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  The successful treatment of breast cancer is limited due to a fraction of tumor cells 

escaping drug-treatment by entering a dormant state, only to relapse years or decades later at 

distant sites. Host-driven chronic inflammatory cells such as M2 macrophages play an important 

role in tumorigenesis, but the role of tumor-intrinsic inflammatory signaling involved in tumor 

dormancy and recurrence is unknown. We sought to determine the role of tumor-intrinsic 

inflammatory pathways in mouse mammary carcinoma cells (MMC) treated with Adriamycin 

(ADR), a clinically relevant chemotherapeutic drug. We found that ADR-induced dormant tumor 

cells autonomously produced pro-inflammatory cytokines, in vitro. MMC treated with 

Chloroquine (CQ) prior to ADR treatment displayed a delay in relapse, or prolonging of 

dormancy, when compared to ADR-treated MMC. Additional gene array data showed predicated 

activation of NF-κB p65 in ADR-treated dormant MMC that eventually relapsed. These data 

suggest that the anti-inflammatory function of CQ led to prolonged dormancy. To test this, we 

investigated the role of inflammatory signaling pathways directly by shRNA-mediated 



 

 x 

knockdown and CRISPR-Cas9-mediated knockout of NF-κB p65 in MMC. We found that 

knockdown of NF-κB p65 resulted in fewer dormant cells after ADR treatment and reduced rate 

of relapse, in vitro. NF-κB p65 was also found to reduce the immunomodulatory effects of ADR, 

with shNF-κB p65 showing increased upregulation of neu upon ADR treatment. Additionally, 

we found NF-κB p65 to be associated with a higher infiltration of CD8+ T cells and anti-tumor T 

cell responses.  Our findings suggest a dual role of tumor-intrinsic NF-κB p65 pathway, allowing 

for escape from drug treatment through dormancy which leads to relapse, but also for proper 

lymphocyte infiltration and subsequent anti-tumor activity. 
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Introduction 

 

Breast cancer treatment and recurrence 

Despite advancements in cancer treatment and prevention, breast cancer incidence has 

continued to rise in recent years, with nearly 12.4% of women becoming diagnosed with breast 

cancer at some point in their lifetime (1). In 2016 alone, it was estimated that 40,450 women died 

from breast cancer, though the 5-year survival rate reached an all-time high of 89.7%, largely 

due to the increase in effective treatments. Despite this overall increase in survival, roughly 62% 

of deaths occur after the 5 year survival mark due to local and distant recurrence (1). Adjuvant 

therapies, such as chemotherapy and radiation, are thought to prevent local recurrence and 

metastasis by targeting residual tumor cells following removal of the primary tumor (2). 

However, such therapies are most effective when the disease is diagnosed early, while only 

detectable in the primary organ without metastasis, and despite its success, thousands of women 

continue to relapse years or decades after successful treatment of primary tumors (3).  

 It is generally recognized that the development of endocrine therapy has proven to be a 

highly effective method in prolonging survival while also preventing recurrence, though not all 

breast cancer subtypes are responsive to such therapies (4). Prior to the development of hormone 

therapies, human epidermal growth factor receptor-2 positive (HER2+) breast cancer was 

associated with poor prognosis compared to other hormone receptor-positive subtypes, such as 

estrogen receptor positive (ER+) and progesterone receptor positive (PR+) breast cancers (5). 

The use of trastuzumab, an anti-HER2 IgG antibody, in conjunction with chemotherapy 

treatment has become instrumental in improving HER2+ breast cancer survival, with patients 

that receive both treatments showing extended time to tumor progression and a reduced relative 
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risk of death by 20% (6). Despite this success, 70% of patients with HER2+ metastatic breast 

cancer show de novo (immediate) or acquired resistance to trastuzumab treatment (7). Patients 

with hormone-dependent tumors also show a greater chronic annual risk of relapse than non-

hormone receptor tumors (4). Though combination treatment has greatly improved patient 

survival, metastases and recurrence still occur due to a subset of tumor cells evolving resistance 

to chemotherapy and/or hormone treatments. 

 

Tumor dormancy  

 Tumor dormancy has become one tool in understanding both local and distant recurrence. 

Tumor cells that escape adjuvant chemotherapy and become dormant are distinct from primary 

tumor cells, in that they can remain asymptomatic and undetectable, but may eventually 

disseminate in a niche environment and establish a secondary tumor (2). Tumor dormancy has 

been observed clinically in breast cancer, prostate cancer, melanoma, and B-cell lymphoma (8–

11). Once tumor cells have escaped from the primary tumor, they may enter the circulation for a 

period of time before disseminating at distant sites in the body. Circulating tumor cells (CTCs) 

have been found in breast cancer patients and were also found to persist during chemotherapy 

treatment, with CTC detection being linked to an increase in disease progression (12). Dormant 

tumor cells may also dissociate from the primary tumor prior to chemotherapy treatment. For 

example, disseminated tumor cells (DTCs) have been found in the bone marrow of prostate and 

breast cancer patients at the time of primary treatment, with no evidence of metastatic disease 

(13, 14). Such findings suggest that dormant tumor cells can escape from the primary tumor, 

even before the onset of treatment, change phenotype, and migrate to distant organs of the body, 

where they lie dormant and eventually establish secondary tumors.   
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Tumor dormancy is still poorly understood, however, there are thought to be 3 categories 

of tumor dormancy: cellular dormancy, angiogenic dormancy, and immune-mediated dormancy 

(15). Cellular dormancy is characterized by G0/G1 arrest, where cells enter a quiescent state due 

to external stress or selective pressure, whereas angiogenic dormancy is a balance of cell 

proliferation and cell death due to lack of proper nutrients reaching the tumor site. Immunogenic 

dormancy is characterized by equilibrium between cytotoxic killing of tumor cells, primarily 

mediated by CD8+ T lymphocytes, with tumor cell proliferation (16). These mechanisms are 

highly interconnected and can all be involved in the establishment and maintenance of 

dormancy. For example, tumor cells may be driven to quiescence (cellular dormancy) due to 

external stress of chemotherapy treatment (17). Other cells may maintain a reduced proliferative 

state, balanced with apoptosis (angiogenic dormancy), which allows them to evolve beneficial 

mutations to escape treatment or downregulate tumor-specific antigens. Lastly, once these 

dormant cells escape the primary tumor, the immune system can prevent recurrence by an 

effective anti-tumor response (immunogenic dormancy). Little is known about the molecular 

characteristics underlying tumor dormancy and there is a need to better understand how and why 

they are able to establish recurrence. 

Immunogenic tumor dormancy requires the recognition of tumor cells by the immune 

system and subsequent anti-tumor response in order to keep transformed cells from developing 

into overt disease. Under the current model for immunogenic dormancy, dormant cells are 

thought to continually divide and subsequently be killed by CD8+ T lymphocytes. Because they 

remain in a proliferative state, such dormant cells can undergo selection. Dr. Schreiber was the 

first to propose the concept of immunoediting, in which tumor cells under immune surveillance 

undergo genomic alterations to escape from tumor-targeted immune cells (18). Tumor cells 
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escaping immune-surveillance and developing overt disease is defined as the ‘elimination phase,’ 

whereas tumor cells lying dormant and in check by the immune system is defined as the 

‘equilibrium phase’ (19). Immunoediting involves genomic or epigenetic changes, such as loss of 

tumor antigens or antigen-presenting machinery, allowing for evasion of immune cells and 

establishment of disease (20). This process is also thought to be involved in the establishment of 

primary tumors, which begin as small neoplasms held in check by the immune system and 

eventually overwhelm the immune system and grow unchecked. In better understanding the 

mechanisms underlying dormancy, tumor-intrinsic pathways may be targeted to prevent 

induction of dormancy or maintain dormant tumor cells in the equilibrium phase, thus preventing 

escape and recurrence for life. 

 

Chemotherapy-induced dormancy 

Neo-adjuvant and adjuvant chemotherapies are standard of care treatments for detectable 

breast tumors. Chemotherapeutic agents induce apoptosis in most tumor cells, however, due to 

the heterogeneity of tumors, a small portion of cells can evade drug-induced apoptosis by 

entering a quiescent or growth reduced (indolent) state, with some eventually develop drug-

resistance (21). Mellor and his group were able to show this phenomenon in vitro, by generating 

a multicellular dormant tumor spheroid model using human colon adenocarcinoma cells. Their 

spheroid dormant tumor cell model displayed marked decrease in Ki67 expression and increase 

in p27kip1, a marker of quiescence. Their group showed that in comparison to several other drugs, 

doxorubicin showed significantly reduced potency in killing dormant tumor cells. Though 

doxorubicin (Adriamycin) is effective in killing most rapidly-dividing tumor cells, dormant cells 
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can enter a non-dividing or slow-dividing state, which renders such treatment ineffective in 

eliminating them.  

Adriamycin (ADR) is a topoisomerase II inhibitor commonly used for neo-adjuvant and 

adjuvant breast cancer treatment. ADR acts in two ways to induce apoptosis in cancer cells: 1) 

Intercalation into DNA and disruption of topoisomerase-II-mediated DNA repair causing 

inhibition of growth and biosynthesis, and 2) generation of free radicals causing damage to 

cellular components (22). While ADR induces apoptosis in most tumor cells, a small portion of 

tumor cells that undergo selection and survive are resistant to apoptosis through induction of 

dormancy. In addition to induction of apoptosis, ADR treatment also contributes to the anti-

tumor immune response. ADR-induced apoptosis in tumor cells has been found to cause 

immunomodulation through expression of markers associated with immunogenic cell death 

(ICD), such as calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 

(HMGB1) (23). A recent study demonstrated that upon Adriamycin treatment, malignant cells 

also produced type 1 interferons (IFNs) after the activation of Toll-like receptor 3 (TLR3) (24). 

Interestingly, tumors lacking TLR3 failed to respond to treatment. Through an autocrine 

signaling loop, type 1 IFNs trigger release of CXCL10, which acts as a chemoattractant for 

monocytes/macrophages, T cells, NK cells, and dendritic cells (DCs) (25). Such data suggests 

that in addition to apoptosis, immune-related pathways are activated upon Adriamycin treatment 

and such signaling is important in understanding induction of tumor dormancy. 
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Molecular mechanisms of dormancy 

 The changes that allow tumor cells to enter a dormant state, maintain a dormant state, 

escape immune surveillance, and relapse at distant sites years later remains enigmatic. A balance 

between growth and apoptotic signaling has been thought to play a role in dormancy, with a 

higher apoptotic to growth signaling ratio favoring dormancy and vice versa for recurrence (26). 

Depending on this ratio, dormant cells may either enter complete growth arrest (Ki67 -), referred 

to as quiescent dormancy, or maintain a slow proliferation (Ki67+/low), referred to as indolent 

dormancy. Several apoptotic pathways have been implicated in dormant cell-signaling. The 

apoptotic-associated MAP kinase, p38, was found to be upregulated in dormant human ovarian 

cancer cells, causing activation of mitogen-activated protein kinase (MAPK) kinase 4/c-Jun 

NH2-terminal kinase (JNK)-activating kinase (collectively referred to as MKK4), which led to 

suppression of tumor growth and inhibition of tumor colony formation (27). Hickson and his 

group demonstrated that MKK4 activity in ovarian carcinoma cells is essential for metastasis 

suppression and the presence of MKK4 prolonged animal survival. A head and neck carcinoma 

model showed that disruption of the metastasis associated urokinase receptor (uPAR), which 

drives tumor growth in this model, led to activation of the p38 signaling pathway, driving cells to 

a dormant state (28). Furthermore, in vivo imaging in this model showed that dormancy resulted 

from complete inhibition of the growth factor signaling pathway, Raf-Mek-ERK, and induction 

of G0/G1 arrest. Such changes in growth and apoptotic signaling could be one way in which 

cells maintain a state of dormancy until they reach a favorable environment. If the activation of 

apoptotic pathways, such as JNK or p38, is too strong in tumor cells, it will lead to cell death 

instead of dormancy (29). Thus, the delicate balance of apoptotic and growth signaling that 

allows for dormancy, instead of apoptosis, might represent a survival mechanism evolved by 
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tumor cells to adapt and persist in stressful environments until they are eventually able to resume 

growth (30). 

Signaling received from the tumor microenvironment (TME) can play an equally large 

role in prolonging dormancy. Patel et al found that CTCs expressing the chemokine receptors 

CXCR4 or CXCR7 were homed to the bone marrow due to CXCL12-expressing bone marrow 

stroma cells (31). These dormant cells also displayed unique gap junction intercellular 

communication with the bone marrow stroma which maintained DTCs in a dormant state, in 

which they are often found in the bone marrow. The bone marrow is also known to secrete 

factors known to drive quiescence, such as CXCR4, stem cell factor-1 (SDF-1) and angiopoietin 

(ANG1) (32). Such results suggest that dormant cells express chemokine receptors in order to 

home to certain secondary locations and are kept in a dormant state by interaction with their 

secondary TME.  

 External signaling can influence the balance in growth and apoptotic signaling, switching 

cells from a higher ratio of apoptotic signaling to a higher ratio of growth signaling and causing 

recurrence in the secondary site. For example, a recent study showed that inhibition of a growth 

pathway associated kinase, ERK, and p38 activation in prostate cancer cells (PCa) was caused by 

BMP7 (TGF-β family member) secretion in the bone marrow (33). Such signaling kept PCa 

DTCs in a dormant state in the bone marrow. When TGF-β receptor 1 or p38 were systemically 

inhibited in a head and neck squamous cell carcinoma model, DTCs in the bone marrow resumed 

proliferation and established recurrence (34). Similarly, in breast cancer patients, VCAM-1 

expression in the bone marrow led to tumor-intrinsic activation of the NF-kB pathway in 

dormant DTCs, activating growth and survival signaling which led to recurrence (35). Such 

results suggest that though genetic and epigenetic changes in cell signaling may initially select 
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for tumor cells to undergo dormancy, the crosstalk with the new microenvironment can 

determine continued dormancy or recurrence. 

 Dormant tumor cells may also secrete factors that directly augment their growth, 

independent of the TME, through autocrine signaling loops. Dolle et al demonstrated that breast 

cancer cells secrete nerve growth factor (NGF) in order to promote proliferation, with tumor cell 

growth being strongly inhibited by NGF-neutralizing antibodies (36). Of note, NGF is not 

naturally expressed by normal breast epithelial cells. Recent studies also report the ability of 

drug-resistant tumor cells to acquire mitogenic signals from autocrine loops, which leads to cell 

proliferation and tumor recurrence (37). Such autonomous signaling could allow tumor cells to 

dictate their own proliferative state, either maintaining dormancy or initiating recurrence, 

independent from the TME.  

 Another possible mechanism involved in tumor dormancy is autophagy, an evolutionary 

conserved process of self-digestion found in both healthy and cancerous cells. The role of 

autophagy is still being debated, with some studies showing its benefit to tumor growth and 

others showing increased tumor cell death (38). Both apoptotic and growth signaling pathways 

rely on ubiquitin and degradation of proteins in order for proper signaling to occur, therefore 

autophagy can alter both types of signaling. There has been mounting evidence showing that 

chemotherapy, radiation, and endocrine therapy can induce autophagy in tumor cells (39). One 

study found that blockade of autophagy with chloroquine (CQ) enhanced the ability of 

chemotherapy treatment to induce tumor cell death in lymphoma cells (40). This is thought to be 

due, in part, to prevention of drug degradation by the tumor cell. Such results indicate blockade 

of autophagy during chemotherapy treatment as one method in which the efficacy of 
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conventional tumor therapies could be improved, allowing for increased apoptosis and fewer 

cells escaping treatment through drug-resistance and dormancy.  

 

Inflammation and cancer  

 Inflammation has long been associated with tumor incidence and progression (41). 

Inflammation, or the body’s natural response to pathogenic agents or insult, restores homeostasis 

to affected tissues. If such response becomes unregulated however, it can become chronic and 

induce malignant cell transformation in surrounding cells (42). One mechanism in which this 

occurs is through the recruitment of inflammatory cells to chronically inflamed tissues, which 

leads to the production of reactive oxygen species (ROS). ROS induce DNA damage in local 

tissues, which may eventually lead to transformation of healthy cells. In addition to ROS 

production, several inflammatory mediators have been linked to cancer incidence and 

progression, such as TNF-α, IL-6 and TGF-β (34, 43, 44). One study found that long term users 

of aspirin and nonsteroidal anti-inflammatory drugs (NSAIDS) have a 40-50% reduced chance of 

developing colon cancer (45). It is also well documented that chronic inflammation by human 

papilloma virus or hepatitis B and C can lead to cervical or hepatocellular carcinoma (46). 

Though there is mounting evidence supporting chronic inflammation’s role in tumor incidence, 

inflammation’s role in tumorigenesis does not end there.  

 Inflammatory chemokines and cytokines are most often associated with immune cell 

signaling, however, such inflammatory regulators are also produced by tumor cells (47). Early in 

tumor initiation, many tumor types produce TH1 cytokines (IL-1, TNF-α and IL-6) to create a 

pro-inflammatory microenvironment, which ultimately leads to neovascularization and rapid 

tumor growth (48–50). This acute inflammatory signal is also received by immune cells, which 



 

 10 

flock to the tumor site and initiate an anti-tumor response (51). Tumor cells upregulate 

immunosuppressive molecules such as PD-L1 and FAS, causing T cells anergy or death (52). In 

addition to T cell anergy, tumor cells have been found to produce GM-CSF and prostaglandins 

E2 (PGE2), causing expansion of myeloid-derived suppressor cells (MSDSs), which further 

promote tumor growth (53). IL-1β and TNF-α production in the TME have been shown to switch 

macrophages to an M2-phenotype, tumor-associated macrophages (TAMs), which tolerate and 

foster tumor growth instead of attacking it (54). Tumor cells not only hijack these factors to 

augment inflammatory cell migration and activation, but also to promote their own growth in the 

TME. Perhaps the best example of this phenomenon is in melanoma cells, which have been 

shown to secrete CXCL1, CXCL2, CXCL3, and IL-8 to exert autocrine control over cell 

proliferation and metastasis (55). Tumor cells can autonomously utilize a myriad of 

inflammatory mediators in creating a pro-inflammatory TME in order to induce tolerance or 

differentiation of pro-tumor immune cells and regulate their own growth and metastases.  

 The inflammatory mechanisms related to cancer can be described in the crosstalk 

between two pathways: 1) The intrinsic pathway, which is driven by genetic and epigenetic 

changes and oncogene expression in tumor cells, and 2) the extrinsic pathway which is driven by 

environmental factors, such as the TME or immune response (53). Oncogene expression alone in 

tumor cells can result in the production of inflammatory cytokines. Sparmann and his group 

showed that oncogenic Ras expression caused upregulation of IL-8 in Hela cells, which resulted 

in the recruitment of immune cells and angiogenesis in their murine xenograft model (56). 

Oncogenic Ras has also been shown to cause production of IL-1β, IL-6 and IL-8 in ovarian 

epithelial cells (57). In conjunction with intrinsic pathways, extrinsic pathways also induce 

inflammatory signaling in tumor cells. For example, when subject to hypoxic conditions, tumor 
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cells will adapt through the activation of hypoxia-inducible transcription factor (HIF)-1. HIF-1 

activation leads to production of genes associated with angiogenesis (VEGF-A), anaerobic 

metabolism (GLUT1) and invasiveness (MMPs) through the subsequent activation of NF-κB or 

STAT3 (58). NF-κB or STAT3 initiate further downstream signaling perpetuating inflammation 

in the TME.  

 

NF-κB signaling in cancer and dormancy  

 NF-κB has been nicknamed the master regulator of stress and consists of five family 

members: RelA (p65), RelB, c-Rel, NF-κB1 (p50), and NF-κB2 (p52) (59). All members of the 

NF-κB family form active homodimers/heterodimers and bind to enhancer regions of DNA that 

regulate the transcription of genes related to a wide variety of functions (60). NF-κB proteins are 

held in the cytoplasm, inhibited by IκB, until a signal is received by the cell (60). In the classical 

pathway, signals received from lipopolysaccharides (LPS), TNF-α and IL-1β cause 

phosphorylation of IκB, allowing for NF-κB translocation to the nucleus and transcription of 

target genes related to inflammation (61). Conversely, in the alternative pathway, B-cell 

activation factor (BAFFR), lymphotoxin β-receptor (LTβR), CD40 and nuclear factor kappa B 

(RANK) initiate signaling which leads to ubiquitination of p100 and subsequent proteasomal 

processing to p52-RelB heterodimers can then activate transcription of target genes related to 

immune cell differentiation and maturation (62). These pathways can overlap both in signaling 

and in target genes, with the main difference between them being the signals which activate 

them. Several other kinases are involved in both types of signaling, which result in a complex 

signaling cascade that allows cells to respond quickly to different stress situations. In addition to 



 

 12 

the production of inflammatory cytokines, such as TNF-α, IL-1, and IL-6, NF-κB signaling also 

controls cell growth and apoptosis (63, 64).  

 Alterations in tumor-intrinsic NF-κB signaling is a recent discovery that has prompted 

many new questions in cancer research. NF-κB’s role in tumor initiation and progression is 

dichotomous: tumor-intrinsic NF-κB signaling is required for proper immune response via acute 

inflammation leading to anti-tumor activity, however, constitutive NF-κB signaling causes 

chronic inflammation which can have pro-tumorigenic effects (65). Huber and his group 

demonstrated that NF-κB signaling is essential for EMT and subsequent metastases in human 

breast cancer cells (66). Interestingly, they also showed that inhibition of NF-κB in mesenchymal 

cells caused reversion back to an epithelial phenotype, suggesting that NF-κB is not only 

essential for EMT, but also involved in maintenance of this metastatic state. Furthermore, NF-κB 

signaling in tumor cells has been shown to cause upregulation of VEGF and subsequent 

vascularization, which leads to rapid tumor growth (67). Tumor cells control NF-κB signaling by 

either evolving mutations in NF-κB (or developing oncogenic mutations which upregulate it) or 

secreting inflammatory cytokines in the microenvironment (68). Such evidence suggests that 

tumor-intrinsic NF-κB signaling promotes metastasis and survival in several tumor types and 

such signaling could be involved in the survival of dormant tumor cells.   

 The NF-κB p65/p50 heterodimer primarily controls the transcription of pro-inflammatory 

cytokines via the classical pathway (69). Though all the functions of every heterodimer is not 

known, NF-κB p65 knockdown in human macrophages from inflammatory bowel disease 

patients significantly reduced the production of inflammatory cytokines, affirming that this 

subunit is a key player in the transcription of inflammatory mediators (70). NF-κB p65 is unique 

from other NF-κB family members in that it can be acetylated at many different sites, suggesting 
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that the transcriptional activity of NF-κB p65 is fine-tuned and allows for target-gene specificity 

and timing of gene expression, rather than just acting in an on or off state (69). The 

customization of NF-κB p65 transcription regulation allows for a time-specific production of 

particular inflammatory cytokines depending on the signals received by the cell.  

Due to the regulatory customization of NF-κB p65 and large amount of target genes 

related to inflammation, it is no surprise that tumor cells have hijacked this transcription factor 

for their advantage. Amplification of NF-κB p65 due to point mutations was recently found in 

human B-cell lymphoma, owing to its oncogenic potential (71). NF-κB p65 can also crosstalk 

with other apoptotic and cell cycle-related transcription factors, such as p53 tumor suppressor 

and STAT3 (72). STAT3-mediated acetylation causes increased NF-κB p65 activity, which 

results in secretion of inflammatory cytokines such as IL-6 (72). STAT3 activation in cancer 

induces anti-apoptotic genes such as Bcl-2 and Bcl-X (73). Interestingly, NF-κB p65 has also 

been shown to inhibit p53 transactivation, and vice versa, in mice (74). Such crosstalk allows 

NF-κB to control a wide range of pathways related to growth and apoptosis, and for this reason, 

there is a need to better understand the role of NF-κB in tumor dormancy and recurrence.   

 The aim of this study was to evaluate the role of tumor-intrinsic signaling in ADR-

induced tumor dormancy and recurrence. Microarray and gene analysis data allowed us to 

pinpoint inflammatory signaling in both dormancy and recurrence. We hypothesized that 

knockdown of NF-κB p65 in mouse mammary carcinoma cells (MMC) would cause a delay in 

tumor relapse, due to inhibition of NF-κB survival signaling during ADR treatment, thus 

preventing cells from entering a dormant state and becoming resistant to ADR-induced 

apoptosis. Our results suggest that NF-κB p65 is involved in drug-resistance and dormancy 
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signaling pathways, however, further studies are required to confirm its precise role in dormancy 

and recurrence.  
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Materials and Methods 

Mouse model 

All animal experiments were performed with FVBN202 transgenic mice (The Jackson 

Laboratory; Bar Harbor, ME) between 8 and 12 weeks of age. These mice overexpress rat neu 

transgene under the regulation of the mouse mammary tumor virus promoter (75). These studies 

have been reviewed and approved by the Institutional Animal Care and Use Committee at 

Virginia Commonwealth University. 

Tumor cell lines 

The neu-overexpressing mouse mammary carcinoma (MMC) cell line was established 

from a spontaneous mammary tumor harvested from a FVBN202 mouse (76). Tumor cells were 

maintained in RPMI 1640 without L-glutamine (L-glut) (RPMI-L-glut) prior to being switched 

to RPMI 1640 supplemented with L-glut (2µM) (RPMI+L-glut). Both were supplemented with 

10% fetal bovine serum (FBS) and cells were kept at 37ºC with 5% CO2. Cells were routinely 

passaged when needed with 0.25% Trypsin or 10mM Ethylenediaminetetracetic acid (EDTA) 

solution (Quality Biologicals Inc., Gaithersburg, MD).  

Trypan Blue Exclusion  

Cell count and viability were determined with Trypan Blue exclusion. Cells were 

detached with 10mM EDTA for 5 minutes at 37ºC with 5% CO2, neutralized with equal volume 

RPMI supplemented with 10% FBS, and centrifuged at 1200 rpm for 6-8 minutes at 4ºC. The 

supernatant was discarded and pellet was resuspended in fresh RPMI. Cells were diluted either 

1:20 or 1:4, depending on the size of the pellet, with 0.4% trypan blue solution (Sigma-Aldrich, 

St. Louis, MO). The solution was added to the hemocytometer (Hycor, Garden Grove, CA) and 

white, trypan blue-negative cells were counted as viable while blue, trypan blue-positive cells 
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were counted as dead. Cells/mL was determined by dividing the 9-grid count by 9 and 

multiplying by the dilution factor and 104.  

Antibodies 

Western blot antibodies: purified anti-NF-κB p65 (Biolegend), anti-GAPDH produced in rabbit 

(Sigma), and Amersham ECL Rabbit IgG, HRP-linked F(ab')₂ fragment (from donkey)(GE 

Healthcare Bio Sciences, Pittsburgh, PA).  

All flow cytometry antibodies were purchased from Biolegend unless otherwise stated: anti-Ki67 

PE (16A8), Annexin V FITC, anti-CD45 BV785 (30-F11), anti-c-ErbB2/c-Neu (B104-1-1) 

(Millipore), Biotin Mouse Anti-Mouse H-2D[q]/H-2L[q] (KH117) (BD Biosciences), anti-B220 

AF594 (RAE-6B2), anti-CD11c PE (N418), anti-CD11b APC (M1/70), anti-Gr1 FITC (RB6-

8C5), andti-CD3 BUV395 (17A2) (BD Biosciences), anti-CD4 BUV737 (GK1.5) (BD 

Biosciences), anti-CD8 BV711 (53-6.7), anti-CD49b APC/Cy7 DX5), anti-CD274 (B7-H1, PD-

L1) (10F.9G2), anti-IgG AF594 (Poly4053) and Streptavidin PE. Anti-mouse CD16/32 (93) 

blocking antibody was used only with in vivo samples.  

Establishment of dormancy in vitro  

MMC were seeded at 5 x 106 cells/flask 24 hours prior to experiment. On the day of 

treatment, cells were seeded at 3 x 106 cells/flask and incubated at 37°C with 5% CO2 for 4 hours 

to adhere. Once adherent, cells were treated with and without 10µM CQ (Sigma-Aldrich, St. 

Louis, MO) and incubated for 3 hours in the dark at 37ºC with 5% CO2. 1µM of Adriamycin 

(ADR) (Sigma-Aldrich, St. Louis, MO) was added directly to the flasks and cells were incubated 

for 2 additional hours, with CQ being in culture for a total of 5 hours. Cells were washed with 

sterile 1X PBS and fresh medium was added to the culture. Treatment was repeated for three 

consecutive days and cells were left in culture for varying times, depending on the experiment. 
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Medium was changed as needed and floater cells were counted via Trypan Blue exclusion after 

being collected by centrifugation.  

RNA extraction and Microarray Analysis 

RNA extraction and microarray analysis was performed as previously described by our 

group (77). Tumor cells were lysed with TRIzol reagent (Thermo Fisher Scientific, Waltham, 

MA) and RNA was isolated on days 0 (untreated), 4, 21 and 42 after the treatments. RNA quality 

control was conducted to ensure RNA integrity and all RNA samples surpassed quality 

standards. JustRMA software with Biobase and Affy packages were run in the R environment to 

normalize the microarray data. Microsoft excel was used in order to generate Venn Diagrams in 

order to isolate probe sets that contained genes uniquely upregulated or downregulated in 

dormancy and relapse.  

Ingenuity Pathway Analysis (IPA) 

Each experimental group of differentially expressed genes, containing Affymetrix probe 

set IDs and fold changes with a p-value less than 0.001, were uploaded into IPA (Ingenuity 

Systems, http://www.ingenuity.com) and analyzed with the Mouse Genome 430A 2.0 Array 

platform as a reference model. Core Analysis function was performed to analyze pathways 

affected by changes in gene expression. Diseases and Functions were analyzed from probe sets 

unique to dormancy or relapse isolated from Venn Diagram analysis with p-values less than 0.01. 

Canonical Pathways and Upstream Regulators were analyzed from all significantly upregulated 

or downregulated probe sets from each group (without Venn Diagram Analysis) and were 

filtered based on a p-value less than 0.01 and z-score greater than the absolute value of 2.0. The 

IPA p-value is based upon the likelihood that expression of various genes within a pathway will 

be upregulated or downregulated by chance and have no effect on that pathway. Z-score predicts 
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which pathways or regulators are likely activated or inhibited based upon the upregulation or 

downregulation of genes in the data set.  

Multiplex cytokine array 

Cytokine array was performed by the Cytokine Core Laboratory (University of Maryland, 

Baltimore, MD) on a Luminex Multianalyte system. Samples were prepared by detaching cells at 

1 or 3 weeks with 10mM EDTA and reseeding 1 x 106 cells/mL/well in a 6-well plate. After 4 

hours when cells had adhered, the medium was replaced to remove dead cells and debris. Cells 

were incubated for an additional 24 hours at 37ºC with 5% CO2. Supernatant from each group 

was collected and immediately frozen at -80°C. Samples were shipped through FedEx overnight 

on dry ice.  

NF-κB p65 shRNA transduction  

The shNF-κB p65 cell line was produced by transducing MMC with NF-κB p65 shRNA 

Lentiviral Particles (Santa Cruz Biotech., San Diego, CA). The particles contain 4 target-specific 

constructs that encode 19-25 nt (plus hairpin) shRNA designed to knock down gene expression. 

Varying multiplicity of infections (MOIs) and concentrations of Polybrene (Santa Cruz., San 

Diego, CA) were used in order to optimize transduction. 24 hours prior to transduction, MMC 

were seeded at 50% confluency in a 12-well plate in 1mL of complete medium (RPMI 1640, 

10% FBS, L-glutamine (2µM), 100U/mL penicillin, and 100 µg/mL Streptomycin). The 

following day, the medium was removed and replaced with complete medium containing 4 

µg/mL or 8 µg/mL of Polybrene. The lentiviral particles were thawed and added directly to the 

cultures at an MOI of 3 or 7. Cells were incubated overnight at 37ºC with 5% CO2. The 

following day, the medium was removed and replaced with fresh complete medium. After cells 

were allowed to grow for two days, 5 µg/ml of Puromycin dihydrochloride (Santa Cruz Biotech., 
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San Diego, CA) was added to select for those cells which had been successfully transduced. 

SCR-MMC were transduced with control shRNA Lentiviral Particles-A (Santa Cruz Biotech., 

San Diego, CA), which encode a scrambled shRNA sequence that does not lead to degradation 

of any known mRNA, alongside NF-κB p65 transduction. Transduced cells were kept in 

Puromycin-selection RPMI for all downstream experiments.  

NF-κB p65 CRISPR-Cas9 transfection 

CRISPR-Cas9 gene editing technology was used to create a complete knockout of NF-κB 

p65. The CRISPR-Cas9 plasmid was purchased from Sigma’s cloning service which provided a 

single vector containing the Cas9 protein expression cassette and guide RNA (gRNA) to target 

the second exon site within the RELA (p65) gene. 0.3 x 106 MMC cells/mL/well were seeded in 

a 6 well plate in complete medium 24 hours prior to transfection. The following day, 2mL of 

fresh complete medium was added along with the CRISPR plasmid and jetPrime reagent 

(Polyplus, New York, NY) in a 1:2 ratio. Medium was replaced after 4 hours and cells were left 

in culture for 48 hours prior to FACS selection. An empty GFP control plasmid was used 

alongside CRISPR plasmid transfection to serve as a GFP control. 

Preparation of cell extract and western blot analysis 

Successful knock down of NF-κB p65 was determined via western blot analysis. Cells 

were detached with 10mM EDTA and centrifuged at 1200 rpm for 8 minutes at 4ºC. The pellet 

was suspended in 500 µL of 1X PBS (PBS), transferred to a 1.5mL microcentrifuge tube, and 

washed twice with PBS. Residual PBS was decanted and cells were resuspended in 500µL of 

pre-cooled radioimmunoprecipitation assay (RIPA) buffer (Thermo Fisher Scientific, Waltham, 

MA), with appropriate amounts of Halt protease and phosphatase inhibitor cocktail (Thermo 

Fisher Scientific, Waltham, MA) and PMSF (Sigma-Aldrich, St. Louis, MO) freshly added. Cells 
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were incubated for 30 minutes on ice and passed through a 26g needle in order to further disrupt 

the cell membrane during lysis. Samples were then centrifuged at 12,000 rpm for 15 min at 4ºC. 

Supernatant was collected and protein concentration was measured using Pierce BCA Protein 

Assay Kit (Thermo Fisher Scientific, Waltham, MA), following manufacturer specifications. 

10µg of protein sample was run on an SDS-PAGE gel and transferred to nitrocellulose paper 

overnight at 4ºC. Western blot was performed using anti-NF-κB p65 or anti-GAPDH, followed 

by rabbit IgG Horseradish Peroxidase (HRP)-linked secondary antibody for detection.  

Establishment of tumor dormancy in vivo  

FVBN202 mice were inoculated with 3 million shNF-κB p65 or SCR-MMC in sterile 1X 

PBS subcutaneously in the mammary fat pad. Mice were weighed and tumor size was monitored 

by digital caliper twice weekly. Tumor size was calculated by V [volume] = (L[length] x 

W[width]2)/2. Mice were injected with 9mg/kg of ADR intravenously every 3 days when tumor 

size reached between 400 and 800mm3. Mice were euthanized when tumor size had reached 

2000mm3 and tumors were collected in complete medium for further analysis.  

In vitro expansion of splenocytes 

Reprogramming of tumor-sensitized immune cells was performed as previously 

described by our group (78). FVBN202 mice were inoculated with 3 million shNF-κB p65 or 

SCR-MMC in the mammary fat pad and growth was monitored by digital caliper. Spleens were 

harvested when tumor size was between 1000mm3 and 2000mm3. Splenocytes were cultured in 

complete medium and were stimulated with 1µM of Bryostatin 1 (Sigma, Saint Louis, MO), 

1µM of Ionomycin (Calbiochem, San Diego, CA), and 80 U/mL/106 cells of recombinant human 

IL-2 (Peprotech, Rocky Hill, NJ) for 16-18 hours. Bryostatin 1 and Ionomycin mimic 

intracellular signaling that results in activation of recently sensitized T cells by activating protein 
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kinase C and mobilizing intracellular Ca2+ (78). Lymphocytes were then washed three times and 

cultured in complete medium with recombinant murine IL-7 and IL-15 (20ng/mL of each, 

Peprotech). After 24 hours, 20 U/mL of IL-2 was added to the culture and the following day cells 

were washed and cultured with 40 U/mL of IL-2. After 48 hours, cells were washed again and 40 

U/mL of fresh IL-2 was added. 24 hours later, lymphocytes were washed again and cultured with 

40 U/mL of fresh IL-2. Lymphocytes were harvested 24 hours later on the 6th day and were used 

for cytotoxicity experiments.  

Cytotoxicity Assay 

Expanded T-cells from shNF-κB p65 or SCR-MMC-inoculated mice were co-cultured 

with MMC at a ratio of 10:1 in complete medium supplemented with 40U/mL of IL-2 for 2 days 

as previously described by our group (78). Supernatant was collected and combined with 

adherent cells, that were detached with 10mM EDTA, and cells were analyzed with flow 

cytometry.  

Flow cytometry  

FVS and Ki67 staining 

Ki67 expression was determined as previously described by our group (17). Cells were 

fixed with 70% ethanol and stained with anti-Ki67 for 30 minutes at room temperature. Prior to 

fixation, cells were also stained with Fixable Viability Stain (FVS) (BD Biosciences, Franklin 

Lakes, NJ) for 20 minutes at room temperature. Cells were washed twice with FACS buffer (1X 

PBS, 10% FBS, 0.1% sodium azide) prior to acquisition.  

Annexin V and PI staining 

In order to determine the level of early apoptosis, late apoptosis and necrosis for 

cytotoxicity assay, cells were detached with 10mM EDTA and washed twice with 1X Annexin 
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Buffer (BD Biosciences, San Jose. CA) at 1200 rpm for 8 minutes at 4ºC in round bottom 

polystyrene tubes. Cells were incubated with anti-Annexin V for 15 minutes, then propidium 

iodide (PI) (Sigma, Saint Louis, MO) and 400µL of 1X Annexin buffer was added immediately 

prior to sample acquisition.  

Multi-color cell surface staining 

A multi-color staining and flow cytometry analyses were performed as previously 

described by our group (17), with some modifications. Infiltrating lymphocytes were analyzed by 

multi-color staining of resected tumors. Animals were euthanized when tumors reached 

>1000mm3 and tumors were surgically cut from the animal in an aseptic environment. The 

tumors were minced into smaller pieces using scissors and forceps. A plunger from a disposable 

5mL syringe was used to mechanically disaggregate the tumor against a secured filter. Complete 

medium was used to wash any remaining cells through the filter. Cells were washed with ice-

cold FACS buffer at 1200 rpm for 10 minutes at 4°C and counted via Trypan blue exclusion. 1 x 

106 cells were placed in sample and single-color control tubes and washed once more with FACS 

buffer. Cells were blocked with anti-mouse CD16/32 antibody for 20 minutes on ice, followed 

by two washes. Cells were then stained with anti-c-ErbB2/c-Neu primary antibody or anti- H-

2D[q]/H-2L[q] (MHCI) and incubated for 20 minutes on ice. Following 2 washes with FACS 

buffer at 1200 rpm for 10 minutes at 4°C, cells were stained with anti-CD45, anti-B220, anti-

CD11c, anti-CD11b, anti-Gr, anti-CD3, anti-CD4, anti-CD8, anti-CD49b, anti-PD-L1, anti-IgG 

secondary or Streptavidin for 20 minutes on ice. Cells were washed twice and data acquisition 

was performed immediately after staining. Neu, PD-L1 and MHCI expression was determined in 

vitro following the same staining protocol.  
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Data acquisition was performed on a Beckon-Dickenson FACS Fortessa X-20 flow 

cytometer. Each sample contains 10,000-20,000 events and all data was analyzed using FCS 

express software 5 (De Novo Software, Loa Angeles, CA). Appropriate compensation was 

performed and all gating was determined using autofluorescence and single-color controls.  

FACS GFP sorting 

Transfection efficiency for the CRISPR-Cas9 p65 and GFP control plasmid was analyzed 

by GFP expression level. Cells were detached with 10uM EDTA and washed with complete 

medium at 1200 rpm for 8 minutes at 4°C. Each sample was sorted into GFP-low and GFP-

intermediate populations using a Beckon-Dickenson FACS Aria III cell sorter in sterile 

conditions. GFP-high expressing cells were excluded from the NF-κB p65-/- sorted cells due to 

increased probability of Cas9 off-target effects.  

Statistical analysis 

Data was summarized by mean and standard error of the mean (SEM) with differences 

between groups being illustrated with graphical data presented as mean ± SEM. Statistical 

comparisons were made using a one-tailed, type 2 Student t test and a p-value <0.05 was 

considered significant. 
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Results 

 

Chloroquine prolongs ADR-induced tumor dormancy in MMC 

Based on evidence suggesting that CQ enhances the effects of chemotherapy treatment, 

we investigated the effects of CQ on ADR-induced dormancy by using our previously described 

in vitro model for tumor dormancy. MMC cultured with RPMI-L-glut exhibit ADR-induced 

tumor dormancy by week 3 and relapse by week 6 after treatment (n=3). Relapse was determined 

by adherent cell-count, which showed a significant (p=0.04) increase at week 6 compared to 

week 3 (Fig. 1A). MMC treated with CQ 2 hours prior to ADR treatment did not relapse by week 

6, showing no significant changes in adherent cell count, and therefore representing maintenance 

of dormancy. Both groups maintained proliferative capacity throughout dormancy, yet 

observable adherent cell number did not change. This proliferative capacity was confirmed by 

Ki67 staining at each time point, with a Ki67+/low population remaining during dormancy (Fig. 

1B), as well as production of floater cells throughout the 3 or 6-week cultures (Fig. 1C).  

We sought to determine if the small population of viable floater cells would remain 

viable if cultured separately, which could provide a useful in vitro model for dormant CTCs. 

Floater cells were collected at various time points throughout the experiment and cultured for 

several days (n=1). Regardless of the time collected, all floater cells died after 4 days of culture 

(Fig. 1D).  

In order to determine whether dormant cells have a distinct gene expression signature 

compared to relapsed MMC, microarray analysis was performed for each experimental group  
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Figure 1. ADR induces tumor dormancy in MMC, in vitro. 

MMC tumor cells were treated with 3 daily doses of ADR (1uM for 2 hs), with one group 

receiving CQ (10uM for 3 hs) immediately prior to ADR treatment. Both groups remained 

untreated for 3 weeks and 6 weeks, in vitro. A) Adherent cells were counted using trypan blue 

exclusion 3 and 6 weeks after treatment. B) MMC+ADR were analyzed for Ki67 expression on 

FVS negative viable cells (gating not shown). C) Floater cells were collected whenever culture 

medium was replaced and cell number and viability was assessed via trypan blue exclusion. D) 

Floater cells were cultured separately for 2-3 days each time they were collected, and assessed 

for viability 2-4 days later. Data represent 3 independent experiments and mean ± SEM. 
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(n=3). Untreated MMC and MMC+CQ day 4 were included as controls. Fold change in gene 

expression for each group was determined by comparison with untreated MMC control. 

Unsupervised cluster analysis shows close clustering among the ADR+CQ groups at both the 3-

week and 6-week time points, representing maintenance of dormancy. Conversely, the ADR  

groups at the 3-week and 6-week time points, representing dormancy and relapse, clustered apart 

from one another (Fig. 2). 

Dormant and relapsing MMC show unique inflammatory signature 

We then sought to determine the gene profile unique to each experimental group. Venn 

diagram analysis showed 239 genes unique to dormancy when both dormant groups were 

compared (MMC+ADR week 3 vs MMC+ADR+CQ week 3) (Fig. 3A upper panel). 682 genes 

unique to prolonged dormancy were found by comparing the fold changes of the relapsing group 

(MMC+ADR week 6) with the prolonged dormancy group (MMC+ADR+CQ week 6) (Fig. 3A 

lower panel). The prolonged dormancy group (MMC+ADR+CQ week 6) and relapsing group 

(MMC+ADR week 6) shared 882 common probe sets. Each probe set group was then analyzed 

for disease function by Ingenuity Pathway Analysis (IPA). The 239 genes involved in dormancy 

showed a z-score increase in disease states related to acute inflammation, while the 682 genes 

unique to relapse showed predicted activation in disease states related to chronic inflammation 

(Fig. 3B). The 882 genes shared by both week 6 groups, one relapsing and the other dormant, 

showed predicted activation of both chronic and acute disease states.  

In order to pinpoint pathways and proteins involved in inflammation, all probe sets that 

showed a significant upregulation or downregulation for each experimental group were uploaded 

to IPA and comparison analysis on canonical pathways and upstream regulators was performed 

(Fig. 3C). Most notably, RelA (NF-κB p65) showed predicted activation (z-score=2.6) only in  
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Figure 2. Dormant MMC exhibit unique gene signature compared to relapsing MMC.  

Unsupervised cluster analysis was performed on microarray probe set expression values. There is 

close clustering of experimental groups MMC+ADR+CQ at weeks 3 and 6 during the 

establishment and maintenance of tumor dormancy. However, tumor cells that enter the dormant 

state at week 3 and resumed a sluggish proliferation at week 6 (MMC+ADR week 3 and week 6) 

were clustered apart from each other. Control groups (MMC and MMC+CQ) were clustered 

together. 
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Figure 3. Inflammatory gene signature during dormancy and relapse. 

A) Venn Diagram analysis isolated 239 probe sets unique to dormancy when comparing both 

dormant groups (upper panel) and 682 unique probe sets unique to relapse when both week 6 

groups were compared (lower panel). 882 probe sets were shared between the MMC+ADR week 

6 relapsing group and the MMC+ADR+CQ week 6 prolonged dormancy group. Venn diagrams 

were generated from microarray fold-change expression data. Fold change was calculated by 

comparing each group to untreated MMC expression. B) Ingenuity Pathway Analysis (IPA) 

reveals genes among 239 shared probe sets involved in maintenance of dormancy shows 

predicted activation of disease states related to acute inflammation, 682 probe sets unique to 

relapse show predicated activation of disease states related to acute inflammation, and 882 

shared probe sets involved in both maintenance and escape from dormancy show predicated 

activation of disease states related to acute and chronic inflammation. C) IPA comparison 

analysis shows predicted activation and inhibition of canonical pathways and upstream 

regulators based on z-score. RelA showed a significant (z-score=2.6) predicted activation in the 

dormant group (MMC+ADR week 3). All significant (p<0.0001) fold change expression data for 

each experimental group was included in comparison analysis.  
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the MMC+ADR week 3 dormant group. NF-κB (complex) showed predicted activation in all 

groups, however, the highest z-scores were in the MMC+ADR week 6 relapsing group and 

MMC+ADR+CQ week 6 prolonged dormancy group (z-score=3.26 and 2.79). Type 1 

interferons (alpha and beta) showed predicated activation in the MMC+ADR week 3 dormant 

group (z-score= 3.5 and 2.6) and the MMC+ADR+CQ week 3 dormant group (z-score=2.5 and 

1.77). Interferon gamma (IFNG) also showed predicted activation in both dormancy groups (z-

score=2.9 and 2.5). Interferon Signaling was shown to be highly activated (z-score=3.16) only in 

the MMC+ADR week 3 dormant group.  

In order to determine whether the predicted activation of RelA led to the secretion of 

inflammatory cytokines during dormancy (preceding relapse) a multiplex cytokine array was 

performed on the supernatant from the MMC+ADR week 3 group. Cytokines probes were 

chosen by analysis of robust multi-array average (RMA) expression data for inflammatory 

cytokines that showed unique upregulation during dormancy. Choice of cytokine was also 

limited based on market availability. The protein concentration corroborated mRNA expression 

level from the microarray data for each cytokine, except RANTES, which shows a decrease in 

protein expression (Fig. 4). 

L-glutamine-addiction increases the rate of relapse in MMC 

Following the previous results, MMC were cultured exclusively with RPMI+L-glut in 

order to better replicate in vivo conditions, with L-glut being present in biological systems. After 

several months of exposure to L-glut, cells were removed from RPMI+L-glut and grown in 

RPMI-L-glut. After 2 days, cell number and viability significantly dropped (Fig. 5A), with all 

cells eventually succumbing to death (data not shown). L-glut-addicted MMC were then treated  
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Figure 4. Secretion of inflammatory cytokines during dormancy, in vitro.  

MMC were treated 3 times daily with ADR (1uM for 2 hs) and left in culture for 3 weeks. Cells 

were then detached and re-seeded in a 6-well plate alongside untreated MMC. After 24 hours of 

culture, supernatant from each well was collected. RMA (log2) value from microarray data and 

concentration (pg/mL) of each cytokine are compared side-by-side. Targets were chosen based 

on microarray data and commercial availability. 
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Figure 5. L-glutamine addiction in MMC results in increased rate-of-relapse.  

A) MMC was cultured and passaged in RPMI+L-glut for several months. Cells were then either 

left in culture with RPMI+L-glut or cultured with RPMI-L-glut for 2 days. Cells were counted 

and assessed for viability via trypan blue exclusion B) L-glut addicted MMC were treated with 3 

daily doses of ADR (1uM for 2 hs), with one group receiving CQ (10uM for 3 hs) immediately 

prior to ADR treatment. Both groups remained untreated for 3 weeks. Cells were detached and 

counted via trypan blue exclusion. Data represent 3 independent experiments and mean ± SEM. 
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with ADR+/-CQ, as described above, and cells were observed for an increase in adherent cell 

number. After 3 weeks, both experimental groups had undergone drastic relapse compared to  

non-addicted MMC (Fig. 1A), with no statistical differences between either experimental group 

(Fig. 5B) 

ADR-treated shNF-κB p65 exhibit reduced growth and a reduced rate of relapse in vitro 

and in vivo. 

Though CQ is most noted for its effects on blocking autophagy, unpublished data from 

our lab showed that autophagy protein 5 (ATG5) shRNA knockdown MMC resulted in a higher 

rate of relapse compared to control MMC. Therefore, transient blockade of autophagy alone 

during drug treatment could not be the cause for the delay in relapse of that group.  In addition to 

blockade of autophagy, CQ has been shown to inhibit NF-κB through blockade of IkB 

degradation (79). Because of such findings, and IPA results suggesting unique NF-κB p65 

signaling pathways during dormancy, we created an shRNA knockdown of NF-κB p65 in L-glut-

addicted MMC in order to determine if prolonged dormancy in CQ-treated MMC was due to NF-

κB inhibition. MMC were transduced using lentiviral particles containing NF-κB p65 shRNA 

(shNF-κB p65) or SCR shRNA (SCR-MMC) and remaining cells were subject to puromycin 

selection and western blot analysis (Fig. 6A).  

shNF-κB p65 and SCR-MMC were then treated with ADR as described above. Based on 

increased relapse rate in L-glut-addicted MMC, the week 1 time point represents dormancy, 

whereas the week 3-time point represents relapse (Fig. 6B). Both groups entered dormancy, with 

overall adherent cell number decreasing as expected. However, while both groups increased in 

cell number by week 3, shNF-κB p65 had significantly (p=0.04, p=0.03) fewer adherent cells at  
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Figure 6. NF-κB p65 knockdown in MMC reduces the rate of relapse, in vitro.  

A) Western Blot analysis shows knockdown of NF-κB p65 shRNA-transduced MMC, after 

puromycin selection, alongside control MMC and SCR-MMC. GAPDH was used as the 

housekeeping control. B) shNF-κB p65 and SCR-MMC were treated 3 times daily with ADR 

(1uM for 2 hrs) and left in culture for 1 or 3 weeks. Cells were detached and assessed for cell 

number and viability via trypan blue exclusion. C) shNF-κB p65 and SCR-MMC were seeded at 

3 x 106 cells/flask and left in culture for 48 hours. Cells were detached and counted via trypan 

blue exclusion. Data represent 3 independent experiments and mean ± SEM. 
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both time points when compared to the SCR-MMC group. In order to confirm that this change 

was due to sensitivity to ADR and not differences in baseline proliferation rate, shNF-κB p65  

and SCR-MMC were seeded at 3 million per flask (n=3). After 48 hours in culture, adherent cell 

count was determined via trypan blue with no significant changes in in cell number (Fig. 6C). 

Growth rate and response to ADR treatment was determined in vivo by subcutaneously 

injecting FVBN202 mice with 3 million shNF-κB p65 or SCR-MMC in the mammary fat pad 

(n=3). Tumor size initially showed no significant changes in growth between both groups (Fig.  

7A). However, when animals were treated intravenously with ADR (9mg/kg) every 3 days 

beginning on day 36, shNF-κB p65 tumors showed significantly (p=0.01) reduced growth 

compared to SCR-MMC tumors by day 54. A fraction of tumor cells were then cultured in vitro 

for 2 weeks upon resection from the animal in order to confirm stable shRNA knockdown of NF-

κB p65. Western blot analysis of each tumor shows maintained knock down of NF-κB p65 to 

varying degrees (Fig. 7B). 

shNF-κB p65 showed increased neu expression in response to ADR treatment in vitro and 

in vivo 

 We then sought to determine if tumor-intrinsic NF-κB p65 signaling pathways had any 

effect on immunomodulation of ADR-treated MMC by analyzing neu, PD-L1, and MHCI 

expression. shNF-κB p65 and SCR-MMC were treated with ADR as described above (n=3). On 

day 7 post treatment, cells were detached and analyzed for neu, PD-L1, and MHCI expression by 

flow cytometry. Mean florescence intensity (MFI) showed significant upregulation of neu 

expression in ADR-treated cells when compared to untreated control in both groups (p=0.0007 

and p=0.01) (Fig. 8A). However, shNF-κB p65 displayed significantly higher upregulation when  
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Figure 7. shNF-κB p65 tumors show reduced growth in response to ADR treatment, in vivo. 

A) 3 x 106 shNF-κB p65 or SCR-MMC were injected subcutaneously into the mammary fat pad 

of FVBN202 naïve mice (n=3). Mice were treated every 3 days with 9mg/kg of ADR beginning 

36 days post challenge, when tumors has reached ~800mm3, and euthanized on day 54 when 

tumors had reached greater than 2000mm3. Tumors were measured twice weekly by digital 

caliper. B) Remaining tumor samples were cultured for two weeks and western blot analysis was 

performed separately for each animal.   
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Figure 8. shNF-κB p65 show higher upregulation of neu in response to ADR treatment. 

A) shNF-κB p65 and SCR-MMC were treated 3 times daily with ADR (1uM for 2 hrs) and left 

in culture for 1 week. Neu, PD-L1, and MHC1 expression was determined by MFI. B) 3 x 106 

shNF-κB p65 or SCR-MMC were injected subcutaneously into the mammary fat pad of 

FVBN202 naïve mice. Mice were treated every 3 days with 9mg/kg ADR 36 days post 

challenge, when tumors has reached ~800mm3, and euthanized on day 54 when tumors had 

reached greater than 2000mm3. Control mice were injected with 5 x 106 of each and euthanized 

when tumors had reached >800mm3. Tumors were resected from mice and measured for neu 

expression by flow cytometry. MFI was determined by gating on CD45-/neu+ cells only.  
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compared to SCR-MMC (p=0.006). Both shNF-κB p65 and SCR-MMC showed no increase in 

PD-L1 MFI after ADR treatment, and while MHCI MFI did increase upon ADR treatment, there 

were no significant differences between shNF-κB p65 and SCR-MMC. Due to significant 

changes in neu expression between ADR-treated shNF-κB p65 and SCR-MMC, we chose to 

focus solely on neu expression for in vivo staining. Tumors resected from shNF-κB p65 or SCR-

MMC-inoculated mice treated with ADR (n=3) (described above), along with control mice 

(n=1), were stained for neu expression following the same protocol. Neu upregulation showed 

the same trend in vivo, with increased neu MFI in ADR-treated mice but a larger increase in the 

shNF-κB p65 compared to SCR-MMC tumors (p=<0.0001) (Fig. 8B).  

shNF-κB p65 show augmented tumor-infiltrate and reduced anti-tumor response 

 We then sought to determine if tumor-intrinsic NF-κB p65 signaling pathways had an 

effect on infiltration of CD45+ immune cells or the particular immune-cell type. shNF-κB p65 or 

SCR-MMC tumors resected from ADR-treated mice (n=3) were stained with CD45 and 

compared with that of non-treated mice (n=1) (Fig. 9A). Additional staining for CD11b, GR1, 

CD3, CD4, CD8, B220, CD49b was performed only on non-treated mice from each group. Log2 

frequency ratios showed the fold change increase or decrease in percentages of each cell type 

and was calculated by comparing the log2 ratio of shNF-κB p65 sample percentages to those of 

SCR-MMC (80). While total CD45+ infiltrate showed no significant differences between the 

ADR-treated groups, the non-treated shNF-κB p65 tumor showed a decrease in CD3+CD8+ 

cytotoxic T cells and an increase in CD11b+GR1+ monocytes/macrophages compared to the 

SCR-MMC tumor. 

 In order to investigate the role of NF-κB p65 in the anti-tumor immune response, 

splenocytes were collected from ADR-treated mice which had been inoculated with either shNF-  



 

 38 

Figure 9. shNF-κB p65 tumors display alteration of tumor infiltrate in vivo and T cell 

activation ex vivo. 

A) 3 x 106 shNF-κB p65 or SCR-MMC were injected subcutaneously into the mammary fat pad 

of FVBN202 naïve mice (n=3). Mice were treated every 3 days with 9mg/kg ADR 36 days post 

challenge when tumors has reached ~800mm3. Mice were euthanized on day 56 when tumors 

had reached greater than 2000mm3. Control mice were injected with 5 x 106 shNF-κB p65 or 

SCR-MMC and euthanized when tumor reached ~800mm3. Tumors were resected from ADR-

treated mice and control mice and analyzed for CD45 expression (left panel). Control mice 

tumors were analyzed for CD45, B220, CD3, CD8, CD4, CD11b, CD11c, GR1 and CD49b 

expression and compared by mean log2 frequency ratio (right panel). B) MMC were cultured 

with expanded T cells from splenocytes of untreated shNF-κB p65 or SCR-MMC inoculated 

mice and cultured for two days in the presence of IL-2. Ex vivo expansion of T cells prior to co-

culture shows poor expansion of splenocytes from shNF-κB p65 mice (bottom left). Both 

adherent and floater cells were counted and stained with Annexin V and PI to determine 

viability. Representative dot plots show cells in early/late apoptosis and necrosis (top). Total 

apoptotic includes early apoptotic, late apoptotic and necrotic cells (bottom right).  
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κB p65 or SCR-MMC tumors (n=3). Reprogramming of tumor-sensitized immune cells was 

done ex vivo, as previously described by our group (78). Splenocytes from shNF-κB p65 tumors 

showed significant (p=0.05) reduction in expansion, based on final cell count, compared with 

those from SCR-MMC tumor mice (Fig. 9B). MMC remained sensitive to tumor-reactive 

lymphocytes taken from SCR-MMC tumor mice, with 65% apoptosis of target MMC. However, 

tumor-reactive lymphocytes isolated from shNF-κB p65 tumor mice showed reduced cytotoxic 

killing of MMC, with 49% apoptosis (p=0.05).  

CRISPR-Cas9 complete knockdown of NF-κB p65 in MMC  

In order to confirm shRNA results, we created a complete knockout cell line using the 

CRISPR-Cas9 gene editing system. MMC were transfected with a CRISPR-Cas9, GFP-tagged 

plasmid, which included gRNA targeting the second exon sequence in the murine RELA gene. A 

control GFP plasmid was used as the negative control. Cells were sorted with FACS 48 hours 

post-transfection and measured for transfecting efficiency by GFP expression (Fig. 10A). GFP-

MMC control cells were sorted into two populations based on low and int/high GFP expression, 

whereas the NF-κB p65-/- were sorted intro two populations, but cells expressing high GFP were 

excluded due to the increased probability of off-target gene editing effects. Complete knockdown 

of each transfected group was confirmed with western blot analysis, with both GFP-expressing 

populations showing complete knockdown of NF-κB p65 (Fig. 10B). Non-treated proliferation 

data matched that of shNF-κB p65, showing no significant changes in cell number from the 

control group (Fig. 10C). NF-κB p65-/- and GFP-MMC were treated with ADR as described 

above. NF-κB p65-/- showed a reduction in cell number 5 days after ADR treatment, with overall 

adherent cell-count being significantly (p=0.02) less than the GFP-MMC control (Fig. 10D). 
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Figure 10. CRISPR-Cas9 knockout of NF-κB p65 in MMC 

A) MMC transfected with CRISPR-Cas9-GFP-NF-κB p65 plasmid were assessed for GFP 

expression by FACS sorting. Each sample was sorted into two groups, based on level of GFP 

expression, and cultured separately for further analysis. B) Western blot analysis was performed 

for each sample to determine NF-κB p65 expression. C) NF-κB p65-/- and GFP-MMC were 

seeded at 3 x 106 cells/flask and left in culture for 48 hours to compare proliferation rate. D) 

Both groups were also treated 3 times daily with ADR (1uM for 2 hrs) and then left in culture for 

5 days. Cells were detached and assessed for cell number and viability via trypan blue exclusion. 

Data represent 3 independent experiments and mean ± SEM.  
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Discussion 

 

The role of host-driven inflammation in tumor initiation has become better understood in 

recent years. However, the contribution of tumor-intrinsic inflammatory pathways in tumors, 

particularly in regards to tumor dormancy and recurrence, is poorly understood. We sought to 

study this phenomena by using our in vitro model of tumor dormancy, which allowed for 

isolation of tumor signaling with no extrinsic influence from the TME or immune system. While 

ADR-induced NF-κB pathways were found to be involved in tumor dormancy and relapse, 

ADR-induced NF-κB p65 activity was specifically associated with relapse. Upon finding that 

CQ prolonged dormancy and delayed relapse in vitro, further gene array analysis implicated 

differences in inflammatory signaling pathways, with NF-κB p65 in particular showing predicted 

activation in the ADR-treated dormant group that eventually relapsed. Activation of NF-κB p65 

was associated with significant increases in the production of pro-inflammatory cytokines (e.g. 

TNF-α, IL-6, and GM-SCF) during ADR-induced dormancy, which suggests that cytokine 

production preceding relapse allows for constitutive activation of NF-κB during dormancy. 

shRNA knockdown of NF-κB p65 resulted in fewer dormant cells one week after treatment and a 

delay in relapse. Mice inoculated with shNF-κB p65 showed no changes in tumor growth 

initially, but upon ADR treatment, showed significantly slowed growth compared to SCR-MMC 

tumors. We also created a complete knockout cell line of NF-κB p65 using the CRISPR-Cas9 

gene editing tool, which corroborated shRNA in vitro results. Additionally, we demonstrated that 

ADR-induced NF-κB p65 activity reduces the immunomodulatory effects of ADR, through 

inhibition of neu upregulation. shNF-κB p65 was more efficient in upregulating neu upon ADR 

treatment both in vitro and in vivo. Lastly, ADR-induced NF-κB p65 activity allows for CD8+ T 
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cell infiltration and an effective anti-tumor response. shNF-κB p65 tumors showed fewer CD8+ 

T cell and an increase in CD11b+GR1- monocytes/macrophages compared to SCR-MMC 

control tumors. T cells from animals with shNF-κB p65 tumors showed reduced expansion and 

potency in cytotoxic killing of MMC, ex vivo. Taken together, our data suggests that while 

tumor-intrinsic NF-κB signaling facilitates dormancy and relapse, it is also required for proper 

immune infiltration leading to an effective anti-tumor response.  

Our current understanding of drug-induced dormancy is that tumor cells undergo epigenetic 

alterations upon ADR treatment and a fraction of cells able to evolve an optimal ratio of 

apoptotic to growth signaling will evade drug treatment through induction of dormancy. CQ, an 

anti-malarial drug, is most recognized in cancer research for its anti-autophagy effects in tumor 

cells (81). As a weak base, it accumulates in acidic organelles of cells, such as late endosomes 

and lysosomes, where it prevents fusion events and degradation of lysosomal cargo (82). 

Interestingly, additional data from our lab showed that ATG5 knockdown (autophagy deficient 

MMC) showed an increased rate of relapse upon ADR treatment, rather than the delayed relapse 

found in MMC treated with CQ. Such results suggest that the prolonged relapse in MMC treated 

with ADR+CQ could not have been entirely due to transient blockade of autophagy during drug 

treatment. Many survival pathways, such as NF-κB, rely on ubiquitination and degradation of 

enzymes in order to initiate a proper signaling cascade, with one study finding that CQ blocked 

NF-κB by inhibiting degradation of IκB (79). Microarray and IPA analysis from ADR and CQ-

treated MMC showed predicted NF-κB p65 activation in the MMC+ADR dormant group, but 

not in the MMC+ADR+CQ group.  This data suggests that NF-κB p65 signaling pathways after 

ADR treatment allows for induction of dormancy that eventually leads to relapse.  
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Interestingly, the CQ-causing delay in relapse was not seen in ADR-treated L-glut-addicted 

MMC. We chose to add L-glut in order to better replicate in vivo conditions in culture. However, 

when treated with ADR and ADR+CQ, both groups underwent drastic relapse by week 3, with 

no significant differences in cell number. Glutamine (GLN) is the most abundant free amino acid 

in the body, and cancer cells have been shown to heavily depend on GLN for growth and 

proliferation (83). The benefit of GLN to cancer cells has long been hypothesized to be due to 

GLN providing a carbon and nitrogen source by conversion of GLN into L-glut and ammonia 

(84). Recent studies suggest that GLN may also provide cells with acid resistance through 

enzymatic deamination, particularly in vitro (85). Such data suggest that the blockade effects of 

CQ were no longer sufficient in delaying relapse when cells received a growth advantage from 

L-glut addiction.  

Our data suggests that NF-κB p65 activation during ADR treatment provides MMC with a 

tumor-intrinsic survival mechanism to escape from ADR-induced apoptosis through induction of 

dormancy, which supports similar findings in the field. For example, treatment with panobinostat 

and bortezomib, drugs that inhibit AKT and NF-κB signaling, in conjunction with ADR, resulted 

in apoptosis of leukemia cells, which had become resistant to ADR apoptosis through induction 

of dormancy (86). Another study found that treatment with the NF-κB inhibitor DHMEQ 

(dehydroxymethlypoxyquinomicin), in combination with cytotoxic therapeutics, resulted in 

significant reversal of drug-resistance and subsequent tumor cell death (87). Our findings support 

such data, with shNF-κB p65 having fewer cells one week after ADR treatment and slower 

proliferation rate upon relapse at three weeks, in vitro. shNF-κB p65 tumors also showed 

significant reduction in tumor growth upon ADR treatment, further confirming its role in 
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resistance to ADR-induced apoptosis. Western blot data of these tumors showed varying degrees 

of NF-κB p65 knockdown, which could have been due to fibroblast contamination in vitro.  

The production of inflammatory cytokines by MMC during ADR-induced dormancy in vitro 

suggest that dormant MMC promote constitutive activation of NF-κB p65, rather than having 

direct mutations in NF-κB which leads to its upregulation. Additionally, oncogenic mutations in 

NF-κB have only been observed in B-cell lymphomas and direct mutations in NF-κB genes in 

solid tumors are rare (88). Nonetheless, they do occur, with one study revealing mutations in NF-

κB p50 in human breast cancers (89). Further gene array studies could determine if oncogenic 

mutations in NF-κB signaling genes have occurred in our cell line and their contribution to these 

findings. 

The cytokines produced by dormant cells can also give us insight into other signaling 

pathways working in conjunction with NF-κB to induce dormancy. CXCL1 traditionally acts as a 

neutrophil attractant, though it has been shown to be secreted by human melanoma cells and 

promotes pathogenesis through mitogenic signaling (90, 91). TNF-α is well known to activate a 

multitude of pathways, such as NF-κB, MAPK and TNFR1-induced apoptotic signaling. In 

breast cancer cells, TNF-α has been shown to activate NF-κB to promote tumor development 

through anti-apoptotic signaling (92). IL-6 is also a pro-inflammatory cytokine, binding to its 

receptor and activing the JAK1/STAT3 signaling pathway, resulting in transcription of anti-

apoptotic genes (93). GM-CSF has been shown to both suppress and enhance tumor growth (94). 

GM-CSF production is stimulated by inflammatory cytokines, such as TNF-α and IL-6, and GM-

CSF stimulation triggers downstream signaling leading to activation of STAT5 and MAPK 

pathways (95–97). IPA analysis showed varying levels of predicted activation of NF-κB 

complex in each experimental group, suggesting that other NF-κB family members are involved 
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in maintenance of dormancy and relapse as well. It is also important to consider that determining 

the exact effects of one NF-κB family member is difficult, due to their propensity to form many 

different combinations of homo-and heterodimers, with many displaying overlap in function 

(98). Taken together, the NF-κB p65 signaling pathway contributes to the survival signaling that 

allows MMC to avoid ADR-induced apoptosis, but other pathways likely crosstalk with this 

signaling which results in an optimal ratio of survival to apoptotic signaling that allows for 

dormancy to occur. Further investigation into these pathways, with gene analysis and additional 

gene knockouts, could provide insight into dormancy signaling in order to either prevent 

induction of dormancy, or maintain dormant cells in a dormant state for life, thus preventing 

recurrence.   

NF-κB p65 also inhibits the immunomodulatory effects of ADR. Chemotherapeutic agents 

have been shown to cause changes in expression of proteins that alter the anti-tumor response 

(99). This is an additional benefit of chemotherapy that allows for better recognition of tumor 

cells by the immune system due to, for example, upregulation of tumor-specific antigens or 

antigen-presenting machinery such as MHC1 (100). Though NF-κB p65 did not have any effects 

on MHCI upregulation upon ADR treatment, our data supports findings in the field showing 

upregulation of MHCI in response to ADR treatment, which could be exploited for 

immunotherapy due to better tumor-antigen presentation on ADR-treated tumor cells (101).  NF-

κB p65 does, however, suppress expression of neu, with shNF-κB p65 showing increase in neu 

expression after ADR-treatment, compared to both the non-treated and treated SCR-MMC 

groups both in vitro and in vivo. Such findings suggest that NF-κB blockade could increase the 

efficacy of not only chemotherapeutic agents, but additional adjuvant hormone therapy and 

immunotherapy as well. Further experiments including the addition of the anti-HER2/neu drug, 
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trastuzumab, or immunotherapy following ADR treatment in shNF-κB p65 could confirm this 

hypothesis.   

We have demonstrated that knockdown of tumor-intrinsic NF-κB signaling pathways can 

benefit the host by increasing ADR-sensitivity and prolonging relapse, but the same cannot be 

said for the extrinsic signaling effects of NF-κB knockdown in tumor cells. We demonstrated 

that tumors lacking NF-κB p65 show altered immune-cell infiltrate compared to SCR-MMC 

tumors. Though overall percentage of CD45+ immune cells showed no statistical differences 

between control and ADR-treated shNF-κB p65 tumors and SCR-MMC tumors, untreated shNF-

κB p65 tumors showed a reduction in CD8+ T cells and increase in CD11b+ 

monocytes/macrophages. Increased CD8+ T cells has been shown to predict clinical outcome, 

with higher intratumoral CD8+ T lymphocytic infiltrate being associated with better clinical 

outcomes (102). In accordance with our data showing fewer CD8+ T cells, we also found a 

significant decrease in T cell expansion, ex vivo, and decrease in anti-tumor activity from shNF-

κB p65-inoculated mice against MMC when cultured together. Our findings suggest that tumor-

intrinsic NF-κB signaling pathways in tumor cells alone can decrease monocyte/macrophage 

infiltration and increase CD8+ lymphocytic infiltration, ultimately allowing for an effective 

CD8+ cytotoxic anti-tumor response.   

 Due to the aberrant activation of NF-κB found in tumor cells, there have been attempts to 

block NF-κB signaling through the development of NF-κB-inhibiting drugs. Tumor-intrinsic NF-

κB signaling plays a dual function in cancer progression; while it provides a growth advantage to 

the tumor, it also promotes inflammation that increases immune signaling (41, 46).  This 

dichotomy is likely, in part, the reason why attempts at blocking NF-κB tumor signaling through 

the development of NF-κB inhibitors have not been effective as a treatment, resulting in off-
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target effects (88). Bortezomib, the first-in-class proteasome inhibitor, blocks the NF-κB 

pathway along with many other pathways that rely on ubiquitin degradation (88). Bortezomib is 

clinically approved for treatment against multiple myeloma and mantle-cell lymphoma, though 

whether or not this success is chiefly due to inhibition of NF-κB signaling or other pathways is 

unknown (103).  

To our knowledge, this is the first study in which NF-κB gene knockdown or knockout 

was performed in tumor cells to study the effects of tumor-intrinsic inflammatory pathways on 

ADR-induced dormancy and recurrence. Drugs targeting the tumor-intrinsic NF-κB pathway, 

such as FDA-approved Bortezomib, could be used during neo-adjuvant chemotherapy and 

hormone therapy in order to prevent tumor cells from escaping the apoptotic effects of ADR and 

entering a dormant state that will eventually relapse.  However, cation should be exercised when 

inhibiting tumor-intrinsic NF-κB p65 activity due to it’s contribution to the anti-tumor immune 

response. Further studies are needed to corroborate the data presented here, which will hopefully 

answer some of these clinically relevant questions.  
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Future Directions 

 

 Our lab is continuing to investigate the role of tumor-intrinsic NF-κB signaling in 

dormancy and recurrence with our CRISPR-Cas9 NF-κB p65 knockout cell line. We plan to 

investigate the rate of relapse both in vitro and in vivo and hypothesize it will support our shRNA 

NF-κB p65 data. We also plan to do additional animal studies on immune-cell infiltrate in order 

to compare statistical differences between experimental and control groups. We will also be 

performing additional cytokine analysis on supernatant collected from different time points in the 

shRNA and CRISPR-Cas9 cell lines in order to determine the relationship of these cytokines to 

NF-κB p65 activity. Due to our discovery that NF-κB p65 inhibits some of the 

immunomodulatory effects of ADR, we will also investigate other molecules related to immune 

modulation such as HMGB-1, Rae-1, and CRT. Lastly, we will investigate the role of NF-κB 

p65 in ADR-induced drug-resistance by additionally treating cells with ADR during dormancy.  
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