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Abstract

A REUSED DISTANCE BASED ANALYSIS AND OPTIMIZATION FOR GPU

CACHE

By Dongwei Wang

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Director: Weijun Xiao,

Assistant Professor, Department of Electrical and Computer Engineering

As a throughput-oriented device, Graphics Processing Unit(GPU) has already

integrated with cache, which is similar to CPU cores. However, the applications in

GPGPU computing exhibit distinct memory access patterns. Normally, the cache,

in GPU cores, suffers from threads contention and resources over-utilization, whereas

few detailed works excavate the root of this phenomenon. In this work, we adequately

analyze the memory accesses from twenty benchmarks based on reuse distance theory

and quantify their patterns. Additionally, we discuss the optimization suggestions,

and implement a Bypassing Aware(BA) Cache which could intellectually bypass the

thrashing-prone candidates.

BA cache is a cost efficient cache design with two extra bits in each line, they

are flags to make the bypassing decision and find the victim cache line. Experimental

results show that BA cache can improve the system performance around 20% and

reduce the cache miss rate around 11% compared with traditional design.



CHAPTER 1

INTRODUCTION

1.1 GPGPU computing

Initially, GPUs are designed to do graphic processing. Multiple pipelines can

simultaneously calculate the information of a pixel and update it on the screen, such

as position, lighting, and depth etc.. With the development of architecture and

hardware, GPUs have been widely employed to do General-Purpose computing on

Graphics Processing Units(GPGPU).

GPGPU computing is a widespread research topic in academia and industry with

the emerging architecture. Compute Unified Device Architecture, which is known as

CUDA1[1], is introduced by NVIDIA in November 2006. It is a general purpose par-

allel computing platform and programming model to accelerate the traditional com-

puting efficiency by utilizing the powerful computing capability in NVIDIA GPUs[1].

Programmers could implement a CUDA program by programming with a C exten-

sion language, and launch the kernel function in GPU cores to speedup the comput-

ing. Many generations of CUDA-supported GPUs have been released to the market.

Maxwell is the latest GPU architecture, integrated with 2048 CUDA cores[2], which

is four times more than Fermi architecture(512 CUDA cores)[3]. Open Computing

Language, known as OpenCL[4], is a similar programming platform with CUDA to

run parallel program in heterogeneous platforms which are comprised by CPUs and

GPUs. It is maintained by Khronos Group which is a non-profit technology consor-

1We follow CUDA terminology in this paper
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tium.

CUDA and OpenCL provide more flexibilities for programmers to utilize the

tremendous computing power of GPUs. They are the key points for the popularity

of high performance computing in academic and industry.

1.2 Cache in GPUs

As predicted by Moore‘s law[5], the performance gap between CPU and main

memory is increasingly enlarged. Cache, as a bridge, is introduced according to the

locality of programs with the purpose of narrowing this gap. With the improve-

ments of hardware performance, GPUs can provide enormous computing power to

accelerate GPGPU computing. Early generations of NVIDIA products, such as G80

and GT200, do not include L1 cache, only 16KB shared memory is accessible by

threads in the same thread block. Fermi is the first GPU architecture which includes

a 64KB L1 cache in each Streaming Multiprocessor(SM)[3] which is configurable with

48KB/16KB shared memory and 16KB/48KB L1 data cache. It is more flexible in

Kepler to split the cache into 32KB/32KB[6]. The latest Maxwell has a dedicated

96KB shared memory, and L1 data cache has to share with texture memory[2].

Cache plays an important role in CPU-based computing. Normally, the hit rate

of cache is high enough to gain performance improvements. Many prior works[7, 8, 9,

10, 11, 12, 13] have proposed a lot of improvements for CPU cache to make it work

more efficiently. These improvements include flexible associativity, effective insertion,

selective bypassing, and smart replacement. They aim to reduce the latency, which

is essential for the performance of multi-core systems.

Yet, due to the distinct memory access patterns, this is another story in GPGPU

computing model. Figure 1 compares the difference of architecture organizations

between CPUs and GPUs. CPU, as a conventional processor, has less computing

2



units but large cache capacity and more control units. GPU, as a throughput-oriented

device, has more computing cores to exploit the tremendous computing capability.

Fig. 1. The hardware architecture of CPU and GPU

SMs execute the same kernel in a fashion of Single Instruction, Multiple Data(SIMD).

They deliver an extraordinary computing performance by launching thousands of

parallel threads(work items in OpenCL terminology). Massive threads, which are

lightweight units, issue memory accesses that are small in size but large in amount.

These threads from different warps execute in an independent pattern. The ineffi-

ciency of cache mainly comes from threads contention and resource congestion[14]. In

this work, we will explain the reason for this phenomenon and quantify the patterns

of memory accesses.

1.3 Reuse distance in cache

Our work is based on the reuse distance theory. It can be used as a metric

to evaluate the cache performance. Beyls et al. use a stack to represent the reuse

distance(stack distance). When an address is referenced, it will move to the top of

stack. The value of reuse distance is the depth before this address moves to top[15].
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Reuse distance also can help to make an efficient replacement decision. Keramidas et

al.[16] calculate the reuse distance and select the cache line with longest remaining

distance as a victim via instruction-based(PC) predictions. Duong et al.[17] propose

the protection distance to protect a line to stay in cache for a certain time span and

dynamically calculate the reuse distance. All these works focus on CPU cache. With

the booming developments of GPUs in recent years, some researchers evaluate the

cache performance with reuse distance in GPU cores. Tang et al.[18] analyze GPU

programs by building a model to predict the cache miss rate. They focus on two

subproblems: single thread blocks and multiple thread blocks. The former subset

is based on the analysis of stack distance profiling. Nugteren et al.[19] add five

extensions in cache to apply the reuse distance theory in parallel computing model

of GPUs.

Currently, the cache design in GPUs is similar to the philosophy of CPU‘s. Be-

cause of the distinct access patterns, the hit rates of GPUs cache are far lower than

CPUs. Figure 2 shows the miss rates of all benchmarks we choose in this paper 3.5.

It is a 16KB, 8-way set associative L1 data cache in this experiment. The size of

each cache line is 128 bytes in this paper. These statistics are the summations of all

memory accesses and cache misses. AES and NQU miss all of the cache requests.

HST, NW, PF and KM give near 100% miss rates. Although the miss rates of NN

and TPACF are close to zero, most benchmarks are around 40%-80%. The rightmost

bar gives the average value of miss rate for all 20 benchmarks, which is 60%.

Obviously, a high miss rate fails to take the advantage of data locality and

aggravates the cache contention. Sometimes, thrashing[20] makes the performance

worse if too many cache lines frequently switch in and out. Thousands of threads

lay more burden on L1 data cache and thus exacerbates the resource utilization as

missed cache requests have to go through the interconnect to access the L2 cache.

4



Fig. 2. The miss rates of L1 data cache

Bandwidth is the key point to impact the performance[21, 22]. It will degrade if too

many accesses severely consume the bandwidth due to a high miss rate of L1 data

cache.

Based on above considerations, we present a detailed analysis on the microar-

chitecture of L1 data cache and the memory access behavior of all benchmarks. We

observe the impacts of cache capacity, set associativity for L1 data cache, then plot the

reuse distance distributions and explain why GPU cache exhibits these characteristics.

Following the observations, we suggest some optimization techniques to improve the

IPC of GPGPU benchmarks, and implement a Bypassing Aware Cache(BA cache)

which could improve the performance around 20% with negligible hardware cost.

The most insightful observations and contributions in this paper include:

• The capacity of L1 data cache does not cause obvious variations of cache per-

formance. 17 out of 20 benchmarks maintain a stable hit rate when the cache

capacity increases(section 5). Although there is a high mean value of miss rate,

most of them do not suffer from the capacity miss. 64KB of a cache is as large

as enough to resolve the majority of all capacity misses for most benchmarks.

5



• Only NW and FFT suffer from the conflict miss, they benefit from a large

associativity. Although MUM, BCK, BT, and LUD have relative evenly reuse

distance distributions in a fully associative cache, they do not really suffer from

the conflict miss after we test them in a 8-way set associative cache. Eight cache

lines for each set are adequate for most benchmarks to exploit the data locality.

• The inefficiency of GPU cache not only comes from thread contention and re-

source over-utilization, but also relates to the memory access pattern of each

benchmark. Streaming and short reuse distance accesses take the most part of

entire accesses. The former one causes the compulsory miss. The latter one

takes the advantage of current cache design because of the temporal locality.

Both of them do not benefit from large capacity and associativity.

• We discuss the optimization suggestions for L1 data cache which could help

to improve the cache performance, and implement a cost economic cache de-

sign, BA cache, only has two more bits than traditional cache line. BA cache

achieves around 20% IPC improvement, around 11% cache miss rate reduction

on selected 8 benchmarks.

The rest of this paper is organized as follows: Chapter 2 presents the literature

review. Chapter 3 illustrates the approach to calculate the reuse distance and how

to plot the distributions. Chapter 4 explains our experimental methodology and

presents the experiment results and observations. We detailed introduce the BA

cache in chapter 5, and get our conclusion at chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 GPU architecture

SM is the basic unit to execute the kernel in GPUs. It includes all hardwares to

implement the SIMD computing model. All SMs are grouped into clusters. In the

left part of Figure 3, the clusters connect to a unified L2 cache via interconnect and

the L2 cache directly connects with DRAM.

The right part of Figure 3 exhibits the internal organizations of a SM. All instruc-

tions are fetched from instruction cache. Warp schedulers select warps to saturate the

pipeline to deliver tremendous system throughput and hide memory access latency.

GPU core pipelines execute arithmetic and transcendental calculations and L1 cache

processes cache requests.

Fig. 3. GPU architecture and core diagram

All memory accesses are coalesced before accessing L1 data cache. At most, 16

memory accesses form a bigger one if they access successive addresses. If a memory

access misses in L1 data cache, it will be inserted into the Miss Status Holding

7



Registers(MSHRs). MSHRs merge the duplicated requests if a same request already

exists, otherwise, a new entry will be allocated to the missed request. If no entry is

available in MSHRs, the memory pipeline will stall. The L1 cache is comprised by

three parts: texture and constant cache (which are read-only), and L1 data cache.

Shared memory is a per-core scratch memory which is managed by software, it is

accessible by programmers. In this work, we focus on L1 data cache which processes

the global and local memory accesses, including read and write.

2.2 Scheduling policies

There are two level scheduling in GPUs. The first level is Cooperative Thread

Array(CTA) scheduling[23, 24, 25], CTA scheduler assigns thread blocks to GPU

cores according to the availability of resources. Second level is warp scheduling[26,

27, 28, 29, 30, 31], which selects the ready warps to execute in GPU core pipelines.

Kayiran et al.[24] give a dynamic CTA scheduling policy by the utilization of

DRAM. Since memory contention is the bottleneck for performance, assigning maxi-

mum CTAs to each core can not always yield best performance, especially for memory

intensive workloads, in contrast, it degrades the performance. Based on this obser-

vation, they initially assign half of maximum number CTAs to each core, increasing

and decreasing the number of CTAs at run time according to the memory utilization.

Jog et al.[23] propose four schemes from the perspective of CTA to improve

the performance of GPGPU benchmarks and named them by OWL. (1) CTA-aware

scheduler is a two-level scheduler which prioritizes part of CTAs in a core, and schedule

them first until all of them stall due to memory access. (2) CTA-aware-locality

scheduler schedules the warps stalled by long memory latency if their data come back

from DRAM. This reduces the number of CTAs accessing L1 data cache and make

L1 data cache available for less CTAs. (3) CTA-aware-locality-BLP exploits the

8



bank level parallelism(BLP), it prioritizes non-consecutive CTAs to schedule them

first; however, it reduces the row locality of a bank. (4) Opportunistic prefetching

improves the row locality by adding an opportunistic prefetching mechanism to OWL.

The prefetcher loads an already opened row into L2 cache for further memory access.

Lee et al.[25] contribute two thread blocks scheduling policies: 1) lazy CTA

scheduling(LCS) gets the optimal number of CTAs for each core by a greedy schedul-

ing policy and 2) block CTA scheduling(BCS) dispatches consecutive thread blocks

to the same core. LCS finds the optimal number of CTAs for each core in order to

maximize the performance. BCS assigns sequential CTA blocks to the same core to

exploit inter-CTAs locality. In particular, they exploit the interaction between the

thread block scheduler and the warp scheduler to maximize resource utilization.

Fung et al.[27] illustrate a dynamic warp formation to handle severe branch

divergences. Typically, GPUs launch massive threads in SIMD pipelines to achieve

high throughputs, the performance will degrade if there are too many control flows

in a kernel function. They reorganize the threads formation at run time to group the

active threads in a new warp to saturate the pipelines. Meanwhile, they also establish

that the immediate post-dominator of branch divergence is the optimal options.

Narasiman et al.[26] introduce two main contributions to improve GPU per-

formance. First, they propose a large warp microarchitecture, it can improve the

occupancy of resources when there are badly branch divergences in a kernel. The

main idea is to organize the threads into a larger group, so that the scheduler can

have more active thread candidates when branch occurs. Second, they present a two-

level warp scheduling policy to hide the memory access latency. Compared with all

threads in a block executing in the same time line, they divide all threads into differ-

ent fetch groups with varied priorities. The fetch groups with lower priority start to

execute only if the fetch groups with higher priority complete or stall for long memory

9



reference cycles, so that massive threads can hide the memory reference latency.

Lee et al.[31] illustrate an instruction-issue pattern-based adaptive warp schedul-

ing(iPAWS). IPAWS dynamically selects a warp scheduling policy from Round Robin(RR)

and Greedy Then Oldest(GTO), which favors current kernel based on the instruction-

issue pattern. RR and GTO are two popular warp scheduling policies; however, a

benchmarks only favors one of them. They sample the number of issued instructions

until there is one warp finishes execution. Based on the shape of sampled number to

dynamically make the decision which scheduler is better.

2.3 GPU cache evaluations

GPU, initially used only as a graphics processing device, has already been widely

applied to all kinds of computation intensive fields. As an emerging architecture,

we are lacking of a profound understanding about how to maximize the computing

capability. Intuitions from CPU fail to make GPU work as we expected. Some

researchers have noticed this insufficiency and exerted to convey a comprehensive

knowledge for GPU[22, 32, 33, 34].

Jia et al.[22] present the taxonomy of three types of locality for GPU: within-warp

locality, within-block locality, and cross-instruction reuse. The difference between the

first two characterizations is the origin of the reused requests. For cross-instruction

reuse, it is hard to exploit the locality in cache. They also argue that the bandwidth

limitation, rather than the latency, often acts as an obstacle for system performance.

Compared with their work, we focus on memory access patterns which directly work

on cache. It is a finer-grain cache evaluation work. Our optimization suggestions also

consider more about the bandwidth with the purpose to improve the hit rate and

reduce the resource consumptions.

As an comparative evaluation work, Hestness et al.[32] analyze the effectiveness

10



of memory hierarchy(L1, L2, and DRAM) in heterogeneous system. This work pays

more attention to the memory hierarchy of the entire system by comparing the differ-

ence of locality and coalescing between CPU and GPU. They also demonstrate that

massive threads can hide the long latency and the bandwidth is sensitive to off-chip

burst requests. However, our work concentrates on L1 data cache in GPU by clas-

sifying the memory accesses depending on reuse distance theory. We provide more

detailed statistics for L1 data cache and give the insightful observations.

2.4 GPU cache improvements

The inefficiency of cache in GPU cores has already drawn universal attentions.

A lot of advanced techniques have already contributed to improve the cache perfor-

mance, generally including profiling, reordering, bypassing and throttling.

Profiling[35, 36, 37] is a technique to get the characteristic of a benchmark by ana-

lyzing a small part of input. Normally, it takes marginal resources and negligible time.

The profiling results support us to make an optimization decision. The disadvantage

is the profiling results only represent partial behavior of a benchmark. Reordering[38]

aims to reorganize the sequence of memory accesses for cache. Ideally, the threads

from a warp will access successive memory addresses. Issuing these accesses sequen-

tially could exclude the interferences and utilize the locality. Bypassing[14, 35, 38]

means to bypass some memory accesses from cache to lower level memory hierarchy.

The significant issue about bypassing is the candidates selection from the entire work

set. Throttling[39, 24, 14] is employed to control the number of active warps accord-

ing to the status of memory. The purpose is to alleviate cache contention. These

techniques generally work together to improve the cache performance.

Xie et al.[35] introduce a static and dynamic approach of cache bypassing based

on profiling. They classify cache requests into three categories at compilation. By-

11



passed memory accesses are intelligently selected at static and dynamic time. Chen

et al.[14] propose a cache management and a warp allocation scheme which is named

Coordinated Bypassing and Warp Throttling(CBWT). They take a similar protec-

tion policy with Duong et al.[17] which keep a cache line from eviction until it’s

protection distance is 0. They also observe the status of memory system to make the

decision of warp throttling. Jia et al.[38] illustrate Memory Request Prioritization

Buffer(MRPB). They suggest to reorder the sequence of memory accesses by buffering

them in a queue. Bypassing is triggered when cache contention is detected.

12



CHAPTER 3

EXPERIMENT METHODOLOGY

3.1 Reuse distance calculation

Reuse distance can be used to classify three ’C’s of cache misses[15]. Since two

accesses to a same cache set are randomly mapped to cache lines, and two accesses

to different sets do not interact, the calculations are processed in the unit of a cache

set. Each set is independent to response cache requests, and we call it one work

set. We calculate the reuse distance by the following principle: the number of unique

memory accesses between two accesses in a cache set which have the same tag part. If

a memory address is referenced the first time, the value of reuse distance is +∞[15].

For a given configuration, assuming a n-way set associative cache, a memory request

will only map to one cache set, but possibly any cache line in this set. In GPGPU

computing, a cache request can not cross two cache lines, so we only compare the

tag and index part of each request rather the memory address. If the access result of

a cache request is reservation failed or hit pending, it does not change the status of

any cache line, so we exclude it from the work set. The value of a reuse distance is

greater than or equal to 0.

Suppose we have a 4-way set associative cache which employs LRU replacement

policy, the reuse distance of a cache request is d. If d≥4, it will miss, the previous

request for this address has already be replaced out from cache. If 0≤d<4, it will hit,

the last request for this address still resides in cache for data reuse. As a metric to

measure the performance, the reuse distance for a memory access varied from different

cache configurations.
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3.2 Reuse distance classification

After calculating the reuse distance of all memory accesses, we divide them into

different categories by their value. Suppose there is a n-way set associative cache with

LRU replacement policy, we simply divide all memory accesses into three categories.

Although the reuse distance is calculated in each cache set, we sum all cache sets

up since they are configured the same associativity. Still, assuming d is the reuse

distance for a memory access, all three categories and the principles about how to

classify a memory access are listed in Table 1.

Table 1. Classification of reuse distance

category hit/miss range of d

rd0 hit [0, n)

rd1 miss [n, +∞)

rd2 miss +∞

The above classifications depend on the value of d and n. All memory accesses

in rd0 hit in cache. They have a short reuse distance which is less than the set

associativity to take the advantage of data locality. The rd1 and rd2 are cache

misses. However, the reasons, why they miss, are varied. The rd1 is the collection

of those memory accesses which have a reuse distance greater than or equal to set

associativity, they have accessed cache before, but subsequent requests replace them

due to the limitation of the number of cache lines. They can be attributed to the

conflict miss in a set associative cache and the capacity miss in a fully associative

cache. The rd2 stands for the streaming accesses, they access cache only once, so the

result of a cache request is a miss.
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3.3 Experiment design

With the purpose of analyzing the relationship between the memory access pat-

terns of GPGPU computing and the inefficiency of GPU cache, we conduct our ex-

periments in the following three steps.

First, we collect the access patterns of all benchmarks at a 16KB fully associative

cache and calculate the reuse distance of each memory access then plot the distribu-

tions. The reason to test a fully associative cache is that all memory accesses map

to the only one available cache set. It includes entire memory accesses. The value of

reuse distance is maximum in this scenario. If it is a set associative cache, all memory

accesses are mapped to different cache sets by the index part of their addresses. Each

cache set is a subset of the total amount, so the reuse distance is less than or equal to

the value at a fully associative cache. These statistics are plotted in Figure 6; how-

ever, it is a finer granularity classification than Table 1, and all memory accesses are

divided into seven intervals. Based on these distributions, we conduct the following

analysis for all benchmarks.

Second, the cache capacity and associativity are two significant parameters in

cache design. We evaluate the cache performance from these two perspectives. In

previous experiment, there are 128 cache lines in total. Cache can not hold the

memory accesses whose reuse distance is greater than or equal to 128(except +∞).

The ratio of this distribution is significant to evaluate whether current benchmark

suffers from the capacity miss. After this, we test these benchmarks by increasing the

cache capacity to verify our observation. For those benchmarks whose reuse distance

is evenly distributed in [0, 128), they could suffer from the conflict miss. We simulate

their memory access patterns in a set associative cache to verify this assumption. All

these patterns are quantified into reuse distance distributions and we discover the
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insightful observations.

Third, based on these experiments, we discover the memory access patterns of

GPGPU computing and discuss some optimizations which could improve the cache

performance. We pick some typical benchmarks and plot their memory access pat-

terns with time fly(part of entire picture due to the huge memory access number).

We draw reuse distance trends to support that bypass can improve the performance

for the workloads which suffer from capacity miss. Then, memory address difference

trends suggest that we still can optimize their performance by prefetching even the

majority memory accesses missed, like AES and HST.

3.4 Simulation environment

In our implementation, we collect experiment results from GPGPU-Sim 3.2.2[21].

GPGPU-Sim is a cycle-level GPU performance simulator which simulates the kernel

execution on GPU cores. It collects the data of cache behavior, so that we can analyze

these statistics to evaluate the cache performance.

The baseline architecture of the simulator in our experiments is Fermi. The upper

bound number of threads in each GPU core is 1536, meaning the maximum number

of warps is 48. GPGPU-Sim analyzes the PTX[40] code and schedules the warp to

execute the instructions in GPU pipeline. The warp scheduling policy is Greedy Then

Oldest(GTO). We set 16KB cache as our baseline and increase the cache size to test

whether larger cache size is helpful to improve the system performance. In GPUs, L2

cache is a unified last level cache, the cache requests, missing in L1 cache, will access

L2 cache through the interconnect. Table 2 lists the detailed configurations of the

simulator.
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Table 2. GPGPU-Sim Configurations

# of clusters 14

# of cores each cluster 1

# of threads, # of warps 1536, 48

Warp scheduling policy GTO

Capacity of L1 data cache 16KB/32KB/64KB/128KB/256KB

set associative 16KB:(16,8),(8,16),(4,32),(2,64)

(# of set, # of cache line) 32KB:(32,8)

64KB:(64,8)

128KB:(128,8)

256KB:(256,8)

Replacement policy LRU

Size of shared memory 48KB

Size of L2 cache 786KB

3.5 Benchmarks

In our experiments, we choose 20 paradigmatic benchmarks from GPGPU-Sim

package[21], Rodinia[41] and Parboil[42], which are three popular benchmark suites.

They have been applied to all types of research and engineering fields, including im-

age processing, safety communication, and mathematical solution. Every benchmark

shows a distinct pattern of memory access. All of them deliver a comprehensive test on

GPGPU computing model. Table 3 lists the basic information of these benchmarks,

and some of them execute multiple kernels.
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Table 3. Benchmarks List

Name Abbr Source

Aes Cryptography AES Sim[21]

Breadth First Search BFS Sim[21]

Coulombic Potential CP Sim[21]

3D Laplace Solver LPS Sim[21]

Mumer GPU MUM Sim[21]

Neural Network NN Sim[21]

N-Queens Solver NQU Sim[21]

Ray Tracing RAY Sim[21]

StoreGPU STO Sim[21]

Back Propagation BCK Rodinia[41]

B+tree BT Rodinia[41]

Hotspot HST Rodinia[41]

Lu Decomposition LUD Rodinia[41]

Needleman-Wunsch NW Rodinia[41]

Pathfinder PF Rodinia[41]

Kmeans KM Rodinia[41]

Fast Fourier Transform FFT Parboil[42]

Sparse Matrix-Dense Vector Multiplication SPMV Parboil[42]

Stencil STE Parboil[42]

Two-Point Angular Correlation Function TPACF Parboil[42]
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CHAPTER 4

EXPERIMENT RESULTS AND ANALYSIS

In this chapter, we present the experiment results and the explanations based on the

reuse distance distribution analysis. Every distribution is the sum of all cores and

kernels. All the cache performance and hit rate are referred to the L1 data cache in

the following analysis.

4.1 Hit rate vs. IPC

Unlike CPU, GPUs are designed to deliver a tremendous throughput by launching

massive threads in parallel. However, many cache requests will access the L2 cache

through the interconnect if they miss in L1 cache. Interconnect, as a bottleneck

resource, is crucial for the performance of entire system[21, 22]. L1 cache can filter

memory accesses and protect the interconnect from overwhelming. A good cache

design can help GPU to balance the allocation of resources.

Jia et al.[22] mention that memory traffic is more commonly used to describe the

cache effectiveness. There are three types of memory accesses could miss in L1 cache:

data cache, constant cache and texture cache. We do not consider shared memory

in our work. The severe contention also probably comes from missed constant and

texture cache requests. We list the ratio of missed memory accesses of each benchmark

for these three types of cache in Figure 4.

The missed L1 data cache requests dominate the missed memory accesses in 17

of 20 benchmarks. It is a high chance that missed memory accesses severely consume

the bandwidth if the hit rate of L1 data cache is low, this exacerbates the intensive
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Fig. 4. The ratio of missed accesses for three types of cache

congestion of the interconnect. High hit rate helps these 17 benchmarks to efficiently

utilize the bandwidth if there is no other bottleneck exists in entire system, such as

BFS and SPMV. In Figure 4, the missed L1 data cache requests occupy 99.9% and

99.6% in all missed L1 cache requests. They consume the majority of bandwidth

resources. In Figure 5, their IPCs benefit from a better cache performance which is

already plotted in Figure 8. We will give the detailed analysis about how to improve

the cache hit rate in next part of this section.

For the remaining 3 benchmarks(CP, MUM and KM), the missed constant or

texture cache requests dominate the missed memory accesses. For example KM, the

constant and texture accesses take the majority part of all L1 cache requests which is

as high as 98.5%. In Figure 4, the missed accesses for L1 data cache only take 0.045%

of all missed L1 cache requests. Although the hit rate increases to 82.78% when L1

data cache is enlarged to 256KB, it is limited imparts to alleviate the bandwidth

congestion. A better cache performance for these three benchmarks helps to increase

the hit rate, however, it is a marginal improvement for IPC in Figure 5.

To sum up, the hit rate of L1 data cache is still significant for the entire system.
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Fig. 5. The IPC trends of BFS, SPMV and KM

Most GPGPU computing benchmarks frequently access the L1 data cache. A low hit

rate not only fails to exploit the data locality but also intensifies the congestion for

interconnect. We will use hit rate as the metric to evaluate the cache performance in

our analysis.

4.2 Reuse distance distributions

First, we plot the reuse distance distributions in a 16KB fully associative cache

in Figure 6. It represents memory access behavior for us to conduct the following

analysis.

Fig. 6. Reuse distance distributions in a fully associative cache
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All memory accesses are classified into seven intervals by the value of reuse

distance, which are [0,8), [8,16), [16,32), [32,64), [64,128), [128,+∞), +∞. They

are named from the interval 0 to 6 by the order of the growth of reuse distance.

As a unique feature, the reuse distributions from a fully associative cache lead us

to an optimization suggestion which favors this benchmark. After we follow the

optimization suggestions, we test these solutions in a set associative cache which is

more practical in current GPU cache design and classify the distributions by the

methodology in chapter 3 and graph them in Figure 7. We evaluate the optimization

results by cache hit rate in Figure 8 and 11. All memory accesses of AES and NQU

miss in cache, the hit rate is 0.

4.3 Capacity of L1 data cache

We classify all the benchmarks into three categories according to the proportion

of interval 5 in Figure 6. The first category includes BFS, KM and SPMV. The

second contains MUM, RAY, BT, HST, LUD, NW, PF, FFT and STE. The remaining

benchmarks, AES, CP, LPS, NQU, STO, BCK, NN and TPACF belong to the third

one.

A large part of BFS, KM and SPMV distributes in interval 5([128, +∞)) while a

relatively small portion distributes in other intervals. This indicates that they suffer

from the capacity miss. It is better to enlarge the cache capacity to increase hit

rate. As few part lies in interval 0-4, a 8-way set associative cache is favorable for

this optimization, only the number of cache set increases with the growth of cache

capacity. We configure the cache with the first option of each size in Table 2 and

analyze the reuse distance distributions which are divided by the principles in Table

1.

In Figure 7(a), 7(b) and 7(c), all of them obviously deliver a varied trend with
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(a) BFS (b) KM (c) SPMV (d) MUM

(e) RAY (f) BT (g) HST (h) LUD

(i) NW (j) PF (k) FFT (l) STE

(m) AES (n) CP (o) LPS (p) NQU

(q) STO (r) BCK (s) NN (t) TPACF

Fig. 7. The ratio of reuse distance distributions for all benchmarks
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Fig. 8. Hit rate trends with the increase of cache capacity

the increase of cache capacity. We calculate the reuse distance and list the ratio of

each distribution. Mostly changed parts are rd0 and rd1, however, the rd2 keeps

unchanged. Some of memory accesses belonging to rd1 convert to rd0 when cache

capacity increases.

In Figure 8, the change of hit rate follows the trend of rd0. BFS and SPMV

benefit slightly from 128KB to 256KB, KM benefits dramatically from 16KB to 64KB

and keeps stable at 128KB, 256KB. For these benchmarks, a large cache capacity helps

to improve the cache performance if there is no other bottleneck in the system.

Contrast to the first category, MUM, RAY, BT, HST, LUD, NW, PF, FFT and

STE distribute a limited interval 5 which is no more than 25% as shown in Figure 6.

The conversions from rd1 to rd0 are relatively small which can be seen from Figure

7(d) to 7(l). Most of them only take the advantage of a cache as large as 64KB then

the rd1 becomes pretty low, most memory accesses either lies in rd0 or rd2 which is

resemble with the third category. Further growth of capacity does not help the cache

performance. The hit rate trends of these nine benchmarks are plotted in Figure 8.

AES, CP, LPS, NQU, STO, BCK, NN and TPACF belong to the third category.

They exhibit stable reuse distance distributions and their memory access patterns

barely change with the increase of cache capacity. In Figure 6, these eight benchmarks
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(a) MUM (b) BCK (c) BT (d) LUD

Fig. 9. Reuse distance distributions of MUM, BCK, BT and LUD with different asso-

ciativities

hardly have memory accesses locate in [128, +∞). But they have either a large part

of memory accesses whose reuse distance is +∞(AES, LPS, NQU) or most reuse

distances are less than 8(CP, STO, BCK, NN, TPACF). The former situation is a

streaming access pattern which exhibits spatial locality only once so that they can not

benefit from current cache design. The latter one displays an expected reuse pattern

which behaves efficiently to exploit all data locality.

In this part, only the benchmarks in first category suffer from the capacity miss,

they benefit from a large cache capacity. However, other benchmarks maintain a sta-

ble cache performance. Most of them issue cache requests in two manners: streaming

access or short reuse distance access. No long reuse distance(rd1 ) can be converted

from miss to hit with the increase of cache capacity. In general, simply increasing the

cache capacity barely help to improve cache performance in GPGPU computing. A

64KB L1 data cache is sufficient for all benchmarks to resolve capacity miss.

4.4 Associativity of L1 data cache

The number of cache lines in a set is associativity. It correlates with the conflict

miss. In Figure 6, MUM, BCK, BT, LUD, NW and FFT distribute relative evenly in

interval 0 to 4. After we measure the experiment results of these six benchmarks in

a set associative cache, all memory accesses will be divided into different cache sets

by the index part of their addresses. The reuse distance of each access could possibly
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(a) NW (b) FFT

Fig. 10. Reuse distance distributions of NW and FFT with different associativities

change depending on if the memory access pattern is balanced. The rd1 in Figure

7 means the cache misses whose reuse distance is greater than the associativity, it

is similar to interval 5([128, +∞)) in Figure 6. The ratio of rd1 over interval 5 in

MUM, BCK, BT and LUD maintain relatively unchanged, the maximum difference

of these two values is approximately 0.036. However, it increases to 3.8× in NW

and 2.43× in FFT. After the set associativity decreases, more accesses are out of the

range to reuse. Eight cache lines can not tolerate the long reuse distances. NW and

FFT suffer from the conflict miss while MUM, BCK, BT and LUD do not, original

interval 0-4 in Figure 6 of these four benchmarks evenly remap to different sets when

it is a set associative cache. Other 14 benchmarks take a big part at the left and

right intervals. Like what we have analyzed in previous part of this section, these

benchmarks exhibit stable behaviors.

Figure 9 and 10 plot the simulation results of the set associative cache. In this

experiment, we simulate these six benchmarks at a 16KB cache with the different

values of associativity. With the growth of set associativity, the number of sets

decreases. MUM, BCK, BT and LUD show the same distribution trend in Figure 9,

they do not really suffer from the conflict miss. However, in Figure 10, the trends of

NW and FFT change with different associativities. The hit rates of these benchmarks
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Fig. 11. Hit rate trends with the increase of associativity

in Figure 11 also follow this distributions. The ratio of rd1 (Figure 10) in NW keep

decreasing with the number of associativity increases, the cache performance also

increases. For FFT(Figure 10), a 32-way set associative cache is sufficient to deliver

a high hit rate, then all parts of the distributions become stable. The hit rate of NW

keeps increasing from 0.02 to 0.24 and FFT jumps from 0.55 to 0.89 when it is a

32-way cache.

4.5 Summary

In this section, we analyze the experiment statistics based on the reuse distance.

We quantify the memory access patterns and demonstrate that cache capacity and

associativity are not the key points to improve the cache performance. The reuse

distances of most memory accesses are either less than 8 or +∞. Streaming accesses

can not take the advantage of current cache design to exploit the data locality.
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CHAPTER 5

CACHE BYPASSING OPTIMIZATION

From the above analysis for all simulations, we illustrate our research on L1 data

cache of GPGPU computing. As a throughput-oriented device, GPU is expected

to deliver a high performance. We have quantified the inefficiency of current cache

design, this drives us to improve the architecture design to increase the hit rate and

reduce the cache contention. According to the classifications in Table 1, we want to

decrease the ratio of rd1 and rd2 in entire work set by bypassing unrelated cache

requests.

5.1 Background introduction

Bypassing is a technique which has been extensively studied at CPU cache, espe-

cially for the last level cache. In modern CPU design, it normally includes three level

caches, one memory access will visit last level cache only if it missed all of previous

requests. It is a very low cache hit rate in last level cache since most cache localities

have already been filtered out by previous level caches. It is a good idea to bypass

last level cache requests to lower level memory hierarchy if there is few cache localities

in order to reduce cache contention[12, 43].

Modern GPUs achieve high throughput by launching thousands of threads, the

range of memory access is normally very wide. According to the warp scheduling

policy, cache requests will burst in short cycles. Based on these reasons, cache is

not as significant as in CPU cores. Less cache capacity can not widely exploit the

locality of massive memory accesses in GPGPU computing, especially GPGPU com-

28



puting benchmarks deliver more broad memory address and different memory access

patterns(most memory accesses are compulsory misses).

There are at most 32 and at least 2 memory accesses when a warp is issued.

GPU will merge the adjacent the accesses if they call for sequential addresses, leading

to most memory localities have already filtered out from cache[32]. The scheduling

policies, such as GTO and LRR, not always favor for the locality of current memory

access pattern, this fails to exploit the inter-warp or intra-warp locality[31]. Filtered

locality and improper scheduling policy not only intensify cache contention but also

increase the reuse distance of two same memory accesses. Based on the analysis of

last chapter, memory accesses with long reuse distance dominate cache requests. Our

purpose is to reduce the cache contention and avoid cache pollution. The solution is

to bypass this kind of accesses from cache to lower level memory hierarchy.

The work flow of memory accesses in a bypass enabled cache is as in Figure

5.1. Hit and missed cache requests access cache directly layer by layer, meanwhile,

bypassed requests go into memory, and detour cache to registers when they get data

back.

Fig. 12. The work flow of bypassed memory access in GPUs
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5.2 Motivation

5.2.1 Memory access bypassing

Bypassing can alleviate the cache contention or protect the hot lines in cache[14].

The key point is to pick the right candidates. It is an optimization solution for long

reuse distance accesses. This kind accesses can not get reused in cache before the line

is replaced out, and they are thrashing-prone due to frequent switching in and out. For

instance, BFS, KM, and SPMV in Figure 7, they could benefit from cache bypassing

as they have large part of long reuse distance accesses(rd1 ), a smart cache bypassing

mechanism can filter unnecessary memory accesses, decrease the reuse distance, and

improve cache hit ratio.

However, bypassing hardly helps AES, CP, LPS, NQU, STO, BCK, NN, and

TPACF. They have one common feature that rd1 takes few part of all memory ac-

cesses. Simply bypassing the streaming accesses for these benchmarks can not increase

the number of cache hits, like missed cache requests, bypassed requests also go through

interconnect, leaving the bandwidth still be the bottleneck for the performance.

Figure 13 displays four typical examples of memory access trends. The x axis

indicates at which time of cache request issued, y axis stands for the reuse distance for

corresponding cache request. The value of 10000 in y axis means the reuse distance

is∞. As shown in Figure 13, only BFS could benefit from bypass, since it contains a

large part of long reuse distance memory access around 2000, which is far greater than

the number of cache lines(128). Meanwhile the reuse distance of most memory access

in TPACF is lower than 10, it already performs very well in current cache design. For

AES, all memory accesses are streaming pattern, it does not matter bypass the cache

request or not. The best optimization solution for AES is prefetching since it will

periodically access sequential memory addresses. CP contains two extremes: either
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very short reuse distance like TPACF or ∞ like AES, it also will not benefit from

bypassing.

(a) BFS (b) AES

(c) CP (d) TPACF

Fig. 13. Reuse distance trends for BFS, AES, CP, and TPACF

5.2.2 Cache line prefetching

Prefetching could improve the cache performance for AES, HST, NW, PF, and

NQU. Figure 14 shows the memory address difference of AES and HST, x axis also

means cache request at each time, y axis is the memory address difference between

current cache request and previous one, it could be negative if they go back for lower

address. AES, HST periodically access a sequential address, they display a strong

spatial locality, and hardly with temporal locality. The subsequent requests will

utilize the spatial locality and hit in cache if we can prematurely load the continuous

addresses in cache.
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(a) AES (b) HST

Fig. 14. Memory address difference

5.3 Benchmarks

We choose 8 benchmarks from Rodinia[41], Parboil[42], Polybench[44], and Mars[45],

which are four popular GPGPU computing benchmarks have been widely used to test

the performance of parallel computing architecture. All of the eight benchmarks are

listed in Table 4.

Table 4. Benchmarks List for Bypassing

Name Abbr Source

Breadth First Search BFS Rodinia[41]

Kmeans KM Rodinia[41]

Sparse Matrix-Dense Vector Multiplication SPMV Parboil[42]

Matrix Transpose and Vector Multiplication ATAX Polybench[44]

BiCG Sub Kernel of BiCGStab Linear Solver BICG Polybench[44]

Matrix Vector Product and Transpose MVT Polybench[44]

Similarity Score SS Mars[45]

String Match SM Mars[45]

Most of them show an intensive memory access behavior, for example, SS sends
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(a) Miss rates (b) Reuse distance distributions

Fig. 15. Profile for selected 8 benchmarks

almost 3 millions cache requests, however, the cache miss rate is very high. Figure

15(a) shows the miss rate of these selected benchmarks in a 16KB L1 cache. Only

SM is lower than 0.7(0.65). Other benchmarks are at least 0.7(ATAX, BICG, and

MVT), even worse, KM missed 0.9 cache requests. The right most bar gives the

average miss rate of these 8 benchmarks(0.75). These high cache miss rates obviously

hurt the performance. As in 4.2, we profile the reuse distance distributions with

the same cache configuration. In Figure 15(b), all 8 benchmarks have a majority

part in rd1 which can be optimized by bypassing unrelated memory accesses and

decrease the reuse distance of some memory accesses who still access cache. Based

on these observations, we present a Bypass Aware Cache with small trade-off which

could effectively bypass thrashing-prone memory accesses and improve the system

performance.

5.4 Diagram of Bypassing Aware cache

In BA cache, the bypass decisions are made after tag comparison stage. In order

to distinguish the memory accesses with long reuse distance, we add two bits to the

tag part of each cache line: one is reuse bit, another is bypass bit as in Figure 16. The
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reuse bit suggests whether current cache line has been reused before. The bypass bit

suggests the cache request bypassed the cache or not. When a memory request hits

in cache, the reuse bit of corresponding cache line is set to 1, that means this cache

line already reused and it could possible be reused again in near future.

The reuse bit are also employed to make replacement policy fair. It naturally

splits all cache lines into two group, one group is reused lines another group is never

reused lines. We will choose the victim line from these two group alternatively.

Fig. 16. Extra two bits for Bypass Aware cache

When a cache request bypassed cache, BA cache replaces the victim cache line

and update the tag part of corresponding cache line, and set the bypass bit to 1, but

the data part of this line does not corresponds to this cache request since BA cache

only update the tag part, not send the data request. BA cache stores the information

of tag part which helps to make a decision for subsequent cache requests. If a cache

request bypass cache, the reuse bit is 0, that means it is first consideration to be the

victim when cache miss.

5.4.1 Bypassing Aware cache work flow and bypassing decision

With the purpose of bypassing long reuse distance memory accesses, we add

two bits in cache architecture of BA cache. This means the work flow of BA cache

is different with traditional cache. Figure 17 illustrates the entire work flow of BA

cache.
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Fig. 17. BA cache work flow

In the conventional design, after a cache request is issued, we calculate which

cache set current request locates by the value of index part, then compare the tag

part to make a decision for cache hit or miss. If the request hits in cache, it will send

to cache directly and get the data back. If this request misses, a victim cache line is

selected by replacement policy to move space for new request and send the request

to lower level memory to ask for data.

However, for BA cache, it works differently from traditional cache since it will

make the decision to bypass or not. Bypassing decisions are made after tag check

stage. BA cache will also check the tag part first. If the comparison failed, that

means current cache request does not exist in cache, and reuse bit is set to 0. Next,

BA cache will find the victim cache line to be replaced, it is a cache miss if there

is free line to put this request in cache, or bypass this request if all lines are valid.

Bypass bit is set to 0 when cache miss and set to 1 when cache bypassed. Meanwhile,

the tag part of victim line will update to corresponding part of this request for the
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processing of subsequent cache requests.

If tag check hit, that means the cache line has been referred before(either hit or

bypassed), reuse bit is set to 1 and BA cache continue to check the bypass bit. It is

a pseudo hit if bypass bit is 1, last request bypassed the cache and only the tag part

updated, however data request has not send to lower level memory. BA cache will

ask data from memory and disable the bypass bit. While if the bypass bit is 0, that

means requested data already load into cache, BA cache can get the data directly.

5.4.2 Replacement Policy

When the tag check of a cache request failed, we need find a cache line to be

replaced. Most popular cache replacement policies are Least Recently Used(LRU),

replacing the cache line which has not been accessed the longest time and First In,

First Out(FIFO), replacing the cache line which is the most earliest one get into

cache.

Since all cache lines in a set can be divided into two groups after cache warm up,

one group includes the cache line has revisited before, another one does not. In BA

cache, we employ a relative balanced replacement policy to find the victim. First, we

find the victim from the lines whose reuse bit is 0, when the number of this kind of

lines is less than a threshold, then we change to find the victim from the lines whose

reuse bit is 1 until this number is equal to the threshold.

5.4.3 Hardware Cost

The hardware cost for BA cache is negligible, we add two bits to each cache line.

For a 16KB cache, there are 128 cache lines, the total overhead is 2*128=256 bits.
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5.5 Experiment Results

We implement BA cache in GPGPU-Sim[21] with the same architecture config-

uration with of Table 2. We compare with traditional cache design which fully utilize

L1 cache and simple bypassing which bypass all cache requests. The results is shown

in Figure 18. Simple bypassing can improve the performance for 6 out of 8 bench-

marks with two exceptions: SPMV and SM, whose performance hurts from simple

bypassing. Simply bypassing all memory accesses lay more burden on the intercon-

nect which is a race resources between all cores. It enlarges the negative impact of

the bottleneck. However, BA cache can improve the performance, the improvement

for SPMV is up to 11.06% and for SM, it is up to 77.2%. BA cache can pick the right

bypass candidates as they can not take the advantage of cache.

Fig. 18. Normalized IPC with traditional bypassed cache design and BA cache

For BFS, ATAX, BICG, MVT, and SS, all of them can benefit from both ap-

proaches, however, BA cache always outperform simple bypassing. The miss rate of

these five benchmarks also abide this trend, BA cache not only improves the IPC,

but also drops the miss rate.
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BA cache improves the IPC for all benchmarks except KM, we have explained

in previous part since the L1 data cache only take few part compared with constant

and texture memory accesses. As shown in Figure 19, although the miss rate of KM

drops around 18.0%, the performance almost keep the same.

Fig. 19. Normalized Cache Miss Rate between BA cache and traditional cache

As a cost efficient cache design, BA cache is easy to implement and effectively

increases the cache performance and decreases the cache miss rate. The average IPC

improvement is more than 20%, the average reduction of cache miss rate is more than

10%.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we analyze the memory access patterns of 20 benchmarks in GPGPU

computing based on reuse distance theory and give the optimization suggestions de-

pending on their features.

First, we calculate the reuse distance distributions in a fully associative cache.

Based on these distributions, we illustrate the impacts of cache capacity, 17 of 20

benchmarks do not suffer from the capacity miss. BFS, KM and SPMV benefit

from the growth of cache capacity, other benchmarks keep almost stable because few

memory accesses are converted from miss to hit. Furthermore, associativity also does

no affect the cache performance for 18 benchmarks, only NW and FFT get profits

from a large associativity. Most cache requests in GPGPU computing are either

streaming accesses or short reuse distance accesses.

After the analysis, we provide some possible techniques to optimize the GPU

cache. In this thesis, we implement a Bypass Aware Cache, which could improve the

performance around 20%. For the benchmarks like AES, HPS, prefetching could help

to improve their IPC, we leave this as our future work.
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia

CPU Central Processing Unit

GPU Graphic Processing Unit

BA cache Bypass Aware cache

GPGPU General-Purpose computing on Graphics Processing Unit

CUDA Compute Unified Device Architecture

OpenCL Open Computing Language

SM Streaming Multiprocessor

SIMD Simple Instruction, Multiple DAta

SP Streaming Processor

SFU Special Function Unit

MSHR Miss Status Holding Register

CTA Cooperative Thread Array

PTX Parallel Thread Execution
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