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Abstract. The paper shows some interesting results of Global Sensi-
tivity Analysis on a particular dynamic stochastic general equilibrium
model. The key behavior of the Czech economy is approximated by Lu-
bik and Schorfheide model, which is a small-scale structural general equi-
librium model of a small open economy. The sensitivity analysis class of
methods presented in the paper consists of various individual analyses.
Stability mapping analysis detects the parameters which are responsible
for potential instability or indeterminacy in the model. Mapping the fit
is a useful tool to learn about the linkages that drive the fit of trajecto-
ries of particular variables to data. Information provided by the results
of mapping the fit can be used to unveil possible trade-offs between the
fit of individual observables and maybe also to amend model structure
or calibrate parameters properly in order to increase the fit of variables
of researcher’s interest. Other individual analyses are just mentioned.

Introduction

This contribution introduces the reader to Global Sensitivity Analysis due to
Saltelli et al. (2004 and 2008). The prototypical model for the exercise is the
Lubik and Schorfheide (2003) model introduced in subsection 1.1. The same
model is used by Ratto (2008a) with Canadian data set. This paper uses Czech
data set and offers comparisons to Ratto’s (2008a) paper.

The term ”Global Sensitivity Analysis” is used in this contribution in the
same sense that it is established and used in Saltelli et al. (2004 and 2008) or
Ratto (2008a). The word ”Global” means that the analysis is not ”local”, that
is, it doesn’t approximate solutions around one given point in space (like Taylor
approximation does). Global methods use more points judiciously drawn from
space and therefore overcome problems when the model is not linear.

A possible definition of sensitivity analysis is the following: ”The study of
how uncertainty in the output of a model (numerical or otherwise) can be ap-
portioned to different sources of uncertainty in the model input” (Saltelli et al.
2004). Sensitivity analysis is therefore not only the well-know ad-hoc exercise,
when researcher arbitrarily changes inputs of the model and observes changes
in output. It also encompasses methods/procedures that can somehow describe
relations between inputs and output.
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Global Sensitivity Analysis is therefore an open group of individual analyses
or methods, some of which are introduced in this paper (in subsections 2–4).

1 Preliminaries

1.1 The model

This paper presents some results of an analysis of a single model, which is a
model of Lubik and Schorfheide (2003)1. It is a small-scale structural general
equilibrium model of a small economy. This paper uses Czech data set so that
model equations (1)–(8) describe elementary behavior of the Czech economy.
Generally, ∆ denotes first difference so that e. g. ∆ξt = ξt − ξt−1, star super-
script (∗) relates to a foreign economy, subscript t denotes (relative) time and Et

denotes rational expectations made in time t. Also note that rr = −400 · log(β).

yt = Etyt+1 − [τ + α(2− α)(1− τ)](Rt − Etπt+1)

− α[τ + α(2− α)(1− τ)]Et∆qt+1 − α(2− α)
1− τ

τ
∆y∗t+1 − Etzt+1

(1)

πt = βEtπt+1 + αβEt∆yt+1 − α∆qt +
k

τ + α(2− α)(1− τ)
(yt − ȳt) (2)

πt = ∆et + (1− α)∆qt + π∗
t (3)

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2(yt − ȳt) + ψ3∆et) + eR,t (4)

∆qt = ρq∆qt−1 + eq,t (5)

y∗t = ρy∗y∗t−1 + ey∗,t (6)

π∗
t = ρπ∗π∗

t−1 + eπ∗,t (7)

zt = ρzzt−1 + ez,t (8)

Equation (1) is an open economy IS curve. If α = 0, the equation becomes
closed economy variant of IS equation. If τ = 1, the world output shocks ∆y∗t+1

drops out of IS equation and since it is not present in any other equation but
AR1 process (6), it drops out of the system completely.

The open economy Phillips curve (2) also collapses to closed economy version
if α = 0. Consumer price index CPI is introduced in (3) with an assumption of
a relative version of purchasing power parity.

Equation (4) is a monetary rule, or in another words, a nominal interest rate
equation. It describes, how the monetary authority sets its instrument, when

1 Cited from Ratto (2008a, p. 123); (hereafter LS model). The citation of the model
equations is not literal, because sixth equation on page 123 of Ratto (2008a) is ”ys =
ρy∗yt−1 + ey∗,t”, which is obviously an error. Also, in order to prevent confusion, an
explanation to variables that have letter e in its notations follows here: et in equations
(3) and (4) means nominal exchange rate, whereas e·,t in equations (4)–(8) stands
for exogenous shocks. Although the notation varies in the number of subscripts, the
difference might not be obvious at first glance.



inflation or output depart from their targets or when the currency appreciates
or depreciates.

Remaining model equations are just AR1 processes that describe the course
of terms of trade, foreign output and inflation, and technological progress.

1.2 The data

The data span from the second quarter of 1996 to the fourth quarter of 2008.
The source of all data is Czech Statistical Office and are per cent. There are
five time series used, these are: output growth, inflation, interest rate, change in
nominal exchange rate, and the change in terms of trade.

1.3 Used software

The main tool used in the analysis is the software package Dynare version 4.0.3.
The analysis also requires Global Sensitivity Analysis (hereafter GSA) toolbox
by Marco Ratto, which is – according to Dynare site – beginning to be added
to Dynare version 4. This toolbox is downloadable from Euro-area Economy
Modelling Centre web pages http://eemc.jrc.ec.europa.eu/. Documentation
for these software packages is semifinished and is in Griffoli (2007) for Dynare
version 4 and in Ratto (2008b) for GSA.

2 Stability mapping

2.1 Theory

Stability mapping helps to detect parameters Xi that are responsible for possible
”bad behavior” of the model. First step of the computation is to define two
subsets of a full domain: subset B produces behavior (= good behavior of the
model), subset B produces non-behavior (= bad behavior of the model).

N Monte Carlo simulations are then run over the domain, which results
in two subsets, (Xi|B) of size n and (Xi|B) of size n, where n + n = N .
The two sub-samples may come from different probability density functions
(PDFs) fn(Xi|B) and fn(Xi|B). Corresponding cumulative distribution func-
tions (CDFs) are Fn(Xi|B) and Fn(Xi|B).

If Fn(Xi|B) and Fn(Xi|B) differ for a given parameter Xi, the parameter
may drive bad behavior of the model if its value falls within B subset. The
shape of Fn(Xi|B) indicates, whether rather smaller or higher values of Xi drive
the non-behavior. If the non-behavior CDF is to the left from behavior CDF, it
indicates that rather smaller values of Xi are more likely to drive non-behavior.
On the other hand, if the non-behavior CDF is to the right from the behavior
CDF, it suggests that rather bigger values of Xi drive non-behavior.

In order to obtain also numerical results, a statistic that computes the great-
est distance between behavior and non-behavior CDFs is computed. More for-
mally, the (so-called) Smirnov d statistic is defined as

dn,n(Xi) = sup ||Fn(Xi|B)− Fn(Xi|B)||



The Smirnov d statistic has a domain [0, 1], where 0 means that the two (behavior
and non-behavior) CDFs perfectly overlap and 1 means that the two underlying
subsets B and B have no common elements. In other words, d = 1 means that
one of the CDFs reaches unity before the other increases from zero.

This analysis doesn’t use data, so the results are just a matter of model
relations (equations) and parameter calibration, not the data itself. The results
are therefore the same as in Ratto (2008a).

3 Mapping the fit

3.1 Theory

Since DSGE models consist of a number of observed variables, which should
fit the data as well as possible, mapping the fit may be a useful tool to learn
about the linkages that drive the fit of trajectories of particular variables to
data. Information provided by the results of mapping the fit can be used to
unveil possible trade-offs and maybe also amend model structure or calibrate
parameters properly in order to increase the fit of variables of interest.

The procedure is carried out as follows:

1. Structural parameters are sampled from posterior distribution,
2. RMSE2 of 1-step-ahead prediction is computed for each of observed series,
3. 10 % of lowest RMSE is defined as behavioral and B is defined as a subset

of parameter values producing these behavioral results and
4. the calculations results in a number of distributions fj(Xi|B) that represent

the contribution of parameter Xi to best possible fit of j-th observed series.

Plotting the distributions (or better the CDFs) is one step further to trace
possible trade-offs. A trade-off is present, when at least two distributions differ
from posterior distribution (denoted in Figures as base) and differ from each
other.

3.2 Results for LS model

Ratto (2008a, p. 126) lists these parameters as the ones bearing biggest trade-
offs: ψ1, ψ3, ρR, α, k, ρq, ρy∗ . This subsection compares and contrasts results ob-
tained by Ratto and by this paper.

In Ratto (2008a), parameters ψ1 and ψ3 both represent similar trade-offs,
albeit a bit smaller in volume in case of parameter ψ3. Both parameters should
be rather smaller in order to fit inflation π and rather larger in order to fit the
change in nominal exchange rate ∆e. Realization of the LS model on Czech data
looks similarly – see figure 1, panel one and three. ψ1 and ψ3 should be smaller
in order to fit inflation optimally and larger in order to fit the change in nom-
inal exchange rate, as in Ratto’s realization on Canadian data. The magnitude

2 root mean square error
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Fig. 1. Cumulative posterior distributions (base) and the distributions of the filtered
samples corresponding to the best fit for each singular observed series. Grey vertical
lines denote posterior mode. (1 of 2)

of these trade-offs is however visibly smaller. Also, larger value of ψ1 than its
posterior distribution supports a better fit of output and interest rate.

Indications of trade-offs associated with parameter ρR are similar in Cana-
dian and Czech realization of the LS model. Both realizations suggest that ρR
should be lower in order to fit inflation better and higher in order to fit interest
rate and the change in nominal exchange rate better. However, the magnitude is
different. A deviation of the parameter from its posterior distribution is higher
in the Czech model in case of interest rate and the change in nominal exchange
rate: see Fig. 1, panel 4.

Parameter α fits all variables rather well in both country realizations. Devi-
ations are small and different in the two countries.

Parameter k is much more interesting. Ratto (2008a) states that all observed
series have a preference for a larger value of k. The Czech model displays no
preference for bigger k from all variables. Interest rate and the change in nominal
exchange rate prefer lower k then posterior distribution. For details see Fig. 2,
panel 2.

Parameter ρq has also interesting trade-offs. ∆q alone would imply a given
value of the parameter approximately 0.5, which is almost at posterior mode.
Other variables fit data rather well with ρq at posterior distribution in both
country realizations.
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Fig. 2. Cumulative posterior distributions (base) and the distributions of the filtered
samples corresponding to the best fit for each singular observed series. Grey vertical
lines denote posterior mode. (2 of 2)

No other parameter causes major conflicts between fit of the variables and
that holds for both Canadian and Czech data realization.

4 High dimensional model representation / Reduced
form mapping

4.1 Theory

Due to the lack of space, the reader is referred e.g. to Ratto (2008a) for theoretical
background.3 We shall only define the most important measures here.

The first order sensitivity index can be defined as Si = Vi/V , which is a
scalar measure that shows the relative importance of structural parameter Xi

on the variance of Y (V being the symbol for variance). A reduced form of a
DSGE model can be written as yt = Tyt−1 +But and generic output Y can be
the entries of matrices T or B. These generic outputs Y are also called reduced
form coefficients.
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Fig. 3. Left panel: Boxplots of sensitivity indices. (All endogenous variables vs. all
exogenous and all lagged endogenous with log(−Y ) transformation). Right panel: El-
ementary effects computed as a screening procedure with Morris sampling.

4.2 Results for LS model

According to the left panel of Fig. 3, the most influential parameters are ψ1, ρR, k
and τ . The least influential parameters seem to be ψ2, rr and ρy∗ . Parameter
ψ1 has highest median, but upper quartile and upper whisker isn’t much higher.
Such characteristics could mean that ψ1 is important for many reduced form
coefficients, but is rarely very important. Parameter ρR has highest upper quar-
tile and upper whisker, but it has lower median than ψ1. This backward-looking
parameter of the monetary rule is therefore quite important for many reduced
form coefficients and very important for some, too. On the other hand, lower
median would suggest that the number of reduced form coefficients for which is
ρR important is lower than in the case of ψ1. Parameters k and τ are even less
important than the two just discussed. Both have lower values of median and
upper quartile. Upper whisker is somewhat lower, too.

Both parameters ψ2 and rr have all sensitivity indices virtually zero, which
should suggest that these parameters are unimportant for all possible reduced
form coefficients. Boxplots of α, ρq, ρA, ρy∗ and ρπ∗ represent rather peculiar re-
sults. All of these parameters have median and upper quartile virtually zero,
but have some high outliers. Such results mean that these parameters are unim-
portant for most reduced form coefficients, but have important (in case of α)
or very important (in case of the remaining four parameters) influence on some
reduced form parameters.

Right panel of Fig. 3 shows similar results, but computed as a screening
procedure with the so-called Morris sampling.4 This screening can be computed
as a preliminary check of importance of parameters. Its main advantage is that
it takes about 200 times less time to compute in comparison with the full re-
sults (left panel of Fig. 3). Its understandable drawback is that the results are

3 For primary literature, see e.g. Li et al. (2002 and 2006) and Sobol’ (1993).
4 See Morris (1991).



only approximate. The patterns (most influential parameters, noninfluential pa-
rameters) are similar in both panels, but the actual values of sensitivity in-
dices/elementary effects differ. These details are not discussed here due to the
lack of space.

Conclusion

Global sensitivity analysis helps to better understand linkages that drive the
behavior of a DSGE model. Various individual tools of GSA are used to illu-
minate dependencies in separate parts of DSGE models and together form a
unified picture. This paper presented mainly Mapping the fit, which helps to
detect trade-offs among parameter values in order to attain the best possible
fit of an observable variable. Less space is devoted to the distribution of sensi-
tivity indices, which can be used as a measure of the importance of individual
parameters.
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