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ABSTRACT 

 

 

Interconnected power systems are subject to low frequency oscillations. These 

oscillations, if poorly damped, threaten the stability of the system and limit its power transfer 

capability. Power System Stabilizers (PSS) are widely used to enhance the damping of 

electromechanical oscillatory modes. 

Conventional methods to tune power system stabilizers attempt to provide the required 

magnitude/phase shift compensation through frequency response or mode sensitivity analysis. 

However, these methods do not operate directly on the damping sensitivity of the mode. 

A novel method to calculate the damping sensitivity has been developed in this work. It 

operates on mode damping directly to achieve optimum damping for the under-damped 

oscillatory modes. The proposed method has been used to tune simple stabilizers for the well-

known two-area four-machine power system problem and the IEEE9-Bus system. It is compared 

with results obtained from complex and robust PSS designs, and found to offer comparable 

outcomes. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 Background 

Large size synchronous machines that are connected via long transmission lines suffer 

from low frequency oscillations due to inherent characteristics. This oscillatory behavior 

endangers the small signal stability of the system and may lead to serious stability problems. One 

of the most disreputable events was the breakup of the Western Interconnection on August 10, 

1996 [1] on account of four poorly damped inter-area oscillations.  

To enhance the system stability and mitigate the oscillations, many synchronous 

generator controllers have been developed. Power System Stabilizer (PSS) is one of the most 

successful controllers that generate a component of electrical torque in phase with the rotor speed 

deviation to dampen the rotor oscillations produced by small disturbances. 

 

1.2 Problem Statement 

 The main function of the Power System Stabilizer (PSS) is to improve the 

damping ratio of the oscillatory modes. To attain this objective, it feeds back a stabilizing signal 

to the excitation system through lead-phase compensation blocks. The lead phase blocks 

compensate for the lag-phase generated by the generator and excitation system. Thus, the time 

constants of the PSS should be tuned wisely to provide as much as required of gain/phase 
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compensation. Lower compensation leads to poorly damped oscillations. In contrast, higher 

compensation destroys the natural damping of the machine [2]. 

 

1.3 Objectives 

The objective of this work is to develop a reliable PSS tuning method that operates on the 

mode damping directly to achieve the maximum damping for the un-damped oscillatory modes 

to enhance the overall small signal stability of the system 

 

1.4 Study Outline 

• Chapter Two: shows literature review on the Power System Stabilizer tuning approaches 

along with their advantages and disadvantages. 

• Chapter Three: provides an insight into the theory behind the new tuning method, 

mathematical formulation of the proposed method and a detailed explanation of the 

method implementation. 

• Chapter Four: presents the results of the algorithm and the simulation outcomes when 

applying these results on the two-area four-machine system and the IEEE9-Bus system. 

Furthermore, it compares between proposed method and other methods used to tune PSS 

parameters. 

• Chapter Five: concludes this work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

 

2.1 Tuning Approaches of PSS Parameters 

A number of approaches have been used to tune the power system stabilizer. Some 

methods involve using pole placement techniques such as the residue-based method. It defines 

the open loop transfer function of the system between two points; reference voltage as the ith 

input (generator excitation input) and rotation speed as the jth output. That is: 

Pij(𝑠) = ∑
rij
h

s − λh

𝑛

ℎ=1

 (2.1) 

Where n is the total number of the eigenvalues and λh is the hth eigenvalue. rh
ij is the residue of Pij 

for the hth eigenvalue. As, assume the power system stabilizer has a transfer function of the 

following form: 

𝑀(𝑠) = 𝐾𝑒𝐺(𝑠) (2.2) 

Then the phase shift of the hth eigenvalue will be: 

∆𝜆ℎ = rij
h. ∆𝑀(𝜆ℎ) ≈  rij

h. 𝐺(𝜆ℎ). ∆𝐾𝑒 (2.3) 

Based on equation (2.3), if: 

∠rij
h + ∠𝐺(𝜆ℎ) = ±180 (2.4) 

Then, a negative value for ∆Ke is satisfactory to shift the hth eigenvalue (λh) to the left side of the 

complex plane.  
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However, as represented by [3] the residue-based method does not provide any information 

about the PSS gain. Furthermore, it is difficult to find parameters for G(s) that offer the required 

phase shift over a wide range of frequencies.  

In a different approach, de Mello and Concordia described the transfer function between 

the reference voltage and the output electrical torque as the generator, excitation system and 

power system transfer function (GEP(s)) [3].The GEP function is extracted by conducting a 

frequency response measurement between the terminal generator voltage and the reference 

voltage input to exciter. 

𝐺𝐸𝑃(𝑗௰) =
𝑉𝑡(𝑗௰)

𝑉𝑟𝑒𝑓(𝑗௰)
 (2.5) 

The justification for using (j௰) only is that the modes of concern are lightly damped. 

A robust power system stabilizer should provide the required phase compensation for this 

transfer function over the frequencies of concern. The gain can be determined experimentally as 

one third of the gain value that leads to the system instability. 

A third approach for a multi-machine system [3] defines the P-Vr transfer function as the 

transfer function between the voltage reference and the electrical power when the dynamics of all 

other machines are disabled. Disabling dynamics by setting ∆δ=0 is only possible in a simulated 

environment. The power system stabilizer transfer function (Gj(jɷ)) should compensate for the 

magnitude and phase shift produced by P-Vr transfer function (HPjj(jɷ)) for machine j, Hence: 

Gj(jɷ) =
1

HPJJ(jɷ)
 (2.6) 

In order to introduce left shift for the mode λh, the compensation angle should be: 



 

5 

 

arg{Gj(jɷ)} = −arg{HPJJ(jɷ)} (2.7) 

Designing a PSS based on these equations is relatively simple since HPjj(jɷ) is a straightforward 

transfer function containing no interaction dynamics from other generators. 

Other tuning algorithms count on the eigenvalue sensitivity approach. The eigenvalue (λi) 

can be shifted by controlling the PSS parameters denoted by q. Consider the equation from [4]: 

𝜕𝜆𝑖

𝜕𝑞
=

Ψia
T   

∂A𝑎
∂q

  ϕia

Ψi
T ϕi

                                                               (2.8) 

Where Aa is the state matrix, Ψi and ϕi are the left and right eigenvectors associated with λi and  

Ψia  = [𝛹𝑖
𝑇 𝛹𝑖𝑣

𝑇 ]𝑇  ,     ϕia  = [ϕ𝑖
𝑇 ϕ𝑖𝑣

𝑇 ]𝑇                                                               

The above expression provides an estimate of the mode shift when PSS parameter (q) is changed. 

Small Signal Stability Analysis Package (SSAP) was used in [4] to investigate the eigenvalue 

analysis of the China Southern Power Grid (CSG). Some PSS parameters have been adjusted and 

results show an improvement in the system stability. However, a change in PSS parameters can 

cause conflicting effect on different modes. 

The challenge becomes to shift λi to the left by changing the real part while keeping the 

imaginary part unchanged. 

In [5], a modal decomposition method to reduce the interaction between different modes 

was proposed. It aims to dampen a particular inter-area mode without affecting other modes; this 

makes the tuning problem much easier. However, this proposed PSS cannot stand-alone. 

Basically, it helps the conventional PSS to improve the damping of particular inter-area modes. 

This modal interaction is mentioned in [6]. It shows that a mode in any area can be excited by a 

mode in another area due to resonance. Furthermore, it relates between the effectiveness of the 

PSS and load voltage characteristics. For inter-area modes, it finds that the effectiveness of the 
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PSS with constant power load is lower than its effectiveness when using constant impedance 

load model. 

 

2.2 Overview of Different PSS Structures 

Depending on the stabilizing signal, Power System Stabilizers have various structures. 

Rotor speed, integral of power and frequency are the most commonly used input signals. 

1. Stabilizer based on rotor speed signal (Delta-Omega) 

This simple structure uses the rotational speed measured from the shaft as an input signal 

to the stabilizer. An example of such stabilizer is the one proposed by [7] and shown in figure 

(2.1) 

 

 

Figure 2.1 Excitation System with PSS 
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The main concern of Delta-Omega stabilizer is that the shaft run-out may distort the input 

signal (w). Moreover, using sensed rotor speed as an input may affect the stability of torsional 

modes in thermal units. Torsional filters should be used to solve this problem. 

To tune the parameters of Delta-Omega stabilizer, the first step is to compute the open 

loop frequency response between the exciter input and the electrical torque using a software 

program such as MASS. Designed PSS should compensate for the resulting frequency response. 

The stabilizer gain should be selected as the value that leads to maximum damping. The torsional 

filter may limit this value. 

2. Delta-P-Omega stabilizer 

Since the rotor speed and the power have a direct relationship, Delta-P-Omega stabilizer 

was developed to master the limitations of the Delta-Omega stabilizer. The measurement of 

accelerating power does not contain torsional modes thus there is no need for torsional filter. 

Additionally, it allows for higher gain that leads to higher oscillations damping. 

According to the swing equation: 

𝑑 ∆௰𝑟

𝑑𝑡
=

1

2𝐻
(𝑃𝑚 − 𝑃𝑒) (2.9)  

Practically, mechanical power can be taken as a constant and the electrical power 

becomes directly proportional to the rotor speed. This assumption turns out to be invalid in the 

cases of load changing. 

3. Frequency based stabilizer 

System frequency can also be used as a stabilizing signal. This type of stabilizers offers 

better damping for inter-area low frequency oscillations while it has less sensitivity to the local 

modes. 
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Its main disadvantage appears in rapid transients where the frequency experience sudden 

phase shift giving incorrect results. Moreover, torsional filters are necessary to attenuate 

torsional mode. 

4. Multi-Band stabilizer (MB-PSS) 

The main reason behind developing the MB-PSS is to cover a wide range of oscillation 

frequencies. Systems with long tie lines may suffer from inter-area mode with very low 

frequencies (0.2 Hz) and local modes with as high as 4 Hz. Conventional Delta-Omega stabilizer 

cannot work efficiently to damp all these modes.   

As [8], MB-PSS categorizes the electromechanical oscillation into three categories 

named low, intermediate and high frequency modes of oscillation. Accordingly, it consists of 

three working bands as seen in figure (2.2). Each band involves a gain, differential bandpass 

filter, limiter and phase compensator.  
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Figure 2.2 Multi-Band PSS 

 

Low frequency band works in the range of (<0.2 Hz) while the intermediate frequency 

band takes care of the frequencies between 0.2 Hz and 1.0 Hz. High frequency band is associated 

with higher frequencies such as (0.8-4 Hz). 

MB-PSS uses two speed deviation transducers to create two different inputs. Figure (2.3) 

shows the speed deviation transducers and a bank of two tunable notch filters to filter the high 

frequency torsional modes. 

 



 

10 

 

 
Figure 2.3 Speed Deviation Transducers 

 

To tune the MB-PSS, [8] presented simple equations to solve for six variable for each 

band; central frequencies FL, FI, FH and gains KL, KI, KH. Consider the high frequency band 

shown in figure (2.4) as an example, then: 

𝐾𝐻11 = 𝐾𝐻17 = 1 (2.10) 

𝑇𝐻2 = 𝑇𝐻7 =
1

2𝜋𝐹𝐻√𝑅
 (2.11) 

𝑇𝐻1 =
𝑇𝐻2

𝑅
 (2.12) 

𝑇𝐻8 = 𝑇𝐻7×𝑅 (2.13) 

𝐾𝐻1 = 𝐾𝐻2 =
𝑅2 + 𝑅

𝑅2 − 2𝑅 + 1
 (2.14) 
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Figure 2.4 The High Band Differential Filter 
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CHAPTER 3 

 

3 METHODOLOGY 

 

 

3.1 Introduction 

A power System Stabilizer is a device that operates on the exciter voltage to damp the 

rotor oscillations produced by small disturbances. Its basic function is to extend the angular 

stability limits of the power system by generating a component of electrical torque in phase with 

the rotor speed deviation. To achieve this goal, it feeds back a stabilizing signal (speed deviation 

or electrical power) to the excitation system through lead-phase compensation blocks. The lead 

phase blocks compensate for the lag-phase generated by the generator and excitation system. The 

good functionality of the power system stabilizer is measured by its ability to provide the 

required gain/phase compensation. Thus, designing the phase compensation blocks has very 

important role in improving the power system stability. 

This work presents a new method to tune parameters of the power system stabilizer 

aiming to achieve the maximum damping for the undamped oscillatory modes. It uses the power 

system stabilizer model defined in Kundur [7], which consists of a gain and two phase-lead 

compensation blocks.  

The new concept utilizes a small signal stability approach to formulate an explicit 

expression for the damping sensitivity with respect to the power system stabilizer parameters. 

Through an iterative procedure, it calculates the correct time constant values (T1, T2, T3, T4 and 
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Kss) of the lead-phase compensation blocks. Calculated parameters are then applied to provide 

the maximum damping by providing the most suitable phase compensation. 

The next section reviews the background of the small signal stability theory. Section 3.2 

explains the novel concept for damping sensitivity calculation. Application of the proposed 

concept on the single machine infinite bus system is presented in section 3.3. Proposed procedure 

to tune the power system stabilizer presented in section 3.4. 

 

3.2 Background 

3.2.1 State Space Representation 

Dynamic systems such as power systems can be represented by a set of n nonlinear 

differential equations as follows: 

�̇�𝑖 = 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)          i=1, 2, ..., n (3.1) 

Where n is the order of the system, r is the number of inputs and t is the time. 

Equation (3.1) can be stated in matrices form using state vector (x) and input vector (u) as: 

�̇� = 𝑓(𝑥, 𝑢, 𝑡)                                                                             (3.2) 

Where: 

𝑥 = [

𝑥1

⋮
𝑥𝑛

]          𝑢 = [

𝑢1

⋮
𝑢𝑟

] 

 State vector (x) consists of n state variables which are defined as the minimum number of 

variables at time t0 that are required to characterize the behavior of the system in the future. On 

the other hand, input vector (u) contains the r external input signals. 

If the differential functions in equation (3.2) are not direct time dependent functions, the system 

is called autonomous and defined as below: 
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�̇� = 𝑓(𝑥, 𝑢) (3.3) 

In a like way, the m output variables vector (y) can be defined as: 

𝑦 = 𝑔(𝑥, 𝑢) (3.4) 

 

3.2.2 Equilibrium Points 

These are the points where all the n first order differential equations are simultaneously 

equal to zero. In other words, equilibrium points are the points were all the system variables are 

at rest with respect to time. Mathematically, equilibrium points should satisfy the equation: 

𝑓(𝑥0) = 0 (3.5) 

A dynamic system is said to be stable about an equilibrium points if, after small disturbance, it 

converges to (or nearby) the equilibrium points. 

  

3.2.3 Linearization 

To linearize equation (3.3) around the equilibrium point after small perturbation, it may 

be expressed as: 

�̇� = �̇�0 + ∆�̇� 

                                   = 𝑓[(𝑥0 + ∆𝑥), (𝑢0 + ∆𝑢)] 

 

(3.6) 

Where: 

�̇�0 = 𝑓(𝑥0, 𝑢0) (3.7) 

x0 is the initial state vector and u0 is the input vector corresponding to the equilibrium point. 

The above equation can be solved using Taylor’s series expansion with second and higher order 

terms neglected  
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�̇�𝑖 = �̇�𝑖0 + ∆�̇�𝑖 = 𝑓𝑖[(𝑥0 + ∆𝑥), (𝑢0 + ∆𝑢)] 

   = 𝑓𝑖(𝑥0 + 𝑢0) +
𝜕𝑓𝑖
𝜕𝑥1

∆𝑥1 + ⋯+
𝜕𝑓𝑖
𝜕𝑥𝑛

∆𝑥𝑛 +
𝜕𝑓𝑖
𝜕𝑢1

∆𝑢1 + ⋯+
𝜕𝑓𝑖
𝜕𝑢𝑛

∆𝑢𝑛 

 

(3.8) 

 By comparing equation (3.7) and equation (3.8), the expression of the change in the derivative 

of the state variable ∆�̇�𝑖 can be obtained as: 

∆�̇�𝑖 =
𝜕𝑓𝑖

𝜕𝑥1
∆𝑥1 + ⋯+

𝜕𝑓𝑖

𝜕𝑥𝑛
∆𝑥𝑛 +

𝜕𝑓𝑖

𝜕𝑢1
∆𝑢1 + ⋯+

𝜕𝑓𝑖

𝜕𝑢𝑟
∆𝑢𝑟                (3.9) 

And the change in output is: 

∆𝑦𝑖 =
𝜕𝑔𝑗

𝜕𝑥1
∆𝑥1 + ⋯+

𝜕𝑔𝑗

𝜕𝑥𝑛
∆𝑥𝑛 +

𝜕𝑔𝑗

𝜕𝑢1
∆𝑢1 + ⋯+

𝜕𝑔𝑗

𝜕𝑢𝑟
∆𝑢𝑟 

(3.10) 

Equations (3.9) & (3.10) can be rewritten as: 

∆�̇� = 𝐴∆𝑥 + 𝐵∆𝑢  

  ∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢                            

(3.11) 

(3.12) 

Where: 

𝐴 =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

             𝐵 =

[
 
 
 
𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑟

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
⋯

𝜕𝑓𝑛

𝜕𝑢𝑟]
 
 
 
 

𝐶 =

[
 
 
 
𝜕𝑔1

𝜕𝑥1
⋯

𝜕𝑔1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑔𝑚

𝜕𝑥1
⋯

𝜕𝑔𝑚

𝜕𝑥𝑛 ]
 
 
 

             𝐷 =

[
 
 
 
𝜕𝑔1

𝜕𝑢1
⋯

𝜕𝑔1

𝜕𝑢𝑟

⋮ ⋱ ⋮
𝜕𝑔𝑚

𝜕𝑢1
⋯

𝜕𝑔𝑚

𝜕𝑢𝑟 ]
 
 
 
 

The above equation can be expressed in the frequency domain as following: 

𝑠∆𝑥(𝑠) − ∆𝑥(0) = 𝐴∆𝑥(𝑠) + 𝐵∆𝑢(𝑠) (3.13) 

∆𝑦(𝑠) = 𝐶∆𝑥(𝑠) + 𝐷∆𝑢(𝑠)                                                                              (3.14) 

They can also be represented as the block diagram shown in figure (3.1) assuming the initial 

conditions are zero. 
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Figure 3.1 Block Diagram of the State Space Representation 

 

Solving for ∆x(s): 

(𝑠𝐼 − 𝐴)∆𝑥(𝑠) = ∆𝑥(0) + 𝐵∆𝑢(𝑠) (3.15) 

Then 

∆𝑥(𝑠) = (𝑠𝐼 − 𝐴)−1[∆𝑥(0) + 𝐵∆𝑢(𝑠)]                                                         (3.16) 

=
𝑎𝑑𝑗(𝑠𝐼 − 𝐴)

det (𝑠𝐼 − 𝐴)
[∆𝑥(0) + 𝐵∆𝑢(𝑠)] 

(3.17) 

And  

∆𝑦(𝑠) = 𝐶
𝑎𝑑𝑗(𝑠𝐼−𝐴)

det (𝑠𝐼−𝐴)
[∆𝑥(0) + 𝐵∆𝑢(𝑠)] + 𝐷∆𝑢(𝑠)                                           (3.18) 

The poles of ∆x and ∆y are called the eigenvalues of matrix A and can be found by solving for 

the roots of the characteristic equation: 

det (𝑠𝐼 − 𝐴) = 0                                                                            (3.19) 
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3.2.4 Eigenvalues 

As [7], eigenvalues are the values of the scalar parameter λ for which there exist non-

trivial solution to the equation: 

𝐴𝜙 = 𝜆𝜙                                                                                                (3.20) 

Where A is an nxn matrix and ϕ is an nx1 vector. 

Rearranging equation (3.20): 

(𝐴 − 𝜆𝐼)𝜙 = 0                                                                   (3.21) 

Now solve: 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0                                                                              (3.22) 

The n solutions of above equation are the eigenvalues of the state matrix A. 

 

3.2.5 Eigenvectors 

From equation (3.20), the resulting column vector ϕi when λ=λi is called the right 

eigenvector of A associated with eigenvalue λi, that is: 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖                                                                        (3.23) 

ϕi has the form: 

𝜙𝑖 = [

𝜙1𝑖

𝜙2𝑖

⋮
𝜙𝑛𝑖

]                                                                                       

(3.24) 

The left eigenvector Ψi associated with eigenvalue λi is the row vector which fulfils the 

equation: 

𝛹𝑖𝐴 = 𝜆𝑖𝛹𝑖  (3.25) 

Where: 
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𝛹𝑖 = [𝛹1𝑖 𝛹2𝑖 … 𝛹𝑛𝑖]                                                                     (3.26) 

The left eigenvectors and right eigenvectors associated with different eigenvalues are 

orthogonal. Hence: 

𝛹𝑗𝜙𝑖 = 0                                                                                   (3.27) 

On the other hand:  

𝛹𝑖𝜙𝑖 = 𝐶𝑖 (3.28) 

Where Ci is a non-zero constant. Equation (3.28) can be normalized such that: 

𝛹𝑖𝜙𝑖 = 1                                                       (3.29) 

This can be expanded as: 

𝛹𝜙 = 1                                                           

Then:  

𝛹 = 𝜙−1                                                                   (3.30) 

 

3.2.6 Modal Matrices 

Define the following matrices: 

𝜙 = [𝜙1 𝜙2 … 𝜙𝑛]                                                       (3.31) 

𝛹 = [𝛹1
𝑇 𝛹2

𝑇 … 𝛹𝑛
𝑇]𝑇 (3.32) 

Ʌ = diagonal matrix where the diagonal values are the eigenvalues.                                                    (3.33) 

Using these matrices, equation (3.23) can be rewritten as: 

𝐴𝜙 = 𝜙Ʌ                                                          (3.34) 

Substituting in equation (3.33): 
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𝜙−1𝐴𝜙 = Ʌ  (3.35) 

 

3.2.7 Free Motion of a Dynamic System 

Equation (3.11) comprises two components named free and zero state. Considering only 

the free component:   

∆�̇� = 𝐴∆𝑥                                                            (3.36) 

These are the equations that physically describe the behavior of the system with zero input. For 

real systems, each one of these derivatives is a function of all the state variables. To remove the 

cross-coupling between the state variables, define a new state vector z as following: 

∆𝑥 = 𝜙𝑧                                                                        (3.37) 

Substitute the new value of ∆x in (3.36): 

𝜙�̇� = 𝐴𝜙𝑧                                                             (3.38) 

Yields: 

�̇� = 𝜙−1𝐴𝜙𝑧                                                                  (3.39) 

Or: 

�̇� = Ʌ𝑧                                                                        (3.40) 

Since Ʌ is a diagonal matrix, equation (3. 40) defines n uncoupled first order equations in the 

form: 

�̇�𝑖 = 𝜆𝑖𝑧𝑖                                                          (3.41) 

The solution for this equation with respect to time is: 

𝑧𝑖(𝑡) = 𝑧𝑖(0)𝑒𝜆𝑖𝑡                                                                            (3.42) 



 

20 

 

zi(0) is the initial value of zi. The solution expression referred to the original state vector is given 

by: 

∆𝑥(𝑡) = 𝜙𝑧(𝑡)       

= [𝜙1 𝜙2 … 𝜙𝑛] [

𝑧1(𝑡)
𝑧2(𝑡)

⋮
𝑧𝑛(𝑡)

]                                                                                                                         

3.43) 

 

(3.44) 

Or: 

∆𝑥(𝑡) = ∑ 𝜙𝑖𝑧𝑖(0)𝑒𝜆𝑖𝑡
𝑛

𝑖=1
 (3.45) 

The expression of z(t) from equation (3.43) is: 

𝑧(𝑡) = 𝜙−1∆𝑥(𝑡) = 𝛹∆𝑥(𝑡)                                                         (3.46) 

For specific state variable j: 

𝑧𝑗(𝑡) = 𝛹𝑗∆𝑥(𝑡)                                                                                  (3.47) 

When t=0: 

𝑧𝑗(0) = 𝛹𝑗∆𝑥(0)                                                                      (3.48) 

Substitute in equation (3.45) with replacing the scalar product Ψj∆x(0) by cj: 

∆𝑥(𝑡) = ∑ 𝜙𝑗𝑐𝑗𝑒
𝜆𝑗𝑡

𝑛

𝑗=1
                                                                                   (3.49) 

Equation (3.49) can be expanded as follows: 

∆𝑥𝑗(𝑡) = 𝜙𝑗1𝑐1𝑒
𝜆1𝑡 + 𝜙𝑗2𝑐2𝑒

𝜆2𝑡 + ⋯+ 𝜙𝑗𝑛𝑐𝑛𝑒𝜆𝑛𝑡                                                               (3.50) 

Equation (3.50) represents the free motion time response corresponding to the jth state variable. 

In each term, the scalar product cj denotes the magnitude of the excitation of the particular 

eigenvalue (or mode). The time dependent characteristic of the mode is defined by the value of 

eλjt. Consequently, the eigenvalues can be used to investigate the stability of the system. Real 
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eigenvalues represents non oscillatory modes. They are either decaying modes in case of the 

negative real eigenvalues or aperiodic unstable modes if they have positive sign. However, 

complex eigenvalues occur in conjugate pairs and indicate to oscillatory mode behavior such 

that: 

𝜆 = 𝜎 ± 𝑗௰                                                                             (3.51) 

The oscillation frequency in Hz is: 

𝑓 =
௰
2𝜋

                                                                                                  (3.52) 

Using eigenvalues, the damping ratio can be calculated for each eigenvalue (mode) as follows: 

𝜁 =
−𝜎

√(𝜎2+௰2)
                                                                                  (3.53) 

 

3.2.8 Eigenvalue Sensitivity 

Eigenvalue sensitivity states the most effective state variables in a particular mode among 

other state variables. It can be calculated by differentiating the eigenvalue of interest with respect 

to state matrix entries. Start with equation (3.23): 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖  

Taking the derivative with respect to akj (the element in kth row and jth column) as: 

𝜕𝐴

𝜕𝑎𝑘𝑗
𝜙𝑖 + 𝐴

𝜕𝜙𝑖

𝜕𝑎𝑘𝑗
=

𝜕𝜆𝑖

𝜕𝑎𝑘𝑗
𝜙𝑖 + 𝜆𝑖

𝜕𝜙𝑖

𝜕𝑎𝑘𝑗
 (3.54) 

Multiplying equation (3.54) by Ψi with considering Ψi ϕi=1 and Ψi(A- λiI)=0 yields: 

Ψi
𝜕𝐴

𝜕𝑎𝑘𝑗
𝜙𝑖 =

𝜕𝜆𝑖

𝜕𝑎𝑘𝑗
                                                              (3.55) 
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The partial differentiation of any element in state matrix A with respect to another element is 

always zero except for the case of differentiating the element with respect to itself which gives 1. 

Hence, 

𝜕𝜆𝑖

𝜕𝑎𝑘𝑗
= Ψ𝑖𝑘𝜙𝑗𝑖                                                                 (3.56) 

 

3.2.9 Participation Factor  

To eliminate the scaling dependency associated with the right and left eigenvectors, a 

matrix called participation matrix (P) may be defined as: 

𝑃 = [𝑃1 𝑃2 … 𝑃𝑛]    (3.57) 

Where: 

𝑝𝑖 = [

𝑝1𝑖

𝑝2𝑖

⋮
𝑝𝑛𝑖

] = [

Ψ1𝑖𝜙𝑖1

Ψ2𝑖𝜙𝑖2

⋮
Ψ𝑛𝑖𝜙𝑖𝑛

]                                                              (3.58) 

ϕki is the kth entry of the right eigenvector ϕi while Ψik is the kth entry of the left eigenvector Ψi. 

The product ϕki Ψik is a measure of the participation of kth state variable in the ith mode.  

 

3.3 Novel Concept for Damping Sensitivity Calculation 

Equation (2.56) presents the sensitivity of mode (i) with respect to element akj of the state 

matrix A. A general Mode Sensitivity Matrix (MSM) for mode k can be defined as follows: 

(𝑀𝑆𝑀𝑘) = [
Ψ𝑘1. 𝜙1𝑘 ⋯ Ψ𝑘𝑛. 𝜙1𝑘

⋮ ⋱ ⋮
Ψ𝑘1. 𝜙𝑛𝑘 ⋯ Ψ𝑘𝑛. 𝜙𝑛𝑘

] (3.59) 
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 (MSM)k  defines the sensitivity of the Kth mode( 
𝜕𝜆𝑖

𝜕𝑎𝑖𝑗
) w ith respect to all elements aij of the state 

matrix. 

Since λk=𝜎k+jɷk, then: 

(𝑀𝑆𝑀𝑘)𝑟𝑒𝑎𝑙 =

[
 
 
 

𝜕𝜎𝑘

𝜕𝑎11
⋯

𝜕𝜎𝑘

𝜕𝑎1𝑛

⋮ ⋱ ⋮
𝜕𝜎𝑘

𝜕𝑎𝑛1
⋯

𝜕𝜎𝑘

𝜕𝑎𝑛𝑛]
 
 
 

          (𝑀𝑆𝑀𝑘)𝑖𝑚𝑎𝑔 =

[
 
 
 
𝜕ɷ𝑘

𝜕𝑎11
⋯

𝜕ɷ𝑘

𝜕𝑎1𝑛

⋮ ⋱ ⋮
𝜕ɷ𝑘

𝜕𝑎𝑛1
⋯

𝜕ɷ𝑘

𝜕𝑎𝑛𝑛]
 
 
 

 (3.60) 

Considering the damping ratio ζ defined by equation (3.53); its derivative with respect to the 

state matrix elements is easily obtained as: 

𝜕𝜁𝑘

𝜕𝑎𝑖𝑗
=

−ɷ𝑘

(𝜎𝑘
2 + ɷ𝑘

2)
3

2

. (ɷ𝑘

𝜕𝜎𝑘

𝜕𝑎𝑖𝑗
− 𝜎𝑘

𝜕ɷ𝑘

𝜕𝑎𝑖𝑗
) (3.61) 

In matrix form and with reference to equation (3.60), this may be extended to all elements of the 

state matrix as follows: 

𝜕𝜁𝑘

𝜕𝐴
=

−ɷ𝑘

(𝜎𝑘
2 + ɷ𝑘

2)
3

2

. (ɷ𝑘(𝑀𝑆𝑀𝑘)𝑟𝑒𝑎𝑙 − 𝜎𝑘(𝑀𝑆𝑀𝑘)𝑖𝑚𝑎𝑔) (3.62) 

The resulting matrix may be called the Damping Sensitivity Matrix for mode k, DSMk 
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3.4 Single Machine Infinite Bus System 

To demonstrate the new method for damping sensitivity calculation and its effectiveness 

in improving the system stability by providing the required phase-lead compensation, it has been 

applied to the single machine infinite bus system mentioned in Kundur example 12.3 [7] shown 

in figure (3.2).  

 

 

Figure 3.2 Single Machine Infinite Bus System 

 

3.4.1 Synchronous Machine Model 

To analyze the systems stability, it is a common practice to use a simplified model of the 

synchronous machine. The first order of simplification is to neglect the stator transients and the 

effect of speed variation on power. By ignoring the stator transients, only the fundamental 

frequency components of stator quantities will be considered which allows the use of steady state 

relationships to represent the transmission network and consequently reduces the problem’s 

dimension. Neglecting effect of speed variation makes the pu power and torque interchangeable.  

Two sets of equations were used to form the small signal model of the synchronous machine: 

1. State variables 

Four state variables were used to describe the synchronous machine and build the system 

state matrix 
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a. Voltage behind transient reactance(X’
d) equation  

This voltage was represented by the following equation: 

𝑝𝐸𝑞
′ =

1

𝑇𝑑0
′ [−𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑑
′ )𝑖𝑑] (3.63) 

Where E’
q is the q-axis component of the voltage behind transient reactance X’d 

             T’d0 is the open circuit transient time constant 

              Efd is the field circuit voltage 

              Xd and X’d are the direct axis reactance and direct axis transient reactance respectively 

 Id is the direct axis current 

Using E’q as state variable allows including the field circuit dynamics which are important for 

dynamic analysis. 

The small signal form of equation (3.63) is: 

∆𝐸𝑞
′̇ =

1

𝑇𝑑0
[∆𝐸𝑓𝑑 − ∆ 𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑑
′ ). ∆𝐼𝑑] 

(3.64) 

 

b. Field voltage equation 

The simple exciter model shown in figure (3.3) was used. The following equation 

expresses the output voltage: 

𝐸𝑓𝑑
̇ =

1

𝑇𝑒
[(𝐾𝑒(𝑉𝑟𝑒𝑓 − 𝑉𝑡) − 𝐸𝑓𝑑] (3.65) 

Where Ke, Te are the exciter gain and time constant respectively.  

              Vref is the reference voltage 

               Vt is the synchronous machine terminal voltage  
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Figure 3.3 Excitation System 

 

For small disturbances the equation becomes: 

∆𝐸𝑓𝑑
̇ =

1

𝑇𝑒
(−𝐾𝑒∆𝑉𝑡 − ∆𝐸𝑓𝑑) (3.66) 

c. Swing equations 

Swing equations take account of the rotor speed and rotor angle by describing the 

difference between the electrical torque, mechanical torque and damping torque of the machine 

under concern as below: 

𝑑 ௰𝑟

𝑑𝑡
=

1

2𝐻
(𝑇𝑚 − 𝑇𝑒 − 𝐾𝐷∆ ௰𝑟) 

𝑑 𝛿

𝑑𝑡
= ௰0∆௰𝑟 

(3.67) 

(3.68) 

These equations can be linearized as follows, since the pu torque and power are interchangeable, 

Pm and Pe may be used in place of Tm and Te: 

𝑑 ∆௰𝑟

𝑑𝑡
=

1

2𝐻
(𝑃𝑚 − 𝑃𝑒 − 𝐾𝐷∆ ௰𝑟) 

𝑑∆𝛿

𝑑𝑡
= ௰0∆௰𝑟 

(3.69) 

(3.70) 

The block diagram of figure (3.4) represents the swing equations. 
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Figure 3.4 Block Diagram Representation of Swing Equations 

 

Equations (3.64), (3.66), (3.69) and (3.70) identify the four state variables of the system. 

2. Non state variables 

In search of a solution for the state space model defined above, nine additional non-state 

variables were temporarily used as intermediate variables (Vt, Vd, Vq, Id, Iq, Vx, Vy, Ix and Iy) 

The first three equations were basically derived from the synchronous machine phasor diagram 

shown in figure (3.5). These three equations are: 

0 = −∆𝑉𝑑 + 𝑋𝑞 . ∆𝐼𝑞 

0 = −∆𝑉𝑞 + ∆𝐸𝑞
′ − 𝑋𝑑

′ . ∆𝐼𝑑 

0 = −∆𝑉𝑡 +
𝐸𝑞

𝑉𝑡
. ∆𝑉𝑞 +

𝐸𝑑

𝑉𝑡
. ∆𝑉𝑑 

(3.71) 

(3.72) 

(3.73) 
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Figure 3.5 Synchronous Machine Phasor Diagram 

 

Figure (3.5) neglects armature resistance Ra due to its small value. 

Four equations resulted from the relationship between E’q in d-q axis and E’q in the 

reference axis X-Y as presented in figure (3.6).  

0 = −∆𝐼𝑑 + 𝐼𝑞∆𝛿 + 𝑠𝑖𝑛 𝛿∆𝐼𝑥 − cos 𝛿∆𝐼𝑦 

0 = −∆𝐼𝑞 + 𝐼𝑑∆𝛿 + 𝑐𝑜𝑠 𝛿∆𝐼𝑥 + sin 𝛿∆𝐼𝑦 

0 = −∆𝑉𝑥 − 𝑉𝑦∆𝛿 + 𝑠𝑖𝑛 𝛿∆𝑉𝑑 + cos 𝛿∆𝑉𝑞 

0 = −∆𝑉𝑦 + 𝑉𝑥∆𝛿 + 𝑐𝑜𝑠 𝛿∆𝑉𝑑 + sin 𝛿∆𝑉𝑞 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

 

 

Figure 3.6 Phasor Relationship Between E’q in d-q Axis and E’q in the Reference Axis X-Y 
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Last two equations are the transmission network equations stated below:  

0 = −∆𝐼𝑥 + ∑𝑔𝑖𝑗∆𝑉𝑥𝑗 −

𝑖

∑𝑏𝑖𝑗∆𝑉𝑦𝑗

𝑖

 

0 = −∆𝐼𝑦 + ∑𝑏𝑖𝑗∆𝑉𝑥𝑗 −

𝑖

∑𝑔𝑖𝑗∆𝑉𝑦𝑗

𝑖

 

(3.78) 

 

(3.79) 

An ETAP model was built to simulate the synchronous machine and the excitation 

system behavior. The undamped oscillations experienced by the system after small disturbance 

are shown in figure (3.7). 

  

 

Figure 3.7 Speed and Angle Oscillations 

 

A MATLAB script was also written to find the eigenvalues of the system and the 

damping ratio for each of them. Table (3.1) presents these eigenvalues and their damping ratios. 
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Table 3.1 The Eigenvalues and Damping Ratios of the System Before Applying the PSS 

Eigenvalue Damping Ratio Participating States 

-1.1294 + 2.8856i 0.3645 E’q, Efd 

-1.1294 - 2.8856i 0.3645 E’q, Efd 

-0.7481 + 6.1535i 0.1207 ௰, δ 

-0.7481 - 6.1535i 0.1207 ௰, δ 

 

Above results display one under damped oscillatory mode at frequency 6.1535 rad/sec. 

 

3.4.2 Power System Stabilizer (PSS) 

A power System Stabilizer is a device that operates on the exciter voltage to damp the 

rotor oscillations produced by small disturbances. Its basic function is to extend the angular 

stability limits of the power system by generating a component of electrical torque in phase with 

the rotor speed deviation. 

The block diagram in figure (3.8) [7] provides a good demonstration about the 

interconnection between the synchronous machine, exciter, Power System Stabilizer (PSS) and 

Automatic Voltage Regulator (AVR). The designed power system stabilizer uses the speed 

deviation as a stabilizing signal. Since the synchronous machine transfer function and the exciter 

transfer function (Gex(s)) both are frequency dependent functions, the PSS transfer function 

(GPSS(s)) should be as well.  
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Figure 3.8 Block Diagram Representation with AVR and PSS 

 

The power System stabilizer transfer function should compensate for the phase lag in the 

generator and exciter transfer functions. The conventional method of designing a PSS is to build 

a phase-lead circuit which is the inverse of the machine and exciter transfer functions. 

 

3.4.2.1 Power System Stabilizer Model 

To provide the necessary phase lead compensation, a power system stabilizer of a gain 

and two phase lead stages was used. The PSS shown in the diagram in figure (3.9) uses the rotor 

speed as a stabilizing signal. This signal is amplified by the PSS gain and the passes through a 

washout stage which eliminates the steady state error by blocking DC and low frequency speed 
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changes and only allowing high frequency speed changes to pass through. The last two blocks of 

the PSS represent the phase compensation characteristics. 

 

 

Figure 3.9 Excitation System with PSS 

 

The transfer function of the PSS ignoring the washout filter is: 

𝐺𝑃𝑆𝑆(𝑠) = 𝐾𝑠𝑠×
1 + 𝑠𝑇1

1 + 𝑠𝑇2
×

1 + 𝑠𝑇3

1 + 𝑠𝑇4
 

𝐺𝑃𝑆𝑆(𝑠) = 𝐾𝑠𝑠×
1 + 𝑠(𝑇1 + 𝑇3) + 𝑠2𝑇1𝑇3

1 + 𝑠(𝑇2 + 𝑇4) + 𝑠2𝑇2𝑇4
 

(3.80) 

 

(3.81) 

This can be written as: 

𝐺𝑃𝑆𝑆(𝑠) = 𝐾𝑠𝑠×
1 + 𝑠𝑇𝑁1 + 𝑠2𝑇𝑁2

1 + 𝑠𝑇𝐷1 + 𝑠2𝑇𝐷2
 

(3.82) 

Where TN1=T1+T3, TN2=T1×T3, TD1=T2+T4 and TD2=T2×T4 

This can be represented by the block diagram in figure (3.10) 

∆w
r 

+ 

1

1 + 𝑠𝑇𝑅
 Σ 

𝐾𝑒

1 + 𝑠𝑇𝑒
 

𝑠𝑇𝑤

1 + 𝑠𝑇𝑤
 

1 + 𝑠𝑇1

1 + 𝑠𝑇2
 

1 + 𝑠𝑇3

1 + 𝑠𝑇4
 

Et 
+ 

Vs 

Exciter 

Power System Stabilizer 

Vref 

Efd 

- 

Kss 
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Figure 3.10 Block Diagram Representation of the PSS Transfer Function 

 

The block diagram can be stated in equations form as following, introducing the states V1 and 

V2: 

𝐾𝑠𝑠∆ɷ = 𝑉1 + 𝑇𝐷1×𝑠𝑉1 + 𝑇𝐷2×𝑠2𝑉1 (3.83) 

Substituting sV1=V2: 

𝐾𝑠𝑠∆ɷ = 𝑉1 + 𝑇𝐷1×𝑉2 + 𝑇𝐷2×𝑠𝑉2 (3.84) 

This may be represented in state space format as follows: 

[
𝑠𝑉1

𝑠𝑉2
] = [

0 1
−1

𝑇𝐷2

−𝑇𝐷1

𝑇𝐷2

] [
𝑉1

𝑉2
] + [

0
1

𝑇𝐷2

]𝐾𝑠𝑠∆ɷ (3.85) 

The output voltage Vs can be expressed as: 

𝑉𝑠 = 𝑉1 + 𝑇𝑁1×𝑠𝑉1 + 𝑇𝑁2×𝑠2𝑉1 

= 𝑉1 + 𝑇𝑁1×𝑠𝑉1 + 𝑇𝑁2×𝑠𝑉2 

(3.86)  

In matrices form: 

𝑉𝑠 = 𝑉1 + [𝑇𝑁1   𝑇𝑁2] [
𝑠𝑉1

𝑠𝑉2
] 

𝑉𝑠 = 𝑉1 + [𝑇𝑁1   𝑇𝑁2] [

0 1
−1

𝑇𝐷2

−𝑇𝐷1

𝑇𝐷2

] [
𝑉1

𝑉2
] + [𝑇𝑁1   𝑇𝑁2] [

0
1

𝑇𝐷2

] 𝐾𝑠𝑠∆ɷ 

(3.87) 

 

(3.88) 
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3.4.2.2 PSS Effect on the State Space Model 

Applying the power system stabilizer to the single machine infinite bus system changes 

its space model by adding two new state variables, V1 and V2 to the state matrix A. These 

variables are defined in equation (3.85). Furthermore, the power system stabilizer modifies the 

excitation voltage equation by adding a new term to the differential equation (3.66) as follows: 

∆𝐸𝑓𝑑
̇ =

1

𝑇𝑒
(−𝐾𝑒∆𝑉𝑡−𝐾𝑒∆𝑉𝑠 − ∆𝐸𝑓𝑑) (3.89) 

Equations (3.85) and (3.88) have feedback components that change the state matrix A by 

adding six new elements, the first adds three elements to the PSS V2 equation. The other three 

correspond to the excitation voltage, Efd. These elements are shown in table (3.2). 

 

3.4.2.3 PSS Tuning 

The novel explicit expression for damping sensitivity calculation given by equation 

(3.62) has facilitated tuning the power system stabilizer parameters. Its strength resides in the 

fact that it operates on the mode damping directly. It relates the mode damping to the PSS 

parameters using the state matrix elements.  

Section 3.3.2.2 has shown the changes made in the state matrix by applying the PSS. The 

highlighted state matrix elements shown in table (3.2) are functions of PSS parameters.  

 

Table 3.2 State Matrix A After Applying the PSS 

 ∆E’q ∆Efd ∆ɷ ∆δ ∆V1 ∆V2 

∆E’q       
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∆Efd   
𝐾𝑒

𝑇𝑒
.
𝑇𝑁2

𝑇𝐷2
𝐾𝑠𝑠  

𝐾𝑒

𝑇𝑒
(1

−
𝑇𝑁2

𝑇𝐷2
) 

𝐾𝑒

𝑇𝑒
(𝑇𝑁1 −

𝑇𝐷1𝑇𝑁2

𝑇𝐷2
) 

∆ɷ       

∆δ       

∆V1       

∆V2   
1

𝑇𝐷2
𝐾𝑠𝑠  −

1

𝑇𝐷2
 −

𝑇𝐷1

𝑇𝐷2
 

 

Mode damping change can be found as: 

∆𝜁 ≈
𝜕𝜁

𝜕𝑎𝑖𝑗
∆𝑎𝑖𝑗 (3.90) 

For any of the highlighted elements, multi variable calculus gives: 

∆𝑎𝑖𝑗 ≈
𝜕𝑎𝑖𝑗

𝜕𝑇1
∆𝑇1 +

𝜕𝑎𝑖𝑗

𝜕𝑇2
∆𝑇2 +

𝜕𝑎𝑖𝑗

𝜕𝑇3
∆𝑇3 +

𝜕𝑎𝑖𝑗

𝜕𝑇4
∆𝑇4 +

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
∆𝐾𝑠𝑠 (3.91) 

Substituting in equation (3.90): 

∆𝜁 ≈
𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇1
∆𝑇1 +

𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇2
∆𝑇2 +

𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇3
∆𝑇3 +

𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇4
∆𝑇4 +

𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
∆𝐾𝑠𝑠 (3.92) 

Each term in equation (3.92) determines the damping sensitivity with respect to one parameter 

(recall that TN1, TN2, TD1 and TD2 are defined in (3.82)). These sensitivities measure the 

effect of a predefined change in each parameter on the damping of the specific mode. 

MATLAB script was written to examine the effectiveness of the new method on 

enhancing the damping of the oscillatory modes shown in table (3.1). The initial values of the 

PSS parameters were set to be: 
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T1 = 0.05      T2 = 0.02       T3 = 0.05      T4 = 0.02           Kss=0.5 

We start with a small change in the gain, ∆Kss= 0.5. To calculate 
𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
∆𝐾𝑠𝑠, notice that, there 

are two elements in matrix A that are functions of Kss. Use equation (3.82) to find 
𝜕𝜁

𝜕𝑎𝑖𝑗
 for these 

two elements corresponding to a particular mode. Then differentiate the two elements with 

respect to Kss to obtain 
𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
 . Multiply by 

𝜕𝜁

𝜕𝑎𝑖𝑗
to get the damping sensitivity for the two elements 

𝜕𝜁

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
. The total sensitivity is the summation of the two individual mode sensitivities.  

The damping ratio after applying the change in the gain should be: 

New damping ratio = Old damping ratio +(damping sensitivity with respect to Kss)× ∆Kss 

Table (3.3) presents the expected results and the actual results of the simulation. 

 

Table 3.3 Using the Damping Sensitivity to Improve the Modes Damping 

Mode 

Old damping 

ratio 

(damping sensitivity 

with respect to Kss) × 

∆Kss 

Calculated new 

damping ratio 

(addition result) 

Resulting new 

damping ratio 

(simulation 

result) 

-0.740±6.159i 0.1193 -0.0013 0.118 0.1179 

-1.137±2.879i 0.3673 0.0028 0.3701 0.3701 

 

Calculated damping sensitivities conclude that, changing the gain value by 0.5 will improve the 

damping of low frequency oscillations by 0.28% while the damping of high frequency 

oscillations will drop by 0.13%. As seen, the expression for damping sensitivity calculation was 
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perfectly able to compute the new damping ratio when applying predefined change to Kss. Thus, 

the novel damping sensitivity method can potentially be used to calculate the required change in 

the PSS parameters to get a desired damping ratio. 

Above was done for all PSS parameters. Tables (3.4) and (3.5) show the damping 

sensitivity with respect to T1 and T2 for ∆T1= 1 and ∆T2= 0.01. 

 

Table 3.4 Using the Damping Sensitivity to Improve the Modes Damping 

Mode 

Old damping 

ratio 

(damping sensitivity 

with respect to T1) × 

∆T1 

Calculated new 

damping ratio 

(addition result) 

Resulting new 

damping ratio 

(simulation 

result) 

-0.740±6.159i 0.1193 0.0033 0.1226 0.1224 

-1.137±2.879i 0.3673 -0.0044 0.3629 0.3629 

 

 

Table 3.5 Using the Damping Sensitivity to Improve the Modes Damping 

Mode 

Old damping 

ratio 

(damping sensitivity 

with respect to T2) × 

∆T2 

Calculated new 

damping ratio 

(addition result) 

Resulting new 

damping ratio 

(simulation 

result) 

-0.740±6.159i 0.1193 -0.00005 0.1192 0.1192 

-1.137±2.879i 0.3673 0.00005 0.3673 0.3673 
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The change in T2 has been made deliberately small. It should be noticed that, the change 

of T2 and T4 in each step should be relatively small to avoid the nonlinearity produced by the 

differentiations 
𝜕𝑎𝑖𝑗

𝜕𝑇2
 and 

𝜕𝑎𝑖𝑗

𝜕𝑇4
 (due to these parameters location in the denominator). 

As a change in specific parameter can cause contradictory effect on the system modes, 

counterbalancing by other parameters should be considered to get the possible maximum 

damping for all modes.  

The PSS parameters tuning was automated for the two modes by setting: 

𝐻 = [

𝜕𝜁1

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇1

𝜕𝜁1

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇2

𝜕𝜁1

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇3

𝜕𝜁1

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇4

𝜕𝜁1

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠

𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇1

𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇2

𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇3

𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇4

𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠

]    and    ∆𝑃 =

[
 
 
 
 
∆𝑇1

∆𝑇2

∆𝑇3

∆𝑇4

∆𝐾𝑠𝑠]
 
 
 
 

 

Then, the required change in PSS parameters to meet predefined change in the damping of mode 

k is: 

[
∆𝜁1
∆𝜁2

] = [𝐻]. ∆𝑃 (3.93) 

The system shown in equation (3.93) however is over determined; there are infinite combinations 

of ∆P which can be used to control the damping. Since only two oscillatory modes exist (a 

control mode associated with E’q and Efd and a local mode associated with δ,௰) only two 

degrees of freedom are needed to tune the PSS. The question becomes how are these two control 

parameters selected out of the possible five choices (T1, T2, T3, T4 and Kss)? The approach 

adopted here was to give each of these an opportunity to contribute by updating them one at a 

time. Thus, we start with T1 and write, for the two modes: 
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[
∆𝜁1
∆𝜁2

] =

[
 
 
 
 
 ∑

𝜕𝜁1
𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇1
𝑖,𝑗

∑
𝜕𝜁2

𝜕𝑎𝑖𝑗

𝜕𝑎𝑖𝑗

𝜕𝑇1
𝑖,𝑗 ]

 
 
 
 
 

. ∆𝑇1 

[∆𝜁] = [𝐻]. ∆𝑇1 

(3.94) 

Then: 

∆𝑇1 = (𝐻𝑇 .  𝐻)−1.  𝐻𝑇[∆𝜁] (3.95) 

Similar equations are written to update ∆T2, ∆T3, ∆T4 and ∆Kss, each in turn. 

The damping improvement step ∆ζi for each mode is determined by subtracting the actual 

mode damping ζi from a general damping target ζdes, i.e.: 

∆𝜁𝑖 = 𝜁𝑑𝑒𝑠 − 𝜁𝑖 (3.96) 

The damping steps should be made sufficiently small for the incremental calculus to be 

correct. Thus if the maximum value of ∆ζi is, say, larger than 0.01 (1% damping), then all ∆ζ are 

adjusted using: 

[∆𝜁] =
[∆𝜁]

max([∆𝜁])
×0.01 (3.97) 

Another useful technique is to add a weight to a particular mode, such that the 

improvement process will favor it over other modes thus: 

∆𝜁𝑖 = (𝜁𝑑𝑒𝑠 − 𝜁𝑖)×𝑤𝑒𝑖𝑔ℎ𝑡  (3.98) 

Where the relative weight determines the degree of improvements in the damping ratio among 

the modes. This is particularly helpful when the updating process favors particular modes due to 

their higher relative sensitivity.  

Mentioned techniques were used to update the PSS parameters and the results demonstrate that 

the maximum damping for the two modes can be achieved when: 
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T1 = 1.4396      T2 = 0.015       T3 = 1.41      T4 = 0.015           Kss=0.6537 

These parameters yield: 

 

Table 3.6 Oscillatory Modes and Damping Ratios After Tuning the PSS Parameters 

Modes Damping Ratio 

-1.8144±6.0554i 0.287 

-0.8943±2.9847i 0.287 

 

3.4.2.4 PSS Transfer Function and Bode Diagram 

Referring to equation (3.82), designed power system stabilizer has the transfer function: 

𝐺𝑃𝑆𝑆(𝑠) = 𝐾𝑠𝑠 ∗
1 + 𝑠𝑇𝑁1 + 𝑠2𝑇𝑁2

1 + 𝑠𝑇𝐷1 + 𝑠2𝑇𝐷2
 

 

Conventional method is to attempt to design a PSS function which is the inverse of the generator 

and excitation system transfer function to insure that the added electrical torque component is in 

phase with the rotor deviation. Other methods involve using the eigenvalues sensitivity to shift 

the real part of the mode to the left side of s-plane based on equation (3.56). 

Our novel method operates directly on the damping of the mode using damping 

sensitivity as explained in the last section. For further validation, the bode diagrams of the PSS 

before and after the tuning process were plotted as shown in figure (3.11). Obviously, tuned PSS 

using the damping sensitivity calculation offers a strong phase/gain characteristics for 

frequencies in the range of interest. 
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Figure 3.11 Bode Diagram of the Designed PSS 

 

The overall frequency characteristic of the system (from ∆ɷ to Pe) is presented in the next 

section 

 

3.4.2.5 Well-Tuned and Poorly Tuned PSS 

Figure (3.12) shows the MATLAB Simulink model of the single machine infinite bus 

system that has been constructed using equations defined in section 3.3.1. Updated values of the 

power system stabilizer parameters have been calculated using the damping sensitivity 

calculation method. New values applied to the model to plot the zero-pole map and the bode 

diagram.  
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Figure 3.12 Simulink Model of the Single Machine Infinite Bus System 

 

The model defines ∆௰ as an input linearization point and Pe as an output linearization point. To 

attain the frequency response of the system, the dynamics of all other machines should be 

disabled. That can be done by defining ∆௰ as constant. It should also be noticed that, there are 

two paths between ∆௰ and Pe; the first one pass through the PSS while the other presents the 

angle dynamics. To display the effect of the tuned PSS on the system, the angle dynamics path 

should be removed as can be seen in figure (3.13) 
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Figure 3.13 Machine Infinite Bus System with Removed Angle Dynamics Path 

 

Superposition rule can be used to solve this problem. Separating the output power of the 

speed dynamics and the output power of the angle dynamics makes it possible to monitor each 

path distinctly. 

Superposition technique has been exercised on the model and the result revealed in figure (3.14) 

 

 

Figure 3.14 Superposition Exercised on the Single Machine Infinite Bus System 
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The results of the small signal analysis before and after tuning the power system 

stabilizer have been subjected to the comparison. Table (3.8) displays the modes, damping ratios, 

the phase and the gain before and after the tuning process. Figure (3.15) presents the pole-zero 

map before and after tuning the PSS respectively. Figure (3.16) shows the bode plot diagram for 

the two cases as well. 

 

Table 3.7 Comparison Between Poorly Tuned PSS and Well-Tuned PSS 

 eigenvalue 

Damping 

Ratio % 

Magnitude dB Phase deg 

Before Tuning 

PSS 

-0.740±6.159i 0.1193 -17.9 -135 

-1.137±2.879i 0.3673 -4.19 -87.8 

After Tuning 

PSS 

-1.814±6.055i 0.2870 21.6 2.28 

-0.894±2.984i 0.2870 22.8 45.3 
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Figure 3.15 Pole-Zero Map of Poorly-Tuned PSS and Well-Tuned PSS 

 

 

Figure 3.16 Bode Diagram of Overall PSS-Pe System for Poorly Tuned and Well-Tuned PSS 
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Pole zero map shows that the oscillatory mode (mode.1) has improved by 16.77%. The 

damping sensitivity approach to tune the PSS parameters was successful to move it to the left 

from location 1 to location 1’. On the other hand, control mode (mode.2) was degraded slightly.  

Figure (3.16) shows the magnitude/frequency characteristics of the overall PSS-Pe system. 

Marked region (between 1-10 rad/s) is the region of interest. For these frequencies, well-tuned 

PSS was able to provide required phase shift especially for the high frequencies (mode.1) with a 

strong damping gain. 

Speed deviation, deviations in total electrical power and the output power of the speed 

dynamics plotted respectively for the system before tuning the PSS and after the tuning process. 

Results in figures (3.17) and (3.18) present noticeable declining in the oscillations frequency. 

 

 

Figure 3.17 Speed, Total Electrical Power and the Damping Power for Poorly-Tuned PSS 
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Figure 3.18 Speed, Total Electrical Power and the Damping Power for Well-Tuned PSS 

 

3.5 The Procedure of Tuning the Power System Stabilizers Using the Damping Sensitivity 

Calculation 

1. Use the system, generators and load data to build the admittance matrix. Eliminate non 

generating buses and find the conductance and susceptance matrices.  

2. Set initial values for the PSS parameters. 

3. Set the DampStep to be a small value which increases through an iterative procedure until 

it reaches predefined maximum damping value (30-40%). Starting with a small value of 

DampStep allows starting with the weakest mode to improve it first. 

4. Build the state matrix A of the system (including the PSS) as explained in section 3.3.1. 

Eliminate non-state variables. 

5. Calculate the eigenvalues and the damping ratios. 
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6. Define the elements that are functions of the PSSs parameters and store their locations in 

the state matrix. The number of these elements depends on the number of installed PSSs 

in the system. 

7. For these elements, calculate
𝜕𝑎𝑖𝑗

𝜕𝑇1
, 

𝜕𝑎𝑖𝑗

𝜕𝑇2
, 

𝜕𝑎𝑖𝑗

𝜕𝑇3
, 

𝜕𝑎𝑖𝑗

𝜕𝑇4
, and 

𝜕𝑎𝑖𝑗

𝜕𝐾𝑠𝑠
. 

8. Detect the weakest mode. Calculate the damping sensitivity 
𝜕𝜁𝑘

𝜕𝑎𝑖𝑗
 of that mode using 

equation (3.61) 

9. For all elements that are functions of T1, calculate  
𝜕𝑎𝑖𝑗

𝜕𝑇1
∗

𝜕𝜁𝑘

𝜕𝑎𝑖𝑗
 , find the summation of 

these values and store it in the first column of the matrix  
𝜕𝜁

𝜕𝑃
 . Repeat with respect to T2, 

T3, T4 and Kss. 

10. Define ∆ζ as the difference between the DampStep and the actual damping of the mode. 

To keep ∆ζ smaller than predefined value (1%), use equation (3.97). Moreover, to favor a 

particular mode, give it higher weight than other modes. 

11. Use the weak modes detected in equation (3.95) to update the PSS parameters starting 

with T1 and using as many as desired to increase degrees of freedom. The minimum 

number of parameters should be equal to number of under-damped modes. 

12. Increase the value of DampStep and repeat from step 4. Monitor the number of detected 

weak modes and accordingly, use as much as required of the PSS parameters to solve 

equation (3.95) 

13. Repeat until all the damping ratios of all modes become higher the predefined maximum 

damping value or no more improvement is possible. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

 

To test the proposed method, two systems were used: Kundur’s two-area four-machine 

system and the IEEE 9-Bus system. 

 

4.1 Two-Area Four-Machine System 

Figure (4.1) show the two-area four-machine system. The system consists of two 

identical areas linked by two 230KV lines. Each area has two 900MVA /20KV round rotor 

generators. Complete system data are tabulated in Appendix A  

 

 

Figure 4.1 Two-Area Four-Machine System 
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4.1.1 Small Signal Stability Analysis 

The MathWorks, Inc. team has built a Simulink model of the two-area four-machine 

system to study the performance of three PSS for inter-area oscillations. The example analyzes 

the system behavior in four cases; without PSS, with Multi-Band PSS, with conventional Delta-

Omega PSS from P. Kundur and with conventional acceleration power (Delta-Pa) PSS.  

Small signal analysis of the system without PSS displayed undamped oscillatory modes 

leading to instability as shown by figures (4.2) and (4.3). 

Figure (4.2) presents the positive sequence voltage (pu) at buses 7 and 9 and the active 

power (MW) transferred from bus 7 to bus 9. In the other hand, figure (4.3) shows ∆δ (deg), 

speed (pu), acceleration power (pu) and the terminal voltage (pu). 

 

 

Figure 4.2 System Oscillations 
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Figure 4.3 Machines Oscillations 

 

MATLAB Linear analysis tool was used to plot the model pole-zero map as presented in 

figure (4.4). It shows one unstable mode at 3.9 rad/s and two poorly damped modes at 6.7 rad/s 

and 7.1 rad/s. 
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Figure 4.4 Pole-Zero Map of the System 

 

MATLAB script was written and succeeded to obtain the same oscillatory modes. Table 

(4.14) presents these un-damped oscillatory modes and damping ratios resulting from the 

Simulink model and the MATLAB script. 

 

Table 4.1 Modes and Damping Ratios Resulting from the MATLAB Script and the Simulink 

Model 

MATLAB Script Simulink Model  

Mode Damping Ratio (pu) Mode Damping Ratio (pu) Area 

0.030±3.93i -0.007 0.055±3.93i -0.014 Inter-area mode 

-0.342±6.09i 0.056 -0.483±6.78i 0.071 Local mode(Area 1) 

-0.366±6.30i 0.057 -0.677±7.13i 0.095 Local mode(Area 2) 
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Simulink model modes have damping ratios slightly different than those resulting from 

the MATLAB script. The reason behind these differences is that the Simulink machine model is 

a detailed and complex non-linear model while the MATLAB script presents the machine by a 

simple first order model. Though, both the Simulink model and the MATLAB script show one 

un-damped inter-area mode and two local modes. 

 

4.1.2 Power System Stabilizer Tuning 

Using the procedure explained in section 2.4, the MATLAB script was used to tune the 

parameters of the four PSSs installed in the four machines. The four PSSs were designed to have 

identical parameters. The initial values of the parameters were: 

T1= 0.05   T2=0.02      T3=0.05      T4=0.02     Kss=30 

The script was run and produced results approved that the new damping sensitivity 

method succeeds to improve the system damping as following: 

 

Table 4.2 Modes and Damping Ratios After Applying and Tuning PSSs 

Mode Damping Ratio (pu) Area 

-2.765±2.662i 0.720 Inter-area mode 

-7.810±10.292i 0.604 Local mode(Area 1) 

-8.113±10.817i 0.600 Local mode(Area 2) 

 

The inter-area mode damping has improved noticeably from being unstable to have a damping 

ratio of 72%. The damping of local modes has also improved. The parameters of the PSSs were 

updated as follows: 
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T1= 0.04519688    T2=0.01955181   T3=0.04519688   T4=0.01955181   Kss=47.7242 

 

 4.1.3 Comparison of Two Power System Stabilizers 

The Simulink model compares between three power system stabilizers; MB-PSS, Delta-

Omega PSS and Delta-Pa PSS. Since the MB-PSS and the Delta- Omega PSS have the same 

stabilizing signal (w), there were used for comparison. 

The settings of MB-PSS bands were selected such that they provide zero phase shifts 

between 0.1 Hz and 5Hz. That is: 

FL=0.2    KL=30      FI=1.25     KI=40       FH=12        KH=160 

Conventional Delta- Omega PSS from Kundur was tuned as described in section (2.2) to 

compensate for the lag phase generated in the system. The applied parameters are: 

T1= 0.05   T2=0.02      T3=3      T4=5.4     Kss=30 

  Parameters of the designed Delta-Omega PSS that calculated in the last section were 

applied.   

The bode diagrams of the four types of PSS were plotted in one figure for assessment 

purposes. As seen in figure (4.5), in the frequency range of interest, MB-PSS provides good 

phase compensation with high damping gain. The conventional Delta-Omega PSS designed by 

Kundur shows zero phase compensation for a wide range of frequencies (0.2-2 Hz) which makes 

it not as effective as the MB-PSS. In the other hand, although the Delta Pa offers good phase 

advance for frequencies larger than 0.3 Hz, it has destabilizing effect at low frequencies range in 

addition to the low frequency gain. The conventional Delta-Omega PSS designed by the 

proposed novel method has good phase compensation accompanied with strong damping gain. 
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Phase compensation of the designed Delta-Omega PSS looks small in the range of 0.4-3 Hz yet, 

considering the time constant of the exciter (Te=0.001), the lag phase in the system is very small 

and does not need large reaction from the lead-lag phase blocks. 

 

 

Figure 4.5 Bode Diagrams of Four Types of PSS 

 

Since the MB-PSS has superiority over the Delta-Omega PSS designed by Kundur and 

the Delta-Pa PSS, it was used for further validation for the proposed PSS.  

The bode diagram of the overall system including the PSS was plotted to examine the 

PSS efficiency to provide required phase compensation as presented in figure (4.6). It should be 
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mentioned that, to evaluate the ∆௰-Pe transfer function the shaft dynamic should be disabled. 

That can be done by removing the feedback loop. 

The bode diagram shows better characteristics at high frequencies when using designed 

Delta-Omega PSS although both PSSs agree in the frequencies of interest. Regarding to the 

damping gain, designed Delta-Omega PSS has superior gain characteristics. 

 

 

Figure 4.6 Bode Diagram of the Overall System Including the PSS 

 

To evaluate the damping improvement, the pole-zero map has been modified slightly to 

show the same mode in case of No PSS, with MB-PSS and with designed Delta-Omega PSS. 
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The inter-area mode damping in the three cases presented in figure (4.7). Inter-area mode 

damping has been remarkably improved. The damping of the inter-area mode when applying the 

designed Delta-Omega PSS is 43% higher than its counterpart when applying the MB-PSS.  

 

 

Figure 4.7 Damping of the Inter-Area Mode in Three Cases; No PSS, with MB-PSS and with 

Designed Delta-w PSS 

 

Likewise, the damping of the local modes has been shown in figure (4.8). For these 

modes, pole-zero map shows damping ratios that are less than predicted by the MATLAB script. 

Again, that’s because of the differences between the two systems. 
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Figure 4.8 Damping of Local Modes in Three Cases; No PSS, with MB-PSS and with Designed 

Delta-w PSS 

 

These results show that the designed Delta-Omega power system stabilizer using the 

damping sensitivity method did a good job damping the inter-area and local modes oscillation. It 

provided sufficient phase compensation to flatten the phase shift of the overall system.  

Figures (4.9) and (4.10) display the simulated time-domain performance of the system and the 

synchronous machines when applying the MB-PSS while figures (4.11) and (4.12) show the 

effect of applying the designed Delta-Omega PSS.  
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Figure 4.9 The Performance of the System When Applying the MB-PSS 
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Figure 4.10 The Performance of the Synchronous Machines When Applying the MB-PSS 

  

 

Figure 4.11 The Performance of the System When Applying the Designed Delta-Omega PSS 
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Figure 4.12 The Performance of the Synchronous Machines When Applying the Designed Delta-

Omega PSS 

 

Above figures show high degree of similarity between the results of applying the simple 

designed Delta-Omega PSS and the corresponding results when applying the complex MB-PSS. 

Though, designed Delta-Omega PSS provides better enhancement in the overall stability of the 

system. Figure (4.13) demonstrates the superiority of the designed Delta-Omega PSS over the 

MB-PSS in diminishing the overshooting and reducing the oscillations of the active power 

transferred from bus 7 to bus 9. Additionally, the designed Delta-Omega PSS helps the system to 

return to its equilibrium point in a shorter period of time. 
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Figure 4.13 Comparison Between the MB-PSS and the Designed Delta-Omega PSS 

  

4.2 IEEE9-Bus System 

IEEE9-bus system presented by figure (4.14) consists of three synchronous machines 

connected to the transmission system through three transformers. The transmission system 

consists of six transmission lines with three constant power loads. The system data are presented 

in Appendix B. 
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Figure 4.14 IEEE9-Bus System 

 

4.2.1 Small Signal Stability Analysis 

The small signal response of the system to a step in the mechanical power is shown in 

figures (4.15) and (4.16). Figure (4.15) represents the oscillations in the active power of the three 

synchronous machines. On the other hand, figure (4.16) shows ∆δ (deg), slip speed w.r.t center 

of inertia (pu), acceleration power (pu), and the terminal voltages (pu) of the three generators. 
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Figure 4.15 System Oscillations 
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Figure 4.16 Machines Oscillations 

 

A MATLAB script that described the system by simple first order differential equations 

was written and used to detect the oscillatory modes of the system. Table (4.3) presents the 

detected five oscillatory modes and damping ratios. 

 

Table 4.3 Oscillatory Modes and Damping Ratios 

Mode Damping Ratio (pu) 

-9.992±21.873i 0.41 

-9.999±13.639i 0.59 

-7.620±10.022i 0.60 

-2.802±10.588i 0.25 
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-0.233±7.795i 0.03 

 

4.2.2 Power System Stabilizers Tuning 

The proposed damping sensitivity method to tune the parameters of power system 

stabilizers were used to tune three power system stabilizers installed on the system generators. 

The three power system stabilizers have different parameters to increase the degree of freedom 

The initial values of the parameters of each generator were: 

T1(1) = 0.05   T2(1) = 0.02      T3(1) = 0.05      T4(1) = 0.02     Kss(1) = 9 

T1(2) = 0.05   T2(2) = 0.02      T3(2) = 0.05      T4(2) = 0.02     Kss(2) = 8 

T1(3) = 0.05   T2(3) = 0.02      T3(3) = 0.05      T4(3) = 0.02     Kss(3) = 9 

The tuning process was performed to increase the damping ratios of the two poorly 

damped modes. Results presented in table (4.4) show the achieved improvement. 

 

Table 4.4 Modes and Damping Ratios After Applying and Tuning PSSs 

Mode Damping Ratio (pu) 

-15.136±24.794i 0.52 

-12.170±19.018i 0.53 

-6.921±13.062i 0.46 

-3.645±6.103 0.51 

-3.645±6.103 0.51 

 

The power system stabilizers parameters were updated as follow: 
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T1(1) = 0.00886   T2(1) = 0.0078       T3(1) = 0.00886    T4(1) = 0.0078      Kss(1) = 11.77 

T1(2) = 0.0794    T2(2) = 0.00536      T3(2) = 0.0794      T4(2) = 0.00536    Kss(2) = 4.0288 

T1(3) = 5.934      T2(3) = 0.6604        T3(3) = 5.934        T4(3) = 0.6604      Kss(3) = 0.435 

 

4.2.3 The Performance of the System After Tuning the PSSs 

The system and machines performance in the time-domain presented in figures (4.17) and 

(4.18) prove the effectiveness of the tuned power system stabilizers in enhancing the overall 

system stability. 

 

Figure 4.17 System Oscillations After Tuning the Power System Stabilizers 
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Figure 4.18 Machines Oscillations After Tuning the Power System Stabilizers 

 

Achieved machines performance was compared to its counterpart when applying the 

power system stabilizer proposed by [9]. As [9], the transfer function of the system defined 

between the secondary voltage of the step up transformer and the terminal voltage using local 

measurements. Although the authors did not code a clear figure for the accomplished damping 

ratios, the speed waves shown in figures (4.19) and (4.20) confirm the superiority of the power 

system stabilizers that designed by this work. Gen.1 and Gen.2 correspond to Gen.(2) and 

Gen.(3) in [9] respectively.  
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Figure 4.19 Slip Speed w.r.t Center of Inertia of Gen.1 
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Figure 4.20 Slip Speed w.r.t Center of Inertia of Gen.2 
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CHAPTER 5 

 

5 CONCLUSION 

 

 

5.1 Conclusion 

In this work, a novel method to tune the power system stabilizer parameters was developed. This 

method is based on an explicit expression for the damping sensitivity. The key advantage of the 

method is that it operates on the modes damping directly. 

The proposed method was tested on the well-known two-area four-machine system and the 

IEEE9-Bus system to examine the performance of the designed power system stabilizer. 

The small signal stability of the two-area four-machine system has been explored by virtue of 

frequency response analysis. Results presented a remarkable enhancement in the inter-area mode 

from being negatively damped to be a well-damped mode. Likewise, local modes experienced a 

decent damping improvement. The damping ratios of the poorly damped oscillatory modes of the 

IEEE9-Bus system were significantly improved 

The performance of the overall system was assessed and effectiveness of the designed power 

system stabilizer to retrieve the system stability was verified. 

For further validation, the results of the designed power system stabilizer were compared with 

complex and robust PSS designs. Although the designed power system stabilizer has simple 

structure, it showed high degree of robustness and effectiveness.  
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APPENDIX A 

 

TWO-AREA FOUR-MACHINE SYSTEM DATA
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Table A.1 System Data (pu on 100MVA/230KV base) 

Element From To 

Resistance 

(pu/km) 

Inductance 

(pu/km) 

Admittance 

(pu/km) 

Length 

(km) 

T-1 1 5 0.0 0.0167 0.0 - 

T-2 6 2 0.0 0.0167 0.0 - 

T-3 11 3 0.0 0.0167 0.0 - 

T-4 10 4 0.0 0.0167 0.0 - 

Line-1 5 6 0.0001 0.001 0.00175 25 

Line-2 6 7 0.0001 0.001 0.00175 10 

Line-3 

(double line) 

7 8 0.0001 0.001 0.00175 110 

Line-4 

(double line) 

8 9 0.0001 0.001 0.00175 110 

Line-5 9 10 0.0001 0.001 0.00175 10 

Line-6 10 11 0.0001 0.001 0.00175 25 

 

Table A.2 Generators Data (pu on 900MVA/20KV base) 

 Generators Data Exciters Data 

 Xq Xd X’d H Td0 Ke Te 

Gen.1 1.7 1.8 0.3 6.5 8 200 0.001 

Gen.2 1.7 1.8 0.3 6.5 8 200 0.001 

Gen.3 1.7 1.8 0.3 6.175 8 200 0.001 
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Gen.4 1.7 1.8 0.3 6.175 8 200 0.001 

 

Table A.3 Generation Level  

 Active Power (MW) Reactive 

Power(MVAR) 

Terminal Voltage 

Gen.1 700 91 1.05<20.72⁰ 

Gen.2 700 117 1.05<10.5⁰ 

Gen.3 719 82 1.05<-5.38⁰ 

Gen.4 700 82 1.05<-16.03⁰ 

 

Table A.4 Loading Level 

 Active Power (MW) 

Reactive 

Power(MVAR) 

Shunt Capacitors 

Reactive Power 

(MVAR) 

Load.7 967 -87 200 

Load.9 
1767 

-87 
350 
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APPENDIX B 

 

IEEE9-BUS SYSTEM DATA
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Table B.1 System Data (pu) 

Element From To 

Resistance 

(pu) 

Inductance 

(pu) 

Admittance 

(pu) 

T-1 1 7 0.0 0.0625 0.0 

T-2 2 9 0.0 0.0586 0.0 

T-3 3 4 0.0 0.0576 0.0 

Line-1 4 5 0.01 0.085 0.176 

Line-2 4 6 0.017 0.092 0.158 

Line-3 5 7 0.032 0.161 0.306 

Line-4 6 9 0.039 0.17 0.358 

Line-5 7 8 0.0085 0.072 0.149 

Line-6 8 9 0.0119 0.1008 0.209 

 

Table B.2 Generators Data (pu) 

 Generators Data Exciters Data 

 Xq Xd X’d H Td0 Ke Te 

Gen.1 0.8645 0.8958 0.1198 6.4 5.9 200 0.05 

Gen.2 1.2578 1.3125 0.1813 3.01 5.89 200 0.05 

Gen.3 0.0908 0.1455 0.0608 23.64 8.96 200 0.05 
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Table B.3 Generation Level 

 Active Power (MW) Reactive 

Power(MVAR) 

Terminal Voltage 

Gen.1 163 67 1.025<9.3⁰ 

Gen.2 85 -109 1.025<4.7⁰ 

Gen.3 72 27 1.04<0⁰ 

 

Table B.4 Loading Level 

 Active Power (MW) Reactive Power(MVAR) 

Load.5 125 50 

Load.6 
90 

30 

Load.8 
100 

35 
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