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The human cellular proto-oncogene c-myb has been implicated as 

important in the regulation of hematopoietic cell growth and differentiation. 

Aberrant expression of this gene and chromosomal aberrations near the c-myb 

locus have been associated with a number of carcinogenic processes . An 

alternatively spliced cDNA clone of c-myb, pMbm-2, contains unique 5 '  

sequences which replace exon 1 .  The existence o f  this 5 '  divergent cDNA clone 

led us into a study of the promoter activity of the c-myb gene . 

Intron 1 of c-myb is highly conserved between human and mouse 

throughout the intron, while only those sequences directly adjacent to exons 1 

and 2 are conserved between human and chicken. The unique sequence of 

pMbm-2 was located directly adjacent to exon 2 ,  suggesting that it arose as a 
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product of alternative transcription initiation within intron 1 .  A cluster of 

transcription start sites was detected at the 5' end of exon 2. Levels of 

messages utilizing these start sites are expressed proportionally to those arising 

from the primary promoter. Functional characterization of this region revealed 

that this region can function as a promoter . Deletion studies have revealed the 

presence of negative and positive regulatory elements within this region which 

are utilized with different efficiencies in different cell lines . These studies 

suggest that cis or trans factors acting in this region may serve a dual function 

in both attenuation and transcription initiation. 

Studies of the c-myb promoter utilizing the acute lymphoblastic cell line 

CCRF-CEM revealed that a portion of the c-myb promoter is lost in this cell 

line . The rearranged locus, which we have designated MRR (myb rearranged 

region) , has been cloned and mapped to chromosome 6. The MRR sequence is 

linked to the c-myb locus , suggesting that the rearrangement is due to a 

submicroscopic deletion. The rearrangement appears to have no effect on c-myb 

promoter activity as analyzed in CCRF-CEM cells . The normal locus of the 

MRR sequence shows a high degree of homology to a member of the myc 

family of oncogenes . Therefore, although attenuation may be the primary 

mechanism of c-myb regulation, the existence of a second promoter in the c

myb gene and a rearrangement of the primary c-myb promoter in a leukemia 

cell line suggests that other regions at the 5' end of this gene are important in 

the regulation of c-myb transcription. 



INTRODUCTION 

Hematopoiesis is a complex process by which organisms generate the 

cells necessary for the various functions of the immune system as well as 

oxygen transport and coagulation. These cells are derived from a single 

pluripotent stem cell which may differentiate into mUltiple cell types .  When the 

normal process of hematopoiesis is disrupted, the immature cells fail to 

differentiate into their mature forms . The result is acute leukemia, a disorder 

which is characterized by uncontrolled growth of immature cell types of each of 

the major hematopoietic lineages . An understanding of how the genes that 

control hematopoiesis are regulated may lead to an understanding of what goes 

awry during leUkemogenesis . 

The human cellular proto-oncogene c-myb has been implicated as 

important in the regulation of hematopoietic cell growth and differentiation. 

This gene has been identified in evolutionarily divergent organisms including 

plant and insect systems as well as mammalian species . C-myb is highly 

expressed in a number of leukemias and in immature hematopoietic cells . 

Furthermore, c-myb expression is regulated during the process of hematopoietic 
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differentiation suggesting that the regulation of this gene is critical for the 

correct development of the hematopoietic system. The c-myb gene is located on 

chromosome 6q22-23 ; chromosomal trans locations and deletions in this region 

have been associated with a number of hematopoietic and non-hematopoietic 

malignancies . Antisense oligonucleotides to c-myb mRNA inhibit hematopoietic 

cell proliferation and c-myb expression is necessary for the maintenance of 

adult-type but not embryonic hematopoiesis . Taken together, these facts suggest 

that the regulation of c-myb expression is important in the proper control of 

hematopoiesis and that aberrations near the c-myb locus may be important in the 

altered regulation of hematopoietic cell growth and differentiation that occurs in 

leukemia . 

The primary mechanism of regulation of c-myb is transcriptional 

attenuation; this has been localized to the center of intron 1 in both the human 

and murine c-myb genes . In both chicken and mouse acute myeloid and some 

lymphoid leukemias , c-myb is activated by retroviral insertions into sequences 

at the 5' end of the c-myb locus which are not associated with the region of 

transcriptional attenuation. This work suggests that additional regions in the 5 '  

end o f  c-myb may b e  important in the regulation o f  c-myb either by effecting 

the function of the attenuator or by other mechanisms . 

The acute lymphoblastic leukemia cell line CCRF-CEM has proved to be 

an excellent model for studies of the regulation of c-myb expression. C-myb is 

expressed at high levels in this cell line ; it is therefore useful in the study of the 
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promoter activity of c-myb and in identification of alternatively spliced forms of 

c-myb. Recently, alternatively spliced c-myb messages have been cloned from a 

CCRF-CEM cDNA library . One of these messages contains unique 5 '  

sequences in place o f  the prototypic c-myb exon 1 sequences .  The presence of 

these unique sequences suggests the possible existence of a second promoter 

within intron 1 of the c-myb locus . This promoter would be located at the 3 '  

end of intron 1 in a region which is altered in a number of retroviral induced 

leukemias in mice and chickens . The objective of this project was to further 

study regions of the 5' end of the c-myb proto-oncogene in order to determine 

more precisely its role in the regulation of c-myb transcription. This analysis 

was carried out in two ways: i) characterization of a potential second promoter 

in intron 1 of the c-myb proto-oncogene; ii) structural and functional analysis of 

a rearranged primary c-myb promoter in CCRF-CEM. 



LITERATURE REVIEW 

Eukaryotic transcriptional regulation. 

In eukaryotes ,  regulation of mRNA synthesis is a highly complex process 

requiring specific cis and trans factors for correct transcriptional initiation, 

elongation, and termination. Transcription may be regulated at any or all of 

these steps in different genes . 

Regulation of transcriptional initiation. 

The correct initiation of mRNA synthesis requires specific DNA 

sequence elements which fall into two classes : a core promoter element and 

upstream promoter elements . The core promoter element, a TATA box, is 

recognized by general initiation factors which are required for all RNA 

polymerase II transcription. Included in the core promoter element may be 

initiator upstream promoter elements, such as the CAAT box. However, these 

are recognized by regulatory factors which are not required for initiation, but 

modulate the initiation event. Some eukaryotic promoters do not contain any 

consensus TATA or CAAT sequences ; these promoters , commonly called 

housekeeping promoters, are more difficult to define; they may be characterized 

4 



by the presence of GC-rich regions , or GpC " islands . "  Transcription initiates 

from within these islands in many housekeeping promoters ,  such as that for c

myb (Dvorak et aI . ,  1 989) . 

5 

To initiate transcription, an initiation complex is formed at the TATA 

box by binding of the TATA binding factor TFIID (O'Shea, Greenfield and 

Smale , 1992) (Figure 1 ) ;  this binding is promoted by the initiation factor TFIlA 

(Hahn et aI . ,  1989) . Other initiation factors must then bind the initiation 

complex : TFIIB , which may play a role in correct positioning of the 

polymerase (Hahn et aI . ,  1989) , and TFIIF and TFIIE, which do not bind DNA 

but associate with RNA polymerase II (Hahn et aI . ,  1 989; Killeen and 

Greenblatt, 1992) . RNA polymerase II binds to form the complete preinitiation 

complex, and transcription is initiated in an ATP-dependent manner .  The 

mechanism of initiation from eukaryotic promoters which do not contain TAT A 

boxes is not clear; it has been hypothesized that in these systems the TAT A 

binding protein (TBP) enters the initiation complex via binding to RNA 

polymerase II (Carcamo et aI . ,  1 99 1 ) .  

The initiation o f  transcription b y  RNA polymerase I I  i s  regulated 

primarily by phosphorylation of its carboxyl terminal domain (CTD) ; 

polymerases with hyperphosphorylated CTD's  are associated with elongating 

messages, whereas hypophosphorylated forms of RNA polymerase II are 

capable of interacting with initiation complexes (Kim and Dahmus, 1 988) . The 

mechanism by which phosphorylation regulates RNA polymerase II 
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Figure 1 .  Initiation of RNA polymerase II transcription. For specific initiation 
of RNA polymerase II transcription, a TATA binding factor (TBP) must bind to 
the TAT A sequence in the eukaryotic promoter to form an initiation complex. 
RNA polymerase II may then bind to the initial complex; the correct 
positioning of the polymerase is aided by the binding of other transcription 
factors to RNA polymerase II . Transcription then initiates in an ATP dependent 
manner .  
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transcription is currently unknown. 

Some RNA polymerase II transcripts are constitutively expressed; other 

genes may need to be initiated in a cell-type or temporally specific manner. In 

order to regulate the transcriptional initiation of cell-type or developmentally 

specific genes , other transcription factors must bind to regions near the 

initiation complex . These transcription factors may be activated or repressed by 

extracellular signals which are transmitted through signal transduction pathways 

to the transcription factors . Modification of transcription factors by differential 

phosphorylation or dephosphorylation effects the DNA binding or protein 

binding activity of the factor. These modifications may lead to an enhancement 

or repression of transcription initiation of a gene depending on its role in the 

growth or development of the organism. 

Transcriptional attenuation. 

In a number of prokaryotic and eukaryotic systems, the site of regulation 

of transcription is not at the site of initiation but further downstream of this 

event . In these systems, levels of transcription initiation are steady state , but the 

transcription elongation complex is paused or terminated downstream of the site 

of initiation (Bentley and Groudine, 1 986; Reddy and Reddy, 1 989; Bender et 

a! . ,  1 987) . In prokaryotes, the mechanism of attenuation occurs primarily by 

the formation of a " termination structure " through changes in the secondary 

structure of the nascent RNA transcript; attenuation can also occur by 

modulation of rho dependent termination by a trans-acting factor (Landick and 
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Turnbough, 1992) . In eukaryotes , the c-myc, L-myc, N-myc, c-myb,  c-erbB, c

jos, and c-mos proto-oncogenes utilize attenuation as their major mechanism of 

transcriptional regulation (Landick and Turnbough, 1 992) . In these systems , the 

attenuator is regulated according to the proliferative state of the cell; 

proliferating hematopoietic cells do not demonstrate c-myc and c-myb 

attenuation. Upon induction of differentiation, however, the level of transcripts 

from exon 1 are approximately tenfold higher than exons 2 and 3 for these two 

genes (Bentley and Groudine, 1 986; Reddy and Reddy, 1989; Bender et al . ,  

1 987) . Because efficient regulation of these genes is crucial during growth and 

development, it is not surprising that the region of attenuation is altered in some 

cancers . The site of c-myc attenuation is the target of multiple somatic 

mutations in Burkitt' s  lymphoma; these mutations alleviate the transcriptional 

block and allow for high levels of c-myc expression (Spencer et al . ,  1 990) . The 

factors which cause this pausing are not well defined; there is evidence that 

prcteins bound to the DNA may block the ability of the elongation complex to 

read through (Reddy and Reddy, 1 989) . These factors may bind at the site of 

attenuation (Reddy and Reddy, 1989) or in the promoter region of the gene 

(Dufort et al . ,  1 993) . 

Alternative splicing of pre-mRNA. 

Following the transcription of full length mRNA, the introns of the 

mRNA must be spliced out to form fully matured messages . An important 

mechanism for the generation of diversity in eukaryotic mRNA is alternative 
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usage of  splice donor and acceptor sites . This alternative splicing may exclude 

exons from a gene or incorporate new exons into its message . In this manner, 

multiple mature mRNAs may be generated by the same pre-mRNA, yielding 

structurally diverse proteins . These alternative proteins may be tissue specific or 

developmentally regulated. Despite all that is known in general about the 

splicing event, little is known about how the splice sites themselves are 

specifically and efficiently chosen. There is mounting evidence that the 

secondary structure of the mRNA may be important in splice site selection 

(Balvay et a! . ,  1 993) . A role for factors acting in trans has been implicated in 

cell-specific alternative splicing of pre-RNA (Saga et a! . ,  1990; Barone et a! . ,  

1 989; Streuli and Saito, 1989) ; in addition, cis elements in both exon (Weil et 

a! . ,  1 989; Streuli and Saito , 1989) and/or intron (Shen-Ong et a! . ,  1984a) 

sequences may also function to mediate the splicing events . Further studies 

suggest that base substitutions in exons may activate cryptic splice sites (Nelson 

and Green, 1990; Weil et a! . ,  1989) or effect splicing of other introns (Talerico 

and Berget, 1990) . Transcription factors which use alternative splicing to 

generate mUltiple transcripts include fos-B , a member of the fos family of 

transcription factors (Nakabeppu and Nathans , 1 99 1 ) ,  ets-l (Jorcyk et a! . ,  

1 99 1 ) ,  and c-myb (Westin et a! . ,  1 990; Shen-Ong, 1 987 ; Dasgupta and Reddy , 

1 989; Dudek and Reddy, 1989a) . In the case of the fos-B gene, alternative 

splicing yields a protein product which can inhibit FoslJun activity, suggesting 

that alternatively spliced protein products can aid in both positive and negative 



control of cellular processes (Nakabeppu and Nathans , 199 1 ) .  

Alternative promoter usage. 

1 1  

In prokaryotes , many genes are under the control of a single promoter 

for coordinate expression of these genes . Eukaryotic mRNAs , by contrast, are 

monocistronic . Both systems, however, use a similar mechanism for differential 

expression of single genes : the use of alternative promoters . In prokaryotes ,  a 

second promoter may be used to differentially regulate individual genes that are 

part of a multicistronic operon. This is evidenced in bacteriophage P I ,  which 

utilizes a second promoter inside the ParA/ParB operon (these genes are 

necessary for the correct partitioning of DNA during cell division) (Friedman 

and Austin, 1988) ; the second promoter in front of ParE is immune to the 

normal feedback regulation of the operon and therefore allows for less stringent 

control of ParE. In the Shiga toxin operon (stx) of Shigella dysenteriae, which 

contains genes for the A and B subunits of the holotoxin, a second promoter in 

front of the B subunit gene is not as sensitive to iron repression as the primary 

promoter (Habib and Jackson, 1 992) . The subsequent overproduction of this 

gene may contribute to the stoichiometry of the lA:5B complex of the 

holotoxin. 

In eukaryotes , alternative promoter usage is widespread in a number of 

gene systems . Many systems use two promoters for differential regulation of a 

single gene. The regulation may be temporal ; the vaccinia virus hemagglutinin 

(HA) gene is regulated by an earJy/late and a distinct late promoter (Brown et 
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a! . ,  1 99 1 ) .  In Drosophila, the antennapedia gene (Antp) also has two promoters ; 

the second promoter is tightly repressed during the initial stages of zygotic cell 

division and is then activated by specific zygotically-active repressors and 

activators (Riley et a! . ,  1 99 1 ) .  The temporal usage of these alternative 

promoters, therefore , is important to the correct development and life cycle of 

these systems . 

Alternative promoters may also be used in a tissue specific manner .  In 

Drosophila, the dual promoters in the tropomyosin II gene are regulated in a 

tissue specific manner: one promoter is muscle specific while the other 

resembles a housekeeping promoter and expresses cytoskeletal forms of the 

protein (Hanke and Storti , 1988) . In the rat, the gamma-glutamyl transpeptidase 

(ggt) gene is encoded by three promoters which may be expressed in a tissue 

specific manner; promoter II was found to be expressed only in the epididymis 

and kidney (Lahuna et a! . ,  1 992) . In the mouse , the alkaline phosphatase gene 

is expressed in a number of tissues (Studer et a! . ,  1 99 1 ) .  This alternatively 

spliced message is controlled by two promoters ; transcripts from the first 

promoter are expressed in a variety of tissues and in embryo-derived cells while 

the second promoter is silent in embryonic tissue and expressed specifically at 

high levels in the heart (Studer et a! . ,  1 99 1 ) .  Therefore, this single gene uses 

two forms of regulation to express different messages in different tissues . 

In some genes, the use of alternative promoters may lead to structurally 

and functionally distinct proteins . The human progesterone receptor has two 



protein forms, Form A and Form B .  Form A is transcribed from a distinct 

promoter 537 bases downstream of the Form B promoter; this excludes the 

Form B translation start site (Kastner et a! . ,  1 990) . Form A translation, 

therefore, creates a protein with an unique N terminus . The two forms of the 

receptor differentially induce target genes , indicating that this dual promoter 

system creates functionally distinct proteins from the same gene . 

1 3  

There are many genes in which alternative promoters are regulated i n  a 

similar fashion and encode the same message (Shull ,  1 99 1 ;  Kim et a! . ,  1 989b; 

Kim et a! . ,  1989a; Shull, 1 99 1 ) .  The well characterized dual promoter system 

in the c-myc gene demonstrates how a promoter may work in coordination with 

another form of transcriptional regulation to control the expression of a gene . 

The c-myc gene has two constitutively expressed promoters which would not 

alter the encoded protein and lie upstream of the region of attenuation in the 

gene (Miller et a! . ,  1 989) . Transcripts from the first promoter, P I , are always 

elongated while transcripts from P2 are elongated or terminated at the site of 

attenuation. Deletions and point mutations in P2 abolish the transcriptional 

block (Miller et a! . ,  1 989) . Recently it was shown that nuclear factors binding 

between the promoters near P2 contribute to the transcriptional block (Dufort et 

a! . ,  1 993) . Therefore, while the second promoter does not encode a novel 

translated protein product, its usage is important in the regulation of the gene 

during differentiation. 

Signal transduction and oncogenes .  
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In order to control the specific expression of genes during cell growth 

and differentiation, it is important for the Ubiquitous transcription machinery to 

interact with cell-specific transcription regulatory factors . The cell- or 

developmentally regulated transcription factors are activated by external signals 

which may be hormones or growth factors . These external signals are 

transmitted through the cell by a complex system know as the signal 

transduction pathway (Figure 2) . 

Oncogenes resemble their cellular counterparts , proto-oncogenes (c-onc) , 

but they are functionally locked in their biochemically activated form. Since 

cancer results from the loss of control of cellular growth and differentiation, it 

is not surprising that proto-oncogenes function in normal signal transduction 

and frequently interact with one another at the molecular level . There are four 

broad classes of proto-oncogenes involved in signal transduction: i) growth 

factors , which carry the signals received from the extracellular environment; ii) 

growth factor receptors , which are modified and activated upon ligand binding ; 

iii) cytosolic factors , which associate with and are activated by the receptors ; 

iv) transcription factors , which are altered by the cytoplasmic signals and act in 

coordination with the transcription machinery to specifically activate genes 

involved in cell growth and differentiation. 

Growth factors. 

Growth factors are a class of extracellular signalling substances which 

effect the growth and differentiation of developing cells . Growth factors such as 
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Figure 2 .  A signal transduction pathway . In this representation of how a signal 
is transmitted through the cell, the extracellular signal , platelet derived growth 
factor (PDGF) is recognized by its receptor (PDGF-R) on the cell surface .  The 
receptor then propagates the signal by subsequent phosphorylation of cytosolic 
proteins , which may increase the GTPase activity of the protein (in the case of 
ras/GAP) or the protein tyrosine kinase activity of the protein (in the case of 
Src) . These proteins then activate other protein kinases such as Raf- 1 and 
protein kinase C (PKC) which modify the activity of transcription factors via 
MAP kinase (MK) and casein kinase II (CKII) . These transcription factors 
(Myc, the AP1 complex, erbB, and Myb) may then activate or repress genes in 
response to the extracellular signal . This figure adapted from the textbook 
Immunology, by Roitt et . al .  (Roitt et aI . ,  1985) 
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PDGF. 
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nerve growth factor, epidermal growth factor, and platelet derived growth 

factor recognize specific receptors on the cell surface and transmit the signal 

across the cell membrane via this receptor. The best characterized oncogene 

which encodes a growth factor is the v-sis oncogene, which was isolated from 

the Simian sarcoma virus (Doolittle et aI . ,  1 983); this protein is a homolog of 

the IJ-chain of platelet-derived growth factor (PDGF) (Waterfield et aI . ,  1 983) . 

Growth factor receptors. 

The majority of growth factor receptors which are implicated in human 

cancers belong to a family of protein tyrosine kinase receptors (Bishop, 1 99 1 ) .  

The members of this family o f  receptors have a highly glycosylated 

extracellular ligand binding domain, a single membrane spanning region, and a 

cytosolic portion containing the tyrosine kinase domain (Ullrich and 

Schlessinger, 1 990) . Many members of this family , including platelet derived 

growth factor (PDGF) receptor, have an interruption in their kinase domain 

known as the kinase insert; this insert has been shown to be important in 

determining specific signal transduction properties of the receptor (Williams , 

1 989) . 

The PDGF receptor is activated by ligand binding (Ullrich and 

Schlessinger, 1 990) , which causes dimerization and trans phosphorylation of 

adjacent monomers (Williams, 1 989) . This phosphorylation increases the 

intrinsic tyrosine kinase activity of the receptor and creates binding sites which 

allow cytosolic proteins to associate with the receptor via specific src 
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homology-2 (SH2) domains . These SH2 domains function a s  binding sites for 

phosphotyrosine (Koch et a! . ,  1 99 1 )  and are important for substrate recognition 

by a number of proteins in the signal transduction cascade (Matsuda et a! . ,  

1 990) . These cytosolic proteins may then become targets for phosphorylation by 

the receptor. Alternatively, the receptor may simply recruit cytosolic factors to 

the membrane so that they may interact with other proteins . 

Tyrosine kinase receptors are regulated by ligand binding in the 

extracellular domain (Yarden and Ullrich, 1988) . Oncogenic activation of 

receptor tyrosine kinases occurs due to mutations of the receptor which allow 

for constitutive protein-tyrosine kinase activity in the absence of bound ligand 

(Yarden and Ullrich, 1 988) . Alternatively , the simultaneous expression of the 

receptor and its ligand may lead to autocrine stimulation of a receptor, as is 

seen with the v-sis oncogene which transforms fibroblasts in an autocrine 

manner by activating the endogenously expressed PDGF receptor (Waterfield et 

a! . ,  1 983). 

Membrane associated cytosolic factors. 

Following activation, protein tyrosine kinase receptors associate with a 

number of different cytosolic proteins which, in turn, activate a number of 

different signal transduction pathways .  In the case of the PDGF receptor ,  ligand 

activation causes the receptor to associate with at least seven other proteins: 

pp60c,srC, pp60c,yes, pp60c.fyn (all members of the src-related family of protein 

tyrosine kinases) , phospholipase (PLC-y l ) ,  ras/GTPase activating protein 
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(ras/GAP) , phosphatidylinositol-3 kinase (PtdIns 3-kinase, a cytosolic tyrosine 

kinase which phosphorylates the D-3 position of the inositol ring of 

phosphatidylinositol and appears to act in a new signalling pathway (Auger et 

a! . ,  1 989)) ,  and Raj- I ,  a serine/threonine kinase . In each case , the intracellular 

protein can only associate with a ligand-activated receptor; mutant PDGP 

receptors which lack tyrosine kinase activity fail to associate with cytosolic 

proteins (Coughlin et a! . ,  1989) . Two pathways of PDGP activation will be 

discussed : the src related tyrosine kinase signal transduction pathway, and the 

ras/GTPase activating protein (ras/GAP) pathway . It is well worth noting that 

in these systems, as with many other signalling pathways ,  there is a great deal 

of redundancy in cellular substrates and secondary messengers utilized . 

The members of the family of non-receptor tyrosine kinases share a 

number of functional domains . Like receptor tyrosine kinases , all have a region 

responsible for tyrosine kinase activity (Hanks et a! . ,  1988) . The src subfamily , 

which includes pp60c-src, pp60c-yes, and pp60C-fyn as well as the T-cell receptor 

associated kinases p56kk and p59fynT , also share a myristylation site at their N 

termini which is required for membrane localization (Cross et a! . ,  1 985) . Two 

additional conserved domains include the src homology-2 domain (SH2) , 

described above, and the src homology 3-domain (SH3) . The SH3 domain binds 

proline-rich stretches of nine or ten amino acids in target proteins (Cicchetti et 

a! . ,  1 992) . 

Upon PDGP receptor activation, it is believed that pp60c-src associates 



20 

with phosphorylated tyrosine on the receptor via its SH2 domain (Cantley et a! . ,  

1 99 1 ) .  pp60c,src is negatively regulated by tyrosine phosphorylation at its 

carboxyl-terminus (Cartwright et a! . ,  1987) ; the P-Tyr associates with the SH2 

domain on the same molecule to maintain the protein in an inactive form. 

Association of pp60c-src with the PDGF receptor via its SH2 domain leads to 

activation of src kinase activity . Substrates for pp60c-src include Ptdlns 3 -kinase, 

ras/GAP, and c-Raf- l (Morrison et a! . ,  1 989) . pp60c-src interacts with Ptdlns 3-

kinase and ras/GAP via its SH2 domain (O'Brien et a! . ,  1990; McCormick et 

a! . ,  1 99 1 ) .  

Activation o f  tyrosine kinase receptors may also lead to the activation of 

GTP binding proteins . p2 1ras  is a GTP/GDP binding protein which has a strong 

GTPase activity (Field et a! . ,  1987) . p2 1ras is oncogenically activated by point 

mutations in the guanine binding domain (Parada et a! . ,  1982) . The biological 

activity of the protein appears to by determined by the bound state of the 

nucleotide; p2 1 'as is inactive when bound by GDP and active when bound by 

GTP . Therefore , p2 1 'as is believed to activate its targets by exchange of GDP 

for GTP (Marshall et a! . ,  1989) . p2 1 ras is negatively regulated by the GTPase 

activating protein (GAP) , which accelerates the GTPase activity of p2 1 ras 

(Zhang et a! . ,  1990) , and positively regulated by the Drosophila son of 

sevenless (dSOS) protein product, which stimulates the exchange of bound GDP 

for GTP (Rogge et a! . ,  1 99 1 ) .  

Recent evidence suggests that p2 1 'as regulation by tyrosine kinases is 
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mediated by growth factor receptor Qound protein 2 (GRB2) . This protein 

contains an SH2 and two SH3 domains which allows it to associate with the 

insulin receptor (BaJtensperger et aI . ,  1 993 ; Skolnik et aI. , 1 993a) via its SH2 

domain, and the sos gene product via its SH3 domain. Activation of these 

receptors leads to an increased association of GRB2 and sos with the receptors , 

thereby increasing the Ras GTP-GDP exchange (Skolnik et aI. , 1 993b) . Ras has 

been shown to activate a number of mitogenic signalling molecules , including 

serine/threonine kinases such as protein kinase C (PKC) (Morris et aI . ,  1 989) , 

mitogen activated protein (MAP) kinases , and the ribosomal protein S6 kinase 

(rsk kinase) . 

Non-membrane associated cytosolic factors. 

Activated membrane associated receptors and cytoplasmic factors interact 

with other cytosolic factors which either directly or indirectly effect 

transcription of specific genes required for cell growth and differentiation. 

Recent studies have linked the membrane associated proteins with the 

transcriptional machinery by selective phosphorylation of transcription factors . 

The serine/threonine kinase pp74c•raf is activated following interaction 

with activated pp60c-src and ras/GAP, as well as a number of tyrosine kinase 

receptors (Morrison et aI . ,  1 989) . Raf- 1 is phosphorylated on tyrosine 

(Morrison et aI . ,  1 989) , but the major sites of phosphorylation are on serine 

and threonine . Raf- l is phosphorylated by protein kinase C (PKC) (Sozeri et 

aI . ,  1 992) , a serine/threonine kinase which is activated both by ras/GAP 



(Morris et aI . ,  1 989) and diacylglycerol (DAG) , a by-product of pp60c-src 

activation of PLC-,), 1 .  
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Raf- l has provided the link between transcription factor modifications 

and the signal transduction pathway . Raf- l activates mitogen activated protein 

kinase (MAP kinase) , a serine/threonine kinase which phosphorylates 

transcription factors (Howe et aI . ,  1 992) . The mechanism of activation appears 

to be phosphorylation of MAP kinase kinase, which, in turn, phosphorylates 

and activates MAP kinase . Because MAP kinase is a central factor in a number 

of signal transduction pathways ,  it is now possible to determine the effects of 

different signal transduction pathways on the activity of transcription factors . 

Transcription factor modifications. 

In the final step of the signal transduction pathway, transcription factors 

are modified to either activate or repress genes involved in cell growth and 

regulation. Two serine/threonine kinases have been implicated in the regulation 

of sequence specific DNA binding by transcription factors : MAP kinase and 

casein kinase II. 

MAP kinase directly phosphorylates a number of transcription factors . 

The c-myc proto-oncogene is a widely expressed sequence specific DNA

binding protein (Blackwell et aI . ,  1 990) which requires a cofactor, MAX, for 

efficient DNA binding (Blackwood et aI . ,  1 992b; Blackwood et aI . ,  1 992a) . 

Myc is directly phosphorylated by MAP kinase on its N terminus, which is the 

transactivation domain of the protein. Phosphorylation of this region stimulated 
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the transactivation ability of c-myc (Seth et a! . ,  199 1 ) .  Therefore , the Myc 

protein is able to respond to extracellular signals from a variety of receptors to 

transactivate genes in a signal specific manner. 

MAP kinase also effects the API transcription factor complex comprised 

of the c-jos and c-jun proto-oncogene products (Curran and Franza, Jr . ,  1 988) . 

These two proteins interact through a series of leucine containing alpha helical 

domains , termed leucine zippers (Gentz et a! . ,  1989) . As with Myc, fun is 

phosphorylated by MAP kinase in its transactivation domain which positively 

regulates the transactivation activity of fun (Gille et a! . ,  1992) . The 

transcription factor p62TCF, which is necessary for activation of the c-fos 

promoter, is also phosphorylated by MAP kinase; phosphorylation of this factor 

leads to transactivation of the c-fos promoter . Therefore , MAP kinase is able to 

activate the API complex by both direct phosphorylation of API proteins and 

by stimulation of transcription of one of its products . Recently, it has been 

determined that MAP kinase also phosphorylates the Myb protein (Aziz et a! . ,  

1 993) . 

Casein kinase II (CKII) is another serine/threonine kinase which may 

play a major role in the regulation of both mitosis and transcription. This 

enzyme phosphorylates serines within a negatively charged amino acid region 

containing the consensus sequence iJ-tum-S-X-X-E (Figge et a! . ,  1 988) . CKII is 

activated by the cell-cycle specific kinase cdc2 . Activated CKII has been shown 

to phosphorylate a number of cell-cycle related proteins, such as p53 ,  a tumor 
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suppressor gene which regulates cell-cycle progression from G 1 to S phase 

(Patschinsky and Deppert, 1990) , and cAMP response element binding factor 

(CREB),  which binds cAMP responsive elements and mediates the induction of 

these genes by cAMP (Roesler et aI . ,  1988) . 

CKII phosphorylation sites are deleted in a number of oncogenically 

activated proteins . Examples of these include the v-erbA oncogene product; this 

protein contains an amino terminal truncation which deletes a CKII-sensitive 

phosphorylation site (Glineur et aI . ,  1989) . V-Fos, which is derived from the 

Finkel-Biskis-linkins murine osteosarcoma virus , is missing CKII-sensitive 

phosphorylation sites which are present in the carboxyl terminus of c-Fos (Van 

Beveren et aI . ,  1983) . 

In both of these cases, the consequences of the deletion of these CKII 

sites is unknown. CKII phosphorylation of Myb has been implicated in the 

regulation of this nuclear protein. Myb contains two CKII sites at its amino

terminus which are deleted in the v-myb protein. Phosphorylation of these two 

CKII sites has been shown to inhibit the DNA binding ability of c-Myb, 

indicating that these phosphorylation events may be important in the regulation 

of c-Myb activity (Luscher et aI . ,  1990; Luscher and Eisenman, 1992) . 

Hematopoiesis and leukemogenesis . 

Hematopoiesis is the process by which organisms supply themselves with 

multiple types of cells required for blood formation. All cells of the 

hematopoietic system are derived from a common hematopoietic stem cell 
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which is found in the bone marrow of adult humans (Figure 3). This stem cell 

may be induced to develop into any of the cells which comprise the 

hematopoietic spectrum. Depending on the inducing agent, the stem cell 

develops into a committed progenitor cell for each of the hematopoietic 

differentiation pathways.  The committed progenitor cells are then further 

induced to mature into their end stage forms through various intermediates . 

The branches of the hematopoietic system are the erythroid, myeloid, 

megakaryocyte and lymphoid branches . The myeloid , erythroid and 

megakaryocytic cells are all derived from a single committed progenitor cell 

(Abramson et a! . ,  1977) . This cell is induced to differentiate into cells which 

are committed to be either myeloid (monocytes or granulocytes) , erythroid (red 

blood cells) or megakaryocytic (platelets) lineages .  These committed cells are 

then induced to differentiate via various intermediate forms to their mature 

phenotype . Myeloid-committed cells develop into granulocytic cells , which may 

be neutrophils , basophils ,  eosinophils , or monocytic cells which develop into 

blood monocytes and tissue macrophages . The lymphoid branch develops from 

the lymphoid committed progenitor cell (WU et a! . ,  1 968) . These committed 

cells develop into immature B- and T- cells ,  which must then migrate to the 

thymus for further maturation. These cells are induced to terminally 

differentiate by antigens; B- cells are induced into antibody-secreting plasma 

cells, while T- cells are induced into regulatory cells, T-helper and T

suppressor cells, or cytotoxic T-cells (McCulloch et a! . ,  1974) . 
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Figure 3 .  Hematopoiesis . All blood cells are derived from a pluripotent 
hematopoietic stem cell . This cell may develop into a common myeloid or 
lymphoid progenitor. The development of these progenitors into mature cells is 
stimulated by cell-type specific growth factors (in myeloid and T- cell 
development) or by antigens (in B-cell development) . 
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Neoplastic transformation of hematopoietic cells reflects an arrest of 

these cells at different stages along the normal differentiation pathway . 

Leukemic cells are unable to terminally differentiate and are trapped in a 

proliferative state . Leukemias are generally classed according to the lymphoid 

and myeloid markers expressed by the neoplastic cells and by their arrested 

stage in differentiation. Leukemias are grouped into two broad categories ;  

chronic and acute leukemias . Cells involved in chronic leukemia reflect a more 

differentiated state of the involved lineage type . Chronic leukemias include 

chronic myelogenous leukemia (CML) , which is characterized by 

overproduction of granulocytic cells, hairy cell leukemia, a rare form of 

leukemia similar to CML, and chronic lymphocytic leukemia, which is 

characterized by an accumulation of monoclonal mature B or occasionally T

lymphocytes (Keating et a! . ,  1992) . 

Acute leukemias reflect malignant transformation of early hematopoietic 

precursors (Keating et a! . ,  1 992) . These cells, therefore, give rise to cells 

which cannot be induced to differentiate and instead proliferate in an 

uncontrolled manner. These immature "blast" cells accumulate and replace the 

normal bone marrow cells leading to anemia, bleeding and an inability to fight 

infection. Transformation of an immature myeloid cell leads to acute 

myelogenous leukemia (AML) , while transformation of an immature lymphoid 

cell leads to acute lymphoblastic leukemia (ALL)(Keating et a! . ,  1 992) . 

Like leukemia, lymphomas may be related to specific stages of normal 
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B- and T- cell development. There are two classes of lymphomas :  Hodgkin' s  

disease, and non-Hodgkin' s  lymphoma (NHL) . Hodgkin's disease i s  an  unique 

neoplasm which arises in the lymph nodes and is defined by the presence of 

specific Reed-Steinberg giant cells . Non-Hodgkin' s  lymphomas (NHL) are the 

most common immune system neoplasms and reflect a heterogeneous group of 

neoplasms which are T-and B-cell in origin (Keating et aI . ,  1992) . 

Chromosomal abnormalities in leukemias and lymphomas . 

Chromosomal translocations and deletions have been implicated in a 

number of lymphoid and myeloid malignancies . Chronic myelogenous leukemia 

may be diagnosed by a frequent reciprocal translocation between chromosomes 

9 and 22 (the Philadelphia chromosome, Daley et aI . ,  1990) . In addition, 

trans locations may affect two important areas of T -and B- cell regulation: the 

correct expression of antigen receptor genes , and aberrant expression of 

oncogenes . Both heavy and light immunoglobulin (Ig) chain genes are 

abnormally rearranged in lymphomas and chronic leukemias of B-cell lineages 

(Korsmeyer et aI . ,  1 983) , while the T cell receptor (TCR) may be abnormally 

rearranged in mature T-cell or B-cell iineages (Aisenberg et aI . ,  1 987) . In these 

neoplasms, the rearrangements have been ascribed to errors arising from the 

recombinase system used in the normal rearrangement of Ig and TCR genes 

during the generation of receptor diversity . These rearrangements can result in 

lineage inappropriate expression of these receptors ; in other cases , the 

rearrangement may bring a proto-oncogene under the control of 
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Table 1 .  Chromosomal translocations implicated in the tumorogenic process . 
Shown are the tumor type, the chromosomal abnormality associated with the 
tumor,  and the gene or genes which may be involved in the formation of the 
tumor, and the gene function, if known (Perkins and Vande Woude, 1 993) . 



3 1  

Tumor Abnormalitx Gene(s) Involved Gene Feature or Function 

Chronic myelogenous t(9;22))(q34; q l l )  BCR-ABL Fusion gene involving 
leukemia nonreceptor tyrosine 

kinase (ABL) 
T -cell acute Iympho- t(9;22))(q34 ; q l l )  BCR-ABL P 1 80 gene product 
blastic leukemia (T-ALL) 

Follicular center cell t( l 4 :  1 8)(q32;q2 1 )  BCL2 activation Prevents apoptosis 
lymphoma 

Burkitt lymphoma t(8 : 1 4)(q24 ; q32) c-MYC IG locus Transcription factor 

Acute promyelocytic t( l 5 ; 1 7) APL-RAR fusion Fusion gene involving the 
leukemia retinoic acid receptor X 

T-ALL t(I l ; 14)(p I 5 ; q l l )  TCR locus Zinc-finger gene 

T-ALL t( l 7 ;  1 9)(q34 ;pI3)  LYLl ({3TCR) Nuclear, helix-loop-helix 

Pre-B-ALL t( l ;  1 9)(q23 ; p I 3  .3)  E2A-PR I fusion Fusion gene containing 
homeobox from PRL 

T-ALL t( l ;  14)(P32;ql l )  SCL(tal ; TCL5) Helix-loop-helix gene 

T-ALL del ( l ) , p33 SCLISIL (SCL SIL-SCL fusion gene 
interrupter locus) 

T-ALL t( IO ; 14) HOX I I  are TCL3 Homeobox gene 

T-ALL t(7 ; 9) TAN I Homolog of Drosophila 
notch gene 
B-cell lymphoma t(l l ;  1 4)(qJ 3 ;132) PRAD ! ,  BCLl Cyclin D 

Amplifications in breast inv( l l ) G, cyclin gene 
and squamous cell 
carcinomas 

Parathyroid adenoma inv( l l ) PRAD I Cyclin D 
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Table 2 .  Chromosome 6q abnormalities in cancer. 



Aberration 

Translocation 

Deletion 

Localization 

t(X :6q 15) ; t(X :6q 16) 
t(6 : 1 1 ) (q27 :q23) 
t(6 :9) 
del(6)( q 1 3q27) 
del(6)(q22q27) 
del(6)(q I2qI4) 
del(6q-) 
del(6)(q2 1q23) 
del(6)(q2 1q23) 
del(6)(q2 1q23) 
del(6)(q22) 

Tumor Reference' 

ALL ( 1 )  
AML (3) 
AML (4) 
CLL (2) 
melanoma (5) 
AML (6) 
AML (7) 
ALL (8) 
NHL (9) 
AML,CML ( 10) 
ALL,AML ( 1 1 )  
NHL ( 12) 
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* ( 1 )- (Carney et a! . ,  1992) ; (2)- (Philip et a! . ,  199 1 ) ;  (3)- (Hatfill et a! . ,  1 99 1 ) ;  
(4)- (von Lindern et a! . ,  1992) ; (5)- (Millikin e t  a! . ,  1 99 1 ) ;  6-(Hirata e t  a! . ,  
1 992) ; 7-(Fagioli et a! . ,  1990) ; 8-(Oshimura and Sandberg, 1976) 
(9)-(Bloomfield et al . ,  1983) ; ( lO)-(Mitelman, 1983) ;  ( l l )-(Barletta et al . ,  

1 987) ; ( 1 2)-(Park and Reddy, 1 992) . 
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immunoglobulin gene enhancers , resulting in the deregulation of the proto

oncogene and the creation of an oncogene (Table 1 ) .  This phenomenon is best 

demonstrated in the neoplasm known as Burkitt' s  lymphoma; in 80 % of these 

neoplasms , a translocation has occurred between chromosomes 8 and 1 4  

[t(8 : 14)] . This translocation juxtaposes the IgM heavy chain gene to the c-myc 

proto-oncogene (Taub et aI . ,  1 982); the deregulation of the c-myc gene 

contributes to unrestricted B-cell proliferation and thus to the pathogenesis of 

this B-cell malignancy . Other immunoglobulin trans locations implicating 

specific oncogenes in leukemia pathogenesis include bcl-2 , a gene shown to be 

important in programmed cell death (McDonnell et aI . ,  1 989) and rearranged in 

follicular lymphomas (Rowley , 1988) and bcl- l ,  which was identified at a 

t( 1 1 :  14) translocation (Raffeld and Jaffe , 199 1 )  and is important in cell cycle 

regulation (Motokura et aI . ,  199 1 ) .  

6q abnormalities in leukemias and lymphomas . 

Deletions and translocations of the long arm of chromosome 6 have been 

implicated in a number of leukemias and lymphomas (Table 2) . These deletion 

and translocation breakpoints occur at a number of points in the 6q locus ,  

ranging from 6q13-6q27 (Hirata et  aI . ,  1992; Carney et  aI . ,  1 992; Philip et  aI . ,  

1 99 1 ;  Millikin et aI . ,  1 99 1 ) .  These studies suggest that genes in this region of 

6q, which include c-myb, play an important role in the neoplastic process . 

Recent studies have suggested the possibility of tumor suppressor genes 

which may be located on chromosome 6. In a study of childhood ALLs with 
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6q- deletions , all of the deletions encompassed the 6q2 1 region (Hayashi et aI . ,  

1 990) . Hubbard-Smith et al . immortalized human fibroblasts with an origin

defective SV 40 virus and analyzed the karyotypes of the immortalized 

fibroblasts . All of the immortalized cell lines had alterations in the 6q2 1 region, 

which does not correlate to the locus of any known oncogenes or tumor 

suppressor genes (Hubbard Smith et aI . ,  1 992) . These results suggest that 

genetic loss of regions at or distal to 6q2 1 may be important in the 

immortalization process and suggests the presence of a tumor suppressor gene . 

The myb oncogene . 

The cellular proto-oncogene c-myb was first identified as the 

transforming agent of the avian myeloblastosis virus (AMV) . AMV specifically 

transforms cells of the myelomonocytic lineage in chickens, producing AMV

transformed myeloblasts with an umestricted growth potential (Symonds et aI . ,  

1 984) . The transforming phenotype of this replication-defective virus and the 

E26 virus , which induces erythroid tumors (Nunn and Hunter, 1 989) , was 

shown to be associated with the presence of normal cellular sequences within 

the viral genome (Souza et aI . ,  1 980) . 

The cellular sequences of the AMV virus (then known as v-amv) were 

used to determine the cell-specific expression of this gene in human leukemia 

cell lines . Westin, et al (Westin et aI . ,  1982) , determined that v-amv was 

expressed in immature precursor cells of lymphoid, myeloid and erythroid 

lineages ,  but not in immature B-cells nor mature T-cell and myeloid cell 



lineages . Cellular sequences related to v-amv were not expressed in any solid 

tumors screened; therefore, the expression of this gene correlated with 

hematopoietic cells of immature phenotypes (Westin et aI . ,  1982) . 
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The cellular homologue to the v-amv sequences ,  designated cellular myb 

(c-myb) was transduced from the chicken cellular myb gene in both AMV 

(Klempnauer et aI . ,  1 982) and E26 leukemia virus (Radke et aI . ,  1 982) . The c

myb locus is approximately 36 kb in length and encodes a transcript of 

approximately 3 . 5  kb (Westin et aI . ,  1 982) . The gene has 15 exons not 

including alternatively spliced exons recently identified (Prochownik et a! . ,  

1 990; Dasgupta and Reddy, 1 989; Shen-Ong et aI . ,  1 990) (Figure 4) . 

V-myb is a spliced version of its cellular homologue, c-myb, containing 

seven exons of c-myb with sequences deleted at the 5 '  and 3' ends of the gene 

(Klempnauer et a! . ,  1983) . The v-myb protein encoded by AMV is 45 

kilodaltons (kDa) (Klempnauer et a! . ,  1982) , designated p4SV·myb ; the protein is 

smaller than the cellular c-myb gene due to amino- and carboxyl- terminal 

truncations in the protein (Figure 5) .  The full length Myb protein is 75 kDa and 

is extensively conserved at the protein level in multiple functional domains 

between Drosophila (Katzen et a! . ,  1985), chicken, mouse , and human species 

(Cole, 1 990) . Myb-related genes have also been cloned from zea mays, and 

Dictyostelium (Cole , 1 990) . Two human c-myb related genes , A-myb and B

myb ,  have also been identified (Nomura et a! . ,  1 988) . Unlike c-myb, A-myb 

and B-myb are expressed in tissue types beyond the hematopoietic system; some 
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of the tissues that express A-myb and B-myb include heart, intestine, and lung 

(Nomura et aI. , 1 988) . Little is known about their function, although B-myb is 

down-regulated during hematopoiesis (Reiss et aI . ,  1 991b) .  

Myb structure and function. 

The exact role of c-myb in normal cellular processes is not known. 

However, c-myb has been implicated as an important factor in hematopoietic 

growth and differentiation. Myeloid cells infected with a temperature sensitive 

mutant of the v-myb gene proliferated at the permissive temperature , but 

exhibited a more differentiated phenotype at the non-permissive temperature 

(Ness et aI . ,  1989) . Therefore, the mechanism of transformation by v-myb 

appears to be its ability to block the differentiation of hematopoietic cells . 

Both v-Myb and Myb proteins have been localized to the nucleus and are 

associated with chromatin, suggesting these may be DNA binding proteins 

(Boyle et aI . ,  1 985 ; Ibanez and Lipsick, 1 988) . Bacterially expressed v-Myb 

was used to localize the DNA binding domain for this protein to the N-terminus 

(Klempnauer and Sippel , 1987) and to determine that the protein binds the 

specific 6 base pair motif py AACG/TG (Biedenkapp et aI. , 1988) . 

The DNA binding domain of c-Myb is comprised of approximately 150 

amino acids in three imperfect repeats of 51  to 53 amino acids in length (Figure 

5) . These repeats contain a large proportion of basic residues ,  a motif 

associated with other DNA binding domains (Paz-Ares et aI . ,  1 987) . The three 

imperfect repeats in the DNA binding domain also contains a series of regularly 
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Figure 4 .  The c-myb locus . The c-myb locus encompassed approximately 
30,000 bp and is comprised of 19 exons : four of these exons are alternatively 
spliced in a number of forms of c-myb . The primary c-myb promoter (PI )  and 
coding ATG translation start sites (ATG) are indicated . Some of the 
alternatively spliced forms utilize different splice donor (SD) sites (such as 
pMbm- l and pMbm-2) or utilize an internal polyadenylation site within intron 8 
(pMbm-28) . Two alternative translation termination sites are also present in 
exon 8A and exon 1 3A; usage of these sites would result in a C-terminally 
truncated protein. 
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Figure 5 .  The c-myb protein. The prototypic c-myb protein is 640 amino acids 
in length . The DNA binding domain (R1 ,  R2, and R3) ,  transactivation domain 
(TA) and negative regulatory domain (NRD) are indicated by the shaded 
regions . Downward arrows indicate sites of retroviral insertion by moloney 
murine leukemia virus (MML)(Shen-Ong et aI . ,  1984b) . The casein kinase II 
(CKII) -sensitive phosphorylation site and MAP kinase (P) sensitive 
phosphorylation sites are also indicated. The minimal DNA binding domain and 
the Myb protein sizes of the E26 and AMV viruses are indicated below . This 
figure adapted from a review by Thomas Graf (Graf, 1 992) . 
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spaced tryptophans ; recent nuclear magnetic resonance (NMR) studies have 

indicated that a novel helix-tum-helix motif is formed around these tryptophans 

in the third repeat of the protein (Ogata et aI . ,  1 992) . This unique structure 

therefore represents a new DNA binding motif. 

The DNA binding affinity of Myb appears to depend both on the specific 

sequence of the Myb-responsive element (MRE) and the structure of the 

protein. The protein binds as a monomer but the interaction appears to be 

enhanced when tandem copies of the MRE are placed close together (Howe et 

aI . ,  1 990) . Carboxyl-truncated Myb proteins bind to the MRE with a seven-fold 

higher affinity than full length Myb protein, which may contribute to the 

transforming activity of the viral forms of c-myb (Ramsay et aI . ,  1 992) . 

Both c-myb and v-myb can transactivate a reporter gene via the MRE 

(Nishina et aI . ,  1 989; Weston and Bishop, 1 989) . C-myb contains a 

transactivation domain of approximately fifty amino acids in the center of the 

protein (Sakura et aI . ,  1 989; Weston and Bishop, 1 989; Lane et aI . ,  1 990; 

Ibanez and Lipsick, 1 990) . The region is comprised of hydrophilic and acidic 

amino acids , consistent with other transactivation domains (Saha et aI . ,  1 993) . 

Little is know about the exact mechanism of transactivation by the Myb protein 

except that it is regulated by a negative regulatory domain located at the 

carboxyl-terminus of the protein; deletion of this negative regulatory domain 

leads to a ten-fold increase in the transactivation ability of Myb (Sakura et aI . ,  

1 989; Lane et aI . ,  1 990) . It has recently been determined that the negative 
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regulation of transactivation is mediated by a leucine zipper motif in the 

negative regulatory domain (Kane i-Ishii et a! . ,  1 992) ; this motif is absent in 

oncogenically activated Myb proteins suggesting that one of the mechanisms of 

transformation is removal of this leucine zipper. 

Myb also contains a region of trans repression, located downstream of the 

putative transcriptional activation domain (Ibanez and Lipsick, 1 990) . This 

region is missing in a number of transformation associated Myb proteins 

(Rosson et a! . ,  1987) , suggesting that transformation by c-myb may also be 

mediated by increased expression of other genes . The activation and repression 

activities of Myb appear to depend on the affinity of the protein for different 

MRE's  (Ibanez and Lipsick, 1990) . When Myb is bound to a high affinity site, 

the protein is capable of transactivation (Ibanez and Lipsick, 1990; Sakura et 

a! . ,  1989; Lane et a! . ,  1 990; Weston and Bishop, 1989) ; when the protein is 

bound to a low affinity site , transrepression activity is observed (Ibanez and 

Lipsick, 1990) . 

The first gene identified as a target for v- or c-myb transactivation was 

the mim- 1 gene . This gene is expressed in the granules of promyelocytes but its 

function is currently unknown. The mim- 1 promoter contains three myb 

responsive elements (MRE) and is activated by both the v-myb (Ness et aI . ,  

1 989) and c-myb (Dudek et a! . ,  1992) proteins , although the transactivation 

ability of c-myb is much lower than v-myb . 

Myb has also be found to activate other genes important in cell growth 
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and differentiation. The Myb protein can regulate c-myc expression in a cell

type specific manner (Cogswell et aI . ,  1 993) and can interact with MRE' s  in 

the c-myc promoter (Zobel et aI . ,  199 1 ) .  A murine variant of the E26 virus can 

activate the erythroid transcription factor GAT A- I (Aurigemma et aI . ,  1 992) , 

and c-myb can increase the expression of insulin-like growth factor 1 and 

insulin-like growth factor 1 receptor (Reiss et aI . ,  1 99 1 a) .  Finally , there is 

evidence that the c-myb gene is autoregulatory ; MRE's  in the c-myb promoter 

can activate the thymidine kinase (TK) reporter gene when the reporter gene is 

co-transfected with the full length c-myb gene (Nicolaides et aI . ,  1 99 1 ) .  

Further information on the function of Myb may be garnered from its 

expression during the cell cycle and during hematopoietic differentiation. 

Expression of c-myb is cell cycle regulated; Myb levels increase during the cell 

cycle and peak during S phase (Thompson et aI . ,  1986) . Other data linking c

myb expression to hematopoietic cell growth include evidence that c-myb is 

necessary for G1 /S transition in human T lymphocytes (Gewirtz et aI . ,  1 989) . 

C-myb expression is highest during cellular proliferation and decreases as the 

cells leave the cell cycle . Induction of differentiation in both Friend murine 

erythroleukemia (FMEL) (Watson, 1988b) and human HL-60 promyelocytic 

leukemia cells (Ibanez and Lipsick, 1988) correlates with a decrease in c-myb 

expression during differentiation. 

In FMEL cells ,  c-myb expression during differentiation appears to be 

biphasic with levels decreasing during the early period of commitment, rising 
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again, and then decreasing following loss of cellular proliferation (Watson, 

1 988b) . Constitutive expression of c-myb has been shown to block 

differentiation in two erythroleukemic cell lines (Watson, 1988b; Kirsch et aI . ,  

1 986) . Inhibition of p7SC·myb expression using antisense oligonucleotides inhibits 

the growth of hematopoietic cells in vitro (Anfossi et aI . ,  1989; Ratajczak et 

aI . ,  1 992) . Embryonic "knockout" experiments revealed that c-myb was 

necessary for adult -type but not embryonic hematopoiesis (Mucenski et aI . ,  

1 99 1 ) .  Together, these results suggest that the function of c-myb is to maintain 

hematopoietic cells in an immature state and act as a " switch" during early 

stages of differentiation (Luscher et aI . ,  1990) . 

6q abnormalities and the c-myb gene. 

Three genes have been localized to the long arm of chromosome 6 :  c

myb, ros l ,  and mas l .  Of these three, translocations and deletions associated 

with leukemias and lymphomas have been localized to regions surrounding the 

c-myb locus which has been sublocalized to 6q22-23 (Janssen et aI . ,  1 986) . 

Because c-myb has been demonstrated to be important in the regulation of 

hematopoiesis , a number of studies have attempted to make a correlation 

between deletion or rearrangement of the c-myb gene and myeloid and 

lymphoid malignancies . In a series of in situ hybridizations of 6q

hematopoietic neoplasms with human c-myb probes ,  two different studies 

(Barletta et aI . ,  1987; Okada et aI . ,  1 990) demonstrated that while the 6q

interstitial and distal deletions correlated with an increase in c-myb expression, 
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the gene itself was neither rearranged nor deleted (Barletta et aI . ,  1 987) . The 

breakpoints for these deletions mapped to 6q22, cytogenetically close to the c

myb locus, but no rearrangements could be found within 12 kilobases (kb) of 

the 5 '  end of this gene . 

In a recent series of studies using infrequently cutting restriction enzymes 

and the clamped homogeneous electric field system (CHEF) to resolve high 

molecular weight DNA fragments , the c-myb genomic locus was extensively 

mapped (Park and Reddy, 1992) . This map, created from genomic DNA 

isolated from normal peripheral blood lymphocytes ,  was compared to genomic 

maps of the c-myb loci from 7 6q- leukemia cell lines with high levels of c-myb 

expression. Of the 7 myeloid and lymphoid leukemia cell lines tested, no large 

scale deletions were detected within 1 megabase ( 1000 kb) of the c-myb locus . 

Other studies involving 6q abnormalities have also failed to implicate 

rearrangements of the c-myb locus in this abnormality (Barletta et aI . ,  1 987 ;  

Okada et  aI . ,  1990; Park and Reddy, 1992 ; Philip et  aI . ,  1 991 ; Hirata et aI . ,  

1 992) , although amplification of the c-myb locus has been reported in 

occasional cases of AML (Pelicci et aI . ,  1 984; Barletta et aI . ,  1987 ; Castaneda 

et aI . ,  1 99 1 ) .  The results of these studies suggests that while c-myb expression 

may be activated in 6q- abnormalities and regions at or near the c-myb locus 

are important in the development of leukemias and lymphomas , specific 

rearrangements of the c-myb locus have not been detected in 6q- cytogenetic 

abnormalities .  It has been speculated that a growth suppressive and/or a c-myb 



suppressive gene may be deleted in these leukemias (Park and Reddy, 1 992 ; 

Hubbard Smith et aI . ,  1 992) ; deletion of this gene may then deregulate c-myb 

expression and, possibly , the expression of other genes important in the 

regulation of hematopoiesis .  

Regulation of c-myb expression. 
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The importance of the proper temporal and quantitative levels of c-myb 

expression in the growth and differentiation of hematopoietic cells indicates that 

it must be tightly regulated at the transcriptional level . The majority of the 

mechanisms that govern c-myb expression are located at the 5 '  end of the gene, 

spanning the 5 '  untranslated region through the first intron. 

The c-myb promoter is a GC-rich promoter which does not contain any 

consensus TATA or CAAT sequences in the mouse (Bender and Kuehl , 1 986) , 

or the human (Westin et aI . ,  1 990) , and no TATA sequences in the chicken 

(Hayward et aI . ,  1 989) . This structure is indicative of a housekeeping promoter. 

Because there are no specific transcription initiation factor binding sites in the 

c-myb promoters , mRNAs initiated from these promoters exhibit extensive 5 '  

heterogeneity . In the chicken, the transcription start sites initiate within a GpC 

island (Dvorak et aI . ,  1 989) , a region rich in guanine and cytosine . Although 

the transcripts are heterogenous at the 5' end, there is cell-type specificity to 

the transcription start sites; in the chicken, T-cell and B-cell precursors each 

exhibited patterns of 5' heterogeneity specific for that cell type (Kim and 

Baluda, 1 989) . Similar patterns of cell-type specific 5 '  heterogeneity have been 
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detected in the mouse (Watson et a! . ,  1987) . 

Little is known about what transcription factors are responsible for the 

activation of c-myb. As stated in the previous section, c-myb may be 

autoregulated (Nicolaides et a! . ,  1 99 1 ) .  There is also evidence that members of 

the fun family of transcription factors , which are important in the early stage of 

the cell cycle , can transactivate the c-myb gene (Nicolaides et a! . ,  1 992) . 

However, because the c-myb promoter is constitutively active in most cells that 

have been tested (Biunno et a! . ,  1988) , promoter regulation does not appear to 

be the primary mechanism of regulation of c-myb expression. 

In the murine and human systems, c-myb expression is regulated by a 

transcriptional pause; nuclear runoff assays have shown a steady rate of c-myb 

transcription despite varying levels of c-myb mRNA during cellular proliferation 

(Thompson et a! . ,  1 986) . A number of recent studies have demonstrated that, 

in the mouse, c-myb is regulated primarily by a constitutive premature arrest 

within the first intron of the gene (Watson, 1 988a; Bender et a! . ,  1 987 ;  

Sobieszczuk et  a! . ,  1 989) . Recently, this region of transcriptional arrest or  

pausing has been mapped in the murine system to a 1 .0 kb region of intron 1 .  

DNAse hypersensitivity and gel mobility assays have correlated the binding of 

nuclear factors to this 1 .0 kb region of intron 1 with a decrease in expression of 

c-myb mRNA (Reddy and Reddy , 1 989) . A similar region of transcriptional 

pausing was also detected in the human c-myb intron 1 (Godbout et a! . ,  1 992) . 

No attenuator has ever been detected in the chicken c-myb gene . Although the 



actual regions of transcriptional pausing have been mapped in the human and 

mouse systems , it is not known what factors are necessary for attenuation nor 

whether sequences outside the pausing region are necessary for pausing to 

occur . 
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It was once believed that c-myb encoded a single mRNA and protein in 

the absence of viral integration, rearrangements, or deletions (Bender and 

Kuehl , 1986) . Recent evidence indicates , however, that this is not the case .  

Alternative c-myb splicing occurs in both normal (Shen-Ong, 1 987) and tumor 

(Westin et aI . ,  1990; Shen-Ong , 1987; Dasgupta and Reddy, 1989; Dudek and 

Reddy , 1989a) cell lines. The alternative splicing may be due to alternative use 

of splice donor/acceptor sites which may delete 3 amino acids (Westin et aI . ,  

1 990) , the inclusion of novel exons which increase the size of the protein 

(Dudek and Reddy, 1 989b;  Dasgupta and Reddy, 1989; Dudek and Reddy , 

1 989a; Shen-Ong et aI . ,  1 990) , or the inclusion of an exon which may lead to 

premature termination of translation (Weber et aI . ,  1 990) (Figure 4) . Most of 

this alternative mRNA processing occurs between exons 8 and 9 indicating that 

changes in this region, which encodes a portion of the transactivation domain, 

may effect the transactivation ability of c-myb. The function of these 

alternatively spliced c-myb products in the regulation of hematopoiesis is 

currently unknown. 

Activation of c-myb. 

The viral form of p7SC-myb, p4SV-myb, contains amino- and carboxyl-
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terminal truncations in addition to fusion to viral protein sequences and amino 

acid substitutions . In vitro studies have been conducted to determine which 

alterations in the c-myb gene enhance the transforming activity of the v-myb 

protein. Neither the virally-encoded residues nor the amino acid substitutions 

are required for transformation by v-myb (Ibanez and Lipsick, 1 988) . Rather, it 

is the amino- and carboxyl- terminal truncations which confer the transforming 

phenotype of the v-myb protein. The deletion of either the amino- or carboxyl

terminus of the protein is sufficient to cause the transforming phenotype 

(Grasser et aI . ,  1 99 1 ;  Gonda et aI . ,  1989) . The carboxyl terminal truncations 

appear to cause transformation by disrupting the negative regulatory domain at 

the carboxyl- terminus of the protein (Hu et aI . ,  1 99 1 ) ;  also , these carboxyl

terminally deleted proteins appear to have an increased DNA binding affinity 

for target sites (Olins and Rangwala, 1 990) . 

The mechanism of increased transforming capacity of amino-terminally 

deleted Myb protein is not as clear; N-terminal truncation removes a putative 

regulatory region of the protein which may regulate the DNA binding activity 

of Myb;  the amino terminal truncation removes a casein kinase II (CKII) 

sensitive site which has been shown to inhibit DNA binding when 

phosphorylated (Luscher et aI . ,  1 990; Luscher and Eisenman, 1 992) . Also , an 

amino-terminally truncated c-myb protein was shown to transactivate with a 

four-fold greater efficiency than full length c-myb (Punyammalee et aI . ,  1 99 1 ) .  

These results suggest that the amino-terminus o f  the protein i s  also important in 
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the regulation of c-myb protein activity . 

Another mechanism by which c-myb is activated in leukemias is by 

retroviral insertion into the 5' end of the gene . Many of these studies were 

conducted in the mouse systems using Moloney murine leukemia virus 

(MML) ,which induces myeloid leukemia (Shen-Ong and Wolff, 1 987 ; 

Mukhopadhyaya and Wolff, 1 992 ; Wolff et a! . ,  1 99 1 )  or plasmacytoid 

lymphosarcomas (ABPL's) (Mukhopadhyaya and Wolff, 1 992; Wolff et a! . ,  

1 99 1 ;  Shen-Ong and Wolff, 1 987; Lavu and Reddy, 1 986; Rosson et a! . ,  1 987; 

Shen-Ong et a! . ,  1 984a; Shen-Ong et a! . ,  1 984b; Lavu et a! . ,  1984; Mushinski 

et a! . ,  1 983) . In some cases, viral integrations at the 3 '  end of the c-myb gene 

led to an activation of the gene (Mukhopadhyay a and Wolff, 1992) . In most 

cases,  however, activation of c-myb expression occurred by retroviral 

integrations into the 5 '  end of the c-myb gene, specifically into intron 1 (Dudek 

and Reddy , 1989a; Lavu and Reddy, 1 986; Kanner et a! . ,  199 1 ;  Rosson and 

Reddy, 1987; Rosson et a! . ,  1987) . In some cases , the retroviral integrations 

caused aberrant splicing of c-myb products (Dudek and Reddy, 1989a; Rosson 

and Reddy , 1987; Rosson et a! . ,  1 987) ; in others , the retrovirally activated 

genes encoded amino-terminally truncated proteins similar to those encoded by 

the v-myb protein (Kanner et a! . ,  1 99 1 ;  Lavu and Reddy, 1 986; Shen-Ong et 

a! . ,  1 984a) . 

Similar studies in the avian system using the avian retrovirus RA V- I 

have further characterized retroviral insertions in this region (Pizer et a! . ,  1 992 ; 
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Pizer and Humphries , 1 989) . Insertion of RAV- l into the c-myb gene induces 

the rapid onset of avian B-cell lymphomas. Assessment of the altered c-myb 

genes in these lymphomas revealed that the majority of retroviral insertions 

occurred at the 3 '  end of intron 1 (Figure 6) . The altered gene utilized an ATG 

translational start codon in exon 2 and thus encoded amino-terminally truncated 

proteins . These studies establish that not only are amino-terminally truncated c

myb proteins implicated in transformation, but that intron 1 ,  especially the 3 '  

end of intron 1 ,  is a "hot spot" for alterations which may lead to malignant 

transformation. By analogy, the 3 '  end of intron 1 may be also important in the 

regulation of the normal c-myb gene . 

C CRF-CEM. 

Non-transformed cells have a limited proliferative ability and pure 

populations of specific immune cells are difficult to isolate . Therefore, immortal 

transformed cell lines have been useful in the study of c-myb expression and its 

role in the regulation of hematopoiesis . Many of these cell lines are derived 

from various forms of leukemia .  In vitro models of hematopoietic 

differentiation include the promyelocytic HL-60 cell line and the Friend murine 

erythroleukemia (FMEL) cell lines which can be induced to differentiate with a 

variety of agents . Immature lymphocytic leukemia cell lines, on the other hand, 

express high levels of c-myb (Ibanez and Lipsick, 1 988) but cannot be induced 

to differentiate . These cell lines are therefore useful to study the promoter 

activity of c-myb and to identify alternatively spliced forms of c-myb. 
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The cell line CCRF-CEM was isolated in 1965 from a 3 year old female 

with acute lymphoblastic leukemia (Foley, 1 965) . These cells have proved to be 

useful in the study of acute leukemia because they will grow in suspension 

culture in the absence of lymphoid growth factors and do not require 

blastogenic agents such as phytohemagglutinin (PHA) for induction of mitosis . 

These clonally-derived cells exhibit the characteristic morphology of 

lymphoblastic cells : i) the nuclei are densely stained and of unusual 

morphology, ii) there is little cytoplasm present in each cell . Recent karyotypic 

analysis of CCRF-CEM revealed that the cell line is near tetraploid (Pittman et 

ai . ,  1 993) . Numerous chromosomal aberrations are observed; however, the cell 

line is not 6q- , and no other aberrations were associated with chromosome 6 

(Pittman et ai . ,  1 993) . 

Two alternatively spliced c-myb DNA clones were isolated from a cDNA 

library constructed from CCRF-CEM . These two clones, pMbm- l and pMbm-

2, represent two different alternatively spliced products of c-myb when 

compared to the c-myb prototype cDNA LMC-8 (Majello et ai . ,  1 986) . Both 

clones have been sequenced and analyzed with regard to predicted protein 

structure and mechanism of alternative splicing . Both pMbm- l and pMbm-2 are 

expressed in a number of lymphoid and myelomonocytic cell lines including 

CCRF-CEM, HL-60, and MOLT-4 (Westin et ai . ,  1 982) . The prototypic c-myb 

message is present in the greatest abundance, followed by pMbm- l ,  while 
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Figure 6. RA V- I retroviral insertion into intron 1 of the c-myb gene . (Top) 
Schematic representation of the chicken c-myb gene . Boxed indicate chicken c
myb exons from exon 1 (UE3) to exon 10 .  (Bottom) Sites of retroviral insertion 
into the 5' end of the chicken c-myb gene . Downward arrows indicate the 
positions of the viral integrations . The alternative ATG translation start site 
used to translate the interrupted c-myb messages in exon 2 (UE2) is also 
indicated . RI-EcoRI; Hp- HpaI; H-HindllI ; N-NcoI; P-PstI (Pizer et aI . ,  1 992) . 
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pMbm-2 is expressed at low levels . As with the prototypic c-myb gene, both 

pMbm- 1 and pMbm-2 are down-regulated during DMSO induced HL-60 

myeloid differentiation (Weber et aI . ,  1 990) . 
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Functional studies of pMbm- l and pMbm-2 were conducted using the 

Friend murine erythroleukemia (FMEL) cell model system in collaboration with 

Dr. Michael Clarke . Transfection and overexpression of these two clones in 

FMEL cells revealed opposing roles for the two clones in the differentiation 

process . Expression of high levels of pMbm- 1 leads to a block in the ability of 

FMEL cells to withdraw from the cell cycle and differentiate when induced 

with dimethyl sulfoxide (DMSO) . By contrast, high levels of pMbm-2 

expression were shown to promote DMSO induced differentiation of FMEL 

cells . These results indicate the human c-myb proto-oncogene encodes 

alternatively spliced mRNA species with opposing roles in the differentiation 

process .  The precise mechanism of this effect is unknown, but it is postulated 

that the predicted protein for pMbm-2 is functioning as a competitive inhibitor 

of Myb DNA binding sites . 

A comparison of pMbm-l and pMbm-2 reveals a great deal of 

heterogeneity between the two clones and the prototypic c-myb gene at the 

protein level (Figure 7) . The pMbm- l message is most similar to the full 

length Myb protein, containing only a 9 base pair (bp) deletion in the message 

which arose from an alternate splice site within vE5 (exon 8 of c-myb) . This 

splice deletes 3 amino acids from the protein, allowing for a near full length c-



myb protein to be translated . The pMbm-2 message, by contrast, contains an 

additional 122 bp exon between exons 8 and 9 designated exon 8A. The 

predicted protein from this message would encode the DNA binding and 

nuclear localization regions of c-myb, but would terminate within this 

alternative exon. This would lead to deletion of the carboxyl- terminus of the 

protein containing the negative regulatory domain. 
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In addition to these differences ,  the two clones also diverge at their N

terminus . The pMbm- l 5' sequences are similar to the prototypic c-myb gene, 

containing a normal 5 '  untranslated region and a correct splice between UE3 

(exon 1) and exon 2. The pMbm-2 message, on the other hand, possesses an 

unique 26 bp 5' sequence in the place of exon 1 resulting in the loss of 20 

amino acids at the N terminus of the protein. This loss deletes the casein kinase 

II phosphorylation sensitive element which inhibits sequence-specific DNA 

binding of Myb when phosphorylated (Luscher et aI . ,  1 990; Luscher and 

Eisenman, 1992) . The same region is also deleted in the v-myb oncogene 

product (Perbal et aI . ,  1 986) . Southern blot hybridization of an oligonucleotide 

probe to genomic clones of c-myb mapped the unique 26 bp sequence of 

pMbm-2 to intron 1 of the c-myb locus (Weber et aI . ,  1 990) . 

The presence of a cDNA clone which potentially encodes an amino

terminally truncated form of c-myb indicates that, while attenuation may be the 

major form of regulation of c-myb expression, other mechanisms in the 5 '  end 

of the gene may also be important in the regulation of c-myb. 
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Figure 7 .  Predicted structure of alternatively spliced c-myb clones . (Top) The 
full length Myb protein, containing an intact DNA binding domain (DBD) , 
transactivation (TA) , negative regulatory domain (NRD) , and casein kinase II 
sensitive phosphorylation site . (Middle) Predicted structure of the pMbm- l 
protein. This protein would possess a 3 amino acid deletion in the 
transactivation domain due to usage of an alternative splice donor site in exon 
8; it would have an intact N- and C- terminus. (Bottom) The predicted structure 
of the pMbm-2 protein. This protein would have a 20 amino acid deletion at the 
N- terminus and would terminate prematurely in the alternatively spliced exon 
8A, deleting part of the transactivation domain and all of the negative 
regulatory domain. 
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METHODS 

Characterization of intron 1 of the human c-myb proto-oncogene and a second 

promoter within the intron. 

The purpose of these studies was to identify and characterize the origin 

of the pMbm-2 specific transcript by analysis of the structure and function of 

critical regions of the human c-myb intron 1 .  The intron was sequenced and 

compared to previously identified mouse and chicken intron 1 sequences . 

Transcripts originating from the intron were identified by primer extension and 

RNAse protection analysis . Intron 1 sequence was assayed for promoter activity 

in chloramphenicol acetyl transferase (CAT) transient expression assays .  The 

ability of the intron 1 sequence to bind specifically to nuclear proteins was 

assessed by gel mobility shift assays .  

Phage DNA preparation. 

Escherichia coli LE392 host cells (6 x 1010) were infected with 3 x 1 08 

lambda (A) phage particles with adsorption for 1 5  minutes at 37°C in 1 ml of 

Luria broth (LB : l % bacto-tryptone (Difco)/ 0 . 75 % yeast extract (Difco)/ 86 

mM NaCI (pH 7 .0)) .  One-half liter of LB/ 10  mM MgCl2 was inoculated with 

60 
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the infected cells and incubated overnight a t  37°C with shaking. The culture 

was centrifuged to remove all cellular debris . Sodium chloride (NaCl) and 

polyethylene glycol-8000 (PEG-8000) were added to the supernatant to a final 

concentration of 1 M and 10% , respectively, and incubated two hours at 4° . 

Phage particles were collected by centrifugation for 1 5  minutes at 6 ,000 rpm in 

an GSA rotor (Sorvall) and resuspended in a solution of 6 g CsCl! 8 rnl SM 

buffer (50 mM Tris-HCI (pH 7 . 5)/ 0 . 1 M NaCl/ 10  rnM MgS04/ 0 . 1 % 

gelatin) . This mixture was centrifuged for 4 hours at 65 ,000 rpm in a VTi65 . 1  

rotor (Beckman) , and the phage band was recovered and re-banded . The phage 

suspension was diluted with eight volumes of TE ( 10  rnM Tris-HCI (pH 8 . 0)/ 1 

mM EDTA) to dilute the cesium chloride . Phage DNA was purified by 

treatment of the phage suspension with 10 rnM RNAse and 10 rnM DNAse for 

1 5  minutes at 37°C and 2 . 5  mM proteinase K for 30 minutes at room 

temperature, followed by two extractions of the suspension with PCI9 

( 1 : 1  :0 . 1 : 0 . 1 w/v phenol/ chloroform/ isoamyl alcohol! 0 .09 M Tris-HCI (pH 

8 . 0)) and one extraction with SEVAG (1 :0 . 1 chloroform: isoamyl alcohol) . The 

DNA was precipitated by the addition of 0 . 1 volume 3 M NaOAc (pH 5 . 5) and 

two volumes of 95 % EtOH, followed by mixing, incubation at -80°C for 1 0  

minutes (or -20°C for 3 0  minutes) , and centrifugation for 1 5  minutes at 1 3 ,000 

rpm in a microcentrifuge (Fisher, DuPont or Sorvall) . Unless otherwise 

indicated, this method of was used to precipitate DNA or RNA. The DNA was 

redissolved in water and quantified spectrophotometrically at OD260 • 
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Plasmid DNA preparation. 

Five hundred ml of LB/ 25 Itg/ml tetracycline/ 25 Itg/ml ampicillin was 

inoculated with a 5 ml overnight culture of XLI -Blue bacterial host cells 

(Stratagene) containing the appropriate plasmid and incubated 5 hours at 37°C 

with shaking . Chloramphenicol was added to the culture to a final concentration 

of 62 . 5  Itg/ml and the culture was incubated overnight at 37°C with shaking . 

Bacteria were collected by centrifugation in a GSA rotor for 10  minutes at 6000 

rpm. Bacterial pellets were resuspended in 10  ml of 50 mM glucose/ 25 mM 

Tris-HCl (PH 8 .0)/ 10  mM EDTA/ 5 . 0  mg/ml lysozyme and incubated at room 

temperature for 5 minutes . Twenty ml of 0 .2  N NaOH/ 1 % sodium laurel 

sulfate (SDS) was added, and the mixture was inverted several times to allow 

the solutions to mix and then incubated for 15 minutes on ice . Fifteen ml of 5 

M potassium acetate (PH 4 .8) was then added to the mixture, and the sample 

was inverted again and incubated 15 minutes on ice . The cellular debris was 

pelleted by centrifugation for 15 minutes at 12 ,000 rpm in an HB-4 rotor 

(Sorvall) . The supernatant was combined with 0 .6  volumes of isopropyl 

alcohol and incubated 15 minutes at room temperature . The DNA was pelleted 

by centrifugation for 15 minutes at 12 ,000 rpm in an HB-4 rotor. The pellet 

was dried and redissolved in a 1 :  1 weight! volume solution of CsCl/ TE with 

ethidium bromide ( 100 Itg/ml) and centrifuged for 4 hours at 65 ,000 rpm in a 

VTi65 .2  rotor (Beckman) . The plasmid band was isolated and re-banded . The 

plasmid band was extracted with I -butanol three times and then diluted 1 :4 in 
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dHzO . Two volumes of 95 % EtOH was added to the DNA, and the precipitated 

DNA was collected by centrifugation in an HB-4 rotor for 15 minutes at 12 ,000 

rpm. The DNA was redissolved in 0 .5 - 1  ml of sterile water and quantitated 

spectrophotometrically at OD260 . 

Isolation of specific probes. 

The DNA fragments used in the characterization of intron 1 sequence are 

shown in Figure 8 .  All intron 1 clones were derived from the genomic lambda 

clone Lambda 1 ,  a gift from G. Francini (Harper et aI . ,  1983) . The p 1 3 ,  p 1 2 ,  

and p lBG3 subclones were obtained from Ms . Karen Gorse. The clones were 

obtained by digestion of Lambda 1 with the appropriate enzymes : the insert for 

p l XE7 was derived by digestion with Xbal and £CoRI, and plNTl CAT by 

digestion with Pst! . For the transient transfection studies ,  the gene for 

chloramphenicol acetyl transferase (CAT) from the pCAT -PROMOTER 

construct (Promega) (Gorman et aI . ,  1 982) was isolated by digestion with 

HindlII . The digested DNAs were separated on an 0 . 8 %  agarose gel . The 

insert bands were then isolated from the gel and subjected to electro-elution 

using an Elutrap electro-eluter (Schleicher and Schuell) . The insert was then 

checked for integrity and approximate quantity on a 0 . 8 % agarose/ I X  TAE (40 

mM Tris-acetate (pH 8 . 0)/ 1 mM EDT A) gel . Unless otherwise indicated, the 

agarose used in the electrophoresis studies was Ultrapure agarose (BRL) . 

Fragment subcloning. 

For subcloning of plNTl and p l XE7 , pBluescript II KS + (for plNTl 
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and pBSCAT(R» or pBluescript II SK+ (for p IXE7) vectors (Stratagene) were 

digested with the appropriate enzymes and purified by two extractions with 

PCI9 and one extraction with SEVAG, and ethanol precipitated . The insert was 

ligated to the vector in IX ligation buffer (50 mM Tris-HCI (pH 7 . 8)/ 10 mM 

MgCI2/ 10 mM DTT/ I mM ATP/ 25 Jlg/ml BSA)/ 200 units T4 DNA ligase 

(New England Biolabs) overnight at 1 5°C .  The ligated plasmids were 

transformed into XLI -BLUE competent cells (Stratagene) by incubation of 1 x 

106 competent cells with 40 ng of the ligated plasmid on ice for 30 minutes ,  

heat shocking the cells for 90  seconds a t  42°C , addition of  the cells to  I ml  LB , 

and incubation of the cells I hour at 37°C with shaking . Positive clones were 

detected by differential iJ-galactosidase expression of bacterial colonies on 1 00 

mm LB/ 0 . 35 % bacto-agar (Difco)/ 10 mM MgS04 plates supplemented with 

25 Jlg/ml tetracycline and 25 Jlg/ml ampicillin using 0 . 1 M isopropyl-iJ-D

thiogalactopyranoside (lPTG) and 0 .004 M 5-bromo-4-chloro-3-indolyl-iJ-D

galactopyranoside (X-GAL) (Bethesda Research Laboratories) and verified by 

restriction digest of the recombinant plasmid and resolution on a 0 . 8 %  agarose/ 

IX TAE gel (40 mM Tris-acetate (PH 8 . 0)/ 1 mM EDT A) . Unless otherwise 

indicated, the agarose used in the electrophoresis studies is Ultrapure agarose 

(Sigma) . 

Plasmids used in transfection studies consisted of portions of intron 1 

fused to the gene for chloramphenicol acetyl transferase (see Figure 9) . These 

were created as follows :  the gene for chloramphenicol acetyl transferase (CAT) 
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was subcloned on a 1 .  6 kb HindIII fragment into pBluescript II KS + to create 

pBSCAT(R) . The 1 .6 kb Pstl fragment encompassing the 3' end of intron 1 ,  

ending at the intron l /exon 2 junction, was isolated from the Lambda 1 clone 

and subcloned into pBSCAT(R) in the forward and reverse orientation to create 

plNTl CAT and pINTl CAT(R) , respectively . Deletion constructs of 

plNTl CAT were created using the Kilo-sequencing kit (Takara Industries ,  INC) 

(Henikoff, 1984) (to create pINTl CAT.40 and pINTl CAT. 12) and by 

restriction of plNTl CAT with BstXI enzyme, incubation with Klenow fragment 

of DNA polymerase I to generate blunt ends , and religation (to create 

pBXPCAT) . 

Oligonucleotide synthesis. 

Oligonucleotides for primer extension and DNA sequencing were 

synthesized by the Nucleic Acid Core Facility at the Medical College of 

Virginia . The synthesis products were deblocked in concentrated ammonium 

hydroxide at 55"C for 15 hours . The solution was then evaporated in a 

Speedvac centrifuge connected to a vacuum trap (Savant) . The synthesis product 

was then redissolved in water and purified by thin layer chromatography . 

Briefly , the solid phase was a fluorescent TLC plate and the mobile phase was 

1 -propanol: ammonium hydroxide :water (55 : 35 :  10) .  The oligonucleotide was 

detected by UV light shadowing and the product was scraped from the TLC 

plate , eluted in water, and quantitated spectrophotometrically at OD260 . 

DNA sequencing. 
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All constructs were sequenced using the dideoxy method described by 

Sanger et al (Sanger et aI . ,  1 977) using Sequenase version 2 . 0  (United States 

Biochemical) . Briefly, templates were denatured by boiling the DNA in 0 . 2  N 

NaOH for two minutes followed by chilling for 2 minutes on ice and ethanol 

precipitation. The DNA was redissolved in 6 ILl sterile dH20 and annealed to 2 

ILl (40 ng/ILI) of the appropriate primer and 2 ILl of 5X sequencing buffer ( l X  is 

20 mM Tris-HCI (PH 7 . 5)/ 10 mM MgCI2/ 25 mM NaCl) (USB) by heating to 

65°C and cooling slowly to 37°C . The template/primer mixture was then 

incubated with 2 ILl of a 1 :4 dilution of Sequenase version 2 .0, 2 ILl of 1 . 5 ILM 

dGTP, dCTP, dTTP and 0 . 5  ILl (6 ILCi) a-35S-dATP for 3 minutes at room 

temperature . The reaction mix was then aliquotted to each of four deoxy/ 

dideoxy termination mixes containing G,A,T, and C termination mixes and 

incubated for 5 minutes at 37°C . The reactions were stopped by addition of 

sequencing loading dye (95 % formamide/ 20 mM EDTA/ 0 .05 %  bromophenol 

blue/ 0 .05 %  xylene cyanol) . Sequencing reactions were resolved on a 7 %  

acrylamide/ 8 M ureal I X  TBE (0 .09 M Tris-HCI (pH 8 . 0)/ 0 .9  M boric acid/ 

2 mM EDT A) gel . The gel was adhered to one of the plates by treatment of the 

plate with two coats of methacrylsaure-3-trimethoxysilylpropylester . The gel 

was pre-heated before sample loading by subjecting the gel to electrophoresis at 

50 watts for 30 minutes in IX TBE . The samples were loaded and 

electrophoresed at 50 watts until the bromophenol blue ran to the bottom of the 

gel . The bottom chamber was drained and filled with a 1 :  1 solution of I X  TBE/ 



3M NaOAc . The remainder of the sample was loaded onto the gel and run at 

50 watts for two hours . The gel was then removed form the gel rig , and the 

urea was eluted from the gel by washing it three times in 10% glacial acetic 

acid/ 1 0%  MeOH in dH20 .  The gel was dried overnight in a fume hood, and 

the DNA was visualized by autoradiography . 
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Sequencing data was assembled and analyzed using the sequence analysis 

software package (version 7 . 1 )  of the Genetics Computer Group mounted on the 

Virginia Commonwealth University VAX cluster (Lipman et a! . ,  1 989) . 

Sequence conservation between species was analyzed using alignment 

algorithms and the FASTA program (Lipman et a! . ,  1 989) . Homologous 

regions were defined as those regions of intron 1 which showed significant 

homology to murine or chicken c-myb sequences when searched against the 

entire sequence database . 

Cell culture and differentiation studies. 

K562 (Andersson et a! . ,  1979) , CB23 (EBV transformed cord blood B

cell line , a gift of Ian McGrath) , CCRF-CEM (Foley , 1 965) , U937 (Larsson et 

a! . ,  1 988) , HL60 (Collins et a! . ,  1 977) , and MOLT-4 (Ohyashiki et a! . ,  1 988) , 

REH (Greaves and Janossy , 1978) , Jurkat-E6 1 (Weiss et a! . ,  1 984) , and HSB-2 

(Adams et a! . ,  1968) cell lines were grown in RPMI 1 640 (GIBCO) media 

supplemented with 10%  defined calf serum (Hyclone) , 40 JLg/ml gentamicin at 

37° C in a moist, 5 %  CO2 environment. U937 cells were differentiated by 

aliquotting 5 x 107 cells to four 1 00 mm petri dishes containing 50 ml RPMI 
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1 640 (Gibco/Br!)/ 10% defined calf serum/ 40 Itg/ml gentamicin! 250 nm 

phorbol ester dibutyrate (PDbu) (Rovera et aI . ,  1 979) . Cells were harvested at 

0, 6, 12 ,  and 24 hours post induction with PDbu by scraping the cells from 

each petri dish at a time point, followed by centrifugation at lOoo rpm for ten 

minutes in a clinical centrifuge .  HL60 cells were differentiated in 1 . 3 % 

dimethyl sulfoxide (DMSO) (Collins et aI . ,  1 977) ; cell were harvested at 0, 1 ,  

3 ,  6 ,  12 ,  24, and 96 hours post-induction with DMSO by removal of an aliquot 

of cells at the appropriate time point and centrifugation as indicated for the 

U937 cells . The differentiated phenotype was monitored by adherence of the 

cells to plastic (for U937 cells) and differential staining using Wright/ Giemsa 

stain (for U937 and HL60 cells) . 

Northern blot analysis. 

Total RNA was isolated by the method of Chirgwin et al (Chirgwin et 

aI . ,  1 979) . Log-phase cells (between 6 x 105 and 1 x 106 cells/ml) were 

harvested and lysed in 4 M Guanidine hydrochloride/ 7 %  iJ-mercaptoethanoll 

0 . 5 % sarcosyl . RNA was pelleted by ultracentrifugation through a 5 . 7  M CsCI 

cushion in a 70. 1 Ti rotor (Beckman) for 20 hr at 20°C . The RNA pellets were 

washed with lOO% ethanol, air dried, and redissolved in sterile dH20 .  The 

RNA was quantitated spectrophotometrically at OD260 • 

Poly A + selection was performed using the Poly A Tract System 

(Promega) . In brief, total RNA was incubated with oligo d(T) conjugated to 

magnetic particles .  Poly A +  RNA annealed to the oligo d(T) was separated 
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from poly A- RNA by capturing the magnetic particles using a magnetic stand . 

The poly A- RNA was removed, and the poly A + RNA was washed four times 

in O . lX  SSC ( lX is 0 . 14  M NaCl/ 0 .0 15  M sodium citrate) and then eluted 

from the magnetic beads in dHp. 

Ten j.tg of total RNA or 5 j.tg poly A +  RNA were denatured in 1 X  

MOPS buffer (0 .02 M MOPS (pH 7 .0) ! 5 mM NaOAc! 1 mM EDTA)! 2 . 2  M 

formaldehyde! 50% formamide . The samples were heated for 5 minutes at 

65°C and then separated on a 6 . 6% formaldehyde, 1 % agarose gel in 1 X  

MOPS buffer. Equal loading o f  samples was determined by staining the gel in 

1 j.tg!ml ethidium bromide and visualization with UV light . The RNA was 

transferred to NYTRAN blotting membrane (Schleicher and Schuell) using the 

method described by Thomas (Thomas, 1980) . For Northern blot analysis , a 

1 . 1  kb BamHI fragment (BAM2) containing exons 9- 14  of the normal c-myb 

message was nick translated (Bethesda Research Laboratory kit) . Filters were 

hybridized to the probe in 1X prehybridization buffer (50 mM sodium 

phosphate (pH 6 .5)! 0 . 1 % BSA! 0 . 1 % ficoll! 0 . 1 % polyvinyl pyrollidine! 5X 

SSC!  0 . 1 % SDS! 250 j.tg!ml yeast RNA)! 50 % formamide! 10% dextran 

sulfate) . The blots were hybridized for 16-20 hours at 42°C . The filters were 

washed 3 times in 2X SSC! 0 .2 % SDS at 42°C , twice in 0 . 5X SSC! 0 . 2 % SDS 

at 60°C , and twice in O . IX  SSC! 0 . 1 % SDS for 10  minutes at 60°C . The blots 

were exposed to Kodak XAR-5 film for the times indicated in the figure 

legends at -80°C with Quanta III intensifying screens . 
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Following exposure to determine levels of c-myb, the blots were stripped 

by incubating the filters at 90°C in O .O lX SSC/ 0 .0 1  % SDS for 10 minutes and 

re-probed with a 1 . 9 kb nick-translated BamHI fragment of iJ-actin, derived 

from the LK22 1 plasmid (Gunning et aI . ,  1 983) . The blots were hybridized, 

washed and exposed to XAR-5 film as described above. 

To determine relative levels of c-myb expression between cell lines in the 

poly A + selected blot, the radioactive blot was scanned using the Betascope 

603 Blot Analyzer (Betagen) provided by the Nucleic Acids Core Facility at the 

Medical College of Virginia. Counts per minute per lane were determined for 

c-myb and for the corresponding iJ-actin hybridization, and each c-myb lane was 

standardized for iJ-actin levels . 

Southern blot analysis. 

For hybridization of DNA fragments to radioactive probes ,  genomic and 

plasmid DNA (digested with the appropriate enzymes) or cDNA (from the RT

PCR assay described below) was subjected to electrophoresis in a 300 ml 1 % 

agarose/ IX TAE gel in IX  TAE buffer overnight at 1 5  volts . The DNA was 

transferred to NYTRAN blotting membrane (Schleicher and Schuell) using the 

method described by Southern (Southern, 1 975) . Briefly, the gel was incubated 

for 1 5  minutes in denaturing solution ( 1 . 5  M NaCl/ 0 . 5  N NaOH) , then 

neutralized for 1 5  minutes in neutralizing solution ( 1 . 5  M NaCl/ 1 M Tris-HCI 

(pH 8 . 0)) and equilibrated 15 minutes in lOX SSe . Following capillary 

transfer of the DNA to NYTRAN membranes in lOX SSC, the blot was baked 



2 hours in vacuo at 80°C . 

For hybridization, 1 x 106 cpm/ ml of either ,),32P_ATP labeled 

oligonucleotide (for RT-PCR assay) or nick-translated probe (for genomic 

7 1  

DNA, phage DNA, and plasmid DNA blots) was hybridized to the filters for 1 8  

hr at 42°C using IX prehybridization buffer/ 40% formamide (for 

oligonucleotide probes) or IX  prehybridization buffer/ 50% formamide/ 1 0 %  

dextran sulfate (for nick-translated probes) . The blots were wash a s  indicated in 

the Northern blot analysis section (for nick translated probes) or in 2X SSC/ 

0.2 % SDS for 30 minutes at 420 C (for oligonucleotide probes) . The blots were 

exposed to Kodak XAR-5 film for the time indicated in each specific section. 

Primer extension analysis. 

A 30 base oligonucleotide, PEl ,  (5 ' 

CCAAGTCCTCATCATCCTCGTCACTGCT AT -3 ' )  complimentary to c-myb 

exon 2 sequence was synthesized and end labeled with ,),32P_ATP using the 5 '  

termini labeling kit (Bethesda Research Laboratories) (Thomas , 1980) and 

purified using NENSORB columns (DupontlNEN) . For primer extension 

(Thomas , 1980) , 1 x 106 cpm (counts per minute) of the end-labeled primer 

were annealed to 10 p,g of total CCRF-CEM, K562 , HL-60 RNA and tRNA (as 

a negative control) .  The melting temperature (Tm) of the primer was 

determined according to the formula Tm = 8 1 . 5°C + 16 .6  log (M NaCl) + 

(mole fraction of G + C) - 5OO/length of primer. The primer was annealed at 

Tm- 10° for 2 hours in 0 .4  M NaCl and 400 mM PIPES (pH 7 .0) . Following 
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annealing, the primer was extended for 1 hour at 37°C in 50 mM Tris-HCl 

(pH 8 . 3)/ 40 mM KCII 6 mM MgCI2/ 1 mM DTT/ 1 mM each dATP, dCTP, 

dGTP, and dTTP/ 200 units reverse transcriptase (Mo-MuLV-RT, Bethesda 

Research Laboratories) . The cDNA was purified by denaturing the 

cDNA/RNA complex at 95°C for 5 minutes, followed by incubation of the 

reaction mix with 10 p,g RNAse A (DNAse free) . The cDNA was then 

extracted with PCI9 and SEVAG (once each) . Twenty p,g of carrier tRNA was 

added to the cDNA, and the cDNA was ethanol precipitated as indicated in the 

sequence analysis section. The cDNA was pelleted by centrifugation for 1 5  

minutes at 12 ,000 rpm in a microcentrifuge (Fisher) , washed once in 70% 

EtOH (-20°C) and dried in vacuo . The pellet was redissolved in one volume of 

water and one volume of sequencing loading buffer (Maniatis et aI . ,  1 989) . 

The cDNA extension products were separated by loading the entire sample on a 

7 %  polyacrylamide/ 8 M  urea gell IX TBE (preheated as in the sequence 

analysis section) and running the gel at 50 watts for two hours . The gel was 

transferred to 3M paper (Whatman) , dried in vacuo for 1 hour at 60°C and 

exposed to Kodak XAR5 film for three days at -80°C with an intensifying 

screen. The size of the extended fragments were mapped against a standard 

curve of [-y32p]ATP labeled cj>X1 74 (HaeIII digested) marker (Bethesda 

Research Laboratories) with a ±2bp error. 

In vitro transcription. 

The construct p lXE7 , containing the last 500 bp of intron 1 ,  exon 2 and 



363 bp of intron 2 ,  was shortened by deleting the intron 2 sequence using a 

Sad site at the end of exon 2 and a convenient HindI restriction site in the 

poly linker of pBluescript II SK + ,  followed by restriction site fill-in with T4 

DNA polymerase and blunt end ligation to create p 1 XE7SH (Figure 14) .  
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For in vitro transcription, p 1XE7SH was linearized at a BstXI site 220 

bp upstream of the intron 1 1  exon 2 junction to detect transcripts originating 

from the 3' end of intron 1 .  The linearized template was incubated with 

transcription buffer (40 mM Tris-HCI (pH 8 .0)/ 25 mM NaCII 8 mM MgCl21 2 

mM spermidine-(HCL)3)1 5 mM DTTI 2 . 5  mM each ATP, CTP, and GTPI 1 00 

j.tM UTPI 1 unit RNAsin (RNAse inhibitor, Promega)1 50 j.tCi 32p_UTPI 5 units 

T7 RNA polymerase (Bethesda Research Laboratories) . The reaction mix was 

incubated 30 minutes at 37°C . Ten units of RNAse free DNAse (Promega 

Laboratories) was added to the reaction mix, and the mix was incubated 5 

minutes at 37°C . The RNA template was purified by PCI9 and SEVAG 

extraction followed by ethanol precipitation. The RNA was redissolved in 

DEPC (diethyl pyrocarbonate) treated dHp. 

RNAse protection analysis. 

RNAse protection was carried out with the RPAII kit (Ambion, INC) . 

Four j.tg of poly A + RNA from the indicated cell lines was annealed to 6 x 1 05 

cpm of the RNA probe in 20 j.tl hybridization buffer (80% deionized 

formamidel 100 mM sodium citrate (pH 6 .4)1 300 mM sodium acetate (PH 

6 .4)1 1 mM EDTA) for 14- 16  hours at 20°C . The annealed RNA: RNA 
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complex was digested in 25 units RNAse A/ 1000 units RNAse T 1  in 200 J.tl of 

RNAse digestion buffer (solution Bx, patent pending, Ambion) for 30 minutes 

at 1 5°C . The digested RNAs were precipitated with the addition of 1 . 5 

volumes ethanol! guanidine thiocyanate solution (solution Dx, patent pending, 

Ambion) , storage of the samples for 30 minutes at -20°C , and centrifugation in 

a microcentrifuge (Fisher) for 1 5  minutes at 12 ,000 rpm. The pellets were 

washed once in 70% EtOH (-20°C) and dried in vacuo . The RNA was 

redissolved in 6 J.tl loading buffer (80% formamide/ 2 mM EDTA/ 0 . 1 % 

bromophenol blue/ 0 . 1 % xylene cyanol) and resolved on a 4%  polyacrylamide/ 

8 M ureal IX TBE gel as indicated in the primer extension analysis section. 

The gel was dried in vacuo and exposed to Kodak XAR5 film for three days at 

-80°C with an intensifying screen. The transcription start sites were mapped as 

indicated in the primer extension analysis section. 

Transient transfection assays . 

For transient expression assays, CCRF-CEM and K562 cells were grown 

to log phase (8 X 105 to 1 X 106 cells/ml) . The cells were harvested, and 

CCRF-CEM cells were resuspended in serum-free RPMI 1640 media to a fmal 

concentration of 2 x 107 cells/ml . One ml aliquots of cells were cotransfected 

with 70 J.tg of covalently closed circular test plasm ids and 35 J.tg of pCMV-{3 

(MacGregor and Caskey, 1989) , which contains the gene for J3-galactosidase 

under the control of the CMV promoter. K562 cells were resuspended in 

serum free media to a final concentration of 1 x 107 cells/ml . Aliquots of 0 . 7  
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ml were transfected with 50 p.g of covalently closed circular test plasmid and 25 

p.g of pCMV-/3 plasmid . All cell lines were transfected using a BTX 

electroporater and a 0 .4  mm electrode at 2 1 6  V and 1000 microfarads . 

Following electroporation, the cells were incubated in 9 . 5  ml RPM! 1 640/ 1 0 %  

defined calf serum/ 40 p.g/ml gentamicin for 4 8  hrs . a t  37°C in a 5 %  CO2 

environment, harvested by centrifugation for 10  minutes at 1000 rpm in a 

clinical centrifuge, washed once in IX  PBS ( 140 mM NaCl/ 10  mM Na2HP04/ 

2 mM KCl/ 1 . 5 mM KHP04) ,  and resuspended in 0 . 1 ml 0 .2  M Tris-HCI (pH 

7 .4) . 

Cell free lysates were prepared from transfected cells by three cycles of 

freezing on dry ice and thawing at 37°C , followed by sonication for two 

seconds using a fine tip sonicator (Microson Ultrasonic Cell Disruptor, Heat 

Systems) on setting 2. Supernatants were clarified by centrifugation for 1 5  

minutes at 12 ,000 rpm in a microfuge a t  4°C . The lysates were standardized for 

protein content by incubating 5 p.l of the lysate in an 80% solution of Bradford 

protein reagent (Bradford, 1976) (Biorad) and monitoring the absorbance of the 

mixture spectrophotometrically at OD595 • Known quantities of bovine serum 

albumin (BSA) were used to derive a standard curve of absorbance vs quantity 

of protein, and the lysates were quantitated against the standard curve. 

Transfection efficiency was measured by assessing the level of /3-

galactosidase activity of the cell free lysates . Equal quantities of protein were 

incubated in 1 mM MgCI2/ 45 mM /3-mercaptoethanol! 0 . 1 M sodium 
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phosphate (pH 7 . 5)/ 0 . 8  M o-nitrophenyl-J3-D-galactopyranoside (ONPG) for 1 

hour at 37°C . The reactions were stopped by the addition of 2 volumes of 1 M 

NaC02 , and the cleavage of ONPG was monitored spectrophotometrically at 

OD42o •  

For the CAT assays, extracts containing equal J3-galactosidase units for 

each set of constructs were incubated with 10  III 4 mM Acetyl CoA and 1 0  JLl 

fluorescent chloramphenicol (Molecular Probes , INC) (Hruby and Brinkley , 

1 990) . The reactions were incubated for 5 hours at 37°C . Acetylated 

chloramphenicol was isolated by extraction with ethyl acetate and desiccation of 

the ethyl acetate in vacuo . The samples were redissolved in 10 III ethyl acetate 

and spotted onto a non-fluorescent thin layer chromatography plate . The plate 

was subjected to thin layer chromatography in a chloroform:methanol (9 : 1 )  

mobile phase for 1 hour . 

Conversion of chloramphenicol to the acetylated forms was measured by 

obtaining a photographic image of the thin layer chromatography plate using the 

Star 1 Camera Controller System (Star 1 Image Processing Software , 

Photometries) , kindly provided by Dr. Sarah Rutan. Histograms were derived 

for each assay by converting the amount of UV absorption in each fluorescent 

spot to a numerical value using the Star 1 data reduction software . 

Percent conversion of chloramphenicol was determined by conversion of 

the histograms to bar graphs using the Quattro Pro spreadsheet program 

(Borland) . Briefly , the numerical values of the peaks corresponding to the 
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acetylated chloramphenicol in each lane were added and compared to the value 

of all spots in the lane . Percent conversion for each sample was determined as 

the value of the acetylated peaks/total value . The percent conversion of each 

construct for each set of transfections was then plotted as a bar graph. 

RT-PCR assay. 

CCRF-CEM cells were transfected with pI2NTl CAT. 12  and incubated 

as indicated above . The cells were harvested, and total RNA was isolated from 

the transfected cells and 1 x 107 untransfected CCRF-CEM cells using a 

guanidine-HCL lysis procedure (AutoGen) . Following isolation, the RNA 

samples were incubated in 5 units RQ1 DNAse (Prom ega) for 30 minutes at 37° 

C to remove any contaminating plasmid DNA. The samples were extracted 

twice with an equal volume of PCI9, once with chloroform, and ethanol 

precipitated in the presence of 20 J.tg carrier tRNA. CDNA was synthesized 

from each sample using the Superscript Preamplification System (BRL) . 

For reverse transcription, 39 J.tl of untransfected CCRF-CEM and 

pINTl CAT. 12-transfected CCRF-CEM total RNA was incubated with 3 J.tl of 

oligo d(T) (0 .5  mg/ml) , mixed gently, heated to 70°C for 10 minutes,  then 

quick chilled . The contents were collected by brief centrifugation. The 

annealed RNA/ oligo d(T) sample was incubated in 20 mM Tris-HCI (PH 8 . 4)/ 

50 mM KCI/ 25 mM MgCI2/ 1 mg/ml bovine serum albumin (BSA)/ 10 mM 

dNTP mix/ 0 . 1 M DTT/ 2 units Superscript RT . The samples were incubated at 

room temperature for 10  minutes, then at 42°C for 50 minutes .  The samples 
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Table 3 .  Oligonucleotides utilized in the RT-PCR studies . The two intron 1 
primers , MBM2-5 ' and INTI S ,  were each used with a primer specific for the 
gene for chloramphenicol acetyl transferase (CAT. 3 ' ) .  If the promoter activity 
observed in the transient transfection assays corresponds to start site utilization 
observed in the RNAse protection analysis (Figures 1 5 ,  16 ,  and 17) .  
amplification of RNA should only be observed with the MBM2-5 ' /CAT .3 '  
oligos . To  verify that the RT-PCR reactions were working, oligonucleotides to 
the gene for human iJ-actin (ACTIN.5 '  & ACTIN .3 ' )  were used as an internal 
control . 



Primer 
MBM2-5 ' 
INT I . 5 '  
CAT . 3 '  
ACTIN .5 '  
ACTIN . 3 '  
CAT.PROBE 
ACTIN .PROBE 

Sequence 
5 '  -GTCT ACCCA TTCTT ATTTCTG-3 '  
5 '  -CCAGTAGTAGTCT AAA TCCTC-3 ' 
5 '  -TGCCACTCATCGCAGT ACTGT -3 ' 
5 '  -CCACGAAACTACCTTCAACTCC-3 ' 
5 '  - TCAT ACTCCTGCTTGCTGATCC-3 '  
5 '  -ACGTGGCCAA TATGGACAACTTCTTCGCCC-3 ' 
5 '  -GCACCCAGCACAATGAAGATCAAGATCATT -3 ' 
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were denatured 5 minutes at 95°C , chilled 10  minutes on ice , and then 

incubated 20 minutes in the presence of 2 units RNAse H .  
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Following reverse transcription, each reaction was divided into three 

aliquots . One gem of Ampliwax (Perkin-Elmer Cetus) was added to each tube 

with a sterile needle and heated for 1 minute at 80°C . The samples were cooled 

to room temperature . 

For the PCR reactions , a number of oligonucleotides were generated 

(Table 3 ) .  Two intron 1 primers were created as 5' PCR primers : MBM2-5 ' , a  

2 1  base oligonucleotide beginning 2 6  bp upstream o f  exon 2 , and INT I S ,  a 

2 1  base oligonucleotide beginning 6 1  bases upstream of exon 2 (to detect non

specific start sites within the intron) . A 2 1  base 3 '  PCR primer, CAT . 3 ' ,  in 

the CAT gene of pINTI CAT . 12 was also created to generate a 759 and 724 bp 

PCR fragment with the INTI S and MBM2 .5 '  primers , respectively . Primers 

were created to the human iJ-actin gene, ACTIN .5 '  and ACTIN . 3 '  to generate a 

350 bp PCR fragment as an internal control for the reverse transcriptase 

reaction. 

The cDNAs were amplified with the three sets of primers using the 

GeneAmp Kit (Perkin-Elmer Cetus) (Silver and Keerikatte, 1 989; Mole et aI . ,  

1 989) . The cDNAs were combined with I X  Synthesis Buffer ( 10  mM Tris-HCI 

(PH 8 . 3)/ 50 mM KCI) , 0 . 5  units Amplitaq DNA polymerase (Perkin-Elmer 

Cetus) , and 4 J.LM of each of the appropriate primers . The samples were heated 

to 95°C for 4 minutes and then subjected to thirty cycles of the following 



8 1  

reactions : denaturing at 94°C for 1 . 5 minutes , annealing at 55°C for 2 minutes , 

and extension at noc for 2 minutes . The PCR reactions were separated on a 

1 % agarose gel and transferred to NYTRAN using the Southern blot procedure . 

For hybridization, CAT.PROBE, a 30 base oligonucleotide internal to the PCR 

fragments generated by the intron l ICAT .3 '  PCR reactions was labeled with 

h,32P]A TP as indicated in the primer extension analysis section. The blot was 

hybridized and washed using the procedure described in the Southern blot 

analysis section and exposed 48 hours at -80°C with an intensifying screen. 

Following exposure to determine the presence of CAT- derived PCR 

fragments, the blot was stripped as described in the Northern blot analysis 

section and re-probed with a ,),32P_ATP labeled 30 base oligonucleotide probe 

specific to the f)-actin PCR fragment, ACTIN. PROBE. The blots were 

hybridized, washed and exposed to film as with the CAT.PROBE 

oligonucleotide. 

Electrophoretic mobility shift assay (EMSA) . 

For the EMSA, nuclear extracts were prepared from CCRF-CEM and 

K562 cells grown to log phase using the procedure described by Dignam 

(Dignam et aI . ,  1983) .  Cells were harvested and washed once in IX PBS . The 

volume of the cell pellet was measured, and the cell membranes were lysed by 

incubation of the cells in two volumes of Solution A ( 10  mM HEPES (pH 7 . 9)1 

1 . 5 mM MgCl21 10  mM KCl/ 0 .5  mM phenylmethyl sulfonyl fluoride (PMSF)I 

0 . 5  mM DTT) with douncing of the cells ten times in a B pestle homogenizer . 
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The nuclei were pelleted by centrifugation at 10 ,000 rpm for 10 minutes at 4°C . 

The cytoplasmic supernatant was then removed . The nuclei were resuspended in 

1 volume of Solution C (20 mM HEPES (pH 7 . 9)/ 1 . 5 mM MgCI2/ 0 . 2  mM 

EDTA/ 0 .5  mM PMSF/ 0 .5  mM DTT/ 20 % glycerol) . While stirring , 5 M 

NaCl was added to the nuclei to a final concentration of 420 mM. The nuclei 

were incubated on ice 30 minutes ,  and the extract was cleared by centrifugation 

at 1 3 ,000 rpm for 30 minutes at 4°C . The cleared extract was then dialyzed for 

two hours against Solution D (20mM HEPES (pH 7 . 9)/ 1 . 5 mM MgCI2/ 80 

mM KCII 0.2 mM EDTA/ 0.5 mM PMSF/ 0.5 mM DTT/ 1 5 %  glycerol) . 

The DNA fragments used in the gel mobility shift assay are shown in 

Figure 22.  Fragments I, II, and III were generated by the polymerase chain 

reaction (PCR) . The six primers were use to make the three fragments are 

indicated in Table 4 .  Fragment IV was generated by  digestion of  the pINTl 

plasmid, containing a 1 . 6 kb PstI fragment from the 3 '  end of intron 1 (see 

Figure 9) , with XbaI to generate a 166 bp fragment . 

The PCR products were generated using the GeneAmp kit (Perkin-Elmer 

Cetus) . The appropriate primers were combined with 100 ng of the pINTI 

plasmid and amplified using the procedure described in the RT-PCR assay 

section. The integrity of the PCR products were verified by electrophoresis of 

1 / 1 0  of the PCR reaction on a 0 . 8 %  agarose/ IX TAE gel . The remainder of 

the PCR products was extracted twice with PCI9, once with SEVAG, and 

ethanol precipitated as described previously . 
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Table 4 .  Oligonucleotides used to generate peR fragments for the 
electrophoretic mobility shift assay (EMSA) . 
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Fragment Oligo Sequence 

SMJ24 5 '  -GGATT ACATCATGTCGCCATTCA-3 ' 
SMJ2 1 5 '  -TCATTGCAA TGTTGGGA-3 '  

II SMJ25 5 '  -GTTTCCCAACATTGCAA TGAC-3 ' 
SMJ26 5 ' -GCCATGGATTTAAAGAACCC-3 ' 

III SMJ 14 5 ' -GGCCACTTGTTAGTCAG-3 
SMJ22 5 ' -ACAAACAGTAAGCATAT-3 ' 
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For the EMS assay , the four intron 1 fragments were end labeled with 

[y32P]A TP as indicated in the primer extension analysis section. Five j.tg of 

nuclear extract was incubated with 5 x 10
4 

cpm of each fragment with varying 

amounts of non-specific or specific competitor, as indicated in the figure 

legends . The samples were incubated at room temperature for 20 minutes ,  and 

fragments which bound nuclear proteins were resolved on a 4 % non-denaturing 

polyacrylamide gel (29 : 1 polyacrylamide : bisacrylamide)/ IX TBE using a 

vertical gel electrophoresis system (BRL) for 1 . 5 hours at 150 volts . The gel 

was dried in vacuo and exposed to Kodak XAR5 film overnight at -80°C . 

Characterization of a rearrangement in the c-myb promoter in the acute 

lymphoblastic leukemia cell line CCRF-CEM. 

The purpose of these studies was to determine the cause of a restriction 

fragment length polymorphism (RFLP) detected by Southern blot analysis in the 

promoter region of c-myb in the acute lymphoblastic leukemia cell line CCRF

CEM. A CCRF-CEM genomic DNA library was created and screened with a 

DNA probe specific for the c-myb promoter. Sequence analysis was used to 

characterize the alteration in the c-myb promoter. The unique sequence found 

adjacent to the promoter (designated the myb rearranged region (MRR) region) 

was mapped to chromosome 6 using Southern blot analysis of somatic cell 

hybrids . The MRR sequence was linked in its normal state to the c-myb locus 

using field inversion gel electrophoresis (FIGE) mapping . Both the c-myb 

promoter probe and MRR probes were used to screen a panel of AMLs and 



ALLs to look for similar rearrangements . The effect of the rearrangement on 

c-myb promoter activity was assessed in chloramphenicol acetyl transferase 

(CAT) transient expression assays . The normal locus of the MRR sequence 

was identified and characterized by screening a human placental genomic 

library with a portion of the MRR sequence . 

Phage DNA preparation. 

Same as above. 

Plasmid DNA preparation. 

Same as above. 

Sequence analysis. 

Same as above. 

Genomic DNA isolation. 
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Leukemia cell samples (ranging from 1 x 107 to 2 X 107 cells/ sample) 

were obtained through the Massey Cancer Center Bone Marrow Transplant 

Laboratory Shared Resource . Genomic DNA was isolated from the leukemic 

samples and cell lines using standard methods (Maniatis et aI . ,  1 989) . Briefly, 

the cells were collected by centrifugation for 10  minutes in a clinical centrifuge 

and washed once with IX PBS . The cells were resuspended in 9 . 5  ml of I X  

SSCE ( I x  SSC/ 1 mM EDTA)/ 0 .5  ml 20 % SDS/ 1 mg/ml proteinase K 

(Sigma)/ 10 JLg/ml RNAse A (Sigma) . The cells were incubated at 50°C for 

four hours and then at 42°C overnight ( 12 - 16  hr) . The protein was separated 

from the DNA by two extractions with PCI9 and one extraction with SEV AG 



(equal volume for each extraction) . The DNA was then precipitated by the 

addition of 0 .5  ml 10 M NH40Ac and 20 ml 95 % EtOH (-20°C) . The 

precipitated DNA was air dried, redissolved in sterile dHP and quantitated 

spectrophotometrically . 

Isolation of specific probes. 
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The probes used in the Southern blot analysis and library screenings are 

shown in Figure 25 . The 1E2 c-myb promoter fragment (Figure 25) used to 

screen the CCRF-CEM genomic library and in Southern blot analysis was 

derived from the genomic human c-myb lambda clone Lambda 1 (Harper et aI . ,  

1 983) . The KpnI-SphI fragment (MRR-ks) used to clone the norrnal locus of the 

MRRI unique sequence and in Southern blot analysis was derived from the 

MRR 1 clone obtained from the CCRF-CEM genomic library, described below . 

Insert isolation was the same as that described previously . Both fragments were 

subcloned from the lambda clones into pBluescript II KS + (Stratagene) using 

the indicated restriction sites described . 

Southern blot analysis . 

Same as above. 

Localization of the MRR sequence to chromosome 6. 

DNA from two human/hamster somatic cell hybrids GM10629 ( 1 0629) 

and GM03700 (3700) were obtained from the National Institute of General 

Medial Sciences Repository (NIGMS) , along with human parental cell culture 

DNA (NAIMR90) and hamster DNA (NA10658) . Ten j.tg of each DNA were 
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digested with PstI and subjected to electrophoresis , blotted, hybridized, washed 

and exposed to X-ray film as indicated in the Southern blot procedure . The blot 

was hybridized to the nick-translated MRR-ks probe indicated in Figure 25B . 

Field inversion gel electrophoresis (FIGE) analysis. 

Agarose plugs of normal peripheral blood lymphocytes (PBLs) were 

created for genomic mapping of the MRR and c-myb promoter sequences in the 

following manner: one hundred milliliters (ml) of whole blood was obtained 

from a volunteer and mixed with 2 ml of heparin ( 10,000 u/ml) to prevent 

clotting . The blood was diluted 1 : 1  in serum-free RPMI- 1640 . The diluted 

blood was transferred to 50 ml conical tubes in 40 ml aliquots . Ten ml of 

Ficoll-paque (Pharmacia) was layered underneath the diluted blood, and the 

tubes were centrifuged for 20 minutes at 1000 rpm in a clinical centrifuge . The 

peripheral blood lymphocytes were removed from the Ficoll gradient by 

aspiration of the serum layer and removal of the PBLs with a pipet . The PBLs 

were diluted 1 :4 in IX PBS ,  and cell number and viability was determined by 

diluting 0 .2  ml of cells in 0 .2  ml Trypan Blue and counting the cells in a 

hemocytometer. The cells were centrifuged for 10  minutes at 1000 rpm in a 

clinical centrifuge, and 1 . 5 x 107 cells were resuspended in 0 .5  ml of I X  PBS .  

An equal volume o f  2 % inCERT agarose (FMC Bioproducts) i n  0 . 5X TBE 

(boiled 30 seconds and cooled to 50°C) was added to the PBLs, and this 

mixture was aliquotted into an agarose plug mold in 100 III aliquots . The plugs 

were chilled for 15 minutes at 4°C , removed from the gel mold and incubated 
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for 2 hours at 50DC in 0 .5  M EDTA (PH 8 .0)1 1 % sarcosyl/ 100 /Lg/ml 

proteinase K. An additional 100 /Lg/ml of proteinase K was then added to the 

plugs , and the plugs were incubated overnight at 50De . Following overnight 

incubation, the plugs were washed twice in TEl 1 mM PMSF for two hours at 

rocm temperature and three times in TE . The plugs were stored in TE at 4DC . 

For field inversion electrophoresis, the agarose plugs were cut in half 

with a cover slip , and half plugs were digested with 40 units of EagI enzyme 

(New England Biolabs) overnight at 37DC . The following day, a 300 ml 1 % 

Ultrapure agarose (BRL)I 0 .5X TBE gel was cast with a 50 mm comb arranged 

with the teeth touching the bottom of the casting mold . The digested agarose 

plug was loaded into a well, one half plugs containing lambda high molecular 

weight markers (FMC Bioproducts) were loaded on both sides of the EagI 

digest, and all the wells were filled with liquid 1 % inCERT agarosel 0 . 5X TBE 

(50DC) . The gel was chilled at 4DC for 15 minutes . The gel was then subjected 

to field inversion electrophoresis in 0 .5X TBE using the Switchback Pulse 

Controller (Hoefer Scientific Instruments) for 28 hours at lODC with buffer 

recirculation (200 volts , with a ramping pulse time ranging from 1 to 50 

seconds, and a forward: reverse ratio of 3: 1 ) .  Following electrophoresis, the gel 

was stained for 30 minutes in 1 /Lg/ml ethidium bromide . The high molecular 

weight DNA was nicked prior to transfer by exposure to a UV light source 

(Hoefer Transilluminator, 254 nm) for one minute . The DNA was transferred 

to NYTRAN nylon membrane using the Southern blot procedure . The blot was 
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baked 2 hours in vacuo at 80°C . The blots were hybridized to the nick

translated 1E2 probe, washed, and exposed to Kodak XAR-5 film for 48 hours 

at -80°C as indicated in the Southern blot analysis section. 

Following exposure to determine hybridization to the lE2 probe, the blot 

was stripped as indicated in the Northern blot analysis section and re-hybridized 

to the nick-translated MRR-ks probe . The blot was hybridized, washed and 

exposed to XAR-5 film as with the l E2 probe . 

Screening a CCRF -CEM genomic library. 

A CCRF-CEM genomic library was created in the lambda vector 

ADASHII (Stratagene) in the following manner: Two hundred Ilg of CCRF

CEM genomic DNA were partially digested with MboI at a concentration of 0 . 3  

units enzyme/ 0 .9  Ilg  DNA a t  37°C for 1 hour. The DNA was extracted twice 

with PCI9 and once with SEV AG and ethanol precipitated as previously 

described . The DNA was loaded onto a 10%-40 % sucrose gradient. The 

gradient was centrifuged 22 hours at 22,000 rpm in an SW-28 . 5  rotor 

(Beckman) . One ml fractions of the gradient were collected, and 5 III of each 

fraction was subjected to electrophoresis on a 0 . 8 %  agarose/ IX TBE gel . The 

gel was stained for 15 minutes in 1 Ilg/ml ethidium bromide, and the DNA was 

visualized using ultraviolet light to size the DNA fragments in each fraction .  

One fraction, containing DNA fragments between 1 7  and 23 kb, was 

precipitated as described previously and ligated to BamHI-digested ADASHII 

arms as indicated in the fragment subcloning section. The ligated arms were 



packaged into phage heads and tails using the Gigapack Gold II packaging 

system (Stratagene) . 

9 1  

T o  plate the library , 0 . 5  ml o f  an overnight culture o f  Escherichia coli 

host SRB cells were incubated in 50 ml NYZ media (86 mM NaCl! 8 mM 

MgSOi 0 .5 % yeast extract! 1 % casamino acids) for 6 hours at 37°C . The cells 

were harvested and resuspended in 25 ml ice cold 10 mM MgS04 . The SRB 

cells were infected with 1 . 2 x 106 plaque forming units (pfu) and aliquotted to 

1 3  ml tubes at 700 /-tlltube . The phage were allowed to adsorb to the bacteria 

for 15 minutes at 37°C . Seven ml of NYZ media! 0 . 75 %  agarose (boiled to 

dissolve the agarose and cooled to 50°C) were added to each tube, and the 

mixture was plated on a 1 50 mm NYZ! 0 .35 % bacto-agar! 10 mM MgS04 

plate . The plates were incubated overnight at 37°C . 

Following overnight incubation, duplicate plaque lifts were performed on 

each plate using nitrocellulose filters (Schleicher and Schuell) .  After air 

drying, the filters were denatured 1 . 5 minutes in denaturing solution, 

neutralized for 1 . 5 minutes in neutralizing solution, and the DNA was fixed for 

1 . 5 minutes in 3X SSC. The filters were baked 2 hours at 80°C in vacuo . The 

filters were hybridized to the nick-translated 1E2 probe as described in the 

Southern blot analysis section. The blots were exposed to Kodak XAR-5 film 

for three days at -80°C . Plaques corresponding to duplicate signals were cored 

out of the plate using the large end of a Pasteur pipette and placed in 1 ml of 

SM buffer (1 mM NaCl! 8 mM MgSOi 50 mM Tris-HCI (pH 7 . 5)! 0 . 1 % 
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gelatin) with a drop of CRCl3 added . The phage were eluted for 2 hours at 

room temperature , and 50 �l of an overnight culture of LE392 cells was 

infected with 200-400 pfu of phage/sample . The infected bacteria were plated 

on a 1 00 mm LBI 0 . 35 % bacto-agarl 10 mM MgS04 plate . Duplicate filter 

lifts were performed as before, and the filters were denatured, neutralized, 

baked and hybridized as for the primary library screen. Positive plaques were 

identified in this secondary screen, cored out, and re-plated as described in the 

primary library screen to obtain plaque pure samples . DNA was isolated from 

each sample as described in the phage DNA preparation section with the 

following exceptions : 1 ,000 pfu of each phage sample was incubated with 50 �l 

of an overnight culture of LE392 cells, and 5 ml of LBI 10 mM MgCl2 was 

inoculated with the phagel bacteria mixture and incubated overnight at 37°C 

with shaking . Following centrifugation to remove cellular debris, the 

supernatant was incubated 30 minutes at 37°C in the presence of 10  �g RNAse 

A (Sigma) and 10 �g DNAse (Sigma) and then PEG precipitated as described 

previously . The precipitated phage were resuspended in 1 ml TEl 25 j.tg/ml 

proteinase KI 10 �g/ml RNAse A (Sigma) and incubated 30°C for 30 minutes . 

The phage DNA was isolated by two phenol extractions and one SEV AG 

extraction, followed by ethanol precipitation as described previously . The 

lambda DNA was digested with EcoRI, and the digested DNA was separated on 

a 0 . 8 %  agarosel IX TAE gel . The DNA was transferred to NYTRAN nylon 

membrane using the Southern blot procedure, hybridized to the nick-translated 
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I E2 probe and washed as described previously . The blot was exposed to XAR-

5 film for 30 minutes at room temperature to identify a clone which contained 

the rearranged c-myb promoter. A high titer lysate was prepared from this 

clone by plating 1000 plaques on a 100 mm LB/ 0 . 35 % bacto-agar/ 10 mM 

MgS04 plate . Following overnight incubation of the plate at 37°C , 5 ml of SM 

buffer was layered on top of the plate , and the phage were allowed to elute 

from the plate by incubation for two hours at room temperature with shaking . 

The SM buffer was removed from the plate, 250 1!1 of CRCl3 was added to the 

eluted phage, and a mass culture of phage was grown using the titered phage 

stock . Purified lambda DNA was isolated as described above . 

To clone the normal locus of the MRR unique sequence, the MRR-ks 

fragment (Figure 25) was nick translated and used as a probe to screen I x 106 

pfu of a normal human placental genomic DNA library in the f-.FlXII vector 

(Stratagene) . Primary and secondary screens , plaque purification and phage 

DNA isolation were performed as described for the CCRF-CEM genomic 

library screen. 

Transient transfection studies. 

The plasmids used in transfection studies consisted of portions of the c

myb promoter and MRRI clone fused to the gene for chloramphenicol acetyl 

transferase (Figure 30) . These were created as follows : a 1 . 6 kb Xbal-EcoRI 

fragment encompassing the c-myb promoter was subcloned into pBluescript II 

KS + to create p lXB .  This construct was digested with Neal (in the first exon 
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of c-myb) and EcoRl (in the poly linker) followed by digestion with mung bean 

nuclease to generate blunt ends and religation to create p lXBd. The gene for 

chloramphenicol acetyl transferase (CAT) from the pCAT -Promoter construct 

(Promega Inc . )  (Gorman et aI . ,  1982) was subcloned on a 1 . 6 kb HindIII 

fragment into p i  XBd to create PRO- 1 .  This construct was deleted by digestion 

with BamHI and SphI, followed by T4 DNA polymerase fill in and ligation, to 

create PRO-2 and PRO-3 ,  respectively . To recreate the rearranged promoter 

found in CCRF-CEM, an XbaI-BamHI fragment from the MRRI clone (see 

Figure 30) was subcloned into the PRO-2 construct to create MRR. The CAT 

gene was cloned in the reverse orientation to create MRR(R) . 

CCRF-CEM cells were co-transfected with the indicated CAT constructs 

and the pCMV -{3 plasmid as described previously with the following 

exceptions : 1 . 5 x 107 cells/ sample were transfected at 300 V and 1 000 /-tfarads ;  

the cells were incubated in  14 .5  ml  RPMI 1640/ 20% defined calf serum/ 40 

/-tg/ml gentamicin for 48 hrs . 

Cell free lysate preparation, {3-galactosidase assays protein determinations 

and CAT assays were conducted as indicated above . 



RESULTS 

Characterization of intron 1 of the human c-myb proto-oncogene and a second 

promoter within the intron. 

Sequence analysis of the human c-myb intron 1. 

Three overlapping genomic subclones were sequenced to derive the 

complete sequence for intron 1 of the human c-myb gene (Figure 8). A number 

of potential transcription factor binding elements are indicated; the intron 

contains Sp 1 binding sites throughout the 5' end and center of the intron 

(Briggs et aI., 1986). Three Myb responsive elements (MREs) are also seen 

(Prendergast and Ziff, 1989; Howe et aI., 1990). Approximately 2.0 kb from 

the 5' end of the intron, an Oct 1 enhancer binding site is found in the opposite 

orientation of c-myb transcription (Stern et aI., 1989). Pyrimidine-rich regions 

similar to those seen in the murine c-myb gene are seen; however, these regions 

are located farther downstream than in the murine gene. Two potential mRNA 

cap sites are present 17 and 32 bases upstream of exon 2 (Bucher and Trifonev, 

1986). The 26 bp 5' unique sequence of pMbm-2 is located directly adjacent to 

exon 2. 

95 
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Figure 8 .  Sequence of the 5 '  end of human c-myb . The two shaded regions 
indicate the coding region of c-myb. Brackets ( n ) delineate intron 1 sequence . 
Potential transcription factor binding sites for SPI L),  Oct 1 (  • • •  ) and Myb 
( t  t t t t t ) , are shown. Downward arrows ( + )  indicate intron 1 transcriptional 
start sites as mapped by RNAse protection (Figure 15 ) .  Single ovals ( e )  
represent potential mRNA cap sites . Boxes ( _ _ _  ) underscore the pMbm-2 5 '  
unique sequence. Underlined sequences indicate the region o f  identity between 
human and chicken c-myb intron 1 .  Diamonds ( . • . ) indicate potential A TG 
translation start site within exon 2. This sequence may be found the the 
GenBank database under accession number M95584. 
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Figure 9 .  Schematic representation of sequence conservation between murine , 
chicken and human c-myb intron 1 sequences and subclones used to obtain 
intron 1 sequence . Conservation between human and mouse is indicated by 
hatched regions . Regions I, II, and III which constitute the major regions of 
identity between the human and mouse intron 1 sequence are indicated by 
bracketed regions . Conservation between human and chicken is indicated by 
asterisks(** *) . Restriction sites are abbreviated as follows : N-NcoI; E-EcoRI; 
B-BamHI; P-PstI; S-SmaI; Bg-BglII; Sp-SphI; X-XbaI; H-HindIII; Bx-BstXI . 
(Below) Genomic fragments which were used to derive the sequence of intron 
1 .  
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Comparison of human intron 1 to previously published mouse sequences 

revealed many regions of significant identity between the two species (Figure 

9) . Both species contain a GC-rich region containing Sp1 binding sites directly 

adjacent to exon 1 .  In addition, three larger regions of identity exist; region I 

consists of two clusters showing 72 % and 83 % identity between human and 

mouse, respectively . This region begins 153 bases from the 5 '  end of the intron 

and spans 440 bases . Region II is 6 1 3  bp long and begins 1489 bases from the 

5 '  end of the intron. At 889 bases in length, region III contains the longest 

stretch of identity and encompasses the 3' end of the intron, including the 

pMbm-2 unique sequence . When human c-myb intron 1 sequence was compared 

with analogous sequences in the chicken only two regions showed significant 

identity : i) both species have the GC-rich region containing Sp 1 binding sites 

near the 5' end of the intron; ii) sequences at the 3 '  end, directly adjacent to 

exon 2, show significant identity . In the latter region, 69 % of intron 1 

sequence is conserved between human and chicken, which is comparable to 

conservation seen between coding sequences (Li et aI . ,  1985) . 

Northern blot analysis. 

Northern blot analysis of six cell lines was performed to determine the 

expression of c-myb in these cell lines (Figure 10) .  Due to different efficiencies 

of poly A + selection in each sample, relative expression of c-myb was 

determined by comparison to (1-actin. Although levels of (1-actin may vary 

slightly between cell lines, we have used it previously to compare c-myb levels 
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between cell lines and during differentiation (Boise e t  a! . ,  1992b) . C-myb 

expression is highest in immature lymphocytic leukemia cell lines such as 

CCRF-CEM (Figure 10 ,  lane 1) and MOLT-4 (Figure 10 ,  lane 3) ;  c-myb levels 

are lower in myeloid leukemia cell lines such as HL-60 (Figure 10 ,  lane 5)  

U937 (Figure 10 ,  lane 4)  and K562 (Figure 10 ,  lane 2) . The EBV transformed 

cord blood B- cell line CB23 expresses the lowest levels of c-myb. These 

results correspond to the expression levels of c-myb previously characterized 

(Westin et a! . ,  1982) and indicate that the cell lines have not changed their 

levels of c-myb expression during passage in culture . C-myb expression during 

hematopoietic differentiation was analyzed by Northern blot analysis of two 

different myeloid leukemia cell lines induced to differentiate with different 

agents . U937 cells were induced to differentiate into cells with a monocytic 

phenotype with phorbolester dibutyrate (PDbu) (Figure 1 1 ) ,  and HL-60 cells 

were induced to differentiate into cells with a myeloid phenotype with dimethyl 

sulfoxide (DMSO) (Figure 12) .  During PDbu-induced differentiation of U937 

cells , c-myb mRNA levels drop (Figure 1 1 ) .  At the end of the time course,  c

myb levels rise slightly but remain below undifferentiated levels . As is seen 

with FMEL differentiation (Clarke et a! . ,  1 988) , c-myb exhibits biphasic 

regulation during DMSO induced HL-60 differentiation (Figure 12) ;  c-myb 

levels drop during the first six hours of differentiation, rise again at twelve 

hours, and drop to nominal levels after twenty-four hours . 

Attempts were made to detect c-myb sequences containing the 26 bp 5 '  
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Figure 10 .  Northern blot of c-myb expression in leukemia cell lines . The blot 
was probed with a 1 . 1  kb cDNA fragment of exons 9- 14  of the normal c-myb. 
The blot was hybridized as indicated in the methods section and exposed to X
Ray film overnight at -80°C . Lane 1- CCRF-CEM; lane 2-K562 ; lane 3-
MOLT-4; lane 4- U937;  lane 5- HL60; lane 6-CB23 . Shown below is the levels 
of /3-actin expression in each cell line . Numbers below reflect c-myb 
expression relative to /3-actin. To determine relative levels of c-myb expression, 
the radioactive blot was scanned using the Betascope 603 Blot Analyzer 
(Betagen) . Counts per minute per lane were determined for c-myb and for the 
corresponding /3-actin hybridization, and each c-myb lane was standardized for 
/3-actin levels . 
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unique sequence of pMbm-2 on poly A + selected Northern blots (data not 

shown) . However, levels of this message were so low as to be undetectable by 

Northern blot analysis using an end labelled oligonucleotide probe . As a result, 

primer extension and RNAse protection analysis were undertaken. 

Primer extension analysis. 

Primer extension studies were performed to determine if transcription 

initiation sites within intron 1 could be detected. For this preliminary study, 

RNA from one lymphoid cell line (CCRF-CEM) and one myeloid cell line 

(K562) were utilized to detect transcription start sites from both upstream of 

exon 1 and within intron 1 (Figure 13 ) .  Extension of the pMbm-2 message 

would yield a 63 bp fragment, while transcripts originating from the primary 

promoter would undergo a normal splice between exons 1 and 2 and would 

yield a larger extended fragment. If this promoter shows 5' heterogeneity as is 

seen in the mouse and chicken c-myb promoters (Dvorak et al . ,  1 989; Bender 

and Kuehl, 1986) , multiple transcription start sites between 100 and 230 bp 

would be detected. 

An autoradiogram of the extended products (Figure 1 3) reveal that a 230 

bp fragment corresponding to transcripts initiating from the 5' end of exon 1 ,  

previously identified in cDNA clones , is detected in both cell lines (upper 

arrow) . The primary human c-myb promoter exhibits extensive 5 '  heterogeneity 

in both of these cell lines (middle arrows) . Some of the start sites are similar 

for each cell line, and some are unique to each cell line . In addition, a cluster 
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Figure 1 1 .  C-myb expression in U937 cells at 0, 6, 1 2  and 24 hours post 
induction with PDbu. The blot was hybridized as indicated in the methods 
section and exposed to X-Ray film overnight at -80°C . Shown below is the 
levels of iJ-actin expression in each cell line . 
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Figure 1 2 .  C-myb expression of HL60 cells at 0, 1 ,  3 ,  6, 12 , 24, and 96 hours 
post-induction with DMSO. The blot was hybridized as indicated in the 
methods section and exposed to X-Ray film overnight at -80°C . Shown below is 
the levels of iJ-actin expression in each cell line . 
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of extended products between 60 and 70 bases in length is apparent (lower 3 

arrows) . The three fragments in this cluster are approximately 6 1 ,  63 , and 66 

bp in length. The size of these fragments corresponds to the 5 '  end of the 

pMbm-2 cDNA clone, and are in proximity of the potential cap sites identified 

by sequence analysis (Figure 8) . 

RNAse protection analysis. 

Identification of the three potential sites in the primer extension analysis 

as specific to a promoter within intron 1 was obscured by the multiple 

transcriptional start sites originating from exon 1 .  Therefore , RNAse protection 

analysis was used to verify the presence of transcriptional start sites within 

intron 1 .  The single stranded probe derived from the construct p l XE7SH, 

shown in Figure 14 ,  contains 200 bases of intron 1 sequence and 1 1 3 bases of 

exon 2 sequence; therefore , any c-myb messages containing a normal exon II  

exon 2 splice junction will protect 1 1 3 bases of the probe . Any protected 

fragments larger than 1 1 3 bases would originate within the intron. Figure 1 5  

shows RNAse protection analysis of poly A +  RNA from CCRF-CEM, K562 , 

MOLT-4, and U937 cell lines . All cell lines show a 1 1 3 bp protected fragment 

corresponding to the exon I I  exon 2 splice observed with the prototypic c-myb 

gene (bottom arrow) . In all cell lines, a cluster of three protected fragments 

1 3 1 ,  1 36 and 139 bases in length is also observed . These fragments correspond 

to transcription initiation sites 23 , 26 and 29 bases upstream of the intron 1 I 

exon 2 junction. The position of these sites is consistent with the position of the 
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Figure 1 3 .  Primer extension analysis of CCRF-CEM and K562 total RNA. 
Extension from the primer complimentary to exon 2 sequences (see Methods) 
yielded a number of larger products corresponding to normal c-myb transcripts 
(larger arrows) as well as three smaller transcripts (smaller arrows) . Extended 
products were resolved on a 7 %  polyacryJamide/8 M urea gel and exposed to 
X-ray film for 1 8  hr at -80aC . 
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extended fragments in the primer extension analysis (Figure 13 )  as well as the 

presence of the pMbm-2 message cloned from CCRF-CEM. RNAse protection 

analysis using a probe linearized at the PstI site at the intron 11 exon 2 junction 

eliminates these three protected fragments (data not shown) . The level of stable 

transcripts arising from this region varies from cell line to cell line ; levels of 

transcript initiating within this region are proportional, however, to that seen 

from the upstream promoter. 

Analysis of start site utilization during the differentiation process was 

assessed using poly A + RNA from U937 cells differentiated along the 

monocytic pathway with PDbu (Figure 1 6) .  Messages from transcripts initiating 

from the intron 1 promoter and the upstream promoter decrease during 

differentiation. Thus, the primary and intron 1 derived messages are expressed 

concurrently during PDbu- induced differentiation of U937 cells . 

Transcriptional start site usage during DMSO-induced HL-60 differentiation 

was also assessed (Figure 1 7) .  RNAse protection of poly A + RNA shows the 

biphasic expression of c-myb described previously (Boise et aI . ,  1 992b) and 

observed in the Northern blot analysis (Figure 12) .  As is seen during U937 

differentiation, transcripts originating from intron 1 increase and decrease 

concurrently with c-myb messages originating in exon 1 .  

Functional characterization of the intron 1 promoter. 

A series of constructs containing regions of intron 1 upstream of the 

chloramphenicol acetyl transferase gene (Figure 1 8) was assayed for promoter 
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Figure 14 .  Schematic representation of the probe used in RNAse protection 
analysis . 500 bp of the 3 '  end of intron 1 are shown above and the 328 bp 
single stranded probe generated by in vitro transcription is shown below . This 
probe will protect 1 1 3 bases of exon 2, which would represent c-myb message 
spliced normally between exons 1 and 2. Larger protected fragments would 
then represent messages originating from intron 1 .  
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Figure 1 5 .  RNAse protection analysis of leukemia cell lines . Five /-tg of poly 
A + RNA from the indicated cell lines was annealed to the single stranded 
probe shown in Figure 14 .  The top arrow indicates nuclear RNA protected by 
the probe . C-myb message originating from exon 1 (lowest arrow) and intron 1 
(three smaller arrows) are indicated . t , 10 p.g tRNA; C, CCRF-CEM; K, K562 ; 
M4, MOLT-4; U, U937 . M, molecular weight markers (-y32 [P]_ATP labeled 
¢X 1 74 DNA digested with HaeIII) ; P, 5 x 106 cpm of undigested probe . The 
gel was exposed to film for three days at -80°C with an intensifying screen. 
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Figure 1 6 .  RNAse protection analysis of exon 1 and intron 1 initiated c-myb 
transcripts following PDbu-induced differentiation of U937 cells .  RNA was 
harvested at 0, 12 ,  and 24 hours post induction of PDbu . The top arrow 
indicates nuclear RNA protected by the probe . C-myb message originating 
from exon 1 (lowest arrow) and intron 1 (three smaller arrows) are indicated . 
t, 1O  p.g tRNA; M, molecular weight markers (-y32 [P]_ATP labeled ¢X174 DNA 
digested with HaeIII) ; P, 5 X 106 cpm of undigested probe . The gel was 
exposed to film for three days at -80DC with an intensifying screen. 
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Figure 1 7 .  RNAse protection of exon 1 and intron 1 initiated c-myb transcripts 
in HL-60 cells at 0, 1 ,  3 ,  6, 12 ,  24, and 96 hours following induction of 
differentiation with DMSO. The top arrow indicates nuclear RNA protected by 
the probe . C-myb message originating from exon 1 (lowest arrow) and intron 1 
(three smaller arrows) are indicated . t , 10 jlg tRNA; M, molecular weight 
markers (1'32 [P]-ATP labeled cpX174 DNA digested with HaeIII) ; P, 5 x 106 

cpm of undigested probe . The gel was exposed to film for three days at -80°C 
with an intensifying screen. 
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activity in the CCRF-CEM and K562 cell lines . A 1 .6 kb PstI fragment 

containing the 3 '  end of intron 1 was tested to determine if potential promoter 

activity could be detected from this region of intron 1 (pINTl CAT) . Deletions 

of this fragment were created to assess if any cis elements in intron 1 could 

affect promoter activity and to determine the size of the minimal promoter 

(pINTl CAT. 12 ,  pINTl CAT.40, pXPCAT, pBxPCAT) . The activity of each of 

these promoter constructs is shown in Figures 19 and 20. 

In CCRF-CEM (Figure 1 9) ,  the promoter exhibits changes in activity 

dependent on cis elements in the intron; deletion of 653 bp of the intron (seen 

in construct pINTl CAT. 12) leads to a 6-fold increase in promoter activity . 

Further deletion causes a decrease in promoter activity (pINTl CAT .40) , 

suggesting that an element necessary for the increase in promoter activity is 

removed . Intron 1 can be deleted up to 2 1 3  bases 5 '  of exon 2 without 

abolishing promoter activity (pBxPCAT) . By contrast, in K562 , intron 

promoter activity does not vary significantly as intron 1 sequence is deleted 

(Figure 20) . It appears, therefore, that the promoter activity in this cell l ine is 

not regulated in the same manner as in CCRF-CEM. 

RT-PCR analysis of CCRF-CEM reporter assay transfections. 

To verify that the increased CAT activity seen in pINTl CAT . 12-

transfected CCRF-CEM cells originated from the transcription start sites 

mapped in the RNAse protection studies (Figure 1 5) and was not due to non

specific initiation events, RT-PCR analysis was performed (Figure 2 1 ) .  
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Figure 1 8 .  Regions of intron 1 used in reporter constructs for chloramphenicol 
acetyl transferase transient assays . Shown in this figure is the last 200 bp of 
intron 1 .  A portion of the region of transcriptional attenuation found in the 
center of intron 1 (Attenuator) is indicated. The regions of intron 1 indicated 
were fused to the chloramphenicol acetyl transferase gene as indicated in the 
methods section. Conservation between human and mouse is indicated by 
hatched regions . Conservation between human and chicken is indicated by 
asterisks(*** ) .  Restriction sites are abbreviated as follows : N-NcoI ;  E-EcoRI; 
B-BamHI; P-PstI; S-SmaI; Bg-BglII; Sp-SphI; X-XbaI; H-HindIII; Bx-BstXI . 
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Figure 1 9 .  Promoter activity of human c-myb intron 1 sequence in CCRF-CEM 
cells . Representative results are shown from three independent transfections of 
SV40 and intron 1 constructs into CCRF-CEM. Constructs utilized for this 
figure are indicated in the figures and refer to fragments shown in Figure 1 8 .  A 
plasmid containing the gene for /3-galactosidase under the control of the CMV 
promoter was co-transfected with the CAT constructs as an internal control .  
The plasmids tested are indicated on  the X-axis . Percent conversion of 
chloramphenicol is shown on the y-axis as normalized to /3-galactosidase 
activity of each cell free extract. SV 40 - CAT gene under the control of the 
SV 40 promoter and enhancer. REV - INT fragment cloned in reverse 
orientation to the CAT gene . 
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Figure 20. Promoter activity of human c-myb intron 1 sequence in K562 cells . 
Constructs utilized for this figure are indicated in the figures and refer to 
fragments shown in Figure 1 8 .  A plasmid containing the gene for {3-
galactosidase under the control of the CMV promoter was co-transfected with 
the CAT constructs as an internal control .  The plasmids tested are indicated on 
the X-axis . Percent conversion of chloramphenicol is shown on the y-axis as 
normalized to {3-galactosidase activity of each cell free extract. SV 40 - CAT 
gene under the control of the SV 40 promoter and enhancer . REV - INT 
fragment cloned in reverse orientation to CAT gene . 
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Southern blot analysis using a probe specific for the chloramphenicol acetyl 

transferase gene (CAT) (Figure 2 1A) reveals that hybridization is seen to a 724 

bp band specific for initiation at the expected sites . 

Electrophoretic mobility shift assay (EMSA) . 

Because cis elements within intron 1 appear to affect the activity of the 

intron 1 promoter differentially in CCRF-CEM and K562, the regions of intron 

1 which correspond to these changes in CAT activity were tested for their 

ability to bind nuclear proteins in an electrophoretic mobility shift assay 

(EMSA) . The four double stranded DNA fragments (Figure 22) were 

radioactively labeled and incubated with nuclear extracts from CCRF-CEM and 

K562 cell lines . Resolution of these samples on a polyacrylamide gel revealed 

that while fragment I (Figure 23 ,  I) and fragment II (data not shown) could not 

bind nuclear extracts from either cell line , fragments III and IV could bind 

nuclear proteins from both CCRF-CEM and K562 nuclear extracts (Figure 23 , 

III and IV) . The binding to both fragments III and IV is not competed off by 

increasing amounts of non-specific competitor (n. s .  comp) . The difference in 

binding to fragment III between CCRF-CEM and K562 appears to be 

qualitative ;  the fragments shift to different regions of the gel , indicating that 

different proteins may be bound. The difference in binding to fragment IV , by 

contrast, appears to be quantitative; the fragment shifts to the same position 

using nuclear protein from either cell line, but more protein is bound in CCRF

CEM extracts compared with K562 extracts . 
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Figure 2 1 .  RT-PCR analysis of CCRF-CEM cells transfected with 
pINTl CAT. 1 2 .  A. Southern blot hybridization using the CAT.PROBE 
oligonucleotide to PCR amplified RT reactions of cells either transfected with 
pINT l CAT . 1 2  (construct 12 ,  lanes 1 ,2 ,4 ,8 ,  and 9) or untransfected (construct 
(-) , lanes 5-7) . Primer sets for the PCR reactions are as follows: 5 ' :  
INT l . 5 ' /CAT . 3 '  primers ;  M :  MBM2 .5 ' /CAT .3 '  primers ; A :  actin 5 '  and 3 '  
primers . Lane 1 and 2 :  PCR reactions of pINTl CAT. 12-transfected cells prior 
to DNAse treatment. Lane 3 :  RT-PCR reaction using HP instead of RNA. 
Lane 4 :  No reverse transcription PCR reaction of DNAse-treated RNA from 
pINTl CAT . 12-transfected cells . Lanes 5-7 : RT -PCR reactions of untransfected 
cells with the 5 ' ,  M and A sets of PCR primers , respectively . Lanes 8 and 9 :  
RT-PCR reaction o f  cells transfected with the pINTl CAT. 12  construct and 
amplified with the 5' and M sets of PCR primers , respectively . B .  Southern 
blot hybridization using the human {3-actin probe to RT-PCR reactions from 
untransfected (lane 1 )  and pINTl CAT. 12  transfected (lane 2) cells using the 
actin PCR primers . Markers indicate 1 .0 kb and 0 .5  kb from top to bottom. 
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Figure 22 . Schematic representation of the fragments used in the electrophoretic 
mobility shift assay (EMSA) . Shown is the last 2000 bp of intron 1 .  The region 
of transcriptional attenuation in the center of intron 1 (Attenuator) is indicated . 
Regions corresponding to positive and negative regulation of promoter activity 
in CCRF-CEM transient transfections are also indicated . Conservation between 
human and mouse is indicated by hatched regions . Conservation between human 
and chicken is indicated by asterisks(***) . Start of pINTl CATAO (IntAO) and 
pINT l CAT . 1 2  (InU2) are indicated . Restriction sites are abbreviated as 
follows :  N-NcoI; E-EcoRI; B-BamHI; P-PstI ; X-XbaI ; H-HindIII ; Bx-BstXI . 
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Figure 23 . EMSA of fragments I ,  III , and IV incubated with CCRF-CEM (C) 
and K562 (K) nuclear extracts with increasing amounts of poly dIdC non
specific competitor (n. s .  comp . ) .  The concentration of the non-specific 
competitor is indicated on the figure . 
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Figure 24 . EMSA of fragment IV incubated with CCRF-CEM (CEM) and 
K562 nuclear extract with increasing amounts of unlabeled fragment IV (J.tg 
cold) . The concentration of the specific competitor is indicated on the figure . 
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In order to determine if the binding of nuclear extracts by fragment IV 

was sequence specific, the radioactively labeled DNA fragment and nuclear 

extracts were incubated with increasing amounts of unlabeled fragment IV . An 

EMSA of this experiment (Figure 24) revealed that the binding of both CCRF

CEM and K562 nuclear proteins to radioactive fragment IV was competed by 

increasing amounts of unlabeled fragment IV ( "cold comp" ) .  As was seen in 

Figure 23 ,  the binding of the nuclear proteins appears to be quantitative ; more 

protein was bound in CCRF-CEM extracts than K562 extracts . This is 

confirmed from the competition assays where ten-fold less cold competitor is 

needed to compete for binding to K562 extracts . 

Characterization of a rearrangement in the c-myb promoter in the acute 

lymphoblastic leukemia cell line CCRF-CEM. 

Identification of a rearrangement in the c-myb promoter in CCRF-CEM. 

A schematic representation of the c-myb promoter is shown in Figure 25 . 

Southern blot analysis of a panel of EcoRi digested leukemic cell line genomic 

DNAs using a probe which encompasses the c-myb promoter reveals the 

presence of a restriction fragment length polymorphism (RFLP) in the CCRF

CEM cell line which is not present in any other cell line tested (Figure 26) . 

The CCRF-CEM sample shown in Figure 26 is an ATCC stock sample , 

indicating that the RFLP did not occur due to continuous subsequent passage of 

the cell line in culture . Further analysis with other restriction enzymes (data 

not shown) showed that the RFLP was not due to a single point mutation, but 
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represented a rearrangement in  the promoter region upstream of  a SphI site in 

the normal c-myb promoter region (see Figure 25B) . 

Cloning the rearranged CCRF-CEM c-myb promoter. 

Using the 1 E2 probe shown in Figure 25A, a CCRF-CEM genomic 

lambda library was screened to isolate and characterize the promoter 

rearrangement. Sequence analysis of the clone , which we have termed MRR1 

(myb rearranged region 1 ) ,  revealed the presence of unique DNA juxtaposed to 

the normal c-myb promoter (Figure 25C) . This unique sequence is also 

associated with the RFLP seen in CCRF-CEM (Figure 27) . In addition, a 

portion of the promoter sequence which is conserved between the human and 

murine c-myb promoters is lost; no myb specific sequence upstream of the SphI 

site indicated in Figure B was associated with any RFLP seen in CCRF-CEM 

(Figure 26 and data not shown) , indicating a loss of this promoter sequence 

material from the CCRF-CEM cell line . The MRR unique sequence has been 

mapped by Southern blot analysis of somatic cell hybrids to chromosome 6 

(Figure 28) . Together, these data suggest that the rearrangement seen in 

CCRF-CEM is a deletion and not a translocation or insertion. 

Using the probes generated from this cloning, a panel of fresh leukemic 

DNAs was screened to identify similar RFLP's  in other leukemias .  Both the 

1 E2 probe and the MRR-ks probe (Figure 25) were used to detect either c-myb 

specific or MRR specific aberrations . Southern blot analysis of 23 acute 

myelogenous leukemias , 16 acute lymphoblastic leukemias , 3 chronic 
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Figure 25 . Schematic representation of the human c-myb promoter (A) and the 
myb rearranged region (MRR)/c-myb rearrangement cloned from a CCRF-CEM 
genomic library (B) . Probes used to detect myb specific ( IE2) and MRR 
specific (MRR-ks) sequence are indicated below. Lined boxes indicate regions 
of promoter sequence conserved between the mouse and human c-myb 
promoters . Shaded region indicates unique sequence found upstream of the c
myb promoter in the CCRF-CEM rearrangement. Arrows indicate potential 
AP 1 transcription factor binding sites . Filled circle indicates a potential TAT A 
box. E-EcoRI; X-XbaI ; S-SphI; B-BamHI; K-KpnI ; N-NcoI . (C) Sequence of 
the MRR/c-myb junction region. Shaded sequence indicates the MRR specific 
sequence; underlined sequence indicates normal c-myb promoter sequence . 
Arrow indicates the rearrangement junction. 



��� - Retlo •• • f _UN , __ , IMmMevv 
� - WRA .pectlc se..-encc 

1 

3 1  

6 1  

t.::::··············::··:·:::::::::: .. :::::::::::::::::::::::::: ' . .  
1 EZ (l ldll 

W'gW.Bq.�'¥��E��1iwlw�D 
.�S9gl�9W�1£�TCACAAACTGTTTT 
ACTTCTAAAACCATGCATGCAAACGTGGGG 

9 1  TTTCCTGAGT 1 0 0  

3 0  

6 0  

9 0  

140 

L--J 
... .. 

• E 

&' 
..- .  

• E 

i£1b' 
.... .  



1 4 1  

Figure 2 6 .  Southern blot analysis o f  EcoRl digested genomic DNA from the 
leukemia cell lines indicated using the 1E2 c-myb promoter specific probe . A 
single altered band in the human acute lymphoblastic leukemia cell line CCRF
CEM is detected (arrows) . The probe used is illustrated in Figure 25 . The blot 
was exposed to X-ray film one week at -80DC with an intensifying screen. 
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Figure 27 . Southern blot analysis of EcoRI digested genomic DNA from the 
leukemia cell lines indicated using the MRR-ks probe specific for the CCRF
CEM rearrangement. A single altered band in the human acute lymphoblastic 
leukemia cell line CCRF-CEM is detected (arrows) . The probes used are those 
illustrated in Figure 25 . The blot was exposed to X-ray film one week at -80DC 
with an intensifying screen. 
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myelogenous leukemias and one chronic lymphocytic leukemia using restriction 

with EcoRI, BamHI, and PstI (data not shown) revealed a single rearrangement 

associated with the c-myb promoter: a T-cell acute lymphoblastic leukemia 

(ALL) was amplified and rearranged upstream of the BamHI site in the c-myb 

promoter (Figure 25A) . Due to limited sample quantities , further analysis of 

this rearrangement was not possible . In this leukemia, the MRR specific 

sequence did not reveal a rearrangement at the MRR locus . 

Field inversion gel electrophoretic studies of the MRR/c-myb region. 

Field inversion gel electrophoresis (FIGE) of DNA isolated from 

peripheral blood lymphocytes (PBLs) was used to determine the approximate 

size of the deletion identified in CCRF-CEM. Southern blot hybridization of 

EagI digested agarose plugs of PBLs (Figure 29) showed that both the 1 E2 c

myb promoter fragment (Figure 29, left) and the MRR KpnI-SphI (MRR-ks) 

fragment (Figure 29, right) hybridize to a 450 kilobase (kb) fragment (Figure 

29, upper arrows) .  

Promoter activity o f  the CCRF-CEM MRR/c-myb promoter. 

Sequence analysis of the 1 .6 kb XbaI-BamHI fragment shown in Figure 

25 revealed the presence of potential transcriptional activator binding sites in 

the MRR sequence juxtaposed to the altered c-myb promoter. Therefore, a 

series of constructs containing regions of the normal c-myb promoter and the 

MRR/c-myb sequence placed upstream of the chloramphenicol acetyl transferase 



146 

Figure 28 .  Southern blot hybridization of the MRR-ks probe to Pst I digested 
somatic cell hybrids . The somatic cell hybrids ( 10629 & 7300) , human (donor) 
and hamster DNAs (hamster) are indicated . The probe hybridizes to a single 
band in the human donor and the somatic cell hybrids DNAs containing human 
chromosome 6 .  
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Figure 29 .  Southern hybridization of EagI-digested human peripheral blood 
lymphocyte (PBL) DNA separated by field inversion gel electrophoresis . 
Hybridization is detected with both the l E2 (left) and MRR-ks (right) probes . A 
specific 450 kb band is detected by both probes (upper arrows) . 
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gene (Figure 30) were assayed for promoter activity in proliferating CCRF

CEM cells (Figure 3 1 ) .  The presence of the unique MRR sequence (Figure 3 1 ,  

lane MRR) does not appear to substantially effect c-myb promoter activity when 

compared to the full length promoter (Figure 3 1 ,  lane PROl ) ,  although deletion 

of the c-myb promoter does have a nominal effect on promoter activity (Figure 

3 1 ,  lane PR02) . 

Characterization of the sequence deleted in CCRF-CEM. 

The MRR-ks fragment (Figure 25B) was used to screen a normal human 

placental genomic DNA library to identify the normal locus containing the 

MRR sequence . From this library , a 17 kb clone was isolated which contains 

the MRR sequence identified in the CCRF-CEM rearrangement (Figure 32) . 

The upstream deletion junction from CCRF-CEM was sequenced (Figure 33) 

and compared to known sequences to determine if any nearby potential genes 

may be deleted . Sequence comparison revealed the presence of a 1 33  bp 

sequence with 66 % identity to the mycL2 gene, a member of the myc oncogene 

family (Morton et a! . ,  1 989) (Figure 33) . Directly flanking this region of 

identity are potential splice donor and acceptor sites (Figure 33 ,  double 

diamonds) . This sequence also shows significant identity to a region of the p

myc gene, a myc-family pseudo-oncogene (DePinho et aI . ,  1 987) , but no 

homology to any other known member of the myc family .  An oligonucleotide 

probe to this mycL2-like sequence, however, failed to hybridize to specific 

mRNA in a number of leukemia cell lines tested (CCRF-CEM, MOLT-4, 



1 5 1  

Figure 3 0 .  Schematic representation o f  constructs used in transient 
transfections . Top map represents the normal c-myb promoter region with 
shaded regions indicating sequences conserved between the mouse and human. 
PRO- l to PRO-3 and MRR represent reporter constructs as described in the 
Methods section. Shaded region in the MRR construct indicates MRR specific 
sequence . E-EcoRI; X-XbaI; S-SphI; B-BamHI; K-KpnI; N-NcoI . 
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Figure 3 1 .  Promoter activity of c-myb and MRR/c-myb promoter constructs in 
CCRF-CEM cells . The PRo ! ,  PR02, PR03 and MRR constructs, indicated in 
Figure 30, were co-transfected with the gene for (3-galactosidase under the 
control of the CMV promoter. Shown is a thin layer chromatography plate of 
fluorescent chloramphenicol after incubation with cell-free extracts of each 
construct normalized by relative (3-galactosidase activity . The unacetylated form 
is the slowest migrating form of chloramphenicol and is seen at the bottom of 
the photograph. The acetylated forms migrate faster and are seen above. SV40-
activity of the CAT gene placed under control of the SV 40 promoter and 
enhancer . REV -activity of MRR(R) (CAT in reverse orientation) . STD
acetylated chloramphenicol internal standard . 
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Figure 32 .  (A) Schematic representation of the normal locus of the MRR 
sequence . L and R indicate left and right arms of the "FIXII vector, 
respectively . Downward arrow indicates breakpoint in the MRR locus of 
CCRF-CEM. Hatched region indicates the MRR-ks specific sequence . Shaded 
region indicates sequence lost in the CCRF-CEM deletion. Asterisks indicate 
location of sequence with identity to the mycL2 gene . Sl-Sall (in multiple 
cloning site of vector) ; H-HindIII ; B-BamHI; P-PstI ; X-XbaI; K-KpnI ;  E
EcoRI . (B) Sequence flanking the normal locus of the MRR DNA. Shaded 
region indicates DNA found 5' to c-myb in the rearrangement. Double 
underlined sequence indicates region with identity to the mycL2 gene . Double 
diamonds indicate potential consensus splice donor and acceptor sites . 
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K562 , HSB-2 , HUT-78 ,  REH, lurkat-E6 1 ;  data not shown) . 



DISCUSSION 

Intron 1 of the human c-myb gene was sequenced to determine the origin 

of the unique pMbm-2 5 '  sequence (Weber et a! . ,  1 990) and to identify regions 

of the intron with potential functional significance . Three regions of significant 

identity were revealed through sequence analysis and comparison to previously 

published mouse sequence. The first encompasses 600 bp of DNA located at 

the 5' end of the intron adjacent to exon 1 .  The first 153  bases of identity fall 

in a region which corresponds to a GC rich region containing Sp l binding sites 

found in both the human and the mouse , suggesting that this region may 

function to regulate transcription of the upstream promoter. This would fit with 

data from the characterization of the primary c-myb promoter as lacking TATA

and CAA T boxes and utilizing multiple transcription start sites . The function 

of the remaining 447 bases of identity in this region is unknown; electrophoretic 

mobility shift assays using this region of murine intron 1 failed to correlate with 

changes in c-myb expression (Reddy and Reddy, 1 989) . This region may play a 

role in regulation of either the primary c-myb promoter or the constitutive 

antisense transcription which has been detected in this region (Boise et aI . ,  

158  
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1 992a) . 

The second region of identity is located in the center of the intron. The 

position of this sequence corresponds to DNAse I hypersensitive sites identified 

in the murine c-myb intron 1 which correlate with pausing activity . 

Electrophoretic mobility shift studies using DNA fragments in this region 

showed a correlation between nuclear factor binding and changes in c-myb 

expression (Reddy and Reddy, 1 989) . The region of transcriptional attenuation 

in the human has also been roughly mapped to this region (Boise et aI . ,  1 992a) . 

These results indicate that this region of identity corresponds to the region of 

transcriptional attenuation for the human and murine c-myb genes and may be 

involved functionally in this process . 

When human, murine and chicken c-myb intron 1 sequences are 

compared, different patterns of identity emerge . Except for the first 1 53  bases 

of the intron, which correlate to the GC rich region seen in human and murine 

intron 1 ,  there is no significant identity between the human and chicken 

sequences in the first 3200 bp of the intron. The presence of an attenuator in 

the chicken c-myb gene has not yet been demonstrated; the lack of identity 

throughout the center of the intron suggests that 1) attenuation may not be the 

primary means of c-myb regulation in the chicken; or 2) while attenuation may 

occur in the center of the intron, the signals for pausing may be located 

elsewhere in the gene . The only other region of intron 1 which showed 

significant identity to chicken sequences was located at the 3' end of the intron. 
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This region also showed significant identity to murine sequences . The 

conservation of this noncoding region of sequence throughout evolution suggests 

that this region may also have functional significance . 

As previously noted, the 5 '  unique sequence of the alternatively spliced 

clone pMbm-2 was mapped via Southern hybridization to intron 1 .  Sequence 

analysis revealed that this sequence is located directly adjacent to exon 2 .  The 

position of this unique sequence indicates that this message did not arise from 

alternative splicing but instead arose from a transcriptional initiation site within 

intron 1 .  No TATA consensus sequences for eukaryotic promoters are found in 

this region; therefore, as with the primary promoter, multiple start sites would 

be expected. Primer extension analysis using a primer common to both the 

pMbm- l and pMbm-2 cDNA clones revealed that, as has been detected in the 

mouse and chicken c-myb genes, primary human c-myb messages exhibit 

extensive 5' heterogeneity (Figure 13 ) .  Some of the start sites are common to 

both the CCRF-CEM and K562 cell lines; other sites are unique for each cell 

line . This result is consistent with the cell-type specificity seen in the 5 '  

heterogeneity o f  the murine and chicken c-myb gene (Kim and Baluda, 1 989;  

Watson et a! . ,  1 987) . 

In addition to the start sites which map to the primary promoter, a 

cluster of three transcriptional start sites which map close to the 5 '  end of the 

pMbm-2 message was detected (Figure 1 3 ,  lower three arrows) . However, 

identification of these sites as specific to a promoter within intron 1 was 
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obscured b y  the multiple transcriptional start sites originating from exon 1 .  

Therefore, RNAse protection analysis was used to verify the presence of 

transcriptional start sites within intron 1 .  RNAse protection analysis confirmed 

the existence of a cluster of three transcriptional start sites within thirty bases of 

exon 2 in cell lines expressing c-myb. Based on this evidence, there is a TATA

less promoter at the 3 '  end of c-myb intron 1 .  

The regulation of stable transcripts arising within intron 1 was studied by 

comparing transcriptional start site usage within intron 1 with primary c-myb 

expression in various myeloid and lymphoid leukemia cell lines . In all cell 

lines tested , the levels of c-myb messages which are initiated within intron 1 are 

proportional to those initiated from exon 1 .  Due to the biphasic nature of 

DMSO-induced HL-60 differentiation, we were curious as to the level of intron 

I transcripts during the early stages of differentiation; if levels of intron I 

transcripts remained constant during the initial stages of differentiation, a role 

for intron I -originating transcripts in differentiation could be surmised . 

However, we observed that, as seen in PDbu-induced U937 differentiation, 

stable message levels arising from within the intron varied proportionally with 

normal c-myb message levels .  

Functional studies using the 3 '  portion of intron I fused to the reporter 

gene chloramphenicol acetyl transferase (CAT) demonstrates the ability of this 

region to function as a promoter. Deletion studies reveal that the promoter 

activity is influenced both by positive and negative regulatory elements in a cell 
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type specific manner .  A transcription factor database scan of the putative 

regulatory region revealed a Myb binding site . Given the recent evidence that c

myb may be autoregulatory (Nicolaides et a! . ,  1 99 1 ) ,  it is interesting to 

speculate that the intron 1 promoter may be regulated by a related mechanism. 

A number of facts supports the proposition that the promoter activity 

derived from the intron 1 DNA in transient transfection assays represents an in 

vivo promoter. RT-PCR analysis of transfected CCRF-CEM cells verified that 

the mRNA start site utilized by the promoter constructs corresponds to the 

pMbm-2 message and do not map upstream of this site; this result suggests that 

the CAT constructs utilize the in vivo mRNA start site which corresponds to the 

pMbm-2 message and RNAse protection studies ,  this correlating promoter 

activity in this region with in vivo mRNA start sites . Furthermore, tumor 

derived mRNAs which contain 5' deletions utilize the ATG start site in exon 2 

to produce an in-frame, amino-terminally deleted protein in the same manner 

predicted for the pMbm-2 message (Pizer et a! . , 1 992) . 

To determine if the positive and negative regulatory cis elements could 

be correlated with the binding of cell-type specific nuclear factor ,  portions of 

intron 1 were tested in the electrophoretic mobility shift assay (EMSA) . Two 

regions of intron 1 were found to bind to nuclear extracts of CCRF-CEM and 

K562 and were not competed for by non-specific competitors (Figure 23) . One 

region, encompassing fragment III, contains a Myb responsive element (MRE) . 

However, because binding of this fragment to nuclear factor could not be 
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competed by specific competitor, its role in the regulation of the intron 1 

promoter is not clear . The second region, encompassing fragment IV, bound 

specifically to both K562 and CCRF-CEM nuclear extracts (Figure 24) . A scan 

of this region reveals no known potential transcription factor binding sites . 

However, the specific binding of this fragment corresponds to the region of 

positive regulation detected in the CCRF-CEM transient transfection studies 

(Figure 1 9) .  Suggesting that nuclear extract binding in this region may effect 

the intron 1 promoter activity . 

An important question remains , therefore , as to how proportional levels 

of primary promoter versus intron 1 initiating transcripts are maintained. In 

transient CAT assays, the intron 1 promoter is influenced differentially by 

positive and negative regulatory elements in different cell lines. Transcription 

from the upstream promoter is regulated primarily by attenuation. There has 

been no evidence for the presence of a second attenuator downstream from 

exon 2 . . Therefore , although the relative levels of transcripts from the two 

promoters is the same, the exact mechanism of regulation of transcript levels 

must be different for transcripts arising from the two promoters . It is possible 

that cis or trans factors which are necessary for attenuation are also necessary 

to repress the intron 1 promoter. This possibility may explain the quantitative 

differences seen between the binding of fragment IV to the two lymphoid and 

myeloid nuclear extracts in the EMSA. Less fragment IV is bound to K562 

nuclear extracts ; the lack of binding may prevent transcription through this 
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region. Likewise, the greater amount of probe bound to CCRF-CEM nuclear 

extracts may allow for the greater transcriptional read through in this cell line . 

Furthermore, a second promoter identified in the c-myc gene has been shown to 

be important in the regulation of attenuation in that gene; binding of nuclear 

factors and deletions or mutations at this second promoter effect the attenuation 

of transcription in this gene (Miller et a! . ,  1 989; Dufort et a! . ,  1 993 ) .  Thus,  the 

binding (or release) of these factors to intron 1 could serve a dual role in c-myb 

regulation: attenuation factors and promoter repressors . Alternatively , post

transcriptional mechanisms may function to maintain the proportional transcript 

balance observed between different cells lines and in models of myelo

monocytic differentiation such as HL-60 or U937 . 

A recent study in which proviral insertions into the avian c-myb gene 

were found to induce B-cell lymphomas revealed that the majority of proviral 

insertions which caused the disease occurred within the last 1 kb of intron 1 of 

the chicken c-myb gene (Pizer et a! . ,  1 992) . The region of integration 

corresponds to both fragments III and IV in the EMSA (Figure 22) . Given that 

this region of the intron was conserved between chicken and human, it is 

possible that sequences near the 3 '  end of the intron may be necessary for 

regulation of c-myb expression in both chickens and humans . Alternatively , 

integrations within this area may disrupt normal regulation of the downstream 

promoter . 

The presence of a promoter downstream from the site of translation 
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initiation in exon 1 of the human c-myb proto-oncogene (Figure 33) raises 

speculation as to the function and role of N- terminal truncated proteins whose 

messages originate from this region. Transcription of the pMbm-2 message , 

which also contains an additional exon leading to C- terminal protein 

truncation, was apparently initiated from the intron 1 promoter . The opposing 

role of this alternatively spliced form of c-myb in FMEL cell differentiation 

(Weber et aI . ,  1 990) suggests an opposing role for this form of c-myb in the 

differentiation process . The relative contributions of the N- and C- terminal 

truncations to promotion of FMEL cell differentiation is currently unknown. 

Recent studies have shown that both N- and C- terminal deletions of Myb can 

affect the transactivation ability of this protein (Dubendorff et aI . ,  1 992) . 

Furthermore, the unique 26 bp 5 '  sequence of the pMbm-2 message results in 

the loss of 20 amino acids at the N terminus of the protein, assuming that 

translation starts at the first coding ATG of the message (see Figure 8 ) .  (This 

A TG was used as the translational start sit for Myb proteins in the RA V- I 

insertional mutagenesis studies mentioned above . )  This deletion occurs in a 

region that has been shown to contain a casein kinase II phosphorylation 

sensitive element which inhibits sequence-specific DNA binding of the c-myb 

protein when phosphorylated (Luscher et aI . ,  1 990; Luscher and Eisenman, 

1 992) . The phosphorylation status of Myb during differentiation is unknown. 

If phosphorylation is a mechanism used to inhibit Myb binding during 

differentiation, it is possible that by deleting this phosphorylation site , the 
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pMbm-2 protein and/or N-terminal related proteins are able to bind DNA 

preferentially as differentiation occurs . Alternatively , this amino-terminally 

truncated c-myb protein may have a greater transactivation efficiency than full 

length c-myb, as has been demonstrated with yeast Myb proteins (Punyammalee 

et a! . ,  1 99 1 ) .  Therefore, further studies of the in vivo expression and post

translational modifications of these and other alternatively spliced c-myb 

proteins may give additional insight as to their role in the regulation of 

hematopoiesis . 

Although chromosome 6q abnormalities have been associated with a 

number of malignant processes , and many of these abnormalities map within 

proximity of the c-myb locus, a direct role of c-myb rearrangements or deletions 

in these cancers has not previously been demonstrated . We have identified a 

rearrangement in the c-myb promoter of the acute lymphoblastic leukemia cell 

line CCRF-CEM. This is the first report of such an event in human leukemia 

despite a number of studies in which attempts were made to detect c-myb 

rearrangements in 6q- leukemias and lymphomas (Park and Reddy, 1 992; 

Barletta et a! . ,  1987) . Hybridization of the MRR sequence to somatic cell 

hybrids containing chromosome six and the loss of c-myb promoter sequence 

upstream of the rearrangement indicates that this is a 6q interstitial deletion; the 

linkage of the MRR and c-myb sequences on a 450 kb fragment indicates that 

the deletion is small by cytogenetic standards . A similar rearrangement of c

myb was also detected in another T-cell acute lymphocytic leukemia . S ince 
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Figure 3 3 .  Schematic representation of the two promoter regions in the human 
c-myb gene . Upward arrows are a representation of the mUltiple transcription 
start sites for the primary (P I )  (Bender and Kuehl, 1 986) and intron 1 (P2) 
promoters . Downward arrows indicate potential A TG translation start sites 
within exon 1 (E l )  and exon 2 (E2) . The 0 .5  kb region of transcriptional 
pausing (Reddy and Reddy, 1 989) is also indicated . 
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there is evidence of cell-line specificity to the 5 '  heterogeneity in c-myb 

messages (Kim and Baluda, 1 989; Watson et aI . ,  1 987) it is possible that the 

deleted region may be important in the regulation of c-myb expression in T

cells .  The MRR junction sequence was not detected as altered in any other cell 

lines or leukemias ; the limited size of the probe may have precluded detection 

of similar rearrangements in this locus . Genomic DNA screenings with probes 

derived from other regions of the normal MRR locus may yield further 

rearrangements in the MRR region. 

Due to the deletion, a portion of the c-myb promoter which is 

evolutionarily conserved between the human and mouse promoters is removed . 

However, the deletion has no effect on the intrinsic activity of the promoter in 

proliferating CCRF-CEM cells, nor does it remove the myb responsive elements 

(MREs) which have been suggested to have an autoregulatory effect on c-myb 

expression (Nicolaides et aI . ,  199 1 ) .  The effect of this deletion on the 

regulation of c-myb expression is therefore unclear . Given that deletions in 

promoter sequences have been demonstrated to affect attenuation in the c-myc 

gene (Dufort et aI . ,  1 993) , it is possible that deletions in the c-myb promoter 

may affect attenuation in this system as well .  Alternatively , the conserved 

region of the c-myb promoter that is deleted in CCRF-CEM may play a role yet 

to be defined in cell type or differentiation state specific promoter control of c

myb expression. 

We have also identified a portion of the sequence which is lost in the 
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CCRF-CEM deletion. Analysis of the sequences flanking the 5 '  junction of the 

deletion revealed that a portion of the DNA lost in the rearrangement included a 

potential exon with a high degree of homology to the mycL2 gene, a processed, 

X-linked member of the myc oncogene family which shares a high degree of 

homology to the L-myc (mycL! )  gene (Morton et aI . ,  1 989) . This gene is 

expressed almost exclusively in human adult testes (Robertson et aI . ,  1 99 1 ) .  

Tht! identity seen with the MRR sequence occurs in the 5 '  untranslated region 

of both mycL2 and the myc pseudogene p-myc. The consensus splice donor and 

acceptor sites flanking the region of identity indicate that the sequence may 

represent an exon. Alternatively , the region may be important in regulation of 

another currently unidentified gene . 

It is unknown whether the MRR region of identity corresponds to a 

processed message ; a preliminary screen of cell lines did not detect expression 

of this sequence as a processed mRNA. Given that it has been postulated that 

regions surrounding the c-myb locus have been implicated in the development of 

leukemia and other malignant disorders and may contain a tumor suppressive or 

c-myb suppressive gene (Park and Reddy, 1 992 ; Hubbard Smith et aI . ,  1 992) , it 

is possible that the mycL2 like sequence identified in these studies may 

correspond to a tumor suppressive gene . Two members of the myc oncogene 

family have been demonstrated to have tumor suppressor activity . S-myc, 

another processed gene, has been isolated from the rat. Transfection of this 

gene into rat tumor cells has been found to suppress the tumorigenicity of these 
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cells i n  nude mice (Kuchino et aI . ,  1 989; Sugiyama et aI . ,  1989) . In addition, 

the B-myc protein shares homology with the transcriptional activation domain of 

c-myc but does not share identity in the c-myc DNA binding domain; B-myc can 

inhibit neoplastic transformation and transcriptional activation by c-myc (Resar 

et aI . ,  1 993) . Therefore , the identification of sequences deleted in this acute 

lymphoblastic leukemia cell line and linked to the c-myb gene may provide 

additional information and probes for the analysis of sequences lost in 6q

abnormalities detected frequently in leukemias and lymphomas . 
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