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Abstract 

 

NATURE OF BONDING IN BIMETALLIC AND LIGATED ALUMINUM CLUSTERS 

By: Cameron Joseph Grover 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2017 

 

Major Director: Dr Shiv N. Khanna, Commonwealth Professor, Physics Department 

 

In this study, Amsterdam Density Functional software is used to model bimetallic and ligated 

aluminum clusters. The stability of the bimetallic clusters is well described by the Jellium model, 

and the nature of bonding between dopants and aluminum in the bimetallic clusters is analyzed 

using different criteria. We find that sodium tends to bind ionically, while the bonding of 

magnesium is not so obvious. We also determine that examining the Mulliken population is the 

most useful parameter in differentiating bonding character. Calculations on ligated aluminum 

clusters reveal it behaves fundamentally different than   the bimetallic clusters studied in the first 

part. The ligated clusters contained a high HOMO-LUMO gap regardless of size and the 

aluminum showed a high 3p Mulliken population. These results show ligated aluminum clusters 

behave according to Wade-Mingos counting rules. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

 

Advances in the last several decades have provided the prospect for a new class of solids: cluster 

assembled material. The constituents of this class of solid would be individual atomic clusters 

that agglomerate into a larger structure while maintaining their identity1–9. In contrast to bulk 

materials where properties are independent of size, the properties of clusters vary with the 

number of atoms10–14.  One such example of this is aluminum. Bulk Al readily oxidizes while 

experiments indicate that Al13
-, Al23

-, etc. are resistant to etching by oxygen6. Computational 

investigations show Al13
- possess a large gap between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) due to an electronic shell closure 

at 40 valence electrons14. These results illustrate that Al13
- has different chemical properties than 

bulk aluminum, which readily forms an oxide layer6,14. This dependence of properties on size 

provides a mechanism to create novel building blocks. For example, it has been shown that As7 

clusters can be used to create a crystal in conjunction with alkali metals that donate 

electrons2,3,7,15. By changing the counter-cations, the band gap of the material can be varied 

between 1.1 eV and 2.1 eV15. The cluster materials combine intra-cluster and inter-cluster 

interactions and therefore offer an additional control via these interactions.  
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This study will deal with two aspects of these cluster assembled materials. Principally, the 

bonding in clusters will be examined. The bonding among the atoms within a cluster will govern 

the nature of electronic shells and if and how that cluster will agglomerate into a crystal. The 

bonding among the atoms will also determine which electron counting rules can be used to 

understand the stability of the system16–19. The Jellium model, where the electrons respond to a 

uniform positive background, has been extensively used to describe metallic systems16,17. 

Alternatively, covalently bonded systems are best described by Wade-Mingos counting rules18,19.  

  

1.2 Types of bonds 

 

The bonds between atoms lead to different electronic properties20,21. Metallic bonds involve a 

delocalized electron cloud in the lattice of ionic cores22. These systems have a finite density of 

states at the Fermi energy, which leads to electrical conduction. This property allows the 

electrons to respond to an external electric field, quenching any dipole moments.  

Ionic bonds involve electronic transfer from a cation to an anion. This bond is stabilized by the 

coulombic interaction between the positively charged cation and negatively charged anion. It has 

been shown that this type of interaction can lead to structure-seeking behavior in the 

development of cluster-assembled materials2,15. 

Covalent bonding occurs when electrons are shared by more than one atom. In semiconductors, 

this bonding leads to a gap between the occupied and unoccupied states, resulting in a strong 

dependence of conductivity on temperature or impurities. Boron clusters tend to form planar 

structures that are stabilized by aromaticity23,24. This aromaticity comes about from the overlap 
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of atomic p-orbitals above and below the plane containing the atoms of some molecule. These 

orbitals become continuous and form delocalized electron clouds above and below the plane of 

the atoms23,24.  

 

1.3 Spherical Jellium Model 

 

The difference among these bonding types is not as clear when we shift from bulk materials to 

clusters containing less than a few hundred atoms. The Jellium Model, used to describe metallic 

systems, assumes that the net charge of the positive ionic cores is smeared continuously across 

space, leading to a picture similar to the spherical potential well25. In this model, allowed energy 

states for the electrons of the cluster are grouped into shells similar to that of an individual 

atom25.  It is important to note that only valence electrons are free to move in this model; the core 

electrons stay associated with their ionic cores.   

As certain shells become filled with these valence electrons, there exists a large HOMO-LUMO 

Gap. The valence electron counts that correspond to a filling of these shells are referred to as 

“magic numbers” (2, 8, 18, 20, 34, 40, etc…), which lead to enhanced stability, higher ionization 

potential, and lower polarizability14,26.  

This model is metallic in nature; the valence orbitals are spread over multiple atoms are are 

confined by a uniform positive background charge distribution. As such, this model is often 

invoked to describe metallic clusters. 
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1.4 Wade-Mingos counting rules 

 

If the molecular orbitals are more localized along different directions, a different set of “magic 

numbers” occurs. Wade-Mingos counting rules predict the structure of a cluster based on the 

number of available pairs of electrons for bonding. In this model, the individual units will form a 

skeletal cage whose geometry will depend on the number of skeletal bonding pairs. The 

prediction is that a species containing n atoms and has (n+1) pairs of electrons available for 

bonding will have a closo-structure. A species having (n+2) and (n+3) pairs of electrons 

available for bonding will have nido- and arachno- structures, respectively18,19.   

An example: In the dodecaborane molecule (B12H12
2-), each B-H unit contains two electron pairs. 

One of these electron pairs bonds the boron to the hydrogen, while the other is available for 

cluster bonding. The total number of electron pairs is therefore n+1, and Wade-Mingos rules 

accurately predict a stable, cage-like, closo-structure. Furthermore, any cluster of the form BnHn
2- 

will have a high HOMO-LUMO gap and take on a cage structure. This is a fundamentally 

different behavior from the Jellium model where a high HOMO-LUMO gap is only possible in 

clusters with specific numbers of electrons.  

 

1.5 Hirshfeld Charge 

Our objective is to determine whether a dopant binds metallically or ionically to the aluminum 

cluster. The most straightforward way to investigate this behavior is to look at the Hirshfeld 

Charge. For this calculation, the charge density at a point is shared by all atoms and compared to 
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the free-atom charge density at the corresponding distances from the nuclei27. Integrating across 

space allows the program to determine the total net atomic charges for each of the constituent 

atoms in a cluster, where the atomic charges are reported as fractions of the elementary charge27. 

 

1.6 Mulliken Population 

 

Density function theory models a molecular orbital as the linear combination of atomic orbitals. 

Mulliken population is calculated from the coefficients of this linear combination28. As a note, 

the atomic orbitals will be denoted as lower case (s, p, d), while the molecular orbitals will be 

denoted with capital letters (S, P, D). From this Mulliken population, the occupation of the 

atomic orbitals is compared to that of the free atom, and a net charge is calculated. It is important 

to note Mulliken population is heavily dependent on the basis set chosen; different basis will lead 

to different coefficients in wave function expansion. It is for this reason that atomic charges 

based on a Mulliken are less reliable than the Hirshfeld charge analysis.  

 

1.7 Summary and Outline 

 

The goal of this thesis is to investigate the nature of bonding in bimetallic and ligated aluminum 

clusters. The Amsterdam Density Functional software is used to calculate the electronic 

structures for each cluster. Chapter 2 contains a brief overview of the density functional theory 

and the approximations that make calculations feasible. The research completed for this thesis 
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are found in the following two chapters. In Chapter 3, we will model aluminum clusters doped 

with magnesium or sodium. In Chapter 4, we will model aluminum-methyl clusters with two 

potassium counter ions. Chapter 6 will contain conclusions and future work.  
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Chapter 2  

Theoretical Methods 

 

2.1 Schrodinger Equation  

 

Schrodinger’s equation is an eigenvalue equation that has become ubiquitous in describing 

quantum mechanical systems. The time independent form of this equation serves as the 

foundation of the algorithms used in this study. This formulation is   

 

 

2.2 Density Functional Theory (DFT) 

 

Density function theory (DFT) is a computational modeling framework that numerically 

approximates the Hamiltonian and optimizes the wave function of the electrons through a self-

consistency algorithm. This framework makes several approximations along the way. The 
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complete Hamiltonian describing the nuclei and electrons of some atomic system can be found 

below. 

 

The first terms in the Hamiltonian refers to the kinetic energy of N electrons with mass me, while 

the second term refers to the kinetic energy of M nuclei with mass mn. The third term is the 

potential between the electrons and the nuclei, where e is the charge of an electron, Zj is the 

atomic number of the nucleus and rij is the distance between a nucleus and an electron. The 

fourth term refers to the potential energy of all the electrons where rαβ is the distance between 

electrons. The fifth term is the potential energy of all the nuclei. ZA and ZB are the atomic 

numbers of the nuclei and rAB is the distance between the two nuclei.  

The Born-Oppenheimer approximation treats the Hamiltonian and wave-functions of the nuclei 

and electrons independently. This is possible because the mass of the electrons is orders of 

magnitude less than that of the nuclei. Therefore, the ionic cores can be considered to be 

stationary with respect to the electrons. With this approximation, we can separate the electronic 

and nuclear degrees of freedom and omit the second and fifth terms of the previous Hamiltonian 

to describe only the electrons. This new electronic Hamiltonian is 

 

We can convert this function to atomic units where the mass and charge of the electron are unity.  
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The eigenvalues from this operator will give the energy levels of the electrons. The total energy 

of the system will be these electronic energies and the energies from the nuclei. That is 

 

We can further simplify this Hamiltonian by approximating the potential among electrons with a 

mean field. This is where density functional theory gets its name: the potential energy becomes a 

function of the electron density (which is defined by the wave function). The Hatree Fock 

method for solving this problem involves expressing the wavefunction as a product of the one 

electron functions. 

 

The electrons influence each other not just through a mutual coulombic repulsion, but also 

through correlation and exchange effects. Within the density function theory framework, the 

interacting electron system is replaced by a non-interacting gas where the exchange and 

correlation effects are modeled with the gradient corrected density functionals developed by 

Perdew et al29. Other functionals have been proposed, but the functional used in this study has 

been shown to accurately model the electronic structures of Aln, Mgn, Nan, as well as AlnMgm 
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clusters10,11,30,31. The equation to be solved is called the Kohn-Sham equation, which deals with 

charge density instead of the one electron functionals. 

 

Here, Vext refers to the potential among the electrons and the ionic cores, VH refers to the 

potential among the electrons, and VXC corrects for quantum mechanical effects associated with 

the exchange and correlation among electrons. This discussion has set up what equation will be 

solved, but not how it will be solved. As a reminder, the potential energy term in the operator is 

dependent on the charge density of the electron, and therefore its wavefunction. The electron 

density is related to the one electron wave function via the relation: 

 

The wavefunction is a linear combination of atomic orbitals centered at the atomic sites.  

 

These atomic orbitals, ϕn, making up the wavefunction are referred to as the basis. Two common 

functions used to model quantum confined systems are Gaussians and Slater Type Orbitals. This 

functional form decays exponentially and has a cusp at the nuclei, making it a better model than 

a Gaussian function. The program guesses initial values for the coefficients in the wave function 

expansion. This wave function is used to generate the initial density in the Kohn Sham equations. 
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At this point, the Schrodinger equation is solved for the energy. The coefficients of the wave 

function expansion are then changed to satisfy the equality in Schrodinger’s equation. A new 

charge density is calculated from this new wave function for a new Fock Operator. Schrodinger’s 

equation is again solved with the new wave function and new Fock operator to find a new 

energy. The coefficients are changed again to satisfy the equality, process is repeated until the 

change in energy is less than a user specified value. The ground state energy is given by 

 

In addition to energy, the forces on the atoms are also calculated. Once the wave function is 

optimized, the nuclei are moved a small interval down the potential gradient, and the procedure 

is run again to calculate the electronic energy. The total energy of the system is again calculated 

in the new geometry. This geometry optimization continues until the change in energy is below 

some user specified value. At this point in the algorithm, the system will be described by a 

wavefunction that is dependent on the chosen basis.  

2.3 DFT Software 

In this study, Amsterdam Density Functional (ADF) was used to complete all DFT 

calculations32. The electron orbitals are represented by Slater Type Orbitals (STO) located at the 

atomic sites33. The general form of STO is 

. 

In this function, the Y,l,m(θ,φ) factor refers to spherical harmonics, r is the distance from the 

atomic nuclei, n is the principle quantum number, and α controls the long-range decay. These 
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orbitals are more suitable than Gaussian Type Orbitals because they contain a cusp at the atomic 

site as well as possessing a more accurate long distance decay. The basis set used for all 

calculations was the T2ZP.  

In the bimetallic study, up to fifteen different geometries were optimized to provide a large 

sample of configuration space. In the ligand study, up to five geometries for each species were 

optimized. These geometries corresponding to different skeletal structures as well as different 

placements for the cations. In both studies, various spin multiplicities were tried to ascertain the 

multiplicity of the ground state. For both geometric optimizations, the convergence threshold 

was 10-8 Hartree. In the bimetallic study, the Hirshfeld charge and Mulliken populations were 

analyzed27,28. The molecular orbitals were viewed in ADF viewer and classified based on the 

number of nodes and the symmetry of the wave function.   
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Chapter 3 

Nature of Bonding in Bimetallic Clusters 

 

3.1 Introduction 

The objective of this chapter is to investigate the nature of bonding between dopants and an 

aluminum cluster using. The bonding in pure Aln clusters is metallic and can be reasonable 

described by a confined nearly free electron gas. Our objective is to examine the nature of 

bonding between aluminum clusters and Na or Mg dopants. The obvious starting point in making 

this distinction is to analyze the Hirshfeld charge and Dipole moments. We go on to analyze the 

3s and 3p Mulliken populations of the dopants, as well as the Laplacian of the charge density at 

critical points. The change in dopant removal energy between anionic and neutral species is 

calculated. Finally, we determine if the electronic structure is dramatically changed by replacing 

the dopants with their corresponding valence electrons. By analyzing a broad range of 

parameters, we hope not to just distinguish between metallic and ionic bonding, but to find the 

parameter which would be most useful in differentiating metallic and ionic bonding.  

 

3.2 Geometries 
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First, we look at the structures of the magnesium or sodium doped aluminum clusters. Figure 1 

shows the neutral structures of AlnMgm, and Figure 2 shows the corresponding anionic 

structures.  In these, aluminum is shown as the gray atoms, and magnesium as the green. The 

connections between the atoms are to help illustrate the structures of the clusters and do not 

represent bonds Some characteristic bond lengths are included. 

 

Figure 1 - Aluminum Magnesium cluster structures - Neutral 
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Figure 2 - Aluminum magnesium cluster structure - anion 

 

Figures 3 and 4 show the neutral and anionic structures of AlnNam, respectively. Here aluminum 

is shown in gray, while sodium is purple. Again, the lines connecting the atoms are to help 

illustrate the structure of the clusters and do not represent bonds, and some characteristic bond 

lengths are included. 
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Figure 3 -Aluminum-Sodium cluster structures - Neutral 
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Figure 4 - Aluminum-Sodium cluster structures - Anions 

It can be observed that the dopants (magnesium or sodium) tend not to bind to each other, but 

instead prefer bonding with the aluminum motif.  This can be explained by considering the bond 

strengths of the dimers. Al-Mg (0.53eV) and Al-Na (0.90eV) bond strengths are stronger than 

the Na-Na (0.54eV) or the Mg-Mg(0.10eV) bond strengths, while Al-Al (1.18eV) are the 

strongest. Additionally, aluminum-magnesium bonds tend to be shorter than the aluminum-

sodium bonds.  

Another difference between the two types of systems is that the magnesium tends to embed itself 

within the aluminum motif, while sodium tends to bind to the outside. In order to quantify this 

trend, we find the average distance of the dopants from the center of mass and the average 

distance of the aluminum from the center of mass. The difference between these two average 
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distances is plotted as a function of cluster size for both the neutral and anionic structures. This 

quantity shows how much further the dopant is than the aluminum from the center of mass; a 

positive value corresponds to the dopant being further than the aluminum.  Figure 5 shows this 

difference as a function of size. The six traces correspond to different numbers of dopants. 

Sodium is represented with red and magnesium with blue. The darkness of the trace corresponds 

to number of dopants (i.e. dark blue has more magnesium than light blue). 

 

Figure 5 – Average difference in distance between dopant and aluminum in anion and neutral 
series 

In these clusters, magnesium and sodium both tend to be further from the center of mass than the 

aluminum atoms. In clusters containing seven to twelve atoms, sodium tends to be further from 

the center of mass than magnesium with respect to the aluminum atoms. In clusters containing at 

least thirteen aluminum atoms, a sharp increase is seen for both magnesium and sodium clusters. 

This because Al13 tends to form into an icosahedron, with the dopants binding to the outside. 

This behavior is what we would expect from an ionic system: the aluminum atoms form a 

compact cluster to which the cations are ionically bound.  
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3.3 HOMO-LUMO Gaps and Jahn-Teller Distortion 

 

Figure 6 shows the HOMO-LUMO gaps of AlnMgm
- as a function of the number of valence 

electrons. Our results show that a high HOMO-LUMO gap (>1.0eV), can occur in clusters not 

possessing a “magic number” of electrons. To find the number of valence electrons, we 

considered each aluminum atom to contribute three electrons, while each magnesium would 

contribute two. Again, each trace corresponds to different number of magnesium atoms, with 

Mg0 representing a pure aluminum cluster.  

 

Figure 6 - HOMO-LUMO gaps: Aluminum Magnesium Anions 

Five species were found to have HOMO-LUMO gaps greater than 1.0eV: Al5Mg2
-, Al7Mg3

-, 

Al11Mg-, Al11Mg2
-, and Al11Mg3

-. The stability of Al5Mg2
- and Al11Mg3

-, which possess 20 and 

40 valence electrons, are predicted by the Jellium model; we have to consider another effect to 
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explain the stability of the other species. Al7Mg3
-, Al11Mg-, and Al11Mg2

- have 28, 36, and 38 

valence electrons respectively. The origin of these unexpected stabilities was investigated by 

analyzing the molecular orbitals to get a clearer view of the electronic structure of each.  To start, 

we look at the electronic structure Al5Mg2
-, Al11Mg3

-, and Al13
-, whose stability can be explained 

with the Jellium Model. Figure 7 shows the electronic structures of these three species. The 

orbital shapes were visualized and assigned a shell designation based on the number and shape of 

the nodes. A representative orbital from each shell is displayed alongside that shell.  

 

Figure 7 - Electronic Structure of Al5Mg2
- (20 e-), Al11Mg3

- (40e-), and Al13
- (40e-) 

There is little breaking of the degeneracy of the molecular orbitals within the individual 

subshells. That is, the energies of a particular subshell closely match those of the same 

assignment. As the cluster becomes more spherical and more symmetrical, the degeneracy of 
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these subshells increases. The orbitals of the P and D subshells are completely degenerate in the 

Al13
- cluster, and there is only a small gap in the F orbitals.  This shows that geometric 

asymmetry can cause the orbitals within an individual subshell to lose their degeneracy, leading 

to crystal field splitting. This effect is highlighted in Al7Mg3
-. 

From Figure 4, we can see that Al7Mg3
- has a much higher HOMO-LUMO gap than Al9

-, in spite 

of having the same number of valence electrons. The electronic structure of these clusters can be 

found in Figure 8. In this plot the occupied P and F orbitals are shown   

 

Figure 8 - Electronic Structure of Al7Mg3
- (28e-) and A9

- (28e-) 

Both Al7Mg3
- and Al9

- have oblate structure. That is, they are compressed in one direction and 

stretched in the other two. We label the compressed direction z, and the other two directions x 

and y. The splitting in the molecular P-orbitals emphasizes the effect of this asymmetry on the 
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energies of the molecular orbitals. For both P subshells, the orbital corresponding to the direction 

in which the cluster is compressed is higher in energy. The two P orbitals that are relatively 

lower in energy are assigned Px and Py, while the orbital that is higher in energy is assigned Pz. In 

the case of Al9
-, this crystal field splitting also causes an unoccupied F orbital to be pushed down 

in energy, reducing the HOMO-LUMO gap. This demonstrates that orbitals corresponding to a 

direction that is stretched become more energetically favorable while orbitals corresponding to a 

direction that is compressed become higher in energy. 

The clusters Al11Mg- and Al11Mg2
- were also found to have high HOMO-LUMO gaps with 

electron counts of 36 and 38, respectively. The electronic structures of these clusters are 

compared with Al13
+, which also has a high HOMO-LUMO gap with 38 electrons. Figure 9 

shows this comparison. 

 

Figure 9 - Electronic Structure of Al11Mg- (36e-), Al11Mg2
- (38e-), and Al13

+ (38e-) 
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Al13
+ is known to have a high HOMO-LUMO gap. Its oblate structure causes a splitting in the 2P 

subshell, similar to Al7Mg3
- and Al9

-. Al11Mg2
-, also possessing an oblate structure, has a very 

similar electronic structure to Al13
+. Its F subshell has less degeneracy, but its high HOMO-

LUMO gap comes from its Pz orbital being pushed up in energy. The high HOMO-LUMO gap in 

Al11Mg- is caused not from the splitting of the P subshell, but a splitting of the F subshell. Two F 

orbitals are pushed up in energy, effecting a large HOMO-LUMO gap.  These results 

demonstrate that oblate structures can have a high HOMO-LUMO gap with a few less electrons 

than those predicted by the Jellium Model.  

With a high HOMO-LUMO gap, a cluster is resistant to oxygen, and could make for a useful 

constituent in a cluster assembled material. However, the bonding nature among the individual 

atoms within a cluster will determine how the cluster binds to other clusters. In the following 

sections, the bonding nature of sodium or magnesium to aluminum clusters is investigated.  

 

3.4 Hirshfeld Charge and Dipole Moment 

 

The simplest way to ascertain the nature of bonding within a cluster is through the charge 

density. An atom becoming positively or negatively charged represents a loss or gain of electrons 

and is indicative of ionic bonding. This separation of charge would lead to a dipole moment.  In 

this section, we analyze the Hirshfeld charge and dipole moments. If a cluster is metallically 

bound, we would expect to see negligible Hirshfeld charges (all atoms would be electronically 

neutral) and dipole moments.  In an ideal ionic system, there would be complete charge transfer 

from the cation to the anion. However, in a simple calculation modeling sodium chloride, we 
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find a calculated charge transfer of 0.65 e-. This shows that calculations on an ideal ionic system 

will not necessarily display complete charge transfer.  

 

Figure 10 - Average Hirshfeld Charge of AlnNam, and AlnMgm, and Electric Dipole of AlnNa, and 
AlnMg. 

Both the calculated Hirschfeld charge and the dipole moments, shown in Figure 10, suggest that 

magnesium acts as a much weaker cation than sodium. In clusters containing five or more 

aluminum atoms, the average net charge on the sodium dopants (0.30 – 0.43 e-) is consistently 

greater than the average net charge on the magnesium dopants (0.10 – 0.27 e-). Figure 11 shows 

the dipole moment plotted against the number of aluminum atoms in a cluster.  Again, red is 

sodium and blue is magnesium, with darker colors correspond for a higher proportion of the 

dopant 
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Figure 11 - Electric Dipole for multiple dopants 

Following the same trend as the Hirshfeld charge, the dipole moment for clusters containing 

sodium tends to be greater than the dipole moment in clusters containing magnesium. Two 

clusters have a very low calculated dipole moment Al13Mg and Al11Na2. As shown in Figure 2, 

the two sodium atoms in Al11Na2 are on opposite sides of the Al11 structure. Even though each 

sodium atom donates charge to the aluminum motif, the geometry causes the net dipole moment 

to be zero. This shows that distinguishing between ionic and metallic bonding is not as simple as 

looking at the dipole moment.  

The small dipole in Al13Mg can be explained by looking at the charge density across the cluster. 

Figure 12 shows the Hirshfeld charge at each of the atomic sites. 
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Figure 12 - Al13Mg Hirshfeld charge 

The magnesium has a positive charge of 0.129e-, the neighboring aluminum atoms are slight 

negative, and the aluminum atoms on the opposite side of the cluster are positively charged. 

These results demonstrate the polarizability of the Al13 motif. With 41 valence electrons, this 

cluster has an open electronic shell. This single extra electron acts to screen the dipole arising 

from the weak polar bond between the magnesium and the aluminum motif. This screening is 

what quenches the electric dipole. These results show that some other metric is needed to 

distinguish between metallic and ionic bonding. 

 

3.5 Laplacian of the Charge Density 

 

The Laplacian of the charge density has been used to characterize ionic versus metallic bonding 

at bond critical points. A positive Laplacian is indicative of charge depletion and characterizes an 
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ionic bond, while a negative Laplacian indicates charge accumulation and represents a covalent 

bond. We sampled the Laplacian of the charge density at different critical points in different 

clusters. These values can be found in Table 1.  

Table 1 – Laplacian at different critical points 

These values show that in bonds between aluminum and a dopant atom, both sodium and 

magnesium have positive Laplacians of the charge density at the critical point. However, sodium 

tends to have a more positive Laplacian, suggesting that it behaves more ionically than 

magnesium. We see that the Al-Al bonding is characterized by either a positive or negative value 

depending on the cluster. In an Aluminum-Methyl cluster the Laplacian of the charge density 

between two aluminum atoms was -0.0105, which marks a covalent bond. Conversely, in Al13
-, 

the Laplacian was +0.0065, indicating an ionic bond. This shows that, like the dipole moment, 

the Laplacian of the charge density is not a suitable metric in distinguishing between metallic 

and ionic bonding. 

 

3.6 Mulliken Population 

The Mulliken population is based on how occupied the individual atomic orbitals are. A sodium 

atom has a single 3s electron, while magnesium has a pair; the 3p orbitals of both are 

unoccupied.  In an ionic bond, we would expect the 3s occupation of the dopant to be negligible 
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since the electrons are being transferred to some anion. Figure 13 shows the average Mulliken 

population of the 3s and 3p orbitals in the dopant atoms as a function of cluster size.  

 

Figure 13 – Average 3s and 3p Mulliken population for AlmNan and AlmMgn. 

These results show that the 3s occupation in magnesium is higher than the 3s occupation in 

sodium for clusters of the same size. In both cases, the 3s occupation decreases as the size as the 

cluster gets larger. The 3p occupation of sodium remains negligible, while the 3p occupation of 

the magnesium increases with cluster size. In fact, at cluster containing more than eight 

aluminum atoms, the 3p occupation of magnesium exceeds the 3s occupation of sodium in 

clusters of the same size. The small occupation of the sodium orbitals is in agreement with the 

Hirshfeld charge analysis; sodium tends to more easily donate its electron to the aluminum motif. 

The occupation of the 3p orbital is an important marker in determining metallic bonding. It’s 
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been shown in pure magnesium clusters, that occupation of the 3p orbital is indicative of a 

metallic transition. In this series, we see that the 3p orbital for the magnesium does increase, 

while the 3p occupation in the sodium atoms remain negligible. In spite of the fact that 

magnesium normally has an unoccupied 3p subshell, something is causing this subshell to 

become energetically favorable.  This result suggests that Mulliken occupation of the valence p 

subshell can be used to quickly characterize bonding in group I and II elements.  

 

3.7 Change in removal energy 

 

The change in removal energy (∆ER.E) of the dopant between its neutral and anionic clusters can 

be used to distinguish between metallic and ionic bonding. Ionic bonds are stabilized first by 

electronic transfer, and then reinforced by a Coulombic attraction between the cation and anion. 

If an extra electron is added (as is the case in an anionic cluster), we would expect an ionic bond 

to become destabilized since the presence of an extra electron would decrease the electronic 

transfer. For this reason, we calculated the difference in dopant removal energies between the 

neural and anionic species. 

∆ER.E.  = [dopant removal energy - Anion] – [dopant removal energy - Neutral] 

If this quantity is negative, the energy with which the dopant was bound decreases when an 

additional electron is added, which indicates an ionic bond. If the change in removal energy is 

positive, the extra electron stabilizes the bond, suggesting the bond is not ionic. Figure 14 shows 

the change in removal energy for the sodium and magnesium series.  
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Figure 14 - Change in dopant removal energy in AlmNan
- and AlmMgn

- versus AlmNan and AlmMgn 

The bond that sodium makes with the aluminum motif is always destabilized by the addition of 

an electron, with only a few exceptions whose difference was always less than 0.2 eV. The 

magnesium series does not possess a clear trend. The extra electron acted to stabilize the bond as 

often as it acted to destabilize it. This reinforces the idea that magnesium is less ionic than 

sodium.  

 

3.8 Change in Electronic Structure 

 

The final metric to be examined is the comparison of the electronic structure of an optimized 

bimetallic system, a single point calculation of that same system as an anion with the dopant 

atoms replaced with the corresponding number of electrons, and an optimized calculation of that 

anionic system. If the dopants are ionically bound to the aluminum motif, there should be little 

difference among the bimetallic system, and the unoptimized and optimized anionic systems. 

First, we investigate Al12Na-. The electronic structures of this cluster, a single point calculation 
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of the geometry without the sodium and with an extra electron, and an optimized calculation of 

that anionic species. Figure 15 shows that these three systems have very similar electronic 

structures.  

 

Figure 15 - Electronic structures of Al12Na-, an Al12
-2 optimized, and unoptimized Al12

-2 structure 
based on Al12Na- 

This demonstrates that the Al12Na- cluster possess a very similar electronic structure as Al12
2-, 

and that the primary role of the sodium in this system is to donate an electron to the aluminum 

motif.  
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Figure 16 - Electronic structures of Al12Na3
-, an Al12

4- optimized, and unoptimized Al12
4- structure 

based on Al12Na3
- 

Next, we investigate the role of sodium in Al12Na3
-. Again, the three electronic plots shown in 

Figure 16 correspond to the optimized Al12Na3
-, a single point calculation of this geometry with 

the sodium atoms replaced with their corresponding electrons, and an optimized Al12
4-  cluster. 

Again, the three electronic plots are similar. The major differences among the three plots are 

subshells losing their degeneracy. This is a result of the optimized Al12
4- being more symmetrical 

than the other two systems. These results again show that the primary contribution of the sodium 

atoms to these clusters is the donation of its electrons. 
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Finally, we repeat this process with Al11Mg3
-.  Because magnesium is divalent, the 

corresponding anion will have two extra electrons per magnesium atom. Figure 17 shows the 

electronic plots of Al11Mg3
-, a single point calculation on Al11

7-, where the geometry matches the 

aluminum motif from Al11Mg3
-, and an optimized Al11

-7.   

 

Figure 17 - Electronic structures of Al11Mg3
-, an Al11

-7 optimized, and unoptimized Al11
-7 structure 

based on Al11Mg3
- 

 

Unlike the sodium systems which was isoelectric in all three calculations, this plot shows a 

rearrangement in the order of the electronic states. The crystal field splitting in the single point 

calculation on Al11
7- is so dramatic that one of the 1F orbitals because unoccupied while the 3S 
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orbital becomes filled. This cluster has a HOMO-LUMO gap of 0.08eV. The reordering of the 

electronic structure among the three calculations, along with the dramatic change in calculated 

HOMO-LUMO gap (which was 1.45eV in the bimetallic cluster), show that the presence of 

magnesium affects the electronic structure more than the presence of its electrons.  
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Chapter 4 

Nature of Bonding in Ligated Aluminum Clusters 

 

4.1 Introduction 

 

The Jellium model can be used to describe the formation of high HOMO-LUMO gaps in 

magnesium/sodium doped aluminum clusters possessing “magic numbers” of electrons. These 

electron counts correspond to closing of electronic shells, similar to those found in atomic 

systems.  As the geometry of the clusters shifts from spherical to prolate or oblate, crystal field 

splitting occurs within the subshells allowing for a high HOMO-LUMO gap in electron counts 

not corresponding to “magic numbers”. Conceptually, the spherical Jellium model is metallic in 

nature; the electrons exist as a free gas in a uniform and continuous positive background charge.  

In contrast, Wade-Mingos rules describe polyhedral systems where atomic p orbitals form cage 

bonds that act to stabilize the shell. This model has been applied to describe tin, lead, and 

germanium clusters, as well as the unexpected stability of, Al4H6, all of which possess a closo- 

structure. In this cluster, each Al-H subunit possess one electron pair available for bonding, and 

the extra to hydrogen provide another. In this section, the ground state geometries of aluminum-
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methyl clusters are calculated and their electronic structures analyzed. Similar to Al4H6, each 

aluminum-methyl subunit (AlMe) has one electron pair available for bonding. These aluminum-

methyl clusters were modeled with two potassium atoms, which provided the extra electron pair 

required for a closo-structure. 

 

4.2 Structure 

 

By assuming the two potassium atoms as donating their electrons to the aluminum-methyl cage, 

this system (AlMe)n
-2 can be considered to be analogous to borane BnHn

-2.  Each aluminum-

methyl subunit has ten valence electrons. One electron from each of the hydrogens, three from 

the aluminum, and four from the carbon. Six of the electrons are required for the three C-H 

bonds in the methyl, and two more are required for the Al-C bond. This leaves one electron pair 

per vertex. With the extra electron pair form the potassium atoms, the number of bonding pairs 

of electrons is equal to (n+1), or (2n+2) electrons, which implies closo-structures. The ground 

state geometries for K2(AlMe)n are shown in Figure 18. The brown atoms forming a cage-like 

structure are aluminum. The ligands associated with each of the aluminum atoms is a methyl 

(CH3). The purple atoms are potassium. 
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Figure 18 - Ground state geometry of K2AlnMen 

In all cases, the aluminum atoms form cage structure, with both potassium atoms tending to 

appear on the same side of the cluster, but not adjacent to one another. In spite of the symmetry 

of all clusters being disrupted by the potassium ions, the aluminum cages are consistent with the 

structures predicted by Wade-Mingos rules. 

 

4.3 HOMO-LUMO gap and Removal Energies 
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Figure 19 - HOMO-LUMO Gaps of K2(AlMe)n 

 

The HOMO-LUMO gap for these clusters can be found in Figure 19. With the exception of 

K2(AlMe)4, all clusters possessed a high HOMO-LUMO gap (0.97 eV – 1.6 eV). There are local 

maxima at n = 7 and n=12, where the HOMO-LUMP gap is greater than 1.5 eV There are local 

minima at n = 4 and 8, where the gap is 0.73 eV and 0.97 eV. Dodecaborane, B12H12
2-, was also 

modeled to provide a comparison for a known Wade-Mingos cluster. The HOMO-LUMO gap of 

this cluster was calculated to be 5.39eV, substantially higher than any of the clusters 

investigated. 
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This result is completely different than those from the bimetallic clusters previously investigated, 

where only certain “magic numbers” of electrons would lead to a high HOMO-LUMO gap. In 

the bimetallic clusters, oscillations are observed in the HOMO-LUMO gap between even and 

odd numbers of aluminum atoms. This is due to the fact that aluminum has three valence 

electrons, so the number of electrons switches between even and odd when an aluminum is 

added. Clusters with odd numbers of electrons tend to have lower HOMO-LUMO gaps, since 

these clusters will have an unpaired electron. Because each aluminum-methyl subunit has ten 

valence electrons, all clusters contain an even number of electrons. The high HOMO-LUMO gap 

for all clusters, along with the calculated structures, show that this system is best modeled using 

Wade-Mingos counting rules and not the Jellium model.   
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Figure 20 - AlMe Removal energy in K2(AlMe)n clusters 

 Figure 20 shows the energy required to remove an aluminum-methyl subgroup as a function of 

cluster size. The removal energy of the aluminum-methyl subgroup stays between 2.8 eV and 4.2 

eV, with local minima at n = 4, 8, and 11. The lowest removal energy occurs in the n = 12 

clusters.   These values are much lower than the removal energy of a BH unit from B12H12
2-.  

 

 

4.4 Mulliken Population 
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In the previous section, we used the Mulliken population in our investigation of the nature of 

bonding between aluminum clusters and the dopants. In this chapter, we use this parameter to 

investigate any difference between pure aluminum clusters, and the ligated aluminum clusters. 

The average Mulliken population of aluminum orbitals are plotted as a function of cluster size 

for pure neutral aluminum clusters and ligated clusters. Figure 21 shows these Mulliken 

populations. 

 

Figure 21 - Mulliken population of pure aluminum clusters and ligated clusters 

The two red traces refer to the neutral pure aluminum clusters, while the blue traces correspond 

to the ligated aluminum clusters. The trace that is lighter in color with circle markers is the 3s 
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occupation, while the darker trace with the triangular markers display the 3p occupation. This 

shows a clear difference between the two systems. In pure aluminum clusters, the 3s occupation 

is higher than the 3p occupation. Conversely, in the ligated clusters, the 3p occupation is much 

higher than the 3s occupation. Wade-Mingos counting rules operates on the principle that the 

atomic p orbitals overlap to form delocalized molecular orbitals. In the following section, we 

investigate the electronic structures for the ligated aluminum clusters.   

 

4.5 Electronic Structure 

 

The electronic structures of these clusters were analyzed to confirm whether the high HOMO – 

LUMO gap can be explained with Wade-Mingos counting rules.  
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Figure 22 - Electronic stucture of K2(AlMe)n (3 ≤ n ≤ 12). 

Figure 22 shows the electronic energies for K2(AlMe)n (3 ≤ n ≤ 12). The energies of all orbitals 

for each species were shifted such that the highest occupied molecular orbital corresponded to 0 

eV. Investigating the shape of the individual orbitals, showed a common pattern among the 

clusters. For a given cluster K2(AlMe)n, there were n states that were very energetically favorable 

that corresponded to the bonding between hydrogen and carbon in the methyl groups. There were 

then n states corresponding to bonds between the aluminum and carbon atoms, with a high 

amount of crystal field splitting among these states. Within this range, there were 2n additional 

orbitals corresponding to bonding between hydrogen and carbon in the methyl groups. There was 

then a unique orbital that was visually similar to the 3S atomic orbital. The highest n orbitals 
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corresponded to bonding among the aluminum atoms in the cage, where the bonds appeared to 

have p shell characteristics.  

 

Figure 23 - Electronic Structure of K2(AlMe)4 and K2(AlMe)12 

Figure 23 shows the electronic structure of K2(AlMe)4 and K2(AlMe)12. The colors of the energy 

levels are based on characterization of the orbitals. Black lines represent orbitals located on the 

methyl groups. There are 3n such orbitals for each structure. Red represents bonding between the 

carbon and aluminum that possesses S-type characteristics (n orbitals in each cluster). The blue 

line represents the single unique orbital that visually similar to a 3S type orbital. Green 

represents bonding between the carbon and aluminum that possesses P-type characteristics (n 
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orbitals in each cluster). This plot shows that the presence of the potassium atoms splits the 

orbitals, leading to lower HOMO-LUMO gap compared to Al4Me4
2-.  The pattern for the 

electronic structure is the same for each species studied. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion and Future Work 

 

This study shows that sodium and magnesium bind differently to aluminum. Sodium tends to 

have low Mulliken populations in its 3s and 3p orbitals, and high Hirshfeld charges, Laplacian of 

the charge density, and dipole moment. The change in removal energy between neutral and 

anionic species show that its bond with the aluminum motifs becomes destabilized with the 

addition of an electron. Finally, the electronic structures of Al12Na- and Al12Na3
- were closely 

modeled by replacing the sodium atoms with their corresponding electrons. With these results, 

we can conclude that sodium forms ionic bonds in bimetallic clusters with aluminum.  

The behavior of magnesium is not as obvious as sodium. It tended to donate a smaller amount of 

charge compared to sodium in clusters of the same size, and in turn induced a smaller dipole. Its 

3p Mulliken population increased with cluster size, while its 3s occupation decreased. There was 

no clear tread showing an extra electron would destabilize its bond with. The tendency of 

magnesium to embed itself within the aluminum motif caused the electronic structure of 

Al11Mg3
- to be very different than Al11

7-. These results suggest that the way magnesium bonds to 

aluminum can be considered metallic.  
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Of the parameters investigated, the Mulliken population of the dopants serves as the best 

indication of the nature of bonding since it yields useful information without requiring an 

additional calculation. In clusters with multiple dopants, the net electric dipole can be minimized 

by symmetric spacing of the dopants. Measuring the change in removal energy between a neutral 

and anionic cluster of the same composition, as well as investigating the change in electronic 

structure if the dopants are replaced with the corresponding number of valence electrons, 

requires extra calculation.  

We have also investigated the ground state and electronic structures of K2(AlMe)n (3 ≤ n ≤ 12). 

Because each aluminum-methyl sub group has one electron pair available for skeletal bonding, 

we expect this system to be best described with Wade-Mingos counting rules. Our calculated 

structures were consistent with the closo-structures predicted by this model. We found that all 

species in the series possessed a high HOMO-LUMO gap, further suggesting that the system 

conformed to the Wade-Mingos picture. The Mulliken population showed that the occupation of 

the atomic orbitals was fundamentally different between pure and ligated aluminum clusters. The 

ligated aluminum cluster had a much higher 3p occupation, which is indicative that Wade-

Mingos rules are applicable. By investigating the electronic structure, we showed that a pattern 

emerged that is consistent with Wade-Mingos counting rules.  

This study demonstrates that the properties of a cluster can be dramatically different than the 

properties of the constituent elements. We showed that aluminum can bind metallically or 

covalently depending on the other elements in the cluster. This versatility is why clusters are 

being investigated as building blocks for cluster assembled materials: the properties of a cluster 

is highly dependent on its size as well as its composition. 
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