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Abstract 
SYNTHETIC MODELING OF POWER GRIDS BASED ON STATISTICAL ANALYSIS 

By Seyyed Hamid Elyas, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 

at Virginia Commonwealth University.  

 

Virginia Commonwealth University, 2017. 

Director: Zhifang Wang, Ph.D. 

 
       The development of new concepts and methods for improving the efficiency of power 

networks needs performance evaluation with realistic grid topology. However, much of the 

realistic grid data needed by researchers cannot be shared publicly due to the security and privacy 

challenges. With this in mind, power researchers studied statistical properties of power grids and 

introduced synthetic power grid topology as appropriate methodology to provide enough realistic 

power grid case studies. If the synthetic networks are truly representative and if the concepts or 

methods test well in this environment they would test well on any instance of such a network as 

the IEEE model systems or other existing grid models.  

        In the past, power researchers proposed a synthetic grid model, called RT-nested-smallworld, 

based on the findings from a comprehensive study of the topology properties of a number of 

realistic grids. This model can be used to produce a sufficiently large number of power grid test 

cases with scalable network size featuring the same kind of small-world topology and electrical 

characteristics found in realistic grids. However, in the proposed RT-nested-smallworld model the 

approaches to address some electrical and topological settings such as (1) bus types assignment, 



xi 
 

(2) generation and load settings, and (3) transmission line capacity assignments, are not sufficient 

enough to apply to realistic simulations. In fact, such drawbacks may possibly cause deviation in 

the grid settings therefore give misleading results in the following evaluation and analysis. 

        To address this challenges, the first part of this thesis proposes a statistical methodology to 

solve the bus type assignment problem. This method includes a novel measure, called the Bus 

Type Entropy, the derivation of scaling property, and the optimized search algorithm. The second 

part of this work includes a comprehensive study on generation/Load settings based on both 

topology metrics and electrical characteristics. In this section a set of approaches has been 

developed to generate a statistically correct random set of generation capacities and assign them 

to the generation buses in a grid. Then we determine the generation dispatch of each generation 

unit according to its capacity and the dispatch ratio statistics, which we collected and derived from 

a number of realistic grid test cases. The proposed approaches is readily applied to determining 

the load settings in a synthetic grid model and to studying the statistics of the flow distribution and 

to estimating the transmission constraint settings. Considering the results from the first two 

sections, the third part of this thesis will expand earlier works on the RT-nested-smallworld model 

and develop a new methodology to appropriately characterize the line capacity assignment and 

improve the synthetic power grid modeling. 
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Chapter 1  

 

Introduction 

 
     It is widely agreed that electric power grid is one of the most critical infrastructures whose 

reliable and efficient operation plays a vital role for the essential functioning of our society [1]. 

For this reason the access of realistic power system data is highly restricted due to many security 

concerns. On the other hand, grid data of the right type and fidelity is crucial for the advance of 

any power system related researches to test new concepts and methods. In the past, power 

engineers and researchers mainly depended on small number of historical test systems such as 

IEEE case studies (see Figure 1.1) or other existing realistic grid models [2]. Obviously, being able 

to generate a large number of power grid test cases with realistic topologies could be an essential 

step towards improving the verification and validation of new concepts. With this in mind, 

researchers studied statistical properties of power grids and introduced synthetic grid network 

topology as appropriate methodology to provide enough realistic power grid case studies. In 

synthetic network research area the main idea is that by studying the statistical properties of real 

networks a method can be constructed to generate fictional networks that have all the properties 

of a real network. It should be mentioned here that the generated fictional network is completely 

different from the reduced abstraction of largescale power grids [3]. Technically, although the 

dynamic reduction methods change the size of the network, the generated network cannot be 

considered as a synthetic representation for the original power grid [3]-[6]. The main reason comes 



2 
 

from the fact that in synthetic power grid modeling the physical and electrical characteristics of 

the original network are not fully available. Besides, network reduction techniques extract a 

reduced abstraction of large-scale power grids, and cannot generate a larger network like we can 

observe in synthetic power grid modeling. 

 

Figure 1.1: IEEE-118 bus system (source: www.ee.washington.edu) 

 

1.1 Power system model 

 
         The overall purpose of power systems is to supply electricity to consumers in a safe, reliable, 

and economic way. The primary structure of traditional power systems comprises power 

generation, transmission and distribution to consumers, or loads (Figure 1.2). A so-called 

hierarchical, vertical structure is based upon a limited number of large, central power plants 

delivering electricity to a large number of loads [7]. Power flows from generation into high-voltage 
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transmission networks and then into medium- and low-voltage distribution networks, hence only 

in a top-down, ’vertical’ direction. The advantages of interconnected, vertically integrated power 

systems include economies of scale in power generation, increased reliability, a reduction of 

reserve margins and aggregation of load variations. Presently, increasing amounts of distributed 

generation are connected to the low-voltage networks. This trend increasingly leads to bi-

directional power flows in the distribution system [8]. In observing the primary structure of power 

systems, it is important to note that electrical energy as such cannot be stored in significant 

amounts. Electrical power is consumed at the same moment it is generated. For a reliable power 

supply it is therefore essential to maintain a precise balance between demand (total system load 

including transmission and distribution losses) and generation. It is in principle possible to 

maintain the power balance by adjusting both generation and demand, but historically, mostly the 

central generation units have been used to follow the demand at all times. The operation of power 

systems is therefore critically dependent on the capabilities of generators for balancing the load. 

 
Figure 1.2: Overview of a traditional power system structure [9]. 
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   One of the mathematical objects allowing a complete definition of the power system topology is 

the Adjacency (A) and Laplacian (L) Matrixes. The connecting topology of an undirected graph 

network with n nodes (representing buses in the grid) and m links (representing transmission lines 

in the grid) is fully described by a Laplacian matrix which can be obtained as 

𝐿 = 𝐴𝑇𝐴                                                                                                                                      (1.1) 

where A is the adjacency matrix. For a given power network with undirected and unitary links, it 

is defined as 𝐴𝑖𝑗 = 1 if nodes i and j are connected, 0 otherwise. 

       On the other hand, a power grid is more than a graph network. Therefore its power-

transmission topology can be represented by an admittance matrix 𝑌𝑛×𝑛 which is defined as 𝑌 =

𝐴𝑇𝛬−1(𝑧𝑙)𝐴. Where 𝛬−1(. ) denotes the diagonal inverse matrix with a specified vector and 𝑧𝑙 the 

vector of branch impedances in a grid. Comparing the mentioned above equations, one may find 

that the admittance matrix of a power grid can be viewed as a complex weighted Laplacian. 

Obviously, the definition of admittance matrix Y neglects the shunts in a grid and can be corrected 

by revising its diagonal entries. However, ignoring the shunts will not cause big errors in some 

grid analysis like the AC power flow or those only concerning real power transmission such as the 

DC power flow approximation, a standard approach widely used in optimizing flow dispatch and 

for assessing line overloads [10-12]. 

       Considering a power grid transmission network with n buses interconnected by m branches, 

the flow distribution follows the network constraints as 

𝑃(𝑡) = 𝐵′(𝑡)𝜃(𝑡)                                                                                                                       (1.2) 

𝐹(𝑡) = 𝛬(𝑦𝑙)𝐴𝜃(𝑡)                                                                                                                    (1.3) 
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where 𝑃(𝑡) = [𝑃𝐺(𝑡), −𝑃𝐿(𝑡), 𝑃𝐶]𝑇 represents the vector of injected real power from generation, 

load and connection buses and obviously the power injection from connection buses equals zero, 

i.e., 𝑃𝐶 = 0.  𝜃(𝑡)  is the vector of phase angles, and 𝐹(𝑡) the vector of real-power delivered along 

the branches. The matrix 𝐵′(𝑡) is defined as 𝐴𝑇𝛬(𝑦𝑙)𝐴, where 𝑦𝑙 = 1/𝑥𝑙 with 𝑥𝑙the branch series 

reactance and 𝛬(𝑦𝑙) represents a diagonal matrix with entries of {𝑦𝑙, 𝑙 = 1,2, … , 𝑚}. Alternatively 

we can have 𝐵′ = −𝐼𝑚𝑔(𝑌) where the shunts of the grid neglected in the admittance matrix. Note 

that in the vector injected power as above, we assume that buses in a grid have been reordered so 

that the generation, load, and connection buses could be grouped as listed. Clearly the location of 

generators and loads plays a vital role in grid operation. The topology location of generators and 

loads in a grid can be fully determined by a vector of bus type assignments of generation, load, or 

connection.   

      Besides the network constraints, grid operation also needs to account for the constraints of 

generation capacity, load settings, and transmission capacity, such as  

𝑃𝐺
𝑀𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺

𝑀𝑎𝑥                                                                                                                    (1.4) 

𝑃𝐿
𝑀𝑖𝑛 ≤ 𝑃𝐿 ≤ 𝑃𝐿

𝑀𝑎𝑥                                                                                                                                     (1.5) 

𝐹𝑀𝑖𝑛 ≤ 𝐹𝑙 ≤ 𝐹𝑀𝑎𝑥                                                                                                                      (1.6) 

         From what is presented above it is clear that the dynamics of a power grid not only depend 

on the “electrical” topology but also the generation and load settings including their locations. The 

location setting of generation and loads is equivalent to the bus type assignment in power grid 

modeling. Generally speaking, all the buses in a grid can be grouped into three categories as 

follows with minor overlaps since it is possible that a small portion of buses may belong to more 

than one categories: (G) the generation buses which connect generators, (L) the load buses which 
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support custom demands, (C) the connection buses which form the transmission network. From 

the recent study [13], it is found that here exists nontrivial correlation between some network 

topology metrics and the three bus types in a grid. The study results in [13] imply that random 

permutation of the bus type assignment in a grid may dramatically changes the grid dynamics and 

makes it behave no longer like a power grid. This discovery has led to the efforts to define an 

effective measure to characterize the bus type assignments of realistic power grids. 

 

 

1.2 The scaling property of grid connecting 

topology 

 
       The connecting topology of a power grid can be fully described by its admittance matrix which 

contains both graph topology and electric parameters. Compared with the topology of other natural 

or man-made networks, power grid topology is very different in many ways [14]-[25], such as the 

salient small-world properties characterized by shorter average path length and higher clustering 

coefficients than those of an Erdos-Renyi random graphs [25] with the same network size and total 

number of links. The average node degree of a typical power grid does not scale with the network 

size but remains within a very strict range. Besides, the node degrees approximates a statistical 

distribution of a truncated geometric random variable with some mixture of an irregular discrete. 

The algebraic connectivity of a grid also exhibits some special scaling property [17]. Another 

important property of power grid is its heavy-tailed distribution of line impedances, which is well-

fitted by a clipped double-ParetologNormal (dPlN) distribution [26]. 
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The node degree of bus i in a grid equals the total number of branches it connects and can be 

obtained from the ith diagonal entry of the Laplacian matrix, 𝑖. 𝑒. ,  𝑘𝑖 = 𝐿(𝑖, 𝑖). Then the average 

nodal degree of the grid is 

< 𝑘 > =  
1

𝑛
∑ 𝐿(𝑖, 𝑖)𝑛

𝑖=1                                                                                                                (1.7) 

Given the connecting topology of a grid, we can run the Dijkstra’s algorithm to calculate the 

shortest path length measured in hops between any two buses i and j, i.e., 𝑙 𝑖𝑗. Then the average 

shortest path length of a grid is 

< 𝑙 > =  
2 ∑ 𝑙 𝑖𝑗𝑖,𝑗

𝑛(𝑛−1)
                                                                                                                            (1.8) 

Another important topology measure is the second smallest eigenvalue of the Laplacian matrix, 

𝜆2(𝐿), called the algebraic connectivity, with 

[𝜆1, 𝜆2, … , 𝜆𝑛] = 𝐸𝑖𝑔𝑒𝑛 (𝐿)                                                                                                           (1.9) 

    As a fact the smallest eigenvalue of the Laplacian is always zero, i.e., 𝜆1(𝐿)  ≡  0 and the 

number of times that 0 appears as an eigenvalue in the Laplacian is the total number of islanded 

components in the network. 𝜆2(𝐿) reflects the overall connectivity of a network and how fast 

information data can be broadcast across it. The eigenvalue 𝜆2(𝐿)is greater than 0 if and only if 

network is a connected graph. If the algebraic connectivity 𝜆2(𝐿)is close to zero, the network is 

close to being disconnected. Otherwise, if 𝜆2(𝐿)/𝑛 gets close to 1, where N is the network size, 

the grid tends to be a fully connected topology. 

     Table 1.1 presents some topology measures evaluated on the IEEE test cases and other real-

world grids of different network size, where the PEGASE systems represent some European 

nation’s grid at different levels of network reduction, the NYSIO system partially represents the 
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New York interconnect in the US, and the RTE system is an equivalent of the French Grid. Figure 

1.1 shows the average node degree (1.7) of each grid system versus its network size. Obviously 

the average node degree of most sample grids does not scale but staying within a very stable region 

as ⟨𝑘⟩  ∈  [2.0;  3.5]. Two exceptions are the PEGASE 89-bus system with ⟨𝑘⟩  =  4.72 and the 

NYISO 2935-bus system with ⟨𝑘⟩  =  4.47, which are unusually higher than the average node 

degree observed in the rest grid systems. This may be caused by the original grid’s denser 

connecting topology or by the equalization approaches used in the network reduction.  

       Figure 1.4 depicts the average path length in hops, as defined in (10), versus the network size 

for each sample grid in Table 1.1, where the dashed line represents an approximate fitting curve 

of the observed scaling property as ⟨𝑙⟩  ∝  6.205 𝑙𝑜𝑔 𝑛. Note that for the purpose of simplicity, the 

logarithm in this section is with base 10. 

Table1.1: Topology measures of real-world power grids 

 
       Figure 1.5 plots the algebraic connectivity, as defined in (1.9), scaling curve of power grid 

versus network size. We can compares it with that of 1-Dimensional and 2-Dimensional lattices 

where 1D-lattice is a ring structured topology, with nodes connected with most adjacent neighbors 
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on both sides. 2D-lattice is a regular two-dimension meshed grid with each boundary side merging 

with the other side and each node connected to the most adjacent neighbors around it. For 1- D 

lattice, its connectivity scales as 𝜆2(𝐿)  ∝  𝑛−2; for 2-D lattice, its connectivity grows as  𝜆2(𝐿)  ∝

 𝑛−1; interestingly, for power grids, its connectivity grows as  𝜆2(𝐿)  ∝  𝑛−1.041, lying between 

those of 1-D lattice and 2-D lattice. 

     Figure 1.6 presents a scatter plot of the algebraic connectivity and the average path length of 

tested power grids, which exhibits strong correlation between the two measures. In fact there exists 

an approximate fitting function as 𝑙𝑜𝑔( 𝜆2)  ∝  −0.1678⟨𝑙⟩. 

 

Figure 1.3: Average node degree versus the network size 

 

Figure 1.4: Average path length versus the network size 



10 
 

 

Figure 1.5: Algebraic connectivity versus the network size 

 

Figure 1.6: Algebraic connectivity versus average path length 

 

1.3 Synthetic power grid modeling 

 
       Several emerging issues, including the resiliency of electric power delivery during extreme 

weather events, expanding use of distributed generation, the rapid growth of renewable generation 

[27-29] and the economic benefits of improved grid efficiency and flexibility, are challenging the 

way electricity is delivered from suppliers to consumers. This grid of the future requires advances 

in transmission and distribution system management with algorithms to control and optimize how 
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power is transmitted and distributed on the grid. However, the development of these systems has 

been hindered because the research community lacks high-fidelity, public, large-scale power 

system models that realistically represent current and evolving grid characteristics. Due to security 

and privacy concerns, much of the real data needed to test and validate new tools and techniques 

is restricted. To help drive additional innovation in the electric power industry, there is a need for 

grid models that mimic the characteristics of the actual grid, but do not disclose sensitive 

information. These models, say synthetic power grid models, will have the detail required to allow 

the successful development and testing of transformational power system optimization and control 

algorithms, including new Optimal Power Flow (OPF) algorithms [30-32]. Synthetic power grids 

are created in order to form randomly generated but realistic power grids. Currently we model only 

high-voltage transmission networks. The system topology and some electrical settings are created 

with specific random distribution functions and the generated topology preserves both simpleness 

and connectedness.  

       The development of algorithms for generating an efficient synthetic power grid requires 

comprehensive study on electrical and topological characteristics of real world power grids. For 

example, references [33] and [34] proposed a Tree-topology power grid model to study power grid 

robustness and to detect critical points and transitions in transmission flows to cause cascading 

failure blackouts. Reference [35] used Ring-structured power grid topologies to study the pattern 

and speed of contingency or disturbance propagation. Reference [14] proposed the first statistically 

modeling a power grid as a small-world network. Reference [16] used a small-world graph model 

to study the intrinsic spreading mechanism of the chain failure in a large-scale grid. Reference [17] 

provided a statistical model for power networks in an effort to grasp what class of communication 

network topologies need to match an underlying power network. All these models provide useful 
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perspectives of power grid characteristics. However, the topology of the generated power grids, 

such as the ring or tree-like structures and the small-world graph networks, fails to accurately or 

fully represent a realistic power system, especially its distinct sparse connectivity and scaling 

property versus the grid size. The worked mentioned above provide a very useful foundation to 

investigate the topological structure of power networks. However, power networks are much more 

than a graph topology and we need to consider realistic electrical and topological parameter setting 

to fully represent a realistic power system. 

      The network models that are probably most popular in the literature are random graphs based 

on the algorithms of Erdo”s-Re’nyi [25] or Gilbert [36], the small-world model from Watts and 

Strogatz [14], and finally the scale-free networks based on Baraba’si and Albert’s preferential 

attachment [37]. The simplest approach to create spatially embedded networks are so-called 

random geometric networks [38] where node locations are drawn randomly from the unit square 

and nodes i, j are linked if their distance dij is below a threshold 𝜀. However, such graphs are not 

necessarily connected, their average node degree grows as ≈4𝑁𝜀2 instead of being constant, their 

node degree distribution is Poissonian, thus decaying faster than exponentially, and their clustering 

coefficient is larger than those of power grids. A model with similar properties is the Waxman 

model [39], where two nodes are linked with an exponential probability. 

      Scale-free networks on the other hand have much more heavy-tailed, power-law degree 

distributions, and their mean degree is not continuously adjustable. Baraba’si and Albert [37] show 

however that, in the case of equal (non-preferential) connection probabilities, their growth model 

produces exponentially decaying degree distributions. The Watts-Strogatz small-world algorithm 

[14] with its rewiring parameter p is often used in studies that focus on the transition from regular 

to random topologies, but it is not suited to generate power grid topologies. 
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       Any desired degree distribution, including an exponentially decaying one, can be generated 

using the so-called configuration model [40-41] in which node degrees are prescribed 

endogenously for all nodes and the links are generated respecting these degrees but in an otherwise 

random manner. Still, this does not ensure the correct behavior of other statistical network 

measures and the construction mechanism does not seem a plausible assumption for the case of 

power grids where the exponential decay is very likely not prescribed by design but rather emerges 

endogenously. 

         The “RT-nestedsmallworld”-model [17] is to our knowledge the first attempt to design a 

model that especially matches the statistical properties of power grid topologies, by combining 

and modifying standard components of existing network models. This model constructs a 

largescale power grid using a hierarchical way: first form connected subnetworks with size limited 

by the connectivity requirement; then connect the subnetworks through lattice connections; finally, 

generate the line impedances from some specific distribution and assign them to the links in the 

topology network. The hierarchy in the model arises from observation of real-world power grids: 

usually a large-scale system consists of a number of smaller-size subsystem (e.g., control zones), 

which are interconnected by sparse and important tie lines. RT-nestedSmallworld model mainly 

contains three components: a) clusterSmallWorld subnetwork; b) lattice connections; and c) 

generation and assignment of line impedances [42]. 

ClusterSmallWorld subnetwork : Power grid topology has small-world characteristics; it is 

sparsely connected with a low average nodal degree not scaling with the network size. On the other 

side, in order for a small-world model to generate a connected topology, the network size has to 

be limited. In this model, different mechanisms from that of Watts–Strogatz small-world model 

have been adopted to form a power grid subnetwork in order to improve its resulting connectivity, 
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as shown in the following paragraphs. Consequently, the connectivity limitation on the network 

size can be expanded from what is indicated by (23). The experiments have shown that: for⟨𝑘⟩ =

 2~3, the network size should be limited no greater than 30; and for⟨𝑘⟩ =  4~5, 300. Therefore, 

the first step of this new model is to select the size of subnetworks according to connectivity 

limitation. Then a topology is built up through a modified small-world model, called 

clusterSmallWorld. 

Lattice connections: In this step lattice connections are selected at random from neighboring 

subnetworks to form a whole large-scale power grid network. The number of lattice connections 

between neighboring subnetworks is chosen to be an integer around ⟨𝑘⟩. 

Generation and assignment of line impedances: In this part a number of line impedances are 

generated from a specified heavy-tailed distribution, and then sorted by magnitude and group into 

local links, rewire links, and lattice connection links according to corresponding portions. Finally, 

line impedances in each group are assigned at random to the corresponding group of links in the 

topology. 

 

 

1.4 The big picture 

 
           Statistics is the science of collecting, analyzing and making an inference from data. 

Statistics is a particularly useful branch of mathematics that is not only studied theoretically by 

advanced mathematicians but one that is used by researchers in many fields to organize and 

analyze, and data. Statistical methods and analyses are often used to communicate research 
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findings and to support hypotheses and give credibility to research methodology and conclusions. 

The major purpose of statistics is to help us understand and describe phenomena and to help us 

draw reliable conclusions about the phenomena which are not able to resolve through classical 

theories. With this in mind, this thesis applies the statistical approaches to random topology power 

grid modeling in order to improve the existing methods.  

            Synthetic power grid modeling is one of the most significant fields of studies. It should be 

noted here that the classic approaches of research towards this topic don’t always end with a 

satisfactory output. Therefore, majority of researchers utilize the standard statistical methods to 

analyze and develop the synthetic power grid models. The idea is that by studying the statistical 

properties of real networks a method can be constructed that would be capable of generating 

fictional networks that have all the properties of a real power grid. This method can be used to 

generate approximate electric topology, to determine the correlated locations of generation, load 

and connection buses, and further to determine some electrical parameters such as generation/load 

settings and transmission line capacities.  

           The RT-nestedsmallworld model, to our best knowledge, is the most comprehensive and 

appropriate model in the literature to formulate a small-world connecting topology. This model 

could be used to produce any needed number of power grid test cases with scalable network size 

featuring the same kind of smallworld “electrical” topology of real-world power transmission 

networks. This model offers a helpful procedure to properly address the needs of power network 

researches. However, there are still a number of drawbacks within the current power grid 

modeling, such as bus type assignment, generation/load setting and transmission line capacity 

assignment. 
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This thesis presents a three-part statistical approach for improving the existing RT-

nestedsmallworld model. The proposed improved model will provide a basis for developing 

optimal power flow competitions, further incentivizing future progress. This model promises to 

enable increased grid resilience, flexibility and improved energy efficiency while helping deliver 

the benefits of integrating renewable generation technologies into the electric power system .  

 

1.5 Thesis overview and contributions 
 

         The main body of this thesis is divided into three chapters. In this section, we will summarize 

each, and highlight the contributions of this thesis. 

1.5.1 Correlated bus type assignment in synthetic power 

grids 

        The first part of this thesis tries to solve the bus type assignment problem associated with 

current methodology of the RT-nestedsmallworld model. In this part, and for the first time we 

define a numerical measure, called the Bus Type Entropy, to characterize correlated bus type 

assignment of realistic power grids. This measure incorporates both bus type ratios and the link 

type ratios. Therefore it can effectively capture the correlated characteristics of realistic grids’ bus 

type assignments. The proposed measure has an acceptable numerical stability since it follows 

more strict entropy definition, therefore it will simplify our analysis of the scaling property if the 

entropy value versus the network size. With the derived scaling function of correlated bus type 

assignment versus network size, a more efficient search algorithm based on clonal selection 
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procedure is developed to present more accurate bus type assignments of generation, load, and 

connection buses in existing synthetic power grid modeling. 

 

1.5.2 Statistical settings of generation capacity, generation 

dispatch and load 

        Examining and interpreting structural setting of power systems enable the development of an 

appropriate synthetic modeling that could be utilized to produce power grid test cases with accurate 

grid topology parameters. However, power grid networks are much more than a graph topology 

and we need to consider realistic electrical parameter setting to fully represent a realistic power 

system. In recent years, various approaches have been proposed to model synthetic power grids in 

the literature. However, one of the most significant shortcoming of existing synthetic power grid 

models lies in the generation/load setting. 

 

 

 

 

 

     The thesis presents our recent study results on the statistics of generation/load capacities and 

settings in a synthetic grid modeling. A set of approaches has been developed to generate a 

statistically correct random set of generation capacities and assign them to the generation buses in 

a grid. Then we determine the generation dispatch of each generation unit according to its capacity 

What is important here is that in synthetic power grid modeling it is impossible 

to apply the conventional methods into some electrical setting problems such as 

generation/load settings and line capacity assignment. To address this issue, we 

have to extract the statistical behavior of realistic power grid in the hope that 

these discoveries can be useful to design a practical methodology to solve the 

electrical setting problems. 
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and the dispatch ratio statistics, which we collected and derived from a number of realistic grid 

test cases. The proposed approaches is readily applied to determining the load settings in a 

synthetic grid model and to studying the statistics of the flow distribution and to estimating the 

transmission constraint settings. 

1.5.3 Transmission line capacity assignment   

       In the third part of this thesis, we investigate the electrical setting of power grids and the 

relationship between transmission line capacity and some network topology metrics. It is found 

that the capacity of transmission lines follows a well-known distribution and it can be fully defined 

by mathematical definition. The obtained distribution provides a pattern to generate reasonable 

capacity line values for a given synthetic power grid. Also, with respect to a new measure, called 

Neighboring Capacity Ratio (NCR), our experiments reveals some useful and interesting relations 

presented between the transmission capacity of a specific line and that of neighboring lines in the 

grid. Our statistical analysis on real-world power grid provides potential insights to propose a 

practical method to find the best transmission line capacity assignment in synthetic power grid 

modeling. Therefore, the presented statistical experiments can be used in the last part of this thesis 

to develop a new methodology to appropriately characterize the line capacity assignment and 

improve the RT-nestedsmallworld model. 
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Chapter 2  

 

Correlated Bus Type Assignment in Synthetic 

Power Grids 

 

 

2.1 Introduction 

 
         This section presents our study results on the correlated assignment of generation, load, and 

connection buses in a given grid topology and the development of an optimized search algorithm 

to improve the existing synthetic grid modeling. The previous works proposed a random-topology 

power grid model, called RT-nestedSmallWorld, which could be used to produce any needed 

number of power grid test cases with scalable network size featuring the same kind of small world 

“electrical” topology of real-world power transmission networks. This model offers a helpful 

procedure to properly address the needs of power network researches. However, there still are a 

number of drawbacks within the current power grid modeling, among which is the randomized 

assignment of generation (G), load (L), and connection (C) buses done purely according to a given 

set of bus type ratios. That is, in a typical power grid, 20-40% of the buses are generation buses, 

40-60% load buses, and about 20% connection buses. Although a small number of buses may 

belong to more than one categories, this can usually be clarified by examining the net active power 
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injection at the bus location therefore it will not cause a big difference in the evaluation results. 

Reference [13] verified that there exists non-trivial correlation between the three bus types and 

other topology metrics such as node degrees and clustering coefficients in a real-world power grid. 

From [13], it is also found that random permutation of the original bus type assignment in a grid 

may cause big differences in system dynamics such as its vulnerability analysis to cascading 

failures. Utilizing a stochastic model of cascading failures proposed in [8], one may estimate the 

transition probabilities of a grid’s connecting state from a stochastic model of flow redistribution 

and determine the time margin, called the expected safety time that is left to perform corrective 

action on each line. 

         Figure 2.1 plots the comparison results of the first 60 critical lines with shortest expected 

safety time. In this figure the blue solid line shows the safety analysis, presented above, on the 

original grid of IEEE 300 buses. The purple and green dashed lines plot the results obtained from 

two test cases of IEEE 300 bus system with random bus type assignment. And finally the red solid 

line with ”x” is shows the average expected life time from the results of 10 random assignment 

cases. From Figure 2.1 and what presented in reference [13], experiments on the IEEE 300 bus 

system show that the expected safety time of the grid, after randomizing the grid bus type 

assignments, could result in a 150% increase compared with the realistic values. In other words, if 

we utilize random bus type assignment in a given random topology power grid model, i.e. RT-

nestedsmallworld, although the topology of the generated test cases is consistent and comparable 

to that of a real-world grid, the inappropriate bus type assignment may still possibly cause 

deviation in the grid settings therefore give misleading results in the following evaluation and 

analysis. 
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          The changes in bus type assignment in a grid may cause big differences in system dynamics 

such as the grid vulnerability to cascading failures. In other words, if we utilize random bus type 

assignment in the RT-nested smallworld model although the topology of the generated test cases 

is consistent and comparable to that of a real-world grid, the inappropriate bus type assignment 

may still possibly cause deviation in the grid settings therefore give misleading results in the 

following evaluation and analysis. Therefore, the random assignment of bus types in the RT-nested 

smallworld model should be improved by using a more accurate assignment which is consistent 

with that of realistic power grids. 

 

Figure 2.1: Safety time of grid lines of IEEE300 bus system: Original vs random bus type 

assignment [13] 
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2.2 Power system topology and definitions  
        

       Given a power grid topology with N buses and M branches, the setting of generation and load 

locations can be described by three indicator vectors: the Bus Type Vector (𝕋), Bus Type Ratio 

Vector (r), and Link Type Ratio Vector (R). The detailed discussions on these indicators are as 

follow: 

Bus type vector: 𝕋 = [𝕋𝑖]1×𝑁    where the type of bus i, 𝕋𝑖= 1, 2 or 3 for a G, L or C bus, 

respectively.    

Bus type ratio vector: 𝑟 = [𝑟𝑘]1×3 = [𝑟1, 𝑟2, 𝑟3] where 𝑟1 = 𝑁𝐺 𝑁⁄  , 𝑟2 = 𝑁𝐿 𝑁⁄  and 𝑟2 = 𝑁𝐶 𝑁⁄  

are the ratios of G, L and C buses in a grid, respectively, with NG, NL, NC representing the total 

number of G/L/C buses respectively. 

Link type ratio vector:    𝑅 = [𝑅𝑘]1×6 = [𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6] where R1−6 represent the ratios 

of the six types of branches in a grid, i.e. GG, LL, CC, GL, GC, LC. That is, the link type of a 

branch is determined by the bus types of its end buses. And 𝑅𝑘 = 𝑀𝑘 𝑀⁄ , for k = 1, · · · , 6 with 

Mk being the total number of branches of a specific link type in the grid. 

Obviously the two vectors of bus type ratios and link type ratios can be fully determined by a bus 

type assignment vector T with respect to a given grid topology. In Figure 2.2, IEEE 30-bus system 

is considered as example to illustrate how the above-mentioned vectors can be dertmined in a given 

power grid. In this graphical representation of a grid network we find that the Bus and Link type 

ratio vectors are: r = [0.2000, 0.6000, 0.2000] and R = [0.0500, 0.1000, 0.1000, 0.4000, 0.2500, 

0.1000] respectively. Table 2.1, presents the two indicator vectors for the IEEE test systems and 

some realistic power grids. 
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Table 2.1: Ratio of bus type and link types in real-world power networks 

 Bus type ratio % 

G/L/C 

Link type ratio % 

GG/LL/CC/GL/GC/LC 

IEEE-30 20/60/20 5/40/10/10/10/25 

IEEE-57 12/62/26 6/34/6/16/6/32 

IEEE-118 46/46/8 27/14/2/43/11/3 

IEEE-300 23/55/22 2/36/11/22/7/22 

NYISO-2935 33/44/23 16/28/8/29/6/13 

ERCOT-5633 9/54/37 1/27/26/2/6/38 

WECC-16994 20/40/40 1/13/40/2/7/37 

 

 

Figure 2.2: Graphical representation of the IEEE-30 bus system. 

2.3 The Bus Type Entropy  
 

         As mentioned in [13], there exists non-trivial correlation between the three bus types and 

other topology metrics such as node degrees and clustering coefficients in a real-world power grid; 

and a random permutation of the grid’s original bus type assignments, i.e. to make it a random 

one, will cause significant deviation in the grid dynamics and makes the resulting network behave 

no longer like a power grid.  
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        This fact has led to define a measure, which should be simple and convenient, and at the same 

time able to effectively quantify and characterize the “correlated” bus type assignments in realistic 

power grids, i.e., distinguishing them from the randomized ones. The proposed measure is called 

Bus Type Entropy, with three various definitions. The statistical analysis based on empirical 

probability density function (PDF) based on the IEEE 300-bus system and the NYISO 2935-bus 

system [43] has roughly verified the performance of the proposed entropy measures. 

        After obtaining additional data of some realistic grids through the support from the CERTS 

initiative, we find it would be ideal to derive a scaling property of the correlated bus type 

assignment versus the network size of a grid. Therefore, the optimization algorithm to search for 

the best correlated bus type assignment for a given random topology power grid model will be 

enhanced with a direct target entropy value of the correlated bus type assignments determined by 

the given network size, saving the mandatory, but most the time unattainable, requirement of a set 

of realistic grid data with a comparable network size for identifying the search target.  

       In order to capture a good scaling function of the bus type entropy we examine our proposed 

entropy definitions using the IEEE 30, 57, 118, 300-bus systems and the NYISO- 2935, the 

ERCOT-5633 [44], and the WECC-16994 [45] systems. We extract an empirical probability 

density functions (PDF) of the bus type entropy value from randomized bus type assignments over 

the grid original topology, estimate the distribution parameters, measured the relative location of 

a target entropy value within the PDF curve, and teste different curve fitting approaches to detect 

an appropriate scaling function. Therefore, in the first step we propose the definition of the bus 

type entropy, with two variations, each with its own special advantages: 

𝑊0(𝕋) = − ∑ 𝑟𝑘
3
𝑘=1 × log(𝑟𝑘) − ∑ 𝑅𝑘

6
𝑘=1 × log (𝑅𝑘)                                                             (2.1)                                         
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𝑊1(𝕋) = − ∑ 𝑙𝑜𝑔(𝑟𝑘)3
𝑘=1 × 𝑁𝑘 − ∑ 𝑙𝑜𝑔 (𝑅𝑘) 6

𝑘=1 × 𝑀𝑘                                                         (2.2)                       

        Obviously, (2.1) is a typical entropy definition of statistical variables, based on which the 

derived entropy values fall within a very stable or restricted numerical region, as shown with the 

results in section 2.4.1. This property provides the advantage to simplify our design of the 

optimization procedure seeking for the best bus type assignments. While the second definition 

(2.2) can be viewed as a more “generalized” entropy, which tends to “magnify” the scaling impact 

of the entropy value versus the grid network size. Therefore it has the advantage to simplify the 

approximation procedure of the scaling function. We choose above entropy definitions because 

they are simple and convenient to evaluate and ready for empirical PDF analysis. And most 

importantly, the definitions incorporate both bus and link type ratios in a grid, with the grid 

topology information embedded, therefore they are able to recognize the “correlated” bus type 

assignments consistent with those in realistic power grids. 

 

2.4 Statistical analysis  
        In this section, we conduct statistical analysis and investigate the effectiveness of the 

proposed bus type entropy in realistic power grid systems. We aim at assessing the relative 

difference or distance between the original bus type assignment 𝕋∗in a realistic power grid and 

other randomized bus type assignments 𝕋̃ = Ρ(𝕋∗) with the latter obtained from random 

permutation of the former. 

        In order to investigate the benefits offered by (2.1) and (2.2), we will randomly permute the 

location of G/L/C buses in given realistic grids, and collect the resulting entropy values𝑊0−1(𝕋̃), 

which are computed using corresponding link and bus type ratios. Although the permutation 
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process does not change the bus type ratios in a grid, that is, the number of G/L/C buses is 

maintained, we will have different link type ratio vectors (R) with respect to the random location 

of generation and load buses. Then the empirical probability density function (PDF) will be 

formulated based on the collected random samples of 𝑊0−1(𝕋̃)and utilized to investigate the 

relationship between 𝕋∗ and 𝕋̃’s. 

       It is worth noting that by the Central Limit Theorem (CLT), the empirical PDF of 

𝑊(𝕋̃)converges to a normal or Gaussian distribution. And this can be verified by the results in the 

following session of this thesis. Then the estimate distribution parameters of (µ, σ) will be 

extracted to measure the relative location of 𝕋∗ among the randomized 𝕋̃’s based on their 

corresponding characteristic entropy values. 

       The quality of generated PDF directly depends on the size of sample set. If the sample size is 

sufficiently large, the following empirical PDF will have appropriate statistical accuracy. 

Theoretically, in our permutation process the total number of all possible samples of 𝑊0−1(𝕋̃) will 

be no greater than 𝑛̂ =
𝑁!

𝑁𝐺!𝑁𝐿!𝑁𝐶!
where NG, NL, and NC represent the total number of generation, 

load and connection buses in a grid, respectively. 

        In our study an appropriate sampling size k max (k max <𝑛̂) is considered as that can achieve, 

at a reasonable computational cost, the required statistical accuracy which means a recognizable 

normal distribution with feasible estimates of distribution parameters. For example, our 

experiments on realistic power grids show that for a test case with a network size (i.e. the total 

number of buses) of N ≤ 4000, we may consider k max = 25, 000. For larger case studies the 

sampling size will be increased to k max = 40, 000. The difference between two proposed numbers 

comes from the fact that increasing in the number of buses (network size) causes an extraordinary 



27 
 

growth in the number of possible scenarios. The important thing to note here is that our goal is not 

to utilize the complex mathematical sampling-based methods to determine the optimal sample size. 

Instead, we want to shift focus to the fact that in order to have a desired quality for empirical PDF 

we do not need to consider the entire sample set. Because considering 𝑛̂=kmax dramatically 

increases the computation cost without a tangible change in the statistical accuracy [46]-[48]. 

        Figure 2.3 displays the empirical PDF that results from the numerical simulation of the 

ERCOT system with respect to the entropy definitions of 𝑊0(𝕋) and 𝑊1(𝕋). These empirical PDF 

curves (denoted as bar plots) are generated with the sample size of k max = 40, 000 and include a 

fitting Normal Distribution (black solid line). The comparison of the generated empirical PDF with 

the normal distribution shows that the deviation is very small. 

 

(a) 

 

(b) 

Figure 2.3 Empirical PDF of the bus type entropies and the fitting normal distribution evaluated 

in the ERCOT system: (a) 𝑾𝟎(𝕋̃), and (b) 𝑾𝟏(𝕋̃). 
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                                    (a) 

 
                                        (a) 

 
                                  (b) 

 
                                        (b) 

 
(c) 

 
                                       (c) 

 
(d) 

 
                                      (d) 

 
                                   (e) 

 
                                     (e) 

 
                                   (f) 

 
                                     (f) 

 
                                   (g) 

 
                                    (g) 

Figure 2.4: The Empirical PDF of the bus type entropies of 

𝑾𝟎(𝕋̃) and the fitting normal distribution: (a) IEEE-30, (b) 

IEEE-57, (c)IEEE-118, (d)IEEE- 300, (e)NYISO, (f)ERCOT, 

and (g)WECC. In each sub-figure the realistic bus type entropy 

𝑊∗ = 𝑊0(𝕋∗). is marked by a red ’star’ 

Figure 2.5: The Empirical PDF of the bus type entropies of 

𝟏(𝕋̃) and the fitting normal distribution: (a) IEEE-30, (b) 

IEEE-57, (c)IEEE-118, (d)IEEE- 300, (e)NYISO, (f)ERCOT, 

and (g)WECC. In each sub-figure the realistic bus type entropy 

𝑊∗ = 𝑊1(𝕋∗). is marked by a red ’star’. 
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       Figure 2.4 and 2.5 provide the numerical results obtained from all the IEEE test cases and the 

available realistic power grids. With the newly defined entropy measures and the chosen sample 

sizes, all the empirical PDF converge to a normal distribution. In these figures the fitting normal 

distribution curve is shown as a thick black line and the original bus type entropy 𝑊∗ is marked in 

each empirical PDF as a red star. 

       As mentioned above, given a realistic power grid topology, 𝕋∗ and W∗ = W(𝕋∗) represent the 

original bus type assignment and the corresponding bus type entropy, respectively. What is 

important to us is the location of 𝑊∗ versus the empirical PDF in realistic power grids, because 

this may help us to identify the searching scope of the best set of target bus type assignments for 

the random topology power grids. Table 2.2 summarizes the fitting parameters, i.e., the mean value 

(µ) and the standard deviation (σ), for each generated empirical PDF, and the original bus type 

entropy 𝑊∗ , for all the IEEE test systems and the available realistic grid data. 

Table 2.2: The fitting parameters of normal distribution and the original bus type entropy values 

 𝑊0(𝕋) 

𝜇/𝜎/𝑊0
∗ 

𝑊1(𝕋) 

𝜇/𝜎/𝑊1
∗ 

IEEE-30 2.38/0.09/2.49 87.02/3.8/92 

IEEE-57 2.31/0.058/2.44 161.4/4.63/172 

IEEE-118 2.34/0.045/2.35 346.39/8.13/365.04 

IEEE-300 2.57/0.026/2.53 943.21/10.58/927.5 

NYISO-2935 2.74/0.007/2.70 14193/48.8/13910 

ERCOT-5633 2.36/0.008/2.23 15372/56.47/14428 

WECC-16994 2.72/0.0034/2.33 53813/74.33/27775 

 

2.4.1 The Scaling Property and Guidance map 
        In this section we examine the relative location of the original bus type entropy 𝑊∗ in the 

empirical PDF of randomized bus type entropy in realistic power grids. What we are looking for 
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is to capture a scaling property of 𝑊∗ versus the network size with the help of the fitting parameters 

of (σ, µ). Such a possible relationship can be utilized to improve our synthetic power grid modeling 

with the goal of estimating the measure of 𝑊∗ with respect to a related empirical PDF. 

       To do so, given a generated random topology power grid, we will first extract the fitting 

parameters (σ, µ) from the empirical normal PDF of randomized bus type assignments, then use 

them and the observed function of the scaling property to determine the target entropy value of a 

correlated bus type assignment 𝑊∗, which is consistent with that observed in realistic grids. 

Therefore an optimization algorithm can be implemented to search for the desired bus type 

assignments with respect to the target entropy value 𝑊∗. 

       Figure 2.4 and 2.5 indicate the location of original bus type entropy 𝑊∗ within the 

corresponding empirical PDFs. Careful examination of these two figures reveals that the location 

of 𝑊∗ (red star) is not stationary but there is a tangible trend for the distance between 𝑊∗ and µ 

from higher to lower values with respect to network size N, i.e. it moves from right to the left side 

as the network size gets larger. A guidance map in Figure 2.6 illustrates the trend for both entropy 

definitions with IEEE 57-bus system being the only exception with some negligible deviation. 

This behavior indicates a possible existence of scaling property of the normalized distance called 

d, versus the network size N, which is defined as: 

𝑑 =
𝑊∗−𝜇

𝜎
                                                                                                                                    (2.3) 

      The idea behind the scaling property of d versus N is to identify the behavior of realistic bus 

type entropy 𝑊∗ in terms of position and probability, taking into account network information and 

topology, with 

𝑊∗ = 𝜇 + 𝜎𝑑𝑊(𝑁)                                                                                                                       (2.4)   
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       Further, d specifies the relationship between 𝑊∗ and other random bus type entropies 𝑊(𝕋̃). 

It should be noted that the scaling property d is a numerical value and can be considered as a 

topological characteristic for power network topologies. 

       Table 2.3 shows the value of scaling property d for realistic power grids. The obtained results 

indicate that with increasing in network size, the values of 

𝒅𝑾𝟎(𝕋)and 𝒅𝑾𝟏(𝕋) have the tendency to decrease. One way to find the mathematical relationship 

is the curve fitting, which defines an appropriate curve to fit the observed values and uses a curve 

function to analyze the relationship between the variables. Suppose that from the mentioned 

statistical analysis, presented in Table 2.2, observations from the seven IEEE and realistic grids 

have been collected. 

 

Figure 2.6: The comparison of 𝑊∗− µ for different realistic power systems based on (a) 𝑾𝟎(𝕋) 

and (b) 𝑾𝟏(𝕋) 

       The first step towards the construction of a mathematical model is to plot these data points 

and estimate a function form f(N) to describe the general trend in the data. From Table 6 and based 

on the data distribution shape, a piecewise function including a linear part 𝑓(𝑥) = 𝑎1𝑥 + 𝑏1 and 
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nonlinear part 𝑓(𝑥)  =  𝑎2𝑥𝑏2   + 𝑐2, can be considered as an appropriate model to characterize the 

relationship between scaling property-d and N. In this function {a1, b1} and {a2, b2, c2} are 

parameters that we can adjust. In our fitting process we are trying to choose both linear and 

nonlinear function parameters so as to minimize the fitting error. 

Table 2.3: The scaling property-d in realistic power grid systems 

 N M 𝒅𝑾𝟎(𝕋) 𝒅𝑾𝟏(𝕋) 

IEEE-30 30 41 1.22 1.31 

IEEE-57 57 78 2.24 2.28 

IEEE-118 118 179 0.22 0.08 

IEEE-300 300 409 -1.53 -1.48 

NYISO-2935 2935 6567 -5.71 -5.79 

ERCOT-5633 5633 7053 -16.25 -16.71 

WECC-16994 16994 21539 -114.7 -350.3 

  

       Figure 2.7 shows the fitted piecewise functions for𝒅𝑾𝟎(𝕋)and 𝒅𝑾𝟏(𝕋)with corresponding root-

mean-square deviation (RMSE) of 1.81 and 15.31, respectively. The mathematical definition of 

obtained fitted curves are presented as follows: 

𝑑𝑊0
(𝑁) = {

−1.721 𝐿𝑛𝑁 + 8                                     Ln 𝑁 ≤ 8
−6.003 × 10−14(Ln 𝑁 )15.48                 Ln 𝑁 > 8

                                                          (2.5) 

𝑑𝑊0
(𝑁) = {

−1.748 𝐿𝑛𝑁 + 8.276                             Ln 𝑁 ≤ 8
−6.053 × 10−22(Ln 𝑁 )24.1                   Ln 𝑁 > 8

                                                    (2.6) 

      For the proposed scaling property, a linear approximation can be considered for the small size 

networks by ignoring the large-scale ones. However, our initial results show that as the network 

size increases, the values of 𝒅𝑾𝟎(𝕋)and 𝒅𝑾𝟏(𝕋)dramatically decrease. Accordingly, a nonlinear 

definition can be considered as a better approximation for the large-scale networks. Tt should be 

noted that in order to obtain better precision for a wide range of network sizes, Ln N is used instead 

of N in equations (2.5) and (2.6). 
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     The fitted curves provide useful information to solve the bus type assignment problem. Given 

a random topology power grid with size N, one can easily find the value of d and further evaluate 

the target value 𝑊∗ using (2.4). It should be noted that in equation (2.4) the distribution parameters 

(µ, σ) are extracted from the empirical PDF of randomized bus type assignments in the given grid 

topology. 

      Both the presented scaling functions of (2.5) and (2.6) will do a good job in the bus type 

assignment problem. However, we would recommend using the second one. The main reason 

comes from the fact that the second guidance map, with higher resolution, indirectly provides a 

better condition for optimization phase to find the best bus type assignment. Indeed, in 

optimization process we are looking for unique bus type assignment with an special bus type 

entropy (say 𝑊∗). This procedure leads to difficulties when we know that several different bus 

type assignments may have the same bus type entropy. With this in mind, from a detailed 

observation of proposed bus type entropy definition (2.1) and (2.2), it is clear that definition (2.6) 

provides a wider bandwidth for empirical PDFs (see Figure 2.7). Obviously, a wider PDF will 

potentially reduce the number of nominated bus type assignments for each possible bus type 

entropy. 

 

(a) 



34 
 

 

(b) 

Figure 2.7: The fitting curve of the scaling property of the normalized distance versus network 

size: (a) 𝒅𝑾𝟎(𝕋)and (b) 𝒅𝑾𝟏(𝕋). 

      The proposed synthetic grid modeling can then be improved with an optimized search 

algorithm as the following step-by step procedure. Given a random topology power grid generated 

from our proposed modeling, RT nestedSmallWorld: 

Step 1 : Generate the empirical PDF curve of randomized bus type assignments 𝑊(𝕋̃). with 

respect to the grid size data N and M, and it connecting topology. Upon the completion of step 1, 

the fitting parameters of µ and σ will be calculated. 

Step 2 : Estimate the value of scaling property d using proposed guidance map and with respect to 

logrithm of network size N. 

Step 3 : Find the value of 𝑊∗using( 2.4) and the obtained parameters from step 1 and 2. 

Step 4 : Determine the best set of bus type assignments with the target entropy value of 𝑊∗ 

provided by step 3. 
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       In step 4 we need to design an optimization process to search for those bus type assignments 

which have nearly the same bus type entropy as 𝑊∗. In the optimization process, the objective 

function can be defined as: 

𝑚𝑖𝑛𝕋  𝜀 = |𝑊(𝕋) − 𝑊∗|                                                                                                          (2.7)                                                                                

     The pseudo code and procedures for the proposed method can be described as in Figure 2.8. 

The steps in Figure 2.8 are shown in the flow chart in Figure 2.9 for completeness. 

 

Figure 2.8: The pseudo code of the proposed method 

 

Figure 2.9: Flow diagram for the proposed methodology 
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2.5 Optimization Search Algorithm 

 
     Based on what discussed above, sections 2.4 and 2.5 provide a foundation for the last part of 

the proposed method. In optimization phase Clonal Selection Algorithm (CSA) that results in 

optimal or the best set of bus type assignments is presented. CSA is an efficient optimization 

method, inspired by the biological immunity system selection mechanism, proposed by De Castro 

and Van Zuben [49]. This method has successfully been applied to optimization domain and power 

system area in recent years. The performance of CSA can be summarized as the following 

procedure [49-52]: 

Step 1: Randomly produce the initial population of CSA. Each individual of the population is a 

candidate bus type assignment for the optimization problem. Here, for a N-bus power grid we 

consider the bus type vector 𝕋 = [𝕋𝑖]1×𝑁 as a candidate solution, with 𝕋𝑖 = 1 for generating 

buses; 2 for load buses and 3 for connection buses. The total number of candidate solutions in the 

population is denoted by P. In general, a random bus type assignment in iteration t can be written 

as follows: 

𝕋𝑖
𝑡 = [𝕋𝑖,1

𝑡 , 𝕋𝑖,2
𝑡 , . . , 𝕋𝑖,𝑘

𝑡 , … , 𝕋𝑖,𝑁
𝑡 ],        𝑖 = 1 = 1,2,3, … , 𝑃                                                       (2.8)  

        The three sets of bus types of each individual are randomly initialized with uniform 

distribution according a specified set of bus type ratios, {𝑟𝐺 , 𝑟𝐿 , 𝑟𝐶}.     

Step 2: Determine the value of bus type entropy 𝑊(𝕋), and compute the “affinity” value, with 

respect to each single candidate solution. In the following optimization tasks, the value of affinity 

corresponds to the evaluation of the objective function for the given candidate solution [49]. 
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Step 3: Sort the random bus type assignments based on the output affinity values.  

Step 4: Select the first “n” bus type assignments based on their ranking position in the sorted 

population and make copies of offspring candidate for producing next generation: 

𝑛𝑐𝑖 = [
𝛽𝑁

𝑖
],        ∀𝑖 = 1,2, … , 𝑛                                                                                                 (2.9) 

Where [.] means the rounding function to the nearest integer toward infinity, 𝑛𝑐𝑖is the number of 

offspring candidates from 𝑖𝑡ℎ candidate, and 𝛽 is a constant coefficient which indicates the rate of 

copy. Obviously, a candidate with higher ranking will be copied more than a candidate with lower 

ranking. Upon the completion of step 4, the total number of possible solutions in the next-

generation population will be “NC” as follows: 

𝑁𝐶 = ∑ [
𝛽𝑁

𝑖
]𝑛

𝑖=1                                                                                                                        (2.10) 

      Figure 2.10 graphically illustrates step 4. As can be seen, 𝑛𝑐1 and 𝑛𝑐2 present the numbers of 

offspring copied from the highest and second ones, respectively. The rest of selected candidates 

will then be multiplied sequentially according to (2.9). 

 

Figure 2.10: Copy operator in the CSA algorithm 
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Step 5: Mutate the NC bus type assignments in the population based on their bus type entropy 

values. It means that the candidate solutions with higher affinity should be mutated less than those 

with lower affinity. 

Step 6: Determine the affinity of each mutated candidate and select the first "m" (< 𝑃) candidates 

with the highest affinity values among the NC mutated and original population. The selected m 

bus type assignments will enter the next generation directly. 

Step 7: Generate 𝑝 = 𝑃 − 𝑚 new bus type assignment as the “antibodies” for the next generation 

through a random process. These randomly generated antibodies enhance search diversity of CSA, 

and consequently, the algorithm takes the chance to escape from the local optima. 

Step 8: Return back to step 2 and repeat this cycle until the termination criteria are met. If the 

termination criterion satisfied, the best set of bus type assignments of the last generation is 

determined as the optimum solution of optimization process. Figure 2.11 demonstrates the 

proposed optimization procedure. 

      In order to show the efficiency of the proposed optimization algorithm we apply it to two power 

systems, i.e., the IEEE-300 bus system. To clarify; we use this  system as a realistic grid sample 

to generate a set of correlated bus type assignment for the random topology power grids of similar 

network sizes using the objective function presented by (2.7). 

     It should be noted that the definition of objective function depends on our knowledge from the 

topology of power grid. The performance of the CSA for IEEE-300 bus system is shown in Figure 

2.12 and 2.13. In Fig.7 the stopping criteria for iterative optimization process is considered as 

(Error < 0.003). 



39 
 

 

Figure 2.11: Flowchart of the clonal selection algorithm (CSA) 

 

(a) 𝑊0(𝕋) 

 

(b) 𝑊1(𝕋) 

Figure 2.12: Convergence process of CSA algorithm in the IEEE-300 systems with the three 

entropy definitions 𝑊0−1(𝕋) 
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Figure 2.13: The best set of bus type assignments for a 300 bus system using the entropy 

definition of 𝑊1(𝕋) 

2.7 Numerical results   
     In order to show the efficiency of the proposed algorithm, we performed a series of simulation 

and applied the proposed method to a set of random topology power grids such as RT-

nestedSmallWorld test cases with 129, 147, 300 and 3000 buses. Technically, these application 

examples help us to show how the suggested methodology works. Furthermore, to verify the 

effectiveness of the proposed approach we tried to solve the bus type assignment problem for the 

available realistic power grids, and then checked the deviation of the searched bus type 

assignments from the original ones. In this way, we can evaluate the ability of proposed method 

to solve the bus type assignment problem. 

Table 2.4 provides the topology parameters for the four random-topology case studies. It should 

be noted that the total number of branches and the bus type ratios are chosen according to a realistic 

network with most similar network-size (see Table.2.1). 

        Figure 2.14 and 2.15 display the empirical PDFs that result from the numerical simulations 

of the RT-129, 147,300 and 3000 buses systems with respect to the entropy definitions of 
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𝑊0(𝕋)and 𝑊1(𝕋). Table 2.5 shows the fitting distribution parameters (𝜎, 𝜇) of the empirical PDF 

of randomized bus type entropy, the estimated normalized distance d evaluated based on the 

scaling function, and the derived target entropy values 𝑊∗, according to the two entropy 

definitions. 

        It should be noted that in a large scale power grids, different bus type assignments may have 

the same bus type entropy. Define the difference measure between two bus type assignment vectors 

𝕋𝑖 and 𝕋𝑗  in a N-bus grid as: 

∆𝕋𝑖𝑗 = ∆(𝕋𝑖, 𝕋𝑗) = 1 −
∑ 𝛿(𝕋𝑛

𝑖 −𝕋𝑛
𝑗

)𝑁
𝑛=1

𝑁
                                                                                  (2.11) 

where δ(·) is the Dirac delta function. And the diversity of a set of 𝑛𝑡 bus type assignment vectors 

(𝕋)’s can then be defined as: 

𝑚𝑎𝑥𝑖,𝑗∈[1:𝑛𝑡]     ∆𝕋𝑖𝑗                                                                                                                (2.12) 

      However, our experiments on realistic power grids show that the diversity is not considerable. 

For the above random topology power grid cases, we have the diversity of located bus type 

assignments to be ≤ 10%. Therefore we accept all solutions for the bus type assignment problem. 

In the RTnested-smallworld-300 case, for example, the obtained results show that the output of 

optimization process includes 12 different bus type assignments, and diversity is 7.8%. 

Table 2.4: Topology parameters of random topology case studies 

Random topology 

Network 

N M Bus Type Ratio % 

G/L/C 

RT-129 129 189 46/46/8 

RT-147 147 222 46/46/8 

RT-300 300 456 23/55/22 

RT-3000 3000 7119 33/44/23 
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      We also apply the proposed algorithm to the realistic power grids. Table 2.6 provides the 

simulation results: the second and third columns shows the estimated bus type entropies 𝑊0
∗ and 

𝑊1
∗ . With respect to the estimated target entropy values and using the proposed optimization 

algorithm we will be able to locate a set of the best bus type assignments 𝕋 best for each realistic 

power grid. In Table 2.6, the last column presents the maximum difference 

∆𝕋𝑏𝑒𝑠𝑡,∗ = 𝑚𝑎𝑥𝕋𝑘∈𝕋𝑏𝑒𝑠𝑡    ∆(𝕋𝑘, 𝕋∗)                                                                                        (2.13) 

between the located bus type assignments and the original one for each real world power grid. 

Although the obtained results show a growing error with respect to the network size N, we can see 

a promising similarity, even for a large power grids. 

Table 2.5: Scaling function results for RT-Nestedsmalworld networks 

Network 𝒅𝑾𝟎
 𝝁 𝝈 𝑾𝟎

∗  

RT-129 0.05 2.35 0.03 2.39 

RT-147 -0.14 2.32 0.03 2.31 

RT-300 -1.13 2.58 0.02 2.55 

RT-3000 -4.97 2.74 0.005 2.71 

Network 𝒅𝑾𝟏
 𝝁 𝝈 𝑾𝟏

∗  

RT-129 0.02 390 7.53 390.15 

RT-147 -0.18 447 8.09 445.75 

RT-300 -1.2 1021 10.77 1008 

RT-3000 -2.9 15175 40.37 15057 

Table 2.6: Estimated bus type entropy for realistic power grid systems 

 Estimated 

𝑾𝟎
∗  

Estimated 

𝑾𝟏
∗  

∆𝕋𝒃𝒆𝒔𝒕,∗ 

IEEE-30 2.48 93 7.6 % 

IEEE-57 2.46 170 7.2 % 

IEEE-118 2.33 360 8.4 % 

IEEE-300 2.55 922 10 % 

NYISO-2935 2.73 13905 13.3 % 

ERCOT-5633 2.24 14430 14.7 % 

WECC-16994 2.31 27780 19.6 % 
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Figure 2.14: Empirical PDF and the normal distribution 

fitting for the randomized bus type entropy 𝑾𝟎(𝕋̃): (a) 

RT-129, (b) RT-147, (c) RT-300, (d) RT-3000 

 

 

Figure 2.15: Empirical PDF and the normal distribution 

fitting for the randomized bus type entropy 𝑾𝟏(𝕋̃): (a) 

RT-129, (b) RT-147, (c) RT-300, (d) RT-3000 

     2.8 Conclusion   
      In this section we propose a statistical methodology to solve the bus type assignment problem 

in synthetic power grid models. This method includes a novel measure, called the Bus Type 

Entropy, the derivation of scaling property, and the optimized search algorithm. In this chapter we 

first define a numerical measure, called the Bus Type Entropy, to characterize correlated bus type 

assignment of realistic power grids. We then derive a mathematical approximation function, which 
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is able to indicate the appropriate entropy value that a correlated bus type assignment should 

assume in a specific N-bus grid network. Based on above results, the target entropy value for the 

best bus type assignments in a power grid topology can be directly selected given its network size. 

Therefore the synthetic power grid modeling has been greatly enhanced with a useful guidance 

map and the direct optimization procedure to search for the best bus type assignments in a specific 

N-bus grid topology, saving the mandatory, but most the time not attainable, requirement of the 

availability of a set of realistic grid data with a comparable network size, to identify the search 

target. Finally, we examine the performance of the proposed measure both on the random-topology 

grid cases and on some realistic power grids. The obtained results verify that the proposed 

approach can efficiently determine the best set of bus type assignments. 
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Chapter 3  
 

Statistical Settings of Generation Capacity, 

Generation Dispatch and Load 
 

     This chapter investigates the problem of generation and load settings in a synthetic power grid 

modeling of high-voltage transmission network, considering both electrical parameters and 

topology measures. Our previous study indicated that the relative location of generation and load 

buses in a realistic grid are not random but correlated. And an entropy based optimization approach 

has been proposed to determine a set of correlated siting for generation and load buses in a 

synthetic grid modeling. Using the approximate scaling function of aggregate generation capacity 

versus network size, the exponential distribution of individual generation capacities in a grid, and 

the non-trivial correlation between the generation capacity and the nodal degree of a generation 

bus we develop an approach to generate a statistically correct random set of generation capacities 

and then assign them to each generation bus in a grid. Based on the statistics collected from a 

number of realistic power grids, we then propose a statistical algorithm to determine 

generation/load setting and the generation dispatch at each generation bus according to its 

generation capacity and the statistic of dispatch ratios. 

 

 



46 
 

3.1 Introduction 
    To accomplish the goal of developing synthetic networks for the modeling of realistic power 

grid systems, extensive research has been conducted in order to recognize the salient grid related 

properties, to collect the statistics regarding the grid topologies and electrical parameters, hence to 

develop some useful models [53-54]. Reference [55] provides a comprehensive study on 

geographically approaches in synthetic power grid modeling. This paper describes several 

structural statistics and uses them to present a methodology to generate synthetic line topologies 

with realistic parameters. In [56] the authors propose a systematic methodology to augment the 

synthetic network base case for energy economic studies. In this paper the cost model of generators 

is determined based on the fuel type and generation capacity. This model can be utilized in 

electricity market and power system operation analysis.  

     As mentioned in [53], a valid synthetic grid model needs to include at least the following critical 

components: (a) the electrical grid topology which is fully defined by grid admittance matrix; (b) 

the generation and loads settings which indicate their correlated siting and sizing; (c) the 

transmission constraints which include the capacities of both transmission lines and transformers 

and etc.  

      The chapter presents our recent study results on the statistics of generation capacities and 

settings in a synthetic grid modeling. A set of approaches has been developed to generate a 

statistically correct random set of generation capacities and assign them to the generation buses in 

a grid according to the approximate scaling function of total generation capacity versus network 

size, the estimated exponential distribution of individual generation capacities, the non-trivial 

correlation between the generation capacity and the nodal degree of a generation bus.  Then we 

determine the generation dispatch of each generation unit according to its capacity and the dispatch 
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ratio statistics, which we collected and derived from a number of realistic grid test cases. The 

proposed approaches is readily applied to determining the load settings in a synthetic grid model 

and to studying the statistics of the flow distribution and to estimating the transmission constraint 

settings.  

     The main contributions of this chapter are summarized as follows:(1) a set of statistical analysis 

on the generation capacities and its correlation with topology metrics is presented; (2) a statistical 

approach is proposed to determine the generation/load capacity at any generation bus in a synthetic 

grid modeling which takes into account both topology and electric measures; (3) a practical 

algorithm is developed to calculate actual power output of generating units with respect to their 

estimated maximum generation capacities and statistics of dispatch ratios of realistic grid data. 

 

3.2 The statistics of generation capacity and 

load 
       Generation/ load settings in a synthetic grid modeling means to determine both the siting and 

the sizing of each generation unit and load. Our initial results indicate that the relative location of 

generation and load buses in a realistic grid are not random but correlated. And an entropy based 

optimization approach has been proposed to determine a set of correlated siting for generation and 

load buses in a synthetic grid modeling. In this section we focus on the problem to determine the 

sizing of generation units, i.e., the capacity and the dispatch at each generation bus.   

        In this section we first examine the statistical features of generation capacities in realistic 

power grids in terms of aggregate generation capacity, distribution of individual capacities, and 

their non-trivial correlation with nodal degrees. Table 3.1 presents the evaluation results of total 
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generation capacity, total demand, and total backbone transmission capacity of some realistic 

grids, with the corresponding definitions as: 

𝑃𝐺,𝑀𝑎𝑥
𝑡𝑜𝑡 = ∑ 𝑃𝐺,𝑀𝑎𝑥

𝑖
𝑖∈𝐺                                                                                                              (3.1) 

𝑃𝐿
𝑡𝑜𝑡 = ∑ 𝑃𝐿

𝑖
𝑖∈𝐿                                                                                                                         (3.2) 

𝐹𝑀𝑎𝑥
𝑡𝑜𝑡 = ∑ 𝐹𝑀𝑎𝑥

𝑙
𝑙∈𝐵𝐾𝐵                                                                                                                (3.3) 

Table 3.1: Total generation capacity, demand and total backbone transmission capacity in some 

realistic grids 

 

     Figure 3.1 plots the total generation capacity and total demand in the grid systems as listed in 

Table 3.1 and the ratio between the two versus the network size. The scaling functions obtained 

from the curving fitting approach are given as follows: 

log 𝑃𝐺,𝑀𝑎𝑥
𝑡𝑜𝑡 (𝑛) = −0.21(log 𝑛)2 + 2.06(log 𝑛) + 0.66                                                            (3.4) 

log 𝑃𝐿
𝑡𝑜𝑡(𝑛) = −0.20(log 𝑛)2 + 1.98(log 𝑛) + 0.58                                                                (3.5) 

where both 𝑃𝑡𝑜𝑡(𝑛)’s are measured in MW and the logarithm is with base 10. 
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(a) 

 

(b) 

Figure 3.1: The scaling property of the total generation capacity and demand in realistic power 

grids:(a) the total generation marked by ’black squares’ and total demand marked by ’+’ ; (b) the 

ratio of the total generation to the total demand. 

      From Figure 3.1 we can see that when the network size is small (i.e. n < 300), the total 

generation capacity and demand in a grid tend to grow as a power function, i.e., 𝑃𝑡𝑜𝑡  ∝  𝑛2.0. 

However, as the network size becomes larger, the scaling curves begin to bend down and grow 

slower than that power function. However the ratio of the two, 𝑟 𝐺/𝐿 =  𝑃𝐺,𝑀𝑎𝑥
𝑡𝑜𝑡 /𝑃𝐿

𝑡𝑜𝑡 , tends to 

slowly drop down from above 1.50 and draw closer to 1.00 as the network size increases. 

      Our initial study on the statistical distribution of generation capacity and demand within a 

power grid based on some realistic grid data such as the PEGASE, the WECC, and the NYISO 

systems, shows that the generation capacity and load settings approximately follow an exponential 



50 
 

distribution, as shown in Figures 3.2 -3.4. It is interesting to note that in the PEGASE 13659-bus 

system, about 99.9% of the generators have capacities following an exponential distribution except 

0.1% with very large capacities falling out of the normal range. In the WECC 16994-bus system 

and the NYISO 2935-bus systems, approximately 99% of the generation capacities (and the loads 

as well) follow an exponential distribution while only 1% with extremely large capacities (or 

demands) falling out of the expected normal range. We will continue the study on this aspect to 

determine the cause of observed distribution exceptions, which may either come from an inherent 

heavy-tailed distribution or only result from boundary equalization in a network reduction 

modeling. Our study also shows that there exists correlations between the total number of branches 

connecting a bus (that is, its node degree) and the generation or load attached to the bus. 

 

(a) 

 

(b) 

Figure 3.2: The empirical PDF of (a) generator capacities and (b) demands in power grids in the 

NYISO-2935 bus system 



51 
 

 

(a) 

 

(b) 

Figure 3.3: The empirical PDF of (a) generator capacities and (b) demands in the PEGASE-

13659 bus system 

 

(a) 



52 
 

 

(b) 

Figure 3.4: The empirical PDF of (a) generator capacities and (b) demands in the WECC-16994 

bus system 

 

 

3.2.1 Statistical-based algorithm to assign 

generation capacities to generation buses   

 
        After studying the scaling property and distribution of generation capacities in a grid, it would 

be critical to examine the correlation between the generation capacities and other topology metrics. 

To simply the following statistical analysis and the algorithm development for generation capacity 

generation and assignment in a synthetic grid modeling, we define two normalized variables as 

𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ = 𝑃𝑔𝑛

𝑀𝑎𝑥 max
𝑖

𝑃𝑔𝑖

𝑀𝑎𝑥⁄ ,                                                                                                                                        (3.6) 

𝑘𝑛
̅̅ ̅ = 𝑘𝑛 max

𝑖
𝑘𝑖⁄ .                                                                                                                                                        (3.7) 
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      So that both variables will assume values limited within [0, 1]. The statistics collected from 

the date of a number of realistic grids indicate that there exists a considerable correlation between 

the nodal degree of a generation bus and its capacity with a Pearson coefficient of  ρ (Pgn

Max̅̅ ̅̅ ̅̅ ̅, kn
̅̅ ̅) ∈ 

[0.25, 0.5]. Figure 3.5.a shows the scatter plots of normalized generation capacity versus the 

normalized node degree of some sample grids as the NYISO-2935 and WECC-16994 systems, 

which exhibit similar distribution patterns. That is, most data points are densely located within the 

region of 𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ∈ [0, 0.2] and 𝑘𝑛
̅̅ ̅ ∈  [0, 0.5], while very few located in the region of  𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ≥ 0.6. 

       When two variable, say 𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅  and 𝑘𝑛
̅̅ ̅ are considered, then we may put them together to get a 

pair of numbers, that is, a point (𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝑘𝑛
̅̅ ̅) in the two-dimensional space. These two-dimensional 

variables are considered mainly by their density function 𝑓(𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝑘𝑛
̅̅ ̅), which integrated on a set 

A gives the probability of the event that the value of (𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝑘𝑛
̅̅ ̅) is in the set A: 

Pr(𝐴) = Pr ((𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝑘𝑛
̅̅ ̅) ∈ A)                                                                                                                                (3.8) 

        Figure 3.5.c illustrates the 2-D empirical probability density function (PDF) of normalized 

node degree versus normalized generation capacity in realistic power grids. Based on the obtained 

empirical PDF, a two- dimensional probability distribution table shown in Table 3.2 can be 

formulated to enable the algorithm development in next section to assign the generated capacity 

values to each generation bus in a grid according to its normalized nodal degree.  
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(a) 

 

(b) 

 

(c) 

Figure 3.5: Scatter plots of normalized node degree versus normalized generation capacities in 

(a) NYISO and (b) WECC systems, and   (c) 2-D empirical PDF of normalized node degree 

versus normalized generation capacity in realistic power grid 
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      In the rest of this section we will introduce an approach to generate a statistically correct 

random set of generation capacities and assign them to the generation buses in a grid according to 

the approximate scaling function of total generation capacity versus network size, the estimated 

exponential distribution of individual generation capacities, and the non-trivial correlation 

between the generation capacity and the nodal degree of a generation bus. 

Table 3.2: Probability analysis of normalized node degree and normalized generation capacity in 

realistic power grid 

 
𝑘𝑛
̅̅ ̅ Marginal 

Prob 0.00 

         0.01 
0.01 

         0.03 

0.03 

        0.06 

0.06 

          0.1 

0.1 

         0.15 

0.15 

         0.21 

0.21 

         0.28 

0.28 

         0.36 

0.36 

         0.45 

0.45 

         0.55 

0.55 

         0.66 

0.66 

         0.78 

0.78 

         1.00 

𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅ 

1.00 
         0.78 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 
0.78 
         0.66 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.004 
0.66 
         0.55 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.003 
0.55 
         0.45 0.000 0.001 0.000 0.004 0.008 0.000 0.002 0.001 0.000 0.001 0.000 0.001 0.000 0.018 
0.45 
         0.36 0.006 0.002 0.000 0.009 0.008 0.003 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.034 
0.36 
         0.28 0.003 0.011 0.012 0.017 0.013 0.007 0.003 0.002 0.000 0.001 0.000 0.000 0.000 0.072 
0.28 
         0.21 0.009 0.024 0.016 0.024 0.013 0.004 0.003 0.001 0.000 0.000 0.000 0.000 0.001 0.097 
0.21 

         0.15 0.025 0.027 0.016 0.013 0.009 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.097 
0.15 

         0.1 0.027 0.031 0.010 0.010 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.088 
0.1 

         0.06 0.033 0.017 0.003 0.003 0.005 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.063 
0.06 

         0.03 0.090 0.030 0.01 0.008 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.151 
0.03 

         0.01 0.082 0.140 0.070 0.04 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.360 
0.01 

         0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Marginal Prob 0.283 0.291 0.147 0.141 0.077 0.022 0.017 0.008 0.001 0.003 0.000 0.001 0.002 1.000 

 

      Given a random topology power grid with 𝑁 buses among which 𝑁𝑔 buses have generation 

units, we may determine the aggregate generation capacity 𝑃𝑔
𝑡𝑜𝑡(𝑁)using equation (3.4) and 

generate a statistically correct random set of 𝑁𝑔 generation capacities which follows an exponential 

distribution of generation capacities with 1% of generated capacities switched to super large 

values. Then some scaling adjustment may be necessary to remain the same aggregate generation 

capacity given by 𝑃𝑔
𝑡𝑜𝑡(𝑁). Next an algorithm will be developed to assign the generation capacities 
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to each generation bus with respect to the statistical pattern presented in Table 3.2. Below is a step-

by-step algorithm procedure description: 

Step 1: Estimate the total generation capacity 𝑃𝑔
𝑡𝑜𝑡(𝑁) using (3.4). 

Step 2: Generate a statistically correct random set of generation capacities [𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑁𝑔
. It should 

be noted that 99 % of generated capacities follow the exponential distribution and remaining one 

percent is guaranteed to take supper large values (2~3 times greater than all generation capacities 

which follow the exponential distribution).  

Step 3: Do the scaling of generated capacities if ∑ 𝑃𝑔𝑛

𝑀𝑎𝑥𝑁𝑔

𝑛=1 > 1.05𝑃𝑡𝑜𝑡 to make the aggregate 

generation capacity remain the range specified by 𝑃𝑡𝑜𝑡(𝑁). And the scaling function is given as: 

[𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑁𝑔

′ =  [𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑁𝑔
×

𝑃𝑡𝑜𝑡

∑ 𝑃𝑔𝑛
𝑀𝑎𝑥𝑁𝑔

𝑛=1

                                                                                (3.9) 

where [𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑁𝑔

′ is the updated generation capacities.  

Step 5: Normalize both generation capacities and node degrees and categorize them evenly into 

100 square regions with specific range of 𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅  and  𝑘𝑛
̅̅ ̅̅ . 

Step 4: Calculate the node degree for all generation buses 1 to 𝑵𝒈 based on the topology 

information of given random power grid. 

Step 6: Check the similarity with Table 3.2 and reorder the mismatched segments. 

Step 7: Assign the generated capacities to nominated generation buses with respect to their node 

degrees.  

Step 8: Convert the normalized values to the actual values. 
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The flowchart of the proposed algorithm is depicted in Figure 3.6. 

 

 

Figure 3.6: Flowchart of the proposed algorithm to assign random generation capacities to 

generating units 

3.3 Statistical-based algorithm to assign loads to 

load buses   
      This section introduces a statistical –based approach to generate a set of static loads and assign 

them to the load buses. In this section we first investigate the statistical features of static loads in 
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realistic power grids in terms of total demand, distribution of individual loads, and their non-trivial 

correlation with nodal degrees. 

     In section 3.2 we reported the results of our analysis on scaling function of total demand in a 

grid versus its network size. Figure 3.1.a illustrates the scaling of aggregate demand as a function 

of network size 

log 𝑃𝐿
𝑡𝑜𝑡(𝑁) = −0.20(log𝑁)2 + 1.98(log 𝑁) + 0.58                                                           (3.10) 

where 𝑃𝐿
𝑡𝑜𝑡(𝑁) = ∑ 𝑃𝐿𝑛

𝑁𝐿
𝑛=1  denotes the total generation capacity and 𝑁𝐿 is the total number of load 

buses. The obtained results show that in realistic power networks the total demand tends to grow 

as a power function. It is important to point out that in a given grid topology although the total 

demand can be fully determined by the presented scaling function, failure to maintain a balance 

between total load and resources causes frequency to vary from its target value. Thus, it is crucial 

to consider both scaling function and aggregate sources to achieve a reasonable value for total 

demand. 

 

Figure 3.7: Empirical PDF of loads in WECC-16994 bus system 
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Figure 3.8: Scatter plots of normalized node degree versus normalized loads 

     Our initial experiments on the statistical distribution of loads within realistic power grids show 

that, like generation capacities, about 99% of the loads follow an exponential distribution with 

about 1% having extremely large demands falling out of the normal range defined by the expected 

exponential distribution. Figure 3.7 show the statistical distribution of loads in the WECC-16994 

bus system. The fitting curve is depicted as a dashed line for the distribution function of 𝑃𝐿.The 

straight line in the log plot implies that about 99% of load capacity in realistic power grids tend to 

drop down as an exponential function with mean value of 𝛽 = 42.51. 

     Given a realistic power grid with N buses among which 𝑁𝐿buses have loads, we may examine 

the correlation between the total number of branches connecting a bus (that is, its node degree) 

and the total load attached to the bus, like what we did in section 3.2.1 for the generation capacities. 

To simply the following statistical analysis, we consider the normalized node degree presented in 

(3.7) and normalized load as 

𝑃𝐿𝑛
= 𝑃𝐿𝑛

𝑚𝑎𝑥
𝑖

𝑃𝐿𝑖
⁄                                                                                                                  (3.11) 
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        So that the normalized loads will assume values limited within [0, 1]. Our statistical results 

show that in realistic power grids the Pearson’s coefficient of correlation varies in the range of 0.3-

0.6. Figure 3.8 displays the scatter plot of normalized load capacities and normalized node degree 

which can be further used to generate the 2-D empirical PDF of some sample grids like WECC-

16994 buses system.  

       By averaging the statistics of available realistic grid data, we may extract an empirical 2-

dimensional probabilistic density function (PDF) for the normalized load values and nodal degree 

(𝑃𝐿𝑛
, 𝑘𝑛
̅̅ ̅). Based on the 2-D empirical PDF over the obtained uneven grid division (see Figure 3.9  

) a two-dimensional probability distribution table shown in Table 3.3 can be formulated to enable 

an algorithm to assign the generated load values to each load bus in a grid according to its 

normalized nodal degree.   

 

 

Figure 3.9: The 2-D empirical PDF of load versus normalized node degree in WECC-16994 bus 

system. 
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Table 3.3: Probability analysis of normalized node degree and normalized load in WECC-16994 

bus system 

 
𝑘𝑛
̅̅ ̅ Marginal 

Prob 0.00 

         0.01 
0.01 

         0.03 

0.03 

        0.06 

0.06 

          0.1 

0.1 

         0.15 

0.15 

         0.21 

0.21 

         0.28 

0.28 

         0.36 

0.36 

         0.45 

0.45 

         0.55 

0.55 

         0.66 

0.66 

         0.78 

0.78 

         1.00 

𝑃𝐿
̅̅̅ 

1.00 

         0.78 
0 0 0 0 0 0.001 0 0 0 0.001 0 0.001 0 0.002 

0.78 

         0.66 
0 0 0 0 0.001 0.001 0.001 0.001 0 0.001 0 0.001 0 0.003 

0.66 

         0.55 
0 0 0 0.002 0.002 0.002 0.002 0 0 0 0 0 0 0.008 

0.55 

         0.45 
0 0.001 0.001 0.003 0.001 0.001 0.002 0.001 0 0.001 0 0 0.001 0.012 

0.45 

         0.36 
0.003 0.004 0.006 0.010 0.010 0.003 0.001 0.001 0 0 0.001 0 0 0.041 

0.36 

         0.28 
0.004 0.009 0.019 0.018 0.009 0.003 0.002 0.001 0 0.001 0 0 0 0.069 

0.28 
         0.21 

0.012 0.027 0.037 0.022 0.013 0.001 0.002 0.001 0.001 0 0 0 0 0.118 
0.21 
         0.15 

0.030 0.038 0.027 0.015 0.003 0.001 0.001 0 0.001 0.001 0 0 0 0.119 
0.15 
         0.1 

0.082 0.066 0.022 0.004 0.002 0.003 0.001 0 0 0 0 0 0 0.183 
0.1 
         0.06 

0.135 0.058 0.010 0.002 0 0 0 0 0 0 0 0 0 0.205 
0.06 
         0.03 

0.196 0.033 0.005 0 0.001 0 0 0 0 0 0 0 0 0.235 
0.03 
         0.01 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.000 
0.01 
         0.00 

0 0 0 0 0 0 0 0 0 0 0 0 0 0.000 

Marginal Prob 0.464 0.238 0.130 0.076 0.042 0.018 0.012 0.005 0.002 0.005 0.001 0.001 0.005 1.000 

 

      The approach to creating a statistically correct random set of load capacities and assigning 

them to the load buses begins by determining the aggregate load capacity 𝑃𝐿
𝑡𝑜𝑡(𝑁) using equation 

(3.10) and generating a statistically set of 𝑁𝐿 load capacities which follows an exponential 

distribution of generation capacities with 1% of generated loads switched to super large values. In 

order to accurately formulate a synthetic power grid we need to assign load capacities to the load 

buses in a way consistent with that of a realistic grid. Therefore, the proposed approach will be 

developed to assign the load capacities to each load bus with respect to the statistical pattern 

presented in Table 3.3. Expect for the statistical pattern, the procedure is exactly like that of 

generation capacities assignment in section 3.2.1 (See Figure 3.6) 
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3.4 The statistics of generation dispatch in    

realistic power grids 
      In realistic power grids generation units are committed to serve the time-varying demand of 

customer loads according to their costs, operational limits, network constraints, and environmental 

constraints and other factors. However, in the development of synthetic grid modeling, we lack 

most of electrical and economical information as mentioned above. Therefore, we seek a solution 

to determine the generation dispatch in a grid based on the statistical analysis so that it will be 

consistent with the statistics observed in realistic power grids.  

      The main idea is that by studying the possible correlation between generation capacities 

𝑃𝑔𝑛

𝑀𝑎𝑥  and power dispatch 𝑃𝑔𝑛
(𝑡0) in realistic power grids an appropriate method can be 

constructed to estimate the power output of generating units. Figure 3.10 shows the scatter plot of 

actual generation versus generation capacities in a typical realistic power grid. From Figure 3.10, 

it is evident that there exists strong correlation between the two as 𝜌{𝑃𝑔𝑛

𝑀𝑎𝑥,  𝑃𝑔𝑛
(𝑡0)} = 0.9563 

in this case and greater than 70% in other realistic grids. Two additional observations could be 

made regarding this figure: (1) in a typical realistic power grid about 0 ~ 20 % of generators are 

out of service, and interestingly only a small number of them belong to the super large power units 

(red dots in Figure 3.10. It should be noted here that electricity market operation requirements of 

capacity reserve, load levels of the system, or the annual overhaul schedule might be the reasons 

causing this phenomenon; (2) about 50 % of committed power units are operated very closed to 

their maximum generation capacities and the power dispatch for the rest of generating units vary 

between minimum and maximum generation capacity. 
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       Figure 3.11 shows the scatter plot of generation capacities versus dispatch factor 𝛼𝑛 =

𝑃𝑔𝑛
(𝑡)  𝑃𝑔𝑛

𝑀𝑎𝑥⁄ , 𝑛 = 1, … , 𝑁𝑔, in the WECC-16994 bus system. Figure 3.11 implies that in a 

typical power grid small and mid-size power units tend to have a wider range of dispatch factor 

compared with those unit of larger size. That means, as a unit size becomes larger, its dispatch 

factor tends to grow larger too and draw closer to 1.00. Figure 3.12 shows the statistical distribution 

of uncommitted generation capacities. The distribution is fitted very well by the exponential PDF 

with mean value of 𝛽 = 90.9, i.e. about 99% of statistics satisfy to exponential distribution. Figure 

3.13 plots the empirical 2-D distribution function of (𝑃𝑔𝑛

𝑀𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝛼𝑛 ) extracted from WECC-16994 

system, in a similar way as what has been done in Section 3.2. It should be noted here that the 

main motive of using 2-D empirical PDF is to depict the actual relationship between the generation 

dispatch and the total generation capacity attached to the bus. 

 

 

Figure 3.10: Scatter plot for generation dispatch versus generation capacity in realistic power 

grid 
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Figure 3.11: Scatter plot for dispatch factor α versus maximum generation capacity in WECC-

16994 bus system 

 
Figure 3.12: Empirical PDF of uncommitted generation capacities in realistic power grid 

 
Figure 3.13: The 2-D empirical PDF of generation dispatch versus normalized generation 

capacity in WECC-16994 bus system. 
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Table 3.4: Probability analysis of generation dispatch and normalized generation capacity in 

WECC-16994 bus system 

 
       

      The above mentioned results presented in Table 3.4 can provide us useful guidelines to 

determine the generation dispatch of all installed generators in a synthetic power grid. The obtained 

pattern will help us to propose a statistics-based algorithm to improve the generation setting in 

existing synthetic power grid modeling, namely, to assign the best set of generation dispatches 

which are consistent with that of realistic grids. Briefly, this method is composed of three steps as 

follows: 

Step 1: Uncommitted units; select a set of generation capacities form  [𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑁𝑔
 and consider 

them as uncommitted units. In this step, (0~20) % of generating units are considered as 

uncommitted units with 𝛼 = 0 which follow the exponential distribution in Figure 3.12  and 

remaining units are guaranteed to take dispatch factor value between (0 ~ 1]. It should be noted 

that the selected capacities should follow the empirical PDF presented by Figure 3.9. Hence, the 

capacity of nominated units must be close enough to the random values generated by exponential 

distribution. 

Step 2: Committed units; this step provides a procedure to determine the generation dispatch at 

each generation bus according to an empirical 2-D distribution function of (𝑃𝑔𝑛

𝑀𝑎𝑥 , 𝛼𝑛 ) extracted 
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from realistic grids. Table 3.4 summarizes the obtained results from statistical analysis of WECC-

16994 systems. This table can provide us useful guidelines to determine the generation dispatch 

of committed generators (category B) in a synthetic power grid. First we need to select 40~50 % 

of remaining units as committed but not full-load units. In this procedure, the nominated units are 

selected according to the empirical PDF of generation capacities of category B, in a similar way 

as what has been done in step 1. Then an algorithm will be developed to assign the best generation 

dispatch to each generation bus with respect to the statistical pattern presented in Table 3.4. 

Step 3: Full-load units; in this step all remaining units are considered as full-load sources with 

dispatch factor 𝛼 = 1.  

The flowchart of the proposed algorithm is depicted in Figure 3.14. 
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Figure 3.14: Flowchart of the proposed algorithm to assign random generation dispatch to 

generating units 
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3.5 Conclusion   

       In this chapter we examine the statistical features of generation capacities in realistic power 

grids in terms of aggregate generation capacity, distribution of individual capacities, and their non-

trivial correlation with nodal degrees. Our study on the statistical distribution of generation 

capacities shows that more than 99% of the generation units follow an exponential distribution 

with about 1% having extremely large capacities falling out of the normal range defined by the 

expected exponential distribution. Based on the obtained results presented in this paper there exists 

non-trivial correlations between the total number of branches connecting a bus (say node degree 

k) and the total generation attached to the bus. This paper also indicates that there exists strong 

correlation in between the power dispatch and the generation capacities. 

    Based on the above results, we develop an algorithm to generate a statistically correct random 

set of generation capacities and then assign them to each generation bus in a grid. We then propose 

a statistical approach to determine the generation dispatch at each generation bus according to its 

generation capacity and the statistic of dispatch ratios. 
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Chapter 4  
 

Transmission line capacity assignment   
 

        In this chapter we mainly focus on the statistical analysis of transmission line capacities.  This 

section addresses the research question of whether there exists a relationship between the 

transmission line capacities and topological characteristics of power grids. We utilize the realistic 

power grid data sets to extract a model for the transmission line capacity in the synthetic high 

voltage grids. Motivated by the need for accurate line capacity assignment and in order to improve 

the synthetic power grid modeling, we performed a set of statistical  experiments on some available 

realistic networks such as, NYISO_2935, ERCOT-5633 and WECC- 16994 bus systems, and we 

found that (a) the capacity of transmission lines follows a well-known distribution and it can be 

fully defined by mathematical definitions (b) the line capacities assignment in a given synthetic 

power grid model should be improved using obtained statistical results which is found consistent 

with what is observed in realistic power grids. To our best knowledge, this is a first attempt of 

statistical analysis of transmission line capacities and its application in generating synthetic power 

grids. 
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4.1 Introduction  
      To avoid exceeding a transmission line limits, most lines have established a maximum power 

flow level that cannot be exceeded at any time. This static thermal rating is based on the worst-

case scenario with respect to environmental conditions: a hot day with full sun and a very low 

wind that is typically assumed to be around 2ftps. If the line’s maximum power flow is exceeded 

under these conditions, the line could sag to the point where it would come into contact with trees, 

trucks, boats, or other nearby hazards [57-60]. However, power levels that would cause 

unacceptable sag in a transmission line under these conditions may not cause unacceptable sag on 

a cooler, cloudy, windy day, when the rising temperature caused by current through the line is 

offset by the colder operating environment and the cooling effect of the wind. Because the 

environmental conditions are almost never as unfavorable as those used to calculate the static 

thermal rating of a line, the line’s true maximum capacity is underestimated the vast majority of 

the time.  

     This chapter mainly focuses on statistical analysis of transmission line capacities in terms of 

both topological and electrical parameters. In this chapter we examine transmission line capacities 

based on both network topology metrics and some newly proposed electrical indexes. The obtained 

results show that the issue of transfer capacity assignment not only emerges as an electrical 

optimization concern, but some topological metrics must be considered to find the best line 

capacity assignment that is consistent with what is manifested in real-world grid. These results 

then will be used to develop a new methodology to appropriately characterize the line capacity 

assignment and improve the synthetic power grid modeling.  
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      4.2 Line capacity distribution in real-world 

power grids 

 
      In power electric systems transferring power from one bus to another is distributed over 

transmission lines based on Kirchhoff’s current and voltage laws. These laws are derived from 

topology of the network and are unique. It should be noted that every transmission line has a limit 

on the amount of power it can transfer. This limit can be imposed by several phenomena including 

voltage and stability limits. Technically, the transfer limits must be estimated to encompass both 

normal and overloaded operations. Therefore, given the connecting topology of a power grid, the 

transfer limits are traditionally considered 20 % upper than the normal operation. In this section 

we will use the statistical analysis to assess whether the distribution of transmission line capacities 

follows a well-known mathematical distribution. The importance of this issue stems from the fact 

that in a synthetic power grid modeling, we need a realistic pattern to generate the reasonable 

values for transmission line capacities. Although, the operational concerns should be considered 

to determine the reasonable values for the line capacities, the statistical analysis needs to account 

for the constraints of transmission capacity setting. 

       Using ERCOT-5633 and WECC-16994 buses systems, as two realistic power grid examples, 

we investigate the distribution of realistic line capacities. Due to the lack of sufficient sample data, 

we have to combine the transmission line data from the two systems. It should be noted that the 

distribution of a random variable, say transmission line capacity, is a function that describes how 

likely we can obtain the different possible values of the random variables. Figure 4.1 depicts the 

distribution of normal, long-term emergency and short-term emergency rating. Technically, 
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normal rating refers to maximum loading that the line can carry continuously. Long-Term 

Emergency (LTE) rating is defined as the maximum loading, which may be carried by a line up to 

four hours. And Short-Term Emergency (STE) rating refers the maximum loading for a line up to 

fifteen minutes. The statistics of the generated distribution functions show that in the realistic 

power grids, the capacity of transmission lines follows the Generalized Extreme Value Distribution 

(see equation 4.1 and 4.2).  

     From Figure 4.1 the probability that capacity rating of transmission lines falls into [0 MW, 

1000MW] is much higher than other intervals. Further, this figure provides a pattern to generate 

reasonable capacity rating in synthetic power grid methods. Table 4.1 shows the best fitting 

distribution functions with the corresponding estimated parameters. Based on the obtained results, 

it is clear that the distribution of capacity lines can be fully defined by a mathematical distribution, 

and the fitted curve, presented by (4.1) and (4.2), provides a pattern to generate reasonable line 

capacity values for a given power grid topology.  

Generalized Extreme value Distribution: 

𝐺(𝑥|𝜇, 𝜎, 𝜉) =
1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥)                                                                                                 (4.1) 

Where 𝝁, 𝝈 𝒂𝒏𝒅 𝝃 are fitting parameters, and: 

𝑡(𝑥) = { (1 + (
𝑥−𝜇

𝜎
) 𝜉)

−1
𝜉⁄

         𝑖𝑓𝜉 ≠ 0

𝑒−(𝑥−𝜇)/𝜎                            𝑖𝑓 𝜉 = 0

                                                                               (4.2) 

     Although the presented distributions can generate reasonable values for the capacity of 

transmission lines, it is really challenging to find the best line capacity assignment. Indeed, we 

need to evaluate the statistical behavior of realistic capacities and the relationships between the 
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line capacities and topological characteristics of power grids. In order to address this issue, first 

we need to describe different types of links in real-world networks. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.1: Line capacity distribution for (a) Normal, (b) long-term emergency and (c) short-term 

emergency rating. 

Table 4.1: Distribution fitting for transmission line capacities 

  Parameter Estimated 

 Distribution 
Fitting 

ERCOT WECC 

 

Normal 
Rating 

 

G(𝑥|𝜇, 𝜎, 𝜉) 

𝜇 = 230.77 𝜇 = 136.92 

𝜎 =130.21 𝜎 =110.95 

𝜉 =0.40 𝜉 =0.64 

 

LTE 
Rating 

 

G(𝑥|𝜇, 𝜎, 𝜉) 

𝜇 = 240.80 𝜇 = 153.92 

𝜎 =136.60 𝜎 =125.19 

𝜉 =0.41 𝜉 =0.64 

 

STE 
Rating 

 

G(𝑥|𝜇, 𝜎, 𝜉) 

𝜇 =247.14 𝜇 =160.52 

𝜎 =142.1 𝜎 =121.68 

𝜉 =0.42 𝜉 =0.58 
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4.3 Transmission line capacity related with 

topology features 

 
      In this section we continue our experiments on realistic power grids to evaluate the statistical 

behavior of their line capacities. First we investigate the relationship between the link types and 

different values of transmission line capacities. Then we define and examine a new index, called 

Neighboring Capacity Ratio (NCR), to characterize the dependency of line capacity on topological 

metrics.   As mentioned in previous section, in a typical power grid, all the buses can be categorized 

into three groups; Generation buses (G) which connect generators, Load buses (L) which connect  

loads and Connection buses (C) which form the transmission network.  Considering different bus 

types G/L/C, all the branches in a given network can be grouped into six link type categories; GG, 

LL, CC, GL, GC and LC. That is, the link type of a branch is determined by the bus types of its 

end buses. Table 4.2 and 4.3 provide the topological analysis of transmission line capacities in 

realistic power grids. Due to the wide range of line capacities it is necessary to categorize the line 

capacities into smaller intervals, so that we can study each category separately. In this way we will 

be able to model their topological behavior more precisely.  

       Table 4.2: The ratio of link types in WECC power grid 

Line Capacity- MW  GG   LL  CC  GL  GC  LC  

(0-400) 100 % 100 % 78 % 95 % 91 % 92 % 

(400-800) 0 0 15 % 3 % 8 % 5 % 

(800-1200) 0 0 4 % 1 % 1 % 2 % 

(1200-2000) 0 0 3 % 1 % 0 1 % 

Total number of links 10 2 8229 593 183 5359 
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Table 4.3: The ratio of link types in WECC power grid 

Line Capacity -MW GG LL CC GL GC LC 

(0-400) 100 % 100 % 65 % 83 % 73 % 80 % 

(400-800) 0 0 20 % 9 % 15 % 17 % 

(800-1200) 0 0 10 % 8 % 12 % 2 % 

(1200-2000) 0 0 5 % 0 0 1% 

Total number of links 2 4 2539 86 49 1775 

 

      The node degree of bus i in a grid equals the total number of branches it connects and can be 

obtained from the ith diagonal entry of the Laplacian Matrix, i.e., 𝑘𝑖 = 𝐿(𝑖, 𝑖). From node degree 

and topology of the grid it is possible to have a unique measure for the connectivity of each link 

in the grid, called Average Link Degree (ALD), that is: 

𝑘̅𝑚 =
𝑘(𝑚,𝑖)+𝑘(𝑚,𝑗)

2
            𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀                                                                                  (4.3) 

where 𝑘𝑚,𝑖 and 𝑘𝑚,𝑗 represent the node degree for two connected buses, and M is the total number 

of links. 

     The important thing to note here is that since the definition (4.3) includes the node degree for 

both connected buses, we need to represent two link types, different from what we presented at the 

beginning of this section. The first type, called Internal Link, is considered a connection link which 

has some neighbors from both sides, and the second type, called Boundary Link, is directly 

connected to the load/generation buses. Internal and boundary links can be fully recognized with 

respect to the grid topology (see Figure 4.2) 

     Figure 4.3 displays the distribution function of ALD for internal links that results from the 

numerical simulation of ERCOT and WECC systems. For the sake of comparison, plots for various 

line capacity intervals are shown in a single figure. Figure 4.3 shows an explicit trend for ALD in 
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which as we move toward intervals with higher capacities, we obtain higher fitting parameters 

(𝜇, 𝜎). Another even more interesting discovery is about the type of four distributions. For line 

capacities between 0 to 400 MW (interval 1) the ALD follows the Generalized Extreme Value 

distribution. However, other three categories follow the Burr distribution 𝛽(𝑥|𝑐, 𝑘) =

𝑐𝑘 (𝑥𝑐−1 (1 + 𝑥𝑐)𝑘+1)⁄  where c and k are fitting parameters. From the obtained statistics we can 

see that given a realistic power grid the ALDs have heavy-tailed distributions. 

 

Figure 4.2: (a) Internal link including several neighbors from both sides and (b) Boundary link 

directly connected to generation/load buses. 

 

 

Figure 4.3: Average link degree distribution for the internal links resulted from ERCOT and 

WECC systems. 
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       What presented above shows the distribution of ALD for internal links. However, one can 

easily consider another strategy to represent the statistical behavior of boundary links. To address 

this issue, we propose a new index, 𝜏, called Neighboring Capacity Ratio (NCR) . For a given 

transmission line m, index 𝜏 is defined as the ratio of the average neighbor line capacities 𝐶 to the 

line capacity 𝐶𝑚. The proposed index is presented as follows: 

𝜏𝑚 =
𝐶𝑚

𝐶𝑚
                                                                                                                                    (4.4) 

𝐶𝑚= 
𝐶1,𝑚+𝐶2,𝑚+⋯+𝐶𝑘,𝑚

𝑘
                                                                                                                (4.5) 

where 𝑐𝑘,𝑚 is the capacity of k th neighbor line (see Figure 4.2.b). Figure 4.4 plots the distribution 

function of 𝜏 for ERCOT and WECC power grids. The numerical results show that for boundary 

links, not only the proposed index follows Burr distribution, but also it is limited around 𝜏 = 2 and 

no greater than 𝜏 ≅ 5. What should be noted here is the proposed index τ can be applied to the 

internal links as well. Figure 4.5 illustrates the distribution of 𝜏 for the internal links. As we can 

see for both ERCOT and WECC power grids, the fitted curves follow the Bur distribution (like 

what we see for boundary links).  Figure 4.5 also indicates that the deviation of 𝜏 is roughly greater 

than  𝜏 = 2 and it falls into a very restricted range. Table 13 shows the best fitting distribution 

parameters, and the mean and standard deviation values for both ERCOT and WECC systems. 

 

Figure 4.4: Neighboring capacity ratio distribution for the boundary links resulted from ERCOT 

and WECC systems. 
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(a)WECC 

 

(b) ERCOT 

Figure 4.5: Neighboring capacity ratio distribution for the internal links resulted from (a) WECC 

and (b) ERCOT systems. 

Table 4.4:  Distribution fitting for neighboring capacity ratio 

 Burr Distribution 

 Mean Std c k 

WECC 0.99 0.58 6.8 0.43 

ERCOT 1.011 0.48 6.4 0.42 

 

        Examining and interpreting structural and electrical properties of power systems enable the 

development of an appropriate synthetic modeling that could be utilized to generate power grid 

test cases with accurate grid topology and electric parameters. Our statistical results show that the 

capacity of transmission lines follows a well-known distribution and it can be fully defined by 

mathematical definition. The obtained distribution provides a pattern to generate reasonable 

capacity line values for a given synthetic power grid. Also, with respect to the proposed measure, 

Neighboring Capacity Ratio (NCR), our experiments reveals some useful and interesting relations 

presented between the transmission capacity of a specific line and that of neighboring lines in the 

grid. Generally speaking this ratio follows a Burr distribution with the mean value around 1.0.  Our 

statistical analysis on real-world power grid provides potential insights to propose a practical 
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method to find the best transmission line capacity assignment in random topology power grid 

modeling. 

 

4.4 Statistical-based algorithm to assign 

maximum capacity to transmission line  

  
      The last section of this chapter introduces a statistical –based approach to generate a set of 

transmission line capacities and assign them to the transmission lines. To accomplish this goal we 

first investigate the scaling function of total transmission line capacity in a grid versus its network 

size. Then we study the possible relationship between transmission line capacity 𝐹𝑙
𝑚𝑎𝑥 and the 

real-time flow of power 𝐹 𝑙   through the transmission lines during the normal operation of realistic 

power grids. 

      Figure 4.6 depicts the total transmission capacity of power grids, as defined in (3.3), versus the 

network size for each sample grid in Table 3.1, where the solid line represents an approximate 

fitting curve of the observed scaling property. Note that for the purpose of simplicity, the logarithm 

in this section is with base 10. From Figure 4.6 we can see that when the network size is small, the 

total transmission line capacity in a grid tend to has small value. However, as the network size 

becomes larger, the total backbone transmission capacity tends to grow as a power function of 

network size, 𝐹𝑀𝑎𝑥
𝑡𝑜𝑡 (𝑛)  ∝  𝑛0.9059.  
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Figure 4.6: The scaling property of the total backbone transmission capacity in realistic power 

grids. 

     Figure 4.7 shows the empirical PDF marginal capacity 𝛽𝑙 = 𝐹𝑙
𝑚𝑎𝑥 − 𝐹𝑙 𝐹𝑙

𝑚𝑎𝑥⁄ , 𝑙 = 1, … , 𝑀, in 

the WECC-16994 bus system. This figure implies that in a typical power grid majority of 

transmission lines tend to have a big marginal capacity. Figure 4.7 also illustrates the distribution 

of marginal capacity 𝛽. As we can see in realistic power grids, the fitted curve follows the 

generalized extreme value distribution 

 

Figure 4.7: The Empirical PDF of capacity margin in WECC-16994 bus system 

     The above mentioned results can provide us useful guidelines to determine the transmission 

line capacities in a synthetic power grid with respect to their short-term power flows. The obtained 

empirical distribution will help us to propose a statistics-based algorithm to improve the 

transmission line setting in existing synthetic power grid modeling, namely, to assign the best set 
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of transmission line capacities which are consistent with that of realistic grids. Briefly, this method 

is composed of two steps as follows: 

      The statistics collected from the date of a number of realistic grids also indicate that there exists 

a considerable correlation between the capacity margin of a transmission line and its short-term 

power flow with a Pearson coefficient of −0.5745. Figure 4.8 displays the scatter plot of 

normalized short-term power flow and capacity margin which can be further used to generate the 

2-D empirical PDF of some sample grids like WECC-16994 buses system.  

       By averaging the statistics of available realistic grid data, we may extract an empirical 2-

dimensional probabilistic density function (PDF) for the normalized short-term power flow and 

capacity margin (see Figure 4.9  ). Based on the 2-D empirical PDF over the obtained uneven grid 

division  a two-dimensional probability distribution table shown in Table 4.5 can be formulated to 

enable an algorithm to assign the generated capacity margin to each transmission line in a grid 

according to its normalized short-term power flow.   

 

Figure 4.8 Scatter plot for capacity margin versus normalized short-term power flow in WECC-

16994 bus system 
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Figure 4.9: The 2-D empirical PDF of capacity margin versus normalized short-term power flow 

in WECC-16994 bus system 

Table 4.5: Probability analysis of capacity margin and normalized short-term power flow in 

WECC-16994 bus system 

 
𝐹𝑙̅ Marginal 

Prob 0.00 

         0.01 
0.01 

         0.03 

0.03 

        0.06 

0.06 

          0.1 

0.1 

         0.15 

0.15 

         0.21 

0.21 

         0.28 

0.28 

         0.36 

0.36 

         0.45 

0.45 

         0.55 

0.55 

         0.66 

0.66 

         0.78 

0.78 

         1.00 

𝛽𝑙 

1.00 

         0.99 
0.044 0.001 0 0 0 0 0 0 0 0 0 0 0 0.441 

0.99 

         0.97 
0.038 0.011 0.001 0 0 0 0 0 0 0 0 0 0 0.050 

0.97 

         0.94 
0.036 0.029 0.008 0 0 0 0 0 0 0 0 0 0 0.073 

0.94 

         0.90 
0.019 0.059 0.011 0.006 0.001 0 0 0 0 0 0 0 0 0.099 

0.90 

         0.85 
0.008 0.059 0.027 0.008 0.003 0.002 0.001 0 0 0 0 0 0 0.112 

0.85 

         0.79 
0.004 0.040 0.046 0.020 0.006 0.002 0.004 0 0 0 0 0 0 0.126 

0.79 

         0.72 
0.004 0.017 0.054 0.024 0.012 0.004 0.001 0.003 0.001 0 0 0 0 0.126 

0.72 

         0.64 
0 0.011 0.037 0.031 0.030 0.011 0.008 0.002 0.002 0.001 0 0 0 0.137 

0.64 
         0.55 

0.001 0.007 0.012 0.029 0.019 0.018 0.005 0.004 0.003 0.002 0.001 0 0 0.104 
0.55 
         0.45 

0.001 0.003 0.005 0.018 0.014 0.010 0.003 0.005 0.001 0 0.001 0 0.001 0.066 
0.45 
         0.34 

0 0.001 0.002 0.004 0.006 0.001 0.005 0.003 0 0.002 0 0 0 0.024 
0.34 
         0.22 

0 0.001 0.001 0 0.004 0 0.001 0.002 0.001 0 0 0 0 0.010 
0.22 
         0.00 

0 0 0 0. 0.001 0.001 0.001 0 0 0 0 0 0 0.003 

Marginal Prob 0.160 0.240 0.200 0.140 0.090 0.050 0.020 0.020 0.010 0.005 0.002 0 0.001 1.000 

 

Step 1: In this step a number m of marginal capacities are generated from the specific distribution 

presented by figure 4.7 and an algorithm will be developed to assign the best capacity margin to 

each transmission line with respect to the statistical pattern presented in Table 4.5.  And then the 

maximum transmission capacity of each line can be calculated by equation (4.6)   with respect to 

the assigned marginal capacity and the real-time power flow resulted from DC power flow 

calculation [61-62].  
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Figure 4.9: Flowchart of the proposed algorithm for transmission line capacity assignment in 

synthetic power grid modeling 

𝐹𝑙
𝑀𝑎𝑥 =

𝐹𝑙

1−𝛽𝑙
                                                                                                                               (4.6) 

     The real-time active power transfer across the line can is proportional to sin 𝛿 where 𝛿 is called 

the power angle, which is the phase difference between the voltages on sending and receiving 
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buses. What should be noted here is in order to have a secure system the maximum power angle 

should be less than 60 degrees. Hence, we have to do the scaling of generation dispatches and 

loads if 𝛿𝑚𝑎𝑥 > 60° , to make all power angles remain the secure range. 

Step 2:  Do the scaling of transmission capacities if ∑ 𝐹𝑙
𝑚𝑎𝑥𝑀

𝑙=1 > 1.05𝐹𝑡𝑜𝑡 to make the aggregate 

transmission capacity remain the range specified by 𝐹𝑡𝑜𝑡(𝑛). And the scaling function is given as: 

[𝐹𝑙
𝑚𝑎𝑥]1×𝑀

′ =  [𝑃𝑔𝑛

𝑀𝑎𝑥]1×𝑀 ×
𝐹𝑡𝑜𝑡

∑ 𝐹𝑙
𝑚𝑎𝑥𝑀

𝑙=1

                                                                                      (4.7) 

The flowchart of the proposed algorithm is depicted in Figure 4.9. 

 

 

Conclusion 
     In this chapter, we investigate the relationship between transmission line capacity and some 

network topology metric and a new proposed electrical index called “neighboring capacity ratio”. 

It is found that the capacity of transmission lines follows a well-known distribution and it can be 

fully defined by mathematical definition. The obtained results show that the issue of transfer 

capacity assignment not only emerges as an electrical optimization concern, but some topological 

metrics must be considered to find the best line capacity assignment that is consistent with what is 

manifested in real-world grid. These results are used to develop a new methodology to 

appropriately characterize the line capacity assignment and improve the synthetic power grid 

modeling. 
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Chapter 5 
 

Synthetic grid modeling integration  
       

        In synthetic power grid research area a number of models have been proposed based on the 

observed statistical characteristics of the grids. All these models provide useful perspectives of 

power grid characteristics. However, the topology of the generated power grids fails to accurately 

or fully represent a realistic power system. We note that power grid networks are much more than 

a graph topology. In order to facilitate numerical simulations for grid controls and operations, one 

also needs to include realistic electrical parameter settings such as transmission line capacities, the 

generation/ load settings. This thesis seek an effective way to improve the accuracy of existing 

synthetic power grid models, by providing five statistical-based algorithms. The proposed 

algorithms will allow us to recognize the best set of bus type assignment and the most accurate 

setting for generation, load and transmission line capacities.  

      Figure 5.1 shows the flowchart of the proposed five algorithm presented in this thesis that 

could be utilized to generate synthetic power grid test cases with accurate grid topology and 

electric parameters 
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Figure 5.1: Summary of the proposed five algorithm to generate synthetic power grid test cases 

with accurate grid topology and electric parameters 
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Chapter 6 

 

Thesis Summary 
 

       Several emerging issues, including the resiliency of electric power delivery during extreme 

weather events, expanding use of distributed generation, the rapid growth of renewable generation 

and the economic benefits of improved grid efficiency and flexibility, are challenging the way 

electricity is delivered from suppliers to consumers. This grid of the future requires advances in 

transmission and distribution system management with algorithms to control and optimize how 

power is transmitted and distributed on the grid. However, the development of these systems has 

been hindered because the research community lacks high-fidelity, public, large-scale power 

system models that realistically represent current and evolving grid characteristics. Due to security 

and privacy concerns, much of the real data needed to test and validate new tools and techniques 

is restricted. To help drive additional innovation in the electric power industry, there is a need for 

grid models that mimic the characteristics of the actual grid, but do not disclose sensitive 

information. 

       These models can be used to produce a sufficiently large number of power grid test cases with 

scalable network size featuring the same kind of small-world topology. However, in the existing 

models the approaches to address some electrical and topological settings such as (1) bus type 
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assignment, (2) generation and load settings, and (3) transmission line capacity assignments, are 

not sufficient enough to apply to realistic simulations.  

     To address this challenges, the first part of this thesis proposes a statistical methodology to 

solve the bus type assignment problem. In this part we have defined a novel numerical measure, 

the Bus Type Entropy, to characterize the bus type assignment of realistic power grids. Our 

proposed measure incorporates both bus type ratios and the link type ratios. Therefore it utilizes 

the correlated characteristics of realistic grids bus type assignments. This new measure will allow 

us to recognize the specific set of bus type assignments, either directly extracted from the realistic 

grids or formulated but consistent with a realistic grid, in the spectrum of random ones generated 

from permutation. Therefore some useful guidance will be provided to design an optimal algorithm 

to improve existing synthetic power grid modeling. We examine the performance of the proposed 

methodology on a set of realistic and synthetic power grids based on the empirical probability 

density function analysis. Numerical results obtained from all case studies verify the effectiveness 

of the proposed method to find the best set of bus type assignment. 

       In the second part of this thesis we examine the statistical features of generation capacities 

and loads in realistic power grids in terms of aggregate generation\load capacity, distribution of 

individual capacities, and their non-trivial correlation with nodal degrees. Our study on the 

statistical distribution of generation\load capacities shows that more than 99% of the generation 

units follow an exponential distribution with about 1% having extremely large capacities falling 

out of the normal range defined by the expected exponential distribution. Based on the obtained 

results presented in this part we came to the conclusion that there exists non-trivial correlations 

between the total number of branches connecting a bus (say node degree k) and the total generation 

attached to the bus. Based on the above results, we develop an algorithm to generate a statistically 
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correct random set of generation capacities and load, and then assign them to each generation and 

load bus in a grid. We then propose a statistical approach to determine the generation dispatch at 

each generation bus according to its generation capacity and the statistic of dispatch ratios. 

       The last part of this thesis mainly focuses on the statistical analysis of transmission line 

capacities.  This part addresses the research question of whether there exists a relationship between 

the transmission line capacities and topological characteristics of power grids. We utilize the 

realistic power grid data sets to extract a model for the transmission line capacity in the synthetic 

high voltage grids. Motivated by the need for accurate line capacity assignment and in order to 

improve the synthetic power grid modeling, we performed a set of statistical  experiments on 

realistic power grids and we found that (a) the capacity of transmission lines follows a well-known 

distribution and it can be fully defined by mathematical definitions (b) the line capacities 

assignment in a given synthetic power grid model should be improved using obtained statistical 

results which is found consistent with what is observed in realistic power grids. The obtained 

results and discoveries are used to develop a new methodology to appropriately characterize the 

line capacity assignment and improve the synthetic power grid modeling. 
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