itself also has a weight, which is 

assigned depending on its performance on the new training chunk. 

These weights are not only used to speed up reaction to concept 

drifts, but also to prune unhelpful classifiers. This approach has 

been shown to perform well in comparison to previous approaches 

such as adaptive window size [95] and batch selection [94,96] . 

However, it did not perform so well when the drift consisted of 

an abrupt concept drift quickly followed by a change back to the 

previous concept. 

Deckert [38] proposed an ensemble approach that uses a con- 

cept drift detection method to decide whether a new classifier 

should be created to learn a new data chunk, or whether the new 

data chunk should be discarded without further training. 

Another alternative chunk-based approach is the Accuracy Up- 

dated Ensemble (AUE) [27,31] . In this ensemble, all component 

classifiers are incrementally updated with a portion of the exam- 

ples from the new chunk. This may help reducing the problems as- 

sociated to creating poor base classifiers due to small chunk sizes. 

Another novelty includes weighting classifiers with non-linear er- 

ror functions, which better promotes more accurate components. 

Moreover, the newest candidate classifier always receives the high- 

est weight, as it should reflect the most recent data distribution 

better. AUE also contains other techniques for improving pruning 

of ensembles and achieving better computational costs. The exper- 

imental studies [31] showed that AUE constructed with Hoeffding 

Trees obtained higher classification accuracy than other chunk en- 

sembles in scenarios with various types of drifts as well as in sta- 

ble streams. 

Yet another approach to rebuilding a chunk-based ensemble 

was presented by Wozniak et al. Weighted Aging Ensemble (WAE) 

modifies the classifier ensemble line-up on the basis of their diver- 

Table 4 

Online ensembles for non-stationary data streams. 

Algorithm Description 

Passive approaches 

DWM [100] Dynamic Weighted Majority 

AddExp [99] Addictive expert ensembles for classification 

HRE [107] Horse racing ensembles 

CDC [168] Concept Drift Committee 

OAUE [29] Online Accuracy Updated Ensemble 

WWH [194] Ensemble of classifiers using overlapping 

windows 

ADACC [83] Anticipative Dynamic Adaptation to Concept 

Changes 

Active approaches 

ACE [133] Adaptive Classifiers-Ensemble 

Todi [132] Two Online Classifiers For Learning And 

Detecting Concept Drift 

DDD [127] Diversity for Dealing with Drifts 

ADWINBagging [18] Online Bagging with ADWIN drift detector 

sity. The ensemble prediction is made according to the weighted 

majority voting, where the weight of a given classifier depends on 

its accuracy and time spent inside an ensemble [189] . 

A number of approaches have been discussed in the litera- 

ture to specifically tackle recurring concepts in data streams. Ra- 

mamurthy and Bhatnagar [146] proposed an ensemble tracking 

approach that tries to deal with recurring concepts explicitly. It 

maintains a global set of classifiers representing different concepts. 

Whenever a new training chunk is available, the error of each clas- 

sifier on it is determined. MaxMSE is defined as the classification 

error of a classifier that predicts randomly. If at least one classifier 

has error lower than a pre-defined value τ , or if the error of the 

weighted ensemble formed by all classifiers with error lower than 

AcceptanceFactor ∗MaxMSE is lower than τ , no new classifier is cre- 

ated. This reduces the overhead associated to learning every new 

data chunk. If neither a single classifier nor the above mentioned 

ensemble have error lower than τ , a new classifier is created and 

trained with the new data chunk, which is assumed to represent a 

new concept. One of the problems of this approach is that it has 

no strategy to limit the size of the global set of classifiers. 

Another approach for storing the special definitions of previ- 

ous concepts has been considered by Katakis et al. in their ensem- 

ble with conceptual clusters calculated and compared for each data 

chunk [91] . Jackowski [84] described an evolutionary approach for 

selecting and weighting classifiers for the ensemble in the pres- 

ence of recurrent drifts, while Sobolewski and Wozniak used the 

idea of the recurring concepts to generate a pool of artificial mod- 

els and select the best fitted in the case of concept drift [165] . 

4.1.4. Online ensembles for non-stationary streams 

Online ensembles learn each incoming training example sep- 

arately, rather than in chunks, and then discard it. By doing so, 

these approaches are able to learn the data stream in one pass, 

potentially being faster and requiring less memory than chunk- 

based approaches. These approaches also avoid the need for se- 

lecting an appropriate chunk size. This may reduce the problems 

associated with poor base models resulting from small chunk sizes, 

even though these approaches would still normally have other pa- 

rameters affecting the speed of reaction to drifts (e.g., parameters 

related to sliding windows and fading factors). 

One of the main features to distinguish between different on- 

line ensemble learning approaches for non-stationary environ- 

ments is the use of concept drift detection methods. So, they are 

divided into passive or active categories. Presented algorithms are 

summarized in Table 4 . 
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Passive Approaches. Passive approaches are approaches which do 

not use explicit concept drift detection methods. Different pas- 

sive online ensembles have different strategies to assign weights 

to classifiers, as well as to decide when to add or remove clas- 

sifiers from the ensemble in order to react to potential concept 

drifts. Most of these approaches present mechanisms to continu- 

ously adapt to concept drifts that may occur in the stream. How 

fast adaptation is achieved and how sensitive this adaptation is to 

noise usually depends on parameters. 

One of the most well known approaches under this category is 

Dynamic Weighted Majority (DWM) [100] , proposed by Kolter and 

Maloof. In this approach, each classifier has a weight that is re- 

duced by a multiplicative constant β (0 ≤ β < 1) when it makes a 

wrong prediction, similar to Littlestone and Warmuth’s Weighted 

Majority Algorithm [117] . This allows the ensemble to emphasize 

the classifiers that are likely to be most accurate at a given point 

in time. All classifiers are incrementally trained on the incoming 

training examples. In addition, in order to accelerate reaction to 

concept drift, it is possible to add a new classifier or remove exist- 

ing classifiers. New classifiers are added when the ensemble mis- 

classifies a given training example. They can learn potentially new 

concepts from scratch, avoiding the need for existing classifiers to 

forget their old knowledge when there is concept drift. Classifiers 

whose weights are too low are classifiers that have been unhelp- 

ful for a long period of time. They can be deleted to avoid the 

ensemble becoming too large. The weight updates and the addi- 

tion and removal of classifiers are performed only at every p time 

steps, where p is a pre-defined value. Larger values of p are likely 

to be more robust against noise. However, too large p values can 

result in slow adaptation to concept drift. At every p training ex- 

amples, the weights of all ensemble members are also normal- 

ized, so that the new member to be included does not dominate 

the decision-making of all the others. DWM has demonstrated to 

achieve good performance in the presence of concept drifts [100] , 

usually achieving similar performance to an approach with per- 

fect forgetting. However, it may not perform so well as Littlestone 

and Warmuth’s Weighted Majority Algorithm [117] under station- 

ary conditions. 

Addictive Expert Ensembles (AddExp) is a method similar to 

DWM [99] . The main motivation for this method is the fact that it 

allows the definition of mistake and loss bounds. In this method, 

the parameter p is eliminated, so that weight updates happen 

whenever a base classifier misclassifies a new training example. A 

new classifier is always added when the prediction of the ensem- 

ble as a whole is wrong. When combined with a strategy to prune 

the oldest classifiers once a maximum pre-defined ensemble size 

if reached, the bounds are defined in the same way as when no 

pruning of classifiers is performed. However, eliminating the oldest 

classifiers may not be a good strategy to deal with non-stationary 

environments, as old classifiers may still be very useful. The al- 

ternative strategy of pruning the lowest weight classifiers is more 

practical, but offers no theoretical guarantees. 

Other approaches to combine online classifiers are also consid- 

ered in Hedge β or Winnow algorithm [117] . Kuncheva called them 

“horse racing” ensembles [107] . For instance, Hedge β works in a 

similar way to the Weighted Majority Algorithm, but instead of us- 

ing an aggregating rule it selects one component classifier based 

on the probability distribution obtained by normalized weights to 

represent the final ensemble prediction. Winnow also follows the 

main schema of Weighted Majority Algorithm, but uses different 

updating and calculating weights ideas. 

Another example of passive online learning ensemble approach 

for non-stationary environments is Stanley’s Concept Drift Com- 

mittee (CDC) [168] . As with DWM and AddExp, all classifiers that 

compose the ensemble are trained on the incoming training ex- 

amples. Instead of multiplying the weights of the classifiers by a 

constant β upon misclassifications, CDC uses weights that are pro- 

portional to the classifier’s accuracy on the last n training exam- 

ples. A new classifier is added whenever a new training example 

becomes available, rather than only when the ensemble misclassi- 

fies the current training example. When a maximum pre-defined 

ensemble size is reached, a new classifier is added only if an exist- 

ing one can be eliminated. A classifier can be deleted if its weight 

is below a pre-defined threshold t and its age (number of time 

steps since its creation) is higher than a pre-defined maturity age. 

Imature classifiers do not contribute to the ensemble’s prediction. 

This gives them a chance to learn the concept without hindering 

the ensemble’s generalization. This approach was shown to achieve 

comparable or better performance than previous approaches such 

as FLORA4 [184] and instance-based learning 3 (IB3) [3] in the 

presence of concept drifts, but sometimes presented worse perfor- 

mance than FLORA4 before the drifts. 

Yet another idea has been used in Online Accuracy Updated 

Ensemble (OAUE) [29] . It inherits some positive solutions com- 

ing from its hybrid preceder AUE, like incremental updating of 

component classifiers and learning new classifiers at some time 

steps. However, to more efficiently process incoming single ex- 

amples and weight component classifiers, the new proposal of a 

cost-effective function was introduced. It achieves a good trade- 

off between predictive accuracy, memory usage and processing 

time. 

The WWH algorithm from Yoshida et al. [194] builds different 

component classifiers on overlapping windows to select the best 

learning examples and aggregates component predictions similarly 

to the Weighted Majority Algorithm. Therefore, WWH can be seen 

as a combination of an instance selection windowing technique 

with an adaptive ensemble. 

Quite recently, Jaber proposed the Anticipative Dynamic Adap- 

tation to Concept Changes (ADACC) ensemble, which attempts to 

optimize control over the online classifiers by recognizing concepts 

in incoming examples [83] . 

Active Approaches. Even though active online ensemble approaches 

are not so common as passive ones, there are a few approaches in 

this category. One of the advantages of using explicit drift detec- 

tion methods is the possibility to inform practitioners of the exis- 

tence of concept drifts. The use of concept drift detectors can also 

help approaches to swiftly react to concept drifts once they are 

discovered. However, if concept drift detectors fail to detect drifts, 

these approaches will be unable to react to drifts. Concept drift 

detectors may also present false alarms, i.e., false positive drift de- 

tections. Therefore, it is important for active ensemble approaches 

to implement mechanisms to achieve robustness against false 

alarms. 

An example of active online ensemble is the Adaptive 

Classifiers-Ensemble (ACE) [133] . This approach uses both an on- 

line classifier to learn new training examples and batch classifiers 

trained on old examples stored in a buffer. The batch classifiers 

are used not only to make predictions, but also to detect concept 

drifts. ACE considers that there is a concept drift if the accuracy of 

the most accurate batch classifier over the last W examples is out- 

side the confidence interval formed by its accuracy over the W ex- 

amples preceding the last W examples. Whenever a concept drift 

is detected or the maximum number of training examples to be 

stored in the buffer is attained, a new batch classifier is trained 

with the stored examples and both the online classifier and the 

buffer are reset. A pruning method is used to limit the number of 

batch classifiers used. This pruning method removes older classi- 

fiers first, unless they present the highest predictive accuracy over 

a long period of time. In that way, the approach can use old knowl- 

edge when there are recurring concepts. The classification is done 

by weighted majority vote. The weight is based on the accuracy on 
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the most recent W training examples, and it is zero if this accu- 

racy is equal to or lower than the lower endpoint of the accuracy 

confidence interval. As the size of the buffer of stored examples 

is independent of the size of the sliding window W , ACE can re- 

spond to sudden changes even if the buffer is large. However, de- 

termining the size W of the sliding window may not be easy. ACE 

also requires storage of examples in an incremental way to create 

the batch classifiers, but this issue can be easily overcome by re- 

placing the buffer by an online learning algorithm. A comparative 

experiment of ACE against other ensembles has been presented 

in [39] . 

Two Online Classifiers For Learning And Detecting Concept Drift 

(Todi) [132] uses two online classifiers to detect concept drift. One 

of them ( H 0 ) is rebuilt every time a drift is detected. The other one 

( H 1 ) is not rebuilt when a drift is detected, but can be replaced by 

the current H 0 if a detected drift is confirmed. Todi detects con- 

cept drift by performing a statistical test of equal proportions to 

compare H 0 ’s accuracies on the most recent W training examples 

and on all the training examples presented so far excluding the last 

W training examples. After the detection of a concept drift, a sta- 

tistical test of equal proportions with significance level β is done 

to compare the number of correctly classified training examples 

by H 0 and H 1 since the beginning of the training of H 0 . If statisti- 

cal significant difference is detected, this means that H 0 was suc- 

cessful to handle concept drift, and the drift is confirmed. H 0 then 

replaces H 1 and is rebuilt. The classification is done by selecting 

the output of the most accurate classifier considering the W most 

recent training examples. This strategy makes the approach more 

robust to false alarms than approaches that reset the learning sys- 

tem upon drift detection [62,134] . However, no strategy is adopted 

to accelerate the learning of a new concept, as the new concept 

has to be learnt from scratch. 

Another example of active online ensemble learning approach 

in this category is Diversity for Dealing with Drifts (DDD) [127] . 

DDD is based on the observation that very highly diverse ensem- 

bles (whose base classifiers produce very different predictions from 

each other) are likely to have poor predictive performance under 

stationary conditions, but may become useful when there are con- 

cept drifts. So, in the mode prior to drift detection, DDD maintains 

both a low diversity ensemble and a high diversity ensemble. The 

low diversity ensemble is used for learning and for making predic- 

tions. The high diversity ensemble is used for learning and is only 

activated for predictions upon drift detection. This is because this 

ensemble is unlikely to perform well under stationary conditions. 

Concept drifts can be detected by using existing methods from the 

literature. Once a concept drift is detected, the approach shifts to 

the mode after drift detection, where it activates both the low and 

high diversity ensembles and creates new low and high diversity 

ensembles to start learning the new concept from scratch. The pre- 

diction given by DDD is then set to the weighted majority vote of 

the predictions given by its ensembles, except for the new high di- 

versity ensemble. The weight of each ensemble is proportional to 

its prequential accuracy since drift detection. This approach man- 

ages to achieve robustness to different types of drift and to false 

alarms, because the different ensembles are most adequate for dif- 

ferent situations. However, the use of more than one ensemble can 

make this approach heavier for applications with very strict time 

constraints. 

Modifications of the architecture of tree ensembles with drift 

detectors have also been considered by Bifet at al. [13] . The ADWIN 

change detector has been used to reset ensemble members when 

their predictive accuracy degrades significantly. This makes it pos- 

sible to better deal with evolving data streams. The same ADWIN 

method may also be integrated with online bagging ensemble –

see ADWINBagging [18] . 

Table 5 

Ensembles for regression from data streams. 

Algorithm Description 

OzaBag [137] Online Bagging for regression 

OzaBoost [137] Online Boosting for regression 

AddExp [99] Addictive expert ensembles for regression 

ILLSA [90] Incremental local learning soft sensing algorithm 

eFIMT-DD [81] Ensembles of any-time model trees 

AMRules [47] Ensemble of randomized adaptive model rules 

iSOUP-Tree-MTR [135] Ensembles of global and local trees 

DCL [125] Dynamic cross-company learning 

Dycom [128] Dynamic cross-company mapped model learning 

LGPC [192] Lazy Gaussian Process committee 

OWE [162] Online weighted ensemble of regressor models 

DOER [161] Dynamic and on-line ensemble regression 

4.2. Supervised learning for regression problems 

Regression analysis is a technique for estimating a functional 

relationship between a numeric dependent variable and a set of 

independent variables. It has been widely studied in statistics, pat- 

tern recognition, machine learning and data mining. Many ensem- 

ble methods can be found in the literature for solving classifica- 

tion tasks on streams, but only a few exist for regression tasks. 

Discussed algorithms are summarized in Table 5 . 

Oza and Russel’s online bagging algorithm for stationary data 

streams [137] described in Section 4.1.2 is an example of method 

that is inherently applicable both to classification and regression. 

Kolter and Maloof’s Addictive Expert Ensembles (AddExp) for 

non-stationary data streams also contains another version for con- 

tinuous dependent variables [99] . As in the AddExp for classifica- 

tion problems, a weight is associated to each base learner. For clas- 

sification, AddExp makes predictions by using weighted majority 

vote, while for regression, weighted average is used. In the version 

for classification, the weight associated to a base classifier is multi- 

plied by β , 0 ≤ β < 1, whenever it misclassifies a training example. 

In the version for regression, the weight of a base learner is always 

multiplied by β | ̂ y −y | , where ˆ y is the prediction given by the base 

learner is y is the actual value of the dependent variable. 

Kadlec and Gabrys developed an incremental local learning soft 

sensing algorithm (ILLSA) [90] , operating in two phases. During the 

initial phase a number of base models is being trained, each using 

different concepts (subsets) of the training data. During the online 

data stream mining phase, weights assigned to models are recal- 

culated instance-by-instance using their proposed Bayesian frame- 

work working on output posterior probabilities. 

The most in depth study on learning ensembles of model trees 

from data streams appears in [80,81] . These research include two 

different methods for online learning of tree-based ensembles for 

regression from data streams. Both methods are implemented on 

the top of single model trees induced using the FIMT-DD algorithm 

(a special incremental algorithm for learning any-time model trees 

from evolving data streams). Then, the ensembles of model trees 

are induced by the online bagging algorithm and consist of model 

trees learned with the original FIMT-DD algorithm and a random- 

ized version named R-FIMT-DD. Authors explore the idea of ran- 

domizing the learning process through diversification of the input 

space and the search trajectory and examine the validity of the 

statistical reasoning behind the idea for aggregating multiple pre- 

dictions. It is expected that this would bring the resulting model 

closer to the optimal or best hypothesis, instead of relying only on 

the success of a greedy search strategy in a constrained hypothesis 

space. The authors also perform a comparison with respect to the 

improvements that an option tree brings to the learning process. 

In [82] , the authors observe that the use of options acts as a 

kind of backtrack past selection decisions. Their empirical compar- 
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ison has shown that the best tree found within the option tree 

has a better accuracy (on most of the problems) than the sin- 

gle tree learned by FIMT-DD. The increased predictive performance 

and stability comes at the cost of a small increase of the process- 

ing time per example and a controllable increase in the allocation 

of memory. The increase in the computational complexity is due 

to the increased number of internal nodes being evaluated at any 

given point in time. The option tree incurs an additional increase 

in computational complexity when computing the aggregate of the 

multiple predictions for a single testing example, as it has to ex- 

amine all of the options on the path from the root to the corre- 

sponding leaf node. 

Adaptive Model Rules [47] is the first streaming rule learning 

algorithm for regression problems. It extends AMRules algorithm 

by using random rules from data streams. Several sets of rules are 

being generated. Each rule set is associated with a set of N att at- 

tributes. These attributes are selected randomly from the full set of 

attributes of the dataset. The new algorithm improves the perfor- 

mance of the previous version. 

Osojnik et al. [135] investigated ensembles of local and global 

trees for multi-target regression from data streams. Authors ar- 

gued that predicting all target at once is more beneficial to mining 

streams than using local models. A novel global method was pro- 

posed, named incremental Structured Output Prediction Tree for 

Multi-target Regression (iSOUP-Tree-MTR). For improving the pre- 

dictive power, the authors used it as a base learner for Oza’s Online 

Bagging. 

An approach called Dynamic Cross-company Learning (DCL) 

[125] has been proposed to perform transfer learning for data 

streams in non-stationary environments. The approach aims at 

making predictions in the context of a given target company or 

organization. A data stream containing training examples from this 

company or organization is available, but produces few examples 

over time. This can happen, for example, when it is expensive to 

collect labeled examples in the context of a given company. There- 

fore, this approach maintains not only a base learner to learn such 

examples, but also other base learners to learn examples obtained 

from other companies or organizations. A weight is associated to 

each base learner. This weight is multiplied by β , 0 ≤ β < 1, 

whenever this base learner is not the one that provided the best 

prediction to a new target company/organization training exam- 

ple. So, these weights can be used to emphasize the base learn- 

ers that currently best reflect the present concept of the target 

company/organization. The prediction given by the ensemble is the 

weighted average of the predictions given by the base learners. 

Another approach called Dynamic Cross-company Mapped 

Model Learning (Dycom) [128] extends DCL to learn linear func- 

tions to map the base learners created with data from other com- 

panies or organizations to the current concept of the target com- 

pany or organization. These mapping functions are trained based 

on a simple algorithm that uses training examples from the tar- 

get company/organization data stream and the predictions given 

to these examples by the base learners representing other com- 

panies/organizations. This algorithm operates in an online manner 

and gives more importance to more recent training examples, so 

that the mapping functions represent the current concept of the 

companies/organizations. It is expected to enable a reduction in 

the number of training examples required from the target com- 

pany while keeping a similar predictive performance to DCL. This 

is because it can benefit from all base learners by mapping them 

to the concept of the target company, rather than benefiting only 

from base learners that currently best represent the concept of the 

target company. 

Xiao and Eckert [192] proposed an approximation of Gaussian 

processes for online regression tasks. They combined several base 

models, each being initialized with random parameters. Each in- 

coming instance is used to update a selected subset of base models 

that are being chosen using a reedy subset selection, realizing an 

optimization of a submodular function. The authors showed that 

their method displays favorable results in terms of error reduction 

and computational complexity, however used only methods based 

on Gaussian processes as a reference. 

On-line Weighted Ensemble (OWE) of regressor models was 

discussed by Soares and Araujo [162] . It was designed to handle 

various types of concept drift, including recurrent ones. The en- 

semble model is based on a sliding window that allows to in- 

corporate new samples and remove redundant ones. A boosting- 

like solution is used for weight calculation of ensemble models, by 

measuring their error on the current window. Additionally, con- 

tribution of old windows can be taken into consideration dur- 

ing weight calculation, thus allowing for switching between recur- 

ring and non-recurring environments. Finally, OWE can expand its 

structure by adding new model when the ensemble error is in- 

creasing and pruning models characterized by highest loss of ac- 

curacy. 

This concept was further developed by the same authors in 

their dynamic and on-line ensemble regression (DOER) [161] . Here, 

the selection and pruning of models within the ensemble is being 

done dynamically, instance after instance, to offer improved adap- 

tation capabilities. Additional novelty lies in ability of each base 

model to update its parameters during the stream mining proce- 

dure. 

An evolutionary-based ensemble that can adapt the competence 

areas and weights assigned to base models for regression tasks was 

also discussed by Jackowski in [85] . 

5. Advanced issues in data stream analysis 

The previous sections have discussed typical representations of 

examples and output values (as attribute - value pairs) and learn- 

ing problems which are the commonly encountered in data stream 

analysis. However, in several new studied problems one can meet 

more complex representations or learning issues. We will now dis- 

cuss ensemble solutions to these problems, including learning from 

imbalanced data, novelty detection, lack of counterexamples, active 

learning and non-standard data structures. 

5.1. Imbalanced classification 

Non-stationary data streams may be affected by additional data 

complexity factors besides concept drifts and computational re- 

quirements. In particular, it concerns class imbalance, i.e., situa- 

tions when one of the target classes is represented by much less 

instances than other classes. Class imbalance is an obstacle even 

for learning from static data, as classifiers are biased toward the 

majority classes and tend to misclassify minority class examples. 

Dealing with unequal cardinalities of different classes is one of the 

contemporary challenges in batch learning from static data. It has 

been more studied in this static framework and many new algo- 

rithms have already been introduced, for their comprehensive re- 

view see the recent monograph [73] or surveys [72,101,172] . 

Out of these new solutions ensembles are one of the most 

promising directions. However, class imbalance has still received 

less attention in non-stationary learning [77] . Note that imbal- 

anced data streams may not be characterized only by an approxi- 

mately fixed class imbalance ratio over time. The relationships be- 

tween classes may also be no longer permanent in evolving im- 

balanced streams. A more complex scenario is possible where the 

imbalance ratio and the notion of a minority class may change 

over time. It becomes even more complex when multi-class prob- 

lems are being considered [181] . Below we discuss main ensemble- 

based proposals for mining imbalanced evolving streams. They are 

summarized in Table 6 . 
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Table 6 

Ensembles for imbalanced data streams. 

Algorithm Description 

Chunk-based approaches 

SE [65] Ensemble with majority class sampling 

SERA [34] Selectively recursive approach for sampling 

minority class 

REA [35] SERA with k -NN for chunk similarity analysis 

BD [116] Boundary definition ensemble 

Learn ++ .CDC [42] Learn ++ with concept drift and SMOTE 

Online approaches 

EONN [67] Ensemble of online cost-sensitive neural 

networks 

ESOS-ELM [129] Ensemble of subset online sequential extreme 

learning machines 

OOB [180] Oversampling-based online Bagging 

UOB [180] Undersampling-based online Bagging 

MOOB [181] Multi-class oversampling-based online Bagging 

MUOB [181] Multi-class undersampling-based online 

Bagging 

Many of these proposals adapt an idea of re-sampling the data 

in incoming data to obtain more balanced class distributions. In 

general re-sampling methods transform the distribution of exam- 

ples in the original data towards more balanced classes. Under- 

sampling removes some examples from the majority classes while 

oversampling adds minority class examples (either by random 

replicating or generating synthetic new ones). 

The first proposal by Gao et al. [65] was an ensemble approach 

that divided examples from the incoming data chunk into positive 

(the minority class) and negative (other classes) subsets. To build 

a new base classifier one takes all positive instances gathered so 

far and randomly selects a subset of the negative instances of the 

new data chunk. The size of this subset is calculated basing on a 

parameter referring to the class distribution ratio. Then, this new 

classifier is added to the ensemble. Predictions of base classifiers 

are combined using a simple voting technique. In order to accom- 

modate this idea for a potentially infinite stream authors propose 

to sample examples from only a limited number of the most recent 

chunks, using either fixed (each chunk contributes equally) or fad- 

ing (the more recent chunks contribute more instances) strategy. 

However, as all positive examples are used to learn each classifier, 

this method is limited to situations with a stable definition of the 

minority class. 

Selectively recursive approach (SERA) [34] is another ensemble 

method proposed by Chen and He that extends the Gao et al. con- 

cept by using selective sampling of the minority class. Mahalanobis 

distance is used to select a subset of most relevant minority in- 

stances (from the previous chunks) for the current chunk of the 

stream and combine them with bagging method applied on ex- 

amples from the majority class. This approach alleviates the draw- 

backs of the previous method regarding drifts on minority class, 

but at the same time makes SERA very sensitive to proper selec- 

tion of the number of minority samples taken under consideration. 

Chen and He proposed yet another ensemble, called REA [35] , 

which changes SERA properties by adopting the k-nearest neighbor 

principle to estimate similarity between previous minority exam- 

ples with ones in the most recent chunk. The predictions of base 

classifiers are weighted on the basis of their classification of the 

recent chunk. 

Lichtenwalter and Chawla [116] proposed weighted ensembles 

in which both classified minority and majority instances are be- 

ing propagated between chunks. This allows to better capture the 

potentially changing boundary between classes. A combination of 

information gain and Hellinger’s distance (a skew-insensitive met- 

ric) is used to measure similarities between two data chunks and 

thus to implicitly check if a concept drift has taken place. This in- 

formation is then used to weight ensemble members during the 

combination of their predictions, with a linear function being in- 

verse of the actual closeness of chunks. The authors acknowledge 

the potential limitations of this approach (like small differences in 

weights or reduced variance) but leave a more precise examination 

of different combination functions for future studies. 

Ditzler and Polikar [42] proposed an extension of their Learn 

++ 

ensemble for incremental learning from imbalanced data. This 

combines their previous approach to learning in non-stationary 

scenarios with idea of bagging, where undersampling is performed 

in each bag. Classifiers are weighted based on their performance 

on both minority and majority classes, thus preventing significant 

loss of accuracy on negative cases. However, one must point out 

that this approach assumes well-defined minority class and can- 

not handle dynamically changing properties of classes. The au- 

thors also studied a variant called Learn 

++ .CDC (Concept Drift with 

SMOTE), which employs oversampling of the minority class. 

Ghazikhani et al. [67] introduced an ensemble of online neural 

networks to handle drifting and imbalanced streams. They embed- 

ded a cost-sensitive learning into the process of neural network 

training in order to tackle the skewed class distribution. A number 

of cost-sensitive neural networks is trained at the beginning of the 

stream using different initial random weights. Then, the ensemble 

is updated with new instances without set-up modifications. A cost 

matrix is predefined, with penalty for errors on minority class be- 

ing twice the remaining costs. The usage of the fixed cost matrix 

limits the adaptability to evolving streams. Classifiers are combined 

using weighted voting, and individual weights are calculated with 

a modified Winnow strategy. 

An ensemble of online sequential extreme learning machine 

(ESOS-ELM) was developed by Mirza et al. [129] . It maintains ran- 

domized neural networks that are trained on balanced subsets of 

stream. Short and long term memories were implemented to store 

the ensemble and the progress of the stream. Two different learn- 

ing schemes were proposed for moderate and high imbalance ra- 

tios (the difference being the way of processing majority class in- 

stances). However, the algorithm replicates the limitations of some 

of the previous methods, assuming no drift on the minority class 

taking place. 

Another approach to imbalanced and drifting streams was pro- 

posed by Wang et al. [180] . These authors are the only researchers 

which currently consider also dynamic changes of class cardinal- 

ities. They proposed a number of online bagging-based solutions 

that are able to cope with dynamically changing imbalance ratio 

and switching of class properties (e.g. majority becoming minor- 

ity over time). They considered a dedicated concept drift detec- 

tor for imbalanced streams, whose output directly influences the 

oversampling or undersampling ratios, allowing to accommodate 

evolving data skewness. A further modification, called WEOB, uses 

a combination of both under and oversampling in order to choose 

the better strategy for the current state of the stream. An adaptive 

weighting combination scheme was proposed to accommodate this 

hybrid solution, where the weights of the sampling strategies are 

either computed as their G-mean values or are binary (meaning 

only one of them will be used at a time). A multi-class extension 

of this method was discussed in [181] , where concepts of multi- 

minority and multi-majority classes are used to model complex re- 

lations among classes. 

Finally, recently some researchers have started to discuss the 

need for new evaluation measures to address complexity of imbal- 

anced data streams, see , e.g., [20,30,33] . 

5.2. Novelty detection and one-class classification 

Due to the evolving nature of data streams the learning algo- 

rithm has to be prepared to handle new, unseen data that do not 
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Table 7 

Ensembles for novelty detection and one-class classification. 

Algorithm Description 

OCLS [198] One-class learning and summarization 

ensemble 

UOCL [118] Extended ensemble for one-class learning and 

summarization 

IncOCBagg [102] Incremental one-class Bagging 

OLP [37] One-class ensemble based on prototypes 

Learn ++ .NC [130] Learn ++ ensemble for novel class detection 

ECSMiner [122] Ensemble for novelty detection with time 

constraints 

MCM [121] Ensemble for novelty detection and drifting 

feature space 

AnyNovel [1] Two-step clustering ensemble for novelty 

detection 

CBCE [171] Class-based ensemble for class evolution 

CLAM [4] Class-based micro classifier ensemble 

SCARN [4] Stream Classifier and novel and recurring class 

detector 

follow the previously seen distributions. Such examples may be 

caused by noise in the stream or may actually originate from a 

novel concept that started emerging. Such a novelty may be caused 

by some abnormality (like zero-day-attach in networks or anomaly 

in the system) or may be a new instance from a concept that was 

previously not seen. In the latter case a completely new class may 

appear in the decision space, existing classes may merge or one 

of the classes may star to disappear. This may happen in the con- 

text of two possible scenarios: binary and multi-class. In the for- 

mer case we may treat it as a task of recognizing a target (correct) 

concept and a set of potential outliers [115] , while in the latter we 

must deal at the same time with a recognition problem among a 

number of classes and detection of possible new emerging classes 

[53] . For the binary case we often must face the fact that it is dif- 

ficult or even impossible to gather sufficient representatives of the 

novel class, or that they may not even form a class. Therefore, one- 

class classification (known as learning in the absence of counterex- 

amples) is being utilized as it allows to model the target concept 

without making any assumptions regarding the properties of the 

novelty observations to appear. 

Let us discuss now main ensemble-based methods suitable for 

these scenarios. They are summarized in Table 7 . 

Zhu et al. [198] proposed an one-class ensemble approach to 

mining data streams with a concept summarization approach by 

providing labels not for single instances but for chunks of in- 

stances. They introduced a vague one-class learning module, based 

on one-class Support Vector Machines. Each base classifier utilized 

weights assigned to instances from given chunk, reflecting their 

level of relevance (in the discussed application the relevance was 

based on user’s interests in given information). This was done in 

a two-step procedure, utilizing local and global weighting. Local 

weighting calculated instance weight values using examples in the 

given data chunk. Global weighting was used to calculate a weight 

value for both positive and unlabeled instances in given chunk, 

utilizing information coming from classifiers trained on previous 

data chunks. This weight information was directly embedded in 

the process of classifier training. A weighted classifier combination 

scheme was used to make a final ensemble decision, where the 

weights of each classifier were calculated as an agreement mea- 

sure between it and the most recent classifier in the pool. One 

must notice that this approach used static one-class classifiers and 

thus adaptability was achieved only by adding new members to 

the ensemble. 

This idea was further developed by Liu et al. [118] . They also 

proposed a chunk-based ensemble of one-class classifiers for si- 

multaneous learning from uncertain data streams and concept 

summarization. They proposed a different scheme for calculating 

instance weights by using a local kernel-density approach. It al- 

lowed to generate a bound score for each example based on its 

local nearest neighbors in a kernel feature space. Thus, instance 

weight was calculated only once and directly embedded in the 

process of one-class Support Vector Machine training. A combina- 

tion of classifiers was done using a weighted aggregation, where a 

weight for each base classifier was determined by its mean square 

error. Similar to the previous work, classifiers used here were static 

ones. 

An ensemble of adaptive one-class classifiers for drifting data 

streams was proposed by Krawczyk and Wo ́zniak [102] . Here, clas- 

sifiers were trained with the usage of Bagging. The set-up of 

the ensemble remains unchanged during the stream processing, 

but base classifiers are updated with random subsets of exam- 

ples from incoming data chunks. As a base classifier they used 

an incremental weighted one-class Support Vector Machine [103] . 

It incorporates new examples by re-weighting support vectors 

and adding/removing them according to the stream progress. New 

instances can be weighted according to two different strategies 

(highest priority to newest examples or weights based on the dis- 

tance from the hypersphere center). The forgetting mechanism was 

implemented as a gradual decrease of weights assigned to vectors, 

realized as a time-dependent function (the longer time given in- 

stance spent in the stream, the higher the forgetting ratio). This 

approach allowed the method to adapt to concept drift without a 

need for an external drift detector, as old concepts were gradu- 

ally removed from the ensemble memory. Additionally, a parallel 

implementation was proposed in order to achieve a computational 

speed-up. However, authors focused their works only with chunk- 

based processing of data streams. 

Czarnowski and Jedrzejowicz [37] proposed yet another chunk- 

based ensemble of one-class classifiers for handling binary and 

multi-class data streams. Here a single one-class classifiers (deci- 

sion tree) was responsible for tackling a single class. Each class- 

based data chunk utilized for training classifiers consisted of class 

prototypes and information about whether the class predictions 

of these instances, carried-out at earlier steps, has been correct. 

When a new chunk of data becomes available, an instance selec- 

tion algorithm is applied to select the most valuable examples. 

Classifiers are combined using a weighted voting scheme. 

Muhlbaier et al. [130] introduced an extension of Learn 

++ for 

the cases with novel class appearance in streams. The main change 

over the previous version of the ensemble is an extension of the 

classifier combination phase. A dynamically weighted consult and 

vote was proposed, where individual classifiers interchange their 

information regarding novel instances and select the most compe- 

tent ones by assigning them highest weights. This allows to pre- 

vent cases when a new classifier trained with a novel class is out- 

voted by older ones who did not have access to new instances. 

However, this solution is suitable only to scenarios in which classes 

emerge in a transient manner. 

Masud et al. [122] introduced an ensemble classifier for si- 

multaneous classification and novelty detection in drifting data 

streams with embedded time constraints. It worked under an as- 

sumption that each example must be evaluated within a given 

time window not to create a bottleneck for rapidly incoming in- 

stances. This is of crucial importance to the novelty detection 

module that is usually characterized by the highest computational 

complexity in the entire classification system. Additionally, authors 

took into account the possible delay with which a true class la- 

bel may become available to the system. These two constraints 

allowed to create a computationally efficient ensemble for high- 

speed and evolving data streams. As a base component authors 

proposed Enhanced Classifier for Data Streams with novel class 

Miner (ECSMiner), an ensemble system with three buffers: for po- 
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tentially novel instances, for instances waiting for class labels, and 

for labeled instances to be used in training new classifiers. 

In their follow-up work Masud et al. [121] proposed a new en- 

semble method that take into account not only concept drift and 

novel class appearance, but also the possibility of evolving fea- 

ture space. They assumed that new features may appear over time, 

which is being justified by specific domain-based applications (e.g., 

new phrases in text stream mining). Each model in the ensem- 

ble was built using feature space homogenization using lossless 

conversion, to avoid differences between training and testing sets. 

However, there are several different modifications of their meth- 

ods in this work. The outlier detection module has been enhanced 

with an adaptive threshold for changing definitions of novel in- 

stances. The novelty detection module was constructed with the 

usage of Gini coefficient to simultaneously measure the difference 

among new instance and existing classes, as well as its similarity 

to other novel instances stored in a buffer. Finally, the proposed 

classification system allowed for detecting multiple novel classes 

at the same time using a graph analysis. 

Abdallah et al. [1] proposed an adaptive ensemble approach for 

multi-class novelty detection. The proposed method was based on 

a two-step cluster formation. Firstly a supervised learning method 

was applied to divide the initial data into class-based clusters. 

Then, an unsupervised learning was applied to detect sub-concepts 

within each cluster and thus to create more local models. Authors 

showed that their algorithm can efficiently distinguish between ac- 

tual novel concept appearance, drift present in one of the exist- 

ing sub-concepts or singular outliers appearance. This was done by 

defining novel concept as residing outside all existing cluster-based 

models and consistently moving away from all existing concepts. 

A forgetting mechanism was implemented to detect concepts that 

no longer appear in the incoming stream and mark them as irrel- 

evant. To evaluate the model within the stream progress, authors 

proposed an active learning strategy to reduce labeling costs. 

Sun et al. [171] introduced Class-Based ensemble for Class 

Evolution (CBCE). They considered three possible scenarios: class 

emergence, disappearance and re-occurrence. CBCE constructs its 

ensemble by storing in a memory an online classifier for every sin- 

gle class that has appeared during the course of data stream pro- 

cessing. This is done via one-vs-all binary decomposition. Addition- 

ally, a dynamic undersampling technique to deal with class imbal- 

ance is applied to each base classifier to counter the evolving dis- 

proportions between instances in classes. However, CBCE requires 

its base classifiers to provide predictions in the form of a score, 

which limits the number of possible models to be used. When a 

novel class emerges, then its prior probability is being estimated 

and a new classifier is being trained. Classifiers may be deactivated 

when a concept disappears and reactivated when its re-occurrence 

has been detected. 

Two other ensemble-based approaches to novel class detection 

were proposed by Al-Khateeb et al. [4] , namely Class Based Mi- 

cro Classifier Ensemble (CLAM) and Stream Classifier And Novel 

and Recurring class detector (SCARN). CLAM uses an ensemble of 

micro-classifiers, where each base micro-classifier has been trained 

using only positive instances from a given class. This is done via a 

clustering approach. When a new instance becomes available, the 

ensemble of micro-classifiers decides whether this is instance be- 

longs to any of existing classes or it is a novel one. After a cer- 

tain number of instances has been tagged as representatives of a 

novel concept, a new classifier is trained on them and added to 

the ensemble. The novelty detection is conducted using a proposed 

neighborhood-based distance score. SCARN approach uses two en- 

semble models: primary ensemble and auxiliary ensemble. The 

primary ensemble is responsible for distinction between known 

classes and potential outliers. If the outlier has been detected by 

the primary ensemble, it is then delegated to the auxiliary ensem- 

Table 8 

Active and semi-supervised ensembles. 

Algorithm Description 

MV [199] Optimal Weight Classifier Ensemble with active learning 

ReaSC [123] Ensemble of semi-supervised micro-clusters 

ECU [196] Semi-supervised ensemble integrating classifiers and clusters 

COMPOSE [49] Ensemble for initially labeled data streams 

SPASC [78] Ensemble of semi-supervised clustering algorithms 

ble. Its role is to decide whether this is a reoccurring concept from 

previously known class or a completely new case. 

5.3. Active and semi-supervised learning 

Fast availability of information about true target value (class) 

of incoming examples is another issue which should be taken into 

account. As mentioned in Section 3 most of used frameworks as- 

sume immediate or not too much delayed access to target val- 

ues. In some situations it is possible to obtain true example state 

at minimal or no cost. An example would be weather prognosis, 

where our prediction will be evaluated in future. This is however 

connected with the problem of label latency - even if we will 

have access to such an information it does not become available 

right after the arrival of a new instance. However, in many prac- 

tical situation this assumption may not be realistic, mainly due 

to potentially high speed of incoming examples and costs of hu- 

man labeling. Note that while cooperating with human experts one 

has to take into account their limited abilities, responsiveness, and 

threshold on amount of data labeled in a certain amount of time. 

When all examples cannot be quickly labeled, it may be still pos- 

sible to obtain true target values for a limited number of these ex- 

amples at reasonable costs – see a discussion in Section 2.2 . This 

can be exploited with active learning [58] or semi-supervised (in- 

cluding self-labeling) learning [174] . 

Active learning techniques must take into account the possible 

drifts in data and adapt their sampling rules to it [205] . One can- 

not use standard static uncertainty-based methods, as they are not 

robust to situations where drift occurs in a region of high classi- 

fier certainty. In recent years, one could see an increased number 

of studies dealing with this problem that propose various mech- 

anisms for adaptive active learning over non-stationary streams 

[23,93,187,190] . Ensemble-inspired approaches have been already 

applied to select examples in static, non-stream data frameworks. 

However, existing work on using ensemble-based approaches for 

active learning in data stream mining is scarce and this direc- 

tion seems worthwhile for future exploitation. We present the en- 

semble solutions for active and semi-supervised learning over data 

streams below. Discussed algorithms are summarized in Table 8 . 

It is worth mentioning one of the key concepts of active learn- 

ing called Query by Committee [56] , where active learning sam- 

pling is controlled by an ensemble of classifiers. The most popu- 

lar methods from this domain include Query by Bagging [2] and 

Query by Boosting [2] . They have been proven to offer increased 

stability and improved instance selection for labeling compared to 

queries based on a single classifier decision. However, work on us- 

ing ensemble-based approaches for active learning in data stream 

mining is scarce and this direction also seems worthwhile for fu- 

ture exploitation. 

Zhu et al. [199] proposed to use active learning for controlling 

the adaptation progress of an ensemble over drifting data streams. 

Authors argued that variance of an ensemble has a direct relation- 

ship with its error rate and thus one should select such instances 

for labeling that contribute towards the minimization of the vari- 

ance. Authors used bias-variance decomposition of ensemble error 

as a basis for their minimum-variance instance selection method. 
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Additionally, these authors derived an optimal weight calculation 

scheme for combining components. These two elements work in 

an active learning loop – weights from the previous iteration are 

used to guide the active learning procedure, after which a set of 

labeled examples is used for the weight update step. 

Masud et al. [123] proposed an approach where micro-clusters 

are generated using semi-supervised clustering and a combination 

of these models are used to handle unlabeled data incoming from 

the stream. A label propagation technique is used to assign each 

micro-cluster to a class. Then, inductive label propagation is used 

to classify a new instance. New micro-clusters can be added to an 

ensemble with the progress and changes in the stream. Addition- 

ally, an ensemble pruning technique is utilized, deleting any micro- 

cluster with accuracy dropping below the given threshold (70%). 

Learning with delayed labels has often been studied with a 

mechanism to propagate available labels through the next steps 

when only unlabeled data is available. For instance, Zhang et al. 

considered a hybrid ensemble integrating classifiers and clusters, 

where labeled example are used to learn classifiers while clusters 

are formed from unlabeled data [196] . New incoming instance re- 

ceives a label resulting from voting both classifiers and clusters. 

Another interesting statistical approach to represent each class in 

the stream by a mixture of sub-population was considered by 

Krempl and Hofer [104] . However this approach is restricted to 

track only limited gradual drifts in unlabeled data. 

COMPOSE ( COMPacted Object Sample Extraction ) ensemble 

[49] was proposed for streams where labeled instances are avail- 

able only during the initial training of classifiers. After this phase, 

all incoming instances are assumed to be non-labeled. COMPOSE 

works in three steps. First, initial labels are combined with new 

unlabeled data to train a semi-supervised classifier and use it to 

label these instances. Then, each class gets assigned a geometric 

descriptor to construct an enclosing boundary and provide the cur- 

rent distribution of this class. Finally, instances called core supports 

are extracted to serve as class representatives. This allows to track 

concept drift in a semi-supervised manner and adapt models ac- 

cordingly. 

Hosseini et al. [78] proposed an ensemble of semi-supervised 

clustering algorithms, where each class is described by a single 

model. Each new incoming chunk obtains a pre-defined number of 

labeled instances, which are used to update classifiers in the en- 

semble. Chunks are assigned based on a semi-supervised Bayesian 

approach. Authors claim that their approach is able to automati- 

cally recognize recurrent concepts within the data stream. 

5.4. Complex data representations and structured outputs 

Non-standard data and class structures have gained increasing 

attention in recent years from the machine learning community. 

Due to the advent of big data and the necessity to mine unstruc- 

tured, heterogeneous and complex information, we require learn- 

ing methods that can efficiently accommodate such instances. Al- 

though most of the current research concerns static, non-streaming 

frameworks, some research has been undertaken in the case of 

data streams. The most important streaming ensemble solutions 

are discussed below and are summarized in Table 9 . 

Multi-label and multi-instance learning is still a largely unex- 

plored area in data stream mining. In case of multi-label algorithm 

a proper experimental and evaluation framework was proposed by 

Read et al. [149] , but there is not an abundance of work that follow 

it, especially from the ensemble point of view. Qu et al. [145] pro- 

posed a dynamic classifier ensemble for multi-label data streams, 

where a binary relevance scheme was extended by using feature 

weighting and keeping a subset of the most recent classifiers in the 

pool, instead of all possible pairwise combinations. Classifiers are 

weighted dynamically for each incoming example from the stream. 

Table 9 

Ensembles for streaming complex data representations. 

Algorithm Description 

Multi-label data streams 

DI [145] Dynamic ensemble with improved binary relevance 

MW [193] Multiple-window ensemble for multi-label streams 

MLDE [166] Multi-voting dynamic ensemble with clustering 

FCM-BR [173] Binary relevance with fuzzy confusion matrix 

Multi-instance data streams 

MILTrack [9] Multi-instance online Boosting 

OMILBoost [144] Online Boosting based on image patches 

Semi-WMIL [182] Semi-supervised ensemble of weak online classifiers 

Other data structures 

AdaTreeMiner [15] XML stream mining using closed tree algorithms 

XSC [26] Ensemble of maximal frequent subtrees for each class 

gSLU [140] Ensemble based framework to partition graph streams 

gEboost [139] Boosting for imbalanced and noisy graph streams 

Xioufis et al. [193] introduced an ensemble using a binary rel- 

evance model and maintaining two separate windows – one for 

positive and one for negative examples. An efficient implementa- 

tion of k -NN classifier is used due to its natural incremental nature, 

while each base classifier is trained on an undersampled label set 

to tackle possible label imbalance. 

The problems related with labeling costs for multi-label data 

streams were discussed by Wang et al. [179] . A theoretical loss 

function for their proposed ensemble classifier and an active learn- 

ing function to select examples minimizing this function were de- 

rived. This allowed for using less labeled instances for training and 

detecting concept drift on the basis of labeling the most uncertain 

examples. 

Multi-Label Dynamic Ensemble (MLDE) was developed in [166] . 

It used adaptive cluster-based classifiers that were combined by a 

voting method utilizing two separate weights based on accuracy 

on the given data chunk and similarity among chunks. 

Trajdos and Kurzynski [173] proposed a stream-based extension 

of binary relevance model utilizing a fuzzy confusion matrix to cor- 

rect the decisions of base classifiers in the ensemble. The correc- 

tion model was updated as the stream progressed, thus adapting 

to its current state. However, no explicit drift detection technique 

was used. 

Multi-instance learning is an even less exploited area in the 

stream mining context. Most work in this domain concentrates on 

image analysis applications and is used in online video process- 

ing. However, one may see a video as a stream of images. Babenko 

et al. [9] proposed a modification of online boosting for learning 

from bags of examples. They assumed that once a bag is labeled 

as a positive one, then all examples within are also positive and 

hence used for training. However, this drawback was reduced by 

choosing weak classifiers on the basis of a bag likelihood loss func- 

tion. The ensemble could be updated with new models with the 

progress of the stream similar to standard online Boosting. A simi- 

lar approach was proposed by Qi et al. [144] , using however a dif- 

ferent classifier selection approach based on selecting correct im- 

age patch around the labeled target. Wang et al. [182] proposed 

a semi-supervised ensemble of weak online classifiers for object 

tracking. The final ensemble was constructed by selecting weak 

classifiers obtained by maximizing the log-likelihood function but 

minimizing the inconsistency function. 

Mining XML data is well-studied in static scenarios. However, 

modern computing environments require online and efficient doc- 

ument processing within time and memory constraints. Bifet and 

Gavaldà [15] proposed compression of XML trees into vectors that 

are possible for processing by standard classifiers, creating closed 

frequent pattern data structures. These are later feed into a num- 

ber of stream classifiers based on variants of Bagging and Boosting 
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for online analysis. However, the main contribution of the paper 

lied in new data structures, whereas their ensembles were stan- 

dard ones from the literature. 

Brzezinski and Piernik [26] developed XML Stream Classifier 

(XSC) ensemble. It creates a set of maximal frequent subtrees for 

each class independently. Label prediction is done using associa- 

tion between new documents incoming from the stream and the 

closest maximal frequent subtree (and thus the class to which it is 

associated). The base classifiers are updated in sequential manner, 

but as each class has its own classifier the update rates or size of 

the update chunks may vary. This makes XCS suitable for process- 

ing imbalance and locally drifting data streams. 

Streams of graphs are also a frequent challenge for learning al- 

gorithms, as they become more and more prevalent with the con- 

stant growth of social networks. Pan et al. [140] proposed an en- 

semble approach for mining graph streams, where a stream is par- 

titioned into a number of chunks, each of which contains both la- 

beled and unlabeled graphs. A minimum-redundancy feature se- 

lection is applied independently in each chunk to reduce its di- 

mensionality. A sliding window solution with instance weighting 

is used to accommodate the possibility of drift presence and for- 

get outdated examples. Each chunk serves as a training set to 

build a classifier, and then form them into an ensemble. Nearly 

the same authors have recently extended this idea by proposing a 

Boosting approach called gEboost for imbalanced and noisy graph 

streams [139] . It maintains the graph partitioning approach (in- 

cluding a special feature selection from subgraphs), but for each 

chunk a Boosting classifier was constructed and learned with a 

variant of margin maximization. Instance weighting was incorpo- 

rated directly into this scheme to put more emphasis on the most 

difficult examples for the imbalance problem. 

6. Future research directions 

In this paper, we have discussed the challenging issues of learn- 

ing ensembles from data streams. We have considered both clas- 

sification and regression ensembles, even though classifier ensem- 

bles are typically the most often applied approaches in data stream 

analysis. 

In the first sections of the paper, we have presented character- 

istics which distinguish data streams from the standard static data 

repositories. New requirements to using computationally effective 

algorithms, which should usually also be able to adapt to concept 

drift in non-stationary data streams, have been discussed. Differ- 

ent types of concept drift, their characteristics, and methods for 

their detection in different stream scenarios have been reviewed. 

Moreover, difficulties in evaluating stream classifiers in presence 

of concept drift have been shown. The main part of our paper in- 

cludes a detailed survey of ensembles, which are categorized with 

respect to different criteria (stationary or not data, chunk or on- 

line processing modes, passive or active reactions to drifts). Fur- 

thermore, we have extended this study to more complex stream 

situations such as class-imbalanced learning, novelty detection, ac- 

tive and semi-supervised learning, and dealing with more complex 

data structures. 

Despite many interesting developments in the field of min- 

ing data streams, there is still a number of open research prob- 

lems and challenges awaiting to be properly addressed. We briefly 

present our views on potential directions that seem worthwhile to 

be further explored below: 

• Better handling delayed information and extending cur- 

rent techniques within semi-supervised learning : these ap- 

proaches are still limited to few ensemble proposals and def- 

initely need more attention. In particular, in fast evolving 

streams, the relationship between attributes and target values 

may be only locally valid due to concept drift [105] . Many of 

the discussed approaches employ a kind of transfer learning, 

where predictions from models learned from labeled examples 

are transferred to next unlabeled portions of the data. In gen- 

eral, they are more useful for limited gradual drifts, while more 

complex scenarios are still open problems. Developing new ap- 

proaches to deal with delayed information, including ensem- 

bles, that would work in the presence of different types of 

drift is a non-trivial research task. It would be particularly use- 

ful for many real life automated systems, where an interaction 

with human experts is quite limited. Finally, delayed informa- 

tion may not refer to target values only, but may concern also 

incomplete attribute descriptions. The problem of incomplete 

data is more intensively studied in static, off-line data mining, 

where different imputation techniques have been developed. In 

the streaming context, there is not too much research on such 

techniques or other approaches which could learn classifiers 

with omitting such incomplete descriptions and then update 

the classifier structure. 
• New frameworks for evaluating data stream classifiers : 

several interesting issues on evaluating classifiers have 

been studied for static, off-line data. For a comprehensive 

overview, we refer the reader to [88] . Although new measures 

[20,30,63,158] have been recently introduced, the nature of 

complex evolving data streams still poses requirements for 

novel theoretical and algorithmic solutions. This is particularly 

needed for more complex stream scenarios with verification 

latency, changing class imbalance, censored even data streams 

[157] , multiple data streams [167] , and changes of misclas- 

sification costs [105] . As researchers have considered many 

different kinds of measures (e.g. predictive performance, time 

or memory costs, reaction time and many others), a multi- 

criteria analysis may be more appropriate than aggregating 

several measures into a single coefficient [28] . Another open 

issue is rethinking frameworks for testing stream algorithms. 

Tuning parameters of streaming ensembles is more difficult 

than in the static case, where special validation sets or internal 

cross-validation are usually employed. Their equivalents for 

evolving streams are yet to be invented. How to access ground 

truth in unsupervised streams also needs to be elaborated. 

Finally, statistical analysis of significance of difference be- 

tween several algorithms with respect to time changes should 

be developed, similarly to recent recommendations to use 

appropriate non-parametric tests for static offline setup. 
• Benchmark datasets : the number of real-world publicly avail- 

able datasets for testing stream classifiers is still too small. It 

limits comparative studies of different streaming algorithms. 

Moreover, some popular data used in the literature is ques- 

tioned to represent sufficiently real drifts, see e.g. discussions 

on electricity data [202] . This is a more difficult situation com- 

pared to the state of available static datasets such as the UCI 

Machine Learning Repository. 
• Dedicated diversity measures for data stream classifier en- 

sembles : recall that ensemble diversity is one of the important 

characteristics of ensembles in the standard, static data context 

[24,108,159] . As discussed in Section 1 , several researchers stud- 

ied the relationship between high ensemble predictive perfor- 

mance and the diversity of its components. Others used spe- 

cialized diversity measures [108] to visually analyzing ensem- 

ble classification accuracy. These measures have also been used 

to tune the combination rule for aggregating component clas- 

sifier predictions or to prune too large pool of components in- 

side the ensemble. However, such research is not much visible 

in case of streaming ensembles. On the one hand, one can say 

that as component classifiers are learnt from different parts of 

the stream, they are already different and diverse ones. On the 
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other hand, our literature survey shows that only few authors 

directly consider promoting diversity while constructing an en- 

semble or rebuilding them in the moment of detecting drifts, 

see e.g. DDD ensemble [126] or other generalizations of online 

bagging such as [16] . However, nearly nobody directly measures 

the diversity of component classifiers in streams. Rare studies 

are based on taking into consideration the diversity measures 

developed for static, off-line solutions. The most recent study 

[32] provides a wider experimental study of using six of the 

most popular diversity measures [108] , where a few online and 

chunk-based ensembles were evaluated in several scenarios of 

drifts. The first observation from these experiments is that di- 

versity of ensembles is rather low. Some diversity measures, 

e.g., κ inter-agreement measure, change values over the stream 

with relation to occurring drifts – it is more visible for sud- 

den changes rather than for gradual drifts. So, these results may 

indicate further research lines on combining selected diversity 

measures, perhaps also with more typical drift detectors to bet- 

ter monitor changes in the evolving stream and to more pre- 

cisely identify moments of drifts. This could also lead to new 

solutions for monitoring changes in unlabeled streams. Never- 

theless, more research on new diversity measures specialized 

for evolving stream should be undertaken. 
• Dealing with multiple streams and more complex represen- 

tations : nearly all streaming ensembles have been proposed to 

processing a single stream only. However, some applications, 

see e.g. studies on internet messages or censored data in the 

variant of survival analysis [157] , may provide several paral- 

lel streams. In such multiple streams, the same data events 

(objects identified in the data sources) may appear in differ- 

ent time moments in each stream and may have different de- 

scriptions. This poses several interesting and new challenges, 

e.g., how to aggregate the information about the same event 

available in different streams, how to predict the moment of 

an event appearing in one of the streams, given knowledge on 

other streams, and whether to develop a new ensemble dedi- 

cated to work over such multiple streams. These aspects should 

be particularly important in the context of integrating different 

(also heterogeneous) data repositories in Big Data Analysis [87] . 

Note that data streams are becoming more and more complex 

in some new applications, such as social media or electronic 

health records, which require to deal with many heterogeneous 

data representations at the same moment. Such mixed repre- 

sentations include both structured, semi-structured and com- 

pletely unstructured data fields, quite often referring to static 

images, video sequences, or other signals. To fully comprehend 

the dynamic and phenomenon of these data sources, we need 

to find interactions among such complex and varying data. As 

ensembles naturally integrate diverse models, they seem to be 

a highly promising solution for this challenge. 
• Considering more complex class distributions in imbalanced 

streams : working with class-imbalanced and evolving streams 

is still in early stages. Among very few existing ensemble 

proposals, most researchers consider the simplest problem of 

the imbalanced class ratio, without changes of imbalance ratio 

[180] over time. Note that in the static data framework, other 

data difficulty factors such as decomposition of the minority 

class into rare sub-concepts, overlapping with other classes, and 

presence of very rare minority cases in the majority class re- 

gions are also considered as more influential than the global 

imbalance between classes. Considering them in drifting sce- 

narios, where sub-concepts or rare cases appear over time and 

overlapping regions change, is an open research problem. Simi- 

lar new challenges may refer to studying changing multiple mi- 

nority classes [181] . Finally, new evaluation measures and more 

rigorous evaluation procedures are needed for evaluating algo- 

rithms in such complex imbalanced streams – see a discussion 

in [105] . 
• More studies on the nature of some drift types : although a 

lot of research has been done on adaptating ensembles to dif- 

ferent concept drifts, several more detailed characteristics of 

drifts have not yet been consistently examined in literature. 

In particular, gradual drifts are more difficult to be detected 

and tracked than sudden changes or reoccurring concepts. The 

current drift detectors work better with sudden drifts, while 

the identification of characteristic moments of developing grad- 

ual or incremental drifts in real streams are still not suffi- 

ciently developed. Furthermore, a more formal definition of dif- 

ferent kinds of gradual drifts should be proposed. The authors 

of [183] showed that the progress of changes inside gradual 

drifts may be realized in many different ways and needs more 

specialized solutions. The work of [127] also considers differ- 

ent types of gradual drifts, besides considering that drifts may 

occur in a sequence of several abrupt and non-severe drifts. 

The paper [43] postulates that the idea of the so called lim- 

ited gradual drift is used rather in an intuitive way in most 

work. Although the work of [183] has attempted to provide 

more formal definitions of drift characteristics and introduces a 

new taxonomy of different types of drift, more research should 

be undertaken to better understand the nature of some drifts, 

how they develop in real streams, how to measure drift mag- 

nitude (e.g. small, medium or high), and which forms of drift 

could be better handled by specific categories of ensembles. 
• Considering background knowledge or context while clas- 

sifying data streams : some researchers argue for including 

more additional information than basic descriptions of in- 

stances when constructing predictions from streams. One of the 

options is to add background knowledge into drift adaptation 

techniques [208] . For instance, taking into account seasonal ef- 

fects while analyzing the electricity benchmark data set nicely 

illustrates the usefulness of this postulate [206] . Another pos- 

sibility is classifying data streams taking context into consider- 

ation, i.e., usually Markov chains are used to analyze the data 

stream when there are inter-dependencies between the succes- 

sive labels, e.g., medical diagnosis – the state of the patient de- 

pends not only on the recent observation but also his/her his- 

tory is taken into consideration. The same in the case of charac- 

ter recognition, when we know that the text is, e.g., written in 

English, where we can recognize the current letter on the basis 

of its characteristic, but also take into consideration what was 

the previous letter (some combinations are not possible and 

some of them are almost impossible). There are several stud- 

ies on classification with context, e.g., [70,148,186] . 
• Self-tuning ensembles : most online and chunk-based ap- 

proaches use models with parameters being either individu- 

ally tuned or using some preset values – fixed for the com- 

plete analysis process. However, with the changes within the 

stream the previously set parameters may no longer be the suf- 

ficiently good (especially in case of parameter-sensitive meth- 

ods, like support vector machines or neural networks). There- 

fore, proposing a new methodology for self-tuning streaming 

ensemble systems may lead to improved predictive power. Ad- 

ditionally, tuning parameters for single classifiers should take 

into account that they are components within the ensemble. 

Thus, more global update methods that can lead to obtain more 

complementary models seems to be worth exploring. 
• Ensemble pruning : although many ensembles for data streams 

apply pruning procedures, they are usually based on predic- 

tion performance or time that the model has spent within the 

ensemble. However, as data stream mining is a complex task, 

these factors may not be sufficient to capture the full dynamics 

of changes. More advanced pruning techniques could also ex- 
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ploit a multiple criteria analysis, including not only current pre- 

dictive ability, but also computational efficiency of base models, 

memory usage or other resources, current diversity of the en- 

semble, available information on class labels, etc. At the same 

time, these pruning techniques should impose minimal compu- 

tational overhead. Such compound, yet lightweight approaches, 

should lead to maintaining better ensemble setup and improve 

adaptation abilities to various types of changes. 
• Other requirements to processing Big Data and privacy is- 

sues : when dealing with massive data streams, algorithms 

should be able to handle not only changing data, but also big 

volumes of instances arriving rapidly. At the same time, an en- 

semble for such data must still work under strict time and 

memory constraints. This can be handled in two ways – by 

proposing algorithms with improved scalability or by using spe- 

cial performance computing environments, like SPARK, Hadoop 

or GPU clusters. Although some attempts to extend the most 

often used software, like MOA, have already been undertaken, 

there is still a need for efficient implementations of existing 

methods within these specialized frameworks for Big Data, as 

well as developing new solutions natively for them. Another as- 

pect of analyzing Big Data concerns the requirements for pri- 

vacy protection, especially in complex systems where streams 

are a sub-part of a more complex analytical workflow [87] . 

Here, often not only no information can be leaked outside, 

but also the teams participating within the analysis may not 

be willing to directly share their data. It raises the need for 

data stream ensemble algorithms able to work in such scenar- 

ios without the possibility of reverse-engineering the underly- 

ing data from their decisions and models. 
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