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Huanglian Jiedu Decoction (HJD), one of the classic recipes for relieving toxicity and fever, is a common method
for treating sepsis in China. However, the effective components of HJD have not yet been identified. This exper-
imentwas carried out to elucidate the effective components of HJD against sepsis. Thus, seven fractions fromHJD
were tested using a biosensor to test their affinity for lipid A. The components obtained that had high lipid A-
binding fractions were further separated, and their affinities to lipid A were assessed with the aid of a biosensor.
The levels of LPS in the blood were measured, and pathology experiments were conducted. The LPS levels and
mRNA expression analysis of TNF-α and IL-6 of the cell supernatant and animal tissue were evaluated to inves-
tigate the molecular mechanisms. Palmatine showed the highest affinity to lipid A and was evaluated by in vitro
and in vivo experiments. The results of the in vitro and in vivo experiments indicated that the levels of LPS, TNF-α
and IL-6 of the palmatine group were significantly lower than those of the sepsis model group (p b 0.01). The
group treated with palmatine showed strong neutralizing LPS activity in vivo. The palmatine group exhibited
stronger protective activity on vital organs compared to the LPS-induced animal model. This verifies that HJD
is a viable treatment option for sepsis given that there are multiple components in HJD that neutralize LPS, de-
crease the release of IL-6 and TNF-α induced by LPS, and protect vital organs.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Lipopolysaccharide (LPS) molecules are found on the outer mem-
brane ofmany ram-negative bacteria and cover up to 75% of the cell sur-
face [1]. Studies have shown that LPS is an indispensable molecule for
the growth and survival of most Gram-negative bacteria [2,3]. Once
toxic LPS is released, LPS plays a key role in Gram-negative infections
in humans [4,5]. LPS is composed of three distinct domains that are co-
valently bound to each other. These domains are the amphipathic lipid
A unit, core polysaccharides, and O-antigen [6–8]. Lipid A's primary
function is protection and defence, which can stimulate the innate im-
mune system [9,10]. Most of the immune stimulating abilities of LPS
can be attributed to lipid A. Lipid A is necessary to activate the Toll-
like receptor 4 (TLR4) signalling pathway by binding to the TLR4 co-re-
ceptor protein myeloid differentiation factor 2 (MD-2) [11–13]. TLR4
does not directly bind with LPS and requires a co-receptor, MD-2. MD-

2 interacts with the extracellular domain of TLR4 and is critical for LPS
discrimination due to the unique hydrophobic cavity of MD-2, which
can directly bind lipid A [6]. Lipid A binds to the TLR4/MD-2 complex
and results in two different signalling transduction pathways that gen-
erate the release of pro-inflammatory-cytokines and lead to a signifi-
cant enhancement of the host to fight infection [14–16]. Nevertheless,
the binding of lipid A and the TLR4/MD-2 receptor complex may cause
an uncontrolled and considerable immune response, which can result
in life-threatening syndromes, such as sepsis. Sepsis is a common in-
flammation syndrome induced by infection. Severe sepsis has life
threatening complications and is a common cause of death in intensive
care units. Studies show that LPS is the main promoter for mediating
sepsis [17–20]. Therefore, LPS should be an ideal therapeutic target in
the field of critical care and emergency medicine.

LPS is the major mediator of sepsis, and research indicates that the
molecules that bind to and neutralize LPS could have potential anti-sep-
tic action [21,22]. Lipid A, the active centre of LPS, has been identified as
the toxic component of LPS. Therefore, lipid A was used as the target for
screening anti-sepsis agents [23,24]. Polymyxin B (PMB), a well-known
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compound that neutralizes LPS, binds to the negative substituents of
lipid A. Therefore, lipid Awas coatedwith blank and the affinity of vary-
ing concentrations of PMB was evaluated using a biosensor. The Kd

value, reported in the literature as Kd = 10–100 nM, was calculated by
the FASTfit software [25]. The biosensor system showed the advantages
of convenience, speed and reliability when screening the lipid A ligand.

Huanglian Jiedu Decoction (HJD) is an importantmulti-herb remedy
in traditional Chinese medicine (TCM) that is composed of four herbs:
Coptis chinensis Franch., Scutellaria baicalensis Georgi, Phellodendron
amurense Rupr. and Gardenia jasminoides J.Ellis at a ratio of 3:2:2:3. Re-
cently, an increasing amount of evidence has revealed the pharmaco-
logical effects of this formula on sepsis, inflammation, gastrointestinal
disorders, diabetes, vasodilation, acute liver injury, Alzheimer disease,
and cardiovascular diseases [26–29]. HJD has been used for treating sep-
sis in China, but the effective components of HJD have not yet been elu-
cidated. Therefore, it is necessary to elucidate the effective components
of HJD through LPS-induced animal models for the eventual treatment
of sepsis. In this experiment, HJD has been proposed to bind to lipid A,
the bioactive centre of LPS, to treat sepsis. A biosensor method was
used to screen components from HJD with high affinity to lipid A. The
activity assessment was carried out in vitro and in vivo. Sepsis animal
modelswere induced by endotoxin (LPS) to elucidate the effective com-
ponents of HJD.

2. Materials and methods

2.1. Reagents

Lipid A (from Samonella Re595), LPS (from Escherichia coli
O555:B5), and Polymyxin B sulphate salt (PMB) were purchased from
Sigma Chemicals (St Louis, MO, USA). The rat TNF-α and IL-6 ELISA
kits were from Diaclone Research (Besançon, France). Quantitative
chromogenic tachypleus amebocyte lysatewas purchased from Xiamen
tal Co., Ltd. (Fujian, China). Silica gel was purchased from QingDao Ma-
rine Chemical Factory (QingDao, China). Macroporous resin AB-8 was
from Cangzhou Sage. Endotoxin detection was from Chinese Horseshoe
Crab Reagent Manufactory Chemical Co. Ltd. (Hebei, China).

2.2. Traditional Chinese herbs

The four traditional Chinese herbs, Coptis chinensis Franch.,
Scutellaria baicalensis Georgi., Cortex Phellodendri. and Gardeniae Fructus.

were purchased from Liaoning Province and identified in the College of
Pharmacy, Liaoning University of Traditional Chinese Medicine.

2.3. Animals

Balb/c mice (4–6 weeks old) were obtained from the Experimental
Animal Center of Liaoning Benxi Changsheng Biotechnology Co. Ltd.,
(Liaoning, China). Equal numbers of male and female mice were used.
The weight of the mice in the experiments was 20 ± 2 g. All of the re-
ports were guided by the Animal Center of Liaoning University of Tradi-
tional Chinese Medicine, and the animal performance protocol was
approved by the ethics committee of the institution.

Fig. 2. Affinity of PMB for lipid A. To define the specificity of PMB for lipid A, Lipid A was
immobilized on the surface of a hydrophobic cuvette (Thermo Labsystem, USA) using
the manufacturer's instructions, different concentrations of PMB were added to the
immobilized lipid A the Kd value was measured by FASTfit.

Fig. 1. Structures of the compounds. The structures of these compounds were characterized by 1H NMR and 13C NMR spectra.
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2.4. Compounds prepared from HJD

The 1800 g of the mixed herbs (Coptis chinensis Franch., Scutellaria
baicalensis Georgi., Cortex Phellodendri. and Gardeniae Fructus =
3:2:2:3) were measured in a 3:2:3:3 ratio, respectively. Water was
used as the solvent to extract soluble components (2 × 1 h). The extract
was obtained followed by hot filtration. When the extract cooled to
room temperature, precipitation and the supernatant were formed.
The precipitation and supernatant were obtained with centrifugal sepa-
ration. The supernatant was concentrated under vacuum to 0.25 g/mL
and then treated by macroporous resin column chromatography with
distilled water and 50% ethanol as the mobile phase. Fractions 1 and 2
were obtained by collecting the eluent separately. The precipitation
was purified by polyamide column chromatography with distilled
water and 50% ethanol as the mobile phase. Subsequently, fractions 3
and 4 were obtained through the same elution mentioned above.

2.5. Compounds prepared from higher affinity fractions

Fractions 3–4 were treated with silica gel column chromatography,
and dichloromethane-methanol was used as the eluent for further sep-
aration and purification. Compounds 1–6were purified, and their struc-
tures were characterized by 1H NMR and 13C NMR. Fraction 2 was

purified by silica gel column chromatography and eluted with dichloro-
methane-methanol (25:1, 10:1, 5:1 and 2:1). The fraction of dichloro-
methane-methanol, 10:1, was purified repeatedly by silica gel column
chromatography, and compound7wasobtained and the structure char-
acterized by the 1H NMR and 13C NMR spectrum.

2.6. Affinity assessment

The affinity assessmentwas performed according to method report-
ed in the literature [30,31]. Lipid A was immobilized on the surface of a
hydrophobic cuvette (Thermo Labsystem, USA) using the
manufacturer's instructions. The hydrophobic cuvette was pretreated
with 2-propanol and PBS/AE. Ten microliters of 50% 2-propanol and
10 μL of lipid A were mixed together in the cuvette. Next, the cuvette
was washed with 60 μL PBS/AE, and the data were collected. Then, the
cuvette was alternately washed with PBS/AE and NaOH seven times,
and the data were collected after the seventh wash of PBS/AE. The sen-
sor surfacewas coveredwith lipid A for 251 arc sec. Different concentra-
tions of PMB were added after the lipid A was immobilized on the
surface of the hydrophobic cuvette, and a binding curve was generated
and Kd values were evaluated with affinity Sensors IAsys. Additional
analyseswere performedwith the help of the FASTplot and FASTfit soft-
ware packages (Thermo Labsystem, USA). The experiment was carried
out using an Affinity Sensors IAsys Plus system for detecting the
abovementioned components that bind to lipid A. The compounds pre-
pared from HJD were screened against lipid A in search of the com-
pounds with high binding activity. The details of the experiment were
repeated as before. Five microliters of each component was added to
the cuvette, and the datawere collected and analysedwith the FASTplot
software.

2.7. Cell culture and treatment

Murine macrophage-like cells (RAW264.7) were purchased from
the Type Culture Collection of the Chinese Academy of Sciences, Shang-
hai, China. The cells were cultured in Dulbecco's modified Eagle's medi-
um supplemented with 100 mg/L of penicillin/streptomycin and 10%
heat-inactivated foetal bovine serum, in a humidified atmosphere of

Table 1
The real-time PCR analysis of IL-6 (B) and TNF-α mRNA expression in cells.

Group IL-6/β-arctin
mRNA

TNF-α/β-arctin
mRNA

TLR4/β-arctin
mRNA

Model 231.16 ± 1.34 2.70 ± 0.16 0.49 ± 0.02
Palmatine 16 μg/mL 221.32 ± 1.67** 2.39 ± 0.22** 0.26 ± 0.03**

64 μg/mL 197.02 ± 2.10** 1.83 ± 0.19** 0.22 ± 0.02**
128 μg/mL 162.44 ± 1.51** 1.78 ± 0.15** 0.14 ± 0.04**

Comparedwith themodel group, *p b 0.05, **p b 0.01. Itwas conducted 1 h after treatment
as described previously.Model groupwas recognized as a control group. The expression of
TNF-α and IL-6mRNAwas determined and the datawere analysed by one-way analysis of
variance (ANOVA) followed by Dunnett's method.

Fig. 4. The release of TNF-α and IL-6 in cells. The TNF-α and IL-6were quantified by ELISA, and all data are presented asmean±SD, the datawere analysed by one-way analysis of variance
(ANOVA) followed by Dunnett's method. Compared with the model group, *p b 0.05, **p b 0.01; Compared with the blank group, #p b 0.05, ##p b 0.01.

Fig. 3. The assay for the affinity of compounds for lipid A. To define the specificity of these
compounds for lipid A, 5 μL for each component was added into the cuvette, and the data
was collected and analysed with the FASTplot software. A: geniposide; B: palmatine; C:
baicalin; D: berberine; E: luteolin; F: wogonin; G: jatrorrhizine.
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5% CO2 at 37 °C, until reaching 80% confluency. The medium was
changed every 3 days.

2.8. Measurement of IL-6 and TNF-α in cell

Raw264.7 cells were seeded into 96-well tissue culture plates and
cultured for 2 h in a humidified atmosphere of 5% CO2 at 37 °C. The ex-
perimental groups were divided into model, palmatine, PMB and blank
groups. The palmatine and PMB groupswere treated with 100 ng/mL of
LPS, and then the palmatine group was given palmaine and the PMB
group was treated with PMB at various concentrations while the blank
group was not treated with any reagent, and the cells were cultured
for 14 h. The model group was treated with 100 ng/mL of LPS and cul-
tured for 14 h. The cell supernatant was obtained to assess the levels
of IL-6 and TNF-α. The inhibitory effects on TNF-α and IL-6 production
were measured with an enzyme-linked immunosorbent assay (ELISA)
kit in the supernatant of collected cells. Samples were analysed accord-
ing to the manufacturer's instruction.

2.9. Real-time RT-PCR analysis of TLR4, IL-6 and TNF-αmRNA expression in
cells

Total RNA was obtained from RAW264.7 cells with the treatment of
the Trizol reagent and Dnase was obtained after treatment of Turbo
Dnase® (Ambion). RNA was reverse transcribed with the aid of the Su-
perscript™ first-strand cDNA synthesis kit. Primer sequences of sense
and antisense primers for IL-6 were 5′-CACCACCATCAAGGACTCAAAT-
3′ and 5′-CAGGGAAGAATCTGGAAAGGT-3′, for TNF-α were 5′-
CTGGGAAATCGTGGAAATGAG-3′ and 5′-GACTCTGGCTTTGTCTTTCTTGT
TA-3′, for TLR4 were 5′-TGGTTTACACGTCCATCGGT-3′ and 5′-ATCAAT
GGTCACATCACATAGTCC-3′, and for β-actin were 5′-TGGTTTACACGT
CCATCGGT-3′ and 5′-ATCAATGGTCACATCACATAGTCC-3′. Thermal cy-
cling conditions for the PCR reactions were 70 °C for 5 min followed
by 40 cycles of 95 °C for 3min, 95 °C for 15 s, and 60 °C for 40 s. The am-
plification of polymerase reaction products was performed with the aid
of these primers. Polymerase reaction products were cloned into the
pGEMT vector and sequenced for confirmation. Real-time reactions
were carried out with the help of a real-time machine. The abundance
of each gene was assessed through comparison to the standard curve.
The values of IL-6 and TNF-α were normalized to β-actin. Each sample
was assessed three times.

2.10. Animal experiments

The animals needed for the experiments were housed at room tem-
perature with a humidity of 55–60%. On the basis of an equivalent dose
of HJD, palmatine (5mg/kg)was injected through the tail vein for 2 con-
secutive days, and no mice died in the experiment. This experiment
confirmed that compound palmatine was safe and nontoxic at its cur-
rent dosages. To determine if palmatine could protect mice from the le-
thal toxicity of LPS, Balb/c mice (4–6 weeks weighing 20 ± 2 g) were
divided into 3 groups: model, palmatine and PMB, with 20 in each
group. All mice of themodel, palmatine and PMB groups were adminis-
tered with LPS (18 mg/kg), and then mice in the palmatine group

received palmatine, and mice in the PMB group received PMB. In the
continuous study, Balb/c mice were randomly divided into 4 groups
(50 mice/group, 10 mice for each time point) and were intravenously
injected as follows: LPS (18 mg/kg) in model group and LPS
(18 mg/kg) plus palmatine (5 mg/kg) in palmatine group and LPS
(18 mg/kg) plus PMB (1 mg/kg) in PMB group. The blank group, was
injected with saline. The total injection volume was 0.2 mL per 20 g
bodyweight. Special carewas taken tominimize animal discomfort dur-
ing all procedures by administering anaesthetics. At the end of the treat-
ment, rats were sacrificed by cervical dislocation under general
anaesthesia induced by pentobarbital. For animals that died during the
study, pentobarbital was used to anesthetize before they died.

2.11. LPS, IL-6 and TNF-α measurement in blood

Blood samples (0.5 mL) were taken at 2, 6, 12, 24 and 48 h after the
start of the experiment, and the serum was stored at−20 °C for subse-
quent LPS, TNF-α and IL-6 assays.Meanwhile, 100 μL of the plasma from
groups 1–5 was diluted in 200 μL of anticoagulants, and then the solu-
tion was incubated in 70 °C water for 10 min to inactivate heparin.
The endotoxin (LPS) level in the solution was assayed with the treat-
ment of the quantitative chromogenic tachypleus amebocyte lysate test.

qRT-PCR analysis of IL-6 and TNF-α mRNA expression in liver and
lung tissues.

Liver and lung tissues were obtained from the mice and crushed in
liquid nitrogen. Total RNAwasmeasuredwith the help of Trizol reagent,
which is a one-step RNA isolation kit. The expressions levels of IL-6 and
TNF-α mRNA were analysed following the protocols described above.

2.12. Pathological investigation of the tissues

Theheart, liver, lung and kidney ofmicewere removed for patholog-
ical investigation, followed by treatment of formalin-fixed, paraffin-em-
bedded, sliced and hematoxylin-eosin (HE) stained tissues. Slides were
visualized by standard light microscopy.

2.13. Statistical analysis

Statistical analysis was carried out using SPSS 17.0 software. The
data are expressed as the mean ± SD. The data were analysed by one-
way analysis of variance (ANOVA) followed by Dunnett's method and
Chi-square tests. A p-value of b0.05 was considered significant, and a
value b 0.01 was considered highly significant.

3. Results

3.1. Characterization of compounds

Seven compounds were obtained from the fractions of HJD, and the
structures were characterized by 1H NMR and 13C NMR spectra. The

Table 3
The level of LPS in blood (n = 10, �x ± s).

Time Model
(EU/mL)

Palmatine
(EU/mL)

PMB
(EU/mL)

48 h 3.89 ± 0.09 2.10 ± 0.09** 1.06 ± 0.13**
24 h 5.50 ± 0.12 4.85 ± 0.06** 2.70 ± 0.09**
12 h 5.04 ± 0.07 4.15 ± 0.20** 3.47 ± 0.32**
6 h 6.13 ± 0.14 5.10 ± 0.15** 3.98 ± 0.10**
2 h 7.22 ± 0.06 5.71 ± 0.06** 4.65 ± 0.07**

Comparedwith themodel group, *p b 0.05, **p b 0.01. Blood samples (0.5mL) fromBalb/c
mice were taken at 2, 6, 12, 24 and 48 h after inception of the experiment, and the serum
was stored at−20 °C for subsequent LPS and TNF-α and IL-6 assays. Additionally, 100 μL
of the plasma from groups 1–5 were diluted in 200 μL of anticoagulants, and then the so-
lutions were incubated in 70 °C water for 10 min in order to inactivate heparin. The LPS
levels in the solutions were assayed with the treatment of quantitative chromogenic
tachypleus amebocyt lysati test. The data were analysed by one-way analysis of variance
(ANOVA) followed by Dunnett's method.

Table 2
The protective activity of palmatine and PMB from LPS challenge.

Group n Dose
(mg/kg)

LPS
(mg/kg)

Deaths
(n)

Survival rate
(%)

Model 20 0 18 12 40
Palmatine 20 5 18 5 75*
PMB 20 1 18 4 80*

Comparedwith themodel group, *p b 0.05. In order to test the activity of protective organs
inmice from lethal challengeswith LPS, the test animalswere injectedwith palmatine and
PMB after lethal challenges with LPS (18 mg/kg). The data were analysed by Chi-square
tests.
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compounds berberine, baicalin and geniposide were described as previ-
ously reported [32] (Fig. 1).

Compound 1 was obtained as a yellow needle crystal. By comparing
the spectral data with that of the palmatine mentioned in the literature
[33], the structure of compound 1 was determined to be 2,3,9,10-
tetramethoxy-5,6-dihydroisoquinolino[3,2-a] isoquinolinium.

1H NMR (CD3OD): δ 3.27 (2H, t, J=6.6 Hz), δ 4.92(2H, t, J=6.4 Hz),
δ 3.96 (3H, s), δ 3.99 (3H, s), δ 4.10 (3H, s), δ 4.20 (3H, s), δ 7.04 (H, s), δ
7.65 (H, s), δ 8.00 (H, d, J=9.1Hz), δ 8.10 (H, d, J=9.1Hz), δ 8.79 (H, s),
δ 9.75 (H, s).

13C NMR (CD3OD): δ 110.1, δ 151.9, δ 150.9, δ 112.3, δ 123.3, δ 139.8,
δ 128.2, δ 135.3, δ 124.5, δ 121.3, δ 145.8, δ 153.8, δ 120.5, δ 146.3, δ 62.6,
δ 27.8, δ 130.1, δ 57.7, δ 57.4, δ 57.4, δ 56.7.

Compound 2 was obtained as an orange needle crystal. By comparing
the spectral data with those of jatrorrhizine mentioned in the literature
[34], the structure of compound 2 was determined to be 3-hydroxy-
2,9,10-trimethoxy-5,6-dihydroisoquino[3,2-a] isoquinolinium.

1H NMR ((CD3OD)): δ 3.19 (2H, t, J = 6.4 Hz), δ 4.89 (2H, t, J =
6.4 Hz), δ 4.02 (3H, s), δ 4.09 (3H, s), δ 4.20 (3H, s), δ 6.85 (H, s), δ
7.64 (H, s), δ 7.99 (H, d, J = 9.1 Hz), δ 8.08 (H, d, J = 9.1 Hz), δ 8.76
(H, s), δ 9.72 (H, s).

13C NMR (CD3OD): δ 110.1, δ 151.7, δ 149.7, δ 115.9, δ 123.2, δ 140.3,
δ 128.2, δ 135.5, δ 124.4, δ 120.9, δ 145.7, δ 151.9, δ 119.4, δ 146.1, δ 62.5,
δ 27.7, δ 130.3, δ 57.7, δ 57.4, δ 57.0.

Compound 3 was obtained as a yellow powder. By comparing the
spectral data with that of luteolin mentioned in the literature [35], the
structure of compound 3 was determined to be 2-(3,4-
dihydroxyphenyl)-5,7-dihydroxy-4-benzopyrone.

1H NMR (DMSO): δ 3.93 (3H,m), δ 6.28 (1H, s), δ 6.74 (1H, s), δ 7.56
(3H, m), δ 8.00 (2H, dd, J = 1.1, 7.7 Hz).

13C NMR (DMSO): δ 164.0, δ 102.9, δ 181.6, δ 161.4, δ 98.7, δ 163.8, δ
93.8, δ 157.2, δ 103.7, δ 121.5, δ 113.3, δ 145.6, δ 149.5, δ 115.9, δ 118.9.

Compound 4 was obtained as a yellow powder. By comparing the
spectral data with that of wogonin mentioned in the literature [36],

Fig. 6. The real-time PCR analysis for IL-6 (B) and TNF-α mRNA expression in the liver and lung from Balb/c mice. Compared with the model group, *p b 0.05, **p b 0.01. Liver and lung
tissues were obtained and crushed in liquid nitrogen. Total RNA was analysed with the help a one-step RNA isolation kit. The expressions levels of IL-6 and TNF-α mRNA were
measured. The data were analysed by one-way analysis of variance (ANOVA) followed by Dunnett's method.

Fig. 5. The release of TNF-α and IL-6 in blood from Balb/c mice. Compared with themodel group, *p b 0.05, **p b 0.01; Compared with the blank group, #p b 0.05, ##p b 0.01. The levels of
TNF-α and IL-6 was determined at different time points and the data were analysed by one-way analysis of variance (ANOVA) followed by Dunnett's method.
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Fig. 7. The liver, lung, heart, and kidney of the Balb/c mice were obtained 24 h after the start of the experiment. Pathological investigation was performed following the treatment of
formalin-fixed, paraffin-embedded, and stained tissues. (A) The heart tissues of the mice. (B) The liver tissues of the mice. (C) The lung tissues of the mice. (D) The kidney tissues of
the mice.
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Fig. 7 (continued).
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the structure of compound 4 was determined to be 5,7-dihydroxy-8-
methoxy-2-phenyl-4H-chromen-4-one.

1H NMR ((CD3OD)): δ 3.93 (3H, m), δ 6.28 (1H, s), δ 6.74 (1H, s), δ
7.54 (3H, m), δ 8.00 (2H, dd, J = 1.1, 7.7 Hz).

13C NMR (CD3OD): δ 165.4, δ 106.0, δ 184.0, δ 158.3, δ 100.5, δ 159.1,
δ 129.4, δ 151.4, δ 105.5, δ 132.6, δ 127.4, δ 130.3, δ 133.1, δ 130.3, δ
127.4, δ 62.01.

3.2. The affinity assay for lipid A

To define the specificity of PMB for lipid A, the Kd value was mea-
sured by FASTfit. The affinity of the components for lipid A was com-
pared to PMB, a compound with high affinity for lipid A. When PMB
was pre-incubated with lipid A, lipid A was immobilized on the surface
of a hydrophobic cuvette as described in thematerials andmethods sec-
tion. Different concentrations of PMB were added to the immobilized
lipid A, and the Kd value was measured. The Kd value of PMB was
11.1 nM. The affinity assays for each compound and lipid Awere carried
out as described in the methods above (Figs. 2–3). The Kd values of the
compound palmatine was 29.7 nM.

3.3. The experiment in vitro

To determine the effects of IL-6 and TNF-α release in LPS-stimulated
Raw264.7 cells, the cells were treated with different concentrations of
palmatine (16, 64 and 128 μg/mL) followed by stimulation with LPS
(100 ng/mL) for 12 h. In the model group, stimulation of cells with
LPS resulted in significant enhancement of IL-6 and TNF-α release in
conditioned medium compared with the non-stimulated control cells
in the control group. However, the study indicated that cells pre-treated
with palmatine showed a dose-dependent reduction in IL-6 and TNF-α
release following stimulationwith LPS. This indicates that palmatinehas
the potential to inhibit LPS-induced IL-6 and TNF-α release in Raw264.7
cells (Fig. 4).

3.4. mRNA expression in RAW264.7

Upon LPS stimulation, the cells from a broad spectrum of immune
mediators such as cytokines that can lead to LPS-related disease states.
To confirm that palmatine inhibits LPS signalling, real-time analysis
was conducted. This study verified that palmatine could significantly in-
hibit the increasing expression of IL-6 and TNF-α in the LPS-challenged
RAW264.7 cells compared to the model group (Table 1).

3.5. Protecting mice from LPS challenge

To determine if palmatine could protect mice from lethal toxicity of
LPS, test animals were injected with palmatine after lethal challenge
with LPS (18 mg/kg). Approximately 20 mice were challenged by LPS,
and only 8 survived (Table 2). Compared to the model group, animals
treated with palmatine were protected from LPS-induced lethality.

3.6. Neutralization of LPS in vivo

As described above, neutralization of LPS was carried out with the
aid of quantitative chromogenic tachypleus amebocyte lysate, allowing
the detection of free LPS. The results indicated that the LPS level in plas-
ma was highest 2 h after intravenous injection and recovered to a nor-
mal level after 48 h (Table 3). LPS levels of the palmatine group were
lower than that of the model group (P b 0.01). Compared to the model
group, the group treatedwith palmatine exhibited strong LPS neutraliz-
ing activity.

3.7. The release of TNF-α and IL-6 in the blood

The palmatine group activity was closely associated with TNF-α and
IL-6 levels. Therefore, we tested the levels of TNF-α and IL-6 in an endo-
toxic mousemodel. In this experiment, the mice that were treated with
LPS showed a large increase in TNF-α and IL-6, which peaked 2 h after
LPS treatment. However, the peaks of TNF-α and IL-6 were reduced
after treatment with palmatine (p b 0.01) (Fig. 5).

3.8. mRNA expression in liver and lung tissues

The relativemRNAexpression of IL-6 and TNF-α in liver and lung tis-
sues were calculated and compared to themodel group. The expression
levels in the palmatine treatment group were significantly lower than
that of the model group (P b 0.01) (Fig. 6). The study showed that
palmatine could significantly inhibit the increasing expression of IL-6
and TNF-α induced by LPS in the LPS-challenged animal model com-
pared to the model group.

3.9. Pathological investigation

Histological research of these organs indicated that organ injury ap-
peared in the model animals. The results of H&E staining verified that
the model group exhibited significant inflammatory cell infiltration,
swelling, congestion, incrassation, cell disorder, and morphological
and structural changes in the organs. The treatment group showed pro-
tective activity and exhibited light inflammatory cell infiltration, regular
arrangement in cells, mild oedema, relieved congestion, and normal
morphology and structure. Palmatine displayed strong protective activ-
ity in the heart, liver, kidney and lung. The results are shown in Fig. 7.
Unlike themodel group, the treatment group exhibited protective activ-
ity in vital organs despite LPS-induced challenges.

4. Discussion

Despite many therapeutic improvements, sepsis still has high mor-
tality rates, ranging from 22% to 56%. Therefore, the treatment of sepsis
has been a research hot spot for critical illnesses. LPS is regarded as the
major mediator of sepsis, and research shows that the molecules that
bind to and neutralize LPS could have potential anti-sepsis activity [21,
22]. Lipid A is the active centre and toxic component of LPS. Therefore,
lipid A is an ideal target for screening anti-sepsis agents [23,24]. PMB,
an internationally recognized active compound with high affinity for
lipid A, is a positively charged amphipathic cyclic oligopeptide linked
to a single fatty acid that has exhibited stoichiometric (1:1) binding ac-
tivity with lipid A and a Kd value of 10–100 nM (as assessed by different
methods) [25,37]. The affinity of PMB to lipid Awas testedwith the help
of biosensor technology. The Kd value (11.1)was elucidatedwith the aid
of the FASTplot and FASTfit software used in this system. The Kd value
indicated that the biosensor method for screening against the lipid A li-
gand was convenient, reliable and simple. Thus, the biosensor method
was considered to be an effective platform for screening traditional Chi-
nesemedicine to treat sepsis. PMBwas used as the control in the exper-
iment to test the binding affinity of the compounds from HJD. Seven
compounds, berberine, palmatine, jatrorrhizine, baicalin, luteolin,
wogonin and gardenoside, were obtained from HJD and characterized
via NMR. The affinity of the seven components measured from highest
to lowest was palmatine, berberine, baicalin, geniposide, luteolin,
jatrorrhizine and wogonin. Compounds palmatine, berberine and
baicalin exhibited higher affinity to lipid A. Although palmatine and ber-
berine are isoquinoline-type alkaloids and have similar structures,
palmatine was used in the treatment groups due to its higher affinity
to lipid A. Baicalin, a type of flavonoid, showed approximately the
same affinity as berberine and was used as the treatment group for an-
other study. However, palmatine displayed lower binding affinities to
lipid A compared to PMB. Research indicated that most lipid A D-
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GlcpN-containing backbones are phosphorylated at positions 1 of the
proximal a-GlcpN (GlcpN I) and 4′ of the distal b-GlcpN (GlcpN II)
[38]. Based on structural analysis of the two compounds, we assumed
that the positively charged quaternary ammonium of palmatine was
bound to the negatively charged phosphoric acid of the disaccharide
in lipid A [37]. The hydroxyl groups of baicalin can react with the phos-
phate groups in lipid A to form an ester [39]. Although the affinity be-
tween palmatine and baicalin to lipid A accounts for 20% and 10% of
the affinity for PMB, respectively, both compounds exhibited affinity
for lipid A, which indicates that the two compounds function together
as an anti-sepsis reagent in HJD. Therefore, given the high affinities for
lipid A, palmatine was used for further in vitro and in vivo experiments.

The experiments were carried out in vitro and in vivo. Different con-
centrations of palmatine (16, 64 and 128 μg/mL) were used to treat
Raw264.7 cells followed by stimulation with LPS (100 ng/mL) for
14 h. The release andmRNA expression of IL-6 and TNF-αwere evaluat-
ed in LPS-stimulated Raw264.7 cells. The model group showed signifi-
cant enhancement of IL-6 and TNF-α release in conditioned medium
compared to the control group. However, cells treated with palmatine
exhibited a dose-dependent reduction in IL-6 and TNF-α release follow-
ing LPS-stimulation. These results indicated that palmatine could signif-
icantly inhibit the increasing expression of IL-6 and TNF-α induced by
LPS. The palmatine group showed similar activity as the group treated
with PMB in inhibiting the release of IL-6 and TNF-α. This result verifies
that palmatine could inhibit the release of IL-6 and TNF-α and block LPS
signalling in vitro.

Model animals were injected with palmatine for activity assays.
Studies indicate that the core of sepsis is organ failure, and most sepsis
patients are LPS-positive, indicating that sepsis has a high correlation
with LPS levels. Therefore, the activity experiments were carried out
to assess the pathology and levels of LPS, IL-6 and TNF-α for 2–48 h. In
these three treatment groups, palmatine neutralized LPS and reduced
the release of inflammatory factors IL-6 and TNF-α (P b 0.01). Palmatine
showed similar activity to PMB and reduced the mortality significantly
by neutralizing LPS in vivo. Palmatine exhibited anti-inflammatory ac-
tivity by reducing the expression of the iNOSprotein and then inhibiting
the release of NO in LPS-induced RAW264.7 cells [40]. This result sug-
gests that palmatine may inhibit inflammatory factors by neutralizing
LPS and inhibiting the TLR4 pathway. Pathological researchdemonstrat-
ed that the model group exhibited different degrees of lesions on LS-in-
duced organs, whereas the treatment groups exhibited varying
protective activity on vital organs. The group treatedwith palmatine ex-
hibited strong protective activity on the heart, lung, kidney, and liver.
Palmatine is one of the main components of Coptis chinensis Franch
and Cortex Phellodendri. Multiple components of HJD show the ability
to neutralize LPS activity and reduce IL-6 and TNF-α levels induced by
LPS. Therefore, HJD is a valid treatment option to protect against LPS-in-
duced multiple organ dysfunction syndrome. There is still mortality of
patients who have suffered from septic shock despite rapid progress
in developing antibiotics and other therapeuticmethods in clinical prac-
tice [41].With the advantage of lower cost, faster curative effect and few
side effects, HJD could be widely utilized as a drug in the treatment of
LPS-induced diseases including sepsis. It is essential to figure out the
mechanism of HJD for the treatment of sepsis. Given that LPS infection
is complex, there may exist many possible mechanisms of HJD for
treating sepsis, which all need to be further investigated. Therefore, fur-
ther studies on HJD are critical andmay aid in the design of effective in-
terventions for treating sepsis.

5. Conclusion

The results indicate that a biosensor can identify high affinity com-
pounds between lipid A and PMB and could be used to separate and ex-
tract the effective components of TCM for anti-LPS/lipid A activity. The
compound palmatine from HJD showed high affinity for lipid A and
was used as the treatment group in the in vitro and in vivo studies. The

results indicated that palmatine neutralized LPS by binding to lipid A
and reduced the release of IL-6 and TNF-α induced by LPS. Furthermore,
palmatine exhibited protective activity in vital organs compared to the
LPS-induced animal model. This result suggests that HJD is an ideal
treatment for sepsis given that multiple HJD components have the abil-
ity to neutralize LPS, decrease the release of IL-6 and TNF-α induced by
LPS, and protect vital organs.
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