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B12(SCN)12
−: An Ultrastable Weakly Coordinating Dianion

Hong Fang and Puru Jena*

Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, Virginia 23284, United States

*S Supporting Information

ABSTRACT: Stable dianions that are weakly coordinating with metal ions are not
common. In this work, we show that the thiocyanate SCN− anion, known for its
detoxification property of cyanide CN− and antidegradation property of perovskite solar-
cell materials, can also be used to produce a new set of weakly coordinating B12(SCN)12

−

dianion complexes which are potential candidates for the anionic part inside the
electrolytes of metal-ion, especially the magnesium-ion-based, batteries.

I. INTRODUCTION
Rechargeable metal-ion batteries have become an indispensable
part of our modern life. They not only power portable devices
such as cell phones and laptop computers to electric vehicles
but also are essential for a clean energy future. Among the three
major components of a batterythe anode, the cathode, and
the electrolytethe latter stands at the center as the supplier of
metal ions which shuttle between the electrodes. Since
magnesium batteries enjoy great cost-effective advantages
compared to the currently used Li-ion batteries (LIBs),1−6 a
great deal of effort has been made toward the discovery of
promising electrolytes for multivalent metal batteries.7−9 In this
context, complex metal borohydrides that have been considered
for some time as hydrogen storage materials have found a niche
application in making electrolytes.7,10 Recent experiments by
Tutusaus et al. and Tang et al.4,11 demonstrated the exceptional
properties of CB11H12

− (monocarborane) as anionic compo-
nents of electrolytes for magnesium battery and Na-ion
batteries, respectively. To find more candidates of the
electrolyte salts for magnesium batteries, it would be important
to develop stable dianions that are weakly bonded to metal
cations. In a very recent work, Zhao et al.12 predicted the
unusual stability of another dianion, B12(CN)12

2−, formed by
replacing the H ligands in B12H12

− by CN moieties. Using
density functional theory, they calculated the binding energies
of the first (ΔE1) and second (ΔE2) electrons. Known as
electron affinities, these are defined, respectively, as

Δ = − −E E E(X) (X )1 (1)

Δ = −− −E E E(X ) (X )2
2

(2)

where X is the moiety under investigations, such as B12(CN)12.
It was shown that the second electron in B12(CN)12

2− is bound
by ΔE2 = 5.3 eV which is about six times larger than the
corresponding value of 0.9 eV in the well-known closo-borane

B12H12
−. ΔE1 of B12(CN)12

2−, 8.6 eV, is also much larger than
the corresponding 4.6 eV binding energy in B12H12

2−. When
one of the B atoms in the B12(CN)12 is replaced by C, ΔE1 of
CB11(CN)12 is 8.72 eV which is also much larger than that of
CB11H12. More importantly, the second electron in
CB11(CN)12

2− is bound by 1.07 eV, while the CB11H12
2−

dianion is unstable compared to its monoanion state. It was
further found that the binding energies of Mg2+ and Li+ to
CB11(CN)12

2− and CB11(CN)12
−, respectively, are also

significantly lower than those bound to CB11H12
2− and

CB11H12
−. All these properties indicate that B12(CN)12

2− and
CB11(CN)12

− might serve as the anionic components of
electrolytes inside metal-ion-based batteries. However, the
cyanide ion CN− is highly toxic which will make it difficult to
synthesize B12(CN)12

2− in experiment.
In this paper, by making use of the accumulated knowledge

in biological detoxification of CN− and materials design of
perovskite solar cells,13,14 we report a new set of nontoxic
ultrastable (di)anions with improved properties compared to
B12(CN)12

2− and CB11(CN)12
2−. We note that the giant

stability of B12(CN)12
2− is achieved by satisfying two electron

counting rules, simultaneously. First, the CN moiety requires
one electron to satisfy the octet shell closure rule and
consequently has an electron affinity of 3.9 eV that surpasses
the electron affinity of any halogen atom. Thus, CN is a
superhalogen.15 Second, the enhanced stability of B12(CN)12

2−

is due to the Wade−Mingos rule16−18 which requires (n + 1)
pairs of electrons for its cage bonding. Here n is the number of
vertices in the B polyhedron. With n = 12, B12(CN)12

2−

requires 26 electrons to stabilize its icosahedra structure. It is
because of the combined effect of the octet rule (that lends
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stability to the superhalogen CN ligand) and the Wade−
Mingos rule (that lends stability to the icosahedral cage) that
B12(CN)12

2− enjoys its extraordinary stability.

II. METHOD

The calculations are carried out using the GAUSSIAN03
package.19 The hybrid density functional theory (DFT) with
Becke three-parameter Lee−Yang−Parr (B3LYP)20,21 prescrip-
tion for the exchange-correlation energy and the 6-31+G(d,p)
basis set are used. The optimized ground states correspond to
the structures with the minimum energy and without any
imaginary frequency. Natural bond orbital (NBO) analysis is
used to obtain the atomic charge state and the bond
composition of the molecule. The intensity of the infrared-
active mode is given as change of the dipole moment (in unit of
km/mol) along the vibrational mode. The molecular dynamics
simulations are conducted using an NVT ensemble with Nose−
Hoover thermostat. A large 30 × 30 × 30 Å cell is used to
contain the studied anion. Simulations are conducted with
normal precision in VASP22,23 and a tolerance of 1 × 10−5 eV
for the SCF cycle without any symmetry constraint. van der
Waals dispersion interactions are also considered using the
DFT+D2 method.24,25 The time step is set to 2 fs. The
solvation calculations are performed using the ground state of
the gas-phase structures within the polarizable continuum
model (PCM). In our study, the model is based on the work in
refs 26 and 27. Such a solvation model has been tested for a
number of solutes with different polarities using the 6-31+G(d)
basis set at the DFT level. The agreement between the
calculated solvation free energy and the experimental ones is
reasonably good.26 All anions in the solvent remain stable
without imaginary frequency. Our method of using the gas
phase and the idealized solvation model to study the oxidative
stability of the (di)anions and their interaction with metal
cations is widely adopted in the field.8,9

III. RESULTS AND DISCUSSION

We replace the CN ligand in B12(CN)12
2− with SCN. Note that

SCN also requires one extra electron to satisfy the octet rule.
Indeed, the electron affinity of SCN, 3.5 eV, is very similar to
that of Br. Thus, one can regard SCN as a pseudohalogen. It is
known that thiocyanate, SCN−, is much less toxic and can be
used as an antidote of CN−.13 It has been shown experimentally
that SCN− can be effectively removed from aqueous solutions
by using low-cost natural waste biomass.28 Interestingly, SCN−

has recently been used to replace iodine in the organic−
inorganic hybrid perovskites to produce CH3NH3PbI(SCN)2,

14

making a leap forward in solving the long-standing problem of
degradation of the perovskite solar-cell materials exposed to
moisture. According to our own studies,29−31 the success of
SCN− in improving the stability of the CH3NH3PbI3 organic
hybrid perovskite solar cell is consistent with the role played by
Br− in CH3NH3PbI2Br.

32 Due to the above merits of SCN−

compared to CN−, the production cost of metal salts made
from B12(CN)12

2− is expected to be greatly reduced.
In terms of the interaction of B12(CN)12

2− or CB11(CN)12
−

with metal cations, the highly electronegative CN and the large
volume work against each other. On one hand, larger volume
means smaller charge density on the ion surface and hence
weaker interaction with a point-charge metal ion. On the other
hand, large negative charge concentrated on CN is likely to
form a highly polarized bond with Li+/Mg2+. This may result in

poor solubility of the salt in low-polarity solvents like ethers
which, in the case of magnesium battery, are the only usable
solvents so far.3,4 Thus, electrolytes based on B12(SCN)12

2− and
CB11(SCN)12

− may provide another advantage. With the
smaller electron affinity of SCN compared to that of CN, the
bonding polarity between the anion and the metal cation is
expected to be reduced. The increased volume of B12(SCN)12

2−

is likely to further reduce the magnitude of the interaction.
We first calculated the geometry of neutral and negative ions

of B12(SCN)12 and CB11(SCN)12. The ground state of
B12(SCN)12

2− is found to be symmetric (Ci point group)
with N ligated to B and each NCS branch pointing outward
radially, as shown in Figure 1a. Its isomer where S is ligated to

B (see Figure 1b) is 13.8 eV higher in energy and adopts a
nonsymmetric configuration (C2 point group) with the bending
angle B−S−C being 107°. NBO analysis reveals that the
bending (larger than the 90° with no sp mixing and smaller
than 109° with sp3 hybridization33) is due to the predominant p
character (more than 75% contribution) in the B−S bond with
little s mixing. On the other hand, the straight B−N−C bond in
the ground-state structure according to the 50:50 sp mixing of
N is usually seen in the N-ligated thiocyantes.33 Due to the high
symmetry of the ground state, B12(SCN)12

2− shows negligible
dipole moment, similar to that of B12(CN)12

2−. This is
advantageous because large clusters with big dipole moment
may tend to dimerize.34

To study the dynamic motions inside B12(SCN)12
2− under

thermal excitation, we carried out molecular dynamics
simulation (MDS) on the dianion at 500 K for 20 ps. Figure

Figure 1. Optimized structures of (a) the ground state of
B12(SCN)12

2−; (b) its isomer B12(NCS)12
2−; (d) the derivative

CB11(SCN)12
−; and (e) the ground state of B12(OCN)12

−. Boron is
in pink; nitrogen is in blue; carbon is in gray; sulfur is in yellow; and
oxygen is in red. (c) Computed pair correlation functions (of B−B, B−
N, B−C, N−S, N−N, C−C, and S−S) from the trajectory data of the
molecular dynamics simulation at 500 K for 20 ps after the thermal
equilibrium are reached.
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1c shows the calculated pair correlation functions (PCF) of B−
B, B−N, B−C, and N−S from the MDS trajectory data. The
narrow peaks indicate a rigidity inside the structural skeleton
and the SCN pseudohalogen. The main flexibility of the
structure comes from the swaying motions of the −N−C−S
branches upon thermal excitation, as demonstrated by the PCF
in Figure 1c.
The calculated second and first electron affinity (see eqs 1

and 2) of B12(SCN)12
2− are 3.28 and 5.65 eV, respectively.

These values are compared to those of the other boron-cage-
based anions in Table 1. They are large compared to those of

the benchmark B12H12
2− and CB11H12

− which have already
been proven to have excellent oxidative stability.3,4 To the best
of our knowledge, the value of 3.28 eV binding energy of the
second electron in B12(SCN)12

2− is the second largest value
reported so far, with B12(CN)12

2−12 being the most stable
dianion known in the gas phase, and larger than those of
perhalogenated dodecaborates B12X12

2− (X = halogen)35 and
gigantic dimers B24X18

2− (X = halogen).36

We further studied CB11(SCN)12
− and the isoelectroic

B12(OCN)12
2−. The optimized ground states of these structures

are given in Figure 1d and 1e, respectively. For B12(OCN)12
2−,

the isomer with O linked to B is 15.3 eV higher in energy than
the ground state structure where N is linked to B. Both ions
show excellent stability compared to the benchmark anions, as
shown in Table 1. Different charge (from −2 to neutral) states
of B12(SCN)12, CB11(SCN)12, and B12(OCN)12 introduce
minimal structural deformation, as shown in Table S1 of the
SI, suggesting that the anion states are stabilized against the
neutral state due to charge redistribution between the boron
cage and the functional SCN ligand. Indeed, NBO analysis
shows that, from the neutral state to the monoanion state, each
boron atom and each SCN ligand receives about 0.02 and 0.08
electrons, respectively; from the monoanion to the dianion,
each boron and each SCN obtain another 0.03 and 0.07
electrons, respectively. These values are similar to the case of
B12(CN)12,

12 suggesting that the electron-drawing ability of
SCN is also large compared to the boron cage.
To calculate the interaction between B12(SCN)12

2− and its
derivatives with metal ions, we first determined the ground-
state structures of the corresponding salts, including
[LiB12(SCN)12]

−, Li2B12(SCN)12, LiCB11(SCN)12, and
MgB12(SCN)12. These are shown in Figure S1 of the SI. The
bonding pattern between the anion and the metal cation is the

same as that involving B12(CN)12
2− (see Figure S1e of SI and

ref 12). Each metal cation is held by three ligand branches. We
then calculate the energy cost, Eb, to dissociate the metal ion
from the anion by using the equation

= + − −E E E E E( )b dianion mc salt d (3)

where Ed is the energy cost due to the distortion of the dianion
caused by binding with the metal ion; Edianion is the ground-state
energy of the dianion; Emc is the energy of the metal cation; and
Esalt is the ground-state energy of the salt. We rewrite eq 3 as

= + = + + −

= + −

E E E E E E E

E E E

( )b dissociation d dianion d mc salt

distort mc salt (4)

Here Edissociation is the dissociation energy defined as the sum of
the energy of the anion and the metal ion minus the energy of
the corresponding salt. Edistort is the energy of the dianion at the
distorted configuration (caused by binding to the metal cation).
The calculated Eb for the studied salts are given in Table 2. It is
clear that B12(SCN)12

2− and CB11(SCN)12
− salts require the

least energy to dissociate into Li+ or Mg2+, especially compared
to the benchmark B12H12

2− and CB11H12
−.

We further considered the properties of the studied anions in
solution. For magnesium battery, the only known solvent that is
compatible with Mg is ether.3,4 In our calculations we therefore
adopt tetrahydrofuran (THF, C4H8O, ε = 7.52) which has been
used in the experiments as the solvent (see the Method
section).3,4 The computed oxidation potentials of the anions in
THF are given in Table 1. For the dianions, the values are
reported versus the Mg2+/Mg standard electrode potential of
(4.42−2.372 ≈) 2.05 V.38 The reported values for the
monoanions are converted to Li+/Li (1.37 V) scale. The
oxidation potentials of the dianions increase significantly due to
the charge separation effect in the solvent. The trend of these
potentials is the same as that of the gas phaseB12(SCN)12

2−

and its derivatives show higher oxidative stability compared to
the benchmark anions. We want to emphasize that, although it
has been shown that DFT calculations with B3LYP/6-
31+G(d,p) often result in systematic discrepancy for the
reproduction of experimental redox potentials of anions, such a
method can still reproduce the correct trends of the oxidative
stability of anions.39−42 Rather than trying to match the
experimental values, our choice of method (see the Method
section) here is to use the same combination of exchange-
correlation functional (B3LYP) and the basis set (6-31+G-
(d,p)) as that in ref 12 so that the stability trends of the clusters
can be drawn from the calculations with and without the
solvation model.

Table 1. First (ΔE1) and Second (ΔE2) Electron Affinity
(Equation 1 and Equation 2) of B12(SCN)12

2−,
B12(OCN)12

2−, and CB11(SCN)12
− Compared to Other

Boron-Cage-Based Anionsa

ΔE1 (eV) ΔE2 (eV) Oxidation Potential (V)

B12H12 4.57 0.86 9.43(Mg2+/Mg)
CB11H12

b 5.99 -- 5.54(Li+/Li); 4.86(Mg2+/Mg)
B12(SCN)12 5.65 3.28 10.34 (Mg2+/Mg)
B12(OCN)12 6.01 3.21 10.67 (Mg2+/Mg)
CB11(SCN)12 5.69 -- 5.16 (Li+/Li); 4.48 (Mg2+/Mg)
B12(CN)12

c 8.56 5.28 15.95 (Mg2+/Mg)
CB11(CN)12

c 8.72 1.07 13.16(Mg2+/Mg)
aValues of the oxidation potential are calculated in THF solvent versus
the standard electrode potential Mg2+/Mg of 2.05 V for the dianions
and Li+/Li of 1.37 V for the monoanions. A standard hydrogen
electrode value of 4.42 V is used.37 bRef 7. cRef 12.

Table 2. Calculated Energy Eb (eV) to Dissociate the Metal
Ion (Li+/Mg2+) from the Studied Saltsa

Li salt
Li+

(first)
Li+

(second) Mg salt Mg2+
@

THF

Li2B12H12 5.91b 9.03b MgB12H12 21.19 1.73
LiCB11H12 5.40 -- Mg(CB11H12)2 20.38 1.27
Li2B12(CN)12 5.16 7.44 MgCB11(CN)12 19.70 1.07
Li2B12(SCN)12 5.07 6.89 MgB12(CN)12 18.29 0.51
Li2CB11(CN)12 4.67b 7.65 MgB12(SCN)12 18.37 0.39
LiCB11(SCN)12 4.40b --

aThe energy to dissociate Mg2+ from the studied dianions in the
solvent THF is also given. bValues of Edissociation in eq 4.
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Since ethers are solvents with low polarity, it is essential to
make the bonding between the Mg ion and the anion in a salt
less ionic to enhance its solubility. One way to evaluate the
bond polarization together with the bond strength is to study
the calculated infrared (IR) vibrations. The vibrational
frequency is a direct measurement of the force constant of
the bond. The change of the dipole moment along a given
vibrational mode is directly proportional to the intensity
reflected in the IR spectrum. It is noted that any vibration
involving the relative motion of the metal ion against the anion
should change the dipole moment of the molecule and,
therefore, should be IR active. The modes with the metal ion
vibrating against a static anion are the least energetic ones
among the modes with measurable IR intensities, given the high
symmetry of the ground states of the studied anions and their
rigid skeleton as discussed previously.
In Figure 2 we compare the frequency as well as the

intensities of these calculated IR modes in MgB12H12,

Mg(CB11H12)2, MgB12(CN)12, and MgB12(SCN)12. In each
case, we give the longitudinal mode of the Mg ion vibrating
against the anion. From MgB12H12 to MgB12(SCN)12, the
mode frequency decreases, suggesting weaker bond strength.
Compared to MgB12H12, Mg(CB11H12)2 already shows
significantly lower bond strength (see Figure 2a and 2b)

between the Mg ion and the anion. The IR mode of
MgB12(SCN)12 shows much lower intensity than the other
three salts in Figure 2c, indicating low polarity of the bond,
while MgB12(CN)12 shows higher intensity (Figure 2d) and
therefore higher bond polarity due to the concentration of
negative charge on N (as discussed at the beginning of this
paper). This trend is consistent with the atomic charge states
obtained by the NBO analysis, where the Mg ion has the
smallest charge of +1.51e bonded to three S atoms with −0.20e
in MgB12(SCN)12 (Figure 2c), while in MgB12(CN)12, Mg with
charge +1.81e is bonded to three N atoms, each carrying −0.59e
(Figure 2d). The ground states of LiCB11H12, LiCB11(SCN)12,
[MgCB11H12]

+, and Mg(CB11H12)2 are given in Figure S2 of SI.
In the presence of solvent, IR intensities increase due to the

enhancement of the polarized vibration of Mg2+ against the
dianion. The bond strength is greatly weakened in each case.
Interestingly, the very IR mode relevant to the dissociation of
Mg2+ with B12(SCN)12

2− becomes unstable in the solvent, as
indicated by its imaginary frequency. This suggests that
MgB12(SCN)12 would readily dissolve in THF compared to
the other studied compounds. The trends of the results are
consistent with the calculated dissociation energy in the solvent,
as given in Table 2.

IV. CONCLUSIONS

In conclusion, we show that SCN, which is used for
detoxification of CN and for moisture resistance of the
perovskite solar cells, can also be used to produce a new set
of weakly coordinating anions. Compared to B12(CN)12

2−,
B12(SCN)12

2− displays improved properties, while maintaining
high stability. Because of the unusual stability and its much
weaker interaction with the metal ions compared to those of
the benchmark negative ions CB11H12

−, B12(SCN)12
2− and its

derivatives CB11(SCN)12
− are promising weakly coordinating

anions which may have applications in the electrolytes of metal-
ion-based batteries. As mentioned before, electrolyte is a
complicated system having different components and inter-
actions between them. We hope that our theoretical work will
guide experiments in the discovery of the new electrolytes and
study their effectiveness in comparison to those being currently
used in commercial batteries.
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