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Sleep disturbances and insomnia are prevalent, with around 33% of adults indicating that 

they experience at least one main symptom of insomnia, and bidirectional relationships exist 

with common psychopathology, particularly major depressive disorder (MDD). However, 

genetic and environmental (e.g., traumatic event exposure) contributions to the etiology of these 

phenotypes are not yet well understood. A genetically informative sample of approximately 

12,000 Han Chinese women aged 30-60 (50% with recurrent MDD) was used to address several 

gaps within the sleep literature. Sleep disturbances were assessed in all individuals using a 

general item addressing sleeplessness (GS). A sleep within depression sum score (SDS) was also 

created in MDD cases, combining information from the GS and two insomnia items within 

MDD. A total of 11 traumatic events were assessed and additional information on childhood 

sexual abuse (CSA) was also obtained. First, factor analyses were conducted to determine trauma 



 x 

factor structure. The best-fit solution included 3 factors: interpersonal, child interpersonal, and 

non-assaultive, and composite variables were constructed accordingly. A series of hierarchical 

regressions were run to examine differential effects of trauma type and timing on sleeplessness. 

All traumatic events predicted sleeplessness at similar magnitudes, although population models 

indicated that childhood interpersonal trauma may be particularly potent. An association between 

CSA and sleeplessness was also replicated. A series of genetic analyses demonstrated that the 

single nucleotide polymorphism-based heritability of sleep phenotypes did not differ 

significantly from zero. Further, association analyses did not identify any genome-wide 

significant loci. However, using a liberal false discovery rate threshold of 0.5, two genes of 

interest, KCNK9 and ALDH1A2, emerged for the SDS. Polygenic risk score (PRS) analyses 

demonstrated genetic overlap between the SDS in MDD cases and GS in MDD controls, with 

PRSs explaining 0.2-0.3% of the variance. A final combined model of both genetic and 

environmental risk indicated that both PRS and traumatic events were significant predictors of 

sleeplessness. While genetic results should be interpreted with caution given the lack of 

heritability, additional research into the genetic and environmental contributions to insomnia, 

utilizing more standardized phenotypes and properly ascertained samples, is clearly warranted.
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Chapter 1: Introduction 

 

 

 

Disturbed sleep is a widespread problem in today’s society, but the etiologic 

contributions to this important phenotype are not well understood. Known influences are both 

environmental (e.g., trauma exposure) and biologic (e.g., genetic) in nature, and studies 

demonstrate overlap in etiologic sources between sleep difficulties and common internalizing 

disorders, such as major depressive disorder (MDD). However, questions remain as to how the 

type (e.g., interpersonal violence versus non-interpersonal violence) and timing (i.e., childhood 

versus adult onset) of traumatic events influence sleep disturbances. The genetic architecture of 

insomnia and related phenotypes (e.g., sleep disturbances), including overlap with MDD, is also 

not well understood. Thus, the purpose of this dissertation is to deepen our understanding of how 

both traumatic event exposure and molecular genetic contributions influence sleep disturbances. 

The following section begins with an overview of the prevalence and correlates of 

insomnia/sleep disturbances and related psychopathology, with a focus on MDD. Following, the 

epidemiology of traumatic events, an environmental risk factor associated with both poor sleep 

and MDD, is reviewed with specific attention to trauma type and timing in relation to these 

phenotypes. Next, a review of studies that examine genetic contributions to insomnia is provided, 

starting with behavioral genetics (i.e., twin and family studies) and moving on to molecular 

genetics (candidate gene and genome-wide association studies [GWAS]). Throughout the 

genetics section, the insomnia literature is compared to that of MDD, with a specific focus on 
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studies of overlap between these phenotypes. Finally, recent innovations in statistical genetics 

methods will be discussed, followed by an outline of the aims for this dissertation. 

 

I. Prevalence and correlates of disturbed sleep/insomnia and MDD 

 Epidemiology of disturbed sleep/insomnia. Insomnia, defined in the Diagnostic and 

Statistical Manual, 5th edition (DSM-5) as sleep complaints, which include difficulty falling 

asleep, difficulty maintaining sleep, or early morning awakenings, for at least three nights a 

week, persisting for a minimum of three months, and causing “significant distress” to the 

individual1 and its symptoms are an emerging health concern. Although definitions of insomnia 

vary within epidemiologic studies (insomnia diagnosis, insomnia symptom(s), subjective sleep 

quality),2 disturbed sleep is a widespread problem: General population studies in Western 

countries indicate that approximately one third of adults endorse a minimum of one of the main 

nighttime insomnia symptoms (e.g., difficulty falling or staying asleep), with difficulty 

maintaining sleep typically reported the most often.2,3 Although sleep disturbances are a 

widespread problem globally, rates of endorsement do appear to differ by country. An 

epidemiologic study of the same three insomnia symptoms in China found much lower rates than 

Western countries, with only 9% of individuals endorsing at least one symptom,4 and lower rates 

have also been reported in Nigeria (12%).5 The first published meta-analysis of insomnia in 

China identified a point prevalence of 15%, across a wide variety of definitions.6 Further, the 

prevalence of lifetime insomnia disorder itself, when measured through DSM or International 

Classification of Disease (ICD) definitions, is thought to be closer to 6-10%.2 A recent 

epidemiologic study comparing insomnia diagnoses between the US and Hong Kong found that 

estimates were similar across multiple definitions.7 The epidemiology literature consistently 
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shows that both age and sex influence insomnia prevalence. Older adults are more likely to 

report insomnia/sleep disturbances than younger adults (prevalence increasing to 20-48% for 

older populations)8-12 and women are more likely to report insomnia than men (risk ratio 1.41).13  

Sleep and physical health outcomes. Disturbed sleep and insomnia are related to a 

multitude of negative physical, occupational, and mental health outcomes. In terms of physical 

health, insomnia has associations with diabetes, hypertension, metabolic syndrome, 

cardiovascular disease, and neuropsychiatric disease, among other chronic health conditions.2,14 

While many of these studies vary in terms of phenotype used, severity of insomnia, and inclusion 

of sleep duration, results converge to suggest that disturbed sleep is associated with common 

health problems. Similar results are also reported in studies from China, which indicate that poor 

sleep quality or insomnia is also related to higher incidence of diabetes,15 hypertension,16 

dyslipidemia (in women),17 heart attack and stroke,18 metabolic syndrome,19,20 and even levels of 

objective measures of metabolic function such as cholesterol and insulin resistance.21 More 

globally, there is some evidence that insomnia is related to increased mortality, an association 

that may be stronger for men.14,22-25 Finally, there are also important occupational health 

implications, with studies showing that insomnia results in higher odds of accidents and errors 

and is costly to the workplace.26-28 Taken together, these associations between insomnia and 

health outcomes, although often cross-sectional in nature, highlight the importance of 

understanding risk factors related to disturbed sleep. 

 Sleep and psychopathology. In addition to being associated with physical health 

conditions, disturbed sleep is related to psychiatric phenotypes, particularly internalizing 

disorders (e.g., MDD, anxiety),29-32 with approximately 40% of individuals with insomnia 

endorsing another psychiatric disorder.3,29,31 MDD is the most common comorbid psychiatric 
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condition with insomnia.33 The relationship between disturbed sleep/insomnia and psychiatric 

disorders is complex. The high rates of comorbidity could be explained by the overlap in 

symptoms, as insomnia is embedded within the DSM criteria for MDD, generalized anxiety 

disorder (GAD), and posttraumatic stress disorder (PTSD),1 manifesting as a key symptom of 

each disorder.32,34 Sleep disturbances are prevalent within these disorders, particularly for MDD, 

where insomnia is thought to be a core symptom35 and up to 90% of individuals with MDD 

report sleep problems.32 Further, experiencing insomnia may be indicative of more severe MDD 

(e.g., 36,37). There is also evidence that the relationship between sleep disturbances and 

psychopathology is bi-directional,32,34,38 as individuals with insomnia are at a higher risk for 

developing new-onset psychopathology.29,30 Two meta-analyses support this conclusion for 

MDD more specifically,39,40 as both reported that individuals with insomnia are at least twice as 

likely to develop MDD as compared to those without the disorder. Longitudinal studies of 

combat veterans reinforce these relationships, showing that sleep disturbances predict future 

MDD and PTSD symptoms (e.g., 41,42). Overall, robust relationships between sleep and 

psychopathology, particularly MDD, underscore the importance of studying these comorbid 

conditions together. 

 Epidemiology of MDD. MDD, the most common internalizing disorder, affects 

approximately 16% of individuals in the US43 and 3.3% in China44 across their lifetimes. This 

difference in prevalence could be attributed to under-reporting in China, due to cultural 

differences (e.g., 45,46,47), although note that many risk factors for MDD, such as stressful life 

events (SLEs) and childhood sexual abuse (CSA) have been shown to be the same across 

countries.48 Like insomnia, MDD is more common in women than men,49,50 with 8-17% of 

women and 4-9% of men in Western countries50 and 4% of women and 3% of men in China44 
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reporting lifetime MDD. The disorder is also extremely costly; MDD is one of the most common 

causes of disability worldwide51 and global burden of disease data consistently shows that MDD 

is one of the leading causes of years lost to disability across many countries.52,53 There are also 

associations between MDD and many of the same physical health outcomes as insomnia (e.g., 

diabetes,54-58 cardiovascular disease59-62), and it is comorbid with many other psychiatric 

disorders (e.g.,49,63,64). Thus, given the high prevalence and overlapping negative consequences 

of both insomnia and MDD, it is important to examine etiologic factors, both genetic and 

environmental (e.g., exposure to a traumatic event) in nature, that influence these common and 

comorbid outcomes. Trauma exposure is an important environmental risk factor to consider, as it 

is common65 and has robust associations with both MDD (e.g., 66) and sleep disturbances (e.g., 

67), which will be outlined below.  

 

II. Environmental influences (i.e., trauma exposure)  

a. Trauma epidemiology 

Prevalence of traumatic events and sex differences. Exposure to traumatic events is 

common worldwide. The World Mental Health Survey Consortium (WMHSC) recently 

published data collected in 24 countries on lifetime exposure to a wide range of traumatic events. 

The overall prevalence of at least one traumatic event was more than 70%. More specifically, 

82.7% of participants assessed in the United States endorsed at least one trauma, which was 

among the highest prevalence rates. In contrast, most prevalence rates in European countries 

were below 80%, with the exception being Ukraine (84.6%). Rates were also considerably lower 

in Asian populations, with 52.5% of individuals in China and 60.7% in Japan indicating that they 

had experienced at least one of the 29 types of traumatic events. The traumatic event most 
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commonly endorsed across the full, worldwide sample was unexpected death of a loved one, and 

the authors note that the pattern of events that were the most common (i.e., top five) was 

consistent across countries.65 Overall, traumatic event exposure is more common in men.68 For 

example, rates of lifetime trauma exposure were significantly different across the sexes in the 

National Comorbidity Survey (NCS; 60.7% for males; 51.2 % for females).69 Men also 

experienced, on average, more traumatic events than women in a community sample.70 However, 

there are important sex differences across specific traumatic events that will be discussed in later 

sections. 

Trauma and physical health outcomes. There are a wide range of post-trauma sequelae 

that are associated with both mental (e.g., MDD, PTSD; 69,71,72) and physical health,73,74 making 

trauma exposure a significant global public health issue. A number of specific physical health 

outcomes have been examined in the context of traumatic event exposure. In a large cross-

sectional study of 14 countries, lifetime exposure to at least one traumatic event was shown to 

increase risk for onset of physical health conditions, even after controlling for psychopathology. 

In general, odds ratios increased as the number of event types increased, indicating a larger effect 

for multiple traumas. The pattern of results was similar for most individual physical health 

phenotypes (e.g., arthritis, heart disease, diabetes), and did not typically differ across countries.75 

Additionally, a study of six health outcomes in a community sample of African Americans found 

that individuals who endorsed eight or more traumatic events reported an age of onset for a 

physical health condition that was on average 15 years earlier than for those who did not endorse 

this high level of trauma,76 emphasizing the potential deleterious relationship between trauma 

exposure and physical health.  
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Trauma and psychopathology. The development of psychiatric disorders is also common 

following traumatic event exposure. Epidemiologic data from adults in the United States 

participating in the Mental Health Surveillance Study indicates that individuals who had been 

exposed to at least one lifetime traumatic event were more likely to report any mental illness than 

those who had not been exposed (prevalence rates were 23.2% vs. 14.3%).77 Although PTSD, a 

stress-related disorder requiring traumatic event exposure and encompassing symptoms of re-

experiencing the event, avoidance, and hyperarousal,1 is considered the “flagship” post-trauma 

psychiatric disorder, a range of psychiatric outcomes that can be both internalizing (e.g., MDD, 

GAD, PTSD) or externalizing (e.g., alcohol and drug use disorders) in nature78 are seen 

following traumatic events.69,71,72  

MDD in particular is common and highly comorbid with PTSD.69,71,79,80 Early studies 

focused on the development of MDD following SLEs, which typically include major life events 

such as divorce, unemployment, or being fired from one’s job, in addition to events that are 

considered traumas per DSM definition (i.e., “involved actual or threatened death or serious 

injury, or a threat to the physical integrity of self or others”).81 Broadly, SLE exposure is 

associated with increased risk of disorder or symptoms, and there is also a dose-response 

relationship with SLE severity and MDD risk.82 Similar relationships between SLEs and MDD 

have been observed in Han Chinese samples.48,83 MDD is also common following trauma 

exposure more specifically, with population data demonstrating higher endorsement rates of 

MDD for individuals reporting at least one traumatic event (10.1% vs. 4.3%).77 The trauma 

literature documents MDD risk following many individual traumas, such as the September 11th 

terrorist attacks,84,85 earthquakes,86 and sexual assault.87,88 Further, women may be more likely 

than men to develop MDD post-trauma (e.g., 89,90,91). Note, however, that there is some debate as 
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to the existence of a “post-traumatic depressive disorder” and whether MDD results from the 

trauma itself or from the bereavement/loss experienced.66 Although trauma is broadly associated 

with these negative health outcomes (i.e., psychopathology including MDD and PTSD, chronic 

health conditions), differential risk is often seen by type of trauma (e.g., 69) and the timing of 

trauma(s) (e.g., 92,93). 

Trauma types. Categorization of traumatic events is important, as the literature indicates 

differences in outcomes across trauma type. Understanding which forms of trauma may be more 

deleterious in nature (i.e., more likely to result in negative psychiatric and mental health 

outcomes) can help to identify individuals who are at the highest risk, inform prevention and 

intervention efforts, and focus research on specific areas that will have an impact. Traumatic 

events can be broadly categorized into events that are interpersonal (assaultive) or non-assaultive 

in nature.70-72,94 Interpersonal traumas include events such as sexual assault, physical assault, or 

kidnapping, which have a strong relational component. In contrast, natural disasters and motor 

vehicle accidents are among events considered to be non-assaultive traumas70-72,94 and are more 

random events. There are also important, established sex differences that are seen by trauma 

type.65,95 Women are more likely to report exposure to interpersonal traumas, particularly those 

that are sexual in nature (e.g., rape, sexual molestation, other sexual assault, and childhood 

physical abuse or neglect).69,70 In contrast, men are more likely to be exposed to other traumas 

such as accidents and non-sexual assault.69,95 This general pattern was also seen within the recent 

WMHSC data, where women were more likely to endorse intimate partner/sexual violence (OR 

= 2.3). In contrast, men had higher odds of endorsing various other traumas, including 

interpersonal violence (which included being beaten up or having witnessed physical fights at 

home in this study), causing or witnessing bodily harm, and accidents or injuries.65 
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Several published factor analyses support the categorization of traumatic event exposure 

into two broad categories. Stein and colleagues94 conducted a principal component analysis of 

nine traumas in Canadian twins, finding two factors: “assaultive” (robbery, held captive, beat up, 

sexual assault, other life threat) and “non-assaultive” (sudden family death, motor vehicle 

accident, fire, natural disaster). In the WMHSC study, the 29 traumatic events examined were 

also factor analyzed. Five relevant factors were extracted (plus a sixth that encompassed “other” 

events). One factor represented accidental traumas/injuries (corresponding to non-assaultive), 

while the remaining factors were all interpersonal in nature (collective violence, 

caused/witnessed bodily harm [mostly war/combat-related], interpersonal violence, and intimate 

partner/sexual violence).65 Given the large number of events examined within this sample, it is 

not surprising that several more specific interpersonal factors emerged which grouped more 

similar interpersonal events together. The separation of interpersonal and non-assaultive traumas 

may be influenced by genetic and personality factors. Unlike other forms of trauma, 

interpersonal traumas have generally been shown to have genetic influences (e.g., assaultive 

trauma heritability estimated at 20%;94 35-47% for combat;96 60% for “high-risk” traumas 

including rape97). Mechanisms may be through personality factors,98-100 which in turn are 

heritable.101 For example, genetic factors contributed to the association between antisocial traits 

and exposure to assaultive traumas.100 Thus, one’s genetic predisposition, and subsequent effects 

on characteristics such as personality, may influence selection into environments that increase 

risk of traumatic event exposure.102 Within the genetics literature, this concept is known as a 

gene-environment correlation. In contrast, non-assaultive events tend to be more random 

occurrences that are out of one’s own control (e.g., exposure to a fire, flood, or natural disaster), 

where gene-environment correlations are likely not at play.103 
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Trauma type and psychopathology. Further supporting the importance of categorizing 

traumas, there is evidence to suggest that the risk of developing certain psychiatric disorders 

differs depending on the type of trauma experienced. It is well established within the PTSD 

literature that the risk of developing PTSD is higher and symptoms are more severe following 

interpersonal traumas.69,70,104-108 This is generally supported within the more recent WMHSC 

data.109 There is also evidence that interpersonal traumas (vs. non-assaultive/accidental traumas) 

result in a higher likelihood of MDD diagnosis and higher depressive symptoms.110-114 A recent 

study of interpersonal trauma and MDD in Korea found higher rates of interpersonal trauma 

(sexual or physical in nature) but not non-assaultive trauma, in individuals with MDD. They also 

found higher depressive and PTSD symptoms within those depressed individuals endorsing 

interpersonal trauma exposure.113 These relationships may also be true for externalizing disorders 

and traits, such as substance use disorders and binge drinking.111,115 Further, it is not just 

psychiatric outcomes that are differentially associated with trauma type: a recent review provides 

evidence that interpersonal traumas may also be linked to worse physical health as measured via 

self-report (e.g., somatization symptoms, physical well-being).116 

Trauma timing. Although traumatic experiences can occur across the lifespan, many such 

events occur during childhood, which is a particularly sensitive developmental window.92 

Around 60% of adults surveyed in the US endorsed at least one adverse childhood experience 

(ACE).117-119 Further, a recent review of childhood maltreatment worldwide found specific 

prevalences ranging from 13% (CSA, combined across sexes) to 36% (emotional abuse).120 

While these may seem like drastically different prevalences, ACEs, like SLEs, typically include 

a wide range of negative experiences that can occur during childhood which encompass events 
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that are considered to be traumas (e.g., CSA, physical abuse), as well as those that are not (e.g., 

divorce/separation of parents, mental illness of someone in the household).  

Childhood trauma and psychopathology. The consequences of ACEs have been 

extensively studied over the past few decades, with a review of the literature pointing to 

increased risk for psychiatric outcomes, chronic disease, and risky sexual behaviors, and higher 

mortality.121 Childhood maltreatment more specifically, including CSA, has associations with 

many psychiatric disorders (e.g., MDD, GAD, anorexia, panic disorder, alcohol dependence, 

substance use; e.g., 122,123-125). A recent meta-analysis summarizes the state of the literature on 

prospective studies of child maltreatment (sexual abuse, physical abuse, neglect) and depression 

and anxiety disorders in adults. The authors of this study report that these traumas are 

responsible for nearly 400 million cases of depression and anxiety disorders worldwide, with 

odds ratios of 2.03 (for any type of maltreatment) and 2.66 (for CSA) in predicting depression 

and anxiety disorders.122 However, note that the majority of these studies were conducted in 

Western countries. There is a more extensive literature for CSA and MDD outcomes, which 

demonstrates that CSA severity (i.e., level of physical contact involved) has a dose-response 

relationship with MDD.124,126 These findings provide some evidence that specific characteristics 

of the abuse, such as having multiple perpetrators or endorsing intercourse, may differentially 

predict MDD risk.127-129 The relationship between CSA and MDD has also been studied in the 

Han Chinese population, with similar patterns observed in terms of overall risk, dose-response, 

and incident characteristics.130,131 Additionally, there is some evidence to suggest that childhood 

events are more potent predictors of future depressive and anxiety symptoms in adults than 

traumas that occur more proximally.93 Specific time periods may also confer more risk. In a 

recent study, investigators found that age of first exposure to child maltreatment differentially 
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predicted MDD and PTSD symptoms.92 Interestingly, individuals who were first exposed to 

interpersonal violence between 6-10 years of age had twice the risk for MDD as those who had 

their first interpersonal violence exposure as adults. In summary, exposure to trauma during 

childhood is prevalent and often interpersonal in nature, resulting in outcomes that persist many 

decades following abuse even above and beyond adult trauma load. However, there is a need for 

more studies within non-Western populations.  

b. Trauma and sleep 

Overview of the literature. Another common post-trauma outcome that is related to both 

mental and physical health correlates is disturbed sleep. Traumatic events are thought to 

disrupt/alter sleep,67,132 with potential mechanisms related to activation of the stress response and 

hyperarousal.132 As far back as the 1970s, a relationship between trauma and sleep has been 

described in research publications, with the first study using EEG to examine sleep in individuals 

who participated in the Yom Kippur War.133 Since then, sleep disturbances and insomnia 

symptoms have been reported following a wide variety of specific traumatic events, including 

combat exposure,134-138 natural disasters such as earthquakes and tornados,139,140 sexual abuse 

(including CSA),141,142 intimate partner violence,143 motor vehicle accidents,144,145 and terrorist 

attacks.146 Multiple sleep phenotypes have been used as outcomes across these samples, ranging 

from objective measures like polysomnography (less common; outlined in 132) to self-report 

sleep disturbances and insomnia diagnoses (focused on here). Despite the variation in traumas 

assessed and phenotypes used, the literature supports robust associations between trauma and 

sleep. Further, while many traumatic events have been analyzed with sleep outcomes, most 

trauma and sleep studies tend to focus on specific traumas and do not explore potential 

differential effects of trauma type and/or timing to the extent to which this may have an impact 
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on sleep. This is an important consideration, as individuals are often exposed to multiple events 

across the lifespan. 

Trauma type and sleep. Investigations of trauma type are beginning to emerge within the 

trauma and sleep literature. Given that interpersonal traumas are more potent predictors of 

internalizing psychopathology (MDD, PTSD)69,70,111,113 and that insomnia is related to these 

psychiatric disorders,1 it is possible that similar relationships (i.e., stronger effects for 

interpersonal traumas) exist for trauma and sleep. A recent investigation of urban young African 

Americans examined seven specific traumatic events that were both interpersonal and non-

assaultive in nature, finding that five of the seven events significantly predicted insomnia (ORs 

ranging from 1.53-3.27) and that the three interpersonal traumas (sexual trauma, physical assault, 

sudden violent death) all predicted more severe insomnia (ORs ranging from 2.39-2.86).147 

While this suggests that interpersonal traumas may indeed be predictive of more severe disorder, 

it is important to note that results changed upon addition of covariates (which included PTSD), 

with no traumas retaining significance in the more severe insomnia category. Further, note that 

each traumatic event was examined separately to determine its individual effect on insomnia, not 

examined in combination. In another recent study, investigators analyzed the individual and 

combined effects of interpersonal and non-assaultive traumas on self-reported sleep in college 

students, assessed via a modified version of the Pittsburgh Sleep Quality Index (PSQI).148 When 

analyzed hierarchically, only interpersonal trauma had a significant effect on disturbed sleep. 

Non-assaultive trauma did not contribute uniquely to the variance in sleep symptoms. These are 

some of the first results comparing multiple traumas, and indicate that interpersonal traumas may 

have a larger effect on the development of sleep problems. 
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Trauma timing and sleep. ACEs in particular have been shown to have deleterious effects 

on sleep even decades after the abuse, most notably for women.141 In a recent systematic review, 

the authors examined the effect of ACEs on future sleep problems in adults, summarizing 30 

studies.141 This literature primarily consists of retrospective studies where individuals report on 

prior ACEs and many of the included studies have female-only samples. There is also a range of 

sleep phenotypes within the literature, although studies converge on significant associations 

between child trauma and sleep. For example, a prospective study of adolescents examined ten 

years after the abuse demonstrated that CSA was related to a higher subjective sleep disturbance 

score, an association that remained following the addition of both MDD and PTSD symptoms 

(which themselves can influence sleep).149 In another study by Greenfield and colleagues,150 

individuals endorsing the most severe class of abuse, which included sexual abuse, reported 

increased odds of poor subjective sleep measures from the PSQI. More specifically, individuals 

were more likely to experience more sleep disturbances, worse sleep quality, and more daytime 

dysfunction, in addition to being more likely to utilize sleep medication (all odds ratios  > 2). A 

recent paper151 added to the literature by examining sleep and CSA in a large twin sample, 

finding that for both males and females, CSA increased the odds of experiencing sleep symptoms 

by 1.7. Additionally, incident characteristics, including severity, in females endorsing CSA were 

examined, but none of these items were differential predictors of worse sleep. Further, there may 

be sex differences, with a newer study demonstrating that women are more likely to experience 

poor sleep in adulthood following childhood adversity.152 Thus, it is possible that both type and 

timing interact. In a recent paper, scientists showed that insomnia symptoms in adolescents were 

highest with a history of interpersonal violence (vs. accidents/injuries, social/network events, 

other).153 While most studies report associations with sleep, one notable limitation of the child 
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trauma and sleep literature is that the majority of these studies have been conducted in North 

American or European populations, with no studies in African or East Asian countries including 

China.  

Trauma, sleep, and psychopathology. An important consideration in interpreting the 

trauma and sleep literature is that many studies examine sleep problems along with (or as 

symptoms of) comorbid psychopathology. Thus, while it is well established that trauma is related 

to sleep disturbances,67 results are often confounded by psychopathology. There is a substantial 

literature of longitudinal investigations that establish temporal relationships between sleep and 

psychopathology, demonstrating that sleep disturbances both pre- and post-trauma can have an 

impact on psychiatric outcomes.41,42,67,140,154-158 For example, Bryant and colleagues156 examined 

the relationship between sleep disturbances pre-injury and later psychiatric disorders in a sample 

of patients admitted to the hospital. Most disorders (e.g., PTSD, MDD, obsessive compulsive 

disorder, substance use) were significantly associated with pre-trauma sleep disturbance, even 

after excluding prior psychopathology. Extending results to an Army sample, Gehrman and 

colleagues41 looked at associations between pre-deployment insomnia and sleep variables and 

the development of psychopathology after deployment. Results indicated that insomnia 

symptoms were associated with a higher risk of new-onset MDD, PTSD, and anxiety. Notably, 

the effect size of insomnia was similar to that of the trauma (i.e., combat exposure) in all models. 

There are also studies of post-trauma symptoms. Wright and colleagues157 looked at insomnia, 

MDD, and PTSD at two time points post-deployment, finding that insomnia symptoms at Time 1 

predicted PTSD and MDD symptoms at Time 2. More recently, a study of Chinese adolescents 

demonstrated that sleep disturbances predicted MDD and PTSD at multiple time points 
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following a major earthquake.159 Thus, both pre- and post-trauma sleep symptoms can influence 

psychopathology. 

Summary and future directions for environmental influences on sleep. There are four 

main points to be drawn from this review of the complex trauma, sleep, and psychopathology 

literature: 1) trauma exposure is associated with disturbed sleep/insomnia, although many studies 

include comorbid psychopathology as an outcome or covariate; 2) disturbed/sleep insomnia is a 

predictor of later psychiatric symptoms in individuals exposed to traumatic events; 3) an 

emerging literature is investigating contributions of trauma type to insomnia, with early results 

suggesting that interpersonal trauma is a more potent predictor; and 4) trauma timing is also 

important, with evidence that early trauma influences sleep in adults. However, the extant 

literature has a number of limitations that represent important future directions. First, few studies 

examine multiple different trauma types together, focusing instead on specific events. Examining 

multiple events will allow for a comparison of traumas, improve our understanding of how 

events cluster together, and establish important differences in trauma type. Second, there is a 

need for more studies that focus specifically on how trauma impacts sleep, apart from 

psychopathology. Third, with few studies parsing out effects of both childhood and adult traumas 

together on sleep, trauma timing should continue to be examined. Finally, while the childhood 

trauma and sleep literature has increased substantially, there is clearly a lack of studies using 

non-European populations, such as the Han Chinese, which should be addressed.141 While 

trauma exposure is an environmental risk factor that impacts disturbed sleep and insomnia, there 

are other etiologic sources, particularly those that are biologic in nature, to consider in 

understanding these phenotypes. One such factor is genetics, and there is a long history of 
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examining the genetic contributions to insomnia, which will be discussed in the following 

section.  

 

III. Genetic components influence both sleep and MDD 

a. Behavioral genetics  

Family studies. Twin and family studies demonstrate that genetic influences are an 

important etiological risk factor for insomnia. Five early family studies of insomnia exist, with 

the first dating back to the 1960s.160-164 Higher rates of insomnia in family members of 

individuals with the disorder were found across all studies, supporting familial aggregation of 

insomnia. Studies did differ in terms of timing of insomnia assessed (childhood vs. adulthood; 

two studies looked at childhood sleep patterns) and outcome phenotype examined (insomnia vs. 

sleep patterns), but overall results suggest a familial component. A more recent family study165 

utilized more sophisticated measures to analyze familial aggregation and heritability, finding that 

risk ratios for current and lifetime insomnia were > 2 in first-degree relatives and that heritability 

estimates were relatively high, even when controlling for psychopathology (0.48 for current; 

0.58 for lifetime). Additionally, a new family study reported a risk ratio of 1.80, consistent with 

prior studies.166 

Twin studies. The current twin literature for insomnia is much larger than that of family 

studies. The twin approach has several notable advantages, including the calculation of specific 

estimates of genetic contributions (i.e., heritability), and the ability to parse out shared 

environmental components that make individuals similar on a given phenotype. To date, there 

are more than 20 twin studies of insomnia and related symptoms (excluding sleep duration), 14 

of which were conducted in young adult/adult samples, with the remaining studies coming from 
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pediatric samples, and the majority of participants being European or of European-American 

descent. Overall, most adult studies report heritability estimates between 20% and 60%.167 The 

vast majority of adult twin studies have utilized subjective sleep phenotypes, with the exception 

being an early study that used EEG data on sleep latency and wake time.168 It is important to note 

that these estimates are consistent despite the wide variety of phenotypic definitions used across 

the literature (see Table 2 of Lind and Gehrman (2016)167 for specific estimates). Most twin 

studies have used definitions based on individual symptoms or combinations of symptoms, and 

these definitions have been heterogeneous with little standardization across studies.167,169  

The wide range of heritability estimates found in the literature may be due to 

methodological differences across twin studies. For example, many of the higher estimates that 

have been found for insomnia sum/composite scores are in younger samples (e.g., Watson and 

colleagues170 reported an insomnia heritability of 57% (95% CI: 47% to 63%) with an average 

age of 32; Drake and colleagues171 found that the heritability of insomnia was 55% in women 

and 43% in men in with an average age of 23). In contrast, studies of older twins have yielded 

lower estimates. For example, Hur and colleagues,172 reported an insomnia symptom heritability 

of 28% (95% CI: 25% to 31%) with an average age of 50, and the Vietnam Era Twin Study of 

Aging found the heritability of a global sleep composite score to be 34% (95% CI: 25% to 42%) 

in males with a mean age of 55.173 Given that sleep problems become more prevalent as 

individuals age,2 it is possible that there is less variation attributable to genetic effects. This 

could be a result of the high prevalence of comorbid health conditions associated with age that 

also affect sleep (e.g., arthritis, back pain). Higher heritability has also been reported using 

longitudinal data, a design that helps mitigate the effects of measurement error; although note 

that higher estimates are expected based on study design. Specifically, while Lind et al.174 found 
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that time-specific estimates of insomnia heritability were only around 20%, estimates increased 

to 59% (females; 95% CI: 44% to 69%) and 38% (males; 95% CI: 27% to 48%) when both time 

points were modeled simultaneously. The degree of insomnia heritability may differ across the 

sexes, referred to as a quantitative sex effect, which is consistent with studies of MDD,175 and 

highlights the importance of conducting analyses by gender since genes may be more relevant 

for insomnia in women. 

The twin literature also includes studies that have investigated individual insomnia 

symptoms, such as difficulty falling asleep or difficulty staying asleep, instead of or in 

combination with insomnia composite scores. In general, these estimates range from 25-45% and 

tend to be lower than estimates for insomnia overall.167,171,176 For example, a study of Vietnam 

veterans176 found heritabilities of 28% (trouble falling asleep), 42% (trouble staying asleep), and 

26% (waking up several times) among individual symptoms. A Finnish twin study of sleep and 

mortality reported estimates that were similar but a bit higher, with heritability at 41% (difficulty 

initiating sleep; 95% CI: 36% to 46%), and 45% (nocturnal awakening; 95% CI: 41% to 49%).22 

Interestingly, Drake and colleagues171 reported similar estimates for DSM insomnia symptoms of 

difficulty staying asleep (25% in males and 35% in females) and non-refreshing sleep (34% in 

males and 35% in females), but no genetic influences on difficulty falling asleep for both 

genders. Heritability estimates from the PSQI, the gold standard self-report measure for sleep 

quality, have also converged with the other estimates reported. Two studies in adults have 

analyzed the PSQI and its subscales,173,177 finding estimates of 23% (95% CI: 9% to 36%) and 

39% (95% CI: 2% to 53%) for the sleep disturbances subscale, which has individuals describe 

how often certain events (e.g., trouble falling asleep, waking up, having bad dreams) contribute 

to trouble sleeping.178 Overall, the twin literature supports that insomnia, whether measured by a 
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composite/total score or by individual symptoms, is moderately influenced by genetic factors. 

The highest heritability estimates are seen for insomnia composite scores in younger samples, 

which may be related to the fact that sleep disturbances become more common with age.2  

The sleep literature is consistent with that of the substantial genetic epidemiologic 

literature on MDD in that MDD is also moderately heritable (37-38%).179-181 There is also 

evidence that MDD heritability differs across the sexes, with higher estimates in females (40-

42%) vs. males (29-39%).182,183 Several groups have examined the heritability of individual 

MDD symptoms as well, indicating that the sleep symptom more specifically is moderately 

heritable (35% and 19%).184,185 Given bidirectional relationships between MDD and insomnia,32 

there is a growing twin literature that examines the overlap in genetic and environmental 

influences on insomnia and internalizing disorders, particularly MDD (e.g., 186,187). Initial 

examinations of etiologic overlap were conducted primarily in samples of children,188-194 with 

several studies reporting high estimates of overlap between insomnia phenotypes and MDD (e.g., 

Gehrman and colleagues189 reported complete genetic overlap; Gregory and colleagues193 

reported a genetic correlation of 0.64). Emerging longitudinal data in adults supports these 

relationships. In a longitudinal examination of overlap between insomnia and common 

psychiatric disorders, substantial overlap was found, with 56% (females) and 72% (males) of 

insomnia’s latent heritability shared with that of MDD.187 Additionally, a recent young adult 

study modeled the genetic and environmental overlap between insomnia and MDD 

longitudinally using a correlated factors model, once again finding high genetic correlations 

between the two traits (0.73-0.89).186 In sum, family and twin studies have laid the groundwork 

for molecular genetic studies of both insomnia and MDD, which aim to identify specific genes 
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contributing to these disorders. Further, evidence for shared genetic influences on insomnia and 

MDD indicates that this overlap should be considered at the molecular level as well. 

 b. Molecular genetics 

Candidate gene studies. In the section that follows, a brief overview of select candidate 

gene studies is presented, followed by a more detailed discussion of the more contemporary 

genome-wide designs. The main focus will be on studies conducted on insomnia phenotypes, but 

the molecular genetics literature of MDD will be referenced for comparison. In the candidate 

gene approach, gene(s) of interest are selected a priori based on biological mechanisms/prior 

research and variants within the gene(s) are examined in association with the phenotype of 

interest (e.g., insomnia vs. control, quantitative measure of sleep disturbances). Next, statistical 

analyses are conducted to determine whether or not the variant of interest occurs more frequently 

in individuals with the phenotype (vs. without). Initial candidate gene studies for insomnia and 

related phenotypes focused mainly on genes that were plausible based on mechanism. Variants 

within circadian rhythm genes, such as CLOCK, PER, and TIMELESS, were examined in early 

studies, given that circadian processes are important for sleep. Serotonin, a neurotransmitter that 

plays a role in sleep regulation195 and is also widely studied in MDD,196 has also been examined 

in sleep. These investigations have included assessments of polymorphisms in the serotonin 

transporter (e.g., 5-HTTLPR; e.g., 197,198) as well as in enzymes that degrade serotonin 

(monoamine oxidase; MAO) (e.g., 199,200). More recently, new systems that have been studied in 

relation to insomnia include dopamine, apolipoprotein, PGC-1α, and the aryl hydrocarbon 

receptor.201-204 Overall, the candidate gene literature for insomnia is small compared to 

psychiatric phenotypes such as MDD (where around 200 different genes have been analyzed and 

multiple meta-analyses conducted205). While the results of some of these insomnia studies show 
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significant or suggestive results, results are mixed, particularly for serotonin. Investigations of 

serotonin and CLOCK polymorphisms often examine insomnia symptoms in individuals with 

MDD or receiving treatment, which makes it challenging to parse out the effects of the variants 

on insomnia more specifically. 

Limitations of the candidate gene approach. While candidate gene studies utilize a 

hypothesis-driven approach that incorporates variants in genes thought to be biologically 

relevant, there are several major limitations to consider,206,207 especially given the lack of 

replication seen across studies.208 First, the candidate gene approach relies on the appropriate 

choice of gene and variants, which is critical yet can be difficult given our minimal 

understanding of the biologic etiology of many phenotypes.207 Further, in order to achieve the 

best interpretability, variants should be chosen to maximize function (i.e., within coding regions; 

related to gene expression, or at least tagging other functional variant(s),206,207,209 but are often 

chosen based on ease of genotyping and are limited by our knowledge of the genome.207 Second, 

although discrepant results could be due to real differences in study population or phenotype,207 

the use of small sample sizes and low power suggest that many results may be invalid (i.e., false 

positives, false negatives in replication attempts).210 Within the MDD literature, meta-analyses of 

the most commonly studied genes have not converged on strong predictions (even with refined 

phenotypes),211 and, despite having enough power to detect these effect sizes in more agnostic 

approaches (i.e., GWAS), hypothesized genes are not significant.205 In contrast, it is difficult to 

even meta-analyze genes within the insomnia literature, as few studies examine the same variants 

and phenotypes are heterogeneous.167 Finally, another important issue is population stratification, 

as spurious results could be due to differences in allele frequency across ancestries.206 

Quantitative approaches to classifying ancestry can improve this, but were not used in many 
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early studies.212 Thus, while the candidate gene literature provides some evidence of a role for 

specific genes in these phenotypes, results do not converge and additional approaches are 

needed. 

Introduction to GWAS of insomnia and MDD. GWAS approaches, which allow for the 

simultaneous examination of millions of variants (measured or imputed) across the genome to 

identify potential loci contributing to a phenotype, have been used to gain new insight into the 

genetic contributions to insomnia. To date, there have only been five published GWAS of 

insomnia or related sleep phenotypes213-217 and one replication study.218 Studies that analyze only 

sleep duration are excluded from this total. This total is in contrast to other psychiatric 

phenotypes like MDD, where a mega-analysis of eight GWAS was published in 2013219 and 

multiple additional large GWAS have been published since then (e.g., 220-223). Although the 

MDD mega-analysis combined data on over 9,000 cases and 9,000 controls of European 

ancestry, no genome-wide significant (GWS) loci were found.219 However, more recent GWAS 

of MDD have focused on different phenotypes (recurrent MDD, “broad” depression) and/or 

large sample sizes, with more success (e.g., 220-223). Within a sample of Han Chinese women (N 

~ 11, 000), two novel GWS loci were found for recurrent MDD: one near SIRT1 and one in 

LHPP.220 More recently, a meta-analytic GWAS (N ~ 70,000) conducted on a “broad” 

depression phenotype that encompassed both diagnosis and symptoms, was able to identify and 

replicate a single nucleotide polymorphism (SNP) with the FHIT gene.222 Finally, in what is the 

largest GWAS of MDD to date (over 70,000 cases/200,000 controls), investigators from 

23andMe identified novel loci for MDD.223 When this data was meta-analyzed with Psychiatric 

Genomics Consortium (PGC) MDD data and combined with an additional 23andMe replication 

sample, a total of 17 SNPs in 15 loci reached genome-wide significance for MDD. 
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Specific GWAS of insomnia. In comparison with MDD, there are fewer loci that have 

been identified for insomnia and most studies have used much smaller sample sizes; results are 

outlined in the following sections. Note that measurement issues remain within this literature, as 

only three of the five GWAS include specific “insomnia” phenotypes and the majority of papers 

utilize self-report data (with the exception of Spada and colleagues,217 who used objective 

phenotypes from actigraphy). The first GWAS of insomnia, published by Ban and colleagues,214 

utilized genetic and phenotypic data on 8,719 individuals from a Korean epidemiologic sample 

who reported on their insomnia status via self-report. Although no loci reached genome-wide 

significance, several top SNPs were determined to be of interest (out of 3354 SNPs with p < 

0.005), and had prior associations with psychiatric disorders. ROR1 included the most significant 

SNP, and there were multiple other SNPs of marginal significance within this gene, which has 

been linked to bipolar disorder.224 PLCB1 was the next-most significant (a total of 17 SNPs in 

this gene reached the marginal significance cutoff), and the gene has associations with 

schizophrenia.225,226 Next, Byrne and colleagues215 utilized an Australian twin sample (N = 2323) 

to conduct a GWAS of an insomnia factor score and other sleep phenotypes (sleep latency, sleep 

time, sleep quality, sleep depth, sleep duration). No SNPs passed genome-wide significance for 

any phenotypes, including the insomnia factor score. Of interest in this study was a set of SNPs 

in linkage disequilibrium (LD) (i.e., recombination occurs between these loci more frequently 

than would be predicted by chance227) in the CACNA1C gene, which were nominally significant 

in predicting sleep latency. However, these associations did not reach significance in replication 

samples either. Of note, another SNP in CACNA1C was of interest for sleep quality. Similar to 

the genes suggested by Ban and colleagues,214 above, this gene is associated with both 

schizophrenia and bipolar disorder, in addition to MDD.228,229 Parsons and colleagues218 sought 
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to replicate the CACNA1C association in a British sample (N = 952) that had PSQI data on sleep 

quality, duration and latency. This was successful: the SNP was associated with sleep latency in 

the new sample, which provides additional evidence for its relevance in sleep phenotypes. 

Despite being a different variant than the one identified in the initial study, this CACNA1C SNP 

was also associated with sleep quality in the replication sample, further supporting the role of 

this gene in sleep. 

Although these initial GWAS studies were not successful in identifying GWS variants for 

insomnia, they were able to suggest novel variants that were not previously investigated in 

candidate gene studies, with some evidence of replication. Additionally, all SNPs of interest 

from these studies seem to be relevant for other psychiatric disorders as well. Newer studies 

using different phenotypic approaches and larger sample sizes are adding more genes of interest 

to the literature and are finding GWS results. Spada and colleagues217 were the only group to 

analyze objective phenotypes, using sleep parameters derived from actigraphy data in a sample 

of 956 adults in Germany. Some of these, like sleep quality and sleep latency, correspond to 

subjective phenotypes measured in other GWAS. There were significant SNPs in multiple 

parameters, including sleep efficiency on weekdays (UFL1, a circadian gene), sleep latency 

(DMRT1), and sleep offset (SMYD1). However, these results should be interpreted in light of 

several key limitations: 1) there was no correction for the examination of multiple phenotypes; 

and 2) a diagnosis of insomnia is made using self-report information on symptoms; to date there 

are no clear patterns within objective data from polysomnography or actigraphy.230-232 Another 

new study213 identified the RBFOX3 gene as important for self-reported sleep latency in a large 

combined sample (N = 4242) of Europeans. The heritability of sleep latency in this sample was 

estimated at approximately 20% using SNP-based approaches, reviewed in more depth below. 
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Three correlated SNPs within this gene were found to be significant and could be replicated in 

additional samples. Gene network analysis was also conducted, and results indicated associations 

between RBFOX3 expression and expression of genes involved in calcium channels and gamma-

amino-butyric acid (GABA) signaling (gene expression and methylation data was also collected 

on a subset of individuals). GABA is an inhibitory neurotransmitter that is important for sleep 

regulation,233 supporting the plausibility of RBFOX3’s role in sleep latency. RBFOX3 was also 

related to other neurotransmitter release (glutamate, serotonin, dopamine), through these 

processes. The results of these first four GWAS of insomnia phenotypes, while identifying 

different genes and SNPs of interest, do converge in terms of gene function: processes involved 

in excitability or sleep reactivity (i.e., quality of sleep in response to a stressful event171) are seen 

across these genes.167 

Most recently, the largest GWAS of sleep phenotypes to date was published using the 

United Kingdom (UK) Biobank data set, which is comprised of health data from over 500,000 

volunteers from the UK.216 Data on sleep duration, insomnia symptoms (measured via a single 

ordinal item that asked about frequency of difficulty falling and staying asleep, with only the 

extremes of “never/rarely” and “usually” used for analysis), and daytime sleepiness were 

collected. Insomnia analyses were conducted on 31,767 cases and 29,935 controls. Variants in 

five novel genes (including two that may be sex-specific) were identified in this study for 

insomnia, and results held when including covariates such as depression. These included MEIS1 

(which was also found to be significant when a multi-trait sleep GWAS was conducted using 

data on sleep duration, insomnia, and daytime sleepiness), TMEM132E, CYCL1, TGFBI 

(females), and WDR27 (males). Interestingly, MEIS1 has been implicated in restless legs 

syndrome, another sleep disorder,234 and the same CYCL1 SNP reached nominal significance in a 
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GWAS of comorbid alcohol dependence and depression.235 TMEM132E is relevant given its 

relationship to psychopathology, as variants near TMEM132E have previously been associated 

with bipolar disorder236 and variants in another gene in the same family, TMEM132D, have been 

replicated across several GWAS of panic disorder.237,238 Finally, the two sex-specific genes of 

interest, TGFB1 and WDR27, have been linked to Type 1 diabetes,239-241 suggesting that immune 

processes may be involved in insomnia. Taken together, the results of this newest GWAS 

indicate that genes involved in insomnia may be shared not only with other psychiatric disorders 

but also with complex traits. However, an important caveat is that the insomnia phenotype was a 

single ordinal item and not an established sleep measure or diagnosis. 

Summary of molecular literature. Overall, molecular genetic studies of insomnia have 

demonstrated mixed results in candidate gene studies, and notably, there have not been any times 

in which a GWAS of insomnia has identified a gene that has been studied in a candidate-gene 

framework. The early GWAS studies failed to find GWS loci, but are beginning to identify genes 

of interest as data are combined, resulting in increases in sample sizes and associated statistical 

power. Genes of interest tend to show prior associations with psychopathology.167 This pattern of 

gene-finding efforts parallels that of other psychiatric disorders, although the insomnia literature 

lags behind (i.e., there are far fewer identified GWS loci for insomnia compared to schizophrenia 

and MDD; e.g., 220-223,242). Given this and the small number of published studies to date, it 

remains important to continue gene identification as well as replication efforts for insomnia in 

different samples. Other than the Korean GWAS,214 all studies were conducted in samples of 

European origin, which limits generalizability of findings. Further, while twin studies do 

converge on heritability estimates despite diverse phenotypes, consistent phenotyping remains a 

problem in gene identification studies, as phenotypic heterogeneity can contribute to lack of 
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replication and makes it difficult to synthesize results. To date, no GWAS of insomnia utilize 

DSM diagnoses. It will be important for the field to decide on suitable phenotypes and attempt to 

conduct genetic analyses appropriately.  

Introduction to aggregate molecular approaches. Advances in statistical genetics have 

resulted in the development of methods that estimate heritability from available genomic data on 

unrelated individuals. One such approach is genome-wide complex trait analysis (GCTA), which 

utilizes the estimated genetic relationships between unrelated individuals to estimate the variance 

in a trait that is due to the additive effect of SNPs that are available.243 This is done through the 

creation of a genetic relatedness matrix (GRM), which includes correlations for all individuals 

across all SNPs, which is then regressed on phenotype using a restricted maximum likelihood 

(REML) method. This widely popular method has now been used across a variety of complex 

traits (e.g., 244-248), although heritability estimates tend to be lower than twin estimates, and 

GCTA represents a lower bound.245,249 The method is not without its limitations, particularly 

since large sample sizes are needed to have adequate power to detect heritability.250 Analyses of 

case-control traits in particular can result in biased estimates since heritability must be 

transformed onto a liability scale251 and one recent critique suggests that GCTA is not accurate 

even when all assumptions are met, due to problems with the GRM (e.g., noise, over fitting).252 

As described within the definition, GCTA can only take into account SNPs that are measured (or 

imputed) and other variants that are in LD with them. As this generally encompasses common 

SNPs, rarer variants are not represented in GCTA, although they could be contributing to the 

disorder. GCTA also assumes additive effects, and thus does not take into account other genetic 

effects such as dominance effects, epistasis, or gene-environment interactions (GxE).245,249 

Further, there are instances where the genetic architecture of a trait is such that GCTA would not 
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detect heritability, despite the trait having large genetic effects. This could occur if there are one 

or two significant loci of large effect and then all other variants have small effects (e.g., closer to 

Mendelian inheritance). Despite these limitations, GCTA does have several advantages, in that it 

is not biased by sample size or to specific effects and conclusions can be made about the trait as 

a whole.245 Genetic correlations between traits can also be obtained through GCTA (bivariate), 

although there are other methods, such as LD Score regression (LDSC),253 that can estimate 

correlations (and heritability) through summary statistics. 

There are also additional approaches that leverage molecular data to examine aggregate 

genetic risk and overlap across phenotypes, often without needing raw genetic data for all 

phenotypes involved. Polygenic risk scores (PRSs), which utilize summary statistics from a 

discovery dataset to calculate weighted risk scores that are then applied to individuals in a target 

sample, represent one approach. A key difference between GCTA and PRSs, which are both 

aggregate approaches, is that PRSs take into account specific SNP effects, weighting 

contributions based on effect size from GWAS, while GCTA assumes that effects are random. 

PRSs are based on the idea that many traits are polygenic in nature (i.e., many genes of small 

effect that do not pass GWS thresholds via conventional GWAS methods contribute to the 

trait).245,246,254,255 The assumption is that within the variants that make up a risk score, there are 

some with true effects. This approach was initially used to show that genetic risk scores for 

schizophrenia predicted bipolar disorder (and vice-versa),254 and since the publication of this first 

paper, the method has been applied to many phenotypes (e.g., 247,248). Commonly referred to as 

the Purcell method, an important step in this method of creating genetic risk scores is pruning the 

list of SNPs based on LD before score creation, as including highly correlated SNPs could bias 

the risk scores (although pruning can be done through several approaches256). The Purcell 
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method also incorporates p-value thresholds, such that multiple scores are created using SNPs 

within different ranges of p-values, ranging from very small to encompassing all SNPs. 

New methods for computing PRSs (e.g., LDpred,257 PRSice258) are emerging to address 

limitations of the initial method. One main criticism of the Purcell method, described above, is 

that important information is lost due to LD pruning. To address this limitation, the program 

LDpred incorporates LD information from a reference panel and takes into account LD, and is 

thus able to utilize all available SNPs in the score.257 The program also estimates scores 

differently, in that it utilizes a Bayesian prior for the genetic architecture of the trait based on an 

estimate of the trait’s heritability and proportion of variants (i.e., fraction) that are causally 

contributing to the trait to generate scores across different fractions. The method does have its 

own limitations, although most of these are related to PRSs in general (e.g., controlling for 

ancestry, appropriate LD reference). Like GCTA, PRSs are limited by the SNPs that are 

available (i.e., in common across discovery and target samples) and do not generally take into 

account non-additive effects, GxE, epistasis, or rare variation.245,249 Sample size is also 

important, particularly for the discovery sample, as larger discovery samples will give better 

estimates.245,259 Another problem within the PRS literature is the heterogeneity in score 

creation,256 making it difficult to compare scores across studies. 

Applications and future directions. While these methods have increased our 

understanding of genetic contributions to many complex traits, sleep phenotypes are under-

studied. To date, there are only three studies that have examined SNP-based heritability of 

insomnia-related outcomes. Estimates range from 30% for the insomnia symptom of MDD260 to 

20% for sleep latency,213 and 21% for insomnia within the UK Biobank GWAS.216 Note that 

these estimates were obtained using methods similar to GCTA (i.e., heritability was based on 



 31 

SNPs) but not the GCTA software, described above. The estimate obtained for insomnia within 

MDD260 is consistent with the twin literature. In contrast, estimates of the two more general 

insomnia-related phenotypes are on the lower end when compared to twin estimates of insomnia, 

which is consistent with what is seen across the literature for other phenotypes.245,261 Further, 

despite evidence for biometric overlap between insomnia and MDD (e.g., 186,187,189), and the 

presence of some candidate gene studies that examine genetic contributions to MDD with 

insomnia/sleep symptoms (e.g., 199,262-266), few studies examine genetic overlap and/or 

incorporate a PRS approach. In the 23andMe MDD GWAS,223 a genetic risk score was created 

for MDD (from the 17 identified SNPs) and used to predict a range of other related phenotypes, 

including insomnia (assessed via a yes/no question about difficulty “getting to sleep”), where it 

was a significant predictor. Within the UK Biobank sample, LDSC was used to examine genetic 

correlations between sleep variables and 20 other phenotypes, finding a significant correlation 

between insomnia and depression (as well as several metabolic traits).216 Overall, studies that 

utilize aggregate molecular approaches for insomnia-related phenotypes are only just beginning 

to emerge, and more investigations are warranted, particularly using more refined insomnia 

phenotypes. The use of statistical methods described here, in addition to other post-GWAS 

approaches, such as gene and pathway analysis, will be important in developing our 

understanding of the genetic architecture of insomnia and how it relates to MDD, as this may 

have implications for gene-finding efforts.  

 

 

IV. Aims 

Sleep disturbances and insomnia affect the well-being of many individuals worldwide, 

making an in-depth understanding of their etiologic influences (both genetic and environmental 
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in nature), above and beyond what has been examined in the extant literature, essential for 

improving population health. This dissertation aims to address several important and 

understudied areas within the sleep literature using the China, Oxford, and VCU Collaborative 

Research on Genetic Epidemiology (CONVERGE) dataset, which contains detailed phenotypic 

and genetic data on approximately 12,000 Han Chinese women, half with recurrent MDD. Since 

few investigators have examined specific effects of trauma type and timing on sleep outcomes 

across multiple trauma types while accounting for psychopathology in non-Western populations, 

Aim 1 is to determine the relationship between type of trauma exposure (interpersonal vs. non-

assaultive) and timing of trauma exposure (childhood vs. adult onset), and sleep disturbances 

(Chapter 3). It is hypothesized that interpersonal traumas will be stronger predictors of sleep than 

non-assaultive traumas, and that childhood events will be more potent than those that have initial 

onset during adulthood. Next, as genetic influences are also important for insomnia, but 

molecular studies are still in their infancy, with few examining SNP-based heritability or looking 

at sleep in the context of or overlapping with MDD, Aim 2a is to conduct analyses of SNP-based 

heritability of disturbed sleep (Chapter 4), and to identify potential genetic variants associated 

with sleep phenotypes in CONVERGE (both within and independent of MDD) (Aim 2b, Chapter 

5). It is hypothesized that sleep phenotypes will be heritable and that genetic loci of interest will 

be identified for these phenotypes. The goal of Aim 2c is to examine molecular overlap between 

the different sleep phenotypes as well as between sleep and MDD within this sample by utilizing 

two different methods of PRSs (LDpred and the Purcell method) (Chapter 6). It is expected that 

PRSs for sleep within MDD will significantly predict sleep in MDD controls (and vice-versa) 

and that sleep and MDD risk scores will significantly predict each other. Finally, in an effort to 

combine both genetic and environmental influences in order to obtain a more complete etiologic 
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model of sleep, the Exploratory Aim (Chapter 7) is to conduct cumulative models of combined 

genetic and environmental risk for sleep disturbances using results generated in Aims 1 and 2 

(e.g., PRS and trauma variables as predictors of sleep). For this aim, it is expected that both 

genetic and environmental risk factors will have significant contributions to sleep disturbances. 
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Chapter 2: Methods 

 

 

 
I. Sample 

The CONVERGE dataset was used for analysis.48 CONVERGE is a large genetically 

informative sample comprised of approximately 12,000 Han Chinese women aged 30-60, 50% 

with recurrent MDD (cases) and 50% matched screened controls, which was initially ascertained 

to conduct detailed genetic and phenotypic analyses of MDD. Genetic data passing all quality 

control (QC) standards (described in more detail below) is available for ~88% of the sample 

(N=10,502). Data was collected from 59 hospitals from 45 cities in 23 provinces and 

municipalities in China via clinical interviews. Exclusion criteria for cases were i) history of 

bipolar illness, ii) psychosis outside depressive episodes, iii) drug or alcohol dependence with 

onset prior to MDD, iv) developmental disability, and v) blood relative of another case. 

CONVERGE included only individuals as cases who presented to psychiatric services for 

depression and received treatment. The entry criteria for controls were i) female, ii) current age 

40-60 (to reduce the likelihood that these individuals would later develop MDD), iii) no lifetime 

history of MDD, and iv) all four grandparents Han Chinese. Controls were excluded if they had a 

developmental disability, had a known history of bipolar illness or psychosis, or were a blood 

relative of a case. 
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II. Measures 

Identification of traumatic events. Individuals were asked about 16 SLEs (via yes/no 

responses), with each item including a follow up question about the age at the first time this 

event occurred. These items were modified from those used within the Virginia Adult Twin 

Studies of Psychiatric and Substance Use Disorders (VATSPSUD).175 Ten of these events were 

considered to be potentially traumatic events, based on the DSM-5 definition that a trauma must 

involve a potential life threat or a threat to the integrity of self/others.1 An additional childhood 

trauma variable, CSA, was assessed separately with six items that queried its occurrence and 

severity in response to the following question: “Before the age of 16, did any adult, or another 

person older than yourself, involve you in any unwanted incidents like…” The six items included 

the following question stems: a) Inviting or requesting you to do something sexual; b) Kissing or 

hugging you in a sexual way; c) Touching or fondling your private parts; d) Showing their sex 

organs to you; e) Making you touch them in a sexual way; f) Attempting or having sexual 

intercourse. Response options to these questions included 0 (never), 1 (once), and 2 (more than 

once). A broad yes/no CSA variable was created by coding individuals who endorsed at least one 

of the six items at least once as 1 and those who did not endorse any of the items as 0 (this is 

consistent with prior analyses of CSA124,129,151). 

The 11 traumatic events included in subsequent analyses were: 1) death of a spouse, 

child, or sibling; 2) serious illness (self); 3) life-threatening accident (self); 4) fire, flood, or 

natural disaster (self); 5) witnessed someone being badly injured or killed; 6) rape; 7) physical 

attack or assault (self; other than events already indicated); 8) physical abuse as a child (other 

than events already indicated), 9) serious neglect as a child; 10) CSA (binary variable); and 11) 

threatened with a weapon, held captive, or kidnapped (self; other than events already indicated).  
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Assessment of CSA characteristics. Additional CSA items, modified from those used in 

the VATSPSUD,175 were also assessed. An ordinal categorical CSA severity variable was 

created using this data: (1) no genital contact (sexual invitation, sexual kissing, exposing), (2) 

genital contact but no intercourse (fondling and sexual touching), and (3) intercourse. Further, 

there were a number of items assessing incident characteristics that were also used for 

analysis.129 These included: intercourse vs. other types of abuse (coded as 1 and 0, respectively, 

using the CSA severity variable created above), age at time of first abuse (continuous variable), 

age of perpetrator (5 categories: under 15 years old, 15-18, 19-24, 25-49, > 50; each analyzed 

separately with 1 coding for that age group being endorsed and 0 for non-endorsement), gender 

of perpetrator (male [0] vs. female or both sexes [1]), relationship to the perpetrator (relative [1] 

vs. non-relative [0]), feeling forced or threatened by the person(s) involved (yes [2] and 

somewhat [1] vs. no [0], treated in the regression as a factor with three levels), and how much 

the incident affected the victim at the time (on a 7-point scale, with 1 not endorsing being 

affected and 7 endorsing that the experience affected you a great deal, recoded to 0-6); if more 

than one incident occurred participants were asked to rate the worst one).  

MDD assessment. Participants were assessed for recurrent MDD (lifetime) using the 

Composite International Diagnostic Interview (CIDI; World Health Organization lifetime 

version 2.1; Chinese version) section for the disorder expanded to include a “deep” assessment 

of the DSM-IV A criteria for MDD (32 questions for the 9 criteria including culturally sensitive 

probes for sad mood and loss of interest). Symptoms were reported for the worst lifetime episode 

of MDD, as indicated by the individual.  

Sleep assessment.  
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General sleep item (GS). All individuals (both MDD cases and MDD controls) were 

asked a lifetime question about general sleep patterns, “Do you suffer from sleeplessness?” 

within the Neuroticism subscale of the Eysenck Personality Questionnaire,267 which was 

translated into Mandarin. This is a binary/yes no item, and is used as the main sleep outcome in 

many analyses, as it is the only sleep-related item asked of both MDD cases and MDD controls.  

Sleep items within MDD. Two binary sleep items were also asked in the context of worst 

MDD episode: “During that worst time (when you were feeling depressed/had lost 

interest/lacked energy), did you have trouble sleeping almost every night for two weeks or more 

-- either trouble falling asleep, waking in the middle of the night, or waking up too early?” [Item 

E8]; “Did you often wake up in the early morning before you wanted to get up and be unable to 

get back to sleep?” [Item E8.A]. 

Composite sleep variables. i. Sleep within depression score (SDS): The two MDD sleep 

items, listed above, along with the general sleep item, were summed within MDD cases to obtain 

a sleep within depression score, an ordinal variable with levels ranging from 0-3. This variable 

was treated as a quasi-continuous variable in genetic analyses (note that it was highly negatively 

skewed; see Figure 1 for a histogram showing the distribution of this variable). However, log 

transformation did not improve skewness, so the variable was used without transformation. ii. 

Adjusted GS: This is a binary sleep variable created for use in genetic analyses that incorporates 

all available sleep information for both MDD cases and MDD controls. For MDD controls, it is 

the same as the GS, above. For MDD cases, individuals were coded as a ‘1’ if any of the three 

sleep items was positively endorsed (i.e., a 1, 2, or 3 on SDS) and a 0 if none of these items were 

endorsed (i.e., a 0 on SDS). 
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Figure 1: Distribution of sleep within depression (SDS) variable. This histogram displays the 

endorsement of the SDS variable, with the count for each category included on top of each bar. 

 

 

 

Demographic variables. Standard demographic variables were obtained (e.g., age, level 

of education, current job status, social class, and marital status). Within phenotypic analyses, 

only age was used as a covariate, as level of education (and other demographic variables relevant 

to socioeconomic status) had high missingness.  

 

III. Genetic data 

DNA sequencing and imputation. Detailed information on genetic methods can be found 

in the original MDD GWAS.220 DNA was collected using saliva samples and extracted using the 

Oragene protocol. Samples were sequenced on Illumina Hiseq machines, which were aligned to 

Genome Reference Consortium Human Build 37 patch release 5 (GRCh37.p5) with Stampy 

(v1.0.17)268 with default parameters. Any reads with base quality < 5 or containing adaptor 
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sequencing were removed. Missing genotype data was imputed in two rounds using BEAGLE 

version 3.3.2269 using Asian samples from the 1000 Genomes Project Phase1 East Asian 

reference panel.270 This resulted in a total of approximately 20.5 million imputed SNPs. The 

imputation method was confirmed to be accurate in calling genotypes: 12 samples were re-

sequenced at greater depth (10x), 72 samples were called on a commercial genotyping array, and 

all samples were genotyped at 21 random sites using a Sequenom mass spectrometry method 

(overall concordance ~98%).220  

Population structure. Principal component analysis was conducted to reduce population 

stratification within the sample using EIGENSOFT 3.0271 and SMARTPCA.272 Before inclusion 

in analysis, SNPs were pruned at r2 > 0.7 to correct for LD.272 Ten intracontinental principal 

components (PCs) were constructed using information from 144,929 Autosomal SNPs with 

Pr(G) > 0.9 and < 1% missing rate. Only PCs 1 and 2, which represent North-South regional 

differences and technical artifacts, were used as covariates in genetic analyses, as these PCs were 

used in prior MDD analyses.220 

Sample selection. Individuals with an excess number of private variants or an excess 

number of heteroplasmic sites in their mitochondrial genome were removed to eliminate 

contamination. Individuals were also removed if they had low imputation quality in > 10% of 

sites, were first-degree relative of another individual (assessed through identity by state), and/or 

had incomplete phenotype information. This resulted in a maximum of 10,502 independent 

individuals that could be used for GWAS of sleep phenotypes. Note that this number differs from 

the original GWAS of MDD within CONVERGE (N = 10,640),220 as additional related 

individuals were removed. Specific Ns for each GCTA and GWAS run are presented Tables 13 

and 14, column 2, as this differed for each analysis based on missingness across sleep items. 
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Chapter 3: Analyses of trauma type and timing (Aim 1) 

 

 

 
I. Data analytic plan 

All analyses were conducted using R version 3.3.0.273 All figures (except for Figures 2 

and 3) were created using custom code in ggplot2, version 2.2.1.274 Descriptive statistics were 

run, and the Psych package version 1.6.9275 was used to obtain tetrachoric correlations across 

trauma types.  

Factor analyses of trauma type.  Several standard techniques for evaluating 

dimensionality (i.e., Kaiser rule,276 Scree test,277 parallel analysis;278 all implemented in the 

Psych package275) were used to determine how many latent factors might be extracted when 

performing exploratory factor analyses (EFAs). EFAs were then run using the Psych package275 

to estimate different factor structures for the binary trauma type variables. Following this, the 

factor loadings, cross-loadings, and inter-factor correlations for each EFA were evaluated to 

provide guidance about specifying and confirmatory factor analysis (CFA) models (i.e., if there 

were high cross loadings and/or poorly identified factors, the model was not retained). Next, the 

lavaan package version 0.5-22279 was used to carry out CFA to more rigorously test restrictive 

factor models within a structural equation model framework. The best-fit CFA model was chosen 

based on root mean square error of approximation (RMSEA) and X2.280 Finally, the best-fit 

factor solution identified above was used to inform the creation of new trauma type and timing 

variables for use in the next step, explained in greater detail within the Results section, below. 
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Effects of trauma type and timing on sleeplessness. A series of hierarchical logistic 

regression models were run to examine the effects of trauma type and timing on sleeplessness. 

For each phenotype, Step 1 examined the effect of demographic covariates (i.e., age, MDD when 

necessary) on sleeplessness. In Step 2, child interpersonal and adult interpersonal trauma 

variables were included as predictors. In Step 3, child non-assaultive and adult non-assaultive 

trauma variables were added to determine whether or not they had unique effects on 

sleeplessness above/beyond interpersonal traumas. Model fit statistics (i.e., Akaike Information 

Criteria [AIC], which balances parsimony and model misfit281) and Nagelkerke’s pseudo R2 

(where possible; calculated by the pscl package version 1.4.9282) were used to compare models. 

Following the first set of hierarchical regressions, a second set of stepwise regressions was run to 

examine potential interactions between trauma type and timing on sleeplessness. The initial 

model in these analyses was the final model from Step 3 (all types of trauma included), and then 

interaction terms for child x adult interpersonal trauma and child x adult non-assaultive trauma 

were added in sequentially (Steps 2 and 3, respectively).  

In order to appropriately address ascertainment bias within the CONVERGE sample, 

these regression models were run in three different ways to account for MDD status. First, all 

regressions were run in the full sample with MDD as a covariate. Second, a survey-based 

approach was utilized using the R package survey,283,284 which assigned different weights to 

individuals with and without MDD to model a population prevalence of 8% (i.e., individuals 

without MDD were given more weight than individuals with MDD). Third, regressions were run 

separately in MDD cases and MDD controls for comparison. 

Effects of CSA specifically on sleeplessness. Logistic regressions were run within the full 

sample (with MDD and age as covariates) to examine the effect of one particularly potent form 
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of child trauma, CSA, on sleep, replicating analyses conducted within the VATSPSUD 

sample.151 A binary broad CSA variable was used here to predict sleeplessness in all individuals. 

The same analysis was also conducted using the survey method to verify results, but MDD cases 

and controls were not examined separately given that individuals with MDD did not differ across 

CSA and sleeplessness (i.e., rates of endorsing sleeplessness were similar in those with and 

without CSA within this subset of the sample). Next, an examination of CSA severity and 

incident characteristics was conducted in the subset of individuals endorsing CSA. Here, CSA 

severity, as well as all incident characteristics described earlier in the methods, were used as 

predictors of sleeplessness. Survey methods were not used, as a reliable expected population 

prevalence of MDD within individuals endorsing CSA would be needed. Given that only 2.7% 

of MDD controls endorsed CSA, analyses of incident characteristics were not conducted given 

scarcity of cell size for certain variables (e.g., five or fewer individuals endorsing certain 

characteristics).  

 

II. Results 

Descriptive statistics. The sample consisted of 11,673 Han Chinese women, including 

5,864 (~50%) cases with recurrent MDD, and 5,783 (~50%) controls. The mean (SD) age of the 

sample was 46.1 (7.6). Approximately 58% of the full sample (N=6,439) endorsed suffering 

from sleeplessness. Not surprisingly, endorsement of sleeplessness was significantly lower in 

MDD controls (29%) vs. MDD cases (86%) (X2 = 4,000, df = 1, p < 0.0001). Prevalence for 

individual trauma types are shown in Table 1 for the full sample, MDD cases, and MDD 

controls. Endorsement of most traumatic events was higher in MDD cases than MDD controls, 

with the two exceptions being fire, flood, or natural disaster and witnessed someone being badly 



 43 

injured or killed, whereas MDD cases did not significantly differ from MDD controls on 

endorsement of these events. Table 2 shows correlations across individual trauma types (in the 

full sample). The pattern of correlations among trauma types was as expected, with high 

correlations between trauma types that were interpersonal in nature (rs ranging from 0.45-0.53, 

all p values < 0.01 for rape, physical attack or assault, and threatened, held captive, or 

kidnapped), particularly the child trauma specific items (rs ranging from 0.48-0.73, all p values < 

0.01 for CSA, childhood physical abuse, and serious neglect, and rs ranging from 0.36-0.50, all p 

values < 0.01 across child and other interpersonal traumas). Non-interpersonal events (e.g., fire, 

flood, or natural disaster) were less correlated with interpersonal traumas (rs ranging from -0.01-

0.33, not all correlations significant), as well as with each other (rs ranging from 0.10-0.24, all p 

values < 0.01). Given that endorsement of interpersonal traumas was low in MDD controls (e.g., 

only 3 individuals (0.1%) endorsed rape and 22 (0.4%) endorsed being threatened, held captive, 

kidnapped; see Table 1 below) and correlation patterns were broadly similar when examining 

cases and controls separately, factor analyses were run within the full sample.  
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Table 1. Prevalences of specific traumatic events by MDD case status 
 Total 

(N, %) 

MDD Ca 

(N, %) 

MDD Co 

(N, %) 

X2 p-value 

1. Physical attack/assault 

 

541 (5.0) 393 (7.3) 148 (2.7) 120.20 < 0.0001 

2. Threatened/held 

captive/kidnapped 

109 (1.0) 87 (1.6) 22 (0.4) 39.06 < 0.0001 

3. Rape1 

 

75 (0.7) 72 (1.3) 3 (0.1) 63.24 < 0.0001 

4. Physical abuse (childhood) 

 

300 (2.8) 248 (4.6) 52 (1.0) 133.76 < 0.0001 

5. Serious neglect (childhood) 

 

683 (6.3) 572 (10.7) 111 (2.0) 338.99 < 0.0001 

6. Childhood sexual abuse 

 

733 (6.8) 588 (11.0) 145 (2.7) 292.47 < 0.0001 

7. Life-threatening accident 828 (7.6) 

 

463 (8.6) 365 (6.7) 14.11 0.0002 

8. Witness injury/death  868 (8.0) 

 

451 (8.4) 417 (7.6) 2.03 0.1539 

9. Fire, flood, or natural 

disaster  

1196 (11.0) 590 (11.0) 606 (11.1) 0.02 0.8793 

10. Serious illness 

 

1160 (10.1) 694 (12.1) 466 (8.1) 52.08 < 0.0001 

11. Death of a loved one 

 

2112 (18.4) 1149 (20.1) 963 (16.7) 22.38 < 0.0001 

Abbreviations: Ca = case; Co = control; MDD = major depressive disorder. 
1This variable was constructed so that it does not overlap with CSA (i.e., if rape was endorsed before the age of 16, 

this was counted as CSA).  

Note that all chi-squared tests were run on the 2x2 tables using a Yates continuity correction. 
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Table 2. Cross-trauma type correlations (full sample) 
 1 2 3 4 5 6 7 8 9 10 11 
1. Rape 1           

2. Physical 

attack/assault 

0.45** 1          

3. Threatened, held 

captive, kidnapped 
0.50** 0.53** 1         

4. Physical abuse 

(child) 

0.41** 0.50** 0.45** 1        

5. Serious 

neglect (child) 

0.41** 0.45** 0.36** 0.73** 1       

6. Childhood 

sexual abuse 

0.36** 0.43** 0.36** 0.49** 0.48** 1      

7. Death of a 

loved one 

0.02 0.06* 0.04 0.01 0.05 -0.01 1     

8. Serious illness 

 

0.09 0.16** 0.05 0.12* 0.17** 0.16** 0.13** 1    

9. Life-threatening 

accident 

0.30** 0.33** 0.29** 0.24** 0.25** 0.25** 0.10** 0.22** 1   

10. Fire, flood, or 

natural disaster 

0.19* 0.17** 0.21** 0.17** 0.12** 0.05 0.14** 0.15** 0.24** 1  

11. Witnessed 

injury/death  

0.11 0.24** 0.23** 0.27** 0.23** 0.17** 0.12** 0.14** 0.21** 0.23** 1 

*p < 0.05; **p < 0.01. 

Note that correlations are tetrachoric, as all items are binary (yes/no). 
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Factor analysis of trauma type. To determine the factor structure of the different trauma 

type variables within this sample and provide support for the creation of composite trauma 

variables for use in later regression analyses, exploratory and confirmatory factor analyses were 

conducted within the full CONVERGE sample (both MDD cases and MDD controls). Parallel 

analysis was run to ascertain how many dimensions may be present for the associations among 

the different trauma types. A Scree plot showing these parallel analysis results, as well as the 

Kaiser rule (line marking eigenvalues equal to 1) is shown in Figure 2. Parallel analysis 

suggested the presence of 4 factors, as seen here.  

 

 

 

Figure 2: Scree plot and parallel analysis for EFA of trauma type. This figure shows a Scree 

plot with the number of factors on the y-axis and the eigen values of the principal factors on the 

y-axis. The solid black line represents an eigen value cutoff of 1. As indicated in the legend, the 

blue triangles mark the eigen values from the actual data, while the dashed red lines show 

simulated and resampled data, representing results of parallel analysis.
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Based on these results, 1-, 2-, 3-, 4-, and 5-factor EFAs were run using the Psych 

package275 in R. The EFAs were run using a minimum residual (ordinary least squares) method, 

missing data was treated “pairwise”, and tetrachoric correlations were estimated since all trauma 

variables were coded as binary. Additionally, a GeominQ (oblique) rotation was implemented 

because it was expected that the factors would be correlated (see Table 3 for factor loadings and 

Table 4 for factor correlations for all EFAs). Next, CFAs were fit for 1-, 2-, and 3-common 

factor model specifications (the 4- and 5-factor solutions were not examined in the CFAs, since 

these solutions resulted in some poorly identified factors), using the R package lavaan, which is a 

structural equation modeling package.279 Models were developed based on the data driven EFA 

results, treating the observed trauma variables as ordered categorical indicators and utilizing a 

WLSMV estimator with a theta parameterization. CFA model fitting results indicated that a 3-

factor solution, with interpersonal (3 items), child interpersonal (3 items), and non-assaultive (5 

items) factors, had the best fit to the data, since it had the lowest RMSEA and X2. Model fit 

comparisons for the 1-, 2-, and 3- factor CFAs are shown in Table 5. The trauma items that 

loaded predominantly on each of the factors, as well as the standardized factor loadings for the 3-

factor solution and factor correlations are shown in Figure 3.  
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Table 3. Factor loadings from 1-, 2-, 3-, 4-, and 5-factor EFAs 

  

Factor 

Physical 
attack/ 

assault 

Rape Threatened/ 
held 

captive/ 

kidnapped 

Serious 
neglect 

(child) 

Physical 
abuse 

(child) 

Childhood 
sexual 

abuse 

Fire/flood/ 
natural 

disaster 

 

Serious 
illness 

 

Life-
threatening 

accident 

 

Witnessed 
someone 

injured/ 

killed 

Death of a 
loved one 

1-factor 1 0.67 0.59 0.62 0.76 0.79 0.61 0.25 0.21 0.41 0.34 0.07 

2-factor 1 0.54 0.52 0.62 0.06 -0.02 0.18 0.48 0.22 0.55 0.31 0.22 

2 0.21 0.15 0.08 0.83 0.79 0.47 -0.17 0.02 -0.07 0.08 -0.13 

3-factor 1 0.80 0.57 0.55 -0.03 0.16 0.26 0.15 -0.11 0.25 0.07 -0.07 

2 0.18 0.12 -0.02 0.89 0.74 0.42 -0.08 0.12 0.01 0.12 -0.04 

3 0.09 0.00 -0.02 0.02 -0.01 -0.01 0.42 0.41 0.40 0.34 0.34 

4-factor 1 0.58 0.61 0.80 0.06 -0.02 0.37 0.03 -0.02 0.31 0.02 -0.05 

2 0.13 0.05 -0.01 0.73 0.96 0.28 0.04 0.01 -0.05 0.19 -0.04 

3 0.09 0.02 -0.01 0.04 -0.01 -0.02 0.49 0.42 0.39 0.34 0.32 

4 0.02 -0.02 -0.27 0.16 -0.05 0.27 -0.25 0.25 0.07 -0.10 -0.02 

5-factor 1 0.66 0.03 0.74 -0.02 0.03 0.37 -0.01 0.01 0.30 0.19 -0.01 

 2 -0.01 0.97 0.04 0.07 -0.01 0.01 0.06 0.00 0.05 -0.15 -0.02 

 3 0.12 0.03 -0.01 0.79 0.90 0.32 0.02 0.03 -0.03 0.16 -0.04 

 4 0.01 0.01 0.02 0.00 0.03 -0.14 0.58 0.29 0.29 0.32 0.29 

 5 0.00 0.00 -0.25 0.07 -0.14 0.17 -0.07 0.42 0.19 0.00 0.12 

Abbreviations: EFA = exploratory factor analysis.  

Loadings for each specific factor are in bold. 

 

 

 

Table 4. Factor correlations from 1-, 2-, 3-, 4-, and 5-factor EFAs 

 1*2 1*3 2*3 1*4 2*4 3*4 1*5 2*5 3*5 4*5 

1-Factor -- -- -- -- -- -- -- -- -- -- 

2-Factor 0.67 -- -- -- -- -- -- -- -- -- 

3-Factor 0.57 0.37 0.32 -- -- -- -- -- -- -- 

4-Factor 0.65 0.36 0.30 0.08 0.11 0.03 -- -- -- -- 

5-Factor 0.60 0.64 0.41 0.35 0.20 0.22 0.15 0.02 0.19 -0.02 
 Abbreviations: EFA = exploratory factor analysis.  
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Table 5. Model comparisons for CFA 

 X2 df p-value RMSEA (90% CI) 

1-Factor Model 276.60 44 < 0.0001 0.022 (0.020-0.025) 

2-Factor Model 175.65 43 < 0.0001 0.017 (0.014-0.020) 

3-Factor Model 91.19 41 < 0.0001 0.011 (0.008-0.014) 
Abbreviations: CFA = confirmatory factor analysis; df = degrees of freedom; RMSEA = root mean square error of 

approximation. 

Note that the best-fit solution is bolded. 

 

 

 

 
 

Figure 3: Results of the best-fit 3-factor CFA solution for trauma type. The identified factors 

were interpersonal, child interpersonal, and non-assaultive traumas. The items that comprise each 

factor are displayed, with individual loadings shown on the paths. Factor correlations are 

presented on double-headed arrows at the top.  

 

 

 

Creation of trauma type and timing variables. Using results of the CFA, trauma sum 

score variables that incorporated the trauma type structure determined above, in addition to the 

age at first onset information available for each trauma, were created. Childhood events were 

defined as occurring before the age of 16. Thus, the following four trauma variables were 

constructed: 1) child interpersonal; 2) child non-assaultive; 3) adult interpersonal; and 4) adult 

non-assaultive. Interpersonal traumas represented across both age groups included rape, physical 

attack or assault, and threatened, held captive, or kidnapped. The three child interpersonal items 

(from the CFA) were included in the child interpersonal variable only (i.e., CSA, physical abuse, 

Interpersonal 

Trauma 

Child 

Interpersonal 

Trauma 

Non-assaultive  

Trauma 

Rape 
Physical 
attack/ 

assault 

Threatened, 

held captive, 

kidnapped  

Physical 

abuse 

Serious 

neglect 

Sexual 

abuse 

Death of a 

child, 

spouse, or 

sibling 

Serious 

illness 

Life-

threatening 

accident 

Fire, flood, 

or natural 

disaster 

Witnessed 
someone 

badly injured 

or killed 

0.87 0.61 0.49 0.17 0.60 0.35 0.41 0.64 0.77 0.69 

0.50 0.76 

0.64 

0.81 
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serious neglect). The remaining five traumas (death of a spouse, child, or sibling; serious illness; 

life-threatening accident; fire, flood, or natural disaster; and witnessed someone badly injured or 

killed) were considered to be non-assaultive traumatic events. Given sum score distributions 

(most individuals endorsed either 0 or 1 for each event category), each trauma variable was 

collapsed into a binary yes/no item, with “yes” indicating that the individual endorsed at least 

one event in that category, due to scarcity of cell sizes.  

Descriptive statistics for the computed trauma category variables, within the full sample 

and separated by MDD case status, are shown in Table 6. Adult non-assaultive traumas were the 

most commonly endorsed category. The prevalences of all four variables were significantly 

higher in MDD cases (vs. MDD controls). Figure 4 displays the endorsement of sleeplessness 

across each trauma category for the full sample, MDD cases only, and MDD controls only. 

Significantly more individuals with at least one child interpersonal trauma in the full sample and 

MDD control group endorsed sleeplessness, but this did not differ for MDD cases. For all other 

trauma categories (child non-assaultive, adult interpersonal, adult non-assaultive), individuals 

endorsing at least one event from that trauma category endorsed sleeplessness at a higher rate, 

and this was true for all subsets of the sample examined (full, MDD cases, MDD controls), with 

the exception of adult interpersonal trauma in MDD controls, which was nominally significant (p 

< 0.10). Finally, correlations between trauma and sleeplessness across the sample are presented 

in Table 7. There were modest but significant correlations (all p values < 0.01) between all 

trauma variables and sleeplessness within the full sample, and these were higher for interpersonal 

traumas (0.31 for child, 0.25 for adult) than non-assaultive (0.12 for child, 0.14 for adult) 

traumas. For MDD cases, all traumas except for child interpersonal were significantly correlated 

with sleeplessness (range 0.07-0.13, p values <0.05, for those that were significant). In contrast, 
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all traumas except for adult interpersonal (range 0.13-0.15, all p values < 0.01) were significantly 

correlated with sleeplessness in MDD controls. 

 

Table 6. Prevalence of composite trauma variables by MDD case status 

 Total 

(N, %) 

MDD Ca 

(N, %) 

MDD Co 

(N, %) 

X2 p-value 

Child IP 1268 (11.7) 1008 (18.8) 260 (4.8) 512.78 < 0.0001 

Child N-A 900 (8.3) 483 (9.0) 417 (7.6) 127.43 < 0.0001 

Adult IP 563 (5.2) 410 (7.6) 153 (2.8) 6.35 0.0117 

Adult N-A 3669 (33.9) 1954 (36.4) 1715 (31.4) 29.65 < 0.0001 
Abbreviations: Ca = case; Co = control; IP = interpersonal trauma; MDD = major depressive disorder; N-A = non-

assaultive trauma.  

Note that all chi-squared tests were run using a Yates continuity correction. Child IP includes CSA, childhood 

physical abuse, severe neglect, physical assault, and threatened held/captive/kidnapped with age of first occurrence 

before age 16. Similarly, adult IP includes rape, physical assault, and threatened/held captive/kidnapped with onset 

at age 16 or older. Child N-A includes fire, flood, or natural disaster, serious illness, life-threatening accident, 

witnessed someone badly injured or killed, and death of a child, spouse, or sibling, endorsed before age 16. Adult N-

A includes the same traumas as child N-A, but only those that had age of onset at 16 or older.  
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+ p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001.  

 

Figure 4: Sleep endorsement across trauma type in different subsets of the sample. This 

figure shows endorsement of sleeplessness by trauma type (child interpersonal, child non-

assaultive, adult interpersonal, adult non-assaultive) for each subset of the sample (full sample, 

MDD cases, MDD controls), with percentage shown on the y-axis and N on each bar. Asterisks 

indicate significance of chi-squared tests across groups.  

 

 

 

Table 7. Tetrachoric correlations between trauma variables and sleeplessness 

 GS, Full sample GS, MDD Ca GS, MDD Co 

Child IP 0.31 (0.27-0.34)** 0.00 (-0.07-0.06) 0.16 (0.09-0.23)** 

Child N-A 0.12 (0.07-0.17)** 0.09 (0.01-0.18)* 0.13 (0.06-0.19)** 

Adult IP 0.25 (0.19-0.30)** 0.13 (0.05-0.21)** 0.09 (-0.01-0.19) 

Adult N-A 0.14 (0.11-0.17)** 0.07 (0.13-0.18)** 0.13 (0.08-0.18)** 
*p < 0.05; **p < 0.01. 

Abbreviations: Ca = case; Co = control; GS = general sleep item; IP = interpersonal trauma; MDD = major 

depressive disorder; N-A = non-assaultive trauma.  

  

 

Hierarchical logistic regression models. Hierarchical logistic regressions were conducted 

to examine the effects of child and adult trauma types, and their potential interactions, on 

sleeplessness. Analyses were conducted three separate ways in order to best examine effects of 

and account for ascertainment bias. First, in the primary model, the full sample was used, with 
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MDD status as a covariate. This served as the basis for later genetic analyses within the full 

sample to maximize power. Second, a survey approach was used to simulate an MDD prevalence 

of 8% and served as a validity check for the first approach, determining whether results were 

stable. Finally, analyses were run separately in MDD cases and MDD controls given differences 

in ascertainment. This was also done to facilitate the creation of a combined genetic and 

environmental model, as PRS analyses presented in Chapter 6 necessitated splitting the sample in 

half based on case status. These results will be reviewed in turn.  

Full sample, MDD covariate. Results for sleeplessness regressions run in the full sample 

are presented in Table 8. Demographic covariates (i.e., age and case status), entered in Step 1, 

were both significant predictors of higher odds of reporting suffering from sleeplessness (MDD 

OR = 16.39, 95% CI = 14.84-18.14, p < 0.0001; age OR = 1.02, 95% CI = 1.02-1.03, p < 0.0001) 

and Nagelkerke’s pseudo R2 was 0.41. In Step 2, both child (OR = 1.30, 95% CI = 1.11-1.54, p = 

0.0017) and adult (OR = 1.53, 95% CI = 1.21-1.95, p = 0.0005) interpersonal trauma variables 

were significantly associated with higher likelihood of endorsement of sleeplessness. Both age 

and MDD remained significant at similar magnitudes to Step 1. The addition of the interpersonal 

trauma variables increased the amount of variance in sleeplessness explained in comparison to 

Step 1 (new pseudo R2 = 0.44). In Step 3, non-assaultive traumas, both child and adult, were 

added into the final model. Both were significant predictors of sleeplessness (OR = 1.44, 95% CI 

= 1.21-1.72, p < 0.0001 for child; OR = 1.33, 95% CI = 1.20-1.47, p < 0.0001 for adult). In this 

model, both child and adult interpersonal traumas remained significant, with similar ORs, as did 

MDD and age (pseudo R2 = 0.45). Model AIC decreased as trauma predictors were added in 

Steps 2-3, suggesting a decrease in model misfit and providing support for the inclusion of all 

traumas within the final model. The second set of hierarchical regressions aimed at examining 
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the potential interactive effect of type and timing began with the final model from above, which 

included all trauma categories. Interaction terms for child x adult interpersonal traumas and child 

x adult non-assaultive traumas were then added to this model in a step-wise fashion. Neither of 

these interaction terms was significant (p = 0.0755 [interpersonal] and p = 0.3347 [non-

assaultive] in the final model). 

 

Table 8. Results of hierarchical logistic regressions examining the effects of trauma type and 

timing on sleeplessness in the full sample 

  OR 95% CI p-value Pseudo R2 AIC ΔAIC 

Step 1: 
Demographics 

MDD 16.39 14.84-18.14 < 0.0001 0.41 11109.65 -- 

Age 1.02 1.02-1.03 < 0.0001    

Step 2: 

Interpersonal 

MDD 15.85 14.29-17.60 < 0.0001 0.44 10769.77 -339.88 

Age 1.03 1.02-1.03 < 0.0001    

Child IP 1.30 1.11-1.54 0.0017    

Adult IP 1.53 1.21-1.95 0.0005    

Step 3: 

Non-

assaultive 

MDD 15.81 14.25-17.57 < 0.0001 0.45 10722.71 -47.06 

Age 1.02 1.02-1.03 < 0.0001    

Child IP 1.23 1.04-1.45 0.0140    

Adult IP 1.43 1.13-1.82 0.0034    

Child N-A 1.44 1.21-1.72 < 0.0001    

Adult N-A 1.33 1.20-1.47 < 0.0001    
Abbreviations: AIC = Akaike Information Criterion; IP = interpersonal trauma; MDD = major depressive disorder; 

N-A = non-assaultive trauma. 

Note: Pseudo R2 is Nagelkerke’s. 

 

 

 

 Full sample, survey approach. Results for regressions using the survey method (R 

package: survey283,284), conducted to examine effects of trauma on sleeplessness in a more 

representative sample, are presented in Table 9. Survey weights were computed such that MDD 

cases counted for 8% of the sample and MDD controls the remaining 92%. This allowed for a 

more population-based estimate without the loss of data that would occur using random sampling 

(i.e., take all MDD controls and a random subset of MDD cases). MDD was not used as a 

covariate since the population prevalence of MDD was already incorporated into the models. 
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Since this is a variation of a generalized linear model, pseudo R2 values cannot be computed. 

However, AIC can be calculated using specific algorithms (see survey package documentation) 

and is used here to compare models, as was done across all three approaches presented. In Step 

1, age was not a significant predictor of sleeplessness. Both child (OR = 2.26, 95% CI = 1.85-

2.75, p < 0.0001) and adult (OR = 1.60, 95% CI = 1.22-2.10, p = 0.0007) interpersonal traumas 

were significant predictors of sleeplessness when added in Step 2. Finally, both child (OR = 

1.39, 95% CI = 1.15-1.67, p = 0.0006) and adult (OR = 1.35, 95% CI = 1.21-1.51, p < 0.0001) 

non-assaultive traumas significantly predicted sleeplessness in Step 3, and child and adult 

interpersonal traumas remained significant at similar magnitudes. The AIC decreased in Steps 2 

and 3, suggesting that the final model, which contains all trauma categories, results in a decrease 

in overall misfit. When interaction terms were added hierarchically, as done above, there were no 

significant interactions between child and adult interpersonal or child and adult non-assaultive 

traumas (p values of 0.9687 and 0.5880, respectively). 

 

Table 9. Results of hierarchical logistic regressions examining the effects of trauma type and 

timing on sleeplessness utilizing a survey-based approach 

  OR 95% CI p-value AIC ΔAIC 

Step 1: 
Demographics 

 

Age 1.00 1.00-1.01 0.5138 13963.84 

 

-- 

Step 2: 
Interpersonal 

Age 1.01 1.00-1.02 0.0956 13724.33 -239.51 

Child IP 2.26 1.85-2.75 < 0.0001   

Adult IP 1.60 1.22-2.10 0.0007   

Step 3:  
Non-assaultive 

Age 1.00 1.00-1.01 0.3292 13657.79 -66.54 

Child IP 2.12 1.73-2.58 < 0.0001   

Adult IP 1.50 1.14-1.97 0.0037   

Child N-A 1.39 1.15-1.67 0.0006   

Adult N-A 1.35 1.21-1.51 < 0.0001   
Abbreviations: AIC = Akaike Information Criterion; IP = interpersonal trauma; N-A = non-assaultive trauma. 

Note: Pseudo R2 not available due to survey approach. 
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 Separate case/control analyses. a) Controls. Results for MDD controls only are 

presented in Table 10. Age was a significant predictor of sleeplessness in Step 1 (OR = 1.02, 

95% CI = 1.01-1.03, p < 0.0001), with a model pseudo R2 of 0.01. In Step 2, child interpersonal 

trauma (OR = 1.77, 95% CI = 1.37-2.29, p < 0.0001) significantly predicted sleeplessness, but 

adult interpersonal trauma was only nominally significant (OR = 1.35, 95% CI = 0.95-1.89, p = 

0.0882). Age remained significant in this model and the pseudo R2 increased to 0.02. In Step 3, 

where all traumas were included, both child (OR = 1.45, 95% CI = 1.17-1.79, p = 0.0005) and 

adult (OR = 1.32, 95% CI = 1.16-4.33, p < 0.0001) non-assaultive traumas were significant, age 

and child interpersonal trauma remained significant, and adult interpersonal trauma was no 

longer nominally significant. The pseudo R2 was 0.02 in the final model. Once again, there were 

substantial decreases in AIC across models, indicating that the model containing all traumas is 

appropriate. No interaction terms were significant when added to this final model (p values = 

0.8936 [interpersonal] and 0.8858 [non-assaultive]) and thus are not reported in the tables.  

 

Table 10. Results of hierarchical logistic regressions examining the effects of trauma type and 

timing on sleeplessness in MDD controls only 

  OR 95% CI p-value Pseudo R2 AIC ΔAIC 

Step 1: 
Demographics 

 

Age 1.02 1.01-1.03 < 0.0001 0.01 6496.11 -- 

Step 2: 
Interpersonal 

Age 1.03 1.01-1.04 < 0.0001 0.02 6475.68 -20.43 

Child IP 1.77 1.37-2.29 < 0.0001    

Adult IP 1.35 0.95-1.89 0.0882    

Step 3:  
Non-

assaultive 

Age 1.02 1.01-1.03 < 0.0001 0.02 6445.92 -29.76 

Child IP 1.65 1.27-2.13 0.0002    

Adult IP 1.27 0.89-1.78 0.1801    

Child N-A 1.45 1.17-1.79 0.0005    

Adult N-A 1.32 1.16-4.33 < 0.0001    
Abbreviations: AIC = Akaike Information Criterion; IP = interpersonal trauma; N-A = non-assaultive trauma. 

Note: Pseudo R2 is Nagelkerke’s. 
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b) Cases. Results for MDD cases only are presented in Table 11. Age was a significant predictor 

of sleeplessness in Step 1 (OR = 1.02, 95% CI = 1.02-1.03, p < 0.0001), with a pseudo R2 of 

0.02. In Step 2, adult interpersonal (OR = 1.75, 95% CI = 1.25-2.51, p = 0.0016) but not child 

interpersonal trauma was significant, and age continued to predict sleeplessness with a similar 

magnitude. Nagelkerke’s pseudo R2 increased to 0.11. When the non-assaultive trauma terms 

were added in Step 3, both were significant (OR = 1.41, 95% CI = 1.05-1.94, p = 0.0263 for 

child; OR = 1.33, 95% CI = 1.12-1.58, p = 0.0013 for adult). The other variables remained 

similar to Step 2 and the pseudo R2 increased to 0.12. AIC decreased across models, similar to 

prior regressions, indicating that the final model is more parsimonious and has less misfit than 

initial models. Interestingly, when a multiplicative interaction term was added for child x adult 

interpersonal trauma, this was significant. This remained significant in the final model where the 

child x adult non-assaultive trauma multiplicative interaction (itself non-significant) was added, 

with a final effect of OR = 0.43 (95% CI = 0.21-0.87, p = 0.0190, AIC = 4273.61, change in AIC 

from model with no interaction = -4.57). This suggests that the combined effect of child 

interpersonal and adult interpersonal traumas is less than multiplicative on the odds-ratio scale, 

but will not be discussed further since it is scale-dependent and the decrease in model misfit (i.e., 

decrease in AIC) may not be biologically meaningful. 
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Table 11. Results of hierarchical logistic regressions examining the effects of trauma type and 

timing on sleeplessness in MDD cases only 

  OR 95% CI p-value Pseudo R2 AIC ΔAIC 

Step 1: 
Demographics 

 

Age 1.02 1.02-1.03 < 0.0001 0.02 4615.54 -- 

Step 2: 
Interpersonal 

Age 1.03 1.02-1.04 < 0.0001 0.11 4290.44 -325.10 

Child IP 1.07 0.88-1.32 0.4905    

Adult IP 1.75 1.25-2.51 0.0016    

Step 3:  
Non-

assaultive 

Age 1.02 1.01-1.03 < 0.0001 0.12 4278.18 -12.26 

Child IP 1.03 0.84-1.27 0.7963    

Adult IP 1.63 1.17-2.35 0.0059    

Child N-A 1.41 1.05-1.94 0.0263    

Adult N-A 1.33 1.12-1.58 0.0013    
Abbreviations: AIC = Akaike Information Criterion; IP = interpersonal trauma; N-A = non-assaultive trauma. 

Note: Pseudo R2 is Nagelkerke’s. 

 

 

 

 

 CSA analyses. To examine the effects of one particularly potent form of childhood 

trauma, CSA, and incident characteristics associated with it, on sleeplessness, a series of 

univariate logistic regressions were conducted. Results of CSA analyses within the full sample, 

using the primary method (co-varying for MDD status), are presented in Table 12. MDD and age 

were included as covariates in these models. Broad CSA, examined across all individuals, was a 

significant predictor of higher odds of endorsing sleeplessness (OR = 1.28, 95% CI = 1.04-1.58, 

p = 0.0202) within the full sample. Similar results, although with a larger effect for CSA, were 

seen using the survey method (OR = 2.30, 95% CI = 1.77-2.98, p < 0.0001). The subsequent 

analyses examining incident characteristics were restricted to only individuals endorsing CSA (N 

= 730), as this was a requirement for answering the follow-up questions, and are also shown in 

Table 12. CSA severity did not differentially predict sleeplessness, and none of the other incident 

characteristics were significant predictors of sleeplessness. Given this, no items were included in 

a combined regression. A survey approach was not used here due to the restriction of the sample 

to CSA cases only. As endorsement of CSA was much lower in MDD controls than MDD cases 
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and there was scarcity of cells across many incident characteristics for MDD controls only, 

analyses were not conducted separately. 

 

 

Table 12. Regression models examining the effects of CSA  

and CSA characteristics on sleeplessness in the full sample  

with MDD covariate 

 

Item Prevalence Univariate 

regression (OR) 

Childhood sexual 

abuse (CSA) 

733 (6.8) 1.28 (1.04-1.58)* 

CSA severity   

     Genital 287 (39.3) 0.84 (0.54-1.28) 

     Intercourse 176 (24.1) 1.32 (0.78-2.30) 

Intercourse vs. other 

forms of CSA 

176 (24.1) 1.45 (0.90-2.41) 

Age at time of abuse 12.22 + 5.19 1.01 (0.98-1.05) 

Age of perpetrator   

     Under 15 years 91 (12.5) 0.79 (0.46-1.40) 

     15-18 years 140 (19.2) 1.43 (0.87-2.41) 

     19-24 years  158 (21.6) 1.07 (0.68-1.71) 

     25-50 years 316 (43.3) 1.00 (0.68-1.47) 

     > 50 years 57 (7.8) 0.58 (0.31-1.12) 

Gender of perpetrator   

     Male vs.  

     female or both 

670 (91.8) 1.09 (0.54-2.10) 

Abuse by a relative   

     Relative vs. non-  

     relative or stranger 

227 (31.1) 0.9 (0.63-1.45) 

Forced or threatened   

     Maybe 121 (16.6) 0.92 (0.55-1.56) 

     Definitely 102 (14.0) 1.35 (0.74-2.57) 

How affected at the 

time 

2.01 + 2.17 1.05 (0.95-1.15) 

*p < 0.05.  

Note that the all analyses were run with both age and MDD as covariates. 
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III. Discussion 

 Here, a novel examination of trauma type and timing within a large Han Chinese sample 

is presented, and this information is used to examine the relationship between trauma and sleep 

in more detail. This is one of the first studies to date to explicitly examine whether sleeplessness 

differs across trauma types and to examine the factor structure of trauma type within a Chinese 

sample. There are three main findings to be discussed in this section: 1) a three-factor solution 

was the best-fit for trauma type, with the three factors representing interpersonal trauma, child 

interpersonal trauma, and non-assaultive trauma; 2) hierarchical regressions indicated that all 

trauma categories (child interpersonal, adult interpersonal, child non-assaultive, adult non-

assaultive) were significant, unique predictors of sleep within this sample, and that effect sizes 

were similar across trauma categories, although there were some differences when cases and 

controls were modeled separately and when using a population-based approach; and 3) broad 

CSA, but not individual incident characteristics, was a significant predictor of sleeplessness 

within this sample.  

Prevalence of traumatic events. Overall, endorsement of traumatic events within 

CONVERGE is lower than what is seen in population samples such as the WMHSC65 and the 

NCS.69 However, within the WMHSC data (where men/women were combined), the prevalence 

of any traumatic event in China (52.5%) was lower than the overall prevalence worldwide 

(70%), and individuals from China were less likely to report traumas across most 

events/categories, including those that are interpersonal in nature (i.e., interpersonal violence, 

intimate partner/sexual violence). Exceptions included collective violence and man-made 

disaster, where ORs did not differ for individuals from China. This should be considered when 

making comparisons. Note that death of a loved one was the trauma with the highest 
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endorsement in both CONVERGE (18.4% in the full sample) and the WMHSC (31%; higher OR 

for women). Particularly striking is the low prevalence of interpersonal traumas within the 

CONVERGE sample, even when examined in MDD cases only. For example, being 

mugged/threatened with a weapon was endorsed by 14.5% of individuals in WMHSC (not 

separated by sex; although being female was protective for endorsement of this event) and 6.8% 

of women in the NCS, but only 1.0% of the total sample (and 1.6% of MDD cases) here 

endorsed being threatened, held captive, or kidnapped. Further, only 0.7% of CONVERGE 

(1.3% of MDD cases) endorsed rape, while reported estimates for rape were 3.2% in the 

WMHSC and 9.2% for women in the NCS. In sum, endorsement of traumatic events is low in 

CONVERGE. One might expect that rates of interpersonal traumas would be higher given that 

half the sample has MDD and SLEs are strongly linked to the disorder (e.g., 82) and the sample is 

all female,69,70 but it is possible that under-reporting and cultural differences are at play, similar 

to what is hypothesized for lower MDD prevalence (e.g., 45,46,47).  

Factor analysis of trauma type. Traumatic events within CONVERGE were factor 

analyzed in order to better understand how these events cluster within the population, as this has 

not been done yet for a Chinese sample. A 3-factor solution for trauma type, with interpersonal, 

child interpersonal, and non-assaultive factors was the best fit, with the interpersonal and child 

interpersonal factors highly correlated, as expected (0.76). These results are similar to other 

factor analyses of trauma type in different samples that show a separation of interpersonal and 

non-assaultive traumas. For example, Stein and colleagues94 found a 2-factor solution from a 

principal component analysis of nine traumas in a veteran twin sample (comprised of both males 

and females), with Factor 1 representing “assaultive” events (e.g., robbery; sexual assault) and 

Factor 2 representing “non-assaultive events (e.g., motor vehicle accident; tornado, flood, 
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earthquake). Note that none of these traumas were specific to childhood. Benjet and colleagues65 

had access to a much wider range of traumatic events within the WMHSC data (29 in total) than 

available in CONVERGE (and Stein et al.94) and EFAs were conducted using data on both sexes. 

Five distinct factors (with a sixth that encompassed other events) were found: exposure to 

collective violence (e.g., civilian in war zone, refugee); causing/witnessing bodily harm to others 

(e.g., combat); interpersonal violence (e.g., beaten up; this factor includes events in childhood); 

intimate partner or sexual violence (e.g., rape); accidents and injuries (e.g., natural disasters). 

The factor solution presented here is similar to the interpersonal violence, intimate partner or 

sexual violence, and accidents and injuries factors, with some exceptions as to what items loaded 

where (e.g., traumatic event to loved one loaded on the intimate partner or sexual violence factor 

in Benjet et al.,65 while similar items from CONVERGE, such as death of a loved one, loaded 

onto the non-assaultive factor).  

These results are unique in that a separate factor for child interpersonal traumas was 

identified in the context of other traumatic events that occur mostly during adulthood, indicating 

that these childhood events in particular cluster together. Prior studies of childhood adversities 

demonstrate that events are related and often co-occur, with individuals exposed to one event 

more likely to be exposed to others.285-288 In several studies of population data, sexual abuse, 

physical abuse, and neglect all loaded strongly onto one factor representing “maladaptive family 

functioning” along with several other child adversity variables,285,287,288 supporting shared 

etiology and aligning with the results demonstrated here. Another recent study of 18 childhood 

events (defined as occurring before age 18) considered to be “traumatic or extremely stressful” 

also found that CSA, physical abuse, and neglect/poverty loaded onto one factor, along with 

emotional abuse, bullying, and domestic violence.93 Thus, childhood traumas (and their resultant 
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sequelae) are likely a product of the overall environment that occurs in childhood (factors 

influencing this can be related to the specific child, parent, family as a whole, community, and 

even society289) and thus often do not occur in isolation.  

Further, this child trauma factor was highly correlated with the interpersonal trauma 

factor. This is consistent with prior studies of revictimization, which suggest that individuals 

exposed to sexual abuse in childhood are more likely to experience sexual assault as adolescents 

or adults.290-294 A wide range of approaches have been used to investigate correlates of 

revictimization, examining predictors such as prior psychopathology (e.g., PTSD, alcohol use) 

and risky sexual behavior, among other intrapersonal factors (e.g., 290). Personality may also 

contribute. Several studies show that childhood abuse is related to higher neuroticism and 

openness,295,296 and openness could result in higher risk-taking behavior, thus selecting 

individuals into situations that could increase the likelihood of sexual assault. This could be a 

result of gene-environment correlation, as personality dimensions have been shown to be 

heritable.101 Revictimization may also have a genetic influence in that both childhood abuse and 

rape/sexual assault could share similar genetic underpinnings, which is in line with the literature 

suggesting that interpersonal traumas are heritable.94,96,97 Mechanisms could also be acting 

through the environment. There is a wealth of literature suggesting that early exposure to 

traumatic events (i.e., during sensitive periods) has lasting effects on the stress response system, 

resulting in sensitization and changes in how the individual responds to future stressors (e.g., 297-

299). A limitation of these results is that age for traumas other than CSA, childhood physical 

abuse, and serious neglect was not used within the factor analysis. Overall, factor analyses 

demonstrate that the structure of traumatic events is similar in the Chinese population, despite 

low endorsement of many events, and highlight the significance of both type and timing (i.e., 
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separate child interpersonal factor). Based on factor analytic results, both trauma type and timing 

were incorporated into final trauma type categories such that effects of timing on each type of 

event were considered.  

 Hierarchical regressions, trauma and sleeplessness. Results of hierarchical logistic 

regressions indicated that all trauma types (child interpersonal, adult interpersonal, child non-

assaultive, adult non-assaultive) had unique effects on the endorsement of sleeplessness, and that 

the relative potency of each event category (i.e., through comparison of ORs and 95% CIs) was 

similar, with exposure to at least one traumatic event in that category resulting in higher risk for 

sleeplessness. Results remained similar when a survey approach was used to simulate a 

population prevalence of 8% for MDD (i.e., control individuals were weighted so that they 

encompassed 92% of the sample and cases were weighted to encompass 8% in order to more 

closely model a population sample, as done in CONVERGE genetic analyses,300 instead of using 

MDD as a covariate), although there was potency found for child interpersonal trauma as related 

to sleeplessness using this method. Further, there were some differences observed when analyses 

were run separately in cases and controls, discussed below. In general, these results were 

contrary to initial hypotheses, where it was expected that interpersonal traumas would be 

stronger predictors than non-assaultive traumas and that child traumas would be more potent 

than adult traumas. This may differ depending on subset of the sample used, which highlights the 

importance of appropriate sample selection. The different approaches will be discussed in turn.  

 Within analyses of the full sample (including MDD covariate), all traumatic event 

categories (child interpersonal, child non-assaultive, adult interpersonal, adult non-assaultive) 

were significant predictors of sleeplessness at similar magnitudes. This is in contrast to the small 

body of trauma and sleep literature where interpersonal traumas have been shown to be more 
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potent predictors of sleep disturbances than accidental traumas.147,148 In a recent paper examining 

trauma and sleep in college students, it was shown that although accidental traumas were 

significant predictors of sleep individually, they were no longer significant when included in a 

model with interpersonal traumas.148 Interpersonal events also predicted more severe insomnia 

within an urban sample147 and a study of childhood adversity and insomnia in adolescence found 

that exposure to interpersonal violence (e.g., rape) resulted in the highest risk for insomnia.153 

The lack of differential predictions seen here could be due several different factors. First, 

ascertainment may be contributing, as this sample is not representative of the more general 

Chinese population and the MDD covariate does not necessarily account for differences. 

Additionally, while one might expect that the age range of the study (30-60) would result in 

more variation in sleep responses since the endorsement of sleep problems increases with age,166 

high rates of endorsement for sleep within MDD could be masking effects. Second, the 

sleeplessness item may not be an appropriate proxy for insomnia. It could be that these 

relationships are only seen at a more clinically significant level of sleep disturbances. Third, as 

discussed earlier, population prevalences of traumatic events were lower across the sample, as 

were correlations between trauma and sleep, which could be contributing to smaller effects seen 

here, especially if acting in combination with the non-specific sleep item used here. Despite the 

lack of specificity for trauma type, note that effect sizes for each trauma category were relatively 

modest (ORs ranged from 1.23 – 1.44 in the final model) in comparison to the large effect of 

MDD specifically (OR = 15.81 in the final model) on sleeplessness, yet trauma exposure was 

still significantly associated with higher odds of experiencing sleeplessness. MDD within this 

sample is likely more severe than that of other samples examining trauma and sleep and taking 

into account psychopathology (e.g., 153).  
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Additionally, child interpersonal traumas more specifically did not have larger effects on 

sleep than other traumas within these analyses, which is in contrast to the extant literature for 

sleep and MDD (e.g., 92,93,153). Two papers using detailed analyses of type and timing showed 

that childhood traumas/stressors resulted in higher risk for depression and anxiety when 

compared to adult traumas, highlighting the importance of both type and timing.92,93 Further, a 

recent study by Wang and colleagues153 examined trauma types and insomnia risk across 

development (early childhood, middle childhood, adolescence), finding higher risk for insomnia 

in individuals exposed to interpersonal violence during early childhood or adolescence (but not 

middle childhood), although these results are difficult to interpret and cannot be extended to 

adults. Findings could be due to ascertainment, particularly since there were no differences 

across child interpersonal trauma and sleep for MDD cases, or an effect could be masked by 

more proximal traumatic events accounting for the effects of earlier traumas. There were also no 

significant interactions between child and adult interpersonal and child and adult non-assaultive 

traumas. While initial hypotheses were based on the idea that individuals with child interpersonal 

trauma might be more likely to endorse adult interpersonal traumas (i.e., revictimization) and 

that this would then have more of an effect on sleep than endorsing one of these categories alone, 

this was not the case here. In the study by Chu et al.,93 described above, interactions between 

early life stressors and adult stressors were also tested, and were not significant predictors of 

depression or anxiety. Thus, while many traumatic events do co-occur, their effects on sleep may 

be distinct. 

 In contrast to analyses within the full sample, presented above, results from the survey 

method demonstrated that child interpersonal trauma did have a larger effect than the other 

trauma types (OR = 2.12, 95% CI= 1.73-2.58) on sleeplessness, although adult interpersonal 
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trauma had the same magnitude as the others (all traumas were significant). This approach 

minimized the contributions of MDD cases and modeled a population sample where MDD cases 

and MDD controls were appropriately weighted. These results provide some support for larger 

effects of child interpersonal trauma on sleep and align more closely with the literature presented 

above (e.g., 147,148). The lack of difference in magnitude for adult interpersonal trauma suggests 

that larger effects of interpersonal trauma on sleep seen in the literature may be driven by 

exposure to child interpersonal traumas only. Indeed, prior studies showing larger effects for 

interpersonal traumas on sleep did not focus on timing, and thus variables for events such as 

sexual assault could encompass events that occurred in childhood.147,148 Given that 

revictimization is common for sexual assault, it could be that this initial event has a stronger, 

more persistent effect on disturbed sleep than subsequent traumas. Moreover, these results 

highlight the importance of sample ascertainment in drawing conclusions and provide some 

insight into the contradictory findings presented earlier. Based on this, it is likely that results 

seen in the full sample are due to ascertainment biases that cannot be corrected for by including 

MDD status. 

 There were also differences for interpersonal traumas when cases and controls were 

analyzed separately. Adult interpersonal trauma was not a significant predictor of sleeplessness 

in MDD controls. While this may seem contrary to prior results, the prevalence of the adult 

interpersonal trauma variable was even lower within this subset of the sample (See Table 4) and 

endorsement of the sleep item did not significantly differ by trauma endorsement. Thus, it is 

possible that there is not enough power to detect effects of interpersonal traumas within this 

subset of the sample, given low endorsement. Further, although the prevalence of sleep 

disturbances within MDD controls broadly aligns with population estimates (although it is higher 
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than some of what has been reported in China,2,4,6) it is possible that due to selecting specifically 

for control individuals without recurrent MDD (and also without substance use and psychosis), 

the sample does not represent insomnia risk in the general Han Chinese population. This could 

result in underestimates of trauma prevalence, which could in turn be why effects on sleep are 

not seen. On the other hand, it could also be that adult interpersonal traumas are not significantly 

related to sleep when including other types of traumas, particularly when child interpersonal 

traumas are included as well (see discussion in the prior paragraph regarding lack of differential 

effects). Finally, as discussed earlier, the lack of specificity of the sleep item is also important to 

consider.  

 For individuals with MDD, child interpersonal trauma was not a significant predictor of 

sleeplessness. The endorsement of child interpersonal trauma did not differ based on 

sleeplessness (refer to Figure 4), which is reflected in the regression results. This subset of the 

sample is highly selected, such that all individuals have recurrent MDD and the majority 

endorses sleeplessness, and thus there is not much variation here. Further, prevalence rates for 

child interpersonal traumas are much higher in MDD cases than MDD controls. Thus, it is 

probable that the lack of a significant finding is due to ascertainment rather than lack of effect, as 

many studies across the literature report significant effects of child interpersonal traumas (e.g., 

CSA) on sleep,141,142 and some indicate that childhood interpersonal trauma is a more potent 

predictor than all other traumas in predicting depression and anxiety (e.g., 93). However, in a 

recent study, investigators found that childhood trauma was significantly associated with 

cognitive dimensions of depression only, not other dimensions, which included insomnia.301 

Within MDD cases, however, all other forms of trauma examined (adult interpersonal, child non-

assaultive, and adult non-assaultive) were significant predictors of sleeplessness, aligning with 
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earlier results and prior literature (i.e., that individuals endorsing any form of trauma vs. none 

endorse more sleep disturbances),153, although there were no differences in terms of magnitude 

of effect across these events. Thus, trauma endorsement, more broadly, is associated with more 

sleeplessness in MDD cases, but it is difficult to understand the contributions of childhood 

interpersonal trauma due to ascertainment. 

 In sum, examinations of trauma and sleeplessness showed associations between the 

phenotypes within this large Han Chinese sample. Most trauma types were important at similar 

magnitudes across all analyses run, with several exceptions: 1) child interpersonal trauma did not 

predict sleeplessness in MDD cases; 2) adult interpersonal trauma did not predict sleeplessness 

in MDD controls; and 3) child interpersonal trauma may have a larger effect on sleeplessness 

than other traumas for individuals in a more general population (modeled via the survey 

approach). Evidence for the potency of child interpersonal trauma in predicting sleeplessness 

supports a more detailed examination of CSA. 

 CSA analyses. While it is well established that CSA has an effect on sleep in adults 

decades after the abuse,141,142 this is the first study to examine the effects of this particularly 

potent traumatic event on sleep in a Han Chinese population, as earlier studies have primarily 

used European and European American samples. Similar to prior analyses of child interpersonal 

trauma, broad CSA was a significant predictor of sleeplessness. The odds ratio of 1.28 (95% CI 

= 1.04-1.58; co-varying for MDD status) for CSA predicting sleep here is similar to, although a 

bit less than, what was found for CSA predicting insomnia symptoms in female twins within the 

VATSPSUD sample (OR = 1.67, 95% CI = 1.35-2.06),151 despite sample differences. Note that 

both samples were assessed for broad CSA using identical questions, but that CONVERGE has a 

much lower CSA prevalence (6.8%) than the female twin sample used from VATSPSUD 
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(30.1%),151 even when restricting to MDD cases only (11.0%). The samples also differed in 

terms of sleep assessment (binary item assessing sleeplessness vs. quasi-continuous insomnia 

symptom variable). The OR for CSA predicting sleeplessness in CONVERGE did increase to 

2.30 (95% CI = 1.77-2.98) when the survey approach was used to model population prevalence, 

suggesting that the effect may in fact be larger in a more population-based sample that is not 

oversampled for MDD. This is closer to ORs for CSA predicting MDD in CONVERGE,130,131 

and provides some evidence that a particularly potent child interpersonal trauma like CSA may 

have a larger effect on sleep then other, more recent traumas, which is in line with the literature 

outlined above.93 Overall, these results support that findings across CSA and sleep are robust and 

do extend to the Han Chinese population, despite lower endorsement. 

Upon examination of incident characteristics within individuals endorsing CSA in 

CONVERGE, none of these items (or CSA severity) were significant predictors of sleeplessness. 

Within the MDD literature, a dose-response relationship with CSA severity is documented (e.g., 

124,126) and shown to replicate in CONVERGE.130,131 However, so far this has not been shown for 

insomnia; it was not identified within VATSPSUD.151 Some argue that CSA severity is related to 

both emotional and physical factors, and that these physical factors alone are not enough to 

explain severity.302 Further, studies of incident characteristics in relation to sleep outcomes are 

mixed,149,151,303,304 with some showing differential predictions. There is also variation within the 

MDD literature, where this has been studied in more detail, with some evidence that certain 

characteristics may be associated with greater risk for MDD following CSA (e.g., 128,303), while 

others do not demonstrate differential impacts (e.g., 125). It could be that differential effects of 

CSA severity and/or incident characteristics on sleep do exist, but cannot be detected here 

because they are mediated through MDD/MDD symptoms. The severity of the abuse could be 
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reflected in the development of early MDD, which could in turn result in more sleep disturbances 

(see 305 for analyses of psychopathology mediating the relationship between broad CSA and 

sleep). Additional analyses would be needed to further explore this and would require a sample 

that is not oversampled for recurrent MDD.  

Limitations. All results should be interpreted in light of five main limitations. First, there 

is ascertainment bias, as the CONVERGE sample has been selected such that half of the women 

have recurrent MDD, while the other half do not. As a result, the endorsement of sleeplessness 

was much higher in MDD cases (86%) than in MDD controls (28%). This was addressed by 

running trauma and sleep analyses using three different approaches, although there were also 

differences that occurred in the endorsement of traumatic events (almost all higher in MDD 

cases, but lower than population samples65,69) and across both trauma and sleep (MDD cases 

with and without child interpersonal traumas endorsed sleeplessness at similar rates; MDD 

controls with and without adult interpersonal traumas endorsed sleeplessness at similar rates), 

which make it difficult to draw conclusions. Further, the MDD controls did not have a history of 

psychosis, bipolar disorder, or substance use, which may not reflect the general population and 

recurrent MDD may represent a more severe subset of individuals with the disorder. Second, 

although there is detailed information on trauma type and timing and trauma assessment was 

conducted through clinical interview, this information was collected retrospectively and the exact 

temporal order of all lifetime traumas was unknown (e.g., if an event has occurred more than 

once, only the age at first onset is known). There could also be reporting bias, given the 

retrospective nature of assessment (i.e., reporting age of onset), and there may be under-

reporting, particularly for sensitive childhood events (e.g., CSA).306 The trauma list is not 

exhaustive, and all events may not truly be DSM-IV Criterion A traumas, as this was not 



 72 

assessed. Third, and perhaps most importantly, the assessment of sleep within this sample was 

not ideal, with only one subjective binary sleep item available on all individuals, assessed at the 

lifetime level, which was not part of a verified sleep scale. However, assessments of disturbed 

sleep tend to have high face validity.169 It is also recognized that endorsement of this general 

sleep item may reflect other underlying sleep disorders, such as circadian rhythm disorders. 

Fourth, analyses presented here are correlational and causal conclusions cannot be drawn. 

Finally, generalizability is limited, as the sample is comprised solely of Han Chinese women.  

There are several strengths worth noting. First, few studies specifically examining trauma 

type and timing and sleep exist, making this investigation novel. Second, the detailed assessment 

of traumatic events permitted the examination of factor structure and thus the specific influences 

of type and timing within this sample. Third, the Han Chinese are an understudied population 

with regard to analysis of trauma types and the relationship between CSA and sleep. Fourth, the 

use of an all female sample is appropriate given that the prevalence of interpersonal traumas,69,70 

sleep disturbances,2,13 and MDD44,49,50 are all higher in women. Fifth, since controls in 

CONVERGE were ascertained to minimize the likelihood of developing recurrent MDD in the 

future, the general sleep item endorsed in MDD controls is unlikely to be confounded by 

experiencing sleep disturbances within MDD (or psychopathology such as substance use, 

psychosis, or bipolar disorder). 

Conclusions and Future Directions. Traumatic events separate into interpersonal and 

non-assaultive types in a large, Han Chinese sample, and child interpersonal items (physical 

abuse, neglect, CSA) in particular may represent a unique factor. This is largely consistent with 

the prior literature, despite lower prevalences.65,69 However, regression analyses of trauma type 

and timing predicting sleeplessness did not find differential effects for separate types of traumas, 
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which is in contrast to the prior literature for sleep and psychopathology (e.g., 69,105,106,113,147,148). 

However, results may differ in a more population-based sample, as there was some evidence 

through survey-based methods (and examining MDD controls only) that child interpersonal 

events in particular may exert stronger effects on sleep. Finally, a relationship between CSA and 

sleep was replicated within this sample, but there was no evidence for specific effects of severity 

or incident characteristics. Taken together, these results indicate that although certain trauma 

types (i.e., interpersonal) are more potent predictors of internalizing disorders, effects on sleep 

may vary depending on sample ascertainment (i.e., oversampling for MDD results in higher 

endorsement of both trauma and sleep problems). Nevertheless, findings across CSA and sleep 

do appear to extend to diverse populations and highlight the importance of assessing sleep 

disturbances in individuals with CSA histories. More work is needed to examine relationships 

between trauma type and timing and sleep in population samples with less ascertainment bias, 

better sleep phenotypes, and trauma assessments with additional temporal information, and a 

focus on child interpersonal trauma in particular may be warranted. This line of research has the 

potential to identify individuals who may be at higher risk for experiencing poor sleep following 

trauma and target interventions accordingly, and may also help prevent the development of 

psychopathology. 
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Chapter 4: Estimating heritability of sleep phenotypes through GCTA 

 

I. Data analytic plan 

The software program GCTA, which estimates the heritability of a trait based on the 

additive effect of SNPs present within available genome-wide data, was used to obtain 

heritability estimates. This method creates a GRM based on SNPs for all pairs of individuals in 

the sample. The GRM is then used to predict phenotypic relatedness using a REML approach, 

resulting in an estimate of the variance in the phenotype of interest that is due to SNPs.243 For 

binary traits, the variance can be transformed to a liability scale by indicating the expected 

population prevalence.307 Here, GCTA version 1.24.7 was used to create the GRM and obtain 

heritability estimates. The GRM was constructed from 4.7 million hard-called SNPs that had a 

genotype probability > 0.9, missing rate < 1%, MAF > 1%, and Hardy-Weinberg p value > 10-6 

(see 300 for more details). Two north-south ancestry PCs (PC1 and PC2) out of 10 total were used 

as covariates in all analyses (as done in prior genetic analyses of this sample220,300), and an MDD 

covariate was used as appropriate (i.e., for analyses including both MDD cases and MDD 

controls). The SDS variable was analyzed as a quantitative trait (quasi-continuous variable), 

while all other sleep phenotypes were analyzed as binary variables, with the estimated population 

prevalence of the trait included in all analyses to transform the estimates onto the liability scale 

(see Table 13 for prevalence estimates used across variables).  

Case-control power analyses were run in the GCTA-GREML power calculator, 

http://cnsgenomics.com/shiny/gctaPower/). There was over 80% power to detect heritability for 

http://cnsgenomics.com/shiny/gctaPower/)
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the SDS,250 and 100% power to detect heritability for combined MDD cases and MDD controls. 

However, for separate analyses in MDD cases and MDD controls, power calculations indicated 

only 52% power for the GS in MDD cases and 74% for the GS in MDD controls. Power 

estimates were even lower (<30%) for the Adjusted GS and Item E8, given high endorsement 

within the sample.  

 

II. Results 

To determine the SNP-based heritability of sleep phenotypes and to prioritize the 

variables in subsequent GWAS analyses (Aim 2b), GCTA of all sleep phenotypes were 

conducted. Results are shown in Table 13. The first four rows show estimates for sleep variables 

that exist only in MDD cases, starting with the quasi-continuous trait (SDS), followed by binary 

sleep variables. None of these GCTA analyses yielded heritability estimates of sleep variables 

that were significant, with large standard errors and all p-values > 0.05. Similar results were seen 

in the fifth row for the GS in MDD controls. The final four rows show results within the 

combined sample of both MDD cases and MDD controls, utilizing the GS and the Adjusted GS 

(which contained additional sleep information for MDD cases). When there was no adjustment 

for MDD case status, both versions of the GS were heritable (8% for GS and 14% for Adjusted 

GS, p-values < 0.05), as can be seen in lines 7 and 9 of Table 13, respectively. Including the 

MDD covariate resulted in decreases in both estimates (~0 for GS and 1% for Adjusted GS), 

with neither estimate remaining significant. Although there was not support for SNP-based 

heritability for any of the sleep variables examined in CONVERGE, the SDS in MDD cases 

(quantitative trait and thus higher power than case/control analyses with a large number of cases) 

and the Adjusted GS (with MDD covariate) in the full sample (which incorporates the most 
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information across all individuals) are discussed in detail in subsequent GWAS analyses. 

 

 

Table 13. Estimates of SNP-based heritability for sleep phenotypes generated from GCTA* 
 N 

(Ca/Co) 
Covariates1 Specified 

disease 

prevalence 

Sample 

prevalence 
H2 

(scaled to 

prevalence) 

SE p-value 

MDD Cases only 
SDS2 5069 

2.58 (0.79) 
PCs -- -- 0.00 0.06 0.50 

GS  5116 
(4375/741) 

PCs 0.85 0.86 0.00 0.13 0.50 

Adjusted GS 5244 
(5039/205) 

PCs 0.85 0.96 0.00 0.41 0.50 

Item E8 5221 
(4813/408) 

PCs 0.85 0.92 0.02 0.21 0.46 

MDD Controls only 
GS 4885 

(1404/3481) 
PCs 0.30 0.29 

 
0.00 0.10 0.50 

Full sample 
GS 10001 

(5779/4222) 
PCs 0.35 0.58 0.08 0.04 0.02 

GS with 

MDD 
10001 

(5779/4222) 
PCs, 

MDD 
0.35 0.58 0.00 0.04 0.50 

Adjusted GS 10129 
(6443/3686) 

PCs 0.35 0.64 0.14 0.05 <0.001 

Adjusted GS, 

with MDD 
10129 

(6443/3686) 
PCs, 

MDD 
0.35 0.64 0.01 0.04 0.41 

Abbreviations: Ca = sleep case; Co = sleep control; GCTA = genome-wide complex trait analysis; GS = general 

sleep item; H2 = heritability; MDD = major depressive disorder; PC = principal component; SDS = sleep within 

depression; SE = standard error; SNP = single nucleotide polymorphism.   
*Note that GCTA was also run on the original MDD variable to ensure that code worked properly.  
1 Although age was a significant predictor of sleep variables in phenotypic analyses, it accounted for a small 

proportion of variance, particularly within controls, so it was not included within genetic analyses presented here. 

When age was included as a covariate in the analyses in rows 1-5 presented above, estimates remained similar. For 

combined case/control samples, age and case status are confounded due to ascertainment within CONVERGE, so it 

was not included for the full sample either.  
2 This variable was treated as a quantitative trait so no prevalence was specified. 
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III. Discussion 

To determine the extent to which sleep phenotypes utilized with CONVERGE are under 

genetic influence, and subsequently determine the SNP-based heritability of these traits, GCTA 

was conducted on sleep variables, both in the full sample and separately in MDD cases and 

MDD controls. Overall, heritability estimates were not significant, with estimated variance due 

to additive genetic effects close to zero for the SDS (quantitative trait) in MDD cases, GS in 

MDD cases, and GS in MDD controls (see Table 13) and only 2% for the main insomnia item 

from MDD assessment (Item E8) in MDD cases. None of these estimates were significantly 

different from 0. In contrast, a significant heritability estimate (8%) was obtained when MDD 

cases and controls were combined together for the GS, but this effect was no longer significant 

when accounting for MDD status, suggesting that the variance detected was due to MDD. 

Similar results were obtained with the Adjusted GS variable, which incorporated all available 

sleep information for MDD cases, although the initial estimate was higher (14%). This estimate 

also became non-significant when MDD status was included as a covariate.  

Taken together, these results suggest that sleep phenotypes within the CONVERGE 

sample are not heritable, which contradicts the extant literature for insomnia. The twin literature 

indicates that insomnia phenotypes are moderately heritable, with the lower bound of published 

estimates at around 20% and the highest estimates close to 60%.167 Several published GWAS of 

insomnia have included SNP-based heritability estimates within their results, and these are 

broadly consistent with, but on the lower end of, twin estimates: The UK Biobank GWAS of 

sleep phenotypes216 reported that their binary insomnia phenotype had a heritability of 21% 

(using BOLT-REML variance components analysis308), and the sleep latency GWAS by Amin 

and colleagues213 reported an estimate of 20% for sleep latency, estimated through GenAbel.309 
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The heritability estimate obtained within CONVERGE when combining MDD cases and MDD 

controls for the adjusted sleep variable (~14%) is closest to these estimates, although this is 

heavily influenced by ascertainment and MDD status, and thus all genetic variance is accounted 

for by MDD. Estimates within MDD cases and MDD controls separately were robust to the 

effects of age and were reported without age covariates. Differences in the phenotype from 

CONVERGE, as well as ascertainment within the sample, could be contributing to the 

inconsistency with the current literature, and will be discussed in greater detail below.  

Another paper specifically investigated the SNP-based heritability of MDD symptoms, 

which included insomnia-related items.260 Principal component analysis was conducted on the 17 

items that made up the Hamilton Rating Scale for Depression (HRSD) to determine how the 

specific items sorted into clusters. Interestingly, insomnia was among the most heritable 

symptom clusters, with an estimate of 30%, surpassing heritability for anxiety (5%) and core 

MDD symptoms (14%), but equal to that of appetite. This heritability is very similar to the twin 

estimates for sleep within depression (19-35%; 184,185). Given the detailed phenotyping for MDD 

that occurred within CONVERGE, replication should have been possible within this sample for 

sleep variables within depression, especially given the larger sample size (over 5,000 when 

restricted to MDD cases, compared to under 2,000 in Pearson et al.260), but this was not the case. 

The HRSD asked three insomnia items specific to MDD, while CONVERGE only included two 

MDD-specific insomnia items (the third item used in the SDS was a general item). There are 

other differences between the sample presented here and that used within the Pearson study that 

may be contributing to these divergent findings. Pearson and colleagues260 utilized a sample of 

treatment-seeking individuals of European ancestry who were diagnosed with MDD per DSM-

IV criteria. The study reported a much wider age range than CONVERGE (18-75 years old vs. 
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30-60 years old) and included both genders (~60% female, vs. 100%). Given that both 

insomnia174 and MDD175 have been shown to have higher heritability in women, this should 

increase the likelihood of detecting heritability in CONVERGE. However, note that there are no 

twin estimates of MDD symptom heritability in Asian samples, so it is assumed that estimates 

parallel those in the existing literature, which could be incorrect. Further, since individuals 

within CONVERGE were selected for recurrent MDD, it could also be that endorsement of the 

sleep items in this sample (~90%) were too high and there was not enough variation to obtain 

estimates.  

Power. In addition to placing these findings in the context of the extant literature, there 

are several major points to consider in interpreting these GCTA results, including 1) power; 2) 

phenotype; and 3) method. First, the ability to detect significant heritability estimates for these 

phenotypes within the CONVERGE sample is dependent on power, which for GCTA is, in turn, 

dependent on sample size and the prevalence of the trait. Power may be influencing some of the 

results seen here, especially given the high endorsement of sleep variables within the sample. For 

the quasi-quantitative SDS trait, there was over 80% power,250 which should have been adequate 

to detect the expected heritability of approximately 30%. However, note that the variable is 

highly negatively skewed (and thus not normally distributed even after log transformation; refer 

to Figure 1 for distribution), and this could result in a biased estimate.251 When both cases and 

controls were combined for the GS item, there was also adequate power (~100%) given the large 

sample size (over 10,000). These estimates were significantly different from 0 without an MDD 

covariate, but decreased when MDD was included. However, power is definitely a concern when 

looking at sleep variables separately in MDD cases and MDD controls, where the sample size is 

half as large as for the combined analyses. For all of these binary sleep items, power was below 



 80 

80%, and in some cases even below 30%. This suggests that heritability may not be identified for 

these traits due to low power, which is related to the population prevalence and high 

endorsement within this sample. 

Phenotype. Second, there are problems with the sleep phenotypes used that could be 

contributing to the lack of genetic influences. The only item available for both MDD cases and 

MDD controls is the GS, which consists of one binary item that asks, “Do you suffer from 

sleeplessness?” This particular question is not part of DSM criteria for insomnia1 nor does it 

come from an established insomnia (e.g., Insomnia Severity Index310) or sleep quality (PSQI178) 

scale. However, note that there is variability in terms of insomnia phenotypes used across the 

two samples213,216 that have estimated SNP heritability so far. The UK Biobank utilized one 

ordinal (3-level) insomnia item that was collapsed into a binary yes/no variable (i.e., 

endorsement of “never/rarely” indicated a control; “usually” were cases; “sometimes” were 

excluded).216 This question encompassed both trouble falling asleep and waking up at night, 

which are two of the main DSM insomnia symptoms.1 In contrast, Amin and colleagues213 

utilized a quantitative sleep latency phenotype, which measured time to fall asleep, in minutes, 

which may reflect the difficulty falling asleep component of insomnia (i.e., individuals with 

difficulty falling asleep would report a longer sleep latency). Note that neither of these studies 

used an insomnia diagnosis. The general sleep phenotype used here, although binary and not 

from a standardized measure, is consistent with prior analyses given that it measures an insomnia 

symptom (trouble sleeping), not disorder. Further, within the subset of MDD controls, it is 

certain that these individuals do not have recurrent MDD and will likely not develop it in the 

future (i.e., genetic risk is minimized). Given bidirectional relationships between sleep and 

psychopathology,32,34,38 it is useful to know that for these individuals, the endorsement of this 
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sleep item is not confounded by MDD. This means that any genetic contributions detected are 

sleep-specific. However, this could also be a disadvantage in that sleep in these individuals is not 

representative of the general population (i.e., they could be “super controls”), and thus could 

partially explain the lack of insomnia heritability for MDD controls seen here. 

In comparison, in MDD cases, sleep is appropriately assessed within the context of 

MDD, as CONVERGE was ascertained for studying the genetic contributions to MDD and items 

come from diagnostic criteria.48 Note that individuals were given the option to endorse 

hypersomnia as well as insomnia, although insomnia is the focus here (in general, estimates did 

not differ with hypersomnia included as a covariate). The endorsement of these sleep items is 

high within CONVERGE, with 92% of individuals with MDD who were included in GCTA 

endorsing the main MDD sleep item (Item E8; difficulty falling or staying asleep). Further, 87% 

of these individuals endorsed early morning awakenings. These estimates are definitely high but 

not surprising, given associations that have been shown between insomnia and depression 

severity (e.g., 36,37). Since this is a sample with recurrent MDD, it is reasonable that insomnia 

symptoms are very prevalent. The literature points to sleep as a core symptom of MDD35 and up 

to 90% of individuals with MDD report experiencing a sleep symptom.32 Further, in a recent 

South Korean sample, endorsement of insomnia items within MDD was 93%.37 A quasi-

quantitative trait for sleep within depression (SDS) in MDD cases was also analyzed, created by 

summing up responses on the main MDD sleep item (Item E8), early morning awakenings (Item 

E8.A), and the general sleep item, which also had high endorsement in MDD cases (86%). This 

was based on results from a prior paper that showed that three insomnia symptoms (difficulty 

falling asleep, difficulty staying asleep, and early morning awakenings) loaded highly onto a 

single factor in a phenotypic factor analysis, although the three items used in this paper were 
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asked on a 1-5 Likert scale.174 Thus, it is possible that the SDS sum score variable used here is 

not adequately measuring sleep within the sample, and as noted earlier, the variable is skewed. 

The skewness of the variable and high endorsement (and thus low variation) could lead to biased 

estimates of heritability. 

Method. Overall, estimates of SNP-based heritability have been lower than twin estimates 

across a range of phenotypes, both psychiatric and non-psychiatric in nature.245,311-314 While 

promising, this method has been unable to resolve all of the so-called “missing heritability” (a 

concept also discussed in the context of the total variance explained by known GWS 

loci).251,315,316 GCTA assumes an additive effect for all variants (and does not incorporate effect 

sizes) when estimating heritability.243,245 While additivity is an assumption also made in the twin 

literature (unless dominance is modeled), it does not encompass all possible types of genetic 

contributions to the trait, such as dominance effects and epistasis (gene-gene interactions).317 

Some researchers have proposed that heritability is not “missing,” but is instead “phantom” 

heritability that results from the overestimation of the total variance, since GxE and gene-gene 

interactions, among other genetic effects, are not measured.316 Generally, GCTA estimates 

narrow-sense heritability and estimates are considered to be a lower bound for the true 

heritability, given that all genetic variation is not encompassed.245,249 GCTA is also limited by 

the available SNPs in the study sample, which includes those that are measured or imputed, as 

the estimate can only be influenced by these SNPs and variants that are in LD with them.245,249 

As a result, GCTA captures effects of mostly common variants, since rarer variants are not in LD 

with what is measured or imputed.318 Within the analyses presented here, no variants with minor 

allele frequency (MAF) < 1% were included in GCTA, although note that the majority of 

common variation has been measured, given that genetic data collected here is sequence-based. 
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Based on this, variants that are not included in GCTA (i.e., rarer variants) could be contributing 

to missing heritability251, however this is not likely to account for the majority of the missing 

heritability.  

Further, there are some assumptions of GCTA related to case-control phenotypes that 

warrant discussion. GCTA was initially designed for quantitative traits319 and then adapted for 

use in case-control methods.307 For a binary trait, heritability estimates are dependent on sample 

size, prevalence of the trait in the population, proportion of cases, true heritability, and number 

of SNPs.251 Thus any of these variables could affect the estimate. The approaches are similar, but 

in the case-control method, the initial scale is 0,1 (not liability, as seen for quantitative traits), 

ascertainment results in many more cases than would be seen in a population sample, and 

estimates are more sensitive to artifacts.307 To address this first point, it is assumed that there is 

an underlying latent liability for case-control traits, as indicated by the liability threshold model 

(i.e., the latent trait is continuous/normally distributed and once individuals reach a certain 

threshold they can be considered cases). To calculate the SNP-based heritability for a binary 

trait, GCTA takes the phenotype, coded as 0/1, uses REML to calculate the observed heritability, 

and then converts it to the liability scale based on population prevalence k.243 While this is 

technically unbiased, there are several assumptions of REML that are violated in the case of a 

binary trait. First, the underlying distributions of variables are not normal (genes, environment, 

liability). For the case of liability in particular, case-control ascertainment generally collects 

more cases than one would expect in the general population, resulting in a non-normal 

distribution. GCTA does correct for this, transforming using information on population 

prevalence,243 but Golan and colleagues251 argue that this may not be sufficient. Second, REML 

assumes that genetic and environment influences are uncorrelated, yet the case-control design 
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itself can introduce an “induced” GxE, which is problematic.251 Additionally, Golan et al.251 also 

argue that including covariates into a case-control design (i.e., by adding fixed-effects) can 

further bias the estimates. These assumptions and their violations, which have the greatest effects 

when the N is large and population prevalence is low and are believed to result in biased (i.e., 

underestimated) estimates, should be taken into consideration. The most relevant of these 

limitations to the CONVERGE sample include 1) bias if the ascertainment correction is not 

appropriate; and 2) bias introduced by the case-control design, which could be introducing GxE. 

Additionally, there is a recent paper that argues that GCTA results in biased estimates for 

quantitative traits, even without violations of assumptions, due to noise and over-fitting of the 

GRM.252 

Summary. In sum, SNP-based heritability for sleep items within CONVERGE was not 

detected using GCTA, which in contrast to the prior literature.213,216 Future directions (aside from 

utilizing a sample with better sleep phenotypes and less ascertainment bias) include utilizing 

other programs to estimate heritability and see if predictions improve. For example, LDSC 

incorporates LD information to provide heritability estimates that are not biased by the LD 

between markers and causal variants,253 which is one criticism of GCTA that its creators 

acknowledge.319 The lack of heritability indicates that results of subsequent genetic analyses 

should be interpreted with caution. If significant estimates were obtained, sleep phenotypes 

would be able to be compared better to those within the literature. Further, there would be more 

justification in proceeding with gene-finding efforts and PRSs within this sample and the 

subsequent interpretation of these results could be done with more certainty. 
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Chapter 5: Identification of variants contributing to sleep phenotypes through GWAS 

(Aim 2b) 

 

I. Data analytic plan 

GWAS were conducted in Plink, version 1.07,320 using dosage data and run by 

chromosome. All sleep phenotypes were treated as binary (case/control), except for the SDS 

variable, which was analyzed as a quantitative trait. Covariates included two ancestry PCs (used 

within the original MDD GWAS and GCTA papers220,300) and MDD case status, where 

appropriate (i.e., full sample). Included SNPs were filtered such that all had a Hardy-Weinberg 

p-value > 1x10-7, INFO > 0.9, and MAF > 0.01 and < 0.99. This resulted in a total of 

approximately 6.1 million SNPs retained for subsequent analysis (see Table 15 for exact 

numbers). Manhattan and Q-Q plots were constructed using custom code in ggplot2274 in R, 

adapted from scripts used within the Molecular and Statistical Genetics course at VCU, HGEN 

603. The genomic inflation factor, lambda, was also calculated using custom code in R. The 

p.adjust function in the R package stats (specifying “fdr” and default values) was used to 

calculate false discovery rate [FDR]-based q-values for all SNPs that passed QC, and only SNPs 

with q-values < 0.5 were further examined via annotation. Notably, an FDR of 0.5 is very liberal, 

as this means that approximately half of the values below this cut-off are false positives. A more 

stringent FDR (e.g., 0.05, 5% false positives) would be scientifically and statistically ideal in 

order for results to be believable (i.e., to have confidence that the variant(s) of interest may 

actually be influencing the phenotype and is/are not just false positives), and to justify more 
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detailed examination of specific genes. However, given the goal of balancing rigorous science 

with choosing an FDR that would realistically provide the ability for training and experience in 

further probing of top variants, this level was put forward.  

Annotation of these top SNPs was conducted using the UCSC genome browser321 hg19 

geneKey, 20151017, adapted from code used in the Spit for Science genetic analysis pipeline. 

For initial examination, SNPs were grouped into clusters such that a cluster contained SNPs that 

were on the same chromosome and located within 10 kb of each other. Following this, clusters 

were then created such that SNPs < 75 kb from each other were collapsed. The gene key, above, 

was used to determine if each cluster included specific annotated gene(s). The clusters were also 

examined for other nearby genes (i.e., genes located 50 kb upstream or downstream from the 

cluster start/end). LocusZoom,322 a regional association plotting program available online, was 

used to visualize genes of interest (i.e., that contained variants with a minimum p-value < 10-6). 

The hg19 genome build with 1000 genomes Mar 2012 ASN LD reference was used to create all 

LocusZoom plots. –log10P values for all SNPs +/- 200 kb from the specified gene of interest 

were plotted, along with their LD correlations in relation to the index SNP (defined here as the 

SNP with the lowest p-value). Finally, replication of GWS SNPs (or SNPs indicated to be of 

interest due to nominally significant p-values in the original studies) from the five prior GWAS 

of insomnia-related phenotypes was conducted, examining the effects of 7 (out of 15 total) 

previously identified SNPs within the summary statistics of the Adjusted GS with MDD 

covariate in CONVERGE. This phenotype was chosen for replication, as it is more similar to 

general insomnia than the SDS variable. Effect allele, effect size, and p-values were compared 

across the original insomnia GWAS and CONVERGE. 
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Power calculations for the two main GWAS phenotypes (SDS in MDD cases and 

Adjusted GS with MDD covariate in the full sample) are shown in Table 14. For the SDS (quasi-

quantitative trait), power was calculated across different estimates of variance explained using 

custom code in R. There was adequate power (i.e., > 80%; see first half of Table 14) to detect 

individual variant(s) that explain > 0.8% of the variance in the trait, but not for variants with 

smaller effects. For the Adjusted GS with MDD covariate (binary), power was calculated across 

several MAFs and genotype relative risks using the Genetic Association Study Power Calculator, 

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html; see second half of 

Table 14. Here, power was adequate to detect variants with genotype relative risk > 1.15 and 

MAF > 0.25 (prevalence was set at 35%).  

 

Table 14. Power to detect variants in GWAS across main sleep phenotypes 
 SDS, MDD cases only 

(Quantitative trait, N = 5073) 

Adjusted GS, MDD covariate 

(Binary trait, N = 6,450 Ca, 3,704 Co) 

 Variance explained Genotype relative risk 

MAF 0.001 0.005 0.008 0.01 1.05 1.10 1.15 1.20 

0.05 0.7% 33.9% 82.1% 95.3% 0% 0.1% 2.0% 17.2% 

0.25 0.7% 33.9% 82.1% 95.3% 0.1% 13.6% 82.3% 99.8% 

0.5 0.7% 33.9% 82.1% 95.3% 0.2% 25.7% 92.5% 100% 
Abbreviations: Ca = case; Co = control; GS = general sleep item; MAF = minor allele frequency; MDD = major 

depressive disorder; SDS = sleep within depression variable. 

 
 

II. Results 

GWAS of main phenotypes. In order to determine if specific genetic variants contributed 

to risk for sleep traits within CONVERGE, GWAS were conducted with PC1 and PC2, as well 

as MDD where appropriate, as covariates. Association analyses focus on the SDS in MDD cases 

and Adjusted GS with MDD covariate within the full sample, given discussion following the 

pattern of GCTA findings. An overview of results is presented in Table 15, including covariates 

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
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used, sample size, number of SNPs passing quality control (QC) filters, genomic inflation factor, 

minimum p-value obtained, and number of SNPs with FDR < 0.5. Association results for the 

main phenotypes are presented in the top 2 rows. Manhattan plots and Q-Q plots are presented 

for these variables (SDS, Figures 5 and 6; Adjusted GS with MDD covariate, Figures 7 and 8) 

and will be discussed. No p-values reached genome-wide significance (5x10-8) for either of the 

two phenotypes, although there was a p–value range (between –log10P value of 4 and 6) in the Q-

Q plot of the SDS that contained more values than expected by chance.  Several p–values passed 

the threshold of nominal significance (-log10P > 6) for this trait. Both lambda values were just 

below 1 (0.998 for both), indicating that overall, the distributions of p–values are slightly under 

inflated (i.e., more larger p-values than would be expected by chance). FDR q-values were used 

to identify SNPs and regions of interest for the SDS that passed the a priori threshold (< 0.5). 

There were 312 SNPs with q-values < 0.5 (i.e., less than 50% chance that the SNP is a false 

positive) for the SDS, thus warranting further examination. No SNPs passed q < 0.5 for the 

Adjusted GS with MDD covariate. 
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Table 15. Sample sizes and summary of GWAS results for all phenotypes run 

 Covariates? GWAS N SNPs 

passing QC 

filter 

Genomic 

inflation (λ) 
Minimum 

p-value 
SNPs with 

FDR < 0.5 

Main phenotypes 
SDS1 PCs 5073 6,105,870 0.998 3.72E-07 312 
Adjusted 

GS, All  
PCs, MDD 10154 

(6450 Ca, 

3704 Co) 

6,111,327 0.998 2.28E-06 0 

Other phenotypes 
GS, MDD 

controls 

PCs 4906 
(1409 Ca, 

3497 Co) 

6,112,139 1.000 5.75E-07 0 

GS, MDD 

cases 
PCs 5120 

(4376, Ca, 

744 Co) 

6,106,412 1.005 1.97E-06 0 
 

Adjusted 

GS, MDD 

cases 

PCs 5248 

(5041 Ca, 

207 Co) 

6,105,541 0.993 3.27E-07 0 

Item E8, 

MDD 

cases 

PCs 5225 
(4815 Ca, 

410 Co) 

6,104,655 1.010 1.30E-06 0 

GS, All PCs 10026 
(5785 Ca, 

4241 Co) 

6,111,579 1.015 2.67E-06 0 

Adjusted 

GS, All 
PCs 10154 

(6450 Ca, 

3704 Co) 

6,111,327 1.025 7.08E-07 489 

Abbreviations: Ca = sleep case; Co = sleep control; FDR = false discovery rate; GS = general sleep item; GWAS = 

genome-wide association study; MDD = major depressive disorder; PC = principal component; QC = quality 

control; SDS = sleep within depression; SNP = single nucleotide polymorphism. 
1 This variable was treated as a quantitative trait. 
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Figure 5: Manhattan plot for SDS in MDD cases. This figure plots the –log10(p) values of 

associations for the SDS by chromosome. The red line represents genome-wide significance (p = 

5x10E-08), while the blue line indicates nominal significance (p = 10-6). 

 

 
 
Figure 6: Q-Q plot for SDS in MDD cases. The expected distribution of p-values is shown on 

the x-axis, while the observed distribution of p-values from GWAS of the SDS is shown on the 

y-axis. All p-values are represented as –log10(P). The dashed lines represent 95% confidence 

intervals. 
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Figure 7: Manhattan plot for Adjusted GS in full sample, MDD covariate. This figure plots 

the –log10(p) values of associations for the Adjusted GS with MDD covariate by chromosome. 

The red line represents genome-wide significance (p = 5x10E-08), while the blue line indicates 

nominal significance (p = 10-6). 

 

 
Figure 8: Q-Q plot for Adjusted GS in full sample, MDD covariate. The expected 

distribution of p-values is shown on the x-axis, while the observed distribution of p-values from 

GWAS of the Adjusted GS with MDD covariate is shown on the y-axis. All p-values are 

represented as –log10(P). The dashed lines represent 95% confidence intervals.  
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 Top SNPs for SDS. Table 16 displays 33 clusters of SNPs with q < 0.5 (SNPs that are part 

of a cluster are located on the same chromosome and within 75 kb of each other) for the SDS, 

annotated with UCSC hg19 data. Chromosome, position start and end, number of SNPs included 

in the cluster, minimum p-value and minimum q-value from that cluster, associated genes, and 

local genes are all located in this table. Genes with a minimum p-value less than 10-6 include 

Potassium Two Pore Domain Channel Subfamily K Member 9 (KCNK9) on Chromosome 8 (16 

SNPs) and Aldehyde Dehydrogenase 1 Family Member A2 (ALDH1A2) on Chromosome 15 (54 

SNPs). LocusZoom plots322 that show KCNK9 and ALDH1A2, with 200 kb flanking either side 

of the gene, are presented in Figures 9 and 10, respectively. The SNP with the smallest p-value 

(as indicated in Table 15) is used as the index SNP in both plots. These plots show that for each 

gene of interest, there are a number of SNPs that are in high LD with the top SNP. 
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Table 16. Annotated clusters of top SNPs for SDS phenotype, ordered by chromosome and 

position 

Chr Start BP End BP # of 

SNPs 
Min P Min 

Q 
Genes Local genes 

1 76922551 76943605 11 1.16E-05 0.42 ST6GALNAC3 None 

1 165166002 165170408 2 2.07E-05 0.46 None LMX1A 

2 36195077 36199327 3 1.51E-05 0.42 None None 

2 85289866 85315647 4 3.40E-06 0.38 None KCMF1, 

TCF7L1 

3 112018435 112047314 13 8.48E-06 0.42 BC041484 BC041484, 

CD200, 

SLC9C1 

3 193670290 193684988 7 7.20E-06 0.42 LOC647323 DPPA2P3, 

LOC647323 

4 84599815 84599815 1 2.06E-05 0.46 None None 

5 87981557 87981557 1 8.58E-06 0.42 None LINC00461, 

MEF2C, MIR9-2 

5 165108213 165108213 1 1.31E-05 0.42 None None 

6 168889305 168918704 5 9.12E-06 0.42 SMOC2 None 

6 170339330 170349370 43 1.60E-06 0.38 None None 

7 968785 968785 1 2.49E-05 0.49 ADAP1 ADAP1, 

COX19, GET4 

7 18777804 18782969 4 1.74E-05 0.45 HDAC9 None 

7 75426938 75426938 1 2.20E-05 0.47 None CCL24, CCL26 

8 2994124 2994124 1 1.89E-05 0.45 CSMD1 None 

8 23200605 23224711 10 1.53E-06 0.38 LOC100507156
, LOXL2 

BC128546, 
ENTPD4, 

LOC100507156, 
LOXL2, 

R3HCC1 

8 77437702 77483797 24 6.30E-06 0.42 None ZFHX4-AS1 

8 140590172 140615287 16 3.72E-07 0.38 KCNK9 None 

9 28263705 28263705 1 1.78E-05 0.45 LINGO2 None 

9 82121130 82170990 4 1.36E-05 0.42 None TLE4 

9 85332673 85359511 27 8.11E-06 0.42 None None 

10 72887202 72887202 1 1.21E-05 0.42 None None 

11 93104594 93138334 3 1.97E-05 0.45 CCDC67 None 

12 31285810 31298362 9 2.42E-06 0.38 OVOS2 DDX11, 

DKFZp434C06

31, OVOS2 

12 54578882 54584028 12 8.01E-06 0.42 SMUG1 AX747003, 

CBX5, 

MIR3198-2, 

SMUG1 

13 38967904 38997952 12 1.14E-05 0.42 None UFM1 

13 89020561 89057520 29 1.19E-05 0.42 None None 

14 82510563 82510563 1 8.33E-06 0.42 None None 

15 58209736 58353510 54 3.95E-07 0.38 ALDH1A2 None 
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Chr Start BP End BP # of 

SNPs 
Min P Min 

Q 
Genes Local genes 

15 60017791 60017791 1 1.79E-05 0.45 None BNIP2 

15 74613097 74671931 5 1.56E-05 0.44 BC013681, 

CCDC33, 

CYP11A1, 

LOC729739 

BC013681, 

CCDC33, 

CYP11A1, 

LOC729739, 

SEMA7A 

X 2273319 2273482 3 2.38E-05 0.49 None None 

X 15830587 15891711 2 1.63E-05 0.45 None None 

Abbreviations: BP = base position; Chr = chromosome number; Min = minimum.  

Rows that contain nominally significant p-values (p < 10-6) are in bold.  
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Figure 9: LocusZoom plot for SDS gene of interest KCNK9. Associations for SNPs 

within/surrounding the gene of interest KCNK9 (+/- 200 kb) from the SDS GWAS are shown 

here. rs4736083, the SNP with the smallest p-value, was used as the index SNP. The x-axis 

shows the position of each SNP, while the y-axis reflects the p-value, transformed to –log10(p). 

Magnitude of LD for each SNP with the index SNP (r2) is represented by different colors, with 

red being highest and blue being lowest.
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Figure 10: LocusZoom plot for SDS gene of interest ALDH1A2. Associations for SNPs 

within/surrounding the gene of interest ALDH1A2 (+/- 200 kb) from the SDS GWAS are shown 

here. rs35016264, the SNP with the smallest p-value, was used as the index SNP. The x-axis 

shows the position of each SNP, while the y-axis reflects the p-value, transformed to –log10(p). 

Magnitude of LD for each SNP with the index SNP (r2) is represented by different colors, with 

red being highest and blue being lowest. 
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Attempted replication of previously identified GWAS loci for insomnia within results for 

Adjusted GS. Table 17 lists SNPs that were found to be GWS (or of interest) in prior GWAS of 

insomnia phenotypes and are also available within the filtered CONVERGE summary statistics 

for the Adjusted GS with MDD covariate in the full sample. Information on the SNP (including 

the initial phenotype where association was found, rs number, chromosome, BP, and alleles) is 

shown in the first five columns. Next, summary statistics for the SNP from the original sample 

are shown (N, effect allele frequency, INFO, effect [OR/beta], 95% CI/SE, and p-value) in 

columns 6-11. Finally, the same information from the Adjusted GS with MDD covariate 

summary statistics is shown in the final six columns. Most SNPs had different MAFs and 

directions of effect than in the original samples and were not significant. However, rs2302729 

(see row 4), was nominally significant in CONVERGE (OR = 1.12, p = 0.01). 
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Table 17. Summary of replication attempts for existing insomnia-related GWAS results within the Adjusted GS, MDD covariate 
     Original sample CONVERGE  

Adjusted GS, MDD covariate 
Phenotype SNP CHR BP Alleles N EAF INFO OR/ 

Beta 

95% 

CI/SE 

P N EAF INFO OR SE P 

Insomnia216 rs5922858 X 82971008 G/T 58676 0.85 0.99 1.12 1.07-

1.16 

1.3E-8 10154 0.70 1.00 1.01 0.04 0.90 

Insomnia 

(females)216 

rs3792900 5 135393754 C/T* 58702 0.47 0.99 1.10 1.07-

1.14 

2.2E-8 10154 0.44 0.97 1.00 0.04 0.91 

Sleep 

latency215 

rs7304986 12 2438105 C/T* 2323 0.01 NR 0.49 0.11 1.4E-6 10154 0.98 0.98 1.02 0.16 0.89 

Sleep 

quality215 

rs2302729 12 2783972 T/C 2323 0.17 NR 0.17 0.04 4.4E-6 10154 0.35 0.98 1.12 0.04 0.01 

Insomnia214 rs11208305 1 64088067 C/G* 8719 0.34 NR 1.60 NR 5.6E-6 10154 0.97 1.01 1.05 0.11 0.68 

 

Insomnia214 rs718712 20 8714008 A/G* 8719 0.32 NR 0.82 NR 8.5E-6 10154 0.67 0.99 1.00 0.04 0.92 

 

Sleep 

offset217 

rs2919869 2 88404547 G/A* 956 0.26 NR 0.27 0.05 3.5E-8 10154 0.21 1.00 0.95 0.05 0.29 

Abbreviations: BP = base position; EAF = effect allele frequency; GS = general sleep item; MDD = major depressive disorder; SNP = single nucleotide 

polymorphism.  

*Effect allele is not the same in CONVERGE.
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GWAS of additional phenotypes. Results of GWAS for six additional sleep phenotypes 

are also presented in Table 15 (see “Other phenotypes” heading). Manhattan and Q-Q plots for 

these variables are shown in Figures 11-22, below, for reference. Approximately 6.1 million 

SNPs were included in each analysis, and there was no genomic inflation (λ ranged from 1.00-

1.025). No SNPs reached genome-wide significance in any of these six phenotypes, and only one 

analysis resulted in any SNPs that had an FDR < 0.5 (Adjusted GS without MDD covariate, a 

region of interest in the Q-Q can be seen in Figure 23; however, these results are confounded 

with MDD).  
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Figure 11: Manhattan plot for GS in MDD controls. This figure plots the –log10(p) values of 

associations for the GS in MDD controls by chromosome. The red line represents genome-wide 

significance (p = 5x10E-08), while the blue line indicates nominal significance (p = 10-6). 

 

 

 
 

Figure 12: Q-Q plot for GS in MDD controls. The expected distribution of p-values is shown 

on the x-axis, while the observed distribution of p-values from GWAS of the GS in MDD 

controls is shown on the y-axis. All p-values are represented as –log10(p). The dashed lines 

represent 95% confidence intervals.  
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Figure 13: Manhattan plot for GS in MDD cases. This figure plots the –log10(p) values of 

associations for the GS in MDD cases by chromosome. The red line represents genome-wide 

significance (p = 5x10E-08), while the blue line indicates nominal significance (p = 10-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Q-Q plot for GS in MDD cases. The expected distribution of p-values is shown on 

the x-axis, while the observed distribution of p-values from GWAS of the GS in MDD cases is 

shown on the y-axis. All p-values are represented as –log10(p). The dashed lines represent 95% 

confidence intervals.  
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Figure 15: Manhattan plot for Adjusted GS in MDD cases. This figure plots the –log10(p) 

values of associations for the Adjusted GS in MDD cases by chromosome. The red line 

represents genome-wide significance (p = 5x10E-08), while the blue line indicates nominal 

significance (p = 10-6). 

 

 
Figure 16: Q-Q plot for Adjusted GS in MDD cases. The expected distribution of p-values is 

shown on the x-axis, while the observed distribution of p-values from GWAS of the Adjusted GS 

in MDD cases is shown on the y-axis. All p-values are represented as –log10(p). The dashed 

lines represent 95% confidence intervals.  
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Figure 17: Manhattan plot for Item E8 in MDD cases. This figure plots the –log10(p) values 

of associations for the Item E8 in MDD cases by chromosome. The red line represents genome-

wide significance (p = 5x10E-08), while the blue line indicates nominal significance (p = 10-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Q-Q plot for Item E8 in MDD cases. The expected distribution of p-values is 

shown on the x-axis, while the observed distribution of p-values from GWAS of Item E8 in 

MDD cases is shown on the y-axis. All p-values are represented as –log10(p). The dashed lines 

represent 95% confidence intervals. 
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Figure 19: Manhattan plot for GS in full sample, no MDD covariate. This figure plots the –

log10(p) values of associations for the GS in the full sample with no MDD covariate by 

chromosome. The red line represents genome-wide significance (p = 5x10E-08), while the blue 

line indicates nominal significance (p = 10-6). 

 

 
Figure 20: Q-Q plot for GS in full sample, no MDD covariate. The expected distribution of p-

values is shown on the x-axis, while the observed distribution of p-values from GWAS of the GS 

in the full sample with no MDD covariate is shown on the y-axis. All p-values are represented as 

–log10(p). The dashed lines represent 95% confidence intervals.  
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Figure 21: Manhattan plot for Adjusted GS in full sample, no MDD covariate. This figure 

plots the –log10(p) values of associations for the Adjusted GS in the full sample with no MDD 

covariate by chromosome. The red line represents genome-wide significance (p = 5x10E-08), 

while the blue line indicates nominal significance (p = 10-6). 

 

 
Figure 22: Q-Q plot for Adjusted GS in full sample, no MDD covariate. The expected 

distribution of p-values is shown on the x-axis, while the observed distribution of p-values from 

GWAS of the Adjusted GS in the full sample with no MDD covariate is shown on the y-axis. All 

p-values are represented as –log10(p). The dashed lines represent 95% confidence intervals.  
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III. Discussion 

GWAS were conducted to determine if any specific genetic variants contribute to sleep 

disturbances within depression in MDD cases, as well as sleeplessness in general. Findings 

should be interpreted with the caveat that SNP-based heritability estimates of these phenotypes 

were not significantly different from zero, as discussed in the prior chapter. This discussion will 

focus on results for the SDS phenotype (quantitative trait), as well as the Adjusted GS with 

MDD covariate, with other phenotypes discussed briefly since there were no GWS results or 

SNPs with q-values < 0.5 in these additional variables. Overall, there were also no variants that 

reached genome-wide significance in the SDS or Adjusted GS with MDD as a covariate and Q-Q 

plots showed under inflation generally (lambda < 1.0). However, as indicated in the results 

above, there was an area of interest within the SDS phenotype where there were more p-values 

than expected by chance (between –log10P of 4 and 6). Although the most significant p-values 

were not within this region, SNPs in this region could be in LD with top SNPs, which suggests 

that some of these variants could be of interest for sleep within depression. The genome-wide 

significance cut-off of 5x10-8 represents a conservative approach to limiting the number of false 

positives, and is based on the concept of family-wise error rate (FWER). A FWER reflects the 

probability of having any false positive across the millions of associations tested. In contrast, 

other methods for controlling for false positives, such as the FDR, permit the individual to set the 

percentage of false positive results that are acceptable. Although a higher rate of Type 1 errors is 

permissible through the FDR method, power is maximized.323 As discussed above, a very liberal 

FDR was adopted (< 0.5) to provide the opportunity for training on further examination of 

GWAS findings.  
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Results of interest for SDS. The 312 SNPs that had q-values < 0.5 for the SDS were 

further annotated and examined. As discussed in the results, there were two genes, KCNK9 and 

ALDH1A2, with minimum p-values < 10-6. However, these should be interpreted with caution 

given that FDR < 0.5 is liberal. Additional support (e.g., significance in gene-based tests, 

identification in a larger sample of sleep within depression with a better phenotype) would be 

needed in order to confirm the role of these genes in sleep within MDD.  As mentioned in the 

Results, the Locus Zoom plots showed multiple SNPs in high LD with the most significant SNP 

in each of these genes, thus representing potential genes that may contribute to sleep 

disturbances in individuals with MDD. The minimum q-value within these results was 0.38. 

KCNK9, which contains two SNPs and begins a maximum of 22.9 kb downstream from the 

remaining thirteen SNPs within that cluster (this includes rs4736083, which has the smallest p-

value [p = 3.72E-07]), encodes a pH-dependent potassium channel.324,325 The gene is imprinted 

such that the maternal allele is usually expressed, and a mutation within this gene results in Birk-

Barel mental retardation dysmorphism syndrome, which is characterized by mental retardation, 

hypotonia, hyperactivity, and facial dysmorphism.326 KCNK9 has also been implicated in cancer 

(through overexpression/amplification327-329), as well as in metabolic traits like hypertension and 

body mass index (e.g., 330,331). Interestingly, knockout mouse models show that the gene may be 

involved in sleep, demonstrating slower transitions from wake to sleep and more fragmented 

REM sleep,332 in addition to increased activity during the dark period333 in knock out animals. 

ALDH1A2 contained the most SNPs with q < 0.5, including rs35016264, which had the next 

smallest p-value. This gene codes for the enzyme that catalyzes the synthesis of retinoic acid, a 

signaling molecule that is important for embryonic development.334 Like KCNK9, there are also 

associations between ALDH1A2 and cancer (e.g., 335,336). Further, there is some evidence that this 
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gene may be involved in psychiatric disorders. A haplotype containing two ALDH1A2 SNPs 

(neither of which were included in the top hits in this sample) was found to be protective for 

schizophrenia in a Han Chinese sample337 and methylation near ALDH1A2 was associated 

(negatively) with intoxication/loss of control, suggesting a role in alcohol problems.338 

Sleep within depression literature. There are no GWAS to date that have examined sleep 

within MDD, making this investigation novel. However, there is a small candidate gene literature 

looking at sleep in the context of MDD. Gass and colleagues262 examined adenosine-related 

genes in the context of depression with and without sleep symptoms, finding that SLC29A3 was 

associated with depression with early morning awakenings although this finding did not remain 

significant following Bonferroni correction. There were also some associations with depression 

including these sleep variables in men (with SLC28A1), but these were not significant after 

applying a correction for multiple testing. Another analysis by the same group examined 18 

circadian genes with these same phenotypes, finding that TIMELESS was associated with 

depression with fatigue and depression with early morning awakenings in both men and women 

(although there was some gender specificity), and replicated this association with seasonal 

symptoms.266 Another study found that MDD with late insomnia was associated with variants in 

pre-miR-182, which targets CLOCK.264 Finally, there are some investigations of polymorphisms 

in several genes (CLOCK, MAO-A) and sleep in individuals with depression, although results are 

mixed, with only some studies identifying significant genetic effects.199,265,339 Note that none of 

these candidate genes correspond to the genes of interest from the SDS GWAS, although this is 

not surprising given issues with power, phenotype, and ascertainment within the CONVERGE 

dataset and the fact that insomnia candidate genes do not replicate in insomnia GWAS either.167 

It is interesting to note, however, that the top gene in the SDS results, KCNK9, codes for an ion 
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channel, and only around 1% of protein coding genes are ion channels.340 CACNA1C, identified 

by Byrne and colleagues215 for sleep latency, as well as ABCC9, implicated in sleep 

duration218,341 are also involved in ion channels, providing further evidence for an excitatory 

mechanism for insomnia/poor sleep.167  

Adjusted GS and additional phenotypes. While there were no loci potentially associated 

with the GS in the full sample (or any of the additional GWAS of the GS in MDD controls or full 

sample), other GWAS of insomnia have identified genes of interest. Note that analyses presented 

here represent the first GWAS of an insomnia phenotype in a Han Chinese sample, although the 

first insomnia GWAS was in a Korean sample.214 Only one of the prior studies utilized a larger 

sample size than was available in CONVERGE.216 A more detailed overview of the insomnia 

GWAS findings to date can be found in Chapter 1, Section IIIa, Molecular Genetics. A brief 

overview of results will be presented here. The first two GWAS of insomnia phenotypes did not 

identify GWS hits but were able to identify several genes of interest,214,215 one of which could be 

replicated.218 The three remaining studies identified a total of nine loci that reached genome-wide 

significance, all using different phenotypes (described below in the Phenotype 

limitation).213,216,217 When summarizing prior GWAS of insomnia, it is important to consider that 

none of these studies identified GWS variants in the same genes and minimal replication has 

occurred. Identified SNPs from these earlier insomnia GWAS were examined in CONVERGE 

results for the Adjusted GS with MDD covariate, where available (refer to Table 17 for results). 

Most SNPs did not replicate, but rs2302729, which was nominally associated with sleep latency 

(Beta = 0.20, p = 4.63E-06) in women in the GWAS by Byrne and colleagues215 (2013), was also 

nominally related within the CONVERGE sample (OR = 1.12, p = 0.01). 

Power. There are several major limitations to consider that could explain the inability to 
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identify GWS hits for sleeplessness and sleep within MDD. These include power, phenotype, 

and method, paralleling what was discussed in the prior chapter for GCTA. For GWAS, 

important determinants of power include sample size, effect size, and MAF. As sample size 

increases, so does the ability to detect less common variants and/or those with smaller effects. 

Phenotype is also important for power, as rarer traits that are stable and have high heritability 

will require smaller Ns to detect common effects.342 As described in the data analytic plan, there 

was adequate power (> 80%) to detect variants with ORs > 1.15 and MAFs > 0.25, but not for 

smaller genotype relative risks and MAFs, within analyses of the Adjusted GS with MDD 

covariate. The inclusion of covariates (here, two ancestry PCs and MDD) may decrease the 

power in case-control analyses, but should not be an issue here given the large sample size.343 

However, note that most of the variance within this trait is likely accounted for by the MDD 

covariate, as seen in GCTA, potentially explaining the lack of GWS results. For the SDS, 

analyses were well-powered to detect individual variants that explain > 0.8% of the variance in 

sleep within MDD, but not for variants with smaller effects. Further, as discussed previously, the 

variable was highly skewed. The majority of individuals endorsed higher values (i.e., 2-3). In 

order to maximize the power to identify genetic variants contributing to sleep within MDD, a 

new sample with balanced ascertainment with regard to sleep variables would be needed. 

Specifically selecting for individuals with MDD who do not endorse sleep problems, as well as 

those who endorse multiple sleep problems would be a way to increase variation and maximize 

the power, as selecting from extremes improves power for a quantitative trait.342  

Phenotype. Phenotypic issues for GWAS are similar to those described in detail for 

GCTA (see Chapter 4, Section III, Phenotype), and will be expanded upon here to compare with 

the extant GWAS literature. To recap, the fact that the GS consists of a single sleep item that 
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does not come from DSM criteria or a standard sleep scale is problematic. However, phenotypic 

heterogeneity is a concern across the five insomnia GWAS conducted to date, which used 

different phenotypes. Ban and colleagues214 utilized a binary self-report insomnia phenotype, 

while Byrne and colleagues,215 who did create an insomnia factor, found main results of interest 

for self-reported sleep latency and quality. The three GWAS identifying GWS loci used 

phenotypes ranging from one subjective insomnia item,216 to a quantitative phenotype of sleep 

latency213 and objective actigraphy parameters.217 Thus, while the insomnia phenotype used here 

is not ideal, neither are those utilized within the literature, as none reflect full diagnostic criteria 

or a standardized sleep measure (although sleep latency and quality are components of scales 

such as the PSQI). For the SDS variable, the GS and sleep items in MDD were summed to create 

a quasi-quantitative trait. As no GWAS of sleep in MDD have been done, phenotypes cannot be 

compared as done for GWAS. Interestingly, several of the candidate gene studies of sleep within 

MDD compared depressed individuals with sleep problems to controls,262,266 while others 

examined sleep only within those who were depressed.263,265,339  

Method. While the GWAS approach allows for the examination of many variants without 

specific pre-determined hypotheses, there are five important limitations to consider. First, 

GWAS analyzes common variants. Rarer variants (MAF < 0.01) were filtered out in the results 

presented here. This is common across GWAS, as rare variants are imputed with less 

certainty.342,344 With improvements in sequencing approaches and imputation, analyzing variants 

of lower frequency is becoming possible. Since CONVERGE is comprised of whole-genome 

sequence data, it does contain rarer (and rare) variants. However, the power to detect effects of 

these lower frequency variants is likely less than that for common variants, particularly with 

smaller sample sizes (i.e., less than 6,000) across most phenotypes here. Specific types of 
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analyses exist for examination of rare variants in aggregate,345 which could be a future direction. 

Second, identified GWS variants have not been shown to account for a large proportion of the 

hypothesized heritability across many psychiatric traits (e.g., 220,251,315,316). Overall, effect sizes 

are small and missing heritability remains a problem, as discussed within the GCTA section 

(Chapter 4, Section I, Method). Third, like GCTA, GWAS does not account for non-additive 

genetic effects or interactions, such as epistasis and GxE. Fourth, results can be influenced by 

population stratification (i.e., results are spurious/false positives) if ancestry components are not 

properly controlled for. This is likely not a problem here, since CONVERGE is Han Chinese and 

ancestry PCs were used as covariates across all genetic analyses. Finally, GWAS examines 

variants individually, and thus does not account for the potential polygenic nature of the trait of 

interest. As there is evidence that many psychiatric disorders, such as MDD, are polygenic in 

nature,219,245,246,254,255 it may be more useful to examine the effects of variants in aggregate using 

a PRS approach, which is different than GCTA in that it takes into account effect sizes of 

variants in creating risk scores,245 as will be discussed in the next chapter.  

Summary. Overall, no GWS variants contributing to these sleep phenotypes independent 

of MDD were identified, although there were two potential genes of interest for the SDS 

(KCNK9, ALDH1A2). Significant results for sleep in MDD would be particularly novel, given 

that no GWAS have examined this phenotype, and could provide insight into the heterogeneity 

of symptoms experienced within this disorder. Identified variants could be considered “modifier 

variants”, influencing the symptom presentation of the disorder.346 Had significant variants been 

identified, the next step would be replication in independent sample(s) using similar sleep 

phenotypes. Following replication, functional analyses on the specific gene/SNP of interest 

would be useful to determine how the findings fit into known biology. For example, in the sleep 
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latency GWAS that identified RBFOX3, functional analyses of co-expression showed a role for 

the gene in neurotransmitter release (including GABA, an important inhibitory neurotransmitter 

for sleep/wake regulation), highlighting a potential mechanism by which RBFOX3 variants could 

affect variation in sleep latency.213 Further, given hypothetically significant results, running 

additional bioinformatics analyses (e.g., gene-based enrichment, pathway analysis) on the results 

would then be warranted to increase understanding of related processes and functions. For 

example, pathway analysis (e.g., using Ingenuity Pathway Analysis software, 

http://www.ingenuity.com) involves utilizing GWAS summary statistics to determine if specific 

pathways are over-represented within results from the phenotype of interest. 
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Chapter 6: Examining genetic overlap between sleep in MDD and sleep in general, as well 

as sleep and MDD, using PRSs (Aim 2c) 

 

I. Data analytic plan 

Two methods for generating PRSs were used and compared. First, LDpred,257 a software 

program written in Python that generates risk scores from GWAS summary statistics, was used. 

LDpred utilizes Bayesian priors on the genetic architecture of the trait of interest (calculated 

from heritability [as estimated by the program] and fraction of causal variants) and LD 

information from a reference sample, to estimate PRSs at different fractions (i.e., models of 

inheritance). In the seminal paper, the authors demonstrated that this method results in PRSs that 

account for greater proportions of variance in the phenotype of interest, when compared to prior 

PRS methods.257 The LDpred software was downloaded from 

http://bitbucket.org/bjarni_vilhjalmsson/ldpred and Python version 2.6.6347 was used for all 

steps. A subset of hard-called genotypes from CONVERGE (converted from dosage files using 

PLINK) were used as the target sample in LDpred. In order to be included in the hard-called 

subset, INFO had to be at least 0.99. Every genotype call for each SNP and person had to include 

one genotype probability of at least 0.9, or that SNP was set to missing for that person. LDpred 

filters on MAF < 0.01 and removes ambiguous SNPs (i.e., SNPs where the two potential alleles 

are complementary to each other, such as A/T; when this occurs it is difficult to know if the 

strand needs to be flipped, and thus the individual’s genotype at that location may be unclear). 

The CONVERGE sample was used as its own LD reference, and the LD radius (i.e., “the number 

http://bitbucket.org/bjarni_vilhjalmsson/ldpred
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of SNPs…[to]…adjust for on each side of a given SNP”; see page 579 of Vilhjalmsson et al.257) 

used across all analyses was 1157 (calculated as instructed in LDpred; total number of SNPs 

from initial step/3000). Default fractions (i.e., percentage of variants contributing causally to the 

trait of interest) were used to model genetic architecture (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 

infinitesimal).  

Scores were created using summary statistics from GWAS above of the SDS (MDD 

cases), Item E8 (MDD cases), GS (MDD cases), and GS (MDD controls). The use of MDD cases 

and MDD controls separately is referred to here as the “natural split,” which permitted the 

examination of overlap between sleep in MDD cases and sleep in MDD controls. Additionally, 

the sample was randomly split in half in order to look at genetic overlap between sleeplessness 

and MDD (referred to here as the “random split” approach). Half of individuals were assigned to 

an MDD GWAS, while the other half were assigned to sleep GWAS (GS and Adjusted GS, with 

MDD covariate), and scores were created using these summary statistics. Following their 

creation, scores were used to predict sleep phenotypes in the opposite half of the sample (i.e., 

scores created from the GS in MDD controls were used to predict sleep variables in MDD cases 

[SDS, GS, Item E8] and vice-versa in the natural split; scores from MDD were used to predict 

sleep [GS, Adjusted GS] and vice-versa in the random split). This was done using logistic 

regressions (glm for binary, polr for ordinal) conducted in R, with Nagelkerke’s pseudo R2 (as 

determined by the pscl package282) and p-values used to evaluate the model prediction. 

Covariates included two PCs (PC1 and PC2) in all analyses, and MDD in the random split 

approach when sleep was the outcome.  

The second method used was the Purcell method.254 This method uses Plink to create 

weighted risk scores from summary statistics following pruning of variants in LD. In order to 
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facilitate comparisons between Plink and LDpred scores, hard called genotypes were also used 

for Plink, ambiguous SNPs were removed from the summary statistics, and SNPs were required 

to have MAF < 0.01. For the Purcell method, risk scores were generated in Plink version 1.07,320 

using a tutorial from the Psychiatric Genetics department at QIMR Berghofer as a guide for data 

management.348 Once a complete list of available SNPs was compiled, pruning was performed in 

Plink to remove SNPs that were in high LD with each other (pairwise r2 > 0.3, 50 BP window). 

Following, risk scores were created from the pruned SNPs across a range of p-value thresholds 

(0.001, 0.01, 0.1, 0.5, 1.0; modeled off of a risk score paper examining seasonality).246 The 

number of SNPs that went into each Plink score is shown in Tables 16 and 18. The same logistic 

regression analyses as above were conducted using the Plink scores (sleep in MDD cases to 

predict sleep in MDD controls and vice-versa; MDD to sleep and vice-versa). Once all analyses 

were conducted across both methods, a Benjamini-Hockberg FDR was applied separately for p-

values generated from the natural split (MDD case/control) and random split (MDD/sleep) 

analyses to determine what method/phenotype/threshold passed multiple testing correction, and 

thus could be carried forward into a combined analysis with trauma variables, examined earlier. 

 

II. Results 

 Natural split. To determine whether there was genetic overlap between sleep in MDD 

cases and sleep in MDD controls, PRSs were constructed both using LDpred and the Purcell 

method across three sleep variables in MDD cases (GS [sleeplessness], Item E8 [difficulty 

falling or staying asleep within MDD], and SDS [sleep within depression; quasi-quantitative 

trait]) and one in MDD controls (GS [sleeplessness]) using GWAS results from Chapter 5. The 

number of SNPs that went into Plink scores at each threshold is shown in Table 18. Results are 
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displayed in Table 19 (across all phenotypes and methods), and Figures 23 (LDpred) and 24 

(Plink). Information provided in Table 19 includes method (LDpred or Plink), discovery 

phenotype, target phenotype, threshold or fraction used, effect of risk score, p-value for the 

effect, total variance explained by the model (Nagelkerke’s pseudo R2), change in variance from 

a base model containing only PCs (ΔR2, %), and q-value (from Benjamini-Hockberg FDR, used 

to correct for multiple testing). The figures provide a visual representation of how the variance 

explained differs across thresholds and phenotypes for each method, and p-values for the PRS 

effect are presented above each bar. Overall, none of the predictions were significant using 

LDpred scores, with analyses using the GS in MDD cases/GS in MDD controls demonstrating 

the smallest change in variance (nearly 0). However, for the SDS in MDD cases (see Figure 23, 

top right graph), genetic risk scores were nominally significant predictors of the GS in MDD 

controls (p values ranging from 0.04 [Inf] to 0.081 [0.001]), resulting in a ~0.1% increase in R2. 

For predictions done in Plink (see Figure 24), there were nominally significant results across 

higher thresholds (p < 0.1, p < 0.5, p = 1) for the GS in MDD cases predicting GS in MDD 

controls (and vice versa), resulting in a change in variance ranging from 0.10-0.15%. Predictions 

for Item E8 in MDD cases predicting GS in MDD controls were also nominally significant 

across most thresholds (ΔR2 = ~0.1%). Finally, genetic risk scores were significant (and passed 

multiple testing correction) when the SDS in MDD cases was used to predict GS in MDD 

controls and vice-versa at higher thresholds (p < 0.1, p < 0.5, p = 1; ΔR2 = 0.2-0.3%) 
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Table 18.  Number of SNPs that are part of each Plink PRS score; natural split 

Threshold SDS Cases E8 Cases GS Cases GS Controls 

p <0.001 156 159 130 187 

p <0.01 1696 1623 1631 1686 

p <0.1 16964 16841 16958 17017 

p <0.5 85031 85476 85388 85594 

p <=1 170579 170517 170568 170804 
Abbreviations: E8 = depression item E8; GS = general sleep item; SDS = sleep within depression 
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Table 19. Results of PRSs for sleep in MDD cases predicting sleep in MDD controls (and vice-

versa), conducted in both LDpred and Plink 

Method Discov. Target 

Thresh. 

or 

Fraction ORa (95% CI) 

R2 

(%)b 

 

ΔR2 

(%) 

p-

value 

q-

valuec 

LDpred 

LDpred SDS Ca GS Co Inf 1.07 (1.00-1.14) 0.842 0.1222 0.040 0.281 

LDpred SDS Ca GS Co 1 1.06 (0.99-1.13) 0.812 0.0924 0.075 0.281 

LDpred SDS Ca GS Co 0.3 1.06 (0.99-1.13) 0.812 0.0924 0.074 0.281 

LDpred SDS Ca GS Co 0.1 1.06 (0.99-1.13) 0.811 0.0920 0.075 0.281 

LDpred SDS Ca GS Co 0.03 1.06 (0.99-1.12) 0.808 0.0884 0.081 0.281 

LDpred SDS Ca GS Co 0.01 1.06 (0.99-1.13) 0.812 0.0924 0.074 0.281 

LDpred SDS Ca GS Co 0.003 1.06 (0.99-1.13) 0.811 0.0921 0.075 0.281 

LDpred SDS Ca GS Co 0.001 1.06 (0.99-1.13) 0.811 0.0915 0.076 0.281 

LDpred E8 Ca GS Co Inf 1.06 (1.00-1.13) 0.815 0.0953 0.070 0.281 

LDpred E8 Ca GS Co 1 1.04 (0.98-1.11) 0.766 0.0471 0.203 0.304 

LDpred E8 Ca GS Co 0.3 1.04 (0.98-1.11) 0.767 0.0471 0.203 0.304 

LDpred E8 Ca GS Co 0.1 1.04 (0.98-1.11) 0.767 0.0474 0.201 0.304 

LDpred E8 Ca GS Co 0.03 1.04 (0.98-1.11) 0.770 0.0505 0.187 0.304 

LDpred E8 Ca GS Co 0.01 1.04 (0.98-1.11) 0.767 0.0471 0.203 0.304 

LDpred E8 Ca GS Co 0.003 1.04 (0.98-1.11) 0.767 0.0472 0.202 0.304 

LDpred E8 Ca GS Co 0.001 1.04 (0.98-1.11) 0.768 0.0483 0.197 0.304 

LDpred GS Ca GS Co Inf 1.01 (0.95-1.07) 0.721 0.0014 0.829 0.972 

LDpred GS Ca GS Co 1 1.00 (0.94-1.07) 0.720 0.0002 0.940 0.972 

LDpred GS Ca GS Co 0.3 1.00 (0.94-1.07) 0.720 0.0002 0.940 0.972 

LDpred GS Ca GS Co 0.1 1.00 (0.94-1.07) 0.720 0.0001 0.948 0.972 

LDpred GS Ca GS Co 0.03 1.00 (0.94-1.06) 0.719 0.0000 0.984 0.984 

LDpred GS Ca GS Co 0.01 1.00 (0.94-1.07) 0.720 0.0002 0.940 0.972 

LDpred GS Ca GS Co 0.003 1.00 (0.94-1.07) 0.720 0.0002 0.943 0.972 

LDpred GS Ca GS Co 0.001 1.00 (0.94-1.07) 0.719 0.0001 0.964 0.976 

LDpred GS Co SDS Cad Inf 1.06 (0.99-1.12) 0.138 0.0749 0.078 0.281 

LDpred GS Co SDS Cad 1 1.05 (0.99-1.11) 0.119 0.0560 0.128 0.285 

LDpred GS Co SDS Cad 0.3 1.05 (0.99-1.11) 0.119 0.0560 0.128 0.285 

LDpred GS Co SDS Cad 0.1 1.05 (0.99-1.11) 0.120 0.0567 0.126 0.285 

LDpred GS Co SDS Cad 0.03 1.05 (0.99-1.12) 0.124 0.0606 0.113 0.285 

LDpred GS Co SDS Cad 0.01 1.05 (0.99-1.11) 0.119 0.0560 0.128 0.285 

LDpred GS Co SDS Cad 0.003 1.05 (0.99-1.11) 0.119 0.0562 0.127 0.285 

LDpred GS Co SDS Cad 0.001 1.05 (0.99-1.12) 0.121 0.0578 0.122 0.285 

LDpred GS Co E8 Ca Inf 1.10 (1.00-1.22) 0.193 0.1598 0.060 0.281 

LDpred GS Co E8 Ca 1 1.07 (0.97-1.18) 0.109 0.0761 0.195 0.304 

LDpred GS Co E8 Ca 0.3 1.07 (0.97-1.18) 0.109 0.0761 0.195 0.304 

LDpred GS Co E8 Ca 0.1 1.07 (0.97-1.18) 0.110 0.0766 0.193 0.304 

LDpred GS Co E8 Ca 0.03 1.07 (0.97-1.18) 0.110 0.0775 0.191 0.304 

LDpred GS Co E8 Ca 0.01 1.07 (0.97-1.18) 0.109 0.0761 0.195 0.304 

LDpred GS Co E8 Ca 0.003 1.07 (0.97-1.18) 0.109 0.0765 0.194 0.304 

LDpred GS Co E8 Ca 0.001 1.07 (0.97-1.18) 0.109 0.0765 0.194 0.304 

LDpred GS Co GS Ca Inf 1.01 (0.93-1.09) 0.220 0.0023 0.797 0.972 

LDpred GS Co GS Ca 1 1.00 (0.93-1.09) 0.219 0.0005 0.904 0.972 
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Abbreviations: Ca = cases; Co = controls; Discov. = discovery sample; E8 = depression item E8; GS = general sleep 

item; Inf = infinitesimal model; SDS = sleep within depression; Thresh. = p–value threshold. 
aAll scores have been standardized such that the odds ratio can be interpreted as the increase in the likelihood of 

endorsing sleeplessness for a 1 SD increase in PRS; bR2 = Nagelkerke’s pseudo R2; cBenjamini-Hockberg FDR was 

used; dWhen analyzing the SDS as an ordinal outcome, PC2 violated the proportional odds test. Given this, a linear 

model that treats the phenotype as quasi-continuous was also run. Results were similar in both models, so the ordinal 

regression is shown here for consistency. 

Bold text is used to indicate results passing multiple testing correction (q < 0.10).

Method Discov. Target 

Thresh. 

or 

Fraction ORa (95% CI) 

R2 

(%)b 

 

ΔR2 

(%) 

p-

value 
q-

valuec 

LDpred 

LDpred GS Co GS Ca 0.3 1.00 (0.93-1.09) 0.219 0.0005 0.905 0.972 

LDpred GS Co GS Ca 0.1 1.01 (0.93-1.09) 0.219 0.0005 0.900 0.972 

LDpred GS Co GS Ca 0.03 1.01 (0.93-1.09) 0.219 0.0007 0.886 0.972 

LDpred GS Co GS Ca 0.01 1.00 (0.93-1.09) 0.219 0.0005 0.904 0.972 

LDpred GS Co GS Ca 0.003 1.00 (0.93-1.09) 0.219 0.0005 0.904 0.972 

LDpred GS Co GS Ca 0.001 1.01 (0.93-1.09) 0.219 0.0006 0.893 0.972 

Plink 

Plink SDS Ca GS Co p < 0.001 0.99 (0.93-1.05) 0.725 0.0060 0.648 0.843 

Plink SDS Ca GS Co p < 0.01 1.02 (0.96-1.09) 0.733 0.0133 0.498 0.658 

Plink SDS Ca GS Co p < 0.1 1.09 (1.03-1.16) 0.948 0.2289 0.005 0.065 

Plink SDS Ca GS Co p < 0.5 1.11 (1.04-1.18) 1.028 0.3081 0.001 0.035 

Plink SDS Ca GS Co p <= 1 1.11 (1.04-1.18) 1.010 0.2910 0.002 0.035 

Plink E8 Ca GS Co p < 0.001 1.06 (1.00-1.13) 0.830 0.1109 0.051 0.281 

Plink E8 Ca GS Co p < 0.01 1.04 (0.98-1.11) 0.767 0.0475 0.201 0.304 

Plink E8 Ca GS Co p < 0.1 1.06 (0.99-1.12) 0.806 0.0868 0.084 0.281 

Plink E8 Ca GS Co p < 0.5 1.05 (0.99-1.12) 0.793 0.0735 0.112 0.285 

Plink E8 Ca GS Co p <= 1 1.05 (0.99-1.12) 0.797 0.0774 0.103 0.285 

Plink GS Ca GS Co p < 0.001 0.98 (0.92-1.04) 0.733 0.0139 0.488 0.657 

Plink GS Ca GS Co p < 0.01 1.00 (0.94-1.07) 0.720 0.0004 0.902 0.972 

Plink GS Ca GS Co p < 0.1 1.05 (0.98-1.11) 0.781 0.0617 0.145 0.304 

Plink GS Ca GS Co p < 0.5 1.06 (0.99-1.12) 0.806 0.0867 0.084 0.281 

Plink GS Ca GS Co p <= 1 1.07 (1.00-1.13) 0.835 0.1155 0.046 0.281 

Plink GS Co SDS Cad p < 0.001 0.96 (0.90-1.02) 0.116 0.0525 0.141 0.304 

Plink GS Co SDS Cad p < 0.01 1.03 (0.97-1.10) 0.089 0.0257 0.302 0.444 

Plink GS Co SDS Cad p < 0.1 1.10 (1.04-1.17) 0.305 0.2421 0.002 0.035 

Plink GS Co SDS Cad p < 0.5 1.10 (1.04-1.17) 0.299 0.2362 0.002 0.035 

Plink GS Co SDS Cad p <= 1 1.10 (1.03-1.17) 0.277 0.2135 0.003 0.046 

Plink GS Co E8 Ca p < 0.001 0.95 (0.86-1.05) 0.077 0.0436 0.327 0.472 

Plink GS Co E8 Ca p < 0.01 1.04 (0.94-1.15) 0.057 0.0240 0.467 0.638 

Plink GS Co E8 Ca p < 0.1 1.05 (0.95-1.16) 0.074 0.0415 0.338 0.479 

Plink GS Co E8 Ca p < 0.5 1.09 (0.98-1.20) 0.154 0.1206 0.102 0.285 

Plink GS Co E8 Ca p <= 1 1.08 (0.98-1.20) 0.142 0.1088 0.121 0.285 

Plink GS Co GS Ca p < 0.001 0.97 (0.90-1.05) 0.240 0.0223 0.423 0.589 

Plink GS Co GS Ca p < 0.01 1.02 (0.94-1.10) 0.224 0.0062 0.673 0.861 

Plink GS Co GS Ca p < 0.1 1.08 (1.00-1.17) 0.360 0.1422 0.043 0.281 

Plink GS Co GS Ca p < 0.5 1.08 (1.00-1.16) 0.335 0.1165 0.067 0.281 

Plink GS Co GS Ca p <= 1 1.07 (0.99-1.16) 0.320 0.1017 0.086 0.281 
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Figure 23: Results of PRS analyses for sleep in MDD cases predicting sleep in MDD controls (and vice-versa), using LDpred 

software. Graphs for risk scores created from sleep variables in MDD cases predicting sleeplessness in MDD controls are shown in 

the top row, while graphs for the reverse, risk scores created from sleeplessness in MDD controls predicting sleep variables in MDD 

cases, are shown in the bottom row. Within each individual graph, the fraction of variants modeled as contributing to the trait of 

interest is shown on the y-axis (see legend) and the change in Nagelkerke’s pseudo R2 (in percent) from a base model containing only 

principal component covariates is shown on the x-axis. The p-value of each PRS effect is shown on top of each individual bar. 
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Figure 24: Results of PRS analyses for sleep in MDD cases predicting sleep in MDD controls (and vice-versa), using the Purcell 

method in Plink. Graphs for risk scores created from sleep variables in MDD cases predicting sleeplessness in MDD controls are 

shown in the top row, while graphs for the reverse, risk scores created from sleeplessness in MDD controls predicting sleep variables 

in MDD cases, are shown in the bottom row. Within each individual graph, the p-value threshold used is shown on the y-axis (see 

legend) and the change in Nagelkerke’s pseudo R2 (in percent) from a base model containing only principal component covariates is 

shown on the x-axis. The p-value of each PRS effect is shown on top of each individual bar.
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Random split. To examine overlap between sleeplessness and MDD, PRSs were created 

for MDD, GS, and Adjusted GS (incorporating additional information on sleep for MDD cases) 

within random halves of the sample (i.e., randomly assigned to GWAS so that individuals 

included in the MDD and GS/Adjusted GS samples did not overlap), also utilizing both methods. 

Similar to the natural split, described above, Table 20 shows the number of SNPs that went into 

Plink scores at each threshold. Table 21 provides information on method, phenotypes, effect/p-

value, and variance at each threshold. Note that FDR q-values are not shown since none of the 

predictions were significant or nominally significant. Results converged across the two methods, 

with no risk scores emerging as significant predictors (for MDD predicting either GS and vice-

versa), and very small ΔR2 values were obtained (see Table 21 and Figures 25 and 26; all ΔR2 < 

0.04%). Note that for all analyses with MDD predicting GS, an MDD covariate was used (in 

addition to PCs), since many of the individuals utilized within the sleep GWAS were MDD 

cases. Finally, Figure 27 provides a comparison of the percent variance explained across samples 

and methods, displaying the maximum variance explained by risk scores for the natural split and 

random split analyses using LDpred and Plink. As can be seen in the figure, the maximum 

variance explained by Plink scores was higher than that of LDpred scores for the natural split, 

but both methods were similar for the random split. More variance was explained in natural split 

than random split analyses.  

 

 

Table 20. Number of SNPs that are part of each Plink PRS score; random split. 

Threshold MDD GS Adj. GS 

p <0.001 181 186 156 

p <0.01 1920 1672 1732 

p <0.1 17701 17197 17016 

p <0.5 86523 85384 85750 

p <=1 170659 170634 170578 
Abbreviations: GS = general sleep item; Adj. GS = Adjusted GS item, such that all sleep items were incorporated 

for cases; MDD = major depressive disorder.  
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Table 21. Results of PRSs for MDD predicting sleep (and vice-versa; random split halves), 

conducted in both LDpred and Plink 

Method Discov. Target 

Threshold 

or 

Fraction ORa (95% CI) R2 (%)b 

 

ΔR2 

(%) 

p-

value 

LDpred 

LDpred MDD GS Inf 1.04 (1.97-1.12) 41.59 0.0272 0.226 

LDpred MDD GS 1 1.00 (0.93-1.07) 41.56 0.0000 0.980 

LDpred MDD GS 0.3 1.00 (0.93-1.07) 41.56 0.0000 0.981 

LDpred MDD GS 0.1 1.00 (0.93-1.07) 41.56 0.0000 0.992 

LDpred MDD GS 0.03 0.99 (0.92-1.06) 41.57 0.0021 0.736 

LDpred MDD GS 0.01 1.00 (0.93-1.07) 41.56 0.0000 0.981 

LDpred MDD GS 0.003 1.00 (0.93-1.07) 41.56 0.0000 0.988 

LDpred MDD GS 0.001 1.00 (0.93-1.07) 41.56 0.0001 0.945 

LDpred MDD Adj. GS Inf 1.01 (0.93-1.10) 60.56 0.0017 0.738 

LDpred MDD Adj. GS 1 0.96 (0.88-1.04) 60.57 0.0132 0.349 

LDpred MDD Adj. GS 0.3 0.96 (0.88-1.04) 60.57 0.0132 0.349 

LDpred MDD Adj. GS 0.1 0.96 (0.88-1.04) 60.57 0.0144 0.328 

LDpred MDD Adj. GS 0.03 0.95 (0.87-1.03) 60.58 0.0249 0.198 

LDpred MDD Adj. GS 0.01 0.96 (0.88-1.04) 60.57 0.0132 0.348 

LDpred MDD Adj. GS 0.003 0.96 (0.88-1.04) 60.57 0.0135 0.344 

LDpred MDD Adj. GS 0.001 0.96 (0.88-1.04) 60.57 0.0164 0.297 

LDpred GS MDD Inf 1.04 (0.98-1.09) 0.734 0.0400 0.208 

LDpred GS MDD 1 1.00 (0.95-1.06) 0.694 0.0001 0.948 

LDpred GS MDD 0.3 1.00 (0.95-1.06) 0.694 0.0001 0.948 

LDpred GS MDD 0.1 1.00 (0.95-1.06) 0.694 0.0001 0.948 

LDpred GS MDD 0.03 1.00 (0.95-1.06) 0.694 0.0001 0.939 

LDpred GS MDD 0.01 1.00 (0.95-1.06) 0.694 0.0001 0.948 

LDpred GS MDD 0.003 1.00 (0.95-1.06) 0.694 0.0001 0.948 

LDpred GS MDD 0.001 1.00 (0.95-1.06) 0.694 0.0001 0.945 

LDpred Adj. GS MDD Inf 1.01 (0.96-1.07) 0.697 0.0032 0.722 

LDpred Adj. GS MDD 1 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.3 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.1 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.03 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.01 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.003 0.97 (0.92-1.03) 0.720 0.0262 0.309 

LDpred Adj. GS MDD 0.001 0.97 (0.92-1.03) 0.720 0.0262 0.309 

Plink 

Plink MDD GS p < 0.001 0.95 (0.89-1.02) 41.60 0.0350 0.170 

Plink MDD GS p < 0.01 0.99 (0.92-1.06) 41.57 0.0011 0.804 

Plink MDD GS p < 0.1 1.03 (0.96-1.11) 41.58 0.0152 0.366 

Plink MDD GS p < 0.5 1.01 (0.95-1.09) 41.57 0.0031 0.682 

Plink MDD GS p <= 1 1.02 (0.95-1.10) 41.57 0.0066 0.551 

Plink MDD Adj. GS p < 0.001 0.95 (0.87-1.03) 60.58 0.0262 0.187 

Plink MDD Adj. GS p < 0.01 0.97 (0.89-1.05) 60.57 0.0095 0.426 
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Abbreviations: Ca = cases; Co = controls; GS = general sleep item; Adj. GS = Adjusted GS item, such that all sleep 

items were incorporated for cases; Inf = infinitesimal model; MDD = major depressive disorder. 
aAll scores have been standardized such that the odds ratio can be interpreted as the increase in the likelihood of 

endorsing sleeplessness for a 1 SD increase in PRS; bR2 = Nagelkerke’s pseudo R2. 

Method Discov. Target 

Threshold 

or 

Fraction ORa (95% CI) R2 (%)b 

 

ΔR2 

(%) 

p-

value 

Plink 

Plink MDD Adj. GS p < 0.1 0.99 (0.91-1.08) 60.56 0.0005 0.849 

Plink MDD Adj. GS p < 0.5 1.01 (0.93-1.10) 60.56 0.0006 0.844 

Plink MDD Adj. GS p <= 1 1.02 (0.94-1.10) 60.56 0.0021 0.707 

Plink GS MDD p < 0.001 0.98 (0.93-1.03) 0.709 0.0151 0.439 

Plink GS MDD p < 0.01 1.01 (0.95-1.06 0.696 0.0016 0.798 

Plink GS MDD p < 0.1 1.03 (0.97-1.08) 0.715 0.0209 0.363 

Plink GS MDD p < 0.5 1.00 (0.95-1.06) 0.694 0.0000 0.967 

Plink GS MDD p <= 1 1.01 (0.95-1.06) 0.696 0.0021 0.772 

Plink Adj. GS MDD p < 0.001 1.03 (0.98-1.09) 0.725 0.0316 0.264 

Plink Adj. GS MDD p < 0.01 0.99 (0.94-1.05) 0.696 0.0016 0.800 

Plink Adj. GS MDD p < 0.1 1.02 (0.96-1.07) 0.704 0.0100 0.530 

Plink Adj. GS MDD p < 0.5 1.00 (0.95-1.06) 0.694 0.0004 0.906 

Plink Adj. GS MDD p <= 1 1.00 (0.95-1.06) 0.695 0.0006 0.876 
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Figure 25: Results of PRS analyses for MDD predicting sleeplessness (and vice-versa) 

through random sampling, using LDpred. Graphs for risk scores created from MDD 

predicting sleeplessness are shown in the top row, while graphs for the reverse, risk scores 

created from sleeplessness predicting MDD, are shown in the bottom row. Within each 

individual graph, the fraction of variants modeled as contributing to the trait of interest is shown 

on the y-axis (see legend) and the change in Nagelkerke’s pseudo R2 (in percent) from a base 

model containing only principal component covariates is shown on the x-axis. The p-value of 

each PRS effect is shown on top of each individual bar. 
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Figure 26: Results PRS analyses for MDD predicting sleeplessness (and vice-versa) through 

random sampling, using the Purcell method in Plink. Graphs for risk scores created from 

MDD predicting sleeplessness are shown in the top row, while graphs for the reverse, risk scores 

created from sleeplessness predicting MDD, are shown in the bottom row. Within each 

individual graph, the p-value threshold used is shown on the y-axis (see legend) and the change 

in Nagelkerke’s pseudo R2 (in percent) from a base model containing only principal component 

covariates is shown on the x-axis. The p-value of each PRS effect is shown on top of each 

individual bar. 
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Figure 27: Summary of variance explained by PRSs in CONVERGE. The maximum change 

in variance explained by each PRS method across both splits of the sample is shown here. The x-

axis shows the method (Plink or LDpred) and sample split (natural or random), while the y-axis 

show the maximum change in Nagelkerke’s pseudo R2 (in percent). The percent change is also 

written on the individual bars.  
 

 

 

Discussion 

Despite the lack of demonstrated SNP-based heritability and no significant GWAS hits 

within this sample, it is likely that the genetic architecture of insomnia is polygenic in nature, 

such that many variants of small effect (and thus not detectable/reaching genome-wide 

significance in GWAS at current sample sizes)245,254 contribute to the variance in sleep traits 

when examined in aggregate. Taking into account polygenicity, PRS methods utilize summary 

statistics from GWAS of a trait of interest (discovery sample) and use this information to create 

weighted risk scores in a target sample (where genetic information is available), which are then 

used to predict another (or the same) phenotype. PRSs assume that in summing up effects of 
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many variants, some true effects are included. As the number of SNPs included grows, the 

increase in noise produced by adding more SNPs is balanced by the likelihood that some of these 

SNPs will have real effects.245,254 The analyses presented here are novel, as few PRS studies of 

sleep phenotypes exist. Significant predictions were found within the natural split analyses (sleep 

in MDD cases predicting sleeplessness in MDD controls), which also demonstrated a larger 

maximum change in variance (by an order of magnitude) than in random split analyses 

(examining overlap between sleeplessness and MDD). Further, Plink scores explained nearly 

twice the variance as LDpred scores within the natural split analyses, although estimates were 

similar across methods within the random split. Results from each sample split, as well as a 

comparison of methods, will be discussed in turn.  

Sleep in MDD cases and MDD controls, natural split. Results provide some evidence 

that the genetic influences on sleep within MDD (particularly via the SDS variable) significantly 

predict sleeplessness in MDD controls, resulting in an increase in variance of  ~0.3% from the 

baseline model, using risk scores created in Plink. This prediction also occurred in the reverse, 

with the GS in MDD controls predicting the SDS in MDD cases as well (~0.2% increase in 

variance). For both of the Plink analyses, the significant p-value thresholds were those that 

encompassed more variants (p < 0.1, p < 0.5, all SNPs), the effects indicated an increase in risk 

for sleeplessness (OR > 1), and the p-values from these thresholds remained significant 

following an FDR correction that accounted for 78 tests run (three phenotype combinations, two 

directions, thirteen thresholds across two methods). Additionally, LDpred scores for the SDS in 

MDD cases predicting GS in MDD controls were nominally significant (before correction), 

supporting Plink findings for the SDS. There was also suggestive evidence in Plink for other 

sleep within MDD variables (i.e., some p-values that did not pass multiple testing correction but 
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were at least nominally significant; this occurred for the GS in both directions and Item E8 

predicting GS in MDD controls). The amount of variance explained in the Plink models with the 

SDS (0.2-0.3%) is lower than what has been reported in the literature using bipolar disorder and 

schizophrenia (~1-3%).254 However, it is similar to what Byrne and colleagues246 found when 

using bipolar disorder scores to predict seasonality (0.4%; although note that they found higher 

predictions for schizophrenia, up to 3%, and no prediction for MDD) and roughly twice what 

Maciejewksi et al.248 recently identified for MDD predicting suicidal ideation (0.1-0.16%). The 

fact that significant predictions were present for thresholds incorporating more p values 

highlights the polygenic nature of these phenotypes, and is consistent with prior literature 

indicating that this seems to be the case for psychiatric phenotypes (when compared to other 

complex traits like cardiovascular disease).245,256  

This is the first examination of molecular genetic overlap between sleep in depressed and 

non-depressed individuals, making these findings novel. As discussed in detail within the 

introduction, twin studies have looked at heritability of insomnia symptoms within the context of 

MDD (e.g., 184,185), as well as genetic overlap between insomnia and MDD (e.g., 186,187), finding 

similar estimates to insomnia in general and a high degree of overlap. Further, at the molecular 

level, candidate gene studies have attempted to identify genes related to sleep symptoms in MDD 

(e.g., 262,266). However, here, it was uniquely possible to answer the question of whether or not 

the same genes contribute to an insomnia phenotype in non-depressed vs. depressed individuals. 

Sleep within depression and sleeplessness in women without MDD have a shared genetic 

etiology, according to analyses presented here. While the amount of variance explained by the 

genetic risk scores may seem small (0.2-0.3%), it should be noted that for MDD, risk scores have 

only been able to explain a maximum of 1% of the variance (e.g., 219,220). As phenotype remains 
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an issue throughout all genetic analyses presented here, it is possible that more variance could be 

explained with an improved phenotype. 

Sleeplessness and MDD; random split. PRS analyses were also conducted to examine 

overlap between sleeplessness and MDD. Within these analyses, there was no support for genetic 

overlap between sleeplessness and MDD in either direction, with MDD case status appropriately 

controlled for. Results were consistent across Plink and LDpred. These results differ from the 

extant literature, given that biometric studies demonstrate large (i.e., over 50%186-188) genetic 

overlap between insomnia and MDD in adults, which suggests that there may be few insomnia-

specific genes that are not also involved in MDD187 and thus significant predictions would be 

expected. Results are in contrast to two existing studies that have utilized molecular data to 

examine genetic overlap between insomnia and MDD, although only one incorporated a PRS 

method. First, in a recent GWAS of MDD223 in the large 23andMe dataset, the authors created a 

risk score from 17 MDD SNPs identified as GWS within the sample and used this to predict 

insomnia, finding a significant effect. Note that the sample size here was large, with predictions 

made in nearly 250,000 individuals that were either insomnia cases or controls. In addition to the 

sizeable N, this PRS approach was different in that the risk score was constructed using GWS 

SNPs only. It is possible that using GWS SNPs reduced the amount of noise within the score, 

resulting in improved prediction over the use of SNPs across a range of p-value thresholds, as 

done here. However, a recent overview of heterogeneity in the PRS literature found that using 

GWS SNPs (vs. no correction/pruning/clumping) resulted in the smallest amount of variance 

explained across four traits of interest, which included MDD.256 Second, within their GWAS of 

insomnia in the UK Biobank, Lane and colleagues216 examined the relationship between 

insomnia and MDD using LDSC, identifying a significant genetic correlation of 0.3. LDSC 
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utilizes all available SNPs and accounts for the LD between them, so the aggregate effects of 

many variants were used in determining the correlation here (i.e., many more variants used than 

in the Hyde et al. PRSs). Note that this is lower than most genetic correlations between insomnia 

and MDD reported in the twin literature for adults (most are over 50%).186-188 Thus, while there 

is some molecular evidence for overlap between insomnia and MDD, this is an underdeveloped 

literature where more analyses are clearly needed. 

There are several factors that could be contributing to the lack of predictions seen here. 

First, while MDD was well-phenotyped within the sample, sleep was not. As touched on in the 

prior sections of the discussion, the binary item measuring sleeplessness is not the ideal measure 

of insomnia. Second, in order to examine this overlap within CONVERGE, the sample had to be 

randomly split in half. This resulted in sample sizes of ~5,000 for both phenotypes. While 5,000 

individuals should be more than enough for the target sample, a larger discovery sample is 

desirable for best predictions.245,259 Ideally, access to an outside genetically informed sample for 

insomnia, preferably within an Asian population, would provide the best way to assess genetic 

overlap between insomnia and MDD using CONVERGE. This would address the phenotypic 

issues within insomnia and maximize the use of MDD data. With appropriate insomnia data, 

significant cross-predictions would be expected for insomnia and MDD, in addition to a robust 

genetic correlation.   

Comparison of methods. As discussed earlier, significant predictions were only found 

within Plink analyses of phenotypes in the natural split (sleep in MDD cases/sleeplessness in 

MDD controls), and here, Plink scores explained approximately twice the variance as LDpred 

scores. The maximum change in variance explained by risk scores was much larger within the 

natural split analyses than in random split analyses, where there were no significant results. The 
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larger amount of variance explained by Plink (and lack of significant results in LDpred) was 

surprising, given that the initial paper describing LDpred demonstrated that scores generated by 

this program performed better than other scores (e.g., Plink) in risk prediction.257 LDpred was 

designed to address the loss of information that occurs due to LD pruning during the Purcell 

method, with the idea that including more SNPs (while still properly accounting for LD) will 

improve prediction. Thus, among the differences between these two methods, a key point to 

consider is the number of SNPs included in each set of scores. For the scores constructed using 

LDpred, over 3 million SNPs were included, since the software uses all available SNPs (that are 

in common between target and discovery samples) and accounts for the LD between them using 

information from a reference panel (in this case, the same sample).257 In contrast, fewer SNPs 

were included in Plink scores, as pruning was performed prior to score creation and different sets 

of p-value thresholds were used. The number of SNPs included ranged from several hundred 

(smallest threshold, p < 0.001) to around 160,000 (all SNPs) (see Tables 18 and 20 for additional 

details on number of SNPs per specific Plink score). Note that in general, prediction improved at 

higher thresholds in Plink; this suggests that a larger number of variants are contributing to risk, 

as discussed before.254 A similar pattern was seen across the LDpred results for phenotypes 

where scores accounted for some variance (i.e., Item E8 and SDS); the largest amounts of change 

in variance explained (and lowest p-values; see Figure 25) were within the infinitesimal models 

(i.e., where an infinite number of causal variants are contributing to risk in the phenotype; note, 

however that p-value thresholds cannot be directly compared to fractions of causal variants, 

although as the fractions increase, more variants are thought to contribute to the trait, just as 

higher p-value thresholds contain more SNPs). Another major methodological difference 

between Plink and LDpred is that LDpred utilizes the heritability of the trait based on SNPs 
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(from the input summary statistics) in its calculation of risk scores, which could be an issue since 

initial GCTAs showed low to no heritability. In several instances, the sample size had to be 

increased in order to obtain an LDpred estimate, which is likely contributing to the smaller 

amount of variance explained by LDpred scores. Finally, LDpred assumes that a point normal 

prior is appropriate for modeling the genetic architecture of the trait of interest, which could be 

incorrect depending on the true genetic architecture of the trait.257 

Limitations of PRSs. There are several limitations to discuss in the context of PRS 

methods. The first is that larger discovery samples give better predictions and thus have more 

power.245,246,254,259 Many of the initial (and current) analyses utilize large consortium data as the 

discovery sample.246,247,254 In comparison, the discovery sample sizes utilized here (~5,000 since 

the sample was split in half) are of modest size. Second, PRS methods are not standardized and 

individual studies do not often report the exact methods used. Across the literature, studies 

utilizing the Purcell method have addressed LD in different ways. Most do either pruning or 

clumping (using a variety of parameters) within Plink, although some choose not to adjust at all. 

Additionally, p-value thresholds used to bin SNPs also vary based on study. A recent publication 

outlined the issue of heterogeneity in PRS methods, running different variations of Purcell PRSs 

for several traits (height, weight, educational attainment, and depression; over 400 analyses in 

total) within a large publicly available dataset.256 Among the researchers’ conclusions was that 

while scores created using GWS SNPs were worse, no specific method of pruning/clumping 

resulted in the highest variance. In fact, many of these scores at the same thresholds had low 

correlations with each other. Based on this, the authors actually recommend the use of no LD 

pruning or clumping so that results are replicable.256 Third, PRS methods cannot capture all 

genetic influences on a trait, as rare variation, GxE, or gene-gene interactions are not included. 
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Fourth, methods assume that larger effects carry more weight, which may not necessarily be the 

case (see cholesterol as an example, where a variant explains a small portion of variance in the 

trait of interest but has a large effect on enzyme metabolism; e.g., 349). Lastly, the PRS methods 

used here are not all-encompassing, as new software continues to develop (e.g., PRSice) and 

approaches are fine-tuned.  

Summary. Overall, results provide some evidence that sleep within MDD can predict 

sleep within MDD controls, which had not been examined prior to this study. However, there is 

no support for overlap between sleeplessness and MDD within the sample. Results should be 

interpreted with the caveat that GCTAs of sleep items did not demonstrate heritability and no 

significant hits were identified through GWAS. Given robust genetic correlations seen in prior 

twin studies, additional examination of molecular genetic overlap between sleep and MDD is 

needed, using samples with better phenotypes.  
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Chapter 7: Combined phenotypic and genetic analyses (Exploratory Aim) 

 

I. Data analytic plan 

To examine the contributions of both genetic and environmental risk factors to 

sleeplessness, a combined model was conducted. Based on the overall results from the 

phenotypic and PRS analyses, the final trauma regression for MDD controls from Chapter 3 

(Table 10, Step 3; contains age and four trauma variables) was the basis for this combined model 

that added the significant PRS (created from the SDS) from Chapter 6 (Table 19). Three scores 

for the SDS in MDD cases predicting sleeplessness in MDD controls passed multiple testing 

correction (Plink method with thresholds p < 0.1, p < 0.5, all SNPs), but the score from the 

threshold of p < 0.5 was chosen for the final model since it explained the largest proportion of 

variance. The final model (age, all trauma variables, PCs, PRS) was compared to the initial 

phenotypic model (age, all trauma variables) through the change in Nagelkerke’s pseudo R2, 

change in AIC, and analysis of variance (ANOVA). The effect of PRSs alone was determined by 

comparing a model with age, traumas, and PCs to the final model listed above. All regressions 

were conducted in R, using the same methods as described in Chapters 3 and 6.  

 

II. Results 

 As shown in Table 22, effect sizes remained similar to the initial model, with age and all 

traumas, except for adult interpersonal, significant. PC2, but not PC1, was a significant predictor 

of sleeplessness, as seen in prior PRS models. The PRS was a significant predictor of 
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sleeplessness in the final combined model as well, such that a one standard deviation increase in 

PRS results in a 10% increase in risk (OR of 1.10, 95% CI = 1.03-1.17, p = 0.0037). The pseudo 

R2 increased to 0.0332 (from 0.02441; change of 0.009) and model AIC decreased by 24.62 

(5811.191 to 5786.57). Comparison of models through ANOVA indicated that adding the PRS 

and PCs resulted in a significant change (X2 = 30.62, p < 0.0001) suggesting that adding the PRS 

does improve model fit/decrease model misfit. The change in variance explained by PRSs alone 

(above and beyond an intermediate model including age, traumas, and PCs, AIC = 5793.02; 

model not shown) was 0.002 (from 0.0308 to 0.0332), with a significant change also identified 

through ANOVA (X2 = 30.62, p = 0.0037). 

 

Table 22. Results of final combined model examining the effects of both genetic and 

environmental influences on sleeplessness in MDD controls (using the top PRS created from the 

SDS in MDD cases) 

 OR 

(95% CI) 

 

p-value 

 

Model R2 

 

Model AIC 

Age 1.03 (1.01-1.04) < 0.0001 0.0332 5786.57 

PC1 0.96 (0.90-1.02) 0.2053   

PC2 1.16 (1.09-1.23) < 0.0001   

Child IP 1.63 (1.24-2.14) 0.0004   

Adult IP 1.25 (0.87-1.80) 0.2221   

Child NA 1.41 (1.12-1.75) 0.0026   

Adult NA 1.30 (1.14-1.48) 0.0001   

PRS 1.10 (1.03-1.17) 0.0037   
Abbreviations: AIC = Akaike Information Criterion; IP = interpersonal trauma; MDD = major depressive disorder; 

NA = non-assaultive trauma; PC = principal component; PRS = polygenic risk score; SDS = sleep within 

depression. 

Notes: Nagelkerke’s pseudo R2 is reported. PC1, PC2, and PRS have all been standardized to facilitate 

interpretation. 

 

 

 

 

 

 

                                                        
1 Note that this is slightly different from Table 10, as the model was restricted to individuals with 

genetic data in order to allow for model comparison. 
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III. Discussion 

Overall, results for this combined model demonstrate that both genetic (via PRS) and 

environmental (i.e., traumatic event exposure) influences are significant predictors of 

sleeplessness in MDD controls within the CONVERGE sample and account for unique variance. 

These analyses are novel in that they are the first to integrate molecular genetic risk scores (i.e., 

PRS) and environmental risk factors in relation to sleep phenotypes. Here, a genetic risk score 

created in Plink from GWAS results of the sleep within depression (SDS) variable and 

containing SNPs with p < 0.5 after pruning predicts sleeplessness in MDD controls, above and 

beyond the effects of traumatic events (child interpersonal, adult interpersonal, child non-

assaultive, adult non-assaultive). Within this final model, effects of all trauma variables (and the 

PRS) are consistent with prior models. Note that while the PRS was significant and the model fit 

improved with the inclusion of the genetic data, with an increase in variance of 0.9%, the risk 

scores themselves only explained an additional 0.2% of the variance in sleeplessness, similar to 

what was observed in PRS analyses described in Chapter 6.  

Despite these novel results, there are several caveats to note upon interpretation. First, the 

amount of variance in sleeplessness that is explained by the genetic risk score is small. Thus, 

even though the PRS reflects the effects of thousands of SNPs across the genome, explanatory 

power is limited. This suggests that there are other important factors contributing to sleeplessness 

that are not captured here. Second, while it is straightforward to interpret the meaning of an odds 

ratio for trauma type (e.g., experiencing at least one interpersonal traumatic event results in a 

30% increase in risk of endorsing sleeplessness), interpretation of genetic risk scores becomes 

more complicated, as the PRS is a summation of the aggregate effects of all included SNPs. The 

PRS used here has been standardized, such that a one standard deviation increase in the PRS 
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predicts a 10% increase in risk of endorsing sleeplessness within this sample, but exactly what 

this means on a more molecular level is unclear, as this does not implicate specific variants or 

combinations of variants. Third, the model presented here was limited to MDD controls only. 

Risk scores within this dissertation were created in split halves of the sample (MDD cases only 

or MDD controls only) to avoid overlap between individuals, and thus could only be combined 

with trauma variables for those same individuals. For a more complete model of combined 

genetic and environmental risk for sleeplessness in this data, a risk score for insomnia created 

from an external phenotype would be needed so that the full sample could be used. Finally, the 

same sample limitations discussed in prior phenotypic and genetic sections (i.e., phenotype and 

ascertainment) should also be considered in relation to the final model presented here, 

particularly since a combined model is only shown for MDD controls.  
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Chapter 8: Overall discussion and future directions 

 

 

 

This dissertation explored both genetic and environmental contributions to sleep 

phenotypes. To recap, phenotypic analyses showed that the factor structure of trauma type was 

consistent with prior literature, different trauma types are related to sleeplessness at similar 

magnitudes (although childhood interpersonal traumas may be more potent), and the relationship 

between CSA and sleep was replicated in Han Chinese women. Next, genetic analyses of sleep 

phenotypes (both general and within the context of MDD) did not indicate that there were robust 

genetic contributions to sleeplessness or sleep within MDD, which was in contrast to the extant 

literature (e.g., 213,216). There were several suggestive GWAS findings for sleep within MDD (in 

KCNK9 and ALDH1A2) and some evidence for genetic overlap between sleep in MDD and 

sleeplessness in general from PRS analyses. However, these results should be interpreted with 

caution given that the GCTA estimates of heritability did not differ significantly from zero. 

Finally, genetic risk remained a significant predictor of sleeplessness in MDD controls when 

combined into a model with trauma types, indicating that both genetic and environmental risk 

factors contribute to sleeplessness. As outlined in earlier chapters, there are several key 

limitations, which remain an issue across all sets of analyses and represent areas of future 

direction for subsequent investigations of insomnia.  

First, appropriate phenotypes are critical. Sleep phenotypes used within all analyses 

presented here were limited. The only sleep item available across both MDD cases and MDD 

controls was the binary GS item, reflecting “sleeplessness.” To reiterate prior discussions, this 



 141 

item is not from a formal insomnia definition (i.e., DSM or ICD) nor is it from a standardized 

scale for measuring sleep quality or insomnia. Further, endorsement was high within MDD cases 

(86%), resulting in less variation than would be expected in a general sample. This high 

endorsement was problematic across all analyses. Sleep items within MDD, although from 

diagnostic criteria, were also endorsed at high rates given MDD severity (i.e., recurrent MDD) 

within the sample. The sum score created for sleep in MDD (SDS) was highly negatively 

skewed, since it summed up responses across three widely endorsed items, and it is possible that 

this score does not reflect a unique phenotype. Taken together, these phenotypic issues are likely 

contributing to results presented here. However, the state of the insomnia literature as a whole is 

also limited. Epidemiologic studies of insomnia use definitions that vary in timing and severity 

(e.g., 2,3) and extant insomnia GWAS use mostly self-report phenotypes (see discussion in 

Chapter 5 for more details) as opposed to clinical DSM based diagnoses. Thus, the measurement 

of insomnia has not been ideal and this represents an important area to address, particularly for 

genetic studies. While large consortia that combine data are becoming the standard for genetic 

studies, there is not currently a consortium for insomnia. As stated earlier, fewer GWAS of 

insomnia phenotypes exist (compared to other psychiatric disorders like MDD and 

schizophrenia), and phenotypic heterogeneity will need to be resolved to some extent in order to 

make such a large-scale collaboration a viable option.  

 Second, ascertainment was a major problem within CONVERGE, as the sample was 

designed for genetic analyses of MDD. Reduced phenotypic heterogeneity across MDD 

(recurrent, homogeneous sample) resulted in the identification of MDD-relevant loci,220 but was 

clearly a disadvantage in the analyses of insomnia presented here. The full sample did not 

represent a population sample for insomnia, and combining individuals from both cases and 
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controls resulted in little to no heritability once the effect of MDD was regressed out. Further, the 

ascertainment of cases resulted in individuals with recurrent MDD, which relates to the high 

prevalence of sleep variables seen here, given that insomnia is a key symptom of the disorder 

and may reflect severity (e.g., 36,37). Controls, although they did not have recurrent MDD nor 

were they likely to develop it, may be “super controls” and thus not reflective of the population 

either. Ascertainment issues were highlighted within phenotypic analyses as well, as some 

traumas were non-significant predictors of sleep when restricted to specific subsets of the sample 

(i.e., adult interpersonal trauma was not significant in MDD controls, child interpersonal trauma 

was not significant in MDD cases). Modeling a population prevalence of MDD of 8% indicated 

that child interpersonal traumas might be more potent predictors of sleep, a finding that was not 

seen using other methods. Study designs with appropriately matched cases and controls for 

insomnia (or depressed individuals with and without sleep problems for studying insomnia 

within MDD), as opposed to samples of convenience or samples used to study other phenotypes, 

will be essential for studying genetic influences on insomnia and the contributions of trauma to 

sleep disturbances. Moreover, the ideal sample for genetic analysis may not be ideal for 

phenotypic analyses, particularly if trying to understand a specific population.  

Related to ascertainment is phenotypic heterogeneity, which may be a key contributor to 

missing heritability.245 For example, heritability estimates may be higher in clinical samples vs. 

population based245 (this is seen in the twin literature for psychiatric disorders like schizophrenia; 

e.g., 350-353). Heterogeneity as it relates to clinical subtypes may also be important.245 Within 

insomnia, this could reflect differences in the genetic contributions to sleep-onset vs. 

maintenance subtypes of the disorder. This has not been explored at the molecular level, as 

genetic studies of insomnia generally use composite phenotypes or questions that incorporate 
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both onset and maintenance. Within the twin literature, some studies do examine different 

symptoms separately,167 but detailed comparisons have not been made and some twin studies 

have even found no heritability for some symptoms (e.g., 171). Examining subtypes may make it 

easier to detect important variants, as effect sizes are likely larger in these more specific 

samples.245 It also is possible that the incorporation of other intermediate phenotypes may aid in 

understanding the genetic architecture of insomnia. For example, the concept of sleep reactivity 

(change in sleep in response to a stressor), which has been identified as a robust risk factor for 

insomnia,354,355 may also have shared genetic influences with the disorder171. Difficulties in using 

other phenotypes like this is that they may also influence other disorders like MDD,245 as is the 

case for sleep reactivity,356 which could make it difficult to isolate insomnia-specific effects 

(although note that twin studies suggest there may not be many insomnia-specific genes [e.g., 

186,187], making the examination of other phenotypes a good strategy). 

Third, large sample size and the number of cases and controls is also important for 

genetic analyses (sample sizes were adequate for phenotypic analyses, with the exception of 

some CSA-specific analyses). Although the overall sample size in CONVERGE was large, the 

study was not designed as a case-control study for insomnia, resulting in an imbalance in cases 

and controls for sleeplessness when the full sample was used (i.e., 86 % of MDD cases endorsed 

sleeplessness, see Section III, Discussion in Chapters 4 and 5). Further, samples sizes were 

modest for GWAS (~5,000) when split into MDD cases and MDD controls, and endorsement for 

sleep within depression remained problematic. In general, as sample size increases, so does the 

power to detect significant variants, particularly those of smaller effect sizes. Large GWAS of 

other phenotypes, such as schizophrenia, have identified more loci as the numbers of cases and 

controls have increased (e.g., for schizophrenia, there were seven GWS loci in a sample of 
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~9,000 cases and 19,000 controls, the first PGC,357 increasing to 108 loci identified using 

~37,000 cases and 108,000 controls in the most recent PGC analysis).242 The most recent GWAS 

of sleep phenotypes, which included insomnia assessment in ~60,000 individuals, was able to 

identify five top loci for the trait.216 This provides support for the notion that adding more 

individuals will help gene identification efforts for insomnia as well, given that its genetic 

architecture is likely polygenic.  

Once large, well-phenotyped samples for insomnia exist, this will also permit further 

examination of overlap with other psychiatric and non-psychiatric traits and increase our 

understanding of shared molecular underpinnings, which should in turn add to knowledge of the 

disorder. One strategy is that used within the UK Biobank insomnia GWAS,216 where LDSC was 

used to look at genetic correlations between sleep and other phenotypes. However, replications 

are needed using different approaches, particularly PRSs, since no studies to date, excluding this 

dissertation, have created insomnia-related PRSs. A focus on overlap with other psychiatric 

disorders in particular is warranted, given biometric studies of shared genetic contributions (e.g., 

186,187). Although overlap was examined here (with some evidence for overlap between sleep in 

MDD and sleep in general but none for sleeplessness and MDD), sample limitations discussed 

earlier (with regard to phenotype and ascertainment) make it difficult to interpret results. Risk 

scores created from other established phenotypes (i.e., from PGC consortia) should also be used 

to examine overlap with insomnia, as a good discovery sample results in greater power to detect 

shared genetic effects, and target samples do not need to be as large.245,259 The CONVERGE 

MDD results could be used in this way, but an appropriate insomnia GWAS (e.g., from 

combined data, if possible) would also be needed. Examination of GWS hits (or scores created 
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from GWS hits, similar to what was done in the 23andMe MDD GWAS223) for related 

phenotypes may also prove useful.  

Further, as our understanding of genetic contributions to insomnia increases, the 

inclusion of both genetic and environmental influences in an etiologic model (e.g., as done in the 

exploratory aim here) will be important, as the ultimate goal is to utilize this information to 

inform prevention and intervention efforts for insomnia. A recent overview of the literature 

suggests that incorporating well-characterized environmental factors and considering phenomena 

such as GxE is important from a public health perspective, as it may improve understanding of 

genetic effects and their underlying mechanisms.358 Although this sounds simple in theory, there 

are multiple reviews that outline the difficulty in incorporating large-scale genetic information 

for psychiatric traits into useful interventions.358-360 Unlike the fields of cancer and 

pharmacogenomics, the genetic architecture of the traits being studied (e.g., insomnia, most 

psychiatric traits) is not well understood.358 For phenotypes with identified variants of larger 

effect, examining risk conferred by these variants has clinical relevance, but this is not the case 

for psychiatric traits like insomnia and MDD. Additionally, determining exactly how to utilize 

genetic data is difficult. Currently, PRSs have the most potential in terms of prediction (i.e., it 

may be that individuals with certain combinations of risk alleles are more likely to develop the 

disorder or respond to a certain treatment or medication), given what is known about the 

polygenic nature of psychiatric traits.245,358 However, the aggregate nature of the method, its 

assumption of additive effects, and its restriction to common variants represent important 

limitations to consider in utilizing PRSs. As statistical genetic approaches continue to develop, 

they will inform the field’s understanding of how to best integrate genetic and phenotypic 

results, and it may be that PRSs are not ideal. Knowledge of genomics is constantly changing, 
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and statistical innovations are coming online that can be used in studying insomnia. For example, 

the field of epigenetics has gained popularity in recent years, given that these DNA 

modifications are (at least partially) a result of environment, which may be particularly relevant 

for insomnia.361 Other non-additive contributions, such as gene-gene interactions, may be 

relevant once more research has been done. One area that has been promising for insomnia is 

gene expression, where studies have found differences in genes expressed within insomnia 

following specific insomnia treatments (e.g., 362,363) 

 Final conclusions. This dissertation aimed to understand the genetic and environmental 

influences on sleep disturbances, both within and outside of MDD, in an understudied 

population. There were several novel findings in both phenotypic (i.e., verification of trauma 

structure in Han Chinese, replication of the effect of CSA on sleep in a Chinese population) and 

genetic (i.e., identification of several suggestive genes based off of the liberal q-value threshold 

that could be relevant for sleep within MDD, demonstration of shared genetic influences between 

sleep within MDD and sleeplessness in general) analyses and a final model incorporated both 

trauma and aggregate genetic risk. However, limitations of the sleep phenotypes and sample 

ascertainment greatly limited the ability to answer the proposed questions, bringing up concerns 

that are relevant to the insomnia literature as a whole. Many questions remain unanswered, 

particularly in understanding insomnia in the context of MDD and the extent to which molecular 

genetic influences overlap between insomnia and MDD. This underscores the need for additional 

studies of well-defined insomnia phenotypes that examine the differential effects of traumatic 

event exposure, additional environmental variables (e.g., overall physical health/exercise), and 

comorbid psychiatric conditions, in addition to incorporating genomic data, in order to advance 

our understanding of this prevalent health concern. 
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