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A Pilot Study to Measure Dynamic Elasticity of the Bladder
During Urodynamics
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4Departments of EmergencyMedicine and Physiology and Biophysics, Virginia CommonwealthUniversity School ofMedicine,
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AIMS: Previous studies using isolated strips of human detrusor muscle identified adjustable preload tension, a novel
mechanism that acutely regulates detrusor wall tension. The purpose of this investigation was to develop a method to
identify a correlatemeasure of adjustable preload tension during urodynamics.METHODS: Patients reporting urgency
most or all of the time based on ICIq-OAB survey scores were prospectively enrolled in an extended repeat fill-and-empty
urodynamics study designed to identify a correlate of adjustable preload tension which we now call ‘‘dynamic elasticity.’’
Cystometric capacity was determined during initial fill. Repeat fills to defined percentages of capacity with passive
emptying (via syringe aspiration) were performed to strain soften the bladder. A complete fill with active voiding was
included to determine whether human bladder exhibits reversible strain softening.RESULTS: Five patients completed
the extended urodynamics study. Intravesical pressure (pves) decreased with subsequent fills and was significantly lower
during Fill 3 compared to Fill 1 (P¼ 0.008), demonstrating strain softening. Active voiding after Fill 3 caused strain
softening reversal, with pves in Fill 4 returning to the baseline measured during Fill 1 (P¼ 0.29). Dynamic elasticity, the
urodynamic correlate of adjustable preload tension,was calculated as the amount of strain softening (or its reversal) per%
capacity (Daverage pves between fills/D%capacity). Dynamic elasticity was lost via repeat passive filling and emptying
(strain softening) and regained after active voiding regulated the process (strain softening reversal). CONCLUSIONS:
Improved understanding of dynamic elasticity in the human bladder could lead to both improved sub-typing and novel
treatments of overactive bladder. Neurourol. Urodynam. 36:1086–1090, 2017. # 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Acute changes in detrusor wall tension are important in
overactive bladder syndrome (OAB) in that increased wall
tension per unit volume may lead to higher-than-normal
sensations of urgency. Wall tension is affected by the filling
pressure, bladder geometry (volume and shape), and the
material properties of the bladder wall. During standard clinical
urodynamics (UD), the bladder material property calculated
during the filling phase is a single, ‘‘static,’’ compliance value,
defined as the ratio of the change in volume to the change in
pressure over the entire fill.1 Changes in bladder compliance are
only expected through chronic disease processes causing
increased collagen deposition and decreased elasticity.2,3

We now introduce the term ‘‘dynamic elasticity’’ which
refers to a material property of detrusor smooth muscle (DSM)
responsible for acute changes in wall tension that occur from
one fill to another during repeat bladder filling and passive
emptying. Dynamic elasticity occurs due to strain softening.
A commonexample of strain softening is observedwhen a latex
balloon is repeatedly stretched and released prior to inflation.
The result is a reduction in stiffness, which produces lowerwall
tension during filling and makes the balloon easier to inflate.
The strain softening that occurs in a latex balloon is irreversible,
so that once the balloon is stretched it can never regain its
original wall tension for a given volume and shape. This

behavior is clearly differentiated from the reversible and
actively regulated strain softening that occurs in detrusor
smooth muscle (DSM) from both humans and other mamma-
lian species.4–11

In these earlier in vitro studies, an acute reduction in DSM
tension (increased compliance) was identified after strain
softening, which was reversed with active muscle contraction
at shorter muscle lengths.4–11 Strain softening is quantified as
adjustable preload tension in DSM strips, and strain softening
reversal is regulated by rho-kinase in DSM from multiple
species, including humans.4,7,12Wehypothesize that preclinical
strain softening measured as adjustable preload tension in
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DSM strips can be identified clinically as ‘‘dynamic elasticity’’
during UD testing.
The present pilot study utilizes an innovative repeat passive

filling and emptying protocol to test whether dynamic
elasticity can be identified during clinical UD testing. Because
strain softening is a regulatable biomechanical process affect-
ing tension in DSM, identification and characterization of
dynamic elasticity during UD may lead to improved under-
standing of the pathophysiology of both OAB and detrusor
underactivity, and ultimately to the development of novel
treatments for both of these conditions.

MATERIALS AND METHODS

This studywas approved by the Institutional ReviewBoard of
Virginia Commonwealth University. Individuals with OAB,
defined as International Consultation on Incontinence Ques-
tionnaire (ICIq�OAB question 5a�3, urgency most or all of the
time) were prospectively enrolled. Pertinent demographic data,
a complete ICIq-OAB survey, and a patient-reported 3-day void
diary were obtained from each patient prior to UD testing.

Urodynamics Testing

A UD protocol was designed to directly translate our
preclinical methodology established to quantify adjustable
preload tension in isolatedDSM strips4–11 to humanUD studies.
To accomplish this, an extended repeat fill protocol with
passive emptying and active voiding for specific fills was
developed (Fig. 1A). An initial UD studywas performed per best
practice guidelines for clinical purposes and to determine
maximum cystometric capacity (CCap).13 For the initial fill, the
fill rate was set at 10% of patient-reported maximum voided
volume perminute on a 3-day void diary completed prior to the
study. When the patient acknowledged that they had reached
theirmaximumcapacity (defined as inability to tolerate further
filling or the presence of an involuntary bladder contraction),
filling was stopped and the patient voided. Any post void
residual was removed through the catheter via syringe
aspiration, and the bladder was confirmed to be empty by an
ultrasound technologist with transverse and sagittal midline
suprapubic images taken at the onset and conclusion of each
fill-and-empty cycle with a Philips Epiq 7 system with a
1–5MHz abdominal probe (Amsterdam, The Netherlands). For
all subsequent fills, CCap was defined as the sum of the voided
volume and post void residual from the initial fill. Multichannel
digital pressure and flow data acquisition was performed at
10Hz via an Aquarius TTTM system (Laborie, Toronto). Four
repeat fills were then initiated at a rate 10% CCap/min as
follows: (i) fill to 30% CCap and passively empty; (ii) fill to 60%
CCap and passively empty; (iii) fill to CCap and void (voluntary
or involuntary); and (iv) fill to 60%CCap and void (Fig. 1A). Fills 1
and 2 were set to 30% and 60% CCap, respectively, to avoid
triggering an active contraction which would limit the ability
to identify the process of strain softening. Also, previous studies
have used 33% stretches to effectively strain softening DSM
strips.9

Passive emptying at the end of Fills 1 and 2 was performed
via syringe aspiration through a three-way stopcock in series
with the infusion catheter so as not to alter calibrated
pressures. The bladder was confirmed to be empty by
ultrasound as previously described. Repeat Fills 1–2 were
performed to progressively strain soften the bladder with
incrementally increasing volumes (Fig. 1A). In a fluid-filled thin-
walled vessel, pressure is directly related to wall tension by the
Law of Laplace (tension / pressure� radius); therefore, strain

softening reflected by decreased wall tension should be
identified by comparing the change in luminal pressure
between fills. For the present protocol, the degree of strain
softening was determined by comparing average intravesical
pressure (pves) from 0% to 30% CCap in subsequent passive fills.
The expected result was a progressive decrease in pressure
(pves1>pves2>pves3) consistent with strain softening (Fig. 1B).
The active void after Fill 3 was expected to reestablish the lost
tension and demonstrate the reversibility of strain softening
because preclinical studies show that active contraction
reverses strain softening in DSM strips.4–11 Thus, Fill 4 was
expected to demonstrate pves similar to that observed in Fill 1.

Justification for Using pves Instead of pdet

Detrusor pressure (pdet) is determined by subtracting
abdominal pressure (pabd) from pves. The role of the pdet
calculation is to remove confounding pressure transients from
the abdominal compartment (i.e., cough, respirations, and
rectal contractions) thereby preventingmisinterpretation. Such
events can appear as elevations in both pves and pabd (Fig. 2,
points A and B) but are eliminated on pdet due to subtraction
(Fig. 2, point C). However, if pabd elevates with a magnitude
significantly greater than that seen in pves (Fig. 2, points D
and E), then the resulting pdet returns negative (Fig. 2, point F)
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Fig. 1. A Repeat-fill urodynamics protocol. Initial clinical fill used to establish

cystometric capacity (CCap). Bladder was filled with incrementally increas-

ing volumes to strain soften the detrusor. Passive emptying via syringe

aspiration was performed after Fills 1 and 2. Patient voided after Fill 3

to abolish dynamic compliance changes induced by strain softening.

B Superimposed pves tracings for Fills 1–4 (F1–F4) of the repeat-fill

urodynamics protocol from an example participant. The pves values for all

fills were shifted by a single constant to set the minimum pves for the each

participant to zero. Tracings are overlaid with average pves between 0% and

30% CCap for each fill.
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which artificially alters the data, making it difficult or
impossible to normalize. Furthermore, any statistically signifi-
cant pattern in pves that correlates with repeat fills should be
due to the repeat fill protocol and not transient abdominal
events. For these reasons, the expected changes in wall tension
due to strain softening were quantified using pves instead
of pdet.

UD Data Analysis

Average pves for each fill was normalized to average pves in
Fil 1 for each patient for the filling ranges of 0–30% CCap and
0–60% CCap. Mean normalized pves and standard error were
calculated for the cohort for each fill (Fig. 3). To estimate the
change in thematerial properties of the bladder wall associated
with reversible strain softening, we quantified dynamic
elasticity as the ratio of the change in average pves between
two fills to the change in percent capacity (Fig. 4). Statistical
analyses of the data were performed via a two-way, paired
Student’s t-test. Significance was defined as P< 0.05, and all
values were reported as mean� standard error.

RESULTS

Five patients completed this pilot study and had results
available for analysis (n¼ 5). All patients were female with
average age 47� 5 years. Antimuscarinic use was documented
in 2/5 patients (40%). There was no difference in bladder
capacity when comparing maximum voided volume from
3-day void diary to CCap obtained in the clinical fill (380� 68ml
vs. 563�75ml, respectively, P¼0.12). ICIq-OAB scores are
shown in Table I.

In comparison to repeat Fill 1, Fills 2 and 3 displayed
decreasing normalized pves values from 0% to 30% CCap, which
reached statistical significance in Fill 3 (Fill 3: normalized
pves¼ 0.46�0.11 vs. Fill 1: 1.0, P¼ 0.008, n¼ 5) (Fig. 3A). This
was attributed to strain softening during repeat passive filling
and emptying. Active voiding occurred at the end of Fill 3, and
pves during Fill 4 returned to the baseline pves produced during
Fill 1 (Fill 4: normalized pves¼ 0.84�0.12 vs. Fill 1: 1.0, p¼ 0.29),
thereby demonstrating the reversibility of stain softening
(Fig. 3A). Analysis of normalized average pves values from 0%
to 60% CCap for Fills 2–4 displayed consistent results (Fig. 3B).
As a comparison, standard DV/DP compliance over the
0–100% CCap range was 115� 77ml/cmH2O for Fill 0 and

55� 25ml/cmH2O for Fill 3 (P¼0.56). This lack of significance
for change in compliance (as compared to change in pves)
potentially highlights the improved diagnostic capabilities of
our analytic technique.
Dynamic elasticity, the urodynamic correlate of adjustable

preload tension, was calculated as amount of strain softening
per percentage capacity (Daverage pves between passive
fills/D%capacity). The loss of dynamic elasticity from Fills 1
to 3 (after strain softening) and the gain of dynamic elasticity
from Fills 3 to 4 (after active voiding/strain softening reversal)
are shown in Figure 4. The magnitude of the loss in dynamic
elasticity attributed to strain softening and the magnitude
of the gain in elasticity attributed to strain softening
reversal were not statistically different (0.28�0.09 cm-H20/%
CCap vs. �0.20�0.05 cm-H20/% CCap, P¼0.49, n¼5). These
data indicate that the degree of strain softening caused during
this protocol was reversed by voiding.

DISCUSSION

This pilot study identified the biomechanical bladder
property of dynamic elasticity during a specially designed
repeat fill-and-empty UD protocol in patients with OAB.
Dynamic elasticity is the UD correlate of reversible strain
softening (adjustable preload tension) previously identified in
isolated human, rabbit, andmouse DSM tissue strips.4–12 Using
our UD protocol, we were able to generate a novel metric for
detrusor muscle function during the filling phase of micturi-
tion. We also demonstrated that standard DV/DP compliance
measurements do not effectively reflect the functionality of the
detrusor muscle.
In the present protocol, progressive strain softening was

observed in the 0–30% CCap and 0–60% CCap ranges. This is
because the bladderwas strain softened byfilling only to 30% in
repeat Fill 1. Thus, any filling beyond 30% in subsequent fills
would only be expected to provide additional strain softening
to the volume range that had been previously reached.
Therefore, our protocol was designed to demonstrate the
biomechanical property of strain softening (pves Fill 1>2>3)
and reversibility after active voiding (pves Fill 4� 1) in the
0–30% CCap range as shown in Figure 3.
Tension sensors within the bladder wall are responsible for

afferent nerve activity that leads to the sensation producing
urgency.14 Therefore, we hypothesize that a derangement in
the active processes regulating dynamic elasticity could
contribute to the pathophysiology of an OAB subtype. For
example, a defect in dynamic elasticity that caused increased
bladder wall tension during filling would be expected to result
in increased afferent nerve activity. Thus, altered dynamic
elasticity could be responsible for increased urgency at lower
bladder volumes. Conversely, a defect in the dynamic elasticity
mechanism associated with diminished strain softening
reversal would result in a more floppy bladder and could
reflect impaired contractility as seen in detrusor underactivity
due to a decreased bladder preload observed in another study.15

Furthermore, straining to void, instead of a voiding contraction,
would mimic our passive emptying protocol, resulting in a lack
of strain softening reversal that could potentially exacerbate
underactive bladder.
The current method for evaluating detrusor muscle stiffness

during UDS is through the use of bladder compliance (DV/DP)
calculations.1 The calculation, by definition, assumes a linear
increase in pressure throughout bladder filling since only two
time points (start of filling and cystometric capacity) are used.
However, prior studies in both rats and humans have
demonstrated the non-linear nature of compliance.16,17 Bladder
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compliance has also been evaluated recently by the Interna-
tional Consultation on Incontinence (ICI). It was concluded that
there is awide range amongst healthy patients and that further
standardization is required.18 These studies highlight the need
for an improved metric, such as dynamic elasticity, which
might better reflect underlying detrusor wall tension.
Examination of earlier studies involving repeated cystometry

suggests the presence of dynamic elasticity in human bladders.
In one of the earliest human cystometric studies, Simeone and
Lampson showed a substantially more compliant pressure-
volume relationship during cystometry following colon
disimpaction and an additional increase in compliance 24hr
later.19 Ockrim et al. demonstrated a statistically significant
increase in all ICS sensory threshold volumeswith repeat filling
in a cohort of men with lower urinary tract symptoms (LUTS)
undergoing three sequential repeat fills.20 Gupta et al. demon-
strated significant increased volumes in both first sensation

and first desire after sequential UD studies in healthy women
with no signs of LUTS.21 These findings support our results that
repeat fills strain soften the bladder and allow for increased
volumes with repeat filling. Other groups have also previously
shown that multiple UD parameters can vary with repeat
filling.22,23

Smith et al. studied changes in compliance during the filling
phase in both awake and centrally anesthetized mice which
prevented the micturition reflex, requiring emptying of the
bladder via pump.16 Thus, Smith’s study examined compliance
following both active voiding and passive emptying in mice,
just as the present study does during human UD. Smith
identified a reversible decrease in the absence of active detrusor
contraction and attributed this finding to a decrease in
micromotion activity thought to be suppressed when central
control is intact. Prior studies in rabbit DSMhave demonstrated
that low amplitude rhythmic contractions (likely responsible
for micromotion) are a mechanism for strain softening reversal
(and thereby dynamic elasticity) in rabbit DSM.9 In pre-clinical
studies, adjustable preload tension, the pre-clinical correlate of
dynamic elasticity, has been attributed to cycling actomyosin
crossbridges.4,6 Furthermore, adjustable preload tension has
been shown to be under the influence of the rho-kinase
pathway inmultiple species, including humans,4,7,8,12 andmay

0

0.2

0.4

0.6

0.8

1

1.2

Fill 1 Fill 2 Fill 3 Fill 4

N
or

m
al

iz
ed

 P
ve

s 
0 

to
 6

0%
 C

C
ap

 
(F

ol
d 

Fi
ll 

2)

0

0.2

0.4

0.6

0.8

1

1.2

Fill 1 Fill 2 Fill 3 Fill 4

N
or

m
al

iz
ed

 P
ve

s 
0 

to
 3

0%
 C

C
ap

 
(F

ol
d 

Fi
ll 

1)
*

*

A B

Fig. 3. Normalized average pves for (A) 0–30%CCap and (B) 0–60%CCap for repeat fills (n¼ 5). Decreasing pves valueswere observedwith subsequent Fills 2 and

3 (A) and Fill 3 (B). Fill 3 pves was significantly decreased compared to Fill 1 pves from 0% to 30% CCap (A) and compared to Fill 2 pves from 0% to 60% CCap (B).
Active voiding after Fill 3 caused pves to return to baseline during Fill 4.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Elasticity
Loss from Fill

1 to Fill 3

Elasticity
Gain from Fill

3 to Fill 4

D
yn

am
ic

 E
la

st
ic

ity
 fr

om
0-

30
%

C
C

ap
 (c

m
-H

2O
/%

C
C

ap
)

Fig. 4. Dynamic elasticity was defined as the ratio of the change in average

pves between two fills to the change in % CCap. For the 0–30% CCap range, the

magnitude of the loss in elasticity from Fills 1 to 3 due to strain softening,

(pves3�pves1)/30% Ccap, was not different from themagnitude of the gain in

elasticity from Fills 3 to 4 due to strain softening reversal, (pves4�pves3)/30%

CCap (n¼ 5).

TABLE I. Patient Characteristics

n 5

Age (years) 47� 5

Female 5

Male 0

Antimuscarinic use, n (%) 2 (40)

ICIQ-OAB score

3a 1.6� 0.4

3b 9.6� 0.2

4a 3.4� 0.2

4b 9.8� 0.2

5a 3.4� 0.2

5b 9.8� 0.2

6a 2.4� 0.2

6b 9.6� 0.4
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offer a target for future intervention in these types of voiding
dysfunction.

Our calculation of dynamic elasticity using the change in
pressure between fills is an approximation of the true change in
elasticity, which is the change in the stress–strain relationship
due to strain softening in the bladder wall. Other investigators
have attempted to model bladder wall tension by combining
viscoelastic detrusor strip stress–strain properties with UD
pressure data.24,25 However, the benefit of the current
investigation is that we were able to quantify dynamic
elasticity simply by using our repeat filling and passive
emptying protocol, without any increase in invasiveness for
the patient. We recognize that these methods would be more
robust if compared to attempts at directly or indirectly
measuring wall tension or stress, and we have already begun
to use 3D ultrasound to non-invasively measure bladder
geometry which is necessary to calculate wall tension during
urodynamic filling.

Limitations of this pilot study include small sample size,
all female population, and all patients had OAB. Further
investigation of volunteers without voiding dysfunction is
needed to validate the findings of this study. Also, the
potential confounding factors introduced during UD testing
(non-physiologic filling rates and possible mucosal irritation
from infusion catheter) could influence patient sensation
thresholds for determining cystometric capacity.

CONCLUSION

This pilot investigation identified and measured the bladder
biomechanical property of dynamic elasticity during UD in
patients with OAB. This metric, determined using a specially
designed repeat fill and empty protocol, represents the UD
correlate to the previously identified property of adjustable
preload tension (reversible strain softening) in preclinical
investigations. The metric of dynamic elasticity offers substan-
tial benefits beyond traditional DV/DP compliance measure-
ments. Furthermore, alterations in dynamic elasticity could be
used in future studies to identify sub-sets of both OAB and
underactive bladder that may be mediated by alterations in
detrusor wall tension and in the identification of novel targets
and drugs for the treatment of both conditions.
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