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ABSTRACT 
 
 

SALVIANOLIC ACID B FOR PULMONARY DELIVERY TOWARDS REVERSAL 
OF EMPHYSEMA 

 
by Sneha Dhapare, M.S., B.Pharm.  

 
 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 

 
Virginia Commonwealth University, 2017 

 
 

Major Director: Masahiro Sakagami, Ph.D.  
Associate Professor 

Department of Pharmaceutics, School of Pharmacy 
 

 
A new pathobiologic hypothesis has recently emerged that the alveolar structural 

destruction and loss in emphysema are caused by the deficiency of vascular endothelial 

growth factor (VEGF). Therefore, this project hypothesized that such pathobiologic VEGF 

deficiency of emphysematous lungs can be recovered with a natural caffeic acid tetramer, 

salvianolic acid B (SalB), through activation of signal transducer and activator of 

transcription 3 (STAT3), so that emphysema can be reversed as a result of inhibition of 

induced cell death, stimulation of cell proliferation and migration, and promotion of stem 

cell recruitment to the lungs.  

SalB was first shown to be potently anti-oxidative (IC50 = 3.7 µM), but devoid of 

anti-elastase activity. SalB was then administered to the lungs of healthy rats at 0.2 mg/kg 

for two weeks, verifying ~1.7-fold increased lung tissue expressions of phosphorylated 

STAT3 (pSTAT3; an activated form of STAT3) and VEGF. Subsequently, SalB was 

examined in the anti-cell death assay, cell proliferation and migration assays, and trans-



	
xix	

endothelial stem cell recruitment assay in the in vitro lung epithelial (A549) and 

endothelial (HMVEC-L) cell systems. SalB at 25 µM exerted significant 48-88 % 

inhibitory activities against cell death induced with oxidative stress and VEGF receptor 

blockade (with SU5416) in both cell systems, measured by the trypan blue exclusion and 

propidium iodide-based flow cytometry assays. SalB at 25 µM also stimulated A549 and 

HMVEC-L cell proliferation by ~1.4-fold and promoted cell migration by ~1.6-fold, while 

recovering stem cell recruitment impaired with SU5416 by 60 %. The anti-cell death, and 

proliferation and migration stimulatory activities of SalB were significantly opposed by 

pharmacological inhibitors of JAK2 (Janus kinase 2; an upper signal of STAT3), STAT3 

and VEGF. 

SalB was then examined for its in vivo reversal activities in emphysema induced 

with porcine pancreatic elastase (PPE) and cigarette smoke extract (CSE) in rats. Upon 

establishment of emphysema on day 21, SalB was administered to the lungs three times 

weekly over three weeks. SalB at 0.2 mg/kg significantly recovered ~85 %-impaired 

treadmill exercise endurance by 57-82 %; and reduced abnormal airspace enlargement by 

59-75 %. In the PPE-induced emphysematous rats, SalB also reduced the 4-fold greater 

alveolar destruction index by 61 %. The lung tissue protein expression by Western blot 

analysis found that cleaved caspase 3 (cell apoptotic marker) was induced by 13-fold, and 

VEGF was reduced by 60 % in the PPE -induced emphysematous rats. However, 

pulmonary treatment with SalB at 0.2 mg/kg normalized these proteins, and also 

significantly increased the expression of a cell proliferation marker, proliferative cell 

nuclear antigen (PCNA) by 2.6-fold. Note however that SalB treatment did not reduce the 

neutrophilic myeloperoxidase activity in the lungs induced in the PPE-induced rats. Taken 



	
xx	

all together, this study has demonstrated that SalB potently inhibited lung cell death, 

stimulates lung cell proliferation and migration, and restores stem cell migration with its 

mechanism of STAT3 activation and VEGF elevation and reversed established 

emphysema in rat models. 
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CHAPTER 1 
 

BACKGROUND AND SIGNIFICANCE 

 
1.1. COPD and Emphysema  
 

Chronic obstructive pulmonary disease (COPD) is comprised of two lung 

diseases, chronic bronchitis and emphysema (Rabe et al. 2007). Hence, emphysema is a 

manifestation of COPD, and pathobiologically causes a loss of lung's elastic recoil and 

destruction of the alveolar septa, resulting in airspace enlargement and airflow 

obstruction (Snider et al. 1985). This alveolar structural destruction and loss are 

progressive and believed to be irreversible, thereby eventually leading to death (Snider et 

al. 1985). Epidemiological studies indicate that COPD affects 24 million Americans, but 

a half of them remain undiagnosed (Akinbami et al. 2013). It is currently the third-

leading cause of death in the United States (US) with annual 120,000 deaths, and is 

predicted to be the third-leading cause of death worldwide by 2020 (Punturieri et al. 

2008). In the US, its increasing socioeconomic burden reaches $50 billion in annual 

direct and indirect health care expenditures (Akinbami et al. 2013). Even so, the 

pharmacological treatment of COPD/emphysema remains palliative only to improve the 

disease status (Diette et al. 2015). While chronic cigarette smoking is the predominant 

risk factor, COPD/emphysema also occurs in non-smokers, 35 % of which are due to 

genetic factors like the α1-antitrypsin deficiency or air pollution in low-to-middle income 

countries (WHO 2004).   
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1.2. Current Treatment of COPD/Emphysema 
 

Approximately 85 % of COPD/emphysema deaths are associated with active or 

passive exposure to cigarette smoke (Marcelino et al. 2014). Hence, smoking cessation is 

a preventive therapy, yet it has shown a very low success rate of 7-10 % (Messer et al. 

2008). This is in contrast to the nicotine replacement therapies using nicotine gum, 

patches, lozenges, nasal spray, and inhalers, reporting an increased success rate of 

smoking cessation by 60 % (Zhang et al. 2015). In fact, a Cochrane systematic review has 

attested that a combination of behavioral treatment and pharmacotherapy is the most 

effective in helping smokers with COPD quit smoking (van Eerd et al. 2016). Meanwhile, 

pulmonary rehabilitation programs like lung volume reduction surgery (LVRS) have 

resulted in improved performance in some patients with severe emphysema, however, 

they are cost-prohibitive and are associated with an increased risk of morbidity and 

mortality (van Agteren et al. 2006). The current inability in transforming 

COPD/emphysema treatment has been suggested to be associated with a number of 

factors including failure to diagnose early stages of the disease (Marchetti & Criner 

2016). 

To date, the pharmacological treatment options for COPD/emphysema are limited 

to inhaled corticosteroids (ICSs), bronchodilators (β2 agonists and anticholinergic) and 

phosphodiesterase-4 inhibitors or a combination thereof (Stockley et al. 2008). Table 1 

summarizes the commonly used medications in COPD/emphysema approved by the US 

Food and Drug Administration (FDA) (Schamberger et al. 2014). These are used to 

manage symptoms, reduce the frequency and severity of exacerbations and improve the 

overall health by treating the co-morbidities (Punturieri et al. 2008; Marchetti & Criner 
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2016). Nevertheless, none of these molecules have conclusively shown to modify the 

long-term lung function decline seen in COPD/emphysema patients (GOLD 2017; Barnes 

& Stockley 2005). Therefore, there is no pharmacological therapy to reverse or repair 

emphysematous lung damages (Marchetti & Criner 2016). New molecules for COPD that 

are currently being studied in clinical trials include anti-inflammatory agents: 

theophylline, phosphoinositide 3-kinase inhibitors and curcumin; and anti-oxidants: 

andrographolide, sulforaphane and chalcones (https://clinicaltrials.gov). However, again, 

these molecules are expected for management of the disease symptoms, so that reversal 

of the emphysematous lung damages would not be feasible. 
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Table 1.1: FDA approved drugs for COPD/emphysema treatment (Schamberger et 
al. 2014) 
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1.3. Pathogenesis of COPD/Emphysema 

While chronic cigarette smoking has been shown to be the most important risk 

factor in COPD/emphysema, its pathogenesis still remains enigmatic even as of today 

(Taraseviciene-stewart & Voelkel 2008; Fletcher & Peto 1977). Cigarette smoke has 

protean detrimental effects on both the lung’s epithelia and endothelia, causes damages 

and loss of the microvasculature, and eventually destroys alveolar structures (Figure 1.1) 

(Hueper et al. 2015). It has been a long-term belief that this is due to three predominant 

pathogenic factors, namely, oxidative stress, elastolysis and inflammation, collectively 

referred to as the “triple threat” (Snider 1981). Accordingly, potential applications of 

inhibitors of each of these pathways have been explored over the last three decades, but 

remain to prove beneficial in reversing emphysema in clinical studies (Fischer et al. 

2011).  

The alveolar septa in patients with COPD are thin and often almost avascular, 

which implies that reduced vascularization may be involved in this pathogenesis (Liebow 

1959). Although the “triple threat” hypothesis is supported by the evidence of elevated 

lung inflammation, oxidative stress and proteolysis in emphysema, it does not explain 

how the progressive nature of the alveolar structural destruction and loss persists even 

after cessation of smoking (Fletcher & Peto 1977). As a part of the effort to clarify if 

alternate cellular mechanisms are responsible for the development and progression of 

emphysema, Kasahara et al. (2000) identified that endothelial cell apoptosis was induced 

in emphysema lungs, associated with reduced expression of vascular endothelial growth 

factor (VEGF) and one of its receptor, VEGF -receptor 2 (VEGFR2). Accordingly, 

Kasahara et al. (2001) then showed that the blockade of VEGF -receptor induced 
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endothelial cell death by apoptosis and emphysema in rats. Reduced VEGF expression in 

the sputum and lung tissues of emphysema patients were also identified, which supported 

the impaired VEGF signaling in emphysema (Kanazawa et al. 2003; Yasuo et al. 2011). 

Subsequently, this “VEGF deficiency” was linked to decreased expressions of VEGF’s 

upstream regulating molecules, hypoxia inducible factor 1 α (HIF-1α) and histone 

deacetylase (HDAC), seen as a result of chronic cigarette smoking (Ito et al. 2005; 

Mizuno et al. 2011). These evidences were sufficient to propose VEGF as a critical “lung 

structure maintenance factor” and thus, its reduced expression and impaired signaling as 

an essential pathologic mechanism in emphysema lungs (Medford & Millar 2006). If so, 

pharmacological recovery of VEGF expression may be an approach for lung structural 

repair and reversal of emphysema. 

VEGF and its signaling are however involved in many aspects of COPD, more 

than just emphysema, such as bronchial wall remodeling and pulmonary hypertension. 

Thus targeting VEGF in COPD may cause off-target effects on some of such other 

aspects, which are largely unknown or unpredictable (Bakakos et al. 2015). Even so, the 

loss of alveolar capillary structure in emphysema surely causes a vascular disease, which 

can be corrected by restoring and/or stimulating VEGF expression, given the 

vulnerability of the endothelial cells to VEGF paracrine and autocrine survival signals 

(Taraseviciene-stewart & Voelkel 2008). Apart from improving cell survival, VEGF is 

also proposed to promote repair of the adult lung tissues in emphysema, given its role as 

an important growth factor.  
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Figure 1.1: Normal and emphysematous alveoli in the lung (Taraseviciene-Stewart & Voelkel 
2008) 



 
9 

1.4. JAK2-STAT3-VEGF Signaling Pathway  

One of the upstream regulators for both VEGF and HIF-1α is the signal 

transducer and activator of transcription 3, STAT3 (Xu et al. 2005). Upon activation of 

cytokine, erythropoietin or growth factor receptors bound to intracellular janus kinases 2 

(JAK2), STAT3 is phosphorylated to its active form phosphorylated STAT3 (pSTAT3), 

which induces its dimerization and translocation into the nucleus for binding to the 

VEGF promoter region for VEGF transcription, as schematically described in Figure 1.2 

(Chen & Zhong 2008; Dong et al. 2010). This pSTAT3 is also associated co-operatively 

with HIF-1α on the VEGF promoter region to participate in VEGF regulation (Xu et al. 

2005). Therefore, activation of the JAK2-STAT3 signaling can in theory elevate tissue 

expression of VEGF.  

Apart from its critical role in VEGF regulation, STAT3 is also a key factor to 

promote cell proliferation, differentiation and angiogenesis (Chen & Zhong 2008). 

Cigarette smoke was shown to induce STAT3 activation, playing a protective role in 

maintaining normal lung homeostasis and function by regulating critical processes in 

inflammation, apoptosis, and protease expression (Geraghty et al. 2013). This study 

speculated that targeting STAT3 could be used as an approach to counter the injurious 

effects of cigarette smoke exposure. JAK2 has also been shown to play an important role 

in mediating proliferation and differentiation of alveolar cells (Wagner et al. 2004). Thus, 

targeting JAK2-STAT3 could correct pathologically reduced VEGF levels in emphysema 

to promote lung repair by increasing cell survival and proliferation.  
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Figure 1.2: Intracellular JAK2-STAT3-VEGF activation pathway 
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1.5. Salvianolic acid B (SalB) 

SalB is a polyphenol and a major water-soluble bioactive compound extracted 

from danshen, a dried root of Salvia militiorrhiza (Figure 1.3). As a traditional Chinese 

medicine, danshen has long been used to improve blood circulation in the treatment of 

cardiovascular diseases. Hence, many danshen products are commercially available as 

oral tablets, capsules, liquids and dripping pills as well as for intravenous injection, 

creating a $120 million market worldwide (Chen et al. 2014). However, danshen has not 

yet been approved by the FDA and is currently in Phase II clinical trials for 

cardiovascular disease treatments (https://clinicaltrials.gov).  

SalB has been studied in animal models for anti-oxidation, anti-inflammation, 

anti-coagulant, anti-thrombotic, anti-cancer and angiogenic activities (Wang et al. 2013). 

These activities were aimed at treating diseases like myocardial infarction, ischemia- 

reperfusion injury, atherosclerosis, Alzheimer disease and head and neck cancer (Ho & 

Hong 2011; Zhao et al. 2011; Chen et al. 2014; Lay et al. 2003). The applications of 

SalB, however, have been limited due to its poor oral bioavailability of less than 3% (Wu 

et al. 2006). Moreover, despite such various activities, its cellular and molecular targets 

or downstream signal network has not been clarified (Feng et al. 2011). 

SalB was shown to increase angiogenesis by enhancing the gene expression of 

VEGF and its receptor in murine endothelial cells (Lay et al. 2003). Another recent study 

reported an increased expression of pSTAT3 following SalB treatment in embryonic stem 

cells (Liu et al. 2014). Hence, these SalB’s promotion of STAT3-VEGF signaling may be 

capable of pharmacologically reversing the reduced VEGF expression in emphysematous 

lungs. In addition, its anti-oxidative and anti-inflammatory properties may also suppress 
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the induced oxidative stress and inflammation. Given its low oral absorption, 

hydrophilicity and ionization potential, SalB when administered via inhalation, is 

expected to result in slower and lower absorption from the lung and thereby in turn 

enable longer retention. It was hypothesized therefore that pulmonary administration of 

SalB is capable of STAT3 activation and VEGF elevation, thereby reversing lung 

damages in emphysema, as shown in the Figure 1.4.  

 

  



 
13 

 

Salvianolic acid B 

Molecular formula: C36H30O16 

Molecular weight: 718.61 

LogP = 2.14 (Huang et al. 2014) 

LogD7.5 = −2.88 (Zhou et al. 2009) 

pKa = 2.77 (Huang et al. 2014) 

 

Figure 1.3: (A) Salvia militiorrhiza; and (B) the structure and physicochemical properties of 
its major active component, salvianolic acid B (SalB) (Wang et al. 2013). 

A) B) 
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Figure 1.4: Proposed mechanism for emphysema reversal by SalB 
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1.6. Towards Reversal of Emphysema 

Alveolar structural destruction and loss in emphysema are considered to be the 

result of a pathologic imbalance between cell death and cellular repair processes, and has 

been attributed, at least in part, to the VEGF deficiency (Lee et al. 2012; Morissette et al. 

2009). VEGF receptor blockade in animals induced apoptosis of lung cells and caused 

emphysema that remained irreversible even by their natural repair mechanisms (Kasahara 

et al. 2001; Voelkel et al. 2006). Correcting this progressive cell loss would be critical in 

restoring the alveolar structures. While deficiency of growth factors like VEGF was 

linked to reduced cell proliferation, conflicting evidences exist as to cell proliferative 

activities in emphysematous lung (Yokohori et al. 2004; Imai et al. 2005). Regardless of 

the disease state, however, stimulating cell proliferation would be essential to restore the 

alveolar structure and function. Emphysema has also been characterized by dysregulated 

wound healing and cell migration processes, which is also somehow regulated by VEGF 

(Shaw & Martin 2016; Perotin et al. 2014). Thus restoring VEGF can be proposed not 

only to protect the lung cells from damages, but also to promote cell proliferation and 

migration towards reversal of emphysema. 

A modern concept has emerged that both tissue resident and bone marrow–

derived circulating stem cells participate in the (patho)physiologic maintenance of the 

adult lung structures (Taraseviciene-stewart & Voelkel 2008). Among such stem cell 

populations, mesenchymal stem cells (MSCs), progenitor cells of mesodermal origin, 

have shown the most promising results in many cases owing to their multi-lineage 

potential and ability to migrate to the sites of tissue injury and to exert anti-inflammatory 

activities (Siniscalco et al. 2008). However, homing to the lung in the recruitment of such 
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bone marrow-derived stem cells is considerably inefficient (Conese et al. 2014). 

Moreover, as VEGF regulates stem cell mobilization and recruitment, it has been 

speculated that these processes may be impaired in emphysema (Ishizawa et al. 2004; 

Taraseviciene-stewart & Voelkel 2008). If so, a molecule intended to repair damaged 

lungs in emphysema can also promote recruitment of circulating stem cells into the lung. 

The complementary processes of cell death and cell proliferation, migration and 

recruitment may therefore need to be balanced in emphysema, as shown in Figure 1.4.   

While the VEGF hypothesis naturally concerns endothelial cell death (Kasahara et 

al. 2000), the proteases and oxidants imbalance hypotheses (Morissette et al. 2011) 

concern epithelial cell damages in emphysematous lung. However, studies have shown 

that there are significant interactions between the two cell types in the alveoli, such that a 

severe damage to one could lead to disruption of the other (Sirianni et al. 2003). Thus, 

both of these cell types are necessary to study, when emphysema reversal activities are 

sought. Moreover, damages to the alveolar type I (ATI) cells stimulate proliferation and 

migration, and even differentiation of surviving alveolar type II (ATII) cells at the 

wounded sites (Kim et al. 2010; Sugahara et al. 2006).  

Taken all together, this dissertation project aimed to demonstrate the reversal 

activities of SalB as a novel natural chemical entity for pulmonary delivery in the 

treatment of emphysema and COPD. After confirming its anti-oxidative activity and lack 

of anti-elastase activity, a series of in vitro lung epithelial and endothelial cell systems 

were used to examine its inhibitory activities in cell death; and promoting activities of 

cell proliferation, migration and trans-endothelial migratory recruitment of MSCs. Their 

JAK2-STAT3-VEGF dependence was also examined with respective pharmacologic 
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inhibitors. SalB was examined with pulmonary delivery in the rat models of established 

emphysema induced with porcine pancreatic elastase (PPE) and cigarette smoke extract 

(CSE). The lung functional and morphological recoveries as well as changes of key 

protein and biochemical markers in the lungs were determined.  
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CHAPTER 2 

HYPOTHESES AND SPECIFIC AIMS 

 

This dissertation project aimed to demonstrate the therapeutic activity of 

salvianolic acid B (SalB) as a novel drug molecule for pulmonary delivery in the 

treatment of emphysema. It was hypothesized that SalB reverses established emphysema 

by pharmacologically recovering and/or stimulating VEGF expression in the lungs 

through STAT3 activation. Specifically, this project was designed and structured 1) to 

confirm the anti-oxidative activity, absence of anti-elastase activity, and lung’s STAT3 

and VEGF elevating activity of SalB 2) to examine JAK2-STAT3-VEGF dependent anti-

cell death, cell proliferation, migration and MSC recruitment promoting activities of SalB 

in a series of in vitro cell systems; and 3) to assess the reversal activities of SalB in the in 

vivo rat models of established emphysema. This project pursued the following 5 

hypotheses:  

1. SalB is potently anti-oxidative but not anti-elastase, while elevating the lung tissue 

expression of STAT3 and VEGF following pulmonary administration 

2. SalB exerts potent JAK2-STAT3-dependent anti-cell death activities against lung 

epithelial and endothelial cell death induced with oxidative stress and by VEGF 

receptor blockade 

3. SalB exerts potent JAK2-STAT3-VEGF-dependent lung epithelial and endothelial 

cell proliferation and migration stimulatory activities 
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4. SalB promotes the trans-endothelial migratory recruitment of stem cells 

5. Pulmonary administration of SalB enables functional and morphological reversal of 

emphysema induced with porcine pancreatic elastase (PPE) and cigarette smoke 

extract (CSE) in rats by normalizing VEGF expression  

 

In Chapter 3, SalB will be examined in the in vitro systems to confirm its anti-

oxidative potency and lack of anti-elastase activity. Additionally, SalB’s in vivo 

potencies for STAT3 activation and VEGF elevation will be identified in healthy rats 

following pulmonary administration. In Chapter 4, SalB’s inhibitory activities against 

induced emphysematous cell death and stimulatory activities in cell proliferation and 

migration will be assessed in the lung epithelial and endothelial cell systems. The effects 

of JAK2, STAT3 and VEGF inhibitors on each of these activities will also be assessed to 

explore its mechanism of action. Subsequently, the in vitro  trans-endothelial migration 

assay for MSCs will be developed and used to assess SalB’s promoting activities of MSC 

migratory recruitment with or without VEGF receptor blockade. In Chapter 5, 

emphysema will be induced and established with PPE and CSE and then, SalB will be 

administered to the lungs over 3 weeks. Changes in the lung functionality and 

morphology as well as key protein and biochemical markers in the lungs will be 

determined. Finally, Chapter 6 will summarize all the findings in this dissertation project 

and provide overall conclusions.  

  



 
20 

 

CHAPTER 3 

 
SALVIANOLIC ACID B (SalB): ANTI-OXIDATIVE, ANTI-ELASTASE AND 

STAT3 AND VEGF ELEVATING ACTIVITIES 

 

 

3.1. Introduction 

As described in Chapter 1, anti-oxidative and anti-elastase activities continue to 

be sought to treat damaged lungs of emphysema and COPD, given their “triple threat” 

pathogeneses of induced oxidative stress, elastolysis and inflammation (Snider 1981). By 

contrast, “VEGF deficiency” has also been implicated in the emphysematous lungs as a 

result of impaired epigenetic regulations (Yasuo et al. 2011; Wagner 2003). In this 

context, a naural polyphenolic caffeic acid tetramer, salvianolic acid B (SalB), has 

become of our interest as a molecule that may be capable of treating damaged lungs in 

emphysema by virtue of its catechol-based anti-oxidative activity as well as its potency of 

stimulating VEGF signaling via activation of an upstream transcription factor STAT3 

(Zhao et al. 2008; Liu et al. 2014). However, whether SalB posesses anti-elastase activity 

in addition to the anti-oxidative activity, activates STAT3 and elevates VEGF in lung 

tissues remain unknown. Hence, in this chapter, SalB was examined in the in vitro 

chromogenic radical scavening and elastase inhibitory activity assays. SalB was also 

assessed in vivo in rat lungs to examine its potency and effective dose to activate STAT3 

(i.e., STAT3 phosphorylation) and elevate VEGF as a molecular proof of concept for the 

assessments of in vitro and in vivo therapeutic activities in emphysma in Chapter 4 and 5. 
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3.2. Materials and Methods 

3.2.1. Anti-oxidative activity assessment 

SalB was purchased from Ivy Fine Chemicals (98 % purity, Cherry Hill, NJ) as a 

pale yellow-to-off white powder and stored at room temperature in a desiccator with 

silica gel prior to experiments. The in vitro chemical anti-oxidation assay kit obtained 

from Cayman Chemical Company (Ann Arbor, MI) was used in a 96-well plate format, 

according to Cayman’s protocol. The assay employed formation of a stable chromogenic 

radical cation, ABTS�+ from 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulphonic acid) 

(ABTS) during incubation with metmyoglobin and hydrogen peroxide (H2O2) at room 

temperature. This produced a blue-green color that could be measured at 750 nm. SalB 

was added at 0.01-100 µM in this assay kit, and the absorbance change (ΔAbs) in the first 

5 min was monitored using a plate reader (SynergyTM 2, BioTek Instruments, Inc., 

Winooski, VT) as the initial rate of ABTS�+ production. The ΔAbs (Y) was then plotted 

as a function of logarithmic concentrations (C) of SalB. The half-maximal (50 %) 

inhibitory concentration (IC50) and Hill slope (HS) values were derived from the 

concentration-response curves fitted to the following 4-parameter logistic function 

equation:  

 

Y= Ymin + (Y0-Ymin) / [1+(C/IC50)HS] 

 

Where, Y0 is the ΔAbs value in the absence of SalB and Ymin is the lowest asymptotic 

ΔAbs value seen at the highest test concentration (i.e., 100 µM). The non-linear curve 

fitting was performed using Prism® 7 (GraphPad Software, San Diego, CA). The 
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“goodness-of-fit” of the curve fitting was ensured with >0.99 of the Prism-derived R2 

values, in addition to visual inspection of residuals.  

 

 3.2.2. Anti-elastase activity assessment 

The in vitro anti-elastase activities of SalB were determined using human sputum 

elastase (HSE) hydrolysis of a chromogenic substrate N-methoxysuccinyl Ala-Ala-Pro-

Val p-nitroanilide (MeOSuc-AAPV-pNA, Sigma-Aldrich) in a 96-well format, according 

to the method described by Saluja et al. (2013). MeOSuc-AAPV-pNA was prepared as a 

8.75 mM stock solution in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO). 

HSE (8750 U/mg) purchased from Elastin Products and Co. (Owensville, MO) was 

prepared as a 50 U/ml stock solution in acetate buffer (pH 5.5). A 0.18 ml solution of 

SalB at 0.1 – 200 µM was incubated with 0.02 ml of HSE stock solution and 0.06 ml of 

the 0.87 mM MeOSuc-AAPV-pNA solution to initiate the hydrolysis reaction. The initial 

rate of absorbance change (ΔAbs) due to p-nitroaniline generation was measured in the 

first 10 min at 405 nm using the microplate reader (SynergyTM2). The fraction of HSE 

activity remaining (Y) was determined from the following equation and plotted as a 

function of logarithmic concentration (C) of SalB: 

!"#$%!"# !" !"# !"#$%$#& !"#$%&%&' =  ∆!"# !"#ℎ !"#$
∆!"# !"#ℎ!"# !"#$ 

 

The IC50 and HS values were derived from the concentration-response curves fitted to the 

4-parameter logistic function equation, as described above (3.2.1. Anti-oxidative activity 

assessment).  
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3.2.3. In vivo pSTAT3 and VEGF activation in the lung tissues 

Adult male Sprague-Dawley rats (250–275 g; Hilltop Lab Animals, Scottdale, 

PA) were used, according to the animal experimental protocols approved by the VCU’s 

Institutional Animal Care and Use Committee (IACUC). Saline or SalB at 0.2 mg/kg (0.1 

ml) was orotracheally spray-instilled to the lung with PennCentury’s Microsprayer under 

short anesthesia with isoflurane once daily for 5 days per week over two weeks, as 

described previously (Saluja 2014). Animals were then sacrificed via exsanguination 

under surgical anesthesia with an intraperitoneal urethane at 1 g/kg. While the left lung 

lobes were inflated with warm agarose solution (0.5 %) for the assessment of the airspace 

enlargement (as described in Chapter 5), the right lung tissues were immediately minced 

for Western blot analysis to determine the lung tissue levels of pSTAT3 and VEGF, as 

described below.  

Western blot analysis is fully described in the Appendix 1. The minced lung 

tissues (300 mg) were homogenized on ice using hand homogenizer (Pro 200; Pro 

Scientific, Inc., Oxford, CT) with the NP-40 lysis buffer. The lysis buffer was 1 % 

Nonidet P40 (NP-40; Thermo Fisher Scientific, Waltham, MA), 50 mM Tris (pH 8; 

Sigma-Aldrich) and 150 mM NaCl (Thermo Fisher Scientific), which dissolved a 

cOmpleteTM protease inhibitor cocktail tablet (Roche Diagnostics, Indianapolis, IN), 

according to the supplier’s recommendation. For detection of pSTAT3, a PhosSTOPTM 

phosphatase inhibitor tablet (Roche) was also dissolved in the lysis buffer, according to 

Roche’s recommendation. Supernatant was collected after centrifugation at 16,000 g in 

4˚C (Aventi JE Centrifuge; Beckman Coulter).  

After protein content determination by the BCA assay (Thermo, Grand Island, 
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NY), 40 µg of protein was denatured at 100 ˚C for 10 min, electrophoresed on a 10 % 

Mini-PROTEAN TGX polyacrylamide gel (Bio-Rad; Hercules, CA), and transferred to 

the nitrocellulose membranes (0.2 mm; Bio-Rad). After 1 h blocking at room temperature 

in the blocking buffer recommended for each antibody by its supplier, the membrane was 

probed via overnight incubation at 4 ˚C with each of the mouse or rabbit antibodies raised 

against: pSTAT3 (1:1000, phosphorylated STAT3-Tyr705, rabbit polyclonal, #9131, Cell 

Signaling Technology, Danvers, MA), VEGF (1:100, mouse monoclonal, sc-7269, Santa 

Cruz, Dallas, TX) and ß-actin (1:5,000, mouse monoclonal, Sigma-Aldrich). The 

membranes were then incubated in horseradish peroxidase-conjugated goat anti-mouse or 

anti-rabbit antibody (Bio-Rad Laboratories) for 80 min at room temperature. The probed 

protein was detected with the SuperSignal West Pico enhanced chemiluminescent 

substrate kit (Pierce, Rockford, IL) in the film processor (X-Omat 2000A; Eastman 

Kodak, Rochester, NY). Their band signals were quantified with the ImageJ software 

(NIH, Bethesda, MD). Each protein signal was normalized with the corresponding ß-actin 

signal within the same membranes, and expressed as the value relative to that for the 

untreated healthy rat lungs. 

3.2.5. Data description and statistical analyses 

The results of the in vitro anti-oxidative and anti-elastase assessments were 

expressed as mean ± standard deviation (SD) from triplicate experiments (n=3). The in 

vivo protein expression results were expressed as treatment group mean ± standard error 

(SE) from n = 3 or 4. Statistical analyses for group comparison were performed with 

JMP-Pro® 12 (SAS Institute, Inc., Cary, NC) using two-tailed t-test with p<0.05 as 

significant.  
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3.3. Results and Discussion 
 
3.3.1. In vitro ABTS radical scavenging activity of SalB 

Figure 3.1 shows the ΔAbs in the first 5 min due to ABTS�+ generation at various 

concentrations of SalB. SalB exhibited potent concentration-dependent radical 

scavenging activities, as indicated by ΔAbs suppression with increasing concentration.  

The IC50 value was 3.67±0.09 µM (95% CI: 3.48-3.88 µM). This ABTS scavenging 

activity was more potent than the same radical scavenging activity of Trolox (IC50 = 9.4 

µM) as well as caffeic acid (CA) 16.82±1.16 µM (Saluja et al. 2013). Due to its 

polyphenolic nature, SalB has been thought to possess antioxidant activity. In fact, the 

reactive oxygen species (ROS) scavenging activity of SalB against HO�, O2�-, DPPH 

(2,2-diphenyl-1-picryl-hydrazyl-hydrate) radicals was found to be more potent than that 

of Vitamin C (Zhao et al. 2008). Since SalB is structurally a CA tetramer, the 4 -fold 

more potent activity of SalB is likely related to this oligomer structure. The catechol 

moiety in the structure of SalB and CA has also been shown to exert the anti-oxidant 

property (Rice-Evans, 1996). The anti-oxidative effects of SalB and CA may therefore be 

attributed to this catechol moiety that has also been found in other CA oligomers (Saluja 

et al. 2013). The Hill-slope value for SalB was 3.7±0.3, which suggested apparent co-

operativity. By the virtue of this anti-oxidative activity, SalB was further examined in 

Chapter 4 to assess its cytoprotective activity against oxidative stress-induced cell death.  
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Figure 3.1: The absorbance increase in 5 min (∆Abs) at 750 nm as a function of concentration 

of SalB in the chemical antioxidant assay. Data: mean±SD (n=3). The solid lines are the result 

of curve-fitting. 
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3.3.2. In vitro anti-elastase activity of SalB  
 

The in vitro elastase inhibitory activity of SalB was assessed using the substrate 

hydrolysis assay that utilized a chromogenic HSE substrate to release p-nitroaniline, 

detected at 450 nm (Bieth & Wermuth 1973). Figure 3.2 shows the fraction of HSE 

activity remaining in the presence of different concentrations of SalB. SalB was devoid of 

HSE inhibitory activity at least upto 0.2 mM. This lack of HSE inhibitory activity of SalB 

implied a lack of elastolytic inhibition in the rat model of emphysema used to examine 

the reversal activity of SalB described in Chapter 5. 
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Figure 3.2: The fraction of HSE activity remaining as a function of concentration of SalB in the 

chromogenic substrate hydrolysis assay. Data: mean±SD (n=3).  
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3.3.3. Elevated pSTAT3 and VEGF expression in the lungs following SalB treatment 
 

Figure 3.3 (A) shows the representative Western blot for pSTAT3 expression in 

the lungs of saline and SalB-dosed rats and the treatment group comparison by 

densitometry analysis. The two weeks pulmonary administration of SalB at 0.2 mg/kg 

elevated the lung tissue expression of pSTAT3 by 1.8–fold, compared to the saline-dosed 

control (p<0.05). Likewise, as shown in Figure 3.5 (B), SalB administration also showed 

an increased VEGF expression by 1.6 -fold. However this increase did not reach 

significance, presumably due to their high variability. It appears, however, that SalB at 

0.2 mg/kg was likely sufficient to activate STAT3 and stimulate VEGF in the lung tissues 

with pulmonary administration. It should be noted that this SalB treatment did not impair 

treadmill exercise endurance or cause abnormality of the airspace, as described in 

Chapter 5. Therefore, SalB at 0.2 mg/kg has been chosen for the therapeutic reversal 

activity assessments in the in vivo rat models of established emphysema in Chapter 5.  
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Figure 3.3: Lung tissue expression of cytoplasmic pSTAT3 (A) and VEGF (B) in healthy rats 
dosed with saline or SalB at 0.2 mg/kg, as indicated by representative bands at 75 and 25 kDa. 
Data: mean±SE (n=3 or 5) (+) present; (-) absent. * p<0.05, compared to the saline control by 
two-tailed t-test. 
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   3.4. Conclusions 
 

SalB showed the potent free radical scavenging activity with IC50 of 3.67 µM, but 

was devoid of the anti-elastase activity. In rats, pulmonary administration of SalB at 0.2 

mg/kg appeared to elevate the lung expression of pSTAT3 and VEGF. Therefore, unlike 

the “triple-threat” inhibitors, SalB would fall under a different mechanistic class of 

compounds targeting VEGF stimulation to treat emphysematous lung damage. This 

VEGF stimulation appeared to arise from STAT3 activation, as reported previously 

elsewhere (Liu et al. 2014).  
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CHAPTER 4 

IN VITRO CHARACTERIZATION OF ANTI-CELL DEATH, CELL 

PROLIFERATION, MIGRATION AND RECRUITMENT STIMULATORY 

ACTIVITIES OF SALVIANOLIC ACID B (SalB) 

 

4.1 Introduction 

As described in Chapter 1, progressive destruction and loss of alveolar septal 

structures in emphysema is thought to be a result of an imbalance between induced cell 

death and suppressed cell proliferation, migration and recruitment in the lung. In this 

context, VEGF has received considerable attention by the virtue of its regulatory 

activities in the alveolar epithelial and endothelial cell survival, proliferation, migration 

as well as trans-endothelial recruitment of circulating stem cells to the lungs (Takahashi 

et al. 2005; Caiado & Dias 2012). In fact, the lung tissue level of VEGF was reduced in 

patients with emphysema/COPD; and VEGF receptor blockade caused lung cell death 

and emphysematous structural damages in animals (Yasuo et al. 2011; Kasahara et al. 

2000). Therefore, pharmacological recovery of VEGF may enable reversal of this lung 

cellular pathobiologic imbalance, and thereby repair of the alveolar structural destruction 

in emphysema.  

Salvianolic acid B (SalB) has been reported to stimulate VEGF as a result of 

activation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 

(STAT3) in vitro (Liu et al. 2014). In Chapter 3, SalB at a dose of 0.2 mg/kg was shown 

to increase the lung tissue expression of pSTAT3 and VEGF in vivo, in addition to its 

potent anti-oxidation activity. Accordingly, in this chapter, SalB was assessed in the lung 
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alveolar epithelial (A549) and endothelial (HMVEC-L) cell systems to examine its 

activities in 1) protecting cells against oxidative stress and VEGF receptor blockade –

induced cell death; 2) stimulating cell proliferation and migration; and 3) promoting 

trans-endothelial stem cell recruitment. Pharmacologic inhibitors of JAK2, STAT3 and 

VEGF were then used to assess the JAK2, STAT3 and VEGF -dependent mechanisms.  
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4.2.Materials and Methods 
 
4.2.1. SalB and inhibitors 

SalB (Ivy Fine Chemicals) was stored at room temperature in a desiccator with 

silica gel and freshly prepared as a 1 mM (0.718 mg/ml) aqueous solution before each 

experiment. SU5416, a VEGF receptor antagonist, was a gift from Dr. Voelkel (VCU 

Pulmonary Medicine) and stored at -20oC prior to use. SU5416 stock solution (20 mM) 

was prepared in dimethylsulfoxide (DMSO; Sigma-Aldrich) that had been degassed by 

purging N2 gas for 5 min. AG490 (Tyrphostin; Sigma-Aldrich) was used as a tyrosine 

kinase inhibitor of JAK2, while S31-201 (Sigma-Aldrich) as an inhibitor of STAT3 

phosphorylation and dimerization (Hermann et al. 2009; Park et al. 2014). These 

inhibitors were prepared as 50 mM and 68 mM stock solutions in degassed DMSO and 

stored as 50 µl aliquots at -20 ˚C and -80 ˚C, respectively. 

 

4.2.2 Lung alveolar epithelial, endothelial and mesenchymal stem cell culture 

Human alveolar epithelial A549 cells (American Type Culture Collection; ATCC, 

Manassas, VA) were cultured in the Dulbecco's Modified Eagle's medium/F-12 (ATCC) 

supplemented with 10 % fetal bovine serum (FBS; Gibco-Australia) and 1 % Penicillin-

streptomycin (ATCC); propagated in the 25 or 75 cm2 culture flasks (Corning Costar; 

Cambridge, MA) according to the ATCC’s protocol [Product Information Sheet, ATCC]; 

and used between 20-30 of the passages. Human pulmonary microvascular endothelial 

cells (HMVEC-L) cells (Lonza, Walkersville, MD) were cultured in the endothelial cell 

growth medium (Lonza) with growth factors, cytokines and supplements (Lonza); grown 

in the 75 cm2 culture flasks, according to the Lonza’s protocol; and used between 5-9 of 
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the passages. Bone marrow derived human mesenchymal stem cells (MSCs; Roosterbio, 

Frederick, MD) were cultured in DMEM/F12, GlutaMAX (Thermo) supplemented with 

10 % FBS; propagated in the 75 cm2 culture flasks, according to the Roosterbio’s 

protocol; and used between 3-6 of the passages. These cell cultures were maintained in a 

humidified atmosphere of 5 % CO2/95 % air at 37 °C in the incubator (CO2 cell standard, 

BMT USA, LLC, Monroe, WA). The culture media were replaced three times in a week 

and the cells were passaged upon reaching 90 % confluence, monitored under the 

microscope (Nikon-TMS phase contrast microscope, Image Systems Inc., Columbia, 

MD). 

 

4.2.3 Anti-cell death activity assessments 

The in vitro protective activities of SalB and their JAK2 and STAT3 dependence 

were assessed in the A549 and HMVEC-L cells against cell death induced by oxidative 

stress and/or VEGF-receptor blockade, using the trypan blue exclusion assay and 

propidium iodide (PI)-based flow cytometry. The procedure followed, that developed 

previously (Truong 2016), with slight modifications. Trypan blue reagent (4 %; Amresco, 

Solon, OH) was sterile-filtered using the 0.2 µm syringe filter (Corning) before use. The 

A549 and HMVEC-L cells were plated on to the 24 or 48-well plates at a density of 0.15 

x 106 cells/well. Cell death was induced with 0.1 mM hydrogen peroxide (H2O2; Acros 

Organics, New Jersey, NJ) or 20 µM SU5416 over 24 h. SalB was added at 1, 10 or 25 

µM and co-incubated with H2O2 or SU5416 to examine its protective activities against 

H2O2–induced oxidative cell death and SU5416–induced apoptotic cell death (Kasahara 

et al. 2000). The media were used as the control vehicle. In some experiments, AG490 at 
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25 µM or S31-201 at 50 or 100 µM was co-incubated with SalB at 25 µM, while cell 

death was induced with SU5416 for 24 h to examine whether SalB’s anti-cell death 

activities depend on JAK2 and STAT3, respectively. At 24 h, % cell death was 

determined in each well by the trypan blue exclusion assay or by the PI-based flow 

cytometry. For the trypan blue exclusion assay, following trypsinization, the cell 

suspension was centrifuged at 12,000 rpm (Eppendorf centrifuge 5415 C, Hauppauge, 

NY) for 2 min. The cell pallet was re-suspended and incubated in the 4 % trypan blue 

solution at room temperature for 3-5 min. The cells were again centrifuged, re-suspended 

in the fresh medium, plated on to 24 –well plates and allowed to settle for 30 min. In each 

well, over 300 cells were differentiated and counted as stained dead cells and unstained 

live cells under the microscope (Omax, Kent, WA), to calculate % dead cells from: 

 

% !"#! !"##$ =  !ℎ! !"#$%& !" !"#! !"##$ 
!ℎ! !"!#$ !"#$%& !" !"#$ !"# !"#! !"##$  ! 100 

 

For the flow cytometry assay, at 24 h of the H2O2 –induced cell death with or 

without SalB incubation, the cells were trypsinized, re-suspended at 1x106 cells/ml in 100 

µl of media, and incubated with 5 µl of PI reagent of the FITC Annexin V Apoptosis 

detection kit I (BD Biosciences, San Diego, CA) at room temperature for 15 min. 

Following 5-times dilution with the assay buffer of the kit, over 10,000 cells were 

introduced into the Attune flow cytometer (Thermo Fisher Scientific) and sorted, 

according to 488 and 617 nm of the excitation and emission wavelengths, respectively. 

Note that proper performance of the flow cytometer had been ensured before each assay 

using CytoFLEX Daily QC fluorospheres (Beckman-Coulter, Brea, CA) as a quality 
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control test. Using the Attune NxT software, cells were gated to exclude the debris and 

clumps, and then sorted with respect to PI fluorescence signal set at a threshold of 2 x 

104, i.e., the cells exceeding this threshold of the fluorescence intensity were counted as 

PI-positive dead cells to calculate the % cell death in each well. 

 

4.2.4. Cell proliferation activity assessment 

The A549 and HMVEC-L cell proliferation activities were measured by the MTT 

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay (Cayman Chemical 

Company) and BrdU (5-bromo-2-deoxyuridine) assay (Biovision Milpitas, CA). In 96-

well plates, 0.02 or 0.04 x 106 cells were plated and allowed to settle overnight. 

Subsequently, the A549 cells were treated with SalB at 0, 10 or 25 µM in FBS 

suppressed (2 %) media for 0-48 h; and the HMVEC-L cells were treated with SalB at 0, 

5, 10 or 25 µM in the growth media for 0-48 h. In the MTT assay, the MTT reagent (10 

µl of 5 mg/ml) was added to 100 µl of the incubation media at 4 h before the end of 

treatment. At 48 and 24 h, respectively, the incubation media were removed, and replaced 

with 0.04 N HCl in isopropanol crystal dissolving solution (prepared in-house), for 15 

min. The 570 nm absorbance (Abs570) was then measured using a microplate reader 

(BioTek, Winooski, VT). In some studies, JAK2, STAT3 and VEGF inhibitors, AG490, 

S31-201 and SU5416 were co-incubated at 25, 50 or 100, and 5 µM, respectively, with 

SalB at 25 µM to examine the mechanism of SalB’s cell proliferation stimulatory 

activities. Additionally, in the HMVEC-L cells, the cell proliferation activity of SalB was 

also measured with the BrdU activity, according to the kit protocol. Following 20 h 

incubation, the BrdU–labeled proliferative cells were quantified with the 450 nm 
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absorbance (Abs450) measured using the microplate reader.  

 

4.2.5. Cell migration activity assessment  

The cell migration activities were determined using an in vitro scratch wound 

closure assay established and validated in house according to a method previously 

described by Liang et al. (2007). The HMVEC-L and A549 cells were seeded at 0.4 x 106 

M cells/well on a 6-well plate and grown to confluence. The cell monolayers were 

scratched using a 200 µl pipette tip and incubated with SalB (2.5, 5, 10, 25 µM) or the 

vehicle for 12 and 48 h, respectively. In the A549 cells, a serum-suppressed medium (2% 

FBS) was used. Guided by the markings made on the well plate, images of the scratch 

wound were taken at 3 different points in each well. Pre- and post-incubation scratch 

wound areas (WApre and WApost) were measured using ImageJ (NIH). For each treatment 

group, 3 wells were used. The percent wound closure was calculated using the equation: 

 

% !"#$% !"#$%&' =  !"!"# −  !"!"#$
!"!"#

 ! 100 

 

In some experiments, to clarify the mechanism of SalB’s activity, AG490 (25 µM), S31-

201 (50 or 100 µM) or SU5416 (5 µM) were co-incubated with SalB to examine JAK2-

STAT3 and VEGF dependence on the SalB’s cell migration promotion activity. 

 

4.2.6. Trans-endothelial migratory stem cell recruitment activity assessment 

The MSC recruitment into the lung through the endothelial barrier was modeled 

using the in vitro trans-endothelial migration assay. The method originated from Muller 
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and Luscinskas (2008) and modified for use in MSC migratory recruitment. It was 

established in-house to determine SalB’s activity in promoting stem cell recruitment. 

Human fibronectin (Corning) was prepared as a 1 mg/ml stock solution by reconstitution 

in distilled water and stored at -20 ˚C prior to use. This stock solution was diluted 20 

times with HEPES buffer (Lonza) from which 50 µl was applied to coat each of the 

Fluoroblock 8.0 µm transwell® filters (Figure 4.1 (A), 0.3 cm2 area, Corning), according 

to the instructions. The HPMVEC-L cell monolayers was grown on the fibronectin-

coated filters upon seeding of 30,000 cells on each filter, as shown in Figure 4.1 (B). 

Upon confluence, typically on day 5, the trans-endothelial electrical resistance (TEER) 

was measured using the volt-ohmmeter and STX-2 electrodes (EVOM; World Precision 

Instruments, Sarasota, FL) and ensured to be in a range of 85-90 Ωcm2 (ohms cm2), as 

reported by Sedgwick et al. (2002). DiIC12(3) fluorescent dye (Corning; 100 mg/ml 

stock solution prepared in degassed DMSO and stored at -20 ˚C; 549/565 nm, 

Excitation/Emission) was used at 0.5 µg/ml to stain the MSCs in culture for 2 h, 

according to the supplier’s instructions, and the labeling efficiency and duration were 

determined prior to the use. Subsequently, the DiIC12-labeled MSCs were trypsinized 

from which 50,000 cells were added onto the HMVEC-L cell monolayers of the 

fluoroblock transwell filters. Initial experiments determined the DiIC12-labeled MSC 

migration over 24 h in the presence or absence of SalB at 25 µM or 30 % FBS in the 

basolateral side, as shown in Figure 4.1 (C). By contrast, in the subsequent experiments, 

the HMVEC-L cell monolayers was pre-treated with SU5416 at 5 µM for 2 h followed by 

addition of MSCs with or without SalB at 25 µM to assess the impaired MSC recruitment 

due to VEGF receptor blockade and its recovery with SalB. At 24 h of migration, the 
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apical side of the transwell was washed 3 times with sterile PBS (Quality biological, 

Gaithersburg, MD), and the MSC and HMVEC-L cells on the apical side were swabbed 

using a cotton swab. After the inserts were flipped over, the cells on the basolateral side 

of the transwell filter were fixed for 15 min with 4 % paraformaldehyde (Sigma-Aldrich) 

solution in PBS. The filters were carefully cut and mounted on glass slides. The 

basolateral side of the fluoroblock filters was then observed under the fluorescence 

microscope (Olympus 1X51, Center Valley, PA). Five 100X images were taken for each 

filter, accounting for the 20 % of the filter area. DiIC12-labeled MSCs were counted in 

each image using ImageJ (Appendix 3). The total number of MSCs migrated to the 

basolateral side were calculated as 5 times the total cells counted by ImageJ from the 5 

filter images. Percent cells migrated was calculated by using the equation: 

 

% !"#$%&'( =  !"#$% !"#$%& !" !"#$ !"#$%&'( !" !ℎ! !"#$%"&'("% !"#$
50,000 (!"#$%& !" !"#$ !""#" !" !ℎ! !"#$!% !"#$)   × 100 
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Figure 4.1: (A) Fluoroblock transwell insert (B) Florescence microscope image (100X) of DilC12-
labelled HMVEC-L monolayer grown on the fibronectin-coated fluoroblock transwell filter (C) 
Schematic representation of the trans-endothelial migration assay showing cross section of the 
fluoroblock insert transwell. 
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4.2.7. Data description and statistical analyses 

The results of SalB’s in vitro activities were expressed as mean±SD (n=3-9). 

Statistical analyses for group comparison were carried out using Prism® 7 (GraphPad 

Software, San Diego, CA) or JMP-Pro® 12 (SAS Institute, Inc., Cary, NC) by one-way 

analysis of variance (ANOVA). Post-hoc analysis for multiple comparison testing was 

performed by the Tukey’s or Dunnett’s method, the latter being used to compare multiple 

test groups to the vehicle control group and not among each other. p<0.05 was considered 

as significant. 
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4.3. Results 
 
4.3.1. Anti-lung cell death activities of SalB 

In vitro inhibitory activities of SalB against alveolar epithelial A549 cell death 

induced with 0.1 mM H2O2, i.e. oxidative stress, were determined using the trypan blue 

exclusion and PI –based flow cytometry assays, as shown in Figures 4.2 and 4.3, 

respectively. H2O2  -induced A549 cell death by 6.5 –fold (p<0.05), by the trypan blue 

exclusion assay (Figure 4.2). However, SalB significantly inhibited this induced cell 

death by 80.1 % with 10 µM and by 86.0 % with 25 µM (p<0.05), but not with 1 µM, 

while SalB at 25 µM alone did not induce cell death (Figure 4.2). This concentration-

dependent anti-cell death activity of SalB could be reasonably attributed to negated 

oxidative insult with the SalB’s anti-oxidative activity shown in Chapter 3 (IC50 = 3.7 

µM, Figure 3.1). Figure 4.3 (A and B) shows the H2O2 –induced A549 cell death and its 

inhibition with SalB at 25 µM, determined by the PI –based flow cytometry assay. As 

seen with the trypan blue exclusion assay, H2O2 -induced cell death by 5.9 –fold, to 

which SalB exhibited a significant 59.2 % inhibition (p<0.05).  

SalB at 25 µM was also examined against A549 cell death induced by VEGF-

receptor blockade using SU5416. As shown in Figure 4.4 (A), SU5416 at 10 and 20 µM 

induced cell death by 1.8 –fold and 3.6 –fold, respectively (p<0.05); and SalB at 25 µM 

inhibited SU5416-induced cell death by 121.8 % and 88.4 %, respectively (p<0.05). 

AG490 and S31-201 were then respectively added as JAK2 and STAT3 inhibitors, to 

examine their counter effects on the SalB’s anti-cell death activities. As shown in Figure 

4.4 (B), AG490 and S31-201 each blocked the SalB’s anti-cell death activities by 96.8 % 

and 68.2 %, respectively (p<0.05). It should be noted that these inhibitors alone did not 
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cause cell death in SU5416 –treated A549 cells, as validated in Table 4.1. 

Likewise, as shown in Figure 4.5, in the HMVEC-L cells, SU5416 at 20 µM 

induced cell death by 3.3 –fold and that cell death was inhibited with SalB at 25 µM 

significantly by 47.7 %. Moreover, AG490 and S31-201 inhibited the SalB’s anti-cell 

death activity by 85.8 % and 131.2 %, respectively (p<0.05). Therefore, SalB was 

potently (i.e., at 25 µM) cytoprotective against lung epithelial (A549) and endothelial 

(HMVEC-L) cell death induced with VEGF receptor blockade (SU5416) in a JAK2 and 

STAT3 –dependent mechanism. 
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Figure 4.2: In vitro anti-cell death activities of SalB at 1, 10 and 25 µM against H2O2 -induced cell 
death in the A549 cells, determined by the trypan blue exclusion assay. Data: mean±SD (n=3 - 6) 
(+) present; (-) absent *p<0.05, compared to vehicle treated/induced control; #p<0.05, compared to 
the H2O2  -induced and vehicle treated cells, by ANOVA and Tukey’s multiple comparison test. 
SalB at 25 µM alone did not cause significant cell death.  
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Figure 4.3: In vitro anti-cell death activities of SalB at 25 µM against H2O2 -induced cell death in the 
A549 cells, determined by PI –based fluorescence flow cytometry; (A) Representative PI –based cell 
population histograms. (B) % of PI positive cells, following vehicle or H2O2 –induction and vehicle or 
SalB treatment. The cells in the horizontal range in Panel A were counted as PI positive dead cells. 
Panel B: Data: mean±SD (n=3) (+) present; (-) absent *p<0.05, compared to the vehicle –
treated/induced control; #p<0.05, compared to the H2O2 induced and vehicle treated cells, by ANOVA 
and Tukey’s multiple comparison test. 
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Figure 4.4: (A) In vitro cytoprotective activities of SalB at 25 µM against cell death induced by 
SU5416 at 10 or 20 µM in the A549 cells with or without AG490 (25 µM) or S31-201 (100 µM), 
determined by the trypan blue exclusion assay; (B) Effect of AG490 or S31-201 addition on 
SalB’s anti-cell death activity. Data: mean±SD (n=3) (+) present; (-) absent *p<0.05, compared to 
the vehicle-treated/induced control; #p<0.05, compared to SU5416 -induced and vehicle treated 
cells, by ANOVA and Tukey’s multiple comparison test. Panel B: no significant difference in the 
SU5416 -induced cells between the vehicle treatment and the SalB treatment co-incubated with 
AG490 or S31-201. 
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Figure 4.5: In vitro cytoprotective activities of SalB at 25 µM against cell death induced with 
SU5416 at 20 µM in the HMVEC-L cells with or without AG490 (25 µM) or S31-201 (50 
µM), determined by the trypan blue exclusion assay (A) SU5416 induced cell death and its 
inhibition with SalB; (B) Effect of AG490 or S31-201 addition on SalB’s anti-cell death 
activity. Data: mean±SD (n=3-5) (+) present; (-) absent *p<0.05, compared to vehicle control; 
#p<0.05, compared to SU5416 induced cell death, by ANOVA and Tukey’s multiple 
comparison test. Panel B: no significant difference in the SU5416 -induced cells between the 
vehicle treatment and the SalB treatment co-incubated with AG490 or S31-201. 
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Cell type Treatment Inhibitor % Cell death 

A549 
 

SU5416 
 

- 6.1 ± 0.78 

AG490 5.3 ± 0.94 

S31-201 5.8 ± 0.42 

Table 4.1: Effects of AG490 and S31-201 on the SU5416 –induced A549 cell death. 

Data: mean±SD (n=3-4). No significant difference in the SU5416 –induced A549 cell 
death following the vehicle treatment and the AG490 or S31-201 treatment. 
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4.3.2. Lung cell proliferation stimulatory activities of SalB  
 

Figure 4.6 shows the in vitro A549 cell proliferation activities following 24 or 48 

h treatment with SalB at 10 or 25 µM or the vehicle with or without addition of AG490, 

S31-201 or SU5416, determined by the MTT assay. Upon confirmation of continued cell 

proliferation over 48 h (as shown in Panel A), SalB was found to stimulate A549 cell 

proliferation over 48 h in a concentration –related manner and significantly by 3.4 –fold 

at 25 µM (p<0.05), as shown in Panel B. However, this A549 cell proliferation 

stimulatory activity was entirely diminished by co-incubation with AG490, S31-201 and 

SU5416, as shown in Panel C, thereby respectively suggesting its JAK2, STAT3 and 

VEGF –dependent mechanism. Note that these inhibitors alone had no effect on the A549 

cell proliferation activities (Panel C). 

Likewise, Figure 4.7 shows the in vitro HMVEC-L cell proliferation activities 

following 24 or 48 h treatment with SalB at 5-50 µM or the vehicle with or without 

addition of AG490, S31-201 or SU5416, determined by the MTT assay. Again, upon 

confirmation of continued cell proliferation over 48 h (as shown in Panel A), SalB was 

found to stimulate HMVEC-L cell proliferation over 24 h in a concentration –related 

manner and significantly by 1.8 and 1.9 –fold at 25 and 50 µM (p<0.05), respectively, as 

shown in Panel B. However, the HMVEC-L cell proliferation stimulatory activity of SalB 

was also diminished significantly by 62.9, 144.3 and 94.3 % (p<0.05), when AG490, 

S31-201 and SU5416 were co-incubated with SalB at 25 µM, again suggesting its JAK2, 

STAT3 and VEGF –dependent mechanism. Note that these inhibitors alone had no 

effects on HMVEC-L cell proliferation (Panel C). 
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The cell proliferation stimulatory activities of SalB were further confirmed in the 

HMVEC-L cells, determined with the 450 nm absorbance (Abs450) by the BrdU assay, as 

shown in Figure 4.8. SalB at 25 µM was shown to result in a significantly higher Abs450 

by 1.4 –fold (p<0.05), compared to the vehicle -treated cells. Taken all together, 

therefore, SalB was potently (i.e., at 25 µM) stimulatory to the lung epithelial (A549) and 

endothelial (HMVEC-L) cell proliferation in a JAK2, STAT3 and VEGF –dependent 

manner. 
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Figure 4.6: In vitro cell proliferation activities in the A549 cells following various treatments 
determined with the 570 nm absorbance (Abs570) by the MTT assay (A) following 0, 24 and 48 h 
incubation; (B) following 48 h of treatment with SalB at 10 or 25 µM or the vehicle, relative to at 
0 h of plating; (C) following 48 h treatment with SalB at 25 µM or the vehicle, co-incubated with 
or without AG490 (25 µM), S31-201 (100 µM) and SU5416 (5 µM). Data: mean±SD (n=4-7) (+) 
present; (-) absent *p<0.05, compared to vehicle-treated control; #p<0.05, compared to the 25 µM 
SalB -treated cells, by ANOVA and Tukey’s or Dunnett’s multiple comparison test. 
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Figure 4.7: In vitro cell proliferation activities in the HMVEC-L cells following various treatments 
determined with the 570 nm absorbance (Abs570) by the MTT assay (A) following 0, 24 and 48 h 
incubation; (B) following 48 h of treatment with SalB at 10 or 25 µM or the vehicle, relative to at 0 
h of plating; (C) following 48 h treatment with SalB at 25 µM or the vehicle, co-incubated with or 
without AG490 (25 µM), S31-201 (100 µM) and SU5416 (5 µM). Data: mean±SD (n=4-11) (+) 
present; (-) absent *p<0.05, compared to vehicle-treated control; #p<0.05, compared to the 25 µM 
SalB -treated cells, by ANOVA and Tukey’s or Dunnett’s multiple comparison test. 
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Figure 4.8: In vitro cell proliferation activities in HMVEC-L following 24 h treatment with 
SalB at 10 or 25 µM or the vehicle, determined with the 450 nm absorbance (Abs450) by the 
BrdU assay. Data: mean±SD (n=4); (-) absent *p<0.05, compared to vehicle control, by 
ANOVA and Dunnett’s multiple comparison test. 
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4.3.3. Lung cell migration promoting activities of SalB 
 

Figures 4.9 – 4.11 show the result of the in vitro scratch wound closure studies in 

the confluent A549 cells with or without SalB and /or the inhibitors. As shown in Figure 

4.9, the cell scratch wounds made at 0 h were gradually closed over 48 h. The wound 

areas were determined as the areas without cell coverage identified by using Image J to 

accurately trace the wound boundaries, as shown in Figure 4.10 (A). Thus, Figure 4.10 

(B) shows % wound closure at 48 h of different treatments. SalB promoted the wound 

closure in a concentration-related manner, and significantly by 1.5 –fold at 25 µM 

(p<0.05). However, this promoted wound closure with SalB at 25 µM was opposed with 

AG490 (25 µM), S31-201 (100 µM) and SU5416 (5 µM) significantly by 108.8, 47.7 and 

85.2 %, respectively (p<0.05; Figure 4.11). Because these inhibitors alone did not affect 

the wound closure, SalB’s wound closure promoting activities were suggested to depend 

on JAK2, STAT3 and VEGF, like its anti-cell death and cell proliferation stimulatory 

activities (Figures 4.4-4.7). 

 Similarly, Figures 4.12-4.15 show the results of the in vitro scratch wound 

closure studies in the confluent HMVEC-L cells with or without SalB and/or the 

inhibitors. The cell scratch wounds made at 0 h were gradually closed over 18 h, as 

shown in Figures 4.12 and 4.13. The wound areas were determined at 12 h via the 

accurate tracing of wound boundaries (Figure 4.13 (A)) to calculate % wound closure 

following different treatments. Figure 4.13 (B) shows the time course of % wound 

closure in the HMVEC-L cells treated with the vehicle or SalB at 10 µM. SalB at 10 µM 

accelerated the wound closure, compared to the vehicle treatment. As shown in Figure 

4.14, SalB promoted the wound closure in a concentration–dependent manner and 



 
56 

significantly at ≥ 5 µM (p<0.05). At 25 µM, SalB showed a 1.6 –fold greater % wound 

closure, relative to the vehicle –treated control (P<0.05). Figure 4.15 shows % wound 

closure with SalB at 25 µM and its significant inhibition with AG490, S31-201 and 

SU5416 by 75.3, 92.9 and 77.7 %, respectively. It should be noted that, % wound closure 

appeared to be cell passage dependent as 23.1 % and 42.9 % of wound closure was seen 

with passage 9 and 6, respectively. 
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Figure 4.9: Representative images of linear scratch wounds made at 0 h and their closures at 24 
and 48 h in the A549 cells in three different wells, treated with the vehicle or SalB at 25 µM. 
The linear dotted lines are to demonstrate cell wound closure over 48 h. The wound areas were 
calculated by tracing wound boundaries like Figure 4.10 (A). 
 

Vehicle control 

SalB (25 µM) 
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Figure 4.10: (A) Representative images of linear scratch wound at 0 and 48 h of the treatment 
with the vehicle or SalB at 25 µM in the A549 cells; (B)  % wound closure in the A549 cells 
following 48 h treatment with the vehicle or SalB at 10 and 25 µM. Data: mean±SD (n=7-8) (-) 
absent *p<0.05, compared to vehicle -treated control, by ANOVA and Dunnett’s test. 
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Figure 4.11: In vitro % wound closure at 48 h in the A549 cells with or without SalB at 25 µM 
and/or inhibitors: (A) Effect of AG490 (25 µM) or S31-201 (100 µM); and (B) Effect of 
SU5416 (5 µM). Data: mean±SD (n=3-6) (+) present; (-) absent *p<0.05, compared to vehicle –
treated control; #p<0.05, compared to the SalB (25 µM) –treated cells, by ANOVA and Tukey’s 
multiple comparison test. Addition of AG490, S31-201 or SU5416 alone did not alter % wound 
closure, relative to the vehicle –treated control. 
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Figure 4.12: Representative images of linear scratch wounds made at 0 h and their closures at 12 
h in the HMVEC-L cells in three different wells, treated with the vehicle or SalB at 25 µM. The 
linear dotted lines are to demonstrate cell wound closure over 12 h. The wound areas were 
calculated by tracing wound boundaries like Figure 4.13 (A). 
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Figure 4.13: (A) Representative images of the linear scratch at 0 and 12 h of the treatment with 
the vehicle or SalB at 25 µM in the HMVEC-L cells; (B) Time course changes of the % wound 
closure over 18 h during the treatment with the vehicle or SalB at 10 µM in the HMVEC-L cells 
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Figure 4.14: In vitro % wound closure in the HMVEC-L cells following 12 h treatment with 
SalB at 2.5 – 25 µM or the vehicle. Data: mean±SD (n=3-10) (+) present *p<0.05, compared to 
vehicle control, by ANOVA and Dunnett’s multiple comparison test. 
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Figure 4.15: In vitro % wound closure in the HMVEC-L cells treated with or without SalB at 25 
µM and/or inhibitors: (A) Effect of AG490 (25 µM) and (B) Effect of S31-201 (100 µM) or 
SU5416 (5 µM). Data: mean±SD (n=3-9) (+) present; (-) absent *p<0.05, compared to vehicle -
treated control; #p<0.05, compared to the SalB (25 µM) –treated cells, by ANOVA and Tukey’s 
multiple comparison test. Addition of AG490, S31-201 and SU5416 alone did not alter the % 
wound closure, relative to the vehicle –treated control. 
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4.3.4.Stem cell recruitment promoting activities of SalB 
 

Figure 4.16 shows % of MSCs migrated from the apical side to the basolateral 

side of the fluoroblock transwell filters with or without the HMVEC-L monolayers over 

24 h. Despite physically a barrier, the HMVEC-L monolayers promoted MSC migration 

significantly by 1.3 –fold (p<0.05), suggesting an active role of the endothelial cells in 

the MSC migratory recruitment. Figure 4.17 shows the trans-HMVEC-L cell monolayer 

migratory recruitment of MSCs over 24 h in the absence or presence of 30 % FBS. As 

similarly shown by Luscinskas (2008), FBS promoted MSC migration significantly by 

1.6 –fold (p<0.05), thus successfully validating this newly developed system to assess the 

trans-endothelial MSC migration. Accordingly, Figure 4.18 shows the results of trans-

HMVEC-L cell monolayer migratory recruitment of MSCs with or without SU5416 

and/or SalB treatment. The microscopic images of MSCs migrated to the basolateral side 

of the fluoroblock filters were converted to the dot cell images for counting using ImageJ, 

as shown in Figure 4.18 (A). Upon SU5416 treatment, MSC migration was decreased 

significantly by 51.7 % (p<0.05), as shown in Figure 4.18 (B). However, SalB at 25 µM 

recovered this MSC migration activity by 60.0 % (p<0.05), while it alone did not affect 

MSC migration. It was clear therefore that SalB potently (i.e., at 25 µM) restored the 

trans-endothelial MSC recruitment impaired as a result of VEGF receptor blockade.  
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Figure 4.16: % of MSCs migrated through the fluoroblock filters to the basolateral side with or 
without the HMVEC-L monolayers at 24 h. Data: mean±SD (n=3) (+) present; (-) absent *p<0.05, 
compared to the MSC migration in the absence of the HMVEC-L cell monolayers, by one -sided t-
test. 

Figure 4.17: Trans-HMVEC-L cell monolayer migration of MSCs in 24 h with or without 30 % 
FBS. Data: mean±SD (n=3) (+) present; (-) absent *p<0.05, compared to the MSC migration in the 
absence of FBS, by one -sided t-test. 
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Vehicle control 
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SalB  

A) 

Figure 4.18: (A) Representative images of MSCs migrated to the basolateral side of the 
Fluoroblock transwell insert under fluorescence microscope (Left panel) and fluorescent cells 
counted by Image J in each of the microscopic image (Right panel) (100X). 
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Figure 4.18: (B) Trans-HMVEC-L cell monolayer migration of MSCs in 24 h with or without 
SalB at 25 µM and/or SU5416 (5µM) pretreatment. Data: mean±SD (n=3-6) (+) present; (-) 
absent *p<0.05, compared to vehicle-treated control; #p<0.05, compared to SU5416 pretreated 
and vehicle-treated cells, by ANOVA and Tukey’s multiple comparison test. 
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4.4. Discussion 
 

In this chapter, a series of in vitro methods have been used to assess cell-specific 

VEGF-dependent pharmacological activities of SalB. Lung alveolar epithelial type II 

A549 cells and endothelial HMVEC-L cells were studied in the trypan blue exclusion and 

propidium iodide (PI) –based flow cytometry assays to evaluate the anti-cell death 

activities of SalB against induced oxidative stress and VEGF receptor blockade. Cell 

proliferation and migration stimulatory activities of SalB were assessed using the MTT or 

BrdU assay and the in vitro scratch wound closure assay, respectively. SalB showed 

potent (i.e., at 10-25 µM) anti-cell death, cell proliferation and migration promoting 

activities, which appeared to be related to the JAK2-STAT3-VEGF signaling pathway, 

since the inhibitors to this pathway suppressed SalB’s stimulatory effects. Subsequently, 

a novel trans-endothelial migration assay was developed to study the effect of SalB on 

the recruitment of MSCs through the lung endothelium. SalB at 25 µM was able to 

correct the VEGF receptor blocker -induced impairment in the trans-endothelial 

migration of MSCs in this assay. This unique ability of SalB is promising in studying 

lung repair in emphysema, which is characterized by reduced alveolar cell survival, 

proliferation, migration and recruitment (Song et al. 2010).  

 
4.4.1. SalB protects lung epithelial and endothelial cells from oxidative stress and VEGF-

receptor blockade 

Cigarette smoke is a major causative factor in COPD and contains oxidants that 

have the ability to induce lung cell death when accompanied by the depletion of 

pulmonary antioxidants resulting in an oxidant/antioxidant imbalance and emergence of 

oxidative stress (Demkow 2009; Li et al. 2013). Thus, protecting lung cells from 
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oxidative stress and improving their survival are a key to halting the ongoing alveolar 

destruction. As described in Chapter 3, SalB has a potent anti-oxidant radical scavenging 

activity with IC50 of 3.67 µM (Figure 3.1). Thus we hypothesized that SalB will have 

protective effects against oxidative cell death. Accordingly, SalB showed concentration 

related anti-cell death activity against 0.1 mM H2O2 –induced oxidative stress in A549 

cells, significantly inhibiting cell death at 25 µM by 86.0 % and 59.2 % (p<0.05) by the 

trypan blue exclusion assay and the PI based flow cytometry assay, respectively. While 

the trypan blue exclusion assay offers the advantages of sensitivity and robustness, the 

flow cytometry assay has the advantage of a more objective analysis (Vermes et al. 

1995). In both these independent studies, SalB at 25 µM showed significant anti-cell 

death activities against induced oxidative stress.  

Increased apoptosis of alveolar septal cells in emphysema, at least in part, due to 

the depletion of VEGF -a survival factor for both epithelial and endothelial cells, has 

been widely reported (Brusselmans et al. 2005; Kanazawa et al. 2003; Imai et al. 2005). 

Therefore, SalB’s cytoprotective activities were studied against emphysematous cell-

death induced by SU5416, a competitive inhibitor of VEGF, to mimic the impaired 

VEGF signaling conditions (Kasahara et al. 2000). SU5416 at 20 µM (VEGF-receptor 

inhibition IC50 = 7 µM) induced 3.6 and 3.3 –fold (p<0.05) cell death in A549 and 

HMVEC-L cells, respectively by the trypan blue exclusion assay. SalB at 25 µM 

inhibited this SU5416 –induced cell death in both A549 and HMVEC-L cells by 88.4 and 

47.7 %, respectively (p<0.05). Given SalB’s pSTAT3 and VEGF elevating activities 

(Chapter 3), JAK2-pSTAT3-VEGF signaling pathway was proposed as the mechanism of 

SalB’s anti-cell death activity against SU5416. In order to study the dependence of this 
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signaling pathway, inhibitors to JAK2 and STAT3, AG490 and S31-201, respectively 

were co-incubated with SalB at 25 µM and were shown inhibit SalB’s anti-cell death 

activities by 96.8 and 68.2 % in A549 cells and by 85.8 and 131.2 % in HMVEC-L cells, 

respectively. Through this study, SalB was clearly shown to have protective effects 

against two different types of emphysematous cell death induced by oxidative stress and 

VEGF receptor blockade, resulting in improved cell survival.  

 

4.4.2. SalB stimulates proliferation and migration of lung epithelial and endothelial cells 

Cellular proliferation and migration are important components of the repair 

process, where the former overcomes the cell loss while the later causes spreading of the 

cells to restore the structure (Wagner 2003). In the adult lung, cell death is balanced with 

cell proliferation and migration to maintain the alveolar structure such that an imbalance 

in these processes have been suggested to result in alveolar structural destruction and 

development of emphysema (Lee et al. 2012). In fact, increased cell death and decreased 

cell proliferation and migration were found in the COPD/emphysema patient derived 

lung epithelial cells (Perotin et al. 2014). Therefore, SalB’s repair activities in the lung 

alveolar epithelial and endothelial cells were studied with respect to stimulation of cell 

proliferation and migration. 

SalB potently (i.e., at 10-50 µM) increased proliferation of A549 and HMVEC-L 

cells by 3.5 and 1.8 –fold (p<0.05) after 48 and 24 h of treatment, respectively, by the 

MTT assay. While in the MTT assay SalB at 25 µM showed a 1.3 –fold increase in 

HMVEC-L cell proliferation compared to the vehicle control, in the ELISA -based BrdU 

assay SalB showed a comparable 1.4 –fold increase in proliferation, thus confirming its 
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proliferation stimulatory activity. SalB was also found to potently (i.e., 5-25 µM) 

promote A549 and HMVEC-L cell migration by 1.5 and 1.6 –fold (p<0.05), respectively, 

as compared to the vehicle control in the scratch wound closure assay. Since cell 

proliferation is a critical part of wound closure, especially in the fast growing A549 cells, 

SalB’s wound closure promoting activity may be a combined result of its effects on cell 

proliferation and migration (Kim et al. 2010). Notably, HMVEC-L cell migration 

activities were found to be passage –dependent, where older passage cells showed slower 

migratory activity, as similarly shown by Liao et al. (Liao et al. 2014). While SalB was 

recently shown to induce proliferation in human fibroblast cells at the concentration of 

25-100 µM (Chen et al. 2014), to our knowledge, this is the first time that SalB has 

shown migration promoting activity in vitro.  

Inhibitors AG490, S31-201 and SU5416 were used to study the dependence of 

SalB’s activities on the JAK2-pSTAT3-VEGF signaling pathway. In HMVEC-L cells, 

the inhibition of STAT3 activation by S31-201 and VEGF signaling by SU5416 were 

studied by the western blot analysis using primary antibodies to pSTAT3 (1:1000, 

phosphorylated STAT3-Tyr705, rabbit polyclonal, #9131 Cell Signaling technology) and 

pVEGFR2 (phosphorylated-VEGF receptor 2; 1:1000 rabbit polyclonal, #07-722 EMD 

Millipore, Temecula, CA). Figure 4.19 (A and B) shows the reduced expression of 

pSTAT3 and pVEGFR2 upon treatment with 50 µM S31-201 and 5 µM SU5416, 

respectively, suggesting impaired STAT3 activation and VEGF signal transduction at the 

receptor VEGFR2, thus confirming the utility of the inhibitors (Hoeben et al. 2004; 

Hermann et al. 2009). In the cell proliferation assay, AG490, S31-201 and SU5416 

inhibited the A549 proliferation by 84.5, 93.6 and 94.1 % and the HMVEC-L cell 
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proliferation by 62.9, 144.3 and 94.3 %, respectively, suggesting the dependence of 

JAK2-pSTAT3-VEGF signaling on SalB’s activities. The A549 and HMVEC-L cell 

migration promotion activities of SalB were also respectively inhibited by 108.8, 47.7 

and 85.2 %; and by 75.3, 92.9 and 77.7 % by AG490, S31-201 and SU5416.  

In our studies we saw a dependence of SalB’s anti-cell death, proliferation and 

migration activity on JAK2-STAT3-VEGF pathway. Extracellular receptor epidermal 

growth factor-receptor (EGFR) carries out signal transduction through the JAK2-STAT3-

VEGF pathway and has been predicted to be the most probable direct target of SalB by 

proteomic assay and binding affinity studies in vitro (Feng et al. 2011; Wang et al. 2008). 

Therefore EGFR could be the upstream, extracellular target for SalB, especially given its 

low intracellular permeability (Chen et al. 2014). However, further studies are required to 

conclusively show SalB’s binding to EGFR and its effect on signal transduction.  
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Figure 4.19: HMVEC-L cell (cytoplasmic) expression of pSTAT3 (A) and pVEGFR2 (B) after 24 h 

treatment with S31-201 at 50 µM or SU5416 at 5 µM, respectively. 
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4.4.3. SalB restores the impaired recruitment of stem cells  
 

While the in vivo models have been used to study bone-marrow derived stem cell 

recruitment in lung diseases, there are limitations to the available techniques that can 

assess the stem cell recruitment in vitro (Ishizawa et al. 2004). Here, we present an in 

vitro assay that is designed to model recruitment of MSCs through the microvascular 

lung endothelial barrier using a transwell system. In this assay, we found that the 

endothelial cells actively promoted migration of the MSCs through the monolayer, which 

has also been reported previously by Becker et al. (2007). The significantly altered 

permeability of the MSCs towards the permeability-inducing agent FBS was used to 

validate this assay (Luscinskas 2008).  

VEGF is known to stimulate the expression of stromal derived factor 1 (SDF-1), a 

potent chemoattractant for stem cells, thus inducing stem cell permeability (Du et al. 

2008). VEGF depletion may therefore impair the recruitment of stem cells with important 

consequences in emphysema (Kurtagic et al. 2015). In our studies, VEGF receptor 

blockade by SU5416 at 5 µM significantly impaired the trans-endothelial migration of 

MSCs by 51.7 % (p<0.05). However, SalB at 25 µM restored this impaired migration by 

60.0 % (p<0.05). These findings suggest that the VEGF signaling plays an important role 

in the recruitment of stem cells and SalB corrects the SU5416 -induced impaired stem 

cell recruitment, presumably because of its VEGF elevating activity. Further studies with 

JAK2 and STAT3 inhibitors may be important to establish the mechanism of SalB’s 

action in the stem cell recruitment.  
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4.5. Conclusions 
 

SalB exhibited the anti-cell death activities against emphysematous lung cell 

death induced by oxidative stress and VEGF receptor blockade. SalB also significantly 

increased proliferation and migration of lung alveolar epithelial and endothelial cells. 

Additionally, the inhibitors AG490, S31-201 and SU5416 blocked SalB’s in vitro 

activities. Given the pSTAT3 and VEGF elevating action of SalB shown in Chapter 3, 

these findings support the hypothesis that the in vitro activities of SalB are dependent on 

the JAK2-pSTAT3-VEGF signaling pathway. Furthermore, in the newly developed trans-

endothelial migration assay, SalB was shown to recover the VEGF receptor blockade-

induced impairment in the stem cell recruitment. Therefore, SalB could show the ability 

to repair alveolar structural destruction and loss by increasing lung resident cell survival, 

proliferation and migration and circulating stem cell recruitment in vitro. These VEGF –

dependent pharmacological repair activities of SalB may be useful in the reversal of 

emphysema, to be studied in Chapter 5.  
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CHAPTER 5 

 
SALVIANOLIC ACID B (SalB): IN VIVO REVERSAL OF EMPHYSEMA IN 

RATS FOLLOWING LUNG DELIVERY  

 
 
5.1. Introduction 

The in vitro lung cell studies described in Chapter 4 have demonstrated that SalB 

potently exerted the anti-cell death activity, stimulated cell proliferation, and promoted 

cell migration at 25 µM, while recovering from impaired stem cell recruitment through 

the lung endothelia. These activities appeared to be dependent on JAK2, STAT3 and 

VEGF, and in vivo lung administration of SalB at a dose of 0.2 mg/kg was shown to 

activate STAT3 and elevate VEGF levels in the lungs of rats, as shown in Chapter 3. 

Therefore, this chapter was designed to assess the reversal activities of SalB in two 

differently induced rat models of established emphysema. Specifically, emphysema was 

induced and established with porcine pancreatic elastase (PPE) or cigarette smoke extract 

(CSE) in rats; and SalB was then spray-instilled at 0.2 mg/kg into the lungs over three 

weeks period. The reversal activities in functional treadmill exercise endurance, 

morphological airspace enlargement and destruction, and lung’s cell death and 

proliferation markers as well as pSTAT3 and VEGF expressions were assessed.  
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5.2. Materials and Methods 
 
5.2.1.  Animals 

Adult male Sprague-Dawley rats (250–275 g) purchased from Hilltop Lab were 

used after 3-5 days of acclimatization, according to the animal experimental protocol 

approved by the VCU’s IACUC. Rats were housed in the AAALAC- accredited animal 

care facility in the Smith Building basement, maintained at 20-23 °C, 40-70 % of relative 

humidity and 12-12 h light-dark cycling (the light cycle between 6 am and 6 pm). Food 

and water were supplied ad libitum. 

 

5.2.2 Protocols with PPE- and CSE -induced rat models of established emphysema  

SalB (Ivy Fine Chemicals) was freshly prepared in saline as dosing solutions on 

each day. A total of 35 rats were divided into 6 groups and used in two differently 

induced rat models of established emphysema, as shown in Table 5.1. In the PPE-induced 

model, two dose levels of SalB at 0.1 and 0.2 mg/kg were tested, while in the CSE-

induced model, SalB was dosed only at 0.2 mg/kg. The experimental protocols of 

emphysema induction, SalB administration, animal assessments and tissue harvest in both 

models are described in Figures 5.1 and 5.2. 

 

Table 5.1: Six experimental groups to examine the reversal activities of SalB in the PPE- 
and CSE-induced rat models of established emphysema  

Group n Induction Treatment 
1 10 None Saline 
2 6 PPE Saline 
3 3 PPE SalB (0.1 mg/kg) 
4 6 PPE SalB (0.2 mg/kg) 
5 5 CSE Saline 
6 5 CSE SalB (0.2 mg/kg) 
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In both models, rats were first trained for 1-2 weeks to run on the AccuPacer 

rodent treadmill (Accuscan Instruments, Columbus, OH) to assess their exercise 

endurance, as described in Appendix 2. In the PPE-induced model (Figure 5.1; Group 2-

4), emphysema was induced with a single orotracheal (OT) spray-instillation of PPE (80 

U/rat) following isoflurane-induced anesthesia using PennCentury’s MiscroSprayer on 

day 1. PPE (135 U/mg; 95 % purity) was obtained from Elastin Products Co., as a 

lyophilized powder, and its instillation solution (6 mg/ml) was also freshly prepared in 

saline. Animals were left over 21 days only with treadmill training; rats in Group 1 were 

left as received over 21 days, again only with treadmill training. On day 20 and 21, pre-

dose exercise endurance was measured as described below (5.2.3 Treadmill exercise 

endurance) to confirm the development and establishment of emphysema with impaired 

running times. Rats were then treated with 0.1 ml OT spray-instillations of saline (Group 

1 and 2), SalB at 0.1 mg/kg (Group 3) or SalB at 0.2 mg/kg (Group 4), three times 

weekly over three weeks period (i.e., total 9 instillations) using the MicroSprayer. On day 

40 and 41, post-dose exercise endurance was measured, followed by animal sacrifice, as 

described below. In the CSE-induced model (Figure 5.2; Group 5-6), emphysema was 

induced over 21 days with three weekly intraperitoneal (IP) injections of CSE on day 1, 7 

and 14. On each day, CSE was freshly prepared by bubbling one research-grade cigarette 

3R4F (University of Kentucky, Lexington, KY) into 1 ml saline with a smoking machine. 

As in the PPE-induced model, pre-dose exercise endurance was measured to confirm the 

development and establishment of emphysema with impaired running times. Rats were 

then treated with 0.1 ml OT spray-instillations of saline (Group 5) or SalB at 0.2 mg/kg 



 
79 

(Group 6), three times weekly over three weeks period, followed by post-dose exercise 

endurance measurement and animal sacrifice, as described below. 

On day 42, animals were sacrificed and lungs were harvested. Under the surgical 

anesthesia with an IP injection of urethane at 1 g/kg, the trachea was cannulated through 

an incision made on the neck area. The animals were sacrificed by exsanguination, and 

their lung and heart were carefully removed from the body. The bronchial airway lumens 

to the right lung lobes were tightly closed with a surgical suture. The left lung lobe was 

then inflated through the tracheal cannula with 8-10 ml of a warm 0.5 % agarose solution 

at a hydrostatic pressure of 20 cm. This solution of agarose (Invitrogen, Carlsbad, CA) 

had been prepared in distilled, deionized water (DDW) at 80 ˚C and maintained at 50 ˚C 

prior to use. Immediately, the lungs were placed in an ice bath for 10 min to solidify the 

agarose. The right lung lobes were then removed for Western blot and myeloperoxidase 

(MPO) activity analyses as described below. The inflated left lung lobe was fixed with 10 

% buffered formalin (Fisher Scientific) at 4˚C for over 24 h. At the VCU Anatomical 

Pathology Laboratory, the left lungs were embedded in paraffin blocks, from which 4 

µm-thick lung histology sections were prepared on slides with hematoxylin and eosin 

(H&E)-staining. These lung section slides were used to assess the alveoalr airspace 

morphology (i.e., size and destruction) via determination of mean linear intercept (MLI) 

and destructive index (DI), as described below.  
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Figure 5.1: Experimental protocol used to assess the reversal activities of SalB in the PPE-induced 
rat model of established emphysema. (OT, orotracheal instillation)  
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Figure 5.2: Experimental protocol used to assess the reversal activities of SalB in the CSE-induced 
rat model of established emphysema. (IP, intraperitoneal injection)  
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5.2.3. Treadmill exercise endurance  

Running times on the treadmill to exhaustion were used to measure the functional 

exercise endurance for rats. Following training, as described in Appendix 2, pre-dose and 

post-dose exercise endurances were measured on day 20 & 21 and 40 & 41, respectively, 

on the AccuPacer rodent treadmill. Briefly, trained rats were allowed to run against a 

speed of 10 m/min and an inclination of 5 degrees of the running belt. Exhaustion was 

judged when the animals received a 5th electrical foot shock from the bar grid or 

displayed an inability to return to the running belt. In each measurement, the exercise 

endurance was reported as an average running time for exhaustion.  

 

5.2.4. Alveolar airspace size by mean linear intercept (MLI) 

Alveolar airspace size was assessed in each rat using the mean linear intercept 

(MLI) measured by the method first described by Thurlbeck (Thurlbeck, 1966) and 

modified in-house. Each H&E-stained alveolar section of the left lung lobe was observed 

under the microscope (at 25X magnification; Nikon Optishot II equipped with Zeiss 

Axiocam digital camera), and 5 microscopic images (3450 x 2585 µm) were randomly 

selected and printed out. In each image, 5 horizontal lines (3450 µm) were drawn with 

equal (431 µm) vertical intervals, and their intercepts with the alveolar walls were 

counted to determine the MLI values (3450 mm / the number of the intercepts). 

Therefore, the MLI value for each animal was calculated as an average of the 25 MLI 

values (5 horizontal lines per image x 5 images). 

 

 



 
83 

5.2.4. Alveolar structural destruction by destructive index (DI) 

Alveolar structural destruction was assessed in each rat using the destructive 

index (DI) determined by a microscopic point count technique, according to a method 

described by Eidelman (Eidelman, 1991), modified in-house. In each H&E-stained 

alveolar section of the left lung lobe observed under the microscope (at 100X 

magnification; Nikon Optishot II and Zeiss Axiocam digital camera), 40-60 non-

overlapping fields were randomly selected and printed out. Over each image, a grid of 66 

equally spaced dot points was then placed, and the alveolus lying underneath each point 

was evaluated for the presence of destruction. The destruction was defined based on one 

of the following criteria:  

a) Two or more alveolar walls nick or defect in a single alveolus or two adjacent alveoli 

opening into the same duct 

b) Two or more islands of lung parenchyma within an alveolar or ductal space 

c) Cuboidal epithelial lining on alveolar structure with or without nicks or defects 

Each point on the alveolus was counted as either normal (N) or destroyed (D) alveolus, 

based on the above criteria. Only the points falling on the whole alveoli or ducts were 

counted. Over 20,000 dot points were assessed in each animal to calculate the % DI using 

the equation: 

 

% !" = 100 ! !
! + !  
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5.2.6. Protein extraction and western blot analysis 

After sacrifice on day 42, 300 mg of right lung tissue were minced, homogenized 

using the hand homogenizer (Pro 200; Pro Scientific, Inc.) in NP-40 lysis buffer with a 

cOmpleteTM protease inhibitor cocktail tablet and a PhosSTOPTM phosphatase inhibitor 

tablet (Roche Diagnostics) in ice and centrifuged to obtain supernatant. For nuclear 

extracts, the minced lung tissues were extracted using the Nuclear/Cytosol Fractionation 

kit (Biovision) according to the manufacturer’s protocol. After determining the protein 

content of the supernatant by the BCA assay, 40 µg of protein was denatured at 100 ˚C 

for 10 min, electrophoresed on a 10 % Mini-PROTEAN TGX polyacrylamide gel (Bio-

Rad; Hercules, CA), and transferred to nitrocellulose membranes (0.2 mm; Bio-Rad), as 

described in Appendix 2. After 1 h blocking at room temperature, the membranes were 

probed via overnight incubation at 4 ˚C with each of the mouse or rabbit antibodies raised 

against: 1) cleaved caspase-3 (1:1000, rabbit monoclonal, #9664, Cell Signaling, 

Danvers, MA), 2) proliferating cell nuclear antigen (PCNA, 1:2000, mouse monoclonal, 

#2586, Cell Signaling), 3) pSTAT3 (1:1000, phosphorylated STAT3-Tyr705, rabbit 

polyclonal, #9131, Cell Signaling), 4) VEGF (1:100, mouse monoclonal, sc-7269, Santa 

Cruz, Dallas, TX,), 5) b-actin (1:5,000; Sigma-Aldrich) and 6) lamin B1 (1:1000, rabbit 

monoclonal, #12586, Cell Signaling). Subsequently, the membranes were incubated in 

the horseradish peroxidase-conjugated goat anti-mouse or anti-rabbit antibody (Bio-Rad 

Laboratories) in the blocking buffer for 80 min at room temperature. The probed protein 

was detected with the SuperSignal West Pico enhanced chemiluminescent substrate kit 

(Pierce) in the film processor (X-Omat 2000A; Eastman Kodak, Rochester, NY). Their 

band signals were quantified with ImageJ (NIH). Each protein signal was normalized 
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with the corresponding ß-actin or lamin B1 signal, and expressed as the value relative to 

that for the untreated healthy rat lungs. 

 

5.2.7. Lung Myeloperoxidase (MPO) activity 

The MPO activity was assessed in the lung tissues as an index of neutrophil 

accumulation by the method developed by Goldblum et al. (Goldblum, 1985), with in-

house modifications. The minced right lung tissues (50 mg) were homogenized in upto 

0.5 ml of 0.02 M EDTA solution in water (pH= 4.7) on ice and centrifuged at 12,000 rpm 

for 15 minutes at 4 ºC to separate the pellet from the supernatant. This pellet was re-

suspended in 0.5 ml of 0.5 % hexadecyltrimethyl ammonium bromide solution in PBS 

(pH = 6) and centrifuged (12,000 rpm, 15 min) at 4 °C. In a 96-well plate, 20 µl of the 

supernatant was reacted with 180 µl of 0.17 mg/ml O-dianisidine dihydrochloride and 

0.0005 % H2O2 solution in PBS. The absorbance increase in 5 min (∆Abs) was measured 

at 405 nm using a plate reader (SynergyTM 2), as an indicator of MPO activity. Finally, 

the BCA assay was used to normalize the MPO activity with the protein concentration 

and the results were expressed as ∆Abs in 5 min per mg protein. 

 

5.2.7. Data description and statistical analyses 

The results of the in vivo assessments were expressed as treatment group mean ± 

SE (n=3-10). Statistical analyses for group comparison were carried out using Prism® 7 

or JMP-Pro® 12 by student t-test or one-way analysis of variance (ANOVA); p<0.05, 

0.01 or 0.001 was considered to be statistically significant. Post-hoc analysis for multiple 

comparison testing was performed by the Tukey’s method. 

5.3. Results 
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5.3.1. SalB reversed impaired exercise endurance in established emphysema  
 

Figure 5.3 shows the treadmill exercise endurance of each rat on day 21-22 and 

43-44, before and after three weeks pulmonary administration of saline or SalB at 0.1 or 

0.2 mg/kg (three times per week) in the rat models of established emphysema induced 

with PPE and CSE, compared to that in healthy rats treated with or without pulmonary 

administration of SalB at 0.2 mg/kg. Note that the later data with healthy rats were taken 

during the studies described in Chapter 3. Untreated healthy rats ran for 47.7±3.2. The 

SalB treatment slightly shortened the running time to 41.6±1.6 min, but this reduction 

was not significant. In contrast, the exercise endurance was drastically impaired (i.e., 

reduced) to 6.7±1.1 min of the across group running time or by average 86.0 % on day 

21-22 following PPE instillation. Note, however, that these reduced pre-dose running 

times were comparable between three different treatment groups of rats. While the saline 

treatment left the endurance impaired at 5.7±1.6 min, the SalB treatment at 0.1 mg/kg 

only moderately improved them to 15.1±3.3 min or by 20.5 % (p<0.01). However, SalB 

at 0.2 mg/ml remarkably improved the running times significantly (p<0.01) to 40.1±2.6 

min or by 81.5 % suggesting the functional reversal of established emphysema in this 

PPE –induced rat model.  

Likewise, the repeated CSE injections reduced the exercise endurance on day 21-

22 to 8.0±0.2 min, of the across group running times or by average 83.3 %. Again, these 

pre-dose running times were equally impaired between two different treatment groups of 

rats. While the endurance remained unchanged at 9.0±2.0 min by the saline treatment, 

SalB at 0.2 mg/kg again improved the endurance time significantly (p<0.01) to 30.7±5.9 

or by average 57.2 %. Figure 5.4 shows difference in the exercise endurance (∆ 
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Endurance) measured on day 20-21 and day 41-42 i.e., before and after three weeks of 

pulmonary administration of saline or SalB at 0.1 or 0.2 mg/kg in the PPE and CSE – rat 

models of established emphysema. In the PPE –induced emphysema, three weeks 

pulmonary administration of SalB at 0.1 or 0.2 mg/kg increased the endurance 

significantly by 10 and 31 –fold (p<0.05), respectively, while in the CSE –induced rat 

model of established emphysema, SalB at 0.2 mg/kg increased endurance by 18 –fold 

(p<0.05), as compared to saline treated rats. These results strongly suggested the reversal 

of functional damages of the emphysematous lungs.   
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Figure 5.3: Treadmill exercise endurance of each rat measured on day 21-22 and 43-44, respectively, 
before (Pre) and after (Post) three weeks of pulmonary administration of saline or SalB at 0.1 or 0.2 
mg/kg (three times per week) in rat models of established emphysema induced with PPC and CSE, 
compared to that in healthy rats with or without two weeks pulmonary administration of SalB at 0.2 
mg/kg (fives times/week). Each treatment group n = 3-10. Horizontal bar represents group mean value. 
Changes of the pre– vs. post- dose exercise endurance were either significant (p<0.01 or p<0.001) or 
not significant (NS), identified by the student’s t-test comparing with 0. In healthy rats, SalB treatment 
did not change the treadmill endurance (NS). 
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Figure 5.4: Difference in the exercise endurance (∆ Endurance) measured on day 20-21 and day 
41-42 i.e. before (Pre) and after (Post) three weeks of pulmonary administration of saline or SalB at 
0.1 or 0.2 mg/kg (three times per week) in rat models of established emphysema induced with PPE 
and CSE. Data: mean±SE (n=3-10); *p<0.05, compared to the corresponding rats with established 
emphysema treated with saline, by ANOVA followed by Tukey’s multiple comparison test.  
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5.3.2 SalB reversed airspace enlargement and alveolar destruction in established 

emphysema 

Figure 5.5 shows the representative alveolar airspace images in the rat models of 

established emphysema induced with PPE or CSE on day 43-44 following three weeks 

pulmonary administration of saline or SalB at 0.2 mg/kg (three times/week), compared to 

those in healthy rats treated with or without pulmonary administration of SalB at 0.2 

mg/kg. While the alveolar airspace morphology remained unchanged and appeared to be 

normal in healthy rats following SalB administration at 0.2 mg/kg (Figure 5.5 A and B), 

abnormal airspace enlargement and alveolar destruction were evident in the PPE and CSE 

–induced emphysematous rats following saline treatment (Figure 5.5 C and E, 

respectively). However, SalB treatment at 0.2 mg/kg appeared to recover this airspace 

enlargement and alveolar destruction in these models of established emphysema (Figure 

5.5 D and F, respectively).  

The MLI values and DI% in different treatment groups of rats are thus shown in 

Figure 5.6 and 5.7, respectively, as group measures of airspace enlargement and alveolar 

destruction. As predicted from the alveolar airspace images, the SalB treatment alone did 

not alter the MLI value in healthy rats (58.5±3.3 and 54.7±2.0 µm with and without SalB 

treatment, respectively), as shown in Figure 5.6. In the PPE -induced emphysematous 

rats, the MLI value was significantly increased to 97.8±3.2 µm or by 1.8 –fold (p<0.05), 

compared to that in healthy rats. However SalB treatment enabled a significant 58.6 % 

(p<0.05) recovery of this airspace enlargement, demonstrating an MLI value of 

72.5±1.97 µm. Likewise, as in Figure 5.7, the DI% was significantly elevated to 17.3±1.6 

% in the PPE –induced emphysematous rats, compared to 4.3±0.4 % seen in healthy rats 
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(p<0.05). However, SalB at 0.2 mg/kg again significantly recovered the DI% to 9.4±0.3 

% or by 61.0 % (p<0.05), which suggested that the SalB treatment reversed the airspace 

enlargement and alveolar destruction in the PPE –induced model of established 

emphysema. Figure 5.8 shows correlation plot between MLI and DI% values of each rat 

belonging to the three treatment groups. The MLI and DI% values were highly correlated 

indicating a close association between these emphysematous abnormalities. 

In the CSE -induced model of established emphysema, the MLI value was also 

abnormally higher at 84.6±1.7 µm, a significant 1.6 –fold greater value from 54.7±2.0 

µm for healthy rats (p<0.05), as shown in Figure 5.6. However, the SalB treatment at 0.2 

mg/kg produced a 74.8 % recovery of the airspace enlargement, as demonstrated by the 

MLI value of 62.2±3.4 µm (p<0.05).  
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Figure 5.5: The representative H&E stained micrographs of the alveolar airspaces in the left lung 
lobes in rat models of established emphysema induced with PPE or CSE following three weeks 
pulmonary administration of saline or SalB (0.2 mg/kg, three times/week), compared to those in 
healthy rats with or without two weeks pulmonary administration of SalB (0.2 mg/kg, five 
times/week). Magnification = 25X; the scale bars represent 500 μm. 

A) Healthy rats treated with saline B) Healthy rats treated with SalB (0.2 mg/kg)  

C) PPE -induced rats treated with saline D) PPE –induced rats treated with SalB (0.2 mg/kg) 

E) CSE –induced rats treated with saline F) CSE –induced rats treated with SalB (0.2 mg/kg) 
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Figure 5.6: Mean linear intercept (MLI) values of the alveolar airspaces in the rat models of 
established emphysema induced with PPE or CSE following three weeks pulmonary 
administrations of saline or SalB at 0.2 mg/kg (three times/week), compared to those in healthy 
rats treated with saline or SalB (0.2 mg/kg, five times/week). Data: mean±SE (n=4-6) *p<0.05, 
compared to healthy saline treated rats; #p<0.05, compared to the corresponding rats models of 
established emphsyema treated with saline, by ANOVA and Tukey’s multiple comparison test. 
NS: not significant. 
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Figure 5.7: Destructive index (DI) measurements obtained from the H&E stained 100X images 
of healthy or PPE –induced emphysema rats either treated with saline or SalB. Data: mean±SE 
(n=3) *p<0.05, compared to healthy saline control; #p<0.05, compared to PPE –induced saline 
treated control, by ANOVA and Tukey’s multiple comparison test. 
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Figure 5.8: Correlation between alveolar airspace enlargement (MLI) and destruction (DI) 
in ¢ = healthy saline treated rats,     = PPE-induced SalB -treated rats and n = PPE- 
induced saline treated rats.  
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5.3.3. Lung tissue expression of protein markers 
 

To examine if the functional and morphological reversal activities of SalB shown 

above are associated with the modulations in the cell death and proliferation activities in 

the lung, cleaved caspase 3 and PCNA, were chosen as biomarkers of apoptotic cell death 

and proliferation, respectively. Figure 5.9 shows the cleaved caspase 3 expression in the 

lungs of PPE –induced rats with or without SalB treatment, relative to that of healthy rats. 

The saline treatment left the cleaved caspase 3 expression elevated by 13 –fold (p<0.05), 

indicating increased lung cell apoptosis and emphysematous damage. However, the SalB 

treatment enabled significant suppression by 94.3 % (p<0.05), suggesting the reversal of 

the lung’s apoptotic activity. By contrast, as shown in Figure 5.10, the saline treatment 

resulted in rather stimulated PCNA expression, but insignificantly by 1.6 –fold. However, 

the SalB treatment significantly increased the PCNA expression further in the PPE –

induced animals (p<0.05), resulting in a 2.6 –fold greater level, when compared to that in 

healthy rat lungs (p<0.05).  

Figures 5.11 show the (A) cytoplasmic and (B) nuclear expressions of pSTAT3 in 

the lungs of the PPE –induced rats with or without SalB treatment, in comparison with 

the healthy rats. In the PPE –induced emphysematous rats, both the cytoplasmic and 

nuclear expression of pSTAT3 appeared to remain lower by 18.4 and 45.0 %, 

respectively, yet these reductions did not reach statistical differences. By contrast, the 

SalB treatment seemed to restore or stimulate the pSTAT3 levels, but again, these 

changes did not reach statistical differences. However, as shown in Figure 5.12, it 

became clear that the SalB treatment normalized the lung expression of VEGF from a 

significant 35.6 % reduction (p<0.05) seen in the PPE-induced emphysematous rats 
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following saline treatment.  
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Figure 5.9: Lung tissue (cytosolic) expression of cleaved caspase 3 in the rat model of 
established emphysema induced with PPE following three weeks pulmonary administration 
of saline or SalB (0.2 mg/kg, three times/week), relative to that in healthy rats. (A) 
Representative western blots of cleaved caspase 3 at 17 and 19 kDa and ß-actin at 42 kDa. 
(B) Signal band ratios of cleaved caspase 3 to ß-actin relative to that for the healthy rat 
lungs. Data represent mean± SE, from n=3-6, *p<0.05, compared to the healthy rats; 
#p<0.05, compared to the PPE-induced saline treated rats, by ANOVA and Tukey’s 
multiple comparison test. 
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Figure 5.10: Lung tissue (cytosolic) expression of proliferating cell nuclear antigen 
(PCNA) in the rat model of established emphysema induced with PPE following three 
weeks pulmonary administration of saline or SalB (0.2 mg/kg, three times/week), relative to 
that in healthy rats. (A) Representative western blots of PCNA at 36 kDa and ß-actin at 42 
kDa. (B) Signal band ratios of PCNA to ß-actin relative to that for the healthy rat lungs. 
Data represent mean± SE, from n=3-6, *p<0.05, compared to the healthy rats, by ANOVA 
and Tukey’s multiple comparison test. 
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Figure 5.11: Lung tissue cytosolic and nuclear expression of pSTAT3 in the rat model of 
established emphysema induced with PPE following three weeks pulmonary administration 
of saline or SalB (0.2 mg/kg, three times/week), relative to that in healthy rats. (A) 
Representative western blots of cytosolic pSTAT3 at 75 kDa, ß-actin at 42 kDa and their 
signal band ratios of pSTAT3 to ß-actin relative to that for the healthy rat lungs. (B) 
Representative western blots of nuclear pSTAT3 at 75 kDa, lamin B1 at 68 kDa and their 
signal band ratios of pSTAT3 to lamin B1 relative to that for the healthy rat lungs. Data 
represent mean± SE, from n=2-7. 
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Figure 5.12: Lung tissue (cytosolic) expression of VEGF in the rat model of established 
emphysema induced with PPE following three weeks pulmonary administration of saline or 
SalB (0.2 mg/kg, three times/week), relative to that in healthy rats. (A) Representative 
western blots of VEGF at 25 kDa and ß-actin at 42 kDa. (B) Signal band ratios of VEGF to 
ß-actin relative to that for the healthy rat lungs. Data represent mean± SE, from n=3-6, 
*p<0.05, compared to the healthy rats, by ANOVA and Tukey’s multiple comparison test. 
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5.3.4. Lung MPO activity  
 

Because PPE –induced emphysema and its alveolar destruction are associated 

with neutrophil infiltration into the lungs (Antunes & Rocco 2011), the MPO activity was 

assessed as a biomarker for neutrophilic lung damage.  Figure 5.13 shows the MPO 

activities measured with ∆Abs in 5 min normalized by the protein content. In the PPE –

induced emphysematous rats (following saline treatment), the lungs MPO activity was 

significantly higher by 4 –fold (p<0.05), compared to that of healthy lungs, indicating 

elevated neutrophil infiltration as a result of elastastolytic insult. Following SalB 

treatment, the MPO activity still remained equally elevated, which suggested lack of 

SalB’s effect on neutrophil infiltration.   
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Figure 5.13: Lung MPO activity in the rat model of established emphysema induced with 
PPE following three weeks pulmonary administration of saline or SalB (0.2 mg/kg three 
times/week), compared to that in healthy rats. The MPO activities were described as the 405 
nm absorbance change in 5 min (∆Abs5min) normalized with the sample protein content. 
Data: mean± SE, from n=5-8, *p<0.05, compared to the healthy rats, by ANOVA and 
Tukey’s multiple comparison test. SalB did not change the MPO activity in the PPE –
induced rats. 
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5.4. Discussion 

In this chapter, PPE and CSE rat models of established emphysema were used to 

determine if pulmonary administration of SalB results in the reversal of emphysematous 

lung damages. Initiation of SalB treatment following PPE or CSE –induced functional 

impairment enabled a more clinically realistic assessment of its application in the 

treatment of emphysema. SalB treatment at 0.2 mg/kg enabled recovery of impaired 

functional endurance and morphology in PPE and CSE –induced emphysema. This 

recovery was associated with normalization of the lung expressions of cell death marker 

cleaved caspase 3 and VEGF along with an increase in proliferative marker PCNA. All 

the evidence taken together suggests reversal of established emphysema by pulmonary 

administration of SalB.   

 

5.4.1. SalB recovered functional impairment in PPE and CSE –induced established 

emphysema 

Single orotracheal (OT) instillation of 80 U of PPE induces emphysema in rats by 

triggering elastolysis and inflammation, resulting in alveolar structural destruction that is 

a characteristic of the disease (Inoue, 2010). Due to its faster onset, progressive and 

largely irreversible nature, the elastase model is ideal for testing new therapeutic 

approaches for reversing emphysematous damage to the lung (Stevenson & Birrell 2011). 

In this study, PPE significantly reduced the exercise endurance in rats by 7.2 –fold (47.7 

min è 6.7 min, p<0.05), a clinically relevant observation seen in emphysema patients 

(Yao et al. 2012). While treatment with SalB at 0.1 mg/kg only marginally improved the 

endurance by 20.5 % (6.7 min è 15.1 min, p<0.05), SalB at 0.2 mg/kg recovered this 
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impaired endurance by 81.5 % (6.7 min è 40.1 min, p<0.05).  

None of the animal models can reproduce all the features of emphysema as it 

occurs in humans since the natural history and the comorbidities that are often observed 

in humans are absent in animals (Oliveira et al. 2016). Although widely used, the PPE 

experimental model has several limitations because the emphysema is induced by 

instillation of a single high dose of a protease rather than a continuous low-grade 

inflammation believed to be present in chronic cigarette smokers (Flo et al. 2006). To 

address some of these limitations, the CSE –induced emphysema model, first described 

by Taraseviciene-Stewart and coworkers, was used in addition to PPE for studying 

SalB’s emphysema reversal activities (Taraseviciene-Stewart et al. 2007). In this study, 

three IP injections of CSE for 3 weeks significantly reduced exercise endurance of the 

rats by 6.0 –fold (47.7 min è 8.0 min, p<0.05), thus suggesting functional impairment as 

similarly reported by Zhang et al. (Zhang et al. 2013). However, SalB at 0.2 mg/kg 

significantly recovered the impaired exercise endurance by 57.2% (8.0 min è 30.7 min, 

p<0.05). Thus, SalB substantially reversed the lung’s functional impairment of treadmill 

exercise endurance in both PPE and CSE –induced established emphysema.  

 

5.4.2. SalB reversed morphological impairment in PPE and CSE –induced established 

emphysema 

 Single instillation of PPE increased MLI by 1.8 –fold (54.6 µm è 97.8 µm) and 

DI by 4.0 –fold (4.3 % è17.3 %) (p<0.05), causing significant airspace enlargement and 

destruction. Pulmonary administration of SalB showed recovery of the MLI by 58.6 % 

(97.8 µm è 72.5 µm) and DI by 61.0 % (17.3 % è 9.4%) (p<0.05). IP injections of 
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CSE also caused significant airspace enlargement resulting in a 1.5 –fold  (54.6 µm è 

84.6 µm) (p<0.05) increase in MLI as compared to healthy, which showed recovery upon 

administration of SalB (0.2 mg/kg) by 74.8 % (84.6 µm è 62.2 µm) (p<0.05). These 

findings suggest reversal of abnormal airspace enlargement and destruction by SalB in 

the PPE and CSE –induced emphysema. 

 

5.4.3. SalB normalized the lung tissue expression of cleaved caspase-3 and VEGF but 

showed no effect on the MPO activity 

Cell apoptosis marker, cleaved caspase 3 expression was substantially increased 

in PPE –induced emphysema rat lungs by 13 –fold (p<0.05) compared to healthy, 

indicating elevated cell death in the lungs of these rats. On the other hand, cleaved 

caspase 3 expression was significantly reduced in PPE –induced SalB treated rats by 94.3 

% (p<0.05), suggesting inhibition of induced cell death by SalB. PPE –induced 

emphysema rats showed higher lung tissue expression of proliferative biomarker PCNA, 

which was not significant as compared to healthy rats. Imai et al. also reported increased 

PCNA expression in lung tissues of emphysema patients attributing this to the lung repair 

response following the elevated cell death (Imai et al. 2005). Since there is persistent 

airspace enlargement and destruction in PPE –induced rats, the substantial increase in cell 

death may overwhelm the marginally increased cell proliferation. However, treatment 

with SalB further significantly increased the lung tissue expression of PCNA by 2.6 –fold 

(p<0.05), thus showing SalB’s ability to induce proliferation. These results are consistent 

with the previously demonstrated activities of SalB in elevating lung VEGF expression 

(Chapter 3) and stimulating pharmacological repair in lung cells by reducing cell death 
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and increasing proliferation (Chapter 4).  

 Both cytoplasmic and nuclear pSTAT3 expressions appeared to be lower in the 

PPE –induced emphysema rats and SalB treatment increased these expressions, but 

insignificantly. In contrast, the VEGF expression was significantly reduced in PPE –

induced emphysema rats by 35.6 % (p<0.05), similar to the clinically observed epigenetic 

VEGF deficiency in emphysema patients (Yasuo et al. 2011). SalB treatment successfully 

recovered the reduced VEGF expression, which is consistent with the original hypothesis. 

The 4 –fold (p<0.05) increase in MPO activity (∆Abs: 0.34 è 1.42) in PPE –induced rat 

lungs was unaffected by administration of SalB at 0.2 mg/kg (∆Abs: 1.42 è1.27), 

implying that SalB’s mechanism of action may not involve direct inhibition of neutrophil 

infiltration. To further clarify SalB’s direct target and mechanism of action, in vivo 

emphysema studies using inhibitors to the JAK2-STAT3-VEGF signaling pathway may 

be important.  
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5.5 Conclusions 

The emphysema study in rats successfully assessed the potential use of pulmonary 

administration of SalB at 0.2 mg/kg to normalize the clinically relevant emphysematous 

characteristics of impaired functional endurance, airspace enlargement and destruction in 

addition to the pathobiological features of induced cleaved caspase 3 and reduced VEGF 

expression. SalB at 0.2 mg/kg showed significant improvements in functional endurance 

by 81.5 % and 57.2 %, and airspace morphology by 58.6 % and 74.8 % in differently 

induced emphysema by PPE and CSE, respectively (p<0.05). These improvements were 

accompanied by normalization of the reduced expression of cleaved caspase 3 and VEGF 

along with significantly increased expression of PCNA. These results clearly suggested 

that pulmonary administration of SalB at 0.2 mg/kg reversed established emphysema in 

vivo. Although pSTAT3 expression in cytoplasm and nucleus appeared to increase with 

SalB treatment, further studies are required to clearly demonstrate SalB’s STAT3-VEGF-

dependent mechanism of action.  
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CHAPTER 6  
 
 

SUMMARY AND GENERAL CONCLUSIONS 
 
 
  
 

In this dissertation, SalB was examined in vitro and in vivo as a novel therapeutic 

molecule for pulmonary delivery in the treatment of emphysema. SalB’s anti-oxidation 

and anti-elastase activities were first assessed in vitro by the chromogenic ABTS�+ 

radical scavenging assay and the chromogenic HSE substrate hydrolysis assay, 

respectively. SalB showed potent anti-oxidation activity (IC50 = 3.7 µM), but was devoid 

of the anti-elastase activity. Pulmonary administration of SalB at 0.2 mg/kg in normal 

healthy rats over two weeks was shown to increase the lung tissue expression of pSTAT3 

and VEGF, while causing no abnormalities in functional treadmill exercise endurance 

and airspace morphology.  

With this encouraging pSTAT3 and VEGF protein data in rats, the in vitro lung 

cell studies were carried out, which spanned 1) the anti-cell death activities; 2) the cell 

proliferation stimulatory activities; 3) the cell migration stimulatory activities; and 4) the 

promoting activities of trans-endothelial MSC recruitment. Both lung epithelial (A549) 

and endothelial (HMVEC-L) cells were used, and JAK2, STAT3 and VEGF-dependence 

on these SalB’s activities were explored with respective pharmacologic inhibitors. The 

anti-cell death activities were measured with the trypan blue exclusion assay and the 

propidium iodide-based flow cytometry assay, and SalB at 25 µM inhibited H2O2 (0.1 

mM)-induced A549 cell death by 86.0 % and 59.2 %, respectively. SU5416 (VEGF 

receptor antagonist; 20 µM) also induced A549 and HMVEC-L cell death by 3.6 and 3.3-
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fold, respectively, but again, SalB at 25 µM inhibited this induced cell death by 88.4 % 

and 47.7 %. In the cell proliferation and cell scratch would closure-based migration 

assays, SalB at 25 µM stimulated A549 and HMVEC-L cell proliferation by 1.3 and 1.5-

fold, and cell migration by 1.5 and 1.7-fold, respectively, as compared to vehicle control. 

Notably, pharmacological JAK2, STAT3 and VEGF inhibitions significantly inhibited 

the anti-cell death and cell proliferation and migration stimulatory activities of SalB, 

which supported the JAK2-STAT3-VEGF –dependent mechanisms. In a trans-

endothelial MSC migration assay, SU5416 (5 µM) reduced MSC migration by 51.7 %, 

but SalB at 25 µM restored this impaired migration by 60.0 %.  

SalB was then examined for the reversal activities in the rat models of established 

emphysema induced with porcine pancreatic elastase (PPE) and cigarette smoke extract 

(CSE). In both models, exercise endurance was reduced on day 21 by 86.0 and 83.3 %, 

respectively, indicating the development of emphysema. SalB was then administered to 

the lung at 0.2 mg/kg, three times weekly for three weeks, which found significant 81.5 

and 57.2 % improvement of the impaired endurance, suggesting functionality recovery. 

The airspace enlargement of these animals was assessed with the mean linear intercept 

(MLI), where PPE and CSE-induced animals (with saline treatment) showed 1.8 and 1.6-

fold increased MLI values, relative to those in the healthy animals. In contrast, the SalB 

treatment at 0.2 mg/kg recovered this MLI values by 58.6 and 74.8 %, respectively. In the 

PPE-induced model, alveolar structural destruction was also assessed with the destructive 

index (DI%). The model resulted in a 4-fold greater DI% than the health animals, which 

was recovered by 61.0 % for emphysematous rats treated with SalB. These results clearly 

demonstrated the recovery of impaired functional endurance and abnormal airspace 
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morphology as a result of SalB treatment. 

PPE instillation increased the lung expression of cleaved caspase-3 by about 13-

fold and reduced the expression of VEGF by 1.6-fold, suggesting induced cell death and 

reduced cell proliferation/migration in the lungs of established emphysema. Pulmonary 

treatment of SalB at 0.2 mg/kg significantly normalized both proteins. In contrast, the 

lung’s PCNA expression in the lungs appeared to be elevated in the PPE-induced rats, yet 

SalB treatment still further significantly increased the PCNA expression by 2.6–fold. 

Paradoxically, the pSTAT3 expression in both cytoplasmic and nuclear fractions of the 

rat lungs seemed to reduce by 1.2 and 1.8-fold in PPE-induced rats. However, SalB 

treatment appeared to still increase lung expression of cytoplasmic and nuclear pSTAT3. 

This suggested SalB’s mechanism of STAT3-VEGF recovery. However, further 

investigation of the lung expression of upstream factors in the STAT3-VEGF signaling 

pathway may be necessary to delineate SalB’s mechanism of action. SalB treatment did 

not alter the increased neutrophil recruitment in the lungs as a result of PPE instillation, 

indicated by the lung MPO activity assay. Therefore, SalB mediated reversal of 

emphysema maybe a result of lung VEGF recovery, but may not involve direct neutrophil 

recruitment inhibition.  
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APPENDIX 1 

 

WESTERN BLOT ANALYSIS 

 

Western blot analysis was performed to assess protein levels in lung cells and 

tissues in Chapter 3 and 5. A549 or HMVEC-L cells were plated in 10 cm dishes (1 x 106 

cells/dish) and grown to confluence. Upon confluence, treatments were added in 2% FBS 

containing medium for A549 cells and complete medium for HMVEC-L cells. 

Subsequently, the cells were washed with ice-cold PBS, scrapped with cell scrapper 

(Corning) and cell suspension in 1 ml PBS was collected in the 1.5 ml centrifuge tubes. 

After centrifugation at 12000 rpm for 2 min (Eppendorf centrifuge 5415 C), cell pellet 

was collected and extracted in 100 µl NP-40 lysis buffer using hand homogenizer (Pro 

200; Pro Scientific, Inc.) in ice. NP-40 lysis buffer was freshly prepared from 150 mM 

NaCl, (Fisher Scientific), 50 mM Tris pH 8.0 (Bio-Rad Laboratories) and 1% NP-40 

(Fisher Scientific) and one tablet of cOmpleteTM protease inhibitor cocktail tablet and 

one tablet of PhosSTOP phosphatase inhibitor tablet (Roche diagnostics, Indianapolis, 

IN) was dissolved in 10 ml of NP-40 buffer. After 1 min of homogenization, the cell 

extract was centrifuged at 12,000 rpm for 2 min. Supernatant was collected and 5 µl 

aliquot was used for bicinchoninic acid assay (BCA, Pierce, Rockford, IL) to determine 

total protein content. The western blot samples were prepared at a protein concentration 

of 1.5 µg/µl in loading buffer and denatured at 100 ˚C for 10 min. 

For determining the lung tissue protein expression, 300 mg of right lung tissue 
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was homogenized with 1 ml of ice-cold NP-40 lysis buffer with protease and phosphatase 

inhibitors using a hand homogenizer. After 1 min of homogenization in ice, the tissue 

extract allowed to rest for 15 min, vortexed for 10 seconds and centrifuged at 16,000 g in 

4˚C (Aventi JE Centrifuge; Beckman Coulter). The supernatant was collected and 2 µl 

aliquot was used for the BCA assay to determine total protein content and the rest was 

stored at -70˚C. Western blot samples of 2 µg/µl protein concentration were prepared in 

Laemmli sample buffer (Bio-Rad laboratories, Hercules, CA) and ß-mercaptoethanol 

(1:20) by denaturing the proteins at 100 ˚C for 10 min. 

Approximately 40 µg protein was loaded on each well of the 10 % Mini- Protean 

Precast Gels (Bio-Rad Laboratories) from the western blot samples and 

tris/glycine/sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) 

was carried out at 100 V for about 80 minutes. The proteins from the gel were transferred 

on to a nitrocellulose or PVDF membrane at 100 V for about 90 min in ice. The 

membranes were washed with tris buffered saline (TBS, prepared in-house, pH 7.5) or 

phosphate buffered saline (PBS, prepared in house, pH 7.5) containing 0.1 % Tween 20 

for 5 minutes and then subjected to 1 h of blocking in the blocking buffers 5% bovine 

serum albumin (BSA) in TBS or non fat dry milk (Kroger) in PBS, as recommended for 

each antibody by its suppliers, at room temperature on slow shaker. The nitrocellulose 

membranes were then incubated with the primary antibodies to protein of interest 

overnight at 4 ˚C on slow shaker. Following day, the membranes were washed with 

TBS/PBS and then incubated for 80 min in appropriate secondary antibodies conjugated 

with HRP (Bio-Rad Laboratories) on the slow shaker at room temperature. The 

membranes washed again with TBS/PBS. Subsequently, membranes were incubated in 
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the chemiluminescent substrate (SuperSignal West Pico, Thermo Scientific) for 1 min to 

develop luminescence and then exposed to autoradiographic films. The image of the 

bands were analyzed by densitometry using Image J. Each protein signal was normalized 

with the corresponding ß-actin or lamin B1 signal. 
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APPENDIX 2 

 

TREADMILL EXERCISE ENDURANCE TRAINING AND TESTING 

 

All the rats were trained to run on the AccuPacer rodent treadmill (Accuscan Instruments, 

Columbus, OH). The training protocol is described below. 

Day 1: Place the rat in the treadmill and close the cover. Turn on the electric shock and 

watch the rat’s movements for 5 minutes. After 5 minutes, start the treadmill at the speed 

of 2.0 m/min and slowly increase the speed by 1.0-m/m increments when rat learns to 

avoid the electric shock area. When the speed reaches 5.0 m/min, set the timer to 5 

minutes. After 5 minutes, stop the treadmill, and place the rat back into its cage. Repeat 

the procedure after 3 hours. 

Day 2: Place the rat in the treadmill and close the cover. Turn on the electric shock and 

start the treadmill at the speed of 3.0 m/min. Slowly increase the speed by 1.0- m/min 

increments when the rat learns to run on the treadmill without touching the shock bar. 

When the speed reaches 7.0 m/min, set the timer for 10 minutes. After 10 minutes, stop 

the treadmill, and place the rat back into its cage. Repeat the procedure after 3 hours. 

Day 3: Repeat the Day 2 procedure. Slowly increase the speed by 1.0 m/min increments 

until the speed reaches 10 m/min and set the timer for 10 minutes. After 10 minutes, stop 

the treadmill and place the rat back into its cage. Repeat the procedure after 3 hours. 

Day 4: Place the rat in the treadmill and close the cover. Turn on the electric shock and 

start the treadmill at the speed of 10 m/m. Set the timer for 15 minutes. After 15 minutes, 
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stop the treadmill and place the rat back into its cage. Repeat the procedure after 3 hours. 

Days 5-10: Place the rat in the treadmill and close the cover. Turn on the electric shock 

and start the treadmill at the speed of 10 m/min. Set the timer for 30 minutes. After 30 

minutes, stop the treadmill and place the rat back into its cage. 

 

Criteria for a well-trained rat: running on the treadmill without touching the electric 

shock for at least 3 minutes. After PPE or CSE induction, training schedule was limited 

to Monday, Wednesday, and Friday, twice a day, each time for 5 minutes. 

 

Exercise endurance test: 

1. Turn on the treadmill and the electric foot shock. 

2. Raise the height of the treadmill to a 5 degree angle 

3. Place the rat on the treadmill and start at a speed of 10 m/min. Start the timer 

4. Carefully watch the rat’s running and record how many times it touches the electric foot shock in the 

first 2 minutes. 

5. After 2 minutes, record the time of each shock for 5 shocks total. 

6. When the rat runs for over 30 minutes, raise the treadmill angle to 10 degrees 

7. When the rat runs for over 40 minutes, raise the angle to 15 degrees 
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APPENDIX 3 

 

COUNTING OF MIGRATED DILC12-LABELED MSCs USING IMAGE J 

 

ImageJ (NIH) software was used to count the MSCs migrated to the basolateral 

side of the fluoroblock transwell filters in 24 h. The following procedure was used for 

cell counting using ImageJ: 

1. Convert the image into 8-bit by going to Image-type- 8-bit 

 

2. Subtract background by going to Process-Subtract background and setting the rolling 

ball radius to 12.0 pixels  

3. Sharpen the image by going to Process-Sharpen 

4. Adjust the threshold by going to Image-Adjust-Threshold. Most common adjustment 

for threshold is between 8-15, such that most cells are defined as black dots against white 

background. Keep the threshold constant for all the images analyzed. 

5. For counting the cells go to Analyze-Particles and setting the parameters to: 

Size: 75-1000000 
Circularity: 0.1-1.0 
Show: Outlines 
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6. The image obtained will show the cells counted and the results give the number of 

cells. 
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Anti-oxidative activity assessment-ABTS radical scavenging assay 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Anti-oxidative activity assessment-HSE hydrolysis assay 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Western blot-pSTAT3 expression in lung tissues 
 
Treatment Animal pSTAT3/b-

actin 
Average SE 

Healthy H 15 0.973 1.00 0.15 
Healthy H5 1.276   
Healthy H10 0.751   
SalB 0.2 mg/kg TR 178 1.784 1.76 0.20 
SalB 0.2 mg/kg TR 169 1.840   
SalB 0.2 mg/kg TR 177 2.390   
SalB 0.2 mg/kg TR 165 1.627   
SalB 0.2 mg/kg TR 166 1.157   
 
 

Concentration n=1  n=2 n=3 
0 0.186 0.189 0.198 

0.01 0.18 0.192 0.193 
0.1 0.159 0.193 0.193 
0.5 0.198 0.188 0.192 

1 0.177 0.19 0.188 
2.5 0.148 0.148 0.148 

5 0.058 0.052 0.045 
7.5 0.001 0.001 0 
10 0 -0.001 0 
25 0 0 -0.001 
50 0 0 0 

100 0 0.001 0 

Concentration n=1  n=2 n=3 
0 0.974 1.016 1.01 

0.1 0.975 1.04 0.988 
1 0.975 0.98 1.043 

10 0.967 1.036 0.996 
25 0.954 0.969 1.018 
50 0.95 0.967 1.009 

100 0.952 0.971 1.007 
200 0.962 1.001 0.988 
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Western blot-VEGF expression in lung tissues 
 
Treatment Animal VEGF/b-actin Average SE 
Healthy H 5 0.82 1.00 0.10 
Healthy H 15 1.18 

  Healthy H10 1.00 
  SalB 0.2 mg/kg TR 165 1.79 1.44 0.13 

SalB 0.2 mg/kg TR 166 1.15 
  SalB 0.2 mg/kg TR 169 1.44 
  SalB 0.2 mg/kg TR 177 1.68 
  SalB 0.2 mg/kg TR 178 1.13 
 

 
 
 
% Stained A549 cells- trypan blue exclusion assay-H2O2 –induced cell death 

 
 
% Propidium iodide stained A549 cells- Flow cytometry H2O2 –induced cell death 
 

 
 
 
 
 

 
 
% Stained A549 cells- trypan blue exclusion assay- SU5416 –induced cell death with 
inhibitors 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 Average SD 
Vehicle contol 0.75 1.09 0.40 2.10 1.53 1.07 1.16 0.597 
SalB 25 µM 1.86 1.33 1.59    1.59 0.265 
0.1 mM H2O2 7.59 6.63 7.98 7.27 7.14 8.32 7.49 0.608 
+ 1µM SalB 6.72 5.58 6.32    6.21 0.578 
+ 10µM SalB 3.10 1.81 2.60 2.16   2.42 0.558 
+ 25µM SalB 2.65 1.80 1.19 2.53   2.04 0.681 

Treatment n=1 n=2 n=3 Average SD 
Vehicle control 1.6 1.8 1.65 1.68 0.10 
H2O2 0.1 mM 10.25 9.85 9.79 9.96 0.25 
+SalB 25 µM 5.72 4.63 4.825 5.06 0.58 

  Treatment n=1 n=2 n=3 Average SD 
SU5416 10 µM 3.63 3.16 2.16 2.98 0.75 
+SalB 25 µM 1.29 1.52 1.34 1.41 0.16 
SU5416 20µM 5.41 5.51 6.42 6.09 0.560 
+SalB 25µM 2.50 1.46 2.59 2.18 0.63 
SU5416 20µM+AG490 25µM 6.03 5.57 4.22 5.28 0.94 
SU5416 20µM+AG490+SalB 
25µM 

5.49 5.48 6.92 5.97 0.83 

SU5416 20µM+S31-201 100µM 5.84 5.39 6.23 5.82 0.42 
SU 20µM+S31-201+SalB 25µM 5.21 6.16 3.17 4.85 1.53 
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% Stained HMVEC-L cells- trypan blue exclusion assay- SU5416 –induced cell death 
with inhibitors 
 
Treatment n=1 n=2 n=3 n=4 n=5 Average SE 
Vehicle control 11.83 10.47 10.28 7.63 8.19 9.68 0.78 
SalB 25 µM 6.20 7.19 11.04 8.97  8.35 0.95 
SU5416 20 µM 31.80 27.91 35.91   31.87 2.31 
+SalB 25 µM 21.30 22.61 19.95   21.29 1.39 
+S31-201 50 µM 33.23 40.10 32.21   35.18 2.48 
+AG490 25 µM 28.54 35.92 26.65   30.37 2.83 
 
 
 
A549 cells- MTT assay –Absorbance at 570 nm 
 

 
 
A549 cells-MTT assay-Absorbance at 570 nm with inhibitors 
 

 n=1 n=2 n=3 n=4 n=5 n=6 n=7 Average SD 
Control 0.806 0.672 0.798     0.759 0.075 
SalB 25 µM 1.103 1.577 1.103 1.007 0.960 1.130 1.191 1.153 0.274 
AG 490 25 µM 0.884 0.631 0.863     0.793 0.140 
+SalB 25 µM 0.893 0.820 0.746 0.676    0.784 0.074 
S31-201 100 µM 0.859 0.838 0.644     0.780 0.119 
+SalB 25 µM 0.893 0.820 0.746 0.676    0.784 0.074 
SU5416 5 µM 0.744 0.627 0.860     0.744 0.116 
+SalB 25 µM 0.801 0.835 0.711     0.782 0.064 

 
 
 
HMVEC-L –MTT assay- Absorbance at 570 nm 
 
 
 
 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=7 Average SD 
Vehicle control (0 h) 0.307 0.279 0.241 0.266    0.273 0.027 
Vehicle control (24 h) 0.426 0.314 0.492 0.351    0.396 0.079 
Vehicle control (48 h) 0.665 0.675 0.615 0.661 0.471 0.751 0.574 0.630 0.089 
SalB 10 µM 0.978 0.627 0.562 1.038    0.801 0.241 
SalB 25 µM 1.075 0.943 0.888 0.823    0.932 0.107 
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HMVEC-L –MTT assay- Absorbance at 570 nm with inhibitors 
 
 

 
 
HMVEC-L –BrdU assay- Absorbance at 450 nm 
 
 

  

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=7 Average SD 
Vehicle control (0 h) 0.142 0.184 0.19 0.25    0.192 0.026 
Vehicle control (24 h) 0.23 0.306 0.307 0.25    0.273 0.039 
Vehicle control (48 h) 0.398 0.34 0.348     0.362 0.041 
Vehicle control (24 h) 0.23 0.306 0.307 0.25    0.273 0.044 
SalB 5 µM 0.33 0.306 0.307     0.314 0.014 
SalB 10 µM 0.363 0.342 0.31     0.338 0.027 
SalB 25 µM 0.366 0.324 0.374     0.355 0.027 
SalB 50 µM 0.33 0.355 0.389     0.358 0.030 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=
7 

n=8 n=
9 

n=1
0 

n=1
1 

Average SD 

Control 0.242 0.22 0.212 0.18
1 

0.182 0.20
6 

0.1
92 

0.19
8 

0.2
37 

0.2
3 

0.2
17 

0.211 0.021 

SalB 25 µM 0.271 0.307 0.297 0.25
5 

0.241 0.24
5 

0.2
71 

0.32
3 

0.3
07 

0.2
97 

 0.281 0.029 

AG 490 25 
µM 

0.165 0.186 0.156 0.23
5 

0.231 0.19
5 

     0.195 0.015 

+SalB 25 
µM 

0.216 0.24 0.236 0.26
2 

0.232       0.237 0.013 

S31-201 100 
µM 

0.171 0.18 0.177         0.176 0.005 

+SalB 25 
µM 

0.192 0.201 0.146         0.180 0.030 

SU5416 5 
µM 

0.212 0.177 0.155 0.15
6 

       0.175 0.029 

+SalB 25 
µM 

0.2 0.228 0.216         0.215 0.014 

Treatment n=1 n=2 n=3 n=4 Average SD 
Vehicle control 0.272 0.269 0.279 0.348 0.292 0.038 
SalB 10 µM 0.249 0.373 0.537 0.377 0.384 0.118 
SalB 25 µM 0.437 0.398 0.398 0.389 0.4055 0.021 
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% A549 cell scratch wound closure  

 
 
% A549 cell scratch wound closure with inhibitors 
 
 n=1 n=2 n=3 Average SD 
Vehicle control 36.23 32.92 28.51 32.55 3.87 
SalB 25µM 46.68 48.19 47.94 47.60 0.81 
S31-201 36.99 37.68 30.44 35.04 4.00 
+SalB 25 µM 37.90 40.50 43.02 40.47 2.56 
AG490 35.51 38.02 36.79 36.78 1.26 
+SalB 25 µM 24.26 32.04 33.50 29.93 4.97 
 
 
% A549 cell scratch wound closure with inhibitors 
 

 n=1 n=2 n=3 n=4 n=5 n=6 Average SD 
Vehicle control 38.80 38.80 41.59 37.12   39.08 1.85 
SalB 25µM 47.67 54.20 45.62 48.06 50.02  49.11 3.25 
SU5416 5 µM 37.12 35.54 41.17 33.89 36.50 32.24 36.08 3.07 
+SalB 25 µM 33.81 40.73 45.02 43.61   40.79 4.99 

 
% HMVEC-L cell scratch wound closure time study 
 
Hours Control SalB 10 µM 
0 0 0 
3 13.4 21.33 
6 22.18 34.04 
12 45.94 66.28 
18 65.21 92.6 
 
 
  

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 Average SD 
Vehicle control 32.45 33.62 49.46 29.47 35.00 19.97 29.37 25.59 31.87 8.58 
SalB 10 µM 27.52 34.91 39.01 46.88 52.18 30.53 55.58  40.95 10.84 
SalB 25µM 49.55 60.41 56.11 48.56 36.50 53.78 40.57 46.02 48.94 7.93 
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% HMVEC-L cell scratch wound closure 
 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 Average SD 
Vehicle 
control 

49.31 39.92 39.71 38.84 49.89 39.48 51.40 35.17 57.36 39.83 44.09 7.25 

SalB 2.5 
µM 

42.35 42.46 40.90        41.90 0.87 

SalB 5 
µM 

57.50 63.73 63.79        61.67 3.61 

SalB 10 
µM 

66.72 77.10 66.28 48.29 69.03      65.49 10.55 

SalB 25 
µM 

79.74 78.90 79.52 63.60       75.44 7.90 

 
 
 
% HMVEC-L cell scratch wound closure with AG490 
 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 Average SD 
Vehicle 
control 

21.78 18.54 26.79 22.68 22.95 25.82    23.09 2.96 

SalB 25 
µM 

32.66 41.14 33.95 32.77 37.77 38.97    36.21 3.58 

AG490 25 
µM 

25.09 23.79 20.05 23.08 23.92 26.54 22.49 26.07 22.53 23.73 2.01 

+SalB 25 
µM 

24.87 25.87 29.52 25.69 25.75 23.82 29.66 23.24 28.58 26.33 2.38 

 
% HMVEC-L cell scratch wound closure with inhibitors 
 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 Average SD 
Vehicle control 49.31 39.92 39.71 38.84 49.89 39.48 42.86 5.24 
SalB 25 µM 66.82 63.95 79.70    70.16 8.39 
SU5416 5 µM 41.3 38.2 48.4    42.65 5.20 
+SalB 25 µM 48.5 47.7 50.8    49.02 1.59 
S31-201 50 µM 50.84 40.42 34.42    41.89 8.31 
+SalB 25 µM 45.61 46.33 42.34    44.76 2.12 

 
 
  



 
139 

% MSCs migrated in 24 h 

 
% MSCs migrated in 24 h upon SU5416 pretreatment with SalB 
 

Treatment n=1 n=2 n=3 n=4 n=5 n=6 Average SD 
Vehicle 
control 

16.94 14.42 16.41    15.92 1.33 

SalB 25 µM 16.85 18.50 19.84    18.40 1.50 
SU5416 5 µM 7.94 7.51 8.58 7.86 6.58  7.69 0.73 
+SalB 25 µM 14.77 12.75 11.74 11.9 12.81 11.82 12.63 1.15 

 
 
  

 n=1 n=2 n=3 Average SD 
No HPMVEC 9.96 10.53 10.61 10.37 0.36 
HPMVEC 12.60 14.38 14.58 13.85 1.09 
FBS 30% 23.76 25.18 26.76 25.23 1.50 
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Pre and post dose exercise of rats 
 
 

 
  

           Average SD 
Healthy 48.46 54.84 57.3 52.41 51.67 39.23 30.32 38.7 41.25 62.8 47.70 10.03 
SalB (0.2 
mg/kg) 

41.16 42.59 37.5 45.08       41.58 3.17 

PPE (Pre) 6.43 3.35 2 2.28 6.1 13.81     5.66 4.41 
PPE 
(Post) 

8.86 2.35 2 2.43 7.68 10.69     5.67 3.86 

PPE+SalB 
0.1 mg/kg 
(Pre) 

6.2 7.4 2.55        5.38 2.53 

PPE+SalB 
0.1 mg/kg 
(Post) 

18.39 18.39 8.38        15.05 5.78 

PPE+SalB 
0.2 mg/kg 
(Pre) 

16.67 9.75 8.35 5.68 4.17 8.99     8.94 4.34 

PPE+SalB 
0.2 mg/kg 
(Post) 

40.8 42.72 50 38.98 30.18 37.94     40.10 6.48 

CSE (Pre) 5.48 7.066 5.63 16.99 3.64      7.76 5.30 
CSE 
(Post) 

5.85 8.23 9.33 16.3 6.27      9.20 4.22 

CSE+SalB 
0.2 mg/kg 
(Pre) 

19.63 7.55 3.22 4.89 3.22      7.70 6.90 

CSE+SalB 
0.2 mg/kg 
(Post) 

47.73 31.64 24.29 37.28 12.6      30.71 13.26 
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Mean linear intercept values for each rat 
 
Group n=1 n=2 n=3 n=4 n=5 n=6 Average SD 
Healthy 62.8 54.84 57.3 52.41 51.67 48.86 54.65 4.92 
SalB 0.2 
mg/kg 

63.37 59.90 52.30    58.52 5.66 

PPE 111.5 93.7 92.75 95.06 95.91  97.78 7.76 
PPE+SalB 79.02 74.99 69.27 70.80 68.51  72.52 4.41 
CSE 80.49 83.17 86.44 88.35   84.61 3.48 
CSE+SalB 59.16 61.14 57.75 70.80   62.21 5.89 
 
 
Destructive index measurements for each rat 
 
 n=1 n=2 n=3 Average SD 
Healthy 4.46 5.00 3.49 4.32 0.76 
PPE 20.24 14.72 16.81 17.26 2.79 
PPE+SalB 9.97 8.85 9.32 9.38 0.56 
 
 
MLI and DI correlation 
 
Healthy 62.8 4.46 
Healthy 54.84 5.00 
Healthy 57.3 3.49 
TR 202 111.5 20.24 
TR 228 95.06 14.72 
TR 230 95.91 16.81 
TR 199 79.02 9.97 
TR 200 74.99 8.85 
TR 201 69.27 9.32 
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Protein expressions in rat lungs 
 
Cleaved caspase3/b-actin relative to 
healthy 

Average SD SE 

Healthy TR 227 1.052 1.000 0.133 0.077 
 TR 236 0.849    
 H 22 1.099    
PPE PC TR 228 13.069 13.15 6.26 3.61 
 TR 231 19.453    
 TR 230 6.933    
PPE SalB TR 226 2.900 1.69 1.27 0.52 
 TR 229 3.678    
 TR 232 1.137    
 TR 199 0.787    
 TR 200 0.672    
 TR 201 0.970    
 
 
PCNA/b-actin relative to healthy Average SD SE 
Healthy TR 227 1.225 1 0.213 0.123 
 TR 236 0.974    
 H 22 0.801    
PPE PC TR 228 3.063 1.59 1.29 0.65 
 TR 231 2.130    
 TR 230 1.125    
 TR 202 0.058    
PPE SalB TR 226 4.171 2.62 1.14 0.46 
 TR 229 3.361    
 TR 232 1.425    
 TR 199 2.509    
 TR 200 3.027    
 TR 201 1.241    
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nuclear pSTAT3/lamin B1 relative to 
healthy 

Average SD SE 

Healthy TR 227 0.912 1.000 0.084 0.05 
 TR 219 1.008 

    TR 236 1.080 0.516 0.229 0.11 
PPE PC TR 228 0.642 

    TR 231 0.176 
    TR 221 0.580 
    TR 213 0.665 
   PPE SalB TR 226 0.513 0.759 0.220 0.08 

 TR 229 0.550 
    TR 232 0.729 
    TR 218 0.703 
    TR 225 1.073 
    TR 221 1.043 
    

 
cytolasmic pSTAT3/b-actin relative to 
healthy 

Average SD SE 

Healthy TR 227 1.223 1.000 0.243 0.141 
 TR 236 0.740    
 TR 222 1.037    
PPE PC TR 228 1.087 0.816 0.183 0.082 
 TR 231 0.658    
 TR 230 0.922    
 TR 213 0.700    
 TR 202 0.712    
      
PPE SalB TR 226 1.145 1.152 0.236 0.089 
 TR 229 1.396    
 TR 232 0.922    
 TR 199 1.036    
 TR 200 1.479    
 TR 201 0.936    
 TR 214 0.773    
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VEGF/b-actin relative to healthy Average SD SE 
Healthy TR 227 1.05 1.00 0.13 0.08 
 TR 222 0.85    
 TR 236 1.10    
PPE PC      
 TR 228 0.68 0.64 0.05 0.02 
 TR 231 0.68    
 TR 202 0.59    
 TR 230 0.62    
      
PPE SalB TR 226 0.86 0.96 0.35 0.15 
 TR 229 1.56    
 TR 199 0.90    
 TR 200 0.83    
 TR 201 0.66    
 
 
MPO activity assay 
 
 
 Healthy   PPE   PPE+SalB  
 TR 227 0.355  TR 228 1.26  TR 226 1.208 
 H 10  0.32  TR 230 1.25  TR 229 1.248 
 H11 0.365  TR 231 1.086  TR 232 1.140 
 H12 0.206  TR 213 1.321  TR 199 1.387 
 H20 0.468  TR 216 1.795  TR 200 1.321 
    TR 220 1.696  TR 201 1.322 
    TR 221 1.515  TR 214 1.308 
       TR 225 1.258 
Average 0.343    1.418   1.274 
SD 0.094    0.259   0.072 
SE 0.042    0.098   0.026 
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